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The rovibrational partition function of the water molecule is calculated using a classical statistical mechanics
approach and a hybrid method recently proposed by Prudente et al. [J. Phys. Chem. A2001, 105, 5272],
which corrects the classical results. The phase-space integrals are solved using a Monte Carlo technique. For
temperatures between 500 and 6000 K, the results are compared with previous approximate and exact quantum
calculations. Estimates of some thermodynamic quantities for gas-phase water as a function of temperature
are also reported and compared with previous results. The calculated partition function, Gibbs enthalpy,
Helmholtz function, entropy, and specific heat at constant pressure indicate that the hybrid scheme can provide
accurate thermodynamic data for polyatomic molecules at high temperatures.

1. Introduction

Accurate thermodynamic data of gas-phase polyatomic
systems are of great importance in chemistry and physics. In
principle, the partition function, and hence other thermodynamic
properties, can be evaluated exactly in quantum statistical
mechanics by summing directly over all of the energy levels of
the system (so-called sum-over-states). Although an enormous
advance has been made in recent years along this line of
approach, the calculation of rovibrational states is currently
feasible only for systems with a few degrees of freedom,1-5

which limits the applicability of the sum-over-states approach
to small molecules.6-9 To overcome this problem, the partition
function and related thermodynamic data have been traditionally
calculated by fitting effective Hamiltonians to experimental
data.10-13 However, the accuracy of the results obtained by using
the traditional methods is expected to be poor at high temper-
atures8,14 and for floppy (anharmonic) systems.15

For the above reasons, several procedures have been proposed
as routes to the direct sum-over-states approach and fitting of
experimental data. These include the hybrid analytic/direct
summation method of ab initio calculations,14 Fourier path-
integral Monte Carlo methods,16-18 and classical statistical
mechanics (CSM) methods both with consideration of quan-
tum,19 semiclassical,20 and semiempirical21 corrections and
without consideration of such corrections.15,22-25 In a previous
paper,26 we surveyed briefly the most popular classical methods,
which employ corrections of various types, and proposed a novel
scheme (hybrid LCP/QFH), which consists of adding an
effective potential to the classical Hamiltonian to mimic
quantum effects. Such a method blends the advantages of the
linear classical path27 (LCP) and the quadratic Feynman-
Hibbs28 (QFH) methods while avoiding their nondesirable
features. In fact, preliminary calculations for diatomic mol-
ecules26 have shown that the hybrid LCP/QFH method performs
generally better than previous approaches for moderate and high
temperatures.

A major goal of this work is to extend the hybrid LCP/QFH
calculations of the rovibrational partition function and thermo-
dynamic properties [e.g, the Gibbs enthalpy function (gef),
Helmholtz function (hcf), entropy (S), and specific heat capacity
at constant pressure (Cp)] of gas-phase triatomic systems de-
scribed by realistic potential energy surfaces. Thus, we envisage
a simple and relatively inexpensive computational scheme
amenable to generalization to multidimensional systems and that
can provide accurate internal partition functions (and other
thermodynamic data) for such polyatomic systems. Conversely
to previous work,15,23,26,29 the multidimensional phase-space
integrals that appear in the classical formalism will be evaluated
by using a crude Monte Carlo method to sample the coordinates,
while the Barker Monte Carlo algorithm30 will be used to sample
the conjugate momenta (see later).

As a case study, we consider the H2O molecule in its ground
electronic state. Indeed, water is the most common polyatomic
molecule in the universe, being fundamental to life and an
essential constituent of the Earth’s atmosphere. Its thermody-
namic data at high temperatures is therefore of great importance
for modeling combustion, exhaust gases, and the atmosphere
of cool stars, just to mention a few examples. Moreover, the
H2O molecule is representative of molecular systems with a
deep potential well and commonly plays the role of a benchmark
system both for bound-state and for reactive scattering calcula-
tions [O(1D) + H2 reaction]. It is also known for the poor results
of the partition functions that are obtained even at moderate
and high temperatures when using CSM.20,23 Because of
relatively simple and fundamental characteristics of water, there
are many predictions of its partition function and thermodynamic
properties,7,8,10-14,18,20,23,31including the more recent and ac-
curate estimation obtained by Vidler and Tennyson.32 This will
allow a detailed test of our method.

The paper is organized as follows. In section 2, we discuss
the calculation of the internal partition function and related
thermodynamic properties by using the standard classical
statistical mechanics and hybrid LCP/QFH methods and sum-
marize the Monte Carlo procedure utilized to evaluate the
involved multidimensional phase-space integrals. The details
of the calculations and results are presented in section 3, while
some conclusions are in section 4.
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2. Methodology

2.1. General. The molecular partition function is usually
expressed as

whereQtr, Qelec, andQrovib are the translational, electronic, and
rovibrational contributions, respectively. AlthoughQtr can be
calculated using the ideal gas formalism33 and Qelec can be
assumed to be unity (because no electronic excited states are
involved;8,14 for a discussion on this issue, see ref 34),Qrovib

has to be evaluated from the potential energy surface by using
quantum statistical mechanics or an approximate procedure. In
this work, we use two formulations based on classical statistical
mechanics. In the first approach,Qrovib assumes the standard
classical form33,35

whereHCM(q,p) is the classical Hamiltonian,ε0 is the zero-
point energy of the system,â ) 1/(kBT), kB is the Boltzmann
constant,T is the temperature,h is the Planck constant,n is the
number of degrees of freedom,q is the generalized coordinate
vector, andp is the corresponding conjugate momenta. In the
second approach, we employ the hybrid LCP/QFH method,
which corrects the classical rovibrational partition function by
adding an effective potential to the classical Hamiltonian. One
has26

where the effective potential is given by

with A ) p2/(48µ). The first term (×2) of eq 4 is the quadratic
Feynman-Hibbs (QFH) approximation28 of the Feynman path
integral formulation, while the second one (×2) is the linear
classical approximation (LCP) due to Miller.27 We have shown
in a previous paper26 that the QFH method generally underes-
timates the values of the quantum partition function, while the
LCP approximation overestimates the values at low and
moderate temperatures. Note that the subscriptB in eqs 2 and
3 implies that the hypervolume of integration is restricted to
phase-space regions corresponding to a bound-state situation:
36 0 e HCM(q,p) e De, whereDe is the classical dissociation
energy of the molecule with the minimum of the potential energy
surface assumed as the reference energy. In turn, the factor exp-
(âε0) in eqs 2 and 3 is required to compare with previous results
for water, which have been calculated by assuming the zero-
point energy (ε0) as the reference energy.

