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Abstract: Rheumatoid arthritis (RA) is a disabling autoimmune disease whose treatment is ineffective
for one-third of patients. Thus, the immunomodulatory potential of mesenchymal stromal/stem
cells (MSCs) makes MSC-based therapy a promising approach to RA. This study aimed to explore
the immunomodulatory action of human bone marrow (BM)-MSCs on myeloid dendritic cells
(mDCs) and monocytes, especially on cytokines/chemokines involved in RA physiopathology. For
that, LPS plus IFNγ-stimulated peripheral blood mononuclear cells from RA patients (n = 12) and
healthy individuals (n = 6) were co-cultured with allogeneic BM-MSCs. TNF-α, CD83, CCR7 and
MIP-1β protein levels were assessed in mDCs, classical, intermediate, and non-classical monocytes.
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mRNA expression of other cytokines/chemokines was also evaluated. BM-MSCs effectively reduced
TNF-α, CD83, CCR7 and MIP-1β protein levels in mDCs and all monocyte subsets, in RA patients.
The inhibition of TNF-α production was mainly achieved by the reduction of the percentage of
cellsproducing this cytokine. BM-MSCs exhibited a remarkable suppressive action over antigen-
presenting cells from RA patients, potentially affecting their ability to stimulate the immune adaptive
response at different levels, by hampering their migration to the lymph node and the production of
proinflammatory cytokines and chemokines. Accordingly, MSC-based therapies can be a valuable
approach for RA treatment, especially for non-responder patients.

Keywords: mesenchymal stromal cells; mesenchymal stem cells; immunomodulation; rheumatoid
arthritis; dendritic cells; monocytes; cytokines; chemokines

1. Introduction

Rheumatoid arthritis (RA) is an autoimmune disease, associated to Th1/Th17-mediated
chronic inflammation of the joints, whose etiology is still elusive. Symmetric polyarthritis,
affecting especially the hands and feet, is a hallmark of this disease [1–3]. Several types of
immune cells, namely monocytes/macrophages and dendritic cells (DCs), actively partici-
pate in RA pathophysiology and, together with Th1 and Th17 cells, infiltrate the RA joint.
There, they produce inflammatory mediators—namely interleukin (IL)-1, IL-6, tumor necro-
sis factor (TNF)-α, extracellular matrix-degrading enzymes, and free radicals—leading to
chronic joint inflammation, with consequent cartilage destruction and bone erosion [1,3–6].

The introduction of disease-modifying anti-rheumatic drugs (DMARDs), namely
biological agents targeting cytokines implicated in RA physiopathology, had definitely
changed the clinical course of RA. Notwithstanding, DMARDs are not an effective treatment
for all patients [2] and have been associated to an augmented risk of infections [7,8], which
constitutes an important limitation. In this scenario, mesenchymal stromal/stem cells
(MSCs) emerge as an alternative treatment for RA. A recent clinical trial in RA, reported that
the administration of umbilical cord blood MSCs resulted in the reduction DAS28 score and
peripheral inflammatory parameters, including TNF-α, IL-1β, IL-6 and IL-8, accompanied
by the increase of IL-10 expression. These data suggest MSC therapy influences the course
of RA with evident clinical improvement [9]. Encouraging results had also been described
in other autoimmune diseases, like systemic lupus erythematosus [10–12] and multiple
sclerosis [13,14]. Notwithstanding, clinical trials point out that multiple MSCs infusions at
different time points will be probably needed and, in this scenario, immune sensitization
against allogeneic MSCs may be a limitation for their use [15,16].

In the preclinical setting, MSC treatment of mice with collagen-induced arthritis (CIA)
delayed the disease onset and abolished arthritis progression. Mice infused with MSCs
also displayed decreased paw swelling, decreased immune infiltrate into the joints, and
reduction of proinflammatory cytokines levels, along with increased IL-10 expression and
regulatory T cells percentage [5,17,18].

Our research group had previously reported that human bone marrow (BM)-derived
MSCs, co-cultured with peripheral blood mononuclear cells (PBMCs) from healthy in-
dividuals, resulted in the inhibition of inflammatory mediators production by myeloid
dendritic cells (mDCs) and all the monocyte subpopulations identified in the peripheral
blood (PB) (classical, intermediate and non-classical monocytes) [19], as well as different
CD4+ and CD8+ T cell subsets, namely Th1, Th17, and Th9 [20]. Recently, we demon-
strated MSC-mediated immunomodulation was maintained for T cell subsets from RA
patients [21].

Here, we explore if this regulatory action is simultaneously exerted on RA antigen-
presenting cells (APCs). For that, PBMCs (from the same RA patients and control group
enrolled in our former study [21]) were cultured alone or in the presence of allogeneic
BM-MSCs, in order to investigate the influence of BM-MSCs on the protein levels of
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TNF-α, CD83, CCR7, and CCL4 (or macrophage inflammatory protein, MIP-1β) by
mDCs and monocyte subpopulations (classical, intermediate, and non-classical mono-
cytes). Furthermore, mRNA levels of IL-1β, CXCL9, CXCL10, CCL3 and CCL5, were
measured in fluorescence-activated cell sorting (FACS)-purified mDCs, classical, and
non-classical monocytes.

This study demonstrated that BM-MSCs exert a significant inhibitory action over all
monocyte subsets and mDCs from RA patients, potentially affecting their ability to stimu-
late the immune adaptive response at different levels: BM-MSCs hinder CCR7 upregulation
upon cell activation, and this can potentially hamper APCs’ migration into the lymph node;
simultaneously, BM-MSCs inhibit the proinflammatory cytokines/chemokines’ produc-
tion by mDCs and monocytes, which can potentially hamper T cell polarization towards
Th1/Th17 and migration to inflamed tissue. Accordingly, MSC therapies can be valuable
for RA treatment, especially for non-responder patients.

