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Abstract: This study aimed to analyze different predictive analytic techniques to forecast the risk
of muscle strain injuries (MSI) in youth soccer based on training load data. Twenty-two young
soccer players (age: 13.5 ± 0.3 years) were recruited, and an injury surveillance system was applied
to record all MSI during the season. Anthropometric data, predicted age at peak height velocity,
and skeletal age were collected. The session-RPE method was daily employed to quantify internal
training/match load, and monotony, strain, and cumulative load over the weeks were calculated. A
countermovement jump (CMJ) test was submitted before and after each training/match to quantify
players’ neuromuscular fatigue. All these data were used to predict the risk of MSI through different
data mining models: Logistic Regression (LR), Random Forest (RF), Support Vector Machine (SVM).
Among them, SVM showed the best predictive ability (area under the curve = 0.84 ± 0.05). Then,
Decision tree (DT) algorithm was employed to understand the interactions identified by the SVM
model. The rules extracted by DT revealed how the risk of injury could change according to players’
maturity status, neuromuscular fatigue, anthropometric factors, higher workloads, and low recovery
status. This approach allowed to identify MSI and the underlying risk factors.

Keywords: youth soccer; workload; injury; fatigue; predictive analytics

1. Introduction

Most of the injuries occurring in youth soccer primarily involve lower extremities,
and among them muscle strains are more frequently reported (~35%) [1,2]. Beyond the
economic impact on the National Health System [3], muscle strains may lead to several
physical consequences, especially in young athletes. Indeed, an injury may determine long-
term sequelae, time-loss from sport participation [4], and a higher probability to incur in a
re-injury in the future [5], jeopardizing the talent development processes. Muscle strains
are a complex multifactorial phenomenon. Among the numerous factors, fatigue, defined
as the transient reduction in the ability to produce force or power [6], may play a crucial
role in the onset of muscle injuries. Indeed, previous studies on youth football reported
a higher incidence of muscle strains during the last 15 min of each half of a competitive
match [7–9]. Muscle fatigue, impairing neuromuscular control and dynamic stability, may
increase susceptibility to injury [10]. Moreover, fatigued muscles absorb less energy before
failure compared to non-fatigued ones [11]. Therefore, monitoring and quantifying the
athletes’ state of fatigue in response to training/match is extremely important to take timely
preventive measures. Indeed, training load monitoring allows observing whether an athlete
is correctly adapting to the training program or showing signs of fatigue that could increase
the risk of non-functional overreaching, injury, and illness [12]. Training load is generally

Sports 2022, 10, 3. https://doi.org/10.3390/sports10010003 https://www.mdpi.com/journal/sports

https://doi.org/10.3390/sports10010003
https://doi.org/10.3390/sports10010003
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sports
https://www.mdpi.com
https://orcid.org/0000-0002-5858-2758
https://orcid.org/0000-0001-6956-0514
https://orcid.org/0000-0003-1783-5605
https://orcid.org/0000-0002-3542-0991
https://doi.org/10.3390/sports10010003
https://www.mdpi.com/journal/sports
https://www.mdpi.com/article/10.3390/sports10010003?type=check_update&version=1


Sports 2022, 10, 3 2 of 15

classified as external and internal load. External load is defined as the work completed by
the athlete, while the internal load describes the relative physiological and psychological
stress imposed on the athlete [12].

In order to quantify training load, and to understand its effect on the athletes, different
tools have been developed. Particularly, the use of questionnaires, diaries, and scales to
monitor athletes’ psychological and physiological status was largely adopted and credited
as a valid and practical method in sport [12]. The session-RPE method introduced by
Foster et al. [13] and based on a modified Rating of Perceived Exertion (RPE) scale, is
one of the tools widely used, also in youth soccer, to assess the internal training load
(TL) by obtaining a subjective evaluation of training intensity [14]. Although considered
a valid and cost-effective method, subjective measures may not be enough to identify
fatigued athletes [12]. The subjectivity in the interpretation of the scale, as well as different
physiological responses to training, could lead to an incorrect evaluation of the state of
fatigue of the young soccer players. For this reason, different neuromuscular tests were
also often employed to obtain an objective evaluation of the signals of fatigue. Isokinetic
and isoinertial dynamometry, together with jump tests, became the most popular tools
used in team sport environment thanks to their ease of administration and the minimal
additional fatigue caused [12,15]. Therefore, a combination of subjective and objective
parameters represents an optimal condition to identify athletes’ state of fatigue and the
warning signs connected with an increased risk of muscle strains. To date, as reported
in a recent systematic review [16], many longitudinal studies have already analyzed the
association between training load, fatigue markers, and injury risk. However, there are
still several limits to overcome: (1) there is a lack of specific knowledge related to youth
soccer; (2) most of the studies investigated injury risk factors grouping all types of injuries
together, despite ligament sprains, muscle strains, as well as other types of injuries may
be characterized by a different etiology; (3) the interaction between fatigue and training
load and the association with the risk of injury was not clearly investigated; (4) identifying
an association does not mean being able to predict the onset of an injury; (5) many studies
adopted a linear mono-dimensional approach.