A temperature-dependent estimate of the thermodynamic
quantities considered in this work can be obtained from the
partition function and its first and second moments, the
rovibrational contributions of which are defined by14

where the rovibrational partition function is expressed as in eqs
2 or 3. In principle, the moments could be obtained through
numerical differentiation ofQrovib

CM or Qrovib
LCP/QFH, although it is

more advantageous to differentiate them analytically. For the
standard classical approach, the resulting expressions are

whereH̃CM(q,p) ) HCM(q,p) - ε0, while for the hybrid LCP/
QFH approach, one has

The ideal gas thermodynamic functions as a function of
temperature can be obtained in terms ofQrovib, Q′rovib andQ′′rovib
as follows:

where geftr(T), hcftr(T), Str(T), andCp
tr(T) are the translational

contributions, which, for an ideal gas, assume the form10

with R being the gas constant andp the pressure. TheH0

constant, which appears in gef(T) and hcf(T), is the reference
enthalpy at the JANAF reference temperature of 298.15 K,10

Q ) QtrQelecQrovib (1)

Qrovib
CM (T) )

exp(âε0)

hn ∫∫B
exp[-âHCM(q,p)] dq dp (2)

Qrovib
LCP/QFH(T) )

exp(âε0)

hn ∫∫B
exp{-â[HCM(q,p) +

Veff(q)]} dq dp (3)

Veff(q) ) âA∇2V(q) + â2A(∇‚V(q))2 (4)

Q′rovib ) T
dQrovib

dT
(5)

Q′′rovib ) T2
d2Qrovib

dT2
+ 2Q′rovib (6)

Q′CM
rovib ) 1

hn∫∫B
âH̃CM(q,p) exp[-âH̃CM(q,p)] dq dp (7)

Q′′CM
rovib ) 1

hn∫∫B
[âH̃CM(q,p)]2 exp[-âH̃CM(q,p)] dq dp (8)

Q′LCP/QFH
rovib ) 1

hn∫∫B
[âH̃CM(q,p) + 2â2A∇2V(q) +

3â3A(∇‚V(q))2] exp{-â[H̃CM(q,p) + Veff(q)]} dq dp (9)

Q′′LCP/QFH
rovib ) 1

hn∫∫B
{[âH̃CM(q,p) + 2â2A∇2V(q) +

3â3A(∇‚V(q))2]2 - 2â2A∇2V(q) - 6â3A(∇‚V(q))2}
exp{-â[H̃CM(q,p) + Veff(q)]} dq dp (10)

The Gibbs enthalpy function

gef(T) ) -
[G(T) - H0]

T
) R ln Qrovib + geftr(T) +

H0

T
(11)

The Helmholtz function

hcf(T) ) H(T) - H0 ) RT
Q′rovib

Qrovib
+ hcftr(T) - H0 (12)

The entropy

S(T) ) R
Q′rovib

Qrovib
+ R ln Qrovib + Str(T) (13)

The specific heat capacity at constant pressure

Cp(T) ) R[Q′′rovib

Qrovib
- (Q′rovib

Qrovib
)2] + Cp

tr (14)

geftr(T) ) R[32 log M + 5
2

log T + log(kB

p (2πkB

h2 )3/2)] (15)

hcftr(T) ) 5
2
RT (16)

Str(T) ) geftr(T) + 5
2
R (17)

Cp
tr(T) ) 5

2
R (18)
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that is, H(298.15). Because the results obtained within the
classical framework have poor accuracy at low temperatures,
we will utilize in our calculations the value ofH0 ) 9904.1 J
mol-1 derived by Vidler and Tennyson32 from both theoretical
and experimental energy levels. Such a value is close to the
one reported in the JANAF tables (H0 ) 9904 J mol-1) and
can be compared with the calculated values of Martin et al.14

and Harris et al.8 (respectively,H0 ) 9902 J mol-1 andH0 )
9895.4 J mol-1). Although arbitrary, such a choice leads to errors
smaller in magnitude than the statistical errors inherent to our
Monte Carlo calculations, even at low temperatures.

2.2. Classical Hamiltonian and Effective Potential.The
next step consists of obtaining the expressions for the classical
Hamiltonian (HCM) and the effective potential (Veff) used to
calculate the rovibrational partition function of a system with
three structureless particles;mi will be the mass of thei-th
particle, andX i will be its position vector with respect to the
space-fixed axes. The rovibrational motion of the three particles
relative to the center of mass of the system can be described by
using mass-weighted Jacobi vectors37

and their corresponding conjugate momentaPr andPR, which
defines a 12-dimensional (12D) phase space. In eqs 19 and 20,
d is the mass scaling or normalizing factor,

and

is the three-body reduced mass;M ) m1 + m2 + m3 is the total
mass of the system. With the use of this phase-space coordinates
set, the expression of the classical Hamiltonian assumes the form

whereR) |R|, r ) |r |, andθ ) cos-1(R‚r /(Rr)) are the internal
mass-weighted Jacobi coordinates,PR ) |PR|, andPr ) |Pr|.
Note that the classical Hamiltonian depends explicitly only on
the variablesR, r, θ, PR andPr. Note further that the interatomic
distances (r12, r13, r23) and internal mass-weighted Jacobi
coordinates are related by

Thus, the phase-space integrals, which appear in the classical
rovibrational partition function (without any correction) and the

hybrid LCP/QFH method, as well as on the corresponding
moments, can be written in terms of internal mass-weighted
Jacobi coordinates and the moduli of the conjugate momenta
as follows:

Such expressions can be obtained by adopting spherical polar
coordinates to describeR, r , P, andp and performing analyti-
cally all of the integrals involving coordinates on which the
Hamiltonian does not depend explicitly. Note that the multidi-
mensional phase-space integral is then reduced from 12D to
5D. The functionF(‚‚‚) collects the integrands of eqs 2, 3, 7, 8,
9, and 10.