2. Materials and Methods
2.1. Collection of Peripheral Blood and Gradient Density Separation of PBMCs

The collection of PB samples in heparin was carried out at the Centro Hospitalar e
Universitário de Coimbra (CHUC, Rheumatology Unit), Portugal, and Instituto Português
do Sangue e da Transplantação (Centro do Sangue e da Transplantação de Coimbra),
Portugal. The study enrolled six healthy donors (five females and one male; mean age:
44 ± 7 years, range: 22–51 years old) and 12 RA patients (eight females and four males;
mean age: 53 ± 9 years, range: 38–71 years old).

Five patients were classified as patients with inactive RA (DAS28-CRP3v = 1.9 ± 0.8)
and seven as patients with active disease (DAS28-CRP3v = 4.6 ± 0.7), according to the
disease activity score 28 using CRP level (DAS28-CRP; 3-variable). Diagnosis of rheumatoid
arthritis was made in accordance with the American College of Rheumatology 1987 Criteria
or ACR/EULAR criteria 2010. Clinical and demographic data about the individuals en-
rolled in this study are detailed in Appendix A Table A1. RA patients treated with biologics
(such as rituximab, tocilizumab, or anti-TNF), with other autoimmune or inflammatory
diseases, previous cancer, infection or other acute or chronic diseases, were excluded from
this study. PBMCs isolation were performed by gradient density centrifugation, using Lym-
phoprep (Stemcell Technologies, Vancouver, BC, Canada), and by centrifuging at 800× g
for 20 min. Then, HBSS (Gibco, Life Technologies, Paisley, UK) was used to wash PBMCs,
which were finally resuspended in RPMI 1640 medium supplemented with GlutaMax
(Invitrogen, Life Technologies, Waltham, MA, USA) and antibiotic-antimycotic (Gibco,
at a final concentration of 100 units/mL of penicillin, 100 µg/mL of streptomycin, and
0.25 µg/mL of Gibco amphotericin B).

The analysis of protein and mRNA expression by mDCs and monocytes was carried
out in PBMCs cultured with or without allogeneic BM-MSCs, in the presence/absence
of the stimulation agents lipopolysaccharide (LPS) and interferon (IFN)γ, as follows:
(1) 106 PBMCs + 500 µL RPMI (negative control); (2) 106 PBMCs + 0.5 × 106 MSCs (nega-
tive control); (3) 106 PBMCs + LPS + IFNγ (positive control); (4) 106 PBMCs + 0.5 × 106

MSCs + LPS + IFNγ; (5) 106 PBMCs + 0.5 × 106 MSCs, with subsequent BM-MSCs depletion
and, after that, LPS plus IFNγ stimulation. The experimental protocols used here had been
described in a previous work from our group [19] and are detailed in the following sections.

2.2. Isolation of Human BM-MSCs

BM-MSCs were isolated from eight healthy BM donors admitted to the Instituto Por-
tuguês de Oncologia de Lisboa Francisco Gentil (Serviço de Transplantação de Progenitores
Hematopoiéticos, UTM), Portugal.. Sepax S-100 system (Biosafe, Eysins, Switzerland) was
used to isolate PBMCs from BM samples, by following the manufacturer’s instructions.
Trypan Blue (Gibco) exclusion method were performed to determine cell count and cell via-
bility. BM PBMCs, plated in 10% qualified fetal bovine serum (FBS, Sigma, Madrid, Spain)
supplemented DMEM (Gibco), at a 2 × 105 cells/cm2 density, were incubated for 3 days, at
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37 ◦C, in 5% CO2 sterile and humidified atmosphere. After discarding the non-adherent cell
fraction, the adherent cells were maintained in culture with a complete medium renewal
every 3 to 4 days, until reach a 70–80% confluency. At that point, a 7 min incubation with
TrypLE (Life Technologies) was performed to detach the cells, following their replating at a
density of 3000 cells/cm2. BM-MSCs between passage 3 and 5 were used in the present
study, and their identity was confirmed by immunophenotype characterization, fluorescent
morphological analysis, and osteogenic, adipogenic, and chondrogenic mesodermal differ-
entiation assays, in accordance to the Mesenchymal and Tissue Stem Cell Committee of the
International Society for Cellular Therapy [22]. Protein levels of CD271 were also evaluated
by flow cytometry. The Ethics Committee of Centro Hospitalar e Universitário de Coimbra
approved this study (CHUC-086-16), and written informed consent were obtained from
all participants.

2.3. Co-Culture of PBMCs and BM-MSCs

The co-culture system used here is described in a former study from our group [19]:
106 PBMCs alone, or 106 PBMCs + 0.5 × 106 allogeneic MSCs (ratio PBMCs:MSCs = 2:1)
were placed in tissue culture plates (Falcon, Becton Dickinson Biosciences (BD), San Jose,
CA, USA) in a total volume of 1 mL of RPMI 1640 medium supplemented with GlutaMax
(Invitrogen) and antibiotic/antimycotic (Gibco, at a final concentration of 100 units/mL of
penicillin, 100 µg/mL of streptomycin, and 0.25 µg/mL of Gibco amphotericin B). After
20 h of incubation at 37 ◦C, in humidified and sterile atmosphere, containing 5% CO2, we
proceeded to MSCs’ depletion, in part of PBMCs + MSCs co-cultures, with the EasySep
Human CD271 Selection kit (Stemcell Technologies, Vancouver, BC, Canada), following the
instructions of the manufacturer.

Lipopolysaccharide (LPS, 100 ng/mL) and interferon (IFN)γ (100 U/mL) were used
to stimulate PBMCs. In addition, 10 µg/mL of brefeldin A, from Penicillium brefeldianum
(Sigma), was added to cell cultures devoted to the study of TNF-α and MIP-1β protein
production, by flow cytometry. Brefeldin A blocks protein transport to the Golgi complex,
leading to the accumulation of proteins in the endoplasmic reticulum, whose levels can be
assessed by flow cytometry, using an intracellular staining protocol. No brefeldin A was
added to the cell cultures that would be used for the evaluation of CD83 and CCR7 protein
levels (using flow cytometry), nor for mRNA levels of cytokines, in purified monocytes
and mDCs. This was followed by 6 h of incubation in the same conditions. In sum, the
study of the proteins’ and mRNA expression was systematically performed in each one of
the following culture conditions: (1) PBMCs; (2) PBMCs + MSCs; (3) PBMCs + LPS + IFNγ;
(4) PBMCs + MSCs + LPS + IFNγ; (5) PBMCs + MSCs + MSCs’ depletion + LPS + IFNγ.