To fill these limitations, it is not possible to rely on traditional linear statistical models.
Differently, predictive analytics may be more suitable to achieve this scope [17]. Predictive
analytics (i.e., the ability to forecast future events based on historical data) requires data min-
ing technologies and techniques. The reason behind the adoption of data mining techniques
is related to the nature of sports injuries. An injury is a complex multifactorial phenomenon
determined by the interaction of several factors (modifiable and non-modifiable factors) [18].
Therefore, data mining would be helpful to detect non-trivial, non-linear, and unsuspected
relations in the data [17,19]. To date, only a few studies exploited predictive analytics
techniques to predict injuries. Besides, these are limited to Australian Football [20], to
adult soccer players [21–23], or they are limited to data collected only in the preseason
period [24]. Therefore, the purpose of the current study is to employ data mining algo-
rithms to identify the hidden relationship between training load, neuromuscular fatigue,
and the onset of muscle strains in young soccer players during the season. As evidenced in
previous studies [25,26], maturity-related factors could influence injury predisposition in
young athletes; therefore, height, body mass, and biological status of the players were also
considered in this study. We hypothesized that the predictive analytic techniques could
be effective in predicting the risk of muscle strains in young soccer players, as well as the
combination of several factors as training load, recovery, and maturity status could modify
this predisposition.

2. Materials and Methods
2.1. Participants

Initially, twenty-three U14 soccer players were enrolled in this study. During the
season, one player freely decided to withdraw from the study. Therefore, a total of twenty-
two soccer players (mean ± SD: age 13.5 ± 0.3 years, body mass 51.2 ± 8.5 kg, height
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164.1 ± 7.3 cm) were monitored during an entire soccer season (2018/2019). Participants
were involved in a U14 sub-elite championship. They trained 3 days per week and com-
peted once a week. All the training sessions lasted 90 min, while the matches consisted of
two halves of 35 min. The data collection was obtained from the club as players’ data were
routinely collected throughout the course of the season [27]. The study was conducted
in accordance with the Declaration of Helsinki (2013) and approved by the local research
ethics committee of the University of Rome ‘Foro Italico’ (number CAR 64/2020).

2.2. Injuries Data Collection

In cooperation with physical therapist and strength and condition coach, the medical
team supervised injuries data collection following the Fédération Internationale de Football
Association (FIFA) Consensus Statement [28]. According to this model, an injury was
recorded if the player was unable to take full part in future soccer training or match [28].
For the purpose of this study, only muscle strains injuries (MSI) were included in the data
mining models. Regarding their severity, MSI were classified as follows: slight (0 day);
minimal (1–3 days); mild (4–7 days), moderate (8–28 days), severe (>28 days) [28].

2.3. Anthropometric Data, Maturity Status and Maturity Timing Estimation

Within the wide range of risk factors, several non-modifiable risk factors such as
height [29] and biological maturity [30] could increase predisposition to injury in young
soccer players. Therefore, anthropometric data, skeletal maturity (maturity status), and
years from peak height velocity (maturity timing) were integrated into data mining models.

2.3.1. Anthropometric Data

Players’ standing and sitting height were measured through a fixed stadiometer
(SECA 213, measuring range 20–205 cm, SECA, Hamburg, Germany), while body mass
was measured through a portable balance (SECA 762).

2.3.2. Peak Height Velocity (PHV)

The Mirwald et al. [31] algorithm was employed to predict years from PHV, labelled
as maturity offset (R = 0.94, R2 = 0.89, and SE = 0.59). The male specific equation was used
in the current study: −9.236 + (0.0002708 × (Leg Length × Sitting Height)) + (−0.001663 ×
(Age × Leg Length)) + (0.007216 × (Age × Sitting Height)) + (0.02292 × (Weight/Height
× 100)). Maturity offset was employed as an indicator of maturity timing (MT).

2.3.3. Skeletal Maturity

Radiographs of the left-hand wrist were evaluated with the Fels method to assess
skeletal maturity [32]. The radiographs were analyzed by one individual (AF) with ex-
tensive experience in these assessments. Standard errors of assessments ranged from 0.26
to 0.36 years. The difference between skeletal age (SA) and chronological age (CA) was
calculated for each player and labeled as maturity status (MS). A positive value indicates
that skeletal age is in advance of chronological age (early maturing players); differently
a negative value indicates that skeletal age lags behind chronological age (late maturing
players) [33,34].

2.4. Internal Load Markers and State of Recovery

The session-RPE method (S-RPE) [35] was used to quantify training and match loads
of the players. S-RPE scores were obtained by multiplying the rate of perceived exertion
(RPE) value, quantified through the CR-10 Borg’s scale modified by Foster et al. [35], by
the duration of each training or match for every single player. Training monotony (i.e., the
mean daily load divided by the standard deviation of the load over one week) and training
strain (i.e., sum of weekly load multiplied by monotony) were calculated [36]. The weekly
load (WL) was obtained by adding the training and matches loads over the course of a
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week; moreover, the cumulative loads for a period of 2, 3, and 4 weeks (WL2, WL3, WL4)
were calculated.

The perceived recovery status of players was quantified using the 10-point total quality
recovery scale [37]. Based on their personal psychophysical cues (e.g., mood states, muscle
soreness), athletes quantified their recovery status before each training and match. The
recovery status before the training (TQR) together with the previous day’s recovery status
(TQR-PD) were considered in the current study.

2.5. Neuromuscular Fatigue

The Countermovement jump (CMJ) test is considered a practical and reliable [38]
fatigue-monitoring tool used to evaluate neuromuscular status [39,40]. Therefore, CMJ
was performed by the young players before (PRE-CMJ) and after (POST-CMJ) each train-
ing/match. A standardized warm-up including three minutes of light running activity,
dynamic mobility exercises, and three submaximal practice jumps was executed before
each testing session. At the end of the training/match, each player was re-tested within
a 15-min time window. Jump height was estimated from flight time using an infrared
platform (Optojump, Microgate, Bolzano, Italy). During the CMJ, the athlete was instructed
to keep his hands on the hips and to jump as high as possible with no hip or knee flexion
during the flight phase. The CMJs were performed to a self-selected depth. Each player
executed 3 CMJs, and the highest jump was considered in the data mining models. The
difference between PRE-CMJ and POST-CMJ was calculated as the percentage variation
(%CMJ).

Considering that the risk of injury could change throughout the year [41], information
relating to the period of the season (first, second, and third part of the season) were also
included in the dataset.

3. Statistical Analysis
3.1. Injury Incidence

The MSI incidence was calculated as the number of injuries per 1000 h of play exposure.

3.2. Intrasession CMJ Reliability

Intrasession reliability of CMJ was assessed by comparing trial 1, trial 2, and trial 3.
Relative reliability was evaluated using the intraclass correlation coefficient (ICC). Accord-
ing to previous studies [42], an ICC ≥ 0.70 was set as minimum acceptable reliability. In
addition, absolute reliability was calculated using the coefficient of variation (CV%). CV%
was calculated as the standard deviation divided by the mean score between the trials and
multiplied by 100.

3.3. Predictive Analytics Setting

Multiple predictive models were built to predict whether a young player would get
injured during the next training session based on anthropometric data, training loads,
recovery status, and neuromuscular fatigue markers. Since there might be a lag between
the appearance of warning signs (training load spike, state of fatigue) and the onset of
injuries [43], additional models were built to evaluate the likelihood of sustaining an injury
in the subsequent three training sessions, as suggested in a previous study [20], in order to
explore whether the performance of models increased. Following the suggestions reported
by Carey et al. [20], a lag period was added to the analysis.

3.4. Algorithms Selection

Different algorithms were chosen to test their ability to predict MSI in young soccer
players. A set of features (Table 1), in our case the risk factors (height, body mass, MS, MT,
RPE, Monotony, Strain, S-RPE, WL, WL2, WL3, WL4, TQR, TQR-PD, PRE-CMJ, POST-CMJ,
%CMJ, period of the season), were inserted in the model as predictors and modeled on the
binomial target variable (MSI [yes or no]). The algorithms considered were:
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• Logistic Regression (LR).
• Random Forest (RF).
• Support vector machine (SVM).

Describing the underlying mathematical functions of the models is outside the scope
of this paper. However, LR, largely adopted in previous studies [44,45], was selected for
its ability to make simple binary classifications. RF and SVM were chosen for their ability
to model complex and non-linear interactions inside high-dimensional data. The models
were tested in relation to the training before injury (LR, RF, SVM) and the three training
sessions before injury (LR-lag, RF-lag, SVM-lag).

Table 1. Summary of the features inserted the data mining models together with the average values
calculated during the entire season.

Variables Definition Collection/Calculation Average Values

Maturity timing (MT) Years from peak height velocity
(PHV) Mirwald et al. [31] algorithm −0.2 ± 0.66 years

Maturity status (MS)
Level of maturation at the
chronological age (CA) of

observation
Skeletal age (SA) − CA 1.09 ± 1.04 years

RPE Rate of perceived exertion CR-10 Borg’s scale modified by
Foster et al. [35] 4.6 ± 1.89 AU

S-RPE Subjective internal training load
(TL) RPE Training duration 426.8 ± 283.1 AU

Monotony Statistical analysis of trainings’
variation over time

Mean daily load

Standard deviation
of weekly TL

2.96 ± 2.96 AU

Strain Overall stress of the training
week Monotony sum of weekly TL 4613 ± 4008 AU

WL Cumulative loads for a period
of one week

Sum of the loads of all
training/match sessions over a

period of one week
1679 ± 1043 AU

WL2 Cumulative loads for a period
of two weeks

Sum of the loads of all
training/match sessions over a

period of two weeks
3126 ± 1717 AU

WL3 Cumulative loads for a period
of three weeks

Sum of the loads of all
training/match sessions over a

period of three weeks
4325 ± 1843 AU

WL4 Cumulative loads for a period
of four weeks

Sum of the loads of all
training/match sessions over a

period of four weeks
5486 ± 2028 AU

TQR Recovery status before the
training session TQR scale 7 ± 1.49 AU

TQR-PD Previous day’s recovery status TQR scale 7 ± 1.47 AU

PRE-CMJ Jump height assessed before the
training session

Infrared platform (Optojump
system) 31.25 ± 5.30 cm

POST-CMJ Jump height assessed after the
training session

Infrared platform (Optojump
system) 30.60 ± 5.09 cm

%CMJ Percentage variation between
PRE-CMJ and POST-CMJ

(PRE−CMJ)−(POST−CMJ)
POST−CMJ × 100 −1.60 ± 9.28%

Data are expressed ad mean ± SD.
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3.5. Hyperparameters Tuning and Cross-Validation

Randomized Search method was implemented to tune hyperparameters in LR, RF,
SVM, LR-lag, RF-lag, and SVM-lag. Hyperparameters were tuned using a cross-validation,
and the combination of hyperparameters that returned the best performance across each
fold (ROC area under the curve) was selected for further analysis. Hyperparameters tuning
was performed on 20% of the dataset, and after that, these models were tested on the
remaining 80% of the dataset adopting a 4-fold stratified repeated cross-validation. The
entire process was repeated 1000 times to test its stability. All analysis processes were
performed using Anaconda and Python libraries.

3.6. Data Pre-Processing

Standard pre-processing techniques were used to optimize the performance of the
different models. Firstly, a data cleaning process was applied. The days in which, for
any reason, players did not complete the CMJ test before and after training/match were
excluded from the analysis. In addition, missing training loads data were replaced by
the mean value of that player’s corresponding parameter. All the other features were
normalized using Min Max Scaler (MMS). Normalization ensures that all the features fair
contribution to the learning process [46]. Particularly, MMS allowed to scale down the data
in a range of [−0.5, 0.5].

After the data cleaning process, the dataset showed severe class imbalance since MSI
were less common compared to days when players did not get injured. Indeed, MSI
represent only 2.41% of the entire dataset (days without injury = 1091, MSI = 27). To
cope with class imbalance, synthetic over-sampling techniques (SMOTE) were employed.
SMOTE is a combination of under-sampling (removing randomly observations from the
over-represented class) and over-sampling techniques (creating new observations that have
characteristics similar to already existing observations in the under-represented class) [47].
Particularly, in our study, Borderline-SMOTE, which is an extension of SMOTE, was de-
veloped. Unlike the SMOTE, where the synthetic data are randomly created, Borderline-
SMOTE only over-samples the borderline minority examples [48]. Borderline-SMOTE was
employed both for hyperparameters tuning and during the 4-fold repeated cross-validation,
and it was applied only to the training folds.

3.7. Model Evaluation

Accuracy can be a poor metric for an unbalanced dataset. Therefore, precision, recall
and F1-score were selected to evaluate and compare the forecasting models’ goodness.
Precision, calculated as follows: Precision = True Positives/(True Positives + False Positives),
quantifies the number of positive observations correctly made. High precision means a
lower chance of generating false positives. Instead, recall, calculated as follows: Recall =
True Positives/(True Positives + False Negatives), quantifies the ability of the models to
detect injuries. High recall means a lower chance of producing false negatives. F1-score is
the weighted average of precision and recall. A precision and recall value equal to 1 means
a 100% ability to predict the target variable. Differently, values close to zero reveal the
model’s inability to work correctly. In addition, to estimate the performance of the models,
a receiver operator characteristic (ROC) curve was created, and the area under the curve
(AUC) was calculated. An AUC of 0.5 suggests no discrimination, between 0.51 and 0.69
poor discrimination, 0.70–0.79 acceptable discrimination, 0.8 to 0.9 is considered excellent,
and more than 0.9 outstanding [49]. To get a clearer view of the procedures performed, a
data processing flow chart was built and presented in Figure 1.
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4. Results
4.1. MSI Incidence

A total of 40 soft-tissue injuries were registered during the entire soccer season. Among
them, 27 were classified as MSI. An overall MSI incidence of 7.2 per 1000 h was found.
Of the 27 injuries, 12 involved the calf (3.2 per 1000 h), 8 the thigh (2.1 per 1000 h), 6 the
adductor (1.6 per 1000 h) and 1 the tibialis anterior muscle (0.26 per 1000 h). Most of MSI
(44%) were classified as minimal, 9 (33%) as mild, 5 (19%) as moderate, and only 1 (4%) as
severe. The number of recorded injuries (and frequency relative to the number of sessions)
was reported in Table 2.
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Table 2. Number of MSI and rates relative to the number of sessions.

Injury Outcome Number of Injuries (Frequency)

MSI 27 (0.024)
MSI-lag 64 (0.057)

Total sessions (trainings and matches) 1118

4.2. Intrasession CMJ Reliability

Intrasession reliability analysis revealed an excellent reliability value for CMJ (ICC = 0.87).
Moreover, a small %CV was observed (4.53 ± 3.94%).

4.3. Predictive Analytics Models for MSI

Table 3 reports precision, recall, F1-score, and AUC to compare the performance of
each model. When the models were tested considering the training before injury as the
target variable, the three algorithms exhibited lower ability to predict muscle strains, as
shown in Table 3. Particularly, all three algorithms (LR, RF, SVM) exhibited low precision
and recall. Instead, when the models were tested on the three training sessions before an
injury, the performances increased. Among the three algorithms (LR-lag, RF-lag, SVM-lag),
SVM-lag showed the best performance (AUC = 0.84 ± 0.05); therefore, it was selected for
further analysis.

Table 3. Performance of the data mining models analyzing the training before injury (LR, RF, SVM)
and three training sessions before injury (LR-lag, RF-lag, SVM-lag). Precision, Recall, F1-score and
the overall AUC were reported. mean and the standard deviation of the evaluation metrics over
1000 cross validation tasks.

Models Condition Precision Recall F1-Score AUC

LR
NI 0.97 ± 0.01 0.97 ± 0.02 0.97 ± 0.01

0.63 ± 0.09MSI 0.04 ± 0.1 0.05 ± 0.09 0.04 ± 0.08

RF
NI 0.97 ± 0.01 0.98 ± 0.01 0.98 ± 0.01

0.58 ± 0.14MSI 0.03 ± 0.12 0.03 ± 0.08 0.03 ± 0.08

SVM
NI 0.98 ± 0.01 0.86 ± 0.03 0.91 ± 0.02

0.55 ± 0.16MSI 0.04 ± 0.03 0.2 ± 0.16 0.06 ± 0.05

LR-lag NI 0.95 ± 0.01 0.75 ± 0.05 0.84 ± 0.03
0.66 ± 0.07MSI 0.1 ± 0.04 0.39 ± 0.17 0.15 ± 0.06

RF-lag NI 0.95 ± 0.01 0.85 ± 0.07 0.89 ± 0.04
0.71 ± 0.07MSI 0.12 ± 0.07 0.29 ± 0.17 0.16 ± 0.08

SVM-lag NI 0.97 ± 0.01 0.86 ± 0.03 0.91 ± 0.02
0.84 ± 0.05MSI 0.21 ± 0.05 0.55 ± 0.14 0.3 ± 0.07

NI = no-injury; MSI = muscle strain injuries; LR = Logistic Regression; RF = Random Forest; SVM = Support
Vector Machine.

4.4. Interpretation of the SVM-Lag Model

The SVM is considered one of the best supervised learning methods for classifica-
tion [50] due to its ability to detect non-linear patterns. Even in our study, SVM-lag
exhibited the best performance. However, the non-linear models, despite their effective-
ness, are generally considered incomprehensible black-box models [51]. This could be a
limitation in sport science field, where it is important to understand the causes behind a
phenomenon, and to identify practical applications to share with coaches and physical
trainers. To overcome this limitation and to increase the understanding of the model, a de-
cision tree (DT) algorithm was applied to extract rules from the SVM-lag model, following
the instructions reported in a previous study [51]. The original target values, used inside
the original training set, were modified by the predicted values made by the SVM-lag
model, and the DT algorithm was then applied to this new modified dataset [51]. The DT
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model allows to mimic the black-box SVM model as closely as possible, and to extract
human-comprehensible rules [51].

The resulting DT model was presented in Figure 2. A DT is a directed acyclic graph
consisting of a combination of internal nodes and leaf nodes. Each internal node presents a
specific test that must be carried out on a single variable. In relation to the test result, the
branches indicate the possible outcomes. Therefore, it is possible to classify the different
observations starting from the root node and following the path towards the leaf nodes.
In our specific case, the orange leaf nodes indicated no risk of MSI. Differently, the blue
leaf nodes marked the increased risk of MSI. Within the current study, we analyzed the
conditions that, according to the rules extracted from the SVM-lag model, could increase
the risk of MSI.
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The root node of the model split according to MS. An advanced maturity status
(MS > 0.52 years) determined a higher risk of MSI (0.44% vs. 0.56% observations, node 0).

For late maturing players, the following risk factors were identified:

• POST-CMJ (≤24.43 cm, node 1) combined with a high body mass (>41.75 kg, node 2)
and a high WL4 (>5913.5 AU, node 4).

For early maturing players, the following risk factors were identified:

• A low WL2 (≤3605.23 AU, node 8) combined with a high height (>169 cm, node 9)
and a low recovery status (TQR-PD ≤6.94 AU, node 13).

• A low WL2 (≤3605.23 AU, node 8) combined with a low height (≤169 cm, node 9)
during the second and third part of the season (node 10).

• A high WL2 (>3605.23 AU, node 8) during the third part of the season (node 16) and
combined with a high strain (>10,345.01 AU, node 20).

5. Discussion

The main purpose of this study was to exploit predictive analytics techniques to
predict MSI in young soccer players. To date, the interaction between fatigue and training
load and the association with the risk of injury has not been clearly investigated. Therefore,
data mining algorithms were employed in the current study to fill this gap. In accordance
with our hypotheses, predictive analytic techniques proved to be effective in identifying
MSI and understanding the underlying risk factors.
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Among the different supervised learning techniques selected, the SVM produced the
best performance (AUC = 0.84 ± 0.05); instead, LR and RF showed less predictive ability.
As a linear model, LR, widely adopted in previous studies [44,52] may not be suited to
recognize non-linear relationships [53]. Differently, RF being a more complex model, tends
to suffer from overfitting and thus be unable to predict injuries in the test set [20].

A similar approach was developed by two different studies of López-Valenciano
et al. [54] and Rossi et al. [22], who nevertheless investigated the risk of injury in adult
male professional soccer players. In the first study, the authors built forecast models based
only on personal, psychological, and neuromuscular measures collected during the pre-
season [54]. In the second study, the authors monitored 26 professional male players for
23 weeks and used daily workload data to build a general non-contact injury model [22].
As mentioned above, the various types of injuries could be characterized by a different
etiology; therefore, the current study focused only on MSI. To the best of our knowledge,
this is the first study that exploited data mining algorithms to predict MSI risk in young
soccer players during a soccer season, combining training load and neuromuscular fatigue
markers. The SVM of this study exhibited the best performance, but only when the three
training sessions before MSI were included in the model (SVM-lag). Therefore, considering
only the information collected the day before an injury may not be enough to identify injury
risk factors. In line with this assumption, Hulin et al. [43] found a greater risk of injury in
the week following a spike in the training load. Therefore, signs of fatigue might appear a
few days before the onset of an injury. For this reason, daily monitoring allows to promptly
identify warning signals and to promote preventive strategies.

Although the SVM-lag model exhibited good performance in identifying the risk of
MSI, it is considered an incomprehensible black-box model [51]. To overcome this limita-
tion, a rule extraction technique adopting a DT algorithm was developed. The model was
presented in Figure 2. It is possible to observe that the various factors interact with each
other modifying the susceptibility to injury, confirming that MSI are a complex multifacto-
rial phenomenon. The root node of the DT model split based on the MS. Particularly, an
advanced maturity status (MS > 0.52 years) produced a higher risk of injury, as evidenced
by the different numbers of observations recorded in the two branches (0.44% vs. 0.56%).
This result aligns with a previous study [55], where a higher incidence of MSI was reported
in more mature players. The more mature players are able to maximize the use of anaerobic
system [56] and consequently express more power, speed and strength. Moreover, they
are characterized by a greater body mass that could increase the risk of lower limb muscle
strains [57]. Indeed, more mature players owing to their body size, produce a greater match
running performance compared to their less mature teammates [57]. All these factors could
increase susceptibility to MSI in more mature players being involved in a more demanding
context. At this stage, the interaction between training load and neuromuscular fatigue
markers modified susceptibility to MSI. For late maturing players (left branch) the root
node produced a decision node that split according to the POST-CMJ (node 1). A low
POST-CMJ (≤24.43 cm, node 1) combined with a high body mass (>41.75 kg, node 2)
and a high WL4 (>5913.5 AU, node 4) increased the risk of injuries. Jump tests are often
adopted in team sport environment to quantify neuromuscular fatigue [12]. Therefore, a
low CMJ score after the training could indicate a fatigue condition. The state of fatigue, and
consequently the greater risk of injury, could also be determined by an excessive training
load as evidenced by node 4 (WL4 > 5913.5 AU). The threshold value identified by the
DT model is higher compared to the average value recorded during the season (5486 AU;
Table 1). In line with previous studies [58,59], this underlines that high loads maintained
for longer periods may increase the state of fatigue and risk of injury. Furthermore, the
risk of injury appears to be higher for the players with a body mass greater than 41.75 kg
(node 2), confirming the above mentioned.

The role of training load in preventing or increasing the risk of injury is further
highlighted by analyzing the right branch of the DT model. Indeed, a WL2 higher than
3605.23 AU (node 8), cumulated during the latter part of the season (node 16) and associated
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with a very high strain (>10,345.01 AU, node 20) increased the risk of MSI. Even in this
case, the training load parameters are higher than the average values recorded during
the season (Table 1). In addition, a further important aspect was highlighted: the risk of
injury increases during the latter part of the season. In accordance with Malone et al. [58],
coaches and medical staff should be aware that players tolerate workloads differently in
relation to the period of the season, as also highlighted by node 10. Among the other
risk factors identified, a low WL2 (≤3605.23 AU, node 8) combined with a lofty height
(>169 cm, node 9) and low TQR-PD values (≤6.94 AU, node 13) were recognized as a
dangerous condition for MSI (0.28% vs. 0.72%). The impact of stature on injury risk
has been investigated in previous studies [29,60,61]. The authors suggest that the higher
biomechanical load [61] or the poor motor coordination [29] could explain the higher injury
risk in taller players. This risk could further increase in conditions of low recovery status, as
evidenced by node 13 (TQR-PD ≤6.94 AU). A low recovery status was also recognized as
an injury risk factor in previous studies [26,62]. As highlighted by Kenttä & Hassmén [63],
an imbalance between recovery and training load may challenge athletes’ stress tolerance
increasing predisposition to injury.

Through the analysis of the DT, it was possible to observe how numerous factors
(non-modifiable factors, neuromuscular fatigue, training load), interacting with each other
in a non-linear manner, modify predisposition to MSI. The complexity in managing the
training load lies in the fact that both a lower workload (node 8) or a higher workload
(node 4, node 20) can increase susceptibility to injury, and this susceptibility could also
change in relation to the period of the season. In summary, the rules extracted through the
DT algorithm, in accordance with previous studies, show that:

• Risk of injury could change according to the maturity status of the players.
• Monitoring CMJ before and after training could be a useful tool to identify a greater

state of fatigue and, therefore, a higher predisposition to injury.
• The susceptibility to injury could be modified by anthropometric factors (body mass

and height).
• A high workload and a low players’ recovery status could increase predisposition to

muscle injuries.

Although the SVM-lag model showed a good performance in identifying players
at risk of MSI, and the DT allowed us to understand the complex interactions between
training load and neuromuscular fatigue, the study presents some limitations and needs
several considerations. First of all, as reported in the confusion matrix created after the
cross-validation (Figure 3), the model was able to predict more than half of the injury risk
conditions correctly, however producing a high number of false positives. That explains
the low precision identified (Table 3). Although false positives may produce a less clinical
impact compared to false negatives [64], a high number of false alarms may lead a coach to
“stop” an athlete several times, increasing the time-loss from sports participation. Moreover,
the study is limited to U14 soccer players. Therefore, to increase the generalization capacity
of the model developed, future studies should include a larger sample size involving
players of different chronological ages. That would also allow increasing the number of
injuries collected and the predictive ability of the model. Furthermore, combining internal
load data with external load data would improve the ability to correctly quantify the weekly
training load and accurately identify fatigue signs.

However, adopting predictive analytics techniques sounds promising as it would
allow to analyze the complex interactions between numerous features and move towards a
multi-dimensional approach.
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6. Practical Applications

To date, predicting MSI with high accuracy represents a complex task due to the
multifactorial nature of injuries. This task is even more complex if we try to predict muscle
injuries only by relying on data recorded during the previous training. Indeed, as reported
in our study, the predictive ability of data mining models has increased considering the three
trainings prior to an injury. For this reason, coaches and physical trainers should encourage
constant daily monitoring. Considering the complexity of predicting an injury with high
accuracy based only on the previous day’s data, it could be useful to evaluate day by day the
injury probabilities predicted by the model and then implement prevention strategies. In
Figure 4, an example of the daily workload of two players and the relative estimated injury
probability was presented. Coaches and physical trainers should evaluate the extent of the
predicted injury risk (from 0% to 100%) and implement adequate prevention strategies:
training load reduction, recovery strategies, or individualized training sessions.
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7. Conclusions

The main purpose of this study was to compare the ability of different predictive
analytic techniques to predict the risk of MSI in young soccer players. The data mining
algorithms allowed to evaluate how the interactions of non-modifiable factors (anthro-
pometric data, MS, MT), training load parameters, and neuromuscular fatigue markers
modified predisposition to injury. Among the different algorithms adopted, the SVM-lag
model produced the best performance (AUC = 0.84 ± 0.05), showing the highest precision
and recall. The SVM-lag model allowed to identify non-linear interactions between training
load, neuromuscular fatigue, and the onset of muscle strains in young soccer players.
Instead, the adoption of the DT allowed to understand the interactions identified by the
SVM-lag model. Particularly, the risk of MSI in young soccer players could change in
relation to maturity status and anthropometric factors. Moreover, a higher neuromus-
cular fatigue and workload, together with a lower recovery status could increase their
susceptibility to injury.

This information may be used by coached and physical trainers to understand the
factors that could lead to a MSI, and consequently to manage the weekly training load,
to detect signs of fatigue, and to develop adequate prevention strategies. Future studies
should verify whether the use of predictive analytics techniques allows to reduce the
incidence of injuries during the season.
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