Moreover, for the hybrid LCP/QFH method, one requires the
effective potential [eq 4] in terms of internal mass-weighed
Jacobi coordinates. After some simple algebra, we can write
the terms inâ andâ2 as

and

Finally, to perform the integratations involved in the rovibra-
tional partition function and related thermodynamic quantities,
we employ a Monte Carlo procedure, which will be described
next.

2.3. Monte Carlo Approach. The methods generically
classified as Monte Carlo offer one of the most powerful
techniques to evaluate multidimensional integrals (e.g., see refs
38 and 39). Examples of their use in chemical physics are the
determination of classical partition functions and density of
states for molecular systems with realistic potential energy
surfaces.40-49 In previous work,15,23,26,29we have used such a
method based on an adaptation of the Monte Carlo algorithm
originally reported by Barker30 within the context of transition-
state theory. The spirit of such an algorithm is akin to the idea
of importance sampling and consists of choosing a sampling
domain that coincides as much as possible with the integration
domain. Thus, the variables are not sampled independently of
each other, but instead some kind of dependence is introduced.
This leads to a normalized but nonuniform distribution and,
hence, requires the use of appropriate weighting factors (see
refs 29 and 30 for details).

However, as pointed out elsewhere,23 the sampling of the
configurational space for systems of which the potential energy
surfaces possess two or more minima is not a trivial matter when
using the Barker algorithm. In fact, the sampling becomes
complicated and time-consuming, which led us to utilize here

r ) d-1(X3 - X2) (19)

R ) d(X1 -
m2X2 + m3X3

m2 + m3
) (20)

d ) [(m1

µ )(1 -
m1

M)]1/2

(21)

µ ) (m1m2m3

M )1/2

(22)

H(R,r ,PR,Pr) )
PR

2

2µ
+

Pr
2

2µ
+ V(R,r )

)
PR

2

2µ
+

Pr
2

2µ
+ V(R,r,θ) (23)

r23 ) dr

r13
2 ) ( m2dr

m2 + m3
)2

+ R2

d2
-

2m2

m2 + m3
rR cosθ

r12
2 ) ( m3dr

m2 + m3
)2

+ R2

d2
+

2m3

m2 + m3
rR cosθ (24)

I ) 1

h6∫∫B
F(R,r ,PR,Pr) dR dr dPR dPr

) 128π4

h6 ∫∫B
F(R,r,θ,PR,Pr)R

2r2PR
2 Pr

2 dR dr d

(cosθ) dPR dPr (25)

∇2V ) ∇R
2V + ∇r

2V

) ∂
2V

∂R2
+ 2

R
∂V
∂R

+ ∂
2V

∂r2
+ 2

r
∂V
∂r

+

( 1

R2
+ 1

r2) (∂2V

∂θ2
+ cotgθ ∂V

∂θ) (26)

(∇V)2 ) (∇RV)2 + (∇rV)2

) (∂V
∂R)2

+ (∂V
∂r )2

+ ( 1

R2
+ 1

r2) (∂V
∂θ)2

(27)
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the simpler crude Monte Carlo approach to sample the internal
mass-weighed Jacobi coordinates (R, r, θ). However, we keep
using Barker’s algorithm to sample the modulus of the conjugate
momenta (PR and Pr). Note that in the crude Monte Carlo
integration the variables are sampled independently of each other
using a sequence of pseudorandom numbers, which generate a
uniform distribution over the configuration space. As already
noted, all multidimensional integrals encountered here have the
general form of eq 25, and hence, we summarize below the
general procedure adopted to evaluate them. It involves the
following steps:

(1) Define a minimum and maximum displacement for each
of the internal mass-weigthed Jacobi coordinates, namely,Rmin,
Rmax, rmin, rmax, θmin, andθmax, so that the sampled hyperrect-
angular volume defined by these three coordinate intervals
includes the true volume of integration (i.e.,V(R,r,θ) e De for
PR ) Pr ) 0) but is as much as possible close to it.

(2) Sample randomlyR, r, and cos(θ) within their range to
obtain the valuesRS, rS, andθS according to

whereê is a random number in the range [0, 1].
(3) Calculate the potential at the sampled point,VS )

V(RS,rS,θS). If it represents a bound-state situation (i.e.,VS e
De), move to the next step. Otherwise (i.e., the sampled point
lies outside the true hypervolume of integrationB), go to step
6.

(4) Following Barker’s procedure, find the minimum and
maximum displacements and the sampled value for each
conjugate momentaPR andPr according to

The sampled pointxg
S ) (RS, rS,θS, PR

S, Pr
S) is therefore within

the hypervolume of integrationB.
(5) Calculate the weight factor associated with the sampled

point xg
S according to

where

which represents the hypervolume (divided byh6) associated
with xg

S.

(6) RepeatNT times the steps 2-5 to evaluate the integral of
the eq 25 as

whereFg ) F(xg
S) ≡ F(RS,rS,θS,PR

S,Pr
S) is the function to be

integrated,NT is the total number of sampled points, andNin is
the total number of sampled points that are within the hyper-
volume of integrationB. The standard deviation associated with
eq 31 assumes the form

Note that the efficiency of this Monte Carlo procedure, which
is defined byε ) Nin/NT, is not close to 1 as in Barker’s
algorithm but is certainly larger than for the crude Monte Carlo
method because Barker’s method is still employed to sample
the momenta. Note further that such a fact does not imply that
the present Monte Carlo procedure requires a larger computa-
tional effort than the one based on Barker’s algorithm. The
reason is that the determination of an integration domain close
to the true hypervolumeB as required in Barker’s algorithm
can itself be time-consuming because of the necessity of calling
the potential-energy surface routine many times.

3. Technical Details and Results

The rovibrational partition function and its first and second
moments have been computed from the standard classical
statistical mechanics expressions in eqs 2, 7, and 8 by using
the Monte Carlo method described above. Calculations have
also been carried out by using the hybrid LCP/QFH method
(eqs 3, 9, and 10). Moreover, calculations of thermodynamic
functions are reported fromQrovib, Q′rovib, and Q′′rovib by em-
ploying eqs 11-14. All calculations considered a standard state
pressure ofp ) 1 bar (105 Pa) as used in the JANAF10 tables
and by Vidler and Tennyson.32 To describe the H2O molecule,
we have employed the energy-switching (ES) potential energy
surface reported by one of us.50 This has been obtained by
merging a modified form of the global many-body expansion
(MBE) potential of Murrell and Carter51 and a spectroscopically
accurate polynomial form reported by Polyansky et al.52 (known
as PJT1). The classical dissociation energy of the ES potential
energy surface isDe ) 0.199 865 54Eh. Besides being global
and having spectroscopic accuracy where this is known, such a
potential energy surface offers the advantadge of its analytical
first derivatives with respect to the internuclear distances having
been obtained.53 Thus, only its second derivatives are needed
to be calculated numerically for the purpose of evaluating the
effective potential (eq 4) according to the hybrid LCP/QFH
method. They have been calculated numerically from the known
analytical first-derivatives, thus avoiding errors inherent to the
numerical estimation of high-order derivatives.

Before we present the results, we should define theR, r, and
θ displacement intervals, of which the importance has been
highlighted in the previous section. Thus, to improve the
efficiency of the Monte Carlo procedure, we should establish
the smallest hyperrectangle that contains the domain of integra-
tion B. This can be defined by the minimum values ofR and
r when varied independently from each other, while the
maximum values ofR andr are fixed at the asymptotic region
of the potential. Using such a procedure, we have obtainedRmin

RS ) Rmin + (Rmax - Rmin)ê

rS ) rmin + (rmax - rmin)ê

cos(θS) ) cos(θmax) + (cos(θmin) - cos(θmax))ê (28)

PR
min ) 0

PR
max ) x2µ(De - VS)

PR
S ) PR

maxê

Pr
min ) 0

Pr
max ) x2µ(De - VS) - (PR

S)2

Pr
S ) Pr

maxê (29)

wg ) 128π4

h6
WRWrWPR

WPr
(30)

WR ) (RS)2(Rmax - Rmin)(cos(θmin) - cos(θmax))

Wr ) (rS)2(rmax - rmin)

WPR
) (PR

S)2PR
max

WPr
) (Pr

S)2Pr
max

I ≈ INT )
1

NT
∑
g)1

Nin

wgFg (31)

σ2 )
1

Nin(Nin - 1)
∑
g)1

Nin (Nin

NT

wgFg - INT)2

(32)
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) 1.244 44a0, Rmax ) 10.0a0, rmin ) 1.230 90a0, and rmax )
10.0a0. For θ, we have takenθmin ) 0.0 rad andθmax ) π rad.

All results from the present work have been calculated using
three distinct Monte Carlo sequences of random numbers
obtained from different seeds for the pseudorandom number
generator. In particular, we have used the ran2 subroutine from
Numerical Recipes.54 Each sequence has been computed from
a total of 4× 108 sampled points, totalingNT ) 1.2 × 109.
Table 1 shows some of the values calculated for the rovibra-
tional partition functionQrovib

LCP/QFH using the hybrid LCP/QFH
method, together with the corresponding statistical uncertainties.
As expected, the various calculations coincide within their
statistical uncertainties. Moreover, the Monte Carlo error of the
final results is smaller than 1.4% for temperatures above 1000
K and decreases withT (e.g., forT ) 6000 K, it is only 0.08%).
Note that the Monte Carlo efficiency (ε ) Nin/NT) of our
procedure is about 6.5%.

3.1. Rovibrational Partition Function. The calculated
rovibrational partition functions of H2O based on the standard
classical procedure (Qrovib

CM ) and the hybrid LCP/QFH method
(Qrovib

LCP/QFH) are reported in Table 2. For comparison, we also
give in this table the results of Vidler and Tennyson32 (Qrovib

VT ),
which were obtained by performing an explicit summation over
experimental and theoretical rovibrational energy levels, and
of Harris et al.8 (Qrovib

HVMT), which were determined from a
summation over theoretical energy levels. Also included is the

Irwin fit 13 (Qrovib
Irwin) to the partition function data from the

JANAF thermochemical tables.10 Note that the rovibrational
energy levels used in the Vidler and Tennyson calculations have
been obtained from three separate sources: experiment where
available,55 computations from the spectroscopically determined
PJT256 potential energy surface for levels with total angular
momentumJ e 42 andEi e 30 000 cm-1, and the assumption
that vibrational and rotational motions can be separated for
higher energies up to dissociation. In this case, the vibrational
levels were computed by Mussa and Tennyson57 using an ab
initio potential energy surface,58 while the rotational levels were
estimated using the Pade´ approximant model of Polyansky.59

Regarding the calculations by Harris et al., the computed
rovibrational levels were obtained from the spectroscopically
determined PJT256 potential energy surface forJ e 35 andEi

e 30 000 cm-1, while a procedure similar to that employed by
Vidler and Tennyson was employed for higher energy levels.
Assuming the results of Vidler and Tennyson as reference, we
observe that ourQrovib

LCP/QFH values are more accurate thanQrovib
CM

over the whole range of temperatures, as already found in a
previous study26 for diatomics. For example, atT ) 2000 K,
the error relative toQrovib

VT [defined as∆Qrovib ) (Qrovib -
Qrovib

VT )/Qrovib
VT ] in Qrovib

LCP/QFH is ∼6.5% while that ofQrovib
CM is

∼98%. In turn, forT ) 6000 K, one observes a deviation of
1% in Qrovib

LCP/QFH and 7.5% inQrovib
CM . Moreover, for temperatures

above 4900 K, the hybrid LCP/QFH approach gives results in
better agreement with the Vidler and Tennyson ones than those
computed by Harris et al.8 This can also be seen from Figure
1, in which the logarithm of the ratiosQrovib

CM /Qrovib
VT , Qrovib

LCP/QFH/
Qrovib

VT , Qrovib
HVMT/Qrovib

VT , andQrovib
Irwin/Qrovib

VT are plotted as a function
of temperature. It is important to point out that the comparison
between our results and previous ones (mainly those of Vidler
and Tennyson32 and Harris et al.8) is somewhat arbitrary because
of the different potential energy surfaces that have been
employed for the calculations. In any case, the agreement
between the hybrid LCP/QFH rovibrational partition function
with previous results (Qrovib

VT , Qrovib
HVMT, and Qrovib

Irwin) is quite
satisfactory at low temperatures (T ≈ 500 K) and good at
moderate and high temperatures.

The other two sets of results evaluated directly by using the
Monte Carlo multidimensional integration are presented in
Tables 3 and 4 (respectively, the first and second moments of

TABLE 1: Convergence of Rovibrational Partition Function
Calculations for Water Using the Hybrid LCP/QFH Method

T, K

run 1
NT ) 4 × 108

Nin ) 25 992 144

run 2
NT ) 4 × 108

Nin ) 25 999 790

run 3
NT ) 4 × 108

Nin ) 25 991 985

all
NT ) 1.2× 109

Nin ) 77 983 919

1000 336.0( 7.9 335.9( 8.0 320.8( 7.8 330.9( 4.6
2000 1411.3( 10.0 1407.1( 10.0 1396.4( 9.9 1404.9( 5.8
3000 4158.8( 16.0 4156.5( 15.9 4160.8( 15.9 4158.7( 9.2
4000 10 226.3( 25.6 10 228.8( 25.6 10 257.6( 25.6 10 237.5( 14.8
5000 22 070.6( 39.6 22 083.0( 40.0 22 143.1( 39.7 22 098.9( 22.9
6000 42 842.8( 58.7 42 876.3( 58.7 42 968.5( 58.9 42 895.9( 33.9

TABLE 2: Rovibrational Partition Function of H 2O as a
Function of Temperature

T, K Qrovib
CM a Qrovib

LCP/QFH b Qrovib
VT c Qrovib

HVMT d Qrovib
Irwin e

500 12 4743( 2703 56.8( 3.6 96.583 33 96.4132
1000 3263.3( 28.9 330.9( 4.6 304.580 303.670 304.172
1200 2417.7( 16.9 469.1( 4.6 429.315 427.918 428.560
1400 2178.6( 12.5 637.2( 4.7 586.027 583.987 584.696
1600 2188.9( 10.5 843.4( 5.0 781.478 778.608 779.298
1800 2343.7( 9.7 1096.4( 5.3 1023.29 1019.39 1019.89
2000 2607.3( 9.4 1404.9( 5.8 1320.00 1314.85 1314.87
2200 2968.9( 9.4 1778.9( 6.3 1681.04 1674.49 1673.58
2400 3428.6( 9.7 2229.0( 6.9 2116.92 2108.87 2106.37
2600 3992.0( 10.1 2766.8( 7.6 2639.20 2629.76 2624.68
2800 4668.6( 10.7 3405.4( 8.3 3260.65 3250.27 3241.08
3000 5470.1( 11.4 4158.7( 9.2 3995.27 3984.98 3969.40
3200 6410.6( 12.2 5042.3( 10.1 4858.42 4850.13 4824.74
3400 7505.9( 13.2 6072.9( 11.2 5866.89 5863.76 5823.60
3600 8773.6( 14.2 7269.0( 12.3 7038.94 7045.89 6983.93
3800 10 232.9( 15.4 8650.1( 13.5 8394.37 8418.59 8325.24
4000 11 904.7( 16.6 10 237.5( 14.8 9954.54 9996.1 9868.67
4200 13 811.2( 18.0 12 053.8( 16.2 11 742.4 11 834.7 11 637.1
4400 15 975.8( 19.5 14 122.6( 17.7 13 782.2 13 932.9 13 655.3
4600 18 423.2( 21.1 16 469.1( 19.3 16 099.8 16 331.0 15 949.9
4800 21 179.0( 22.8 19 119.0( 21.0 18 722.1 19 061.2 18 549.8
5000 24 269.5( 24.6 22 098.9( 22.9 21 677.3 22 157.1 21 485.8
5200 27 721.2( 26.6 25 435.8( 24.8 24 994.1 25 653.4 24 791.4
5400 31 561.1( 28.7 29 157.1( 26.9 28 702.2 29 586.0 28 502.3
5600 35 815.9( 30.9 33 289.8( 29.1 32 831.2 33 990.8 32 656.9
5800 40 511.9( 33.2 37 860.6( 31.5 37 411.2 38 904.3 37 296.7
6000 45 674.9( 35.7 42 895.9( 33.9 42 471.8 44 362.4 42 465.8

a Standard classical results from eq 2; this work.b Hybrid LCP/QFH
results from eq 3; this work.c Reference 32.d Reference 8.e Reference
13.

Figure 1. Logarithm of ratio of the rovibrational partition function
with respect to that calculated by Vidler and Tennyson32 (Qrovib

VT ) as
function of temperature: (O) standard classical (Qrovib

CM ) results with
error bars from eq 2; (b) hybrid LCP/QFH (Qrovib

LCP/QFH) results with
error bars from eq 3; (- - -) Harris et al.8 (Qrovib

HVMT); (-‚-) Irwin13

(Qrovib
Irwin).

Partition Function and Thermodynamic Data for Water J. Phys. Chem. A, Vol. 106, No. 25, 20026197



the H2O rovibrational partition function) and are compared with
the accurate results of Vidler and Tennyson.32 It is clear that,
for both cases, the hybrid LCP/QFH method shows an improved
agreement with respect to the standard classical statistical
mechanics results over the whole range of temperatures. In
particular, the standard classical approach is seen to give values

of the correct magnitude only atT e 1600 K, while the
hybrid LCP/QFH method gives acceptable results fromT )
500 K upward. The only exception is for the second moment
of the internal partition function in which, unexpectedly,
Q′CM

rovib lies closer toQ′VT
rovib than doesQ′′LCP/QFH

rovib at tempera-
tures above 5300 K. However, as noted above, the results of
Vidler and Tennyson32 employ (for high temperatures) calcu-
lated high-energy rovibrational levels and a model for the
highest rotationally excited states, and hence, such a behavior
can partly be attributed to the use of different potential energy
surfaces.

3.2. Thermodynamic Quantities. The values reported in
Tables 2-4 have been used to obtain the Gibbs enthalpy
function (gef), the Helmholtz function (hcf), the entropy (S),
and the specific heat capacity at constant pressure (Cp). The
results, with their associated errors obtained from the standard
error propagation formulas, are given in Tables 5-8, respec-
tively. For comparison, we also give the results from Vidler
and Tennyson (VT)32 and Harris et al. (HVMT),8 as well as
those from the JANAF thermochemical tables.10 As expected,
the hybrid LCP/QFH results are more accurate than those
computed from standard classical statistical mechanics. In
general, the thermodynamic quantities calculated with the hybrid
LCP/QFH method are in good agreement with previous studies
(i.e., deviations of about 1%) at temperatures above 1000 K,
while those obtained using the standard classical procedure show
a similar agreement only at much higher temperatures. More-
over, assuming as reference the results of Vidler and Tennyson,32

Tables 5-7 show that the hybrid LCP/QFH results look better
than the HVMT and JANAF ones over some range of temper-
atures. For example, gefLCP/QFHlies closer to gefVT than gefHVMT

and gefJANAF for T e 5300 K andT e 4800 K, respectively. In
turn, for the Helmholtz function, such a pattern is observed at
temperatures above 3800 K when comparing to the Harris et
al.8 results and at 4000e T e 5000 K in relation to the JANAF10

values. For the entropy, we observe a better agreement between
SLCP/QFH andSVT for temperatures above 1500 K when compar-

TABLE 3: Calculated First Moment of Internal Partition
Function of H2O as a Function of Temperature

T, K Q′CM
rovib

a Q′LCP/QFH
rovib

b Q′VT
rovib

c

500 -1 131 384( 28 161 239.4( 9.5 149.5118
1000 -7279.7( 108 631.1( 7.5 553.9156
1200 -2643.1( 45.7 910.4( 7.1 838.0108
1400 -606.3( 25.3 1300.3( 7.2 1224.177
1600 734.6( 16.9 1825.1( 7.6 1738.323
1800 1911.3( 13.3 2512.8( 8.3 2409.863
2000 3132.8( 12.1 3395.9( 9.4 3272.146
2200 4510.6( 12.2 4511.8( 10.7 4362.889
2400 6123.0( 13.1 5902.9( 12.2 5724.670
2600 8036.6( 14.6 7617.3( 13.9 7405.270
2800 10 316.0( 16.5 9708.5( 15.9 9458.213
3000 13 027.6( 18.7 12 236.5( 18.2 11 943.2
3200 16 241.7( 21.2 15 267.2( 20.6 14 926.3
3400 20 033.5( 23.9 18 873.1( 23.4 18 480.5
3600 24 483.7( 27.0 23 133.2( 26.4 22 685.6
3800 29 677.9( 30.3 28 132.0( 29.7 27 628.2
4000 35 706.0( 33.9 33 959.0( 33.3 33 401.0
4200 42 661.6( 37.9 40 708.0( 37.2 40 102.3
4400 50 640.2( 42.1 48 475.1( 41.4 47 834.7
4600 59 737.6( 46.7 57 357.1( 45.9 56 703.6
4800 70 048.8( 51.6 67 450.2( 50.8 66 816.0
5000 81 665.5( 56.9 78 847.8( 56.1 78 278.4
5200 94 675.1( 62.6 91 638.9( 61.7 91 195.1
5400 109 158.5( 68.6 105 906.4( 67.7 105 666.5
5600 125 189.5( 75.0 121 725.8( 74.1 121 787.3
5800 142 833.0( 81.9 139 164.0( 80.9 139 645.3
6000 162 144.5( 89.1 158 278.2( 88.1 159 320.0

a Standard classical results from eq 7; this work.b Hybrid LCP/QFH
results from eq 9; this work.c Reference 32.

TABLE 4: Calculated Second Moment of Internal Partition
Function of H2O as a Function of Temperature

T, K Q′′CM
rovib

a Q′′LCP/QFH
rovib

b Q′′VT
rovib

500 10 835 142( 300 896 690.9( 44.9 399.183
1000 31 221( 469 1787.7( 21.7 1758.363
1200 14 014( 154 2895.6( 19.2 2824.526
1400 10 237.9( 69.2 4471.4( 19.1 4343.094
1600 10 411.6( 39.8 6634.5( 20.7 6439.341
1800 12 492.6( 30.2 9529.0( 23.6 9258.888
2000 15 982.4( 29.5 13 324.5( 27.5 12 970.58
2200 20 828.6( 32.8 18 217.9( 32.4 17 769.12
2400 27 149.6( 38.2 24 434.5( 38.1 23 877.75
2600 35 150.5( 44.7 32 230.9( 44.8 31 550.88
2800 45 094.0( 52.4 41 895.9( 52.3 41 076.76
3000 57 288.5( 61.0 53 752.8( 60.8 52 779.7
3200 72 081.8( 70.6 68 158.7( 70.3 67 021.0
3400 89 855.7( 81.3 85 502.7( 80.9 84 199.0
3600 111 019.0( 93.0 106 200.5( 92.5 104 745.8
3800 135 998( 106 130 686( 105 129 121.6
4000 165 227( 120 159 403( 119 157 806.7
4200 199 134( 135 192 787( 135 191 290.4
4400 238 125( 152 231 259( 151 230 058.2
4600 282 578( 170 275 206( 169 274 578.9
4800 332 824( 190 324 973( 189 325 290.7
5000 389 142( 211 380 847( 209 382 588.9
5200 451 748( 233 443 056( 232 446 815.3
5400 520 790( 257 511 758( 256 518 249.1
5600 596 350( 282 587 041( 281 597 100.7
5800 678 437( 310 668 921( 308 683 507.8
6000 766 993( 338 757 343( 337 777 534.1

a Standard classical results from eq 8; this work.b Hybrid LCP/QFH
results from eq 10; this work.c Ref 32.

TABLE 5: The Gibbs Enthalpy Function (in J K -1 mol-1)
of H2O as a Function of Temperature

T, K gefCM a gefLCP/QFH b gefVT c gefHVMT d gefJANAF e

500 252.243( 0.180 188.270( 0.526 192.681 192.53 192.68
1000 226.452( 0.074 207.423( 0.115 206.734 206.58 206.73
1200 226.098( 0.058 212.465( 0.081 211.727 211.58 211.73
1400 227.257( 0.048 217.035( 0.062 216.340 216.19 216.34
1600 229.188( 0.040 221.258( 0.049 220.624 220.47 220.62
1800 231.516( 0.034 225.199( 0.040 224.626 224.47 224.62
2000 234.042( 0.030 228.901( 0.034 228.383 228.23 228.37
2200 236.653( 0.026 232.395( 0.029 231.924 231.77 231.90
2400 239.284( 0.023 235.703( 0.026 235.274 235.12 235.25
2600 241.895( 0.021 238.847( 0.023 238.454 238.30 238.42
2800 244.465( 0.019 241.842( 0.020 241.481 241.33 241.44
3000 246.981( 0.017 244.702( 0.018 244.368 244.23 244.32
3200 249.435( 0.016 247.439( 0.017 247.130 247.00 247.07
3400 251.825( 0.015 250.063( 0.015 249.776 249.65 249.70
3600 254.148( 0.013 252.584( 0.014 252.317 252.21 252.23
3800 256.407( 0.012 255.010( 0.013 254.760 254.66 254.66
4000 258.601( 0.012 257.346( 0.012 257.113 257.04 256.99
4200 260.732( 0.011 259.601( 0.011 259.383 259.33 259.25
4400 262.802( 0.010 261.777( 0.010 261.574 261.55 261.42
4600 264.814( 0.010 263.881( 0.010 263.693 263.69 263.52
4800 266.768( 0.009 265.917( 0.009 265.743 265.77 265.56
5000 268.666( 0.008 267.887( 0.009 267.727 267.79 267.53
5200 270.511( 0.008 269.796( 0.008 269.650 269.75 269.44
5400 272.303( 0.008 271.645( 0.008 271.514 271.65 271.29
5600 274.045( 0.007 273.437( 0.007 273.322 273.49 273.09
5800 275.738( 0.007 275.175( 0.007 275.076 275.28 274.84
6000 277.383( 0.006 276.861( 0.007 276.779 277.02 276.54

a Standard classical results; this work.b Hybrid LCP/QFH results;
this work. c Reference 32.d Reference 8.e Reference 10.

6198 J. Phys. Chem. A, Vol. 106, No. 25, 2002 Prudente and Varandas



ing to SHVMT and for temperatures over the range 2000e T e
5700 K when consideringSJANAF.

For the specific heat capacity at constant pressure, the
agreement between the various results is worse than for the other
thermodynamic quantities. In fact,Cp is particularly sensitive
to convergence of the partition function, because it is determined
from the difference between the second and the square of the

first moments. In particular, previous workers8,32 have called
attention to the fact that it is difficult to obtain reliable results
for Cp at high temperatures. In our calculations, this can be
quantified from the size of the Monte Carlo error associated
with the Cp results, which is proportionally higher than the
Monte Carlo error for the other thermodynamic quantities.
However, conversely to previous calculations, the uncertainties
in both sets of calculations reported in the present work decrease
with temperature. This is particularly clear in Figure 2, which
showsCp as a function of temperature. In any case,Cp

LCP/QFH

follows much better the general behavior of the Vidler and
Tennyson,32 Harris et al.,8 and JANAF10 results thanCp

CM,
specially for T e 4000 K. Moreover, if we assumeCp

VT as
reference, then we can claim that the hybrid LCP/QFH results
are more accurate thanCp

HVMT at temperatures above 2400 K

TABLE 6: The Helmholtz Function (in J mol -1) of H2O as a
Function of Temperature

T, K hcfCM a hcfLCP/QFH b hcfVT c hcfHVMT d hcfJANAF e

500 -37 216( 121 18 006( 1800 6925 6925 6925
1000 -7666( 111 26 741( 408 26 003 26 000 26 000
1200 4132( 112 34 402( 340 34 515 34 509 34 506
1400 15 957( 117 42 952( 307 43 513 43 504 43 493
1600 27 819( 124 52 141( 289 52 946 52 936 52 908
1800 39 716( 135 61 812( 281 62 756 62 750 62 693
2000 51 649( 149 71 863( 276 72 890 72 891 72 790
2200 63 616( 163 82 218( 274 83 300 83 317 83 153
2400 75 619( 177 92 829( 273 93 946 93 992 93 741
2600 87 660( 189 103 655( 272 104 797 104 892 104 520
2800 99 740( 200 114 669( 272 115 828 115 998 115 464
3000 111 860( 209 125 848( 271 127 019 127 302 126 549
3200 124 022( 216 137 172( 271 138 353 138 795 137 757
3400 136 222( 223 148 623( 270 149 816 150 471 149 073
3600 148 456( 227 160 184( 269 161 394 162 321 160 485
3800 160 717( 231 171 838( 269 173 072 174 334 171 980
4000 172 992( 234 183 562( 267 184 883 186 490 183 552
4200 185 266( 236 195 334( 266 196 660 198 766 195 191
4400 197 519( 238 207 127( 264 208 529 211 130 206 892
4600 209 729( 239 218 915( 263 220 418 223 545 218 650
4800 221 870( 239 230 668( 261 232 301 235 973 230 458
5000 233 917( 239 242 356( 259 244 149 248 371 242 313
5200 245 845( 239 253 951( 257 255 936 260 697 254 215
5400 257 629( 239 265 425( 255 267 634 272 911 266 164
5600 269 247( 238 276 753( 253 279 218 284 978 278 161
5800 280 680( 237 287 913( 250 290 663 296 864 290 204
6000 291 911( 236 298 888( 248 301 850 308 544 302 295

a Standard classical results; this work.b Hybrid LCP/QFH results;
this work. c Reference 32.d Reference 8.e Reference 10.

TABLE 7: The Entropy (in J K -1 mol-1) of H2O as a
Function of Temperature

T, K SCM a SLCP/QFH b SVT c SHVMT d SJANAF e

500 177.81( 0.42 224.28( 4.13 206.53 206.38 206.53
1000 218.79( 0.18 234.16( 0.52 232.74 232.58 232.73
1200 229.54( 0.15 241.13( 0.36 240.49 240.33 240.48
1400 238.66( 0.13 247.72( 0.28 247.42 247.26 247.40
1600 246.57( 0.12 253.85( 0.23 253.71 253.55 253.69
1800 253.58( 0.11 259.54( 0.20 259.49 259.33 259.45
2000 259.87( 0.10 264.83( 0.17 264.83 264.67 264.76
2200 265.57( 0.10 269.77( 0.15 269.79 269.64 269.70
2400 270.79( 0.10 274.38( 0.14 274.42 274.28 274.31
2600 275.61( 0.09 278.71( 0.13 278.76 278.64 278.62
2800 280.09( 0.09 282.80( 0.12 282.85 282.76 282.68
3000 284.27( 0.09 286.65( 0.11 286.71 286.66 286.50
3200 288.19( 0.08 290.30( 0.10 290.36 290.36 290.12
3400 291.89( 0.08 293.78( 0.09 293.84 293.90 293.55
3600 295.39( 0.08 297.08( 0.09 297.15 297.29 296.81
3800 298.70( 0.07 300.23( 0.08 300.30 300.54 299.91
4000 301.85( 0.07 303.24( 0.08 303.32 303.66 302.88
4200 304.84( 0.07 306.11( 0.07 306.21 306.65 305.72
4400 307.69( 0.06 308.85( 0.07 308.97 309.53 308.44
4600 310.41( 0.06 311.47( 0.07 311.61 312.28 311.06
4800 312.99( 0.06 313.97( 0.06 314.14 314.93 313.57
5000 315.45( 0.06 316.36( 0.06 316.56 317.46 315.99
5200 317.79( 0.05 318.63( 0.06 318.87 319.88 318.32
5400 320.01( 0.05 320.80( 0.05 321.08 322.18 320.58
5600 322.13( 0.05 322.86( 0.05 323.18 324.38 322.76
5800 324.13( 0.05 324.82( 0.05 325.19 326.46 324.87
6000 326.04( 0.05 326.68( 0.05 327.10 328.44 326.92

a Standard classical results; this work.b Hybrid LCP/QFH results;
this work. c Reference 32.d Reference 8.e Reference 10.

TABLE 8: The Specific Heat Capacity at Constant Pressure
(in J K -1 mol-1) of H2O as a Function of Temperature

T, K Cp
CM a Cp

LCP/QFH b Cp
VT c Cp

HVMT d Cp
JANAF e

1000 58.96( 1.40 35.46( 2.72 41.287 41.278 41.268
1200 59.05( 0.66 40.79( 1.94 43.809 43.795 43.768
1400 59.21( 0.44 44.51( 1.58 46.124 46.114 46.054
1600 59.40( 0.39 47.26( 1.37 48.157 48.160 48.050
1800 59.58( 0.41 49.38( 1.24 49.904 49.929 49.749
2000 59.75( 0.46 51.07( 1.15 51.394 51.452 51.180
2200 59.93( 0.50 52.45( 1.08 52.668 52.776 52.408
2400 60.11( 0.54 53.62( 1.03 53.766 53.953 53.444
2600 60.30( 0.57 54.62( 0.98 54.724 55.026 54.329
2800 60.50( 0.59 55.50( 0.93 55.571 56.033 55.089
3000 60.70( 0.61 56.27( 0.89 56.326 56.996 55.748
3200 60.91( 0.61 56.95( 0.85 57.005 57.928 56.323
3400 61.09( 0.61 57.55( 0.82 57.614 58.824 56.828
3600 61.25( 0.61 58.05( 0.79 58.152 59.671 57.276
3800 61.35( 0.61 58.46( 0.76 58.613 60.441 57.675
4000 61.39( 0.60 58.76( 0.73 58.986 61.104 58.033
4200 61.34( 0.59 58.94( 0.70 59.259 61.627 58.357
4400 61.18( 0.57 58.98( 0.67 59.418 61.981 58.650
4600 60.90( 0.56 58.88( 0.65 59.451 62.143 58.918
4800 60.49( 0.55 58.63( 0.62 59.350 62.098 59.164
5000 59.96( 0.53 58.23( 0.60 59.111 61.844 59.390
5200 59.30( 0.51 57.69( 0.57 58.734 61.384 59.628
5400 58.52( 0.50 57.02( 0.55 58.255 60.732 59.864
5600 57.64( 0.48 56.24( 0.53 57.591 59.907 60.100
5800 56.67( 0.47 55.35( 0.51 56.846 58.934 60.335
6000 55.63( 0.45 54.38( 0.49 56.003 57.838 60.571

a Standard classical results; this work.b Hybrid LCP/QFH results;
this work. c Reference 32.d Reference 8.e Reference 10.

Figure 2. Specific heat at constant pressure,Cp, as function of
temperature: (O) standard classical results (Cp

CM) with error bars, this
work; (b) hybrid LCP/QFH results (Cp

LCP/QFH) with error bars, this
work; (‚‚‚) Cp

VT from ref 32; (- ‚ -) Cp
HVMT from ref 8; (- - -) Cp

JANAF

from ref 13.
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and Cp
JANAF at T g 2200 K. Finally, we comment on an

interesting feature that is observed at temperatures above 4000
K. While the JANAF specific heat value continues to increase
with temperature, both our results (based on standard classical
statistical mechanics and the hybrid LCP/QFH method) and
those of Vidler and Tennyson32 and Harris et al.8 show a
maximum at about 4500 K before decreasing for higher
temperatures. Such a feature may be attributed to a saturation
of the energy levels of water in its ground electronic state, given
that the phase-space hypervolumeB associated with a bound-
state regime is finite. A similar explanation was suggested by
Vidler and Tennyson32 on the basis of the fact that the number
of rovibrational energy levels is finite; see also ref 60. Such a
feature is absent from the JANAF results because the results
for T g 4000 K have been obtained using a linear extrapolation.

4. Conclusions

Through the use of the standard classical statistical mechanics
and hybrid LCP/QFH methods, calculations of the rovibrational
partition function of water and related thermodynamic quantities
have been reported as a function of temperature. The hybrid
LCP/QFH results are found to be rather more accurate than the
standard classical ones, both for the partition function (as shown
previously for diatomic systems26) and for thermodynamic
properties (Gibbs enthalpy function, Helmholtz function, en-
tropy, and specific heat at constant pressure). Moreover, the
hybrid LCP/QFH results have been found to be in good
agreement with previous calculations based on experimental or
theoretical rovibrational energy levels or both8,32 and an
approximate compilation10 for temperatures between 1000 and
6000 K. In summary, our hybrid LCP/QFH method can provide
accurate values of the partition function and related thermody-
namic properties of polyatomic molecules described by realistic
potential energy surfaces at moderate- and high-temperature
regimes in which the exact sum-over-states quantum mechanical
treatment is unaffordable.
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