2.4. Immunophenotypic Study of Monocyte Subsets and mDCs
2.4.1. Staining Protocol

As described previously by our group [19], a 10 min incubation with TrypLE (Gibco)
was performed to detached cells from tissue culture plates, which were then transferred to a
12 mm × 75 mm cytometer tube, and centrifuged at 540× g for 5 min. The supernatant was
discarded. An eight-color monoclonal antibody (mAb) combinations’ panel was used to the
phenotypic study of PB monocytes and mDCs (Table 1). To study CD83 and CCR7 protein
levels (Table 1, tube 1), a stain-lyse-and-then-wash protocol was used [19]: cells were
stained with mAbs and incubated for 10 min, in the dark, at room temperature; then 2 mL
of FACSLysing Solution (BD) was added, followed by a 10 min period of incubation; finally,
cells were washed with 1 mL of PBS (540× g, 5 min), the cell pellet was resuspended in
500 µL and immediately acquired in a FACSCanto II (BD) flow cytometer. To evaluate TNF-
α and MIP-1β protein production (Table 1, tube 2), cells were stained for surface protein
antigens, in a first step, followed by a 10 min incubation in the dark, at room temperature;
after that, cells were washed with PBS; and then stained for the intracellular protein
antigens, using Fix&Perm (Caltag, Hamburg, Germany), and following the manufacturer’s
instructions [19]. After incubating for 15 min, in the dark, at room temperature, with the
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mAbs against the intracellular antigens, cells were washed twice with 1 mL of PBS (540× g,
5 min), the cell pellet was resuspended in 500 µL of PBS and immediately acquired in a
FACSCanto II (BD) flow cytometer.

Table 1. Panel of monoclonal antibodies used for immune cells’ phenotypic characterization, indicat-
ing the commercial source and clone.

Fluorochromes

Tubes PB PO FITC PE PerCP-Cy5.5 PE-Cy7 APC APC-H7

1

CD16
BD

Pharmingen
3G8

CD45
Invitrogen

HI30

CD83
Beckman
Coulter
HB15a

CCR7
BD

Pharmingen
3D12

CD14
BD

Pharmingen
M5E2

CD33
Beckman
Coulter

D3HL60.251

CD300e
Immunostep
SL UP-H2

HLA-DR
BD

L243

2

CD16
BD

Pharmingen
3G8

CD45
Invitrogen

HI30

cyTNF-α
BD

Pharmin-
gen

MP6-XT22

cyMIP-1β
BD

Pharmingen
D21-1351

CD14
BD

Pharmingen
M5E2

CD33
Beckman
Coulter

D3HL60.251

CD300e Im-
munostep
SL UP-H2

HLA-DR
BD

L243

3

CD16
BD

Pharmingen
3G8

CD123
Beckman

Coulter SSDCL
Y107D2

CD14
BD

Pharmingen
M5E2

CD33
Beckman
Coulter

D3HL60.251

CD300e Im-
munostep
SL UP-H2

HLA-DR
BD

L243

Abbreviations: APC, allophycocyanin; APC-H7, allophycocyanin-hilite 7; FITC, fluorescein isothiocyanate;
PB, pacific blue; PE, phycoerythrin; PE-Cy7, phycoerythrin-cyanine 7; PerCP-Cy5.5, peridinin chlorophyll protein-
cyanine 5.5; PO, pacific orange. Commercial sources: BD (Becton Dickinson Biosciences, San Jose, CA, USA); BD
Pharmingen (San Diego, CA, USA); Beckman Coulter (Miami, FL, USA); Immunostep S.L (Salamanca, Spain);
Invitrogen, Life Technologies (Carlsbad, CA, USA).

2.4.2. Data Acquisition and Analysis

Data were acquired in a FACSCanto II (BD) flow cytometer equipped with the FACS-
Diva software (v6.1.2; BD, San Jose, CA, USA). For all samples, the number of events stored
was always above 0.5 × 106. Data analysis was performed using the Infinicyt software
(version 1.7; Cytognos SL, Salamanca, Spain).

2.4.3. Identification and Characterization of PB mDCs and Classical, Intermediate, and
Non-Classical Monocytes, by Flow Cytometry

For the identification of classical, intermediate, and non-classical monocytes, and
mDCs, we applied the gating strategy reported in our previous study [19] and depicted in
Figure 1. In short, classical monocytes display high levels of CD14, HLA-DR and CD33,
are positive for IREM-2 (CD300e), and negative for CD16; intermediate monocytes are
positive for CD14, with an increasing CD16 levels, and lower levels of CD33, in comparison
to classical monocytes; lastly, non-classical monocytes are positive for CD16, displaying
low to negative reactivity for CD14, and presenting the lowest CD33 levels and the highest
CD45 levels, amongst the three PB monocyte subpopulations; in turn, mDCs have lower
side-scatter (SSC) and lower levels of CD45, compared to monocytes, along with high levels
of HLA-DR and CD33, and are negative for CD14, CD300e and CD16.

The strategy used to identify monocytes and mDCs producing TNF-α and MIP-1β
is illustrated in Figure 2. To evaluate the levels of these two proteins by flow cytometry,
brefeldin A was added to the cell cultures in order to block the transport of the newly
synthesized proteins at intracellular level. Then, an intracellular staining protocol was
used to evaluate, at intracellular level, and within each one of the immune cell populations
under study, the protein levels of TNF-α and MIP-1β.
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Figure 1. Gating strategy to identify peripheral blood monocyte subsets (classical, intermediate and 
non-classical) and mDCs. Classical monocytes (light blue events) were identified as CD14+CD16−, 
with high levels of CD33, CD300e (or IREM-2), CD45 and HLA-DR; the blue events correspond to 
intermediate monocytes which are CD14+CD16−/+, with high reactivity for CD300e; non-classical 
monocytes (dark blue events) were identified as CD14+/−CD16+, with high levels of CD45 and 
CD300e, and low CD33 levels; mDCs (red events) are phenotypically characterized as CD14-CD16-

CD300e-, with low levels of CD45 and low SSC light dispersion properties, presenting higher levels 
of CD33 and HLA-DR than monocytes. Grey events correspond to the remaining PBMC 
populations: lymphocytes, plasmacytoid dendritic cells and basophils. mDCs, myeloid dendritic 
cells; PBMCs, peripheral blood mononuclear cells. 

Figure 1. Gating strategy to identify peripheral blood monocyte subsets (classical, intermediate and
non-classical) and mDCs. Classical monocytes (light blue events) were identified as CD14+CD16−,
with high levels of CD33, CD300e (or IREM-2), CD45 and HLA-DR; the blue events correspond to inter-
mediate monocytes which are CD14+CD16−/+, with high reactivity for CD300e; non-classical mono-
cytes (dark blue events) were identified as CD14+/−CD16+, with high levels of CD45 and CD300e,
and low CD33 levels; mDCs (red events) are phenotypically characterized as CD14-CD16-CD300e-,
with low levels of CD45 and low SSC light dispersion properties, presenting higher levels of CD33 and
HLA-DR than monocytes. Grey events correspond to the remaining PBMC populations: lymphocytes,
plasmacytoid dendritic cells and basophils. mDCs, myeloid dendritic cells; PBMCs, peripheral blood
mononuclear cells.
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Figure 2. Identification of monocyte subpopulations and mDCs producing TNF-α and MIP-1β. 
Bivariate dot plot histograms depicting the gating strategy to identify TNF-α and MIP-1β producing 
cells, among monocyte subpopulations and mDCs, from a healthy individual included in the control 
group. Classical monocytes correspond to light blue events, intermediate monocytes are 
represented in blue, dark blue events correspond to non-classical monocytes, and mDCs are 
represented as red events. TNF-α and MIP-1β protein levels quantification is represented for three 
different culture conditions: unstimulated PBMCs (MNCs’ basal production), PBMCs stimulated 
with LPS and IFNγ (MNC + LPS+ IFNγ), and PBMCs stimulated with LPS and IFNγ in co-culture 
with MSCs (MNC + MSC + LPS IFNγ). IFNγ, interferon γ; LPS, lipopolysaccharide; mDCs, myeloid 
dendritic cells; MIP-1β, macrophage inflammatory protein-1β; MSCs, mesenchymal stromal/stem 
cells; PBMCs, peripheral blood mononuclear cells; TNF-α, tumor necrosis factor α. 

Figure 2. Identification of monocyte subpopulations and mDCs producing TNF-α and MIP-1β.
Bivariate dot plot histograms depicting the gating strategy to identify TNF-α and MIP-1β producing
cells, among monocyte subpopulations and mDCs, from a healthy individual included in the control
group. Classical monocytes correspond to light blue events, intermediate monocytes are represented
in blue, dark blue events correspond to non-classical monocytes, and mDCs are represented as red
events. TNF-α and MIP-1β protein levels quantification is represented for three different culture
conditions: unstimulated PBMCs (MNCs’ basal production), PBMCs stimulated with LPS and IFNγ

(MNC + LPS+ IFNγ), and PBMCs stimulated with LPS and IFNγ in co-culture with MSCs (MNC
+ MSC + LPS IFNγ). IFNγ, interferon γ; LPS, lipopolysaccharide; mDCs, myeloid dendritic cells;
MIP-1β, macrophage inflammatory protein-1β; MSCs, mesenchymal stromal/stem cells; PBMCs,
peripheral blood mononuclear cells; TNF-α, tumor necrosis factor α.
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2.5. Cell Purification of Classical Monocytes, Non-Classical Monocytes and mDCs

A FACSAria II flow cytometer (BD) was used to purify classical monocytes, non-
classical monocytes and mDCs. The combination of mAbs described in Table 1 (tube 3)
enabled classical monocytes (CD14++ CD16− HLA-DR+ CD33+ CD300e+), non-classical
monocytes (CD14dim/− CD16+ HLA-DR+ CD33+ CD300e+), and mDCs (CD14− CD16−

HLA-DR++ CD33++ CD300e−) identification. Studies of mRNA expression were subse-
quently performed in the purified cell subsets.

2.6. mRNA Expression in the Purified Cell Populations

The experimental protocol for the study of mRNA expression by purified classical
monocytes, non-classical monocytes and mDCs had been previously described by our
group [19]. Purified cells were resuspended in RLT Lysis Buffer (Qiagen, Hilden, Ger-
many). Total RNA were extracted, using RNeasy Micro kit (Qiagen), as per manufacturer
recommendations, and eluted in RNase-free water, in a final volume of 20 µL. After re-
verse transcription with Tetra cDNA Synthesis® (Bioline, London, UK) we preformed
real-time (RT) PCR, using the LightCycler 480 II (Roche Diagnostics, Rotkreuz, Switzer-
land), for the relative quantification of gene expression. RT-PCR reactions were performed
with QuantiTect SYBR Green PCR Master Mix (Qiagen), and QuantiTect Primer Assay
(CXCL9: QT00013461; CXCL10: QT01003065; CCL3: QT01008063; CCL5: QT00090083;
IL-1β: QT00021385) (Qiagen), in a final volume of 10 µL, and all samples were run in
duplicate. We used the thermal profile previously described by our group [19] for the
polymerase chain reactions: 95 ◦C for 10 min (1 cycle), then 50 cycles of 95 ◦C for 10 s,
55 ◦C for 20 s, 72 ◦C for 30 s, 1 cycle of 95 ◦C for 5 s, 65 ◦C for 60 s, and continuous at
97 ◦C; at last, 1 cycle of 21 ◦C for 10 s. The analysis of RT-PCR results was performed
using the LightCycler software (Roche Diagnostics). Reference genes selection and data
normalization were performed in GeNorm software (PrimerDesign Ltd., Southampton,
UK). As reference genes for classical monocytes, we selected topoisomerase DNA I (TOP1)
and glyceraldehyde-3-phosphate dehydrogenase (GAPDH); while the reference genes for
non-classical monocytes and mDCs were β-2 microglobulin (B2M) and GAPDH. The delta-
Ct method was used to calculate the normalized expression levels of the genes of interest.
The mRNA expression of CCL3, CCL5, CXCL9, CXCL10 and IL-1β was determined in
purified classical monocytes and non-classical monocytes, whereas CXCL10 and IL-1β
mRNA expression was measured in purified mDCs.

2.7. Statistical Analyses

Data were presented as the mean values ± standard deviation. The Wilcoxon, Fried-
man, and Mann-Whitney non-parametric tests were applied to determine the significance
of the differences between the different experimental conditions, as appropriate, with the
Statistical Package for Social Sciences (IBM SPSS, version 17.0, Armonk, NY, USA) software.
Differences were considered statistically significant when p < 0.05.

3. Results

To investigate how allogeneic BM-MSCs regulate the immune function of PB mono-
cytes and mDCs from RA patients, we evaluated the protein levels or mRNA expression
of proinflammatory cytokines (TNF-α and IL-1β), proteins involved in cell migration
(CCL3 or MIP-1α, CCL4 or MIP-1β, CCL5 or RANTES, CXCL9 or MIG, CXCL10 or IP-10,
and CCR7), and the maturation marker CD83, in the presence/absence of BM-MSCs and
stimulating agents (LPS plus IFNγ). RA patients with inactive and active disease were
considered together because the immunomodulatory behavior of BM-MSCs was similar
for both groups of patients, as statistically tested. Likewise, no differences were found
when comparing female vs. male RA patients, therefore, they were included in the same
group. More detailed data, discriminating inactive and active RA patients, can be found in
Appendix A Table A2; and data on female vs. male patients in Appendix A Figure A1.



Pharmaceutics 2022, 14, 404 9 of 25

3.1. BM-MSCs Hamper the Production of TNF-α and MIP-1β by Monocytes and mDCs from RA
Patients and Healthy Individuals

In order to assess the effect of BM-MSCs over TNFα and MIP-1β protein production,
we used flow cytometry to measure the intracellular levels of these cytokines in monocytes
and mDCs, using PBMCs cultured in the absence or in the presence of BM-MSCs.

The presence of BM-MSCs in the cell culture resulted in an inhibitory effect over TNFα
and MIP-1β protein production, transversal to all monocyte subsets (p < 0.05) and mDCs
(p < 0.05), from both RA patients and healthy group (HG), as illustrated in Figures 3–5.
For TNFα, this inhibitory effect was mainly caused by the decreased percentage of cells
producing cytokines (Figure 3); while for MIP-1β, it was achieved not only by the decrement
of the percentage of MIP-1β+ cells, but also by the reduction of the amount of cytokine
produced per cell, quantified as mean fluorescence intensity (MFI), as shown in Figure 4.
Interestingly, the inhibition of MIP-1β was more pronounced in non-classical monocytes
than in the remaining monocyte subpopulations. Concerning TNF-α, the inhibitory effect
of BM-MSCs were stronger over mDCs than monocytes (Figure 5). Interestingly, the
inhibitory effect of BM-MSCs was verified even in the assays where BM-MSCs were
depleted immediately before PBMCs’ stimulation. Of note, BM-MSCs depletion prior to cell
stimulation partially restored TNF-α production by classical and intermediate monocytes,
but only from HG (p < 0.05).

Finally, we observed that unstimulated monocytes and mDCs from RA patients
showed a basal production of TNF-α and MIP-1β, not detected among the HG (p < 0.05).
On the other hand, monocytes from HG displayed a higher response to cell stimulation
than those from RA patients (p < 0.05), (Figures 3–5).

3.2. Effect of BM-MSCs on mRNA Levels of CXCL9, CXCL10, CCL3, CCL5, and IL-1β, in
Monocytes and mDCs from RA Patients and Healthy Individuals

In the same line, LPS plus IFNγ stimulation of PBMCs from HG showed a tendency to
increase mRNA levels of all cytokines/chemokines under study, which was not verified for
RA patients; as result, in RA patients, the cytokine’s mRNA expression upon cell activation
was significantly lower as compared to HG (p < 0.05), except for IL-1β in non-classical
monocytes (Figure 6). As observed for TNF-α and MIP-1β, at protein level, a prior contact
of 20 h of PBMCs with BM-MSCs sufficed for an inhibitory effect over mRNA cytokine and
chemokine expression, not being necessary the presence of BM-MSCs during the PBMCs
activation period.

Overall, our results suggest that BM-MSCs have propensity to inhibit the expression of
the analyzed cytokines/chemokines at mRNA level in HG (with no statistical significance);
while in RA patients this inhibitory trend is only verified for IL-1β in classical (p < 0.05) and
non-classical monocytes, and for CCL3 in non-classical monocytes (p > 0.05), as showed in
Figure 6.

3.3. BM-MSCs Reduce the Percentage of CCR7+ and CD83+ Monocytes and mDCs in RA Patients

Under our experimental settings, the protein levels of CCR7 and CD83 were upreg-
ulated by both BM-MSCs or LPS plus IFNγ stimulation; also, CCR7 induction upon cell
stimulation was stronger for RA in comparison to HG (p < 0.05). It is interesting to notice
that, in the HG, the intermediate monocytes stand out in relation to the remaining mono-
cytes by displaying the highest upregulation of CCR7, upon LPS plus IFNγ stimulation. In
turn, in RA patients, LPS plus IFNγ stimulation resulted in similar percentages of CCR7+

cells for all monocyte subpopulations, which were higher than those observed for HG.
Besides, a marked difference, among HG and RA patients, was verified for the percentage
of CCR7+ cells in classical and non-classical monocytes (Figure 7).
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Figure 3. TNF-α protein levels in monocytes and mDCs from RA patients and healthy individuals. 
Percentage (mean ± standard deviation) of cells producing TNF-α, among monocyte subpopulations 
(classical, intermediate and non-classical) and mDCs, ; amount of protein (MFI) produced per cell 
(mean ± standard deviation), measured in the following experimental conditions: unstimulated 
PBMCs (MNC), non-stimulated PBMCs in co-culture with MSCs (MNC + MSC), PBMCs stimulated 
with LPS plus IFNγ (MNC + LPS + IFNγ), PBMCs in co-culture with MSCs and stimulated with LPS 
plus IFNγ in the presence of MSCs (MNC + MSC + LPS + IFNγ), PBMCs in co-culture with MSCs 

Figure 3. TNF-α protein levels in monocytes and mDCs from RA patients and healthy individuals.
Percentage (mean ± standard deviation) of cells producing TNF-α, among monocyte subpopulations
(classical, intermediate and non-classical) and mDCs, ; amount of protein (MFI) produced per cell
(mean ± standard deviation), measured in the following experimental conditions: unstimulated
PBMCs (MNC), non-stimulated PBMCs in co-culture with MSCs (MNC + MSC), PBMCs stimulated
with LPS plus IFNγ (MNC + LPS + IFNγ), PBMCs in co-culture with MSCs and stimulated with LPS
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plus IFNγ in the presence of MSCs (MNC + MSC + LPS + IFNγ), PBMCs in co-culture with MSCs
and stimulated with LPS plus IFNγ immediately after the depletion of MSCs from the co-culture
(MNC + MSC + Depletion + LPS + IFNγ). p values of less than 0.05 were considered as statistically
significant for Mann-Whitney test: * vs. HG, in the same culture conditions; and for Friedman’s
paired-sample test: � between the groups indicated in the graph. HG, healthy group; IFNγ, interferon
γ; LPS, lipopolysaccharide; mDCs, myeloid dendritic cells; MFI, mean fluorescence intensity; MSCs,
mesenchymal stromal/stem cells; PBMCs, peripheral blood mononuclear cells; RA, rheumatoid
arthritis; TNF-α, tumor necrosis factor α.
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Percentage (mean ± standard deviation) of cells producing MIP-1β, among monocyte subpopulations
(classical, intermediate and non-classical) and mDCs; amount of protein (MFI) produced per cell
(mean ± standard deviation), measured in the following experimental conditions: unstimulated
PBMCs (MNC), non-stimulated PBMCs in co-culture with MSCs (MNC + BM-MSC), PBMCs stim-
ulated with LPS plus IFNγ (MNC + LPS + IFNγ), PBMCs in co-culture with MSCs and stimulated
with LPS plus IFNγ in the presence of MSCs (MNC + MSC + LPS + IFNγ), PBMCs in co-culture
with MSCs and stimulated with LPS plus IFNγ, immediately after the MSCs were depleted from
the cell culture (MNC + MSC + Depletion + LPS + IFNγ). Differences were considered statistically
significant for p < 0.05 for Mann-Whitney test: * vs. HG, in the same culture conditions; and for
Friedman’s paired-sample test: � between the groups indicated in the graph. HG, healthy group;
IFNγ, interferon γ; LPS, lipopolysaccharide; mDCs, myeloid dendritic cells; MFI, mean fluorescence
intensity; MIP-1β, macrophage inflammatory protein-1β; MSCs, mesenchymal stromal/stem cells;
PBMCs, peripheral blood mononuclear cells; RA, rheumatoid arthritis.
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Figure 5. Percentage of BM-MSC-derived inhibition of TNF-α and MIP-1β protein production, by
monocytes and mDCs, from RA patients and healthy individuals. Percentage of the inhibition (mean
± standard deviation), mediated by BM-MSCs, on the percentage of TNF-α- and MIP-1β-producing
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monocytes and mDCs, evaluated either when BM-MSCs were in the cell culture during PBMCs’ acti-
vation with LPS and IFNγ, or when BM-MSCs were removed from the cell culture immediately before
PBMCs’ activation. p values of less than 0.05 were considered as statistically significant for Mann-
Whitney test: * vs. HG, in the same cell population and the same culture condition; and for Wilcoxon
paired-sample test: � between the groups indicated in the graph; (a) vs. classical monocytes, in the
same culture condition, and within the same group of individuals; (b) vs. intermediate monocytes, in
the same culture condition and within the same group of individuals; (c) vs. non-classical monocytes,
in the same culture condition and within the same group of individuals. Percentage of inhibition was
calculated as follows, for TNF-α: [[(percentage of TNF-α+ cells in PBMC + LPS + IFNγ) − (percentage
of TNF-α+ cells in PBMC + MSC + LPS + IFNγ)]/(percentage of TNF-α+ cells in PBMC + LPS + IFNγ)]
* 100. The same formula was applied to calculate the percentage of inhibition for MIP-1β. Accordingly,
a percentage of inhibition of 100% corresponds to a complete suppression of the cytokine production,
whereas a percentage of inhibition of 0% means that BM-MSCs had no effect on cytokine production
by immune cells. HG, healthy group; IFNγ, interferon γ; LPS, lipopolysaccharide; mDCs, myeloid
dendritic cells; MIP-1β, macrophage inflammatory protein-1β; MSCs, mesenchymal stromal/stem
cells; PBMCs, peripheral blood mononuclear cells; RA, rheumatoid arthritis; TNF-α, tumor necrosis
factor-α.
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Figure 6. Effects of BM-MSCs over cytokines and chemokines mRNA expression by mono-
cytes and mDCs from healthy individuals and RA patients. Semi-quantitative determination of
CCL3, CCL5, CXCL9, CXCL10 and IL-1β mRNA expression in FACS-purified classical mono-
cytes and non-classical monocytes, and of CXCL10 and IL-1β in mDCs. mRNA levels were mea-
sured under the following culture conditions: non-stimulated PBMCs (MNC), non-stimulated
PBMCs in co-culture with MSCs (MNC + BM-MSC), PBMCs stimulated with LPS plus IFNγ

(MNC + LPS + IFNγ), PBMCs in co-culture with MSCs and stimulated with LPS plus IFNγ in
the presence of MSCs (MNC + MSC + LPS + IFNγ), PBMCs in co-culture with MSCs and stim-
ulated with LPS plus IFNγ immediately after the depletion of MSCs from the culture system
(MNC + MSC + Depletion + LPS + IFNγ). The normalized expression levels of the genes were calcu-
lated by using the delta-Ct method. Statistically significant differences were considered for p < 0.05
for Mann-Whitney test: * vs. HG, in the same culture condition and in the same cell population; and
for Friedman’s paired-sample test: � between the groups indicated in the graph. FACS, fluorescence-
activated cell sorting; HG, healthy group; IFNγ, interferon γ; IL, interleukin; LPS, lipopolysaccharide;
mDCs, myeloid dendritic cells; MSCs, mesenchymal stromal/stem cells; PBMCs, peripheral blood
mononuclear cells; RA, rheumatoid arthritis.
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Figure 7. Influence of BM-MSCs over the protein levels of CCR7 and CD83 by monocyte subsets and
mDCs from RA patients and healthy individuals. Percentage (mean ± standard deviation) of
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CCR7+ and CD83+ cells, among monocyte subpopulations (classical, intermediate and non-classical)
and mDCs measured in the following experimental conditions: unstimulated PBMCs (MNC), non-
stimulated PBMCs in co-culture with BM-MSCs (MNC + MSC), PBMCs stimulated with LPS plus
IFNγ (MNC + LPS + IFNγ), PBMCs in co-culture with BM-MSCs and stimulated with LPS plus IFNγ

in the presence of MSCs (MNC + MSC + LPS + IFNγ), PBMCs in co-culture with BM-MSCs and
stimulated with LPS plus IFNγ immediately after the depletion of BM-MSCs from the cell culture
(MNC + MSC + Depletion + LPS + IFNγ). p values of less than 0.05 were regarded as statistically
significant for Mann-Whitney test: * vs. HG, in the same culture condition; and for Friedman’s paired-
sample test: � between the groups indicated in the graph. HG, healthy group; IFNγ, interferon γ;
LPS, lipopolysaccharide; mDCs, myeloid dendritic cells; MSCs, mesenchymal stromal/stem cells;
PBMCs, peripheral blood mononuclear cells; RA, rheumatoid arthritis.

Interestingly, a suppressive effect of BM-MSCs on CCR7 and CD83 induction was
detected in activated monocytes (classical, intermediate and non-classical) and mDCs from
RA patients, whereas no inhibitory effect was found in HG (Figures 7 and 8). Once again,
this inhibitory effect was maintained even when BM-MSCs were depleted from cell culture
immediately before PBMCs’ stimulation (Figure 7).
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Figure 8. Percentage of CCR7+ and CD83+ cells, among classical, intermediate, and non-classical
monocytes and mDCs. Bivariate dot plot histograms depicting the gating strategy to identify CCR7+

and CD83+ cells, among monocyte subpopulations and mDCs, from a RA patient. Classical monocytes
correspond to light blue events, intermediate monocytes are represented in blue, dark blue events
correspond to non-classical monocytes, and mDCs are represented as red events. The percentage
of CCR7+ and CD83+ cells was evaluated for the three different culture conditions: unstimulated
PBMCs (MNC), PBMCs stimulated with LPS and IFNγ (MNC + LPS+ IFNγ), and PBMCs stimulated
with LPS and IFNγ in co-culture with MSCs (MNC + MSC + LPS+ IFNγ). IFNγ, interferon γ; LPS,
lipopolysaccharide; mDCs, myeloid dendritic cells; MSCs, mesenchymal stromal/stem cells; PBMCs,
peripheral blood mononuclear cells.
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4. Discussion

Though Th1 and Th17 cells constitute the main cell subsets implicated in the
chronic inflammation of the joints observed in RA patients, other immune cells (namely
monocytes/macrophages) have been increasingly recognized to play an active role in
RA pathophysiology.

Lately, much attention has been paid to PB monocyte subpopulations, becoming
clear they possess important functional differences, namely in what concerns to cytokine
and chemokine expression profile, phagocytic activity, patrolling behavior in vivo, ability
to stimulate and influence T cells’ polarization, propensity to migrate into normal or
inflamed tissues, and ability to undergo differentiation into macrophages, dendritic cells,
and osteoclasts [23–28]. With this background, it becomes evident the importance of
studying the effect of BM-MSCs on each individual PB monocyte subset.

All these monocyte subpopulations are capable of infiltrating the synovium in RA
patients [29,30], wherein they play an active role in joint damage [23]. In fact, the direct
influence of monocytes on RA bone erosion became evident with a recent study demon-
strating that synovial fluid mononuclear cells from RA patients spontaneously undergo
differentiation into functional osteoclasts in vitro, without any additional preparation or
stimulation [31]; accordingly, the number of macrophages in the synovium has been re-
ported to correlate with joint damage [32]. Interestingly, pathological conditions are likely
to modify the functional abilities of monocyte subpopulations, being reported that, in
patients with psoriatic arthritis, the CD16+ monocytes are those with the highest ability
to undergo differentiation into osteoclasts, whereas in healthy individuals the classical
monocytes are the ones showing more propensity to do it [26].

The altered distribution of monocyte subsets described in RA patients further supports
the involvement of these cells in the pathophysiology of the disease. In fact, the propor-
tion of CD14+CD16+ intermediate monocytes is increased in RA synovial fluid [29] and
at peripheral level [27,29,33,34]; it is also correlated to disease activity [33], and predicts
the response to methotrexate therapy [23,35]. In turn, the absolute number of circulating
classical and intermediate monocytes is increased in treatment-refractory patients [23]. Like-
wise, an increased proportion of intermediate monocytes is found among non-responder
patients [23,35] and is positively correlated to disease activity [33].

The increasing evidence of the contribution of monocytes to RA pathophysiology, and
the specific role of each monocyte subpopulation, highlight the relevance of our results
demonstrating the ability of BM-MSCs to inhibit transversally all monocyte subsets from
RA patients, ex vivo. Here, we found a consistent BM-MSC-derived suppression of TNF-
α and MIP-1β (CCL4) production at protein level, by circulating monocytes. Notably,
the presence of TNF-α in RA patients’ synovium leads T cells, as well as synoviocytes, to
promote osteoclast activation and maturation, which can be in the basis of bone erosion [1,4].
This is further supported by studies demonstrating that anti-TNF drugs can slow or even
prevent the progression of cartilage and bone damage in patients with RA [4,8]. In turn,
the inhibition of MIP-1β production, mediated by BM-MSCs, was more pronounced in
non-classical monocytes, a cell population composed by patrolling monocytes, in both
human and mice [25,26,36], which actively migrates into injured joints and initiate joint
inflammation in a murine model of RA [36]. BM-MSCs suppression of MIP-1β production
by classical and non-classical monocytes, and mDCs, is a relevant finding because these
cell populations can infiltrate into RA synovium [29,37] and attract Th1 cells. In fact,
MIP-1β attracts CCR5+ cells [38], and Th1 cells infiltrating RA synovium do present CCR5
and CXCR3 at their surface [4]; intermediate monocytes also express CCR5 [27]. Thus,
according to our results, MSC-based therapies may potentially hamper the recruitment of
monocytes and Th1 cells into the RA inflamed joints, reduce osteoclast activity, and prevent
bone destruction.

Though little information is available concerning the role of mDCs in RA, an increased
percentage of mDCs [39] and upregulated levels of CD86 activation marker and CCR7
chemokine receptor [40], in the PB of RA patients have been reported; also, mDCs infil-
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trating the synovium express the proinflammatory cytokines IL-12p70, IL-15, IL-18, IL-23,
and IFN-β [37]. Our results demonstrate that BM-MSCs can inhibit the proinflammatory
cytokines production by mDCs and, at the same time, downregulate the surface levels of
CD83 maturation marker and CCR7, in mDCs. Both CD83 and CCR7 are upregulated upon
DC maturation and, while CCR7 is essential for DCs migration to lymph nodes, where they
stimulate T cells, CD83 is implicated in the upregulation of both MHC class II and CD86
costimulatory molecule. Therefore, adequate levels of CD83 and CCR7 are essential for
the development of an adaptive immune response [41,42]. Accordingly, our results show
BM-MSCs can potentially restrain the deleterious effect of mDCs in the RA context.

Monocytes and DCs are important players in the activation of the adaptive immune
system in RA: synovial monocytes from RA patients induce autologous peripheral CD4+

memory T cell polarization into Th1 and Th17cells, in vitro [29], an effect shared with RA
PB monocyte-derived DCs [39]. Besides, the percentage of PB intermediate monocytes
correlates positively with the percentage of Th17 cells in RA [27]; and this latter, in turn,
correlates positively to DAS28 [4,43].

Our study demonstrates that BM-MSCs hinder the production of the proinflammatory
cytokines implicated in the RA pathophysiology. TNF-α in the RA synovium is mainly
produced by infiltrating macrophages and has the ability to activate endothelial cells
and upregulate chemokine expression, promoting the infiltration of immune cells into
the synovium. TNF-α is also responsible for amplifying the proinflammatory response,
activating fibroblasts, chondrocytes and osteoclasts, with subsequent upregulation of
matrix metalloproteinases (MMPs) expression, ultimately leading to the destruction of
cartilage and bone [6,44]. Notably, by upregulating monocyte expression of IL-1β and IL-6,
TNF-α promotes Th17 cell polarization [45]. All these cytokines, together with IFNγ, are
detected in the synovium from RA patients and their role in cartilage destruction and bone
resorption is well established [1,4,44,46–48]. In fact, biological drugs that block TNF-α and
IL-6 undoubtedly demonstrate the critical role these cytokines play in RA. TNF-α inhibitors
decrease leukocyte infiltration into the joint, reduce joint swelling, synovial vascularity,
and DAS28 [3,6,49]. Furthermore, both anti-TNF and anti-IL-6 biologics stop joint damage
progression in RA patients [8,48].

Remarkably, BM-MSCs possess the capability to inhibit TNF-α production (reported
here) and, simultaneously, impair IL-6 expression and Th1 and Th17 cells’ function in
healthy individuals [20] and RA patients [21].

Our work demonstrates BM-MSCs possess the ability to regulate monocyte and mDC’s
function at different levels. And each of these levels can impact the adaptive immune
system, especially the activity of Th1 and Th17 cells. BM-MSCs impair the production of
proinflammatory cytokines by monocytes and mDCs; this may compromise the capability
of these antigen-presenting cells to induce Th1/Th17 polarization. BM-MSCs inhibit
the upregulation of CCR7, a chemokine receptor essential for cell migration to lymph
nodes; this may hinder antigen-presentation. Finally, BM-MSCs downregulate chemokine
expression by monocytes and mDCs, which can hamper the infiltration of immune cells
into inflamed synovium, namely Th1 cells.

It has been demonstrated that IL-10 [50,51] and PGE2 [52,53], produced by MSCs,
mediate the inhibition of DCs’ maturation and production of proinflammatory cytokines.
In turn, the monocytes’ proinflammatory function can be hampered by CD200, expressed
on MSC surface [54].

At the present moment, there are 16 phase I, II and/or phase III clinical trials, registered
at www.clinicaltrials.gov (accessed on 6 February 2022), investigating MSCs-based cell ther-
apies for RA, five of them are completed, but none of them has the results publicly available
on clinicaltrials.gov. Despite that, there are several studies in small cohorts of patients
reporting the safety and clinical benefits of MSCs administration to RA patients, namely
in visual analog scale (VAS 100 mm) pain score, erythrocyte sedimentation rate (ESR),
and 28-joint disease activity score (DAS-28) [9,55,56]. Besides, reduction in the levels of
proinflammatory cytokines and Th17 cells was also observed, accompanied by an increase
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in Treg cells [9,57]. Clinical studies using MSCs-based cell therapy for RA patients were
recently reviewed by Lopez-Santalla and colleagues [58]. RA patients’ immune cells exhibit
a proinflammatory phenotype, consequently increased basal levels of TNF-α and MIP-1β
in monocytes and mDCs, as well as other proinflammatory cytokines in T cells, are ob-
served [21]. According to the current knowledge, this inflammatory environment improves
the immunoregