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Abstract: One of the leading causes of death is cardiovascular disease, and the most common car-
diovascular disease is coronary artery disease. Percutaneous coronary intervention and vascular
stents have emerged as a solution to treat coronary artery disease. Nowadays, several types of
vascular stents share the same purpose: to reduce the percentage of restenosis, thrombosis, and
neointimal hyperplasia and supply mechanical support to the blood vessels. Despite the numerous
efforts to create an ideal stent, there is no coronary stent that simultaneously presents the appropriate
cellular compatibility and mechanical properties to avoid stent collapse and failure. One of the
emerging approaches to solve these problems is improving the mechanical performance of polymeric
bioresorbable stents produced through additive manufacturing. Although there have been numerous
studies in this field, normalized control parameters for 3D-printed polymeric vascular stents fabrica-
tion are absent. The present paper aims to present an overview of the current types of stents and the
main polymeric materials used to fabricate the bioresorbable vascular stents. Furthermore, a detailed
description of the printing parameters’ influence on the mechanical performance and degradation
profile of polymeric bioresorbable stents is presented.

Keywords: vascular stents; polymers; degradation; mechanical properties; 3D printing

1. Introduction

According to the World Health Organization (WHO), cardiovascular diseases are
among the most prevalent and leading causes of death worldwide [1]. The WHO estimates
that about 17 million deaths annually are related to cardiovascular diseases, and this
number will increase up to around 23.6 million by 2030 [2]. Usually, cardiovascular-related
illness is associated with disorders in the heart, blood vessels, or both. Several risks are
mentioned in literature as a cause of cardiovascular diseases: unhealthy diet, physical
inactivity, obesity, hypertension, diabetes, tobacco, and harmful alcohol use [3,4].

Among all cardiovascular problems, the most common is coronary artery disease,
also called ischemic heart disease or coronary heart disease. Generally, these problems are
related to disorders caused by narrowed heart arteries that supply blood to the cardiac
muscle [5]. Coronary artery disease results from the accumulation of plaques in the inner
surface of the arteries, a condition medically known as atherosclerosis (Figure 1). These
plaques begin to be constituted by cholesterol, fat, and, later, calcifications due to the
accumulation of calcium. After some time, atherosclerotic plaques harden, and the arteries
become more narrowed (stenosis), limiting the oxygen-rich blood flow in the arterial system.
When the arteries that oxygenate the heart are completely blocked, ischemia of the heart
will occur, and myocardial infarction or heart attack will be experienced by the patient [5,6].

The first positive effort to treat atherosclerosis emerged with balloon angioplasty, a
minimally invasive procedure with minimum costs [6]. This medical procedure involves
introducing a guiding catheter, with a balloon, inside the artery that is narrowed, inflating
the balloon to reopen the artery and restore the blood flow [7]. However, this procedure also
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presents some limitations, such as vessel occlusion, which led to the development of vascu-
lar stents [8,9]. At the moment, vascular stenting or percutaneous coronary intervention
(PCI) is the central therapy used to reopen narrow arteries through stent implantation [10].
Since the development and use of the first stent in 1986, the universal value of the stents
market has grown to around USD 7 billion, and it is estimated that it will grow more than
5% annually [11].

Figure 1. Coronary artery disease: scheme of atherosclerosis progression leading to myocardial
infarction (Created in BioRender.com).

Despite the benefits of stenting technology, some mechanical and biological problems
still need to be addressed because around 30–40% of patients still experience in-stent
restenosis (ISR) after the stent implantation [12]. Thus, it is necessary to optimize and
find new approaches to overcome these limitations by employing new manufacturing
techniques or materials. The current overview presents the main polymeric materials used
to fabricate the bioresorbable vascular stents. Additionally, considering the actuality of
additive manufacturing (AM) processes, commonly designated as 3D printing, how the
processing parameters can influence the mechanical performance and degradation profile
of polymeric bioresorbable stents is discussed.

2. Vascular Stenting

Vascular or coronary stents are hollow and tubular structures inserted in an obstructed
artery to open and prevent the blockage of the vascular lumen, supporting the vessel wall
at the same time [13]. This section reports a wide range of information concerning the
current types of available stents and their required properties/characteristics.

2.1. Requirements for an Ideal Stent

For all types of stents available in the market, these invasive medical devices must
fulfill some requirements to avoid failure during their use. The stent specifications must
consider biological, chemical, physical, and mechanical properties [14]. The Food and Drug
Administration (FDA) established guidelines and suggestions for stent manufacturing and
enumerated certain clinical and relevant features. Although there is no specific design for
stents, these devices must fulfill and combine the requirements given by the FDA, some of
which are presented in Table 1 [15].
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Table 1. Requirements and properties that devices (stents) and materials must satisfy to avoid failure
(adapted from [16]).

Requirement Description

High radial strength Radial strength plays a crucial role in preventing the recoil of the stent by providing radial or
structural support to the vessel (ASTM F3067-14).

Low elastic radial recoil In order to attain a fixed final diameter of the stent appropriate for the host artery diameter, the
property of low elastic radial recoil is of importance (ASTM F2079-09).

Good flexibility For the proper placement of the stent in the tortuous geometry of blood vessels, good flexibility of
the designed stent is essential to place it with the help of a catheter (ASTM F2606).

Minimal stent profile During implantation, to avoid the unnecessary disturbance of blood flow, it is desirable to have a
minimal stent profile.

Minimal foreshortening During the expansion of the vessel, the precise placing of the stent is important; hence, it should
possess minimum foreshortening.

Cellular compatibility The stent material must not cause any adverse reaction or injury in the human body, so cellular
compatibility is crucial.

Radiopacity For delivering the stent at the appropriate position, the radiopacity of the material must
be considered.

Excellent fatigue properties
The blood flow induces cyclic stresses, and hence, due to the application of this cyclic load, fatigue

failure in the material drastically increases. The selection of the stent material is such that it can
withstand a minimum of 380 million cyclic load means up to 10 years (ASTM F2477-07).

One of the most crucial characteristics of stents is their cellular compatibility aiming
to avoid adverse biological responses. Therefore, the device must have a nontoxic and
compatible base material to prevent events such as ISR, in-stent thrombosis (IST), and/or
neointima hyperplasia in a stented blood vessel [17]. Although many base materials for
stents were a revolution in the surgery field, the devices trigger adverse biological events
due to their permanent structure. In order to avoid these events, some devices have been
made with bioresorbable materials that can support the artery wall during the healing and,
after a specific time, be reabsorbed by the organism.

Regarding the mechanical properties, radial strength is the most important to consider
during stent fabrication [18–20]. Radial strength is defined as “the radial force that the stent
can withstand before collapsing”, which means that the device must have enough radial
strength to support the forces exerted by the artery wall (radial pressure) [21]. Another
important property to consider is the elastic recoil, defined as the reduction in the stent
diameter after implantation. Recoil must be diminished to allow the tissue to heal and
prevent the narrowing of the blood vessel. If there is a high percentage of elastic recoil,
several adverse consequences can occur: stent restenosis, blow disruption, and, in the worst
situation, the device moving to another location [6]. In addition, radial strength strongly
influences the elastic recoil as the higher the radial strength, the lower the probability of
stent recoil. The FDA does not recommend any specific standard to evaluate the radial
strength, but several studies have followed the guideline of ASTM F3067-14 [22,23]. Other
studies use the tensile test to assess the radial strength and stiffness by relating them
directly with other material properties such as ultimate tensile strength and Young modulus,
respectively [24]. A study from Al-Mangour et al. [25] states that a high tensile strength
helps accomplish a sufficient radial strength to support the artery wall and maintain the
lumen area.

The flexibility of vascular stents also should be considered before and after stent
implantation. Before implantation, the vascular stent must have enough flexibility to pass
inside the blood vessels during delivery, maintaining the shape and the design. Once
placed in the artery, the flexibility of the device must be taken into consideration since
the vascular stent must have the capacity to bend to be well fitted to the blood vessel [26].
Additionally, it should resist compression from the arteries during the systolic and diastolic
movements [23].
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It is necessary to evaluate the fatigue properties to assess the long-term durability
of cardiovascular stents and their clinical success. Fatigue can lead to the failure of a
stent, resulting in the loss of radial support and triggering biological events [27]. Usually,
the fatigue of this type of device is influenced mainly by the cyclic loading generated by
the heart beating (systolic and diastolic movements). The inner diameter of the artery
changes due to the pressure caused by the pulsatile blood flow. Consequently, the stent is
exposed simultaneously to bending, torsion, and compression [28]. These events can lead
to crack initiation due to the oscillating stress condition in the stent and, therefore, stent
fracture [29].

An invasive coronary device can be either a balloon-expandable stent (BE) or a self-
expandable stent (SE) considering the deployment method. The most common is the BE
procedure, which expands the stent with a balloon catheter, deforming the device plastically.
In the SE procedure, the stents have a greater diameter than the artery, and the device is
constrained before being positioned. Then, the SE device is released to expand if the base
material responds to an external stimulus, for instance, temperature [27,28].

When bioresorbable materials are used to manufacture vascular stents, it is necessary
to know their degradation profile. It is essential to evaluate the degradation kinetic since it
determines the time range during which the mechanical properties are still adequate [30].
The degradation process must consider the type of material, molecular weight, crystallinity
degree, and the pH of the surrounding environment [31]. Moreover, the degradation rate
is also influenced by the processing technique used to fabricate the vascular stent [32].
Regarding the degradation of bioresorbable stents, several authors have described some
in vitro procedures to assess the degradation profile, namely immersion in simulated body
fluid (SBF) and immersion in phosphate-buffered solution (PBS) (Figure 2) [33,34].

Figure 2. Schematic representation of the in vitro degradation of vascular stents.

2.2. Types of Vascular Stents

In this review, the description of the vascular stents will be carried out under the
most common terms presented by the authors and selling companies to facilitate their
understanding. According to the literature, vascular stents can be classified into three
distinct groups that have differences in the base material and surface of the stent: bare-
metal stents (BMSs), drug-eluting stents (DESs), and bioresorbable stents (BRSs). Despite
the differences, all types of stents must share some of the characteristics and properties
mentioned in the previous section.

Bare-metal stents were the first devices implanted to treat atherosclerosis; when
compared to balloon angioplasty, they reduced the rate of restenosis. Usually, these devices
have a permanent metallic structure without drugs loaded on their surface [35]. Due
to the mechanical properties of metals, BMS stents have an increased radial strength
that allows robust mechanical support to the vessel wall with a thin strut. Devices with
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reduced struts are known for having a reduced crossing profile, which induces less tissue
injury and less disruption in the blood flow [36]. Nevertheless, introducing a permanent
metallic framework triggers inflammatory responses, such as neointimal hyperplasia, that
lead to the artery’s reblockage and the activation of the coagulation cascade [13]. These
events can be associated with the metallic ions released from the stainless steel (316LSS)
and cobalt–chromium (CoCr) alloys through the presence of crevice, pitting, and stress
corrosion cracking. For instance, the release of nickel, molybdenum, and chromium ions
can trigger genotoxic and mutagenic events and activate allergic responses [36]. As a result,
drug-eluting stents emerged to overcome the undesirable effects of BMS implantation [8].

Drug-eluting stents are characterized as having a permanent metallic structure with a
coating that acts as a drug reservoir. An ideal DES includes the elution of antiproliferative
and anti-inflammatory drugs that are released over time, delaying the biological response.
The selected drugs must be capable of helping appropriate healing and endothelialization
and being efficient in inhibiting platelet aggregation, inflammation, vascular smooth muscle
cell (VSMC) proliferation, and migration [37]. Due to the presence of pharmaceuticals,
DESs has shown lower ISR rates than BMSs [38].

DESs can be constituted by different materials in the core structure and the surface
coating. Usually, the base structure of this type of stent is fabricated with metallic alloys. The
coatings can be nondegradable (first generation of DESs) or degradable (second generation
of DESs), and each one of them has different mechanisms and times to release the eluting
drugs [39]. The first generation of DESs consisted of a permanent metallic framework, a
nondegradable polymeric coating, and a pharmaceutical loaded on the coating layer. The
degradable polymeric coating is characteristic of the second generation and diminishes the
adverse clinical occurrences compared to the first generation of DESs [37]. Concerning the
materials used as coatings, the most used are bioresorbable polymers, but a few studies
also describe inorganic coatings to be applied in DESs [39]. The arrival of new generations
of DESs reduced the biological events, but late IST and ISR events are still active and
compromise the long-term efficiency and safety of DESs [40]. Consequently, the concept of
BRSs arose.

Biodegradable stents have been investigated and credited as the fourth revolution in
the stenting field as a possible solution for the treatment of coronary artery disease [41]. This
type of stent provides temporary scaffolding to the arterial wall and then is degraded and
resorbed by the human organism (Figure 3). Bioresorbable stents have either degradable
polymers or metals as the base material of the core structure [41]. Compared to metals,
polymers have the advantage of being less dense, more flexible, and easy and cost-effective
to modify [42].

Usually, the degradation begins in the outer face of the stent, having diffusion of the
water into the stent structure and, therefore, chain scissions of the polymeric network.
Depending on the polymeric material, design of the invasive implant, and/or environment,
the degradation can take from a few months to years [6].

Bioresorbable devices offer superior conformability compared with permanent metallic
stents while allowing luminal gain and reducing the risk of late ISR and IST associated with
DESs. According to Kereiakes et al. [43], several commercial BRSs showed preservation
or gain of the lumen in clinical models after the implantation. This phenomenon happens
because the bioresorbable struts are replaced by VSMCs and collagen fibers, regulating
the lumen area and preventing neoatherosclerosis (defined as the “transformation of stent
neointima from normal neointima to an atherosclerotic lesion”). This event is different in
permanent metallic stents because, after a time, the lumen area decreases due to the plaque
growth or neoatherosclerosis on the surface of the metallic device. The inadequate VSMC
endothelization causes neoatherosclerosis on DESs or BMSs, triggering ISR and IST after a
while [43,44] (Figure 4).
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Figure 3. Relationship between polymer properties and degradation of postimplanted BRSs.

Figure 4. Comparison between bioresorbable stents and permanent metallic-based stents.

Despite all the advantages, BRSs present some drawbacks compared to base materials.
In the case of polymers, besides the lack of radiopacity, they present low stiffness and
low radial strength. Thus, they need thicker struts to offer equivalent support to the
vessel compared to BMSs or DESs [37]. Additionally, the lack of radial strength can lead
to radial elastic recoil [38]. Toong et al. [24] demonstrated in their study that thicker
struts can originate shear/laminar blood flow disruptions, reducing endothelialization
and increasing thrombogenicity. In order to thwart these events, metallic-based BRSs have
emerged, providing better mechanical strength than polymers. However, they have a faster
degradation than polymeric devices in environments with chloride (blood), leading to a
higher probability of adverse biological events after implantation [41]. Thus, future research
must study ways to improve the mechanical features of polymeric bioresorbable stents due
to their higher cellular compatibility and advantageous degradation time compared with
metallic materials [45].

The present manuscript will focus on polymeric bioresorbable stents, providing a
detailed description of the main polymers used for stent fabrication.
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3. Polymeric Materials for Bioresorbable Vascular Stents

Bioresorbable stents are made with materials that can be degraded and absorbed by
the human organism, entering the main metabolic pathways, such as the Krebs cycle. The
main objective of bioresorbable materials is to provide temporary support to the vessel
during the healing time and then be eliminated by the body, leaving the artery with a
healthy endothelium and normal blood flow. As mentioned previously, the absence of
foreign material will decrease the risk of late ISR and IST [41]. In addition, significant
groups of patients, such as children, the elderly, or diabetics, who suffer from problems
involving several repeated surgeries will benefit from this technology since removing the
implant is unnecessary [39].

Currently, polyesters are used to manufacture BRSs because of their tailorable biodegrad-
ability. Polymers such as poly(lactic acid) (PLA) and its enantiomers, poly(ε-caprolactone)
(PCL), poly(glycolic acid) (PGA), and poly(lactic-co-glycolic acid) (PLGA), are used in
polymeric-based cardiovascular stents [41]. This section will address some aspects of these
polymers, including their degradation and/or reabsorption processes.

3.1. Poly(lactic acid)

PLA is accepted by several regulatory agencies as a safe, biodegradable material to
be applied in numerous medical applications [46]. Amongst all polymers suggested and
applied for fabrication of vascular stents, by far the most common is PLA due to its optimal
combination of cellular compatibility, degrading pattern, and mechanical strength [23,47].

PLA is acquired and synthesized from lactic acid or lactide. This compound is consid-
ered a renewable source since it is extracted from corn starch or sugar cane [48,49]. The
biodegradable polymer can be synthesized using different routes: ring-opening polymer-
ization (ROP) or polycondensation of lactide (Figure 5) [50,51]. ROP is performed using
heterocyclic monomers with at least one ester bond in the ring, and polycondensation is
conducted using diols or hydroxy acids and diacids [52]. PLA can have two enantiomers
(L-lactic acid and D-lactic acid) generally produced by fermentation. Additionally, it is
possible to synthesize a racemic mixture denominated LD-lactic acid in an equimolar
mixture of L and D enantiomers, showing different properties and characteristics from
the individual ones [50]. To sum up, the PLA can be synthesized as PLLA, PLDA, and
PDLLA. PLA designation is used when it is not known if the polymer is a pure enantiomer,
a mixture, or their proportion.

Figure 5. Routes of poly(lactic acid) (PLA) synthesis from lactic acid [53].
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The literature shows that the different enantiomers of PLA produce different charac-
teristics and properties in vascular stents. The percentage of these compounds determines
properties such as glass transition and melting temperatures or percentage of crystallinity
which will affect the mechanical properties and the biodegradation rate of the stent [6].
For instance, PDLLA has lower tensile strength and higher degradation time than PLLA
and PDLA [54]. In what concerns the application in vascular stents, the PLA can also be
copolymerized with other polymers such as PGA or PCL to improve the performance of
the stents. Compared to other polymeric materials, PLLA has better mechanical properties
than PCL and a lower degradation time than PLGA (Table 2).

The degradation of this material starts with the diffusion of water molecules into the
polymeric chain. After, there is a decrease in the molecular weight due to the hydrolysis
that breaks the ester bonds. Over time, this process leads to the fragmentation of the
polymer, causing mass loss and reducing the mechanical strength. The breaking of the ester
bonds leads to the formation of lactic acid [46,55]. Lastly, this product is converted into
pyruvate, which enters the Krebs cycle, and CO2 and H2O are originated as final products,
being eliminated from the body via lungs or kidneys (Figure 6) [56].

Figure 6. PLA biodegradation path.

PLA has a hydrophobic nature due to the presence of the methyl group, making the
material more resistant to hydrolysis when implanted [57]. The hydrolysis and degradation
profiles depend highly on the stereochemistry, molecular weight, crystallinity percentage,
and local pH [46,58]. Moreover, the design of the vascular stents can affect the degrada-
tion rate since the diffusion and distribution of water or body fluids into the polymeric
network will vary according to the morphology and porosity inside the device. During the
degradation of the medical device, the mechanical properties will be lower, and thus, it
is necessary to guarantee enough time for the artery to heal appropriately. Some studies
have suggested reinforcement with fibers, polymerization with other polymers, or new
manufacturing techniques that allow tailoring the properties [6,59].

3.2. Poly(glycolic acid)

Poly(glycolic acid) is a biodegradable polyester accepted for medical application as an
absorbable suture material [49,60]. Due to the fast degradation of PGA, it is a challenge to
synthesize this polymer. The synthesis of PGA is conducted using the monomers glycolic
acid and glycolide (cyclic dimmer of glycolic acid) (Figure 7). This biodegradable polymer
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can be produced using ROP of glycolide or polycondensation of glycolic acid. Despite
its characteristics, the synthesis of PGA remains extremely expensive compared to that
of PLA [61].

Figure 7. Biodegradation process of PGA.

For PGA, as for almost all polymers, the mechanical properties vary with crystallinity
degree [49]. Compared to other polymers used for vascular stent manufacturing, such as
PLLA and PLGA, PGA presents better tensile strength and stiffness, as demonstrated in
Table 2. Nevertheless, this material presents low ductility, and the difficulty in handling this
polymer makes PGA inappropriate for BRS manufacturing [41]. Moreover, the synthesis
of this polymer is expensive compared to other materials, which is another disadvantage
when applied in polymeric bioresorbable stents.

Like other polyesters, the degradation of PGA starts with the hydrolysis of ester
linkages. In the first stage, the water molecules diffuse into the polymeric network. Then,
the hydrolytic chain scission occurs in the amorphous domains, while the crystalline
regions suffer hydrolytic degradation [62]. The resulting monomer is glycolic acid, which
is metabolized through several metabolic pathways. The final metabolites are excreted via
urine and respiration (Figure 7).

The degradation rate is highly dependent on several factors, including local pH,
crystallinity percentage, average molecular weight, and hydrophilicity. According to the
literature, PGA is considered more hydrophilic than PLA. The absence of the methyl
asymmetrical groups facilitates the hydrolysis of the PGA, which loses 60% of its mass
throughout the initial two weeks [63]. Although several authors suggest using PGA as a
base material for vascular stents due to its mechanical properties, PGA is unfavorable. The
fast degradation of PGA does not allow adequate vessel healing and may lead to a decrease
in pH, which, in turn, triggers biological responses [60,64].

3.3. Poly(lactic-co-glycolic acid)

Poly(lactic-co-glycolic acid) or PLGA is a copolyester synthesized through the copoly-
merization of PLA and PGA [54]. This copolymer offers the ability to tailor several proper-
ties and characteristics, e.g., mechanical properties, wettability, and degradation rate, by
changing the PLA/PGA ratio [60]. Usually, PLGA is copolymerized by two main processes:
(1) direct polycondensation of glycolic and lactic acids and (2) ROP of cyclic lactide and
glycolide (Figure 8) [62].
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Figure 8. Chemical structure of the cyclic dimers and the copolymerization reaction (ROP) [65].

The degradation process of PLGA also involves the hydrolysis of ester bonds, originat-
ing lactic acid and glycolic acid that are eliminated through the metabolic pathways. PLGA
has a slower degradation time than PGA due to the methyl group of the lactic acid that
is more hydrophobic (Table 2). This characteristic can be tailored by adjusting the LA:GA
ratio, the lactide stereoisomeric composition (D, L, or DL), the monomer sequence, and the
end group of the copolymer [54,62].

3.4. Poly(ε-aprolactone)

Another polymer that is very well described in the literature to apply in bioresorbable
stents is poly(ε-caprolactone). PCL is a hydrophobic and semicrystalline polyester ap-
proved by the FDA for several medical applications. PCL can be synthesized through ROP
of the cyclic monomers of ε-caprolactone (ε-CL) in the presence of catalysts or polyconden-
sation of a hydroxycarboxylic acid [66] (Figure 9).

Figure 9. Scheme of the synthesis of PCL from ε-CL and hydroxyhexanoic acid. Reprinted with
permission from Elsevier [67].

The properties of PCL vary according to the crystallinity percentage and molecular
weight, the percentage of crystallinity being higher when the molecular weight is lower [46].
In addition, the properties can differ when tailored for a specific application or using
different manufacturing techniques, for example, by changing the printing parameters
of 3D-printed vascular stents [32,67]. Compared to PLA, PCL has greater flexibility but
meaningfully inferior strength and slower absorption time (Table 2) [41,68]. Therefore, it is
not an appropriate base material to apply in vascular stents considering the mechanical
properties. Recently, PCL has been blended with PLA to improve the properties of vascular
stents (Table 2) [33].

The nonenzymatic degradation or hydrolysis of the ester groups is the most common
way to degrade PCL. The degradation begins with the diffusion of water molecules that
triggers the random hydrolytic cleavage of the ester bonds in the polymeric network,
causing a decrease in the molecular weight. Then, the macrophages capture the small
PCL fragments to be degraded and eliminated by the body. The main intermediates or
metabolites that result from PCL degradation are acetyl CoA and 6-hydroxyl caproic acid,
which are eliminated from the body through the citric acid cycle (Figure 10) [69].
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Figure 10. Biodegradation process of PCL.

Table 2. Properties of some polymers used for biodegradable stents (adapted from [54,64]).

Polymer Tg (◦C) Tm (◦C) Young’s Modulus (GPa) Tensile
Strength (MPa)

Elongation at
Break (%) Degradation (Months)

PDLLA 55 1–3.5 40 1–2 3–4
PLLA 60–65 175 2–4 60–70 2–6 >24
PGA 35–40 225–230 6–7 90–110 1–2 4–6

PDLGA
(50/50) 45 1–4.3 45 1–4 1–2

PLGA (82/12) 50 135–145 3.3–3.5 65 2–6 12–18
PCL −54 55–60 0.34–0.36 23 >4000 24–36

PLA/PCL
(70/30) 20 100–125 0.02–0.04 2–4.5 >100 12–24

PC ~147 225 2–2.4 55–75 80–150 >14

3.5. Other Polymers

Several other polymeric materials have been suggested as base materials for biore-
sorbable vascular stents. Polymers such as poly(desaminotyrosyl-tyrosine ethyl ester)
carbonate (PTD-PC) and salicylate/poly(lactide anhydride) (SA/AA) are examples that
have been developed by some pharmaceutical companies [36].

PTD-PC-based stents are bioresorbable devices commercialized by REVA Medical Inc.
PTD-PC is a polymeric material that contains a tyrosine polycarbonate backbone linked to
iodine to give radiopacity to the device. According to the literature, this device presents
better mechanical properties than other polymeric-based devices such as PLA-based stents.
According to McMahon et al. [47], PTD-PC and PLA devices present tensile strengths of
60–220 MPa and 50–60 MPa, respectively. The PTD-PC scaffold is characterized by not hav-
ing a coating on the surface, and its biosorption time varies between 6 and 48 months [47,70].
The degradation products of this type of material are carbon dioxide, water, ethanol, and
iodinated desaminotyrosyl-tyrosine, which the body will further excrete through metabolic
pathways [70].

Another company that uses different polymeric materials to fabricate a vascular
stent is Xenogenics Corp. This pharmaceutical corporation used a mix of a poly(lactide
anhydride) and salicylic acid (SA) and used sebacic acid as a base material [47]. This
material is biocompatible and hydrophobic but degrades faster than other polyesters, and
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the degradation rate is controlled by the number of anhydride linkages [6,47]. The resulting
degradation products have the advantage of reducing the percentage of restenosis.

Regardless of the polymeric material used for the fabrication of vascular stents, it is
well known that it must include higher mechanical properties, cellular compatibility, and
an appropriate degradation time. Hence, polymeric-based stents need thinner struts and
reduced luminal area to avoid flow disruption and other biological events. Apart from the
material choice, one possible strategy to overcome the limitations of polymeric BRSs is to
change the design of the device or the manufacturing features.

4. Manufacturing Technologies

Although the materials’ properties and design features are essential for the successful
performance and degradation of BRSs, the manufacturing processes must also be consid-
ered. Over the past few years, several technologies have been applied for metallic and
polymeric materials, including top-down and bottom-up approaches.

Currently, laser cutting is the most used technique to fabricate the core structure of
stents. This approach has been the first choice for the last three decades, fulfilling the
design criteria [71]. The main advantage of this manufacturing methodology is related to
the production of fragile hollow tubes with small thicknesses and great outline accuracy [72].
Despite its exceptional accuracy and precision, laser cutting is a thermal process that can
lead to structural problems such as residual tensions, microcracks, or, more commonly,
heat-affected zones. Another point to be highlighted is that this technology is a subtractive
method, which implies that sustainability is not high due to the amount of waste production.
Additionally, the posttreatment of the surface will increase the price of the stents even
more [73].

Several innovative processes have been developed as an alternative to overcome the
problems associated with laser cutting. Numerous scientific studies suggested using AM
as a solution. Several studies mentioned that 3D-printed structures for clinical practice
remain challenging in cardiovascular medicine. Further research is needed to exploit the
true potential of additive manufacturing in surgery [74]. It is estimated that AM could
be transformational, and some of the goals include creating multidisciplinary teams with
physicians and engineers implementing rigid guidelines and appropriate criteria [75].

Regarding the fabrication of cardiovascular stents, AM allows the fabrication of cus-
tomized vascular stents and decreases the manufacturing costs compared to conventional
techniques [76]. By definition, all AM technologies can be combined with several imaging
techniques to produce more realistic and accurate 3D models. Some examples of coronary
imaging are coronary angioplasty, magnetic resonance, and, more recently, intracoronary
optical coherence tomography that considers the blood vessels’ morphology and character-
istics, allowing a better design of the vascular stent [27]. Demir and colleagues [77] used
selective laser melting (SLM) to produce CoCr stents. Although it proved to be an alter-
native solution, SLM has a higher processing temperature, creating poor surface finishing
and material damages similar to laser cutting [32].

More recently, fused filament fabrication (FFF) has been proposed to manufacture
vascular stents, namely polymeric BRSs. Compared to other AM technologies, FFF has
some advantages, including lower processing temperature and a growing “library” of
polymers and polymer-based (nano)composites that can be used, in comparison with SLM
and stereolithography (SLA) [78].

Four-dimensional printing is a newly emerging topic associated with AM. In 4D print-
ing, the printed samples can change their shape when an external stimulus is
applied [79]. Many shape memory polymers described in the literature can be programmed
to respond to a stimulus after printing. Some examples of materials are PLA, PCL, and
poly(ethylene glycol) (PEG), which are examples of materials that can be applied to the
manufacture of vascular stents [76,80]. Prior research suggests that 3D printing stents
using shape memory polymers could offer a patient-personalized production, removing



Polymers 2022, 14, 1099 13 of 22

the requirement for balloon expansion, reducing the possibility of stent displacement, and
leading to a new age for stent technology [76,81,82].

Jia et al. [83] proposed using FFF to create a polymeric BRS using a shape memory
polymer, PLA. After the production of the vascular stent, the device can keep the compacted
shape at ambient temperature and then self-expand through temperature stimulus [83].
Another study mentions the use of FFF as a technique to fabricate BRSs based on PCL,
also a shape memory polymer. This approach can create a safer, custom-made, and more
appropriate device [32,33]. Nevertheless, it is necessary to improve the mechanical strength
of the devices made with these polymers.

5. Processing Parameters in AM

It is known from previous studies that the characteristics and properties of the biore-
sorbable thermoplastic polymers can suffer changes during the manufacturing process. FFF
is a technique with numerous parameters that influence the quality of the 3D-printed parts,
such as the mechanical properties and the degradation rate [84]. Many questions remain
unanswered about the effect of the printing parameters on vascular stents. To address
these questions, we address the influence of the main printing parameters, such as layer
thickness, raster angle, raster width, build orientation, infill pattern, and infill density.

The layer thickness or layer height is one of the most reported printing parameters
in the literature that affect the properties of the printed parts. In the FFF technique, the
sample is printed layer by layer, where each layer has thickness or height measured on the
Z-axis (Figure 11A). The thickness is directly correlated with the time of fabrication of the
device. A lower thickness increases the number of layers needed to print the specimen,
consequently increasing the time of printing [85]. The lower thickness also induces a
smoother surface finish, influencing the cellular response after implantation.

Figure 11. Schematic representation of some FFF printing parameters: (A) layer thickness;
(B) air gap, raster orientation, and raster width; (C) examples of raster angles.

Another parameter that is often reported in the literature is the raster angle. This
parameter is defined as the angle between the nozzle path and the X-axis of the printing
surface (Figure 11B). The raster angle defines the mechanical properties of the printed
samples and the accuracy and quality of the printed sample [85]. The value of the raster
angle can vary between 0 and 90◦, as demonstrated in Figure 11C. It is well known that
3D-printed devices often present anisotropic mechanical properties. Therefore, it is of
extreme importance to consider the raster angle to optimize the properties according to the
mechanical solicitation of the stent.

The air gap is defined as the gap in the middle of two adjacent rasters on the same
layer and is influenced by the raster angle and thickness of the layer (Figure 11B) [86].
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Several authors also mention the build orientation during the FFF process as an im-
portant parameter for tailoring mechanical properties [87]. Build orientation refers to
the position (direction and inclination) of the specimen in the build platform. Consider-
ing the X-, Y-, and Z-axes, the three main build orientations are flatwise, edgewise, and
upright [86,88] (Figure 12). Some authors highlighted the importance of build orientation
on features such as build time, manufacturing cost, surface quality, geometric accuracy,
and structural and mechanical properties. Besides, Chacón et al. [88] mentioned that the
anisotropy of the objects is highly dependent on build orientation which will affect the final
properties of the printed sample.

Figure 12. Build orientation.

The infill density and pattern are printing parameters with great importance that can
affect both mechanical properties and degradation rate. The infill density is described as the
amount of printed material within a structure. This parameter is measured in a percentage
that varies between 0% and 100%, 0% indicating a hollow part and 100% indicating a filled
part. According to the literature, the infill density directly influences the weight, printing
time, and cost of the 3D-printed specimen. The infill pattern is the geometry or shape of
the printed material inside the structure. The patterns range from the simplest (linear or
rectilinear) to the most complex geometries, such as hexagonal or honeycomb geometries.
The design of the pattern inside the specimen affects the mechanical properties. This feature
can be advantageous when printing a vascular stent [85,89,90]. Figure 13 shows different
examples of infill patterns and densities.

Figure 13. Examples of infill patterns and percentages.
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5.1. Influence of Printing Parameters

The printing parameters affect the characteristics and properties of the degradable
polymeric devices [91]. For example, the porosity existing inside the printed device can be
controlled [92]. Recently, Chen et al. [30] showed that the porosity and internal architecture
affect the degradation profile by interacting and altering the diffusion speed and path of
the water molecules during the degradation process. The porous structure offers a higher
contact area that allows faster hydrolysis and, consequently, degradation and resorption of
the material [30]. On the other hand, the inner structure of printed specimens also affects
the mechanical properties [93]. In their study, Singh et al. [55] found that specimens with
high compressive strength have a higher degradation time due to the lower porosity inside
the printed specimen.

This topic may constitute the object of future studies involving the influence of the
printing parameters during the fabrication of polymeric BRSs. As far as we know, only
Guerra et al. [32] have studied the influence of the printing parameters in the fabrication of
vascular stents. However, they only studied the influence of nozzle temperature, fluid flow
rate, printing speed, and printing trajectory. Thus, it is necessary to study many printing
parameters to understand their influence on mechanical strength, radial strength, and the
time of the material bioresorption. The effects of layer thickness, build orientation, raster
angle, and infill parameters will require detailed investigation in vascular stents. This
section states the effect of the mentioned printing parameters on the mechanical properties
and degradation profile, correlating with the vascular stents.

5.1.1. Layer Thickness

Previous studies have emphasized that layer thickness has an essential role in the
mechanical properties of 3D-printed samples. According to several authors, a lower layer
thickness is recommended to achieve better mechanical performance. It is suggested that a
small layer thickness enhances the tensile strength and the elastic modulus [94]. A study
from Kovan and coworkers [95] indicated that as the thickness of the layer decreases,
the resistance to load increases. This suggests that the vascular stents should be printed
with minimum layer thickness to achieve better radial strength and support the load
exerted by the artery wall. The bending strength is also affected by the layer height, and
Sousa et al. [57] showed that the lower the layer thickness, the higher the bending strength.
These results highlight an essential aspect because the vascular stent must be able to bend
to be well fitted to the blood vessel [23].

It was reported in the literature that the mechanical properties of FFF parts could be
compromised due to the presence of pores. A pore is created during the bonding of the
layers. According to Garzon-Hernandez et al. [96], the internal porosity of a specimen
can increase 3.8 times if the layer height increases from 0.1 to 0.3 mm. These results are
a consequence of the decrease in the layer thickness that favors cohesion between layers,
diminishing the porosity [57]. The decrease in the porosity of the stent structure will lead
not only to a lower degradation rate but also to better mechanical properties. In the case of
polymeric BRSs, no studies have addressed the influence of layer height on the mechanical
properties and degradation profile of 3D-printed devices.

5.1.2. Build Orientation and Raster Angle

Several studies have been proved that samples produced through FFF present an
anisotropic behavior caused due the layer-by-layer process. The anisotropy is highly
affected by the orientation of the layers and, consequently, influenced by the build ori-
entation during the printing procedure [97]. The most used orientations in the literature
are longitudinal directions (flatwise and edgewise) and transversal direction (upright).
These orientations produce significant differences in the morphology and structure of the
3D-printed specimens and, therefore, different mechanical properties [95,98]. Thus, it is
necessary to consider this parameter during the fabrication of vascular stents.
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Regarding the mechanical properties, it is demonstrated in several studies that the
vertical direction presents the poorest mechanical properties compared to longitudinal
building orientations [87,99]. Chacón and colleagues [88] stated in their manuscript that
the vertical direction showed that lowest value of tensile strength and stiffness compared
to the other directions. Likewise, Ashtankar et al. [100] observed that when the build
orientation is flatwise, the tensile and compressive stresses are 23.68% and 16.65% greater
than the values for the vertical direction, respectively. Furthermore, it is described that the
longitudinal samples present a translayer failure and a ductile fracture while the transversal
sample presents an interlayer failure and a more brittle fracture [88]. Another characteristic
to take into account during stent manufacturing is flexibility. According to the literature, the
flexural properties of samples printed in upright build orientation are worse than those of
specimens printed with longitudinal orientations. The authors stated that vertical printed
specimens suffered failure at lower deflection values [97].

It has been shown that the building direction or orientation is an essential parameter to
consider during the fabrication of vascular stents through FFF. The polymeric bioresorbable
stent must have the best mechanical performance to support the load exerted by the
artery wall. Moreover, the implant must resist the compression from the vessels during
the heartbeat movements [23,24]. According to the information stated previously, the
ideal mechanical performance of the stent will be achieved with the longitudinal printing
direction (flatwise or edgewise) since it will possibly combine the best radial strength with
the best flexural properties (Figure 14). Nonetheless, the samples printed in longitudinal
directions have more irregularities on their surfaces than transversally printed samples.
The area of the underside layer in contact with the 3D-printer platform is higher for the
samples printed in the longitudinal direction, creating more irregularities on the surface of
the printed samples [98]. Although this can influence the degradation rate of the material, it
also will allow the appropriate cell attachment and proliferation, granting adequate healing
of the damaged artery [55,101].

Figure 14. Schematic representation of the building orientation of 3D-printed vascular stents.

The build orientation influences the raster angle, impacting the morphology and
mechanical performance of a sample printed by FFF [85]. The variation of the tensile
properties with this parameter occurs because the raster angle influences the direction and
transference of the load inside the printed sample. It is described that an increase in the
raster angle leads to a decrease in the tensile properties [99]. According to several authors,
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to improve the mechanical properties and reduce the anisotropy of the printed part, it is
suggested to print with a raster angle of 45◦/−45◦ [92,99]. Haryńska and coworkers [102]
demonstrated that the tensile strength is higher for an angle of 45◦/−45◦ compared to the
raster angles of 0 and 90◦. In addition, the authors explained that this happens because of
the greater tension of the layers positioned perpendicularly to the stretching direction of
the printed specimen [102].

The samples with a raster angle of 90◦ present the best results regarding the compres-
sive strength. Nevertheless, the 45◦/−45◦ specimens revealed an increased capacity to bear
cyclic tensile loading [99]. Although compressive strength is an important factor in the
fabrication of stents, the dynamic mechanical behavior presents higher importance when
the device is implanted. As mentioned previously in the requirements for vascular stents,
the bloodstream induces cyclic stresses (cyclic loads), which lead to fatigue failure and
compromise the long-term durability of the device [16,27]. Thus, the best raster angle to
be applied when printing vascular stents is 45◦/−45◦ in order to ensure the stability and
durability of vascular stents after implantation.

5.1.3. Infill Parameters

The infill parameters have great importance in tailoring the mechanical properties
and the degradation profile of printed devices. The infill density or percentage is the
parameter with the most important role in controlling the factors mentioned before. Some
studies showed that mechanical properties are more influenced by the infill percentage
than by the build orientation or layer thickness [103]. For all infill patterns, it is consensual
that the tensile properties increase as the infill density increase [104]. Research from
Culbreath et al. [84] stated that a rise in the infill percentage leads to a higher tensile
strength value. In addition, the flexural proprieties are dependent on the infill percentage,
increasing as the infill density increases [105]. This phenomenon happens due to the higher
quantity of material inside the structure to support a higher load [85].

In the case of polymeric BRSs, a high tensile strength helps accomplish a sufficient
radial strength to resist the forces exerted by the vessel wall. In addition, the stent must
have enough flexural strength to support the bending forces [24,25]. Thus, when using
the FFF technology, it is recommended to print a vascular stent with the maximum infill
percentage to achieve the best combination of mechanical properties.

When considering bioresorbable stents, it is necessary to evaluate the degradation
of the material. In the case of a lower infill percentage, the number of pores inside the
printed structure will be higher (Figure 13). Consequently, it will facilitate the degradation
process due to the greater contact area that easily allows the diffusion of water molecules
and, therefore, the hydrolysis of the material and its resorption.

Nam et al. [106] tested the recovery of a device printed with PLA with different infill
percentages. It was proved that a higher infill density allowed a better shape recovery [106].
Once again, the maximum infill percentage seems to be the appropriate choice to produce
polymeric BRSs that respond to an external stimulus to self-expand inside the artery. Further
investigation using polymeric BRSs is needed, representing an essential opportunity for
advancement in the research field of 4D printing in the medical industry.

The infill pattern determines the shape inside the structure, controlling the raster
and bonding between layers [85]. A few studies have explored the influence of infill
patterns on mechanical properties. For instance, Dezaki et al. [105] mentioned in their study
that devices printed with a honeycomb pattern presented the best mechanical properties,
namely tensile strength. On the other hand, Akhoundi and Behravesh [13] concluded in
their research that a triangular infill pattern had better tensile strength when compared
with a honeycomb. In addition, Algarni et al. [103] compared different infill patterns and
concluded that this parameter significantly influenced fatigue life. There is still a lack of
consensus regarding the adequate pattern that provides the best mechanical performance.
Further work is essential to disentangle these complexities related to the infill pattern, and
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questions remain regarding the effect of the infill pattern on the stability and mechanical
performance of 3D-printed polymeric BRSs.

In conclusion, there are some potentially open questions about optimizing several
printing parameters to produce polymeric bioresorbable stents through FFF with the best
mechanical performance during the healing time and artery recovery.

6. Conclusions and Future Perspectives

Polymeric BRSs are a promising approach for vascular stenting in specific situations.
For these devices, the conjugation of the appropriate mechanical properties with the ade-
quate cellular response is the golden rule for optimal performance. Besides the properties
or characteristics of the polymeric material and the design of the devices, the manufac-
turing technique may also influence the device’s performance. Additive manufacturing
techniques arise because they conjugate complex geometry, personalization, and reduced
raw material use and waste production. Among AM technologies, FFF is arising as one of
the best choices to attain these objectives.

Despite the exciting advances in FFF in healthcare, plenty of challenges remain. The
number of 3D-printable materials is growing, but 3D-printable and implantable devices
suited for the fabrication of stents lack FDA approval. Besides, the absence of well-defined
FDA guidance for printing parameters and testing procedures is problematic for researchers.
As far as we know, there is still no 3D-printed cardiovascular stent with the approval
of the FDA for the treatment of atherosclerosis. Future research should consider the
potential effects of printing parameters in vascular stent fabrication, such as printing
patterns’ influence on the mechanical properties and degradation profile. Therefore, the
printing parameters for the main base materials used in polymeric BRSs should be studied
by studying either single-material or multimaterial samples. Many recommendations
for future research are given throughout this manuscript. This area is one of the tough
challenges for all academics making 4D-printed vascular stents an open field to explore.

Author Contributions: A.M.S.: investigation, writing—original draft. A.M.A.: conceptualization,
supervision. A.P.P.: conceptualization, supervision, project administration, funding acquisition, writing—
review and editing. All authors have read and agreed to the published version of the manuscript.

Funding: This work was funded by Fundação para a Ciência e Tecnologia (FCT), through the PhD
grant (UI/BD/150913/2021) and within the financial support of the Research Center CEMMPRE
(UIDB/00285/2020).

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Roth, G.A.; Mensah, G.A.; Johnson, C.O.; Addolorato, G.; Ammirati, E.; Baddour, L.M.; Barengo, N.C.; Beaton, A.Z.; Benjamin, E.J.;

Benziger, C.P.; et al. Global Burden of Cardiovascular Diseases and Risk Factors, 1990–2019: Update From the GBD 2019 Study. J.
Am. Coll. Cardiol. 2020, 76, 2982–3021. [CrossRef] [PubMed]

2. Amani, S.; Faraji, G.; Kazemi Mehrabadi, H.; Abrinia, K.; Ghanbari, H. A combined method for producing high strength and
ductility magnesium microtubes for biodegradable vascular stents application. J. Alloys Compd. 2017, 723, 467–476. [CrossRef]

3. Behera, S.S.; Pramanik, K.; Nayak, M.K. Recent Advancement in the Treatment of Cardiovascular Diseases: Conventional Therapy
to Nanotechnology. Curr. Pharm. Des. 2015, 21, 4479–4497. [CrossRef] [PubMed]

4. Dahlöf, B. Cardiovascular Disease Risk Factors: Epidemiology and Risk Assessment. Am. J. Cardiol. 2010, 105, 3A–9A. [CrossRef]
[PubMed]

5. Institute of Medicine (US) Committee on Social Security Cardiovascular Disability Criteria. Cardiovascular Disability: Updating the
Social Security Listings; National Academies Press (US): Washington, DC, USA, 2010; ISBN 978-0-309-15698-1.

6. Bink, N.; Mohan, V.B.; Fakirov, S. Recent advances in plastic stents: A comprehensive review. Int. J. Polym. Mater. Polym. Biomater.
2021, 70, 54–74. [CrossRef]

7. Ringer, A.J.; Hopkins, L.N. Endovascular Therapy. In Encyclopedia of the Neurological Sciences; Aminoff, M.J., Daroff, R., Eds.;
Academic Press: New York, NY, USA, 2003; pp. 148–151, ISBN 978-0-12-226870-0.

http://doi.org/10.1016/j.jacc.2020.11.010
http://www.ncbi.nlm.nih.gov/pubmed/33309175
http://doi.org/10.1016/j.jallcom.2017.06.201
http://doi.org/10.2174/1381612821666150817104635
http://www.ncbi.nlm.nih.gov/pubmed/26278923
http://doi.org/10.1016/j.amjcard.2009.10.007
http://www.ncbi.nlm.nih.gov/pubmed/20102968
http://doi.org/10.1080/00914037.2019.1685519


Polymers 2022, 14, 1099 19 of 22

8. Blair, R.W.; Dunne, N.J.; Lennon, A.B.; Menary, G.H. Multi-objective optimisation of material properties and strut geometry for
poly(L-lactic acid) coronary stents using response surface methodology. PLoS ONE 2019, 14, e0218768. [CrossRef] [PubMed]

9. Wache, H.M.; Tartakowska, D.J.; Hentrich, A.; Wagner, M.H. Development of a polymer stent with shape memory effect as a drug
delivery system. J. Mater. Sci. Mater. Med. 2003, 14, 109–112. [CrossRef] [PubMed]

10. Pan, C.; Han, Y.; Lu, J. Structural Design of Vascular Stents: A Review. Micromachines 2021, 12, 770. [CrossRef]
11. Qiu, T.; Zhao, L. Research into biodegradable polymeric stents: A review of experimental and modelling work. Vessel Plus 2018, 2, 12.

[CrossRef]
12. Park, J.; Kim, J.K.; Park, S.A.; Lee, D.W. Biodegradable polymer material based smart stent: Wireless pressure sensor and 3D

printed stent. Microelectron. Eng. 2019, 206, 1–5. [CrossRef]
13. Chen, W.; Habraken, T.C.J.; Hennink, W.E.; Kok, R.J. Polymer-Free Drug-Eluting Stents: An Overview of Coating Strategies and

Comparison with Polymer-Coated Drug-Eluting Stents. Bioconjug. Chem. 2015, 26, 1277–1288. [CrossRef] [PubMed]
14. Liu, S.J.; Chiang, F.J.; Hsiao, C.Y.; Kau, Y.C.; Liu, K.S. Fabrication of balloon-expandable self-lock drug-eluting polycaprolactone

stents using micro-injection molding and spray coating techniques. Ann. Biomed. Eng. 2010, 38, 3185–3194. [CrossRef] [PubMed]
15. Choubey, R.K.; Pradhan, S.K. Prediction of strength and radial recoil of various stents using FE analysis. Mater. Today Proc. 2020,

27, 2254–2259. [CrossRef]
16. Saraf, A.R.; Yadav, S.P. Fundamentals of bare-metal stents. In Functionalised Cardiovascular Stents; Wall, J.G., Podbielska, H.,
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Wawrzyńska, M., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 3–26, ISBN 978-0-08-100496-8.
19. Shen, X.; Yi, H.; Ni, Z. Effects of Stent Design Parameters on Radial Force of Stent. In Proceedings of the 2nd International

Conference on Bioinformatics and Biomedical Engineering, Shanghai, China, 16–18 May 2008.
20. Liu, R.; Xu, S.; Luo, X.; Liu, Z. Theoretical and Numerical Analysis of Mechanical Behaviors of a Metamaterial-Based Shape

Memory Polymer Stent. Polymers 2020, 12, 1784. [CrossRef]
21. Kumar, A.; Bhatnagar, N. Finite element simulation and testing of cobalt-chromium stent: A parametric study on radial strength,

recoil, foreshortening, and dogboning. Comput. Methods Biomech. Biomed. Eng. 2020, 24, 245–259. [CrossRef]
22. ASTM International. F3067-14-Guide for Radial Loading of Balloon Expandable and Self Expanding Vascular Stents.

Available online: https://www.astm.org/f3067-14.html (accessed on 24 January 2022).
23. Song, K.; Bi, Y.; Zhao, H.; Wu, T.; Xu, F.; Zhao, G. Structural optimization and finite element analysis of poly-l-lactide acid coronary

stent with improved radial strength and acute recoil rate. J. Biomed. Mater. Res. Part B Appl. Biomater. 2020, 108, 2754–2764.
[CrossRef] [PubMed]

24. Toong, D.W.Y.; Ng, J.C.K.; Huang, Y.; Wong, P.E.H.; Leo, H.L.; Venkatraman, S.S.; Ang, H.Y. Bioresorbable metals in cardiovascular
stents: Material insights and progress. Materialia 2020, 12, 100727. [CrossRef]

25. Al-Mangour, B.; Mongrain, R.; Yue, S. Coronary Stents Fracture: An Engineering Approach (Review). Mater. Sci. Appl. 2013, 4,
606–621. [CrossRef]

26. Chen, C.; Xiong, Y.; Li, Z.; Chen, Y. Flexibility of biodegradable polymer stents with different strut geometries. Materials 2020, 13, 3332.
[CrossRef]

27. Karanasiou, G.S.; Papafaklis, M.I.; Conway, C.; Michalis, L.K.; Tzafriri, R.; Edelman, E.R.; Fotiadis, D.I. Stents: Biomechanics,
Biomaterials, and Insights from Computational Modeling. Ann. Biomed. Eng. 2017, 45, 853–872. [CrossRef] [PubMed]

28. Xu, J.; Yang, J.; Huang, N.; Uhl, C.; Zhou, Y.; Liu, Y. Mechanical response of cardiovascular stents under vascular dynamic
bending. Biomed. Eng. Online 2016, 15, 21. [CrossRef] [PubMed]

29. Marrey, R.V.; Burgermeister, R.; Grishaber, R.B.; Ritchie, R.O. Fatigue and life prediction for cobalt-chromium stents: A fracture
mechanics analysis. Biomaterials 2006, 27, 1988–2000. [CrossRef]

30. Chen, F.; Ekinci, A.; Li, L.; Cheng, M.; Johnson, A.A.; Gleadall, A.; Han, X. How do the printing parameters of fused filament
fabrication and structural voids influence the degradation of biodegradable devices? Acta Biomater. 2021, 136, 254–265. [CrossRef]

31. Luo, Q.; Liu, X.; Li, Z.; Huang, C.; Zhang, W.; Meng, J.; Chang, Z.; Hua, Z. Degradation Model of Bioabsorbable Cardiovascular
Stents. PLoS ONE 2014, 9, e110278. [CrossRef]

32. Guerra, A.J.; Ciurana, J. 3D-printed bioabsordable polycaprolactone stent: The effect of process parameters on its physical features.
Mater. Des. 2018, 137, 430–437. [CrossRef]

33. Guerra, A.J.; Cano, P.; Rabionet, M.; Puig, T.; Ciurana, J. 3D-Printed PCL/PLA Composite Stents: Towards a New Solution to
Cardiovascular Problems. Materials 2018, 11, 1679. [CrossRef]

34. Zhang, Y.; Forsyth, M.; Hinton, B.; Wallace, G.G. Control of biodegradation of a Mg alloy in simulated body fluid. Aust. Inst.
Innov. Mater. Pap. 2011, 349, 1813–1820.

35. Bagheri, M.; Mohammadi, M.; Steele, T.W.; Ramezani, M. Nanomaterial coatings applied on stent surfaces. Nanomedicine 2016, 11,
1309–1326. [CrossRef]

36. Cockerill, I.; See, C.W.; Young, M.L.; Wang, Y.; Zhu, D. Designing Better Cardiovascular Stent Materials: A Learning Curve. Adv.
Funct. Mater. 2021, 31, 2005361. [CrossRef] [PubMed]

http://doi.org/10.1371/journal.pone.0218768
http://www.ncbi.nlm.nih.gov/pubmed/31449528
http://doi.org/10.1023/A:1022007510352
http://www.ncbi.nlm.nih.gov/pubmed/15348481
http://doi.org/10.3390/mi12070770
http://doi.org/10.20517/2574-1209.2018.13
http://doi.org/10.1016/j.mee.2018.12.007
http://doi.org/10.1021/acs.bioconjchem.5b00192
http://www.ncbi.nlm.nih.gov/pubmed/26041505
http://doi.org/10.1007/s10439-010-0075-6
http://www.ncbi.nlm.nih.gov/pubmed/20496003
http://doi.org/10.1016/j.matpr.2019.09.107
http://doi.org/10.1007/s10237-011-0293-3
http://www.ncbi.nlm.nih.gov/pubmed/21373889
http://doi.org/10.3390/polym12081784
http://doi.org/10.1080/10255842.2020.1822823
https://www.astm.org/f3067-14.html
http://doi.org/10.1002/jbm.b.34605
http://www.ncbi.nlm.nih.gov/pubmed/32154984
http://doi.org/10.1016/j.mtla.2020.100727
http://doi.org/10.4236/msa.2013.410075
http://doi.org/10.3390/ma13153332
http://doi.org/10.1007/s10439-017-1806-8
http://www.ncbi.nlm.nih.gov/pubmed/28160103
http://doi.org/10.1186/s12938-016-0135-8
http://www.ncbi.nlm.nih.gov/pubmed/26897123
http://doi.org/10.1016/j.biomaterials.2005.10.012
http://doi.org/10.1016/j.actbio.2021.09.020
http://doi.org/10.1371/journal.pone.0110278
http://doi.org/10.1016/j.matdes.2017.10.045
http://doi.org/10.3390/ma11091679
http://doi.org/10.2217/nnm-2015-0007
http://doi.org/10.1002/adfm.202005361
http://www.ncbi.nlm.nih.gov/pubmed/33708033


Polymers 2022, 14, 1099 20 of 22

37. Borhani, S.; Hassanajili, S.; Ahmadi Tafti, S.H.; Rabbani, S. Cardiovascular stents: Overview, evolution, and next generation. Prog.
Biomater. 2018, 7, 175–205. [CrossRef] [PubMed]

38. Hou, R.; Wu, L.; Wang, J.; Yang, Z.; Tu, Q.; Zhang, X.; Huang, N. Surface-Degradable Drug-Eluting Stent with Anticoagulation,
Antiproliferation, and Endothelialization Functions. Biomolecules 2019, 9, 69. [CrossRef] [PubMed]

39. Beshchasna, N.; Saqib, M.; Kraskiewicz, H.; Wasyluk, Ł.; Kuzmin, O.; Duta, O.C.; Ficai, D.; Ghizdavet, Z.; Marin, A.; Ficai, A.;
et al. Recent Advances in Manufacturing Innovative Stents. Pharmaceutics 2020, 12, 349. [CrossRef] [PubMed]

40. Saleh, Y.E.; Gepreel, M.A.; Allam, N.K. Functional Nanoarchitectures For Enhanced Drug Eluting Stents. Sci. Rep. 2017, 7, 40291.
[CrossRef]

41. Ang, H.Y.; Huang, Y.Y.; Lim, S.T.; Wong, P.; Joner, M.; Foin, N. Mechanical behavior of polymer-based vs. metallic-based
bioresorbable stents. J. Thorac. Dis. 2017, 9, S923–S934. [CrossRef]

42. Govindarajan, T.; Shandas, R. A Survey of Surface Modification Techniques for Next-Generation Shape Memory Polymer Stent
Devices. Polymers 2014, 6, 2309–2331. [CrossRef]

43. Kereiakes, D.J.; Onuma, Y.; Serruys, P.W.; Stone, G.W. Bioresorbable Vascular Scaffolds for Coronary Revascularization. Circulation
2016, 134, 168–182. [CrossRef]

44. Komiyama, H.; Takano, M.; Hata, N.; Seino, Y.; Shimizu, W.; Mizuno, K. Neoatherosclerosis: Coronary stents seal atherosclerotic
lesions but result in making a new problem of atherosclerosis. World J. Cardiol. 2015, 7, 776–783. [CrossRef]

45. Li, H.; Wang, X.; Wei, Y.; Liu, T.; Gu, J.; Li, Z.; Wang, M.; Zhao, D.; Qiao, A.; Liu, Y. Multi-Objective Optimizations of Biodegradable
Polymer Stent Structure and Stent Microinjection Molding Process. Polymers 2017, 9, 20. [CrossRef] [PubMed]

46. Konta, A.A.; García-Piña, M.; Serrano, D.R. Personalised 3D Printed Medicines: Which Techniques and Polymers Are More
Successful? Bioengineering 2017, 4, 79. [CrossRef]

47. McMahon, S.; Bertollo, N.; Cearbhaill, E.D.O.; Salber, J.; Pierucci, L.; Duffy, P.; Dürig, T.; Bi, V.; Wang, W. Bio-resorbable polymer
stents: A review of material progress and prospects. Prog. Polym. Sci. 2018, 83, 79–96. [CrossRef]

48. Zia, K.M.; Noreen, A.; Zuber, M.; Tabasum, S.; Mujahid, M. Recent developments and future prospects on bio-based polyesters
derived from renewable resources: A review. Int. J. Biol. Macromol. 2016, 82, 1028–1040. [CrossRef] [PubMed]

49. Benatti, A.C.B.; Pattaro, A.F.; Rodrigues, A.A.; Xavier, M.V.; Kaasi, A.; Barbosa, M.I.R.; Jardini, A.L.; Filho, R.M.; Kharmandayan, P.
Bioreabsorbable polymers for tissue engineering: PLA, PGA, and their copolymers. In Materials for Biomedical Engineering;
Holban, A.M., Grumezescu, A.M., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 83–116, ISBN 978-0-12-816901-8.

50. Masutani, K.; Kimura, Y. PLA synthesis. From the monomer to the polymer. In Poly(lactic acid) Science and Technology: Processing,
Properties, Additives and Applications; Jiménez, A., Peltzer, M., Ruseckaite, R., Eds.; Royal Society of Chemistry: London, UK, 2014;
pp. 1–36, ISBN 978-1-84973-879-8.

51. Botvin, V.; Karaseva, S.; Salikova, D.; Dusselier, M. Syntheses and chemical transformations of glycolide and lactide as monomers
for biodegradable polymers. Polym. Degrad. Stab. 2021, 183, 109427. [CrossRef]

52. Li, S.; Vert, M. Biodegradation of Aliphatic Polyesters. In Degradable Polymers; Scott, G., Ed.; Springer: Dordrecht, The Netherlands,
2002; pp. 71–131, ISBN 978-94-017-1217-0.

53. Hu, Y.; Daoud, W.A.; Cheuk, K.K.L.; Lin, C.S.K. Newly Developed Techniques on Polycondensation, Ring-Opening Polymeriza-
tion and Polymer Modification: Focus on Poly(Lactic Acid). Materials 2016, 9, 133. [CrossRef] [PubMed]

54. Ang, H.Y.; Bulluck, H.; Wong, P.; Venkatraman, S.S.; Huang, Y.; Foin, N. Bioresorbable stents: Current and upcoming bioresorbable
technologies. Int. J. Cardiol. 2017, 228, 931–939. [CrossRef] [PubMed]

55. Singh, D.; Babbar, A.; Jain, V.; Gupta, D.; Saxena, S.; Dwibedi, V. Synthesis, characterization, and bioactivity investigation of
biomimetic biodegradable PLA scaffold fabricated by fused filament fabrication process. J. Braz. Soc. Mech. Sci. Eng. 2019, 41, 121.
[CrossRef]

56. Nelson, D.L.; Cox, M.M. Lehninger Principles of Biochemistry, 6th ed.; Learning, M., Ed.; Freeman & Company, W&H: New York,
NY, USA, 2012; ISBN 1464109621.

57. Sousa, A.M.; Pinho, A.C.; Piedade, A.P. Mechanical properties of 3D printed mouthguards: Influence of layer height and device
thickness. Mater. Des. 2021, 203, 109624. [CrossRef]

58. Im, S.H.; Jung, Y.; Kim, S.H. Current status and future direction of biodegradable metallic and polymeric vascular scaffolds for
next-generation stents. Acta Biomater. 2017, 60, 3–22. [CrossRef]

59. Ang, H.Y.; Toong, D.; Chow, W.S.; Seisilya, W.; Wu, W.; Wong, P.; Venkatraman, S.S.; Foin, N.; Huang, Y. Radiopaque Fully
Degradable Nanocomposites for Coronary Stents. Sci. Rep. 2018, 8, 17409. [CrossRef]

60. Pinho, A.C.; Fonseca, A.C.; Serra, A.C.; Santos, J.D.; Coelho, J.F.J. Peripheral Nerve Regeneration: Current Status and New
Strategies Using Polymeric Materials. Adv. Healthc. Mater. 2016, 5, 2732–2744. [CrossRef]

61. Budak, K.; Sogut, O.; Aydemir Sezer, U. A review on synthesis and biomedical applications of polyglycolic acid. J. Polym. Res.
2020, 27, 208. [CrossRef]

62. Samantaray, P.; Little, A.; Haddleton, D.; McNally, T.; Tan, B.; Sun, Z.; Huang, W.; Ji, Y. Poly(glycolic acid) (PGA): A versatile
building block expanding high performance and sustainable bioplastic applications. Green Chem. 2020, 22, 4055–4081. [CrossRef]

63. Gorth, D.; Webster, T.J. Matrices for tissue engineering and regenerative medicine. In Biomaterials for Artificial Organs; Lysaght, M.,
Webster, T.J., Eds.; Woodhead Publishing Series in Biomaterials; Woodhead Publishing: Sawston, UK, 2011; pp. 270–286,
ISBN 978-1-84569-653-5.

http://doi.org/10.1007/s40204-018-0097-y
http://www.ncbi.nlm.nih.gov/pubmed/30203125
http://doi.org/10.3390/biom9020069
http://www.ncbi.nlm.nih.gov/pubmed/30781704
http://doi.org/10.3390/pharmaceutics12040349
http://www.ncbi.nlm.nih.gov/pubmed/32294908
http://doi.org/10.1038/srep40291
http://doi.org/10.21037/jtd.2017.06.30
http://doi.org/10.3390/polym6092309
http://doi.org/10.1161/CIRCULATIONAHA.116.021539
http://doi.org/10.4330/wjc.v7.i11.776
http://doi.org/10.3390/polym9010020
http://www.ncbi.nlm.nih.gov/pubmed/30970706
http://doi.org/10.3390/bioengineering4040079
http://doi.org/10.1016/j.progpolymsci.2018.05.002
http://doi.org/10.1016/j.ijbiomac.2015.10.040
http://www.ncbi.nlm.nih.gov/pubmed/26492854
http://doi.org/10.1016/j.polymdegradstab.2020.109427
http://doi.org/10.3390/ma9030133
http://www.ncbi.nlm.nih.gov/pubmed/28773260
http://doi.org/10.1016/j.ijcard.2016.11.258
http://www.ncbi.nlm.nih.gov/pubmed/27912202
http://doi.org/10.1007/s40430-019-1625-y
http://doi.org/10.1016/j.matdes.2021.109624
http://doi.org/10.1016/j.actbio.2017.07.019
http://doi.org/10.1038/s41598-018-35663-2
http://doi.org/10.1002/adhm.201600236
http://doi.org/10.1007/s10965-020-02187-1
http://doi.org/10.1039/D0GC01394C


Polymers 2022, 14, 1099 21 of 22

64. Garcia-Garcia, H.M.; Serruys, P.W.; Campos, C.M.; Muramatsu, T.; Nakatani, S.; Zhang, Y.-J.; Onuma, Y.; Stone, G.W. Assessing
Bioresorbable Coronary Devices: Methods and Parameters. JACC Cardiovasc. Imaging 2014, 7, 1130–1148. [CrossRef] [PubMed]

65. Erbetta, C.; Alves, R.; Resende, J.; Freitas, R.; Sousa, R. Synthesis and Characterization of Poly(D,L-Lactide-co-Glycolide)
Copolymer. J. Biomater. Nanobiotechnol. 2012, 3, 18.

66. Labet, M.; Thielemans, W. Synthesis of polycaprolactone: A review. Chem. Soc. Rev. 2009, 38, 3484–3504. [CrossRef] [PubMed]
67. Bartnikowski, M.; Dargaville, T.R.; Ivanovski, S.; Hutmacher, D.W. Degradation mechanisms of polycaprolactone in the context of

chemistry, geometry and environment. Prog. Polym. Sci. 2019, 96, 1–20. [CrossRef]
68. Wang, L.; Jiao, L.; Pang, S.; Yan, P.; Wang, X.; Qiu, T. The Development of Design and Manufacture Techniques for Bioresorbable

Coronary Artery Stents. Micromachines 2021, 12, 990. [CrossRef] [PubMed]
69. Woodruff, M.A.; Hutmacher, D.W. The return of a forgotten polymer—Polycaprolactone in the 21st century. Prog. Polym. Sci.

2010, 35, 1217–1256. [CrossRef]
70. Tenekecioglu, E.; Farooq, V.; Bourantas, C.V.; Silva, R.C.; Onuma, Y.; Yılmaz, M.; Serruys, P.W. Bioresorbable scaffolds: A new

paradigm in percutaneous coronary intervention. BMC Cardiovasc. Disord. 2016, 16, 38. [CrossRef] [PubMed]
71. Saraf, A.R.; Sadaiah, M. Photochemical machining of a novel cardiovascular stent. Mater. Manuf. Process. 2017, 32, 1740–1746.

[CrossRef]
72. Raval, A.; Choubey, A.; Engineer, C.; Kothwala, D. Development and assessment of 316LVM cardiovascular stents. Mater. Sci.

Eng. A 2004, 386, 331–343. [CrossRef]
73. Wang, C.; Zhang, L.; Fang, Y.; Sun, W. Design, Characterization, and 3D Printing of Cardiovascular Stents with Zero Poisson’s

Ratio in Longitudinal Deformation. Engineering 2021, 7, 979–990. [CrossRef]
74. Jovic, T.H.; Combellack, E.J.; Jessop, Z.M.; Whitaker, I.S. 3D Bioprinting and the Future of Surgery. Front. Surg. 2020, 7, 609836.

[CrossRef] [PubMed]
75. Giannopoulos, A.A.; Mitsouras, D.; Yoo, S.-J.; Liu, P.P.; Chatzizisis, Y.S.; Rybicki, F.J. Applications of 3D printing in cardiovascular

diseases. Nat. Rev. Cardiol. 2016, 13, 701–718. [CrossRef] [PubMed]
76. Yeazel, T.R.; Becker, M.L. Advancing Toward 3D Printing of Bioresorbable Shape Memory Polymer Stents. Biomacromolecules 2020,

21, 3957–3965. [CrossRef]
77. Demir, A.G.; Previtali, B. Additive manufacturing of cardiovascular CoCr stents by selective laser melting. Mater. Des. 2017, 119,

338–350. [CrossRef]
78. Zhao, D.; Zhou, R.; Sun, J.; Li, H.; Jin, Y. Experimental study of polymeric stent fabrication using homemade 3D printing system.

Polym. Eng. Sci. 2019, 59, 1122–1131. [CrossRef]
79. Piedade, A.P. 4D Printing: The Shape-Morphing in Additive Manufacturing. J. Funct. Biomater. 2019, 10, 9. [CrossRef]
80. Pinho, A.C.; Buga, C.S.; Piedade, A.P. The chemistry behind 4D printing. Appl. Mater. Today 2020, 19, 100611. [CrossRef]
81. Omid, S.O.; Zahra, G.; Leila, M.K.; Ali, M.; Fateme, B. Self-expanding stents based on shape memory alloys and shape memory

polymers. J. Compos. Compd. 2020, 2, 92–98.
82. Lin, C.; Zhang, L.; Liu, Y.; Liu, L.; Leng, J. 4D printing of personalized shape memory polymer vascular stents with negative

Poisson’s ratio structure: A preliminary study. Sci. China Technol. Sci. 2020, 63, 578–588. [CrossRef]
83. Jia, H.; Gu, S.-Y.; Chang, K. 3D printed self-expandable vascular stents from biodegradable shape memory polymer. Adv. Polym.

Technol. 2018, 37, 3222–3228. [CrossRef]
84. Culbreath, C.J.; Gaerke, B.; Taylor, M.S.; McCullen, S.D.; Mefford, O.T. Effect of infill on resulting mechanical properties of

additive manufactured bioresorbable polymers for medical devices. Materialia 2020, 12, 100732. [CrossRef]
85. Doshi, M.; Mahale, A.; Kumar Singh, S.; Deshmukh, S. Printing parameters and materials affecting mechanical properties of

FDM-3D printed Parts: Perspective and prospects. Mater. Today Proc. 2021, in press. [CrossRef]
86. Khan, S.; Joshi, K.; Deshmukh, S. A comprehensive review on effect of printing parameters on mechanical properties of FDM

printed parts. Mater. Today Proc. 2021, in press. [CrossRef]
87. Pinho, A.C.; Piedade, A.P. Influence of Build Orientation, Geometry and Artificial Saliva Aging on the Mechanical Properties of

3D Printed Poly(ε-caprolactone). Materials 2021, 14, 3335. [CrossRef] [PubMed]
88. Chacón, J.M.; Caminero, M.A.; García-Plaza, E.; Núñez, P.J. Additive manufacturing of PLA structures using fused deposition

modelling: Effect of process parameters on mechanical properties and their optimal selection. Mater. Des. 2017, 124, 143–157.
[CrossRef]

89. Akhoundi, B.; Behravesh, A.H. Effect of Filling Pattern on the Tensile and Flexural Mechanical Properties of FDM 3D Printed
Products. Exp. Mech. 2019, 59, 883–897. [CrossRef]

90. Dudescu, C.; Racz, L. Effects of Raster Orientation, Infill Rate and Infill Pattern on the Mechanical Properties of 3D Printed
Materials. ACTA Univ. Cibiniensis 2017, 69, 23–30. [CrossRef]

91. Jain, S.; Fuoco, T.; Yassin, M.A.; Mustafa, K.; Finne-Wistrand, A. Printability and Critical Insight into Polymer Properties
during Direct-Extrusion Based 3D Printing of Medical Grade Polylactide and Copolyesters. Biomacromolecules 2020, 21, 388–396.
[CrossRef]

92. Chiulan, I.; Frone, A.N.; Brandabur, C.; Panaitescu, D.M. Recent Advances in 3D Printing of Aliphatic Polyesters. Bioengineering
2018, 5, 2. [CrossRef] [PubMed]

93. Baptista, R.; Guedes, M.; Pereira, M.F.C.; Maurício, A.; Carrelo, H.; Cidade, T. On the effect of design and fabrication parameters
on mechanical performance of 3D printed PLA scaffolds. Bioprinting 2020, 20, e00096. [CrossRef]

http://doi.org/10.1016/j.jcmg.2014.06.018
http://www.ncbi.nlm.nih.gov/pubmed/25459595
http://doi.org/10.1039/b820162p
http://www.ncbi.nlm.nih.gov/pubmed/20449064
http://doi.org/10.1016/j.progpolymsci.2019.05.004
http://doi.org/10.3390/mi12080990
http://www.ncbi.nlm.nih.gov/pubmed/34442612
http://doi.org/10.1016/j.progpolymsci.2010.04.002
http://doi.org/10.1186/s12872-016-0207-5
http://www.ncbi.nlm.nih.gov/pubmed/26868826
http://doi.org/10.1080/10426914.2016.1198025
http://doi.org/10.1016/S0921-5093(04)00974-8
http://doi.org/10.1016/j.eng.2020.02.013
http://doi.org/10.3389/fsurg.2020.609836
http://www.ncbi.nlm.nih.gov/pubmed/33330613
http://doi.org/10.1038/nrcardio.2016.170
http://www.ncbi.nlm.nih.gov/pubmed/27786234
http://doi.org/10.1021/acs.biomac.0c01082
http://doi.org/10.1016/j.matdes.2017.01.091
http://doi.org/10.1002/pen.25091
http://doi.org/10.3390/jfb10010009
http://doi.org/10.1016/j.apmt.2020.100611
http://doi.org/10.1007/s11431-019-1468-2
http://doi.org/10.1002/adv.22091
http://doi.org/10.1016/j.mtla.2020.100732
http://doi.org/10.1016/j.matpr.2021.10.003
http://doi.org/10.1016/j.matpr.2021.09.433
http://doi.org/10.3390/ma14123335
http://www.ncbi.nlm.nih.gov/pubmed/34208779
http://doi.org/10.1016/j.matdes.2017.03.065
http://doi.org/10.1007/s11340-018-00467-y
http://doi.org/10.1515/aucts-2017-0004
http://doi.org/10.1021/acs.biomac.9b01112
http://doi.org/10.3390/bioengineering5010002
http://www.ncbi.nlm.nih.gov/pubmed/29295559
http://doi.org/10.1016/j.bprint.2020.e00096


Polymers 2022, 14, 1099 22 of 22

94. Jo, W.; Kwon, O.C.; Moon, M.W. Investigation of influence of heat treatment on mechanical strength of FDM printed 3D objects.
Rapid Prototyp. J. 2018, 24, 637–644. [CrossRef]

95. Kovan, V.; Altan, G.; Topal, E.S. Effect of layer thickness and print orientation on strength of 3D printed and adhesively bonded
single lap joints. J. Mech. Sci. Technol. 2017, 31, 2197–2201. [CrossRef]

96. Garzon-Hernandez, S.; Garcia-Gonzalez, D.; Jérusalem, A.; Arias, A. Design of FDM 3D printed polymers: An experimental-
modelling methodology for the prediction of mechanical properties. Mater. Des. 2020, 188, 108414. [CrossRef]

97. Somireddy, M.; Czekanski, A. Anisotropic material behavior of 3D printed composite structures–Material extrusion additive
manufacturing. Mater. Des. 2020, 195, 108953. [CrossRef]

98. Gonzalez Ausejo, J.; Rydz, J.; Musioł, M.; Sikorska, W.; Sobota, M.; Włodarczyk, J.; Adamus, G.; Janeczek, H.; Kwiecień, I.;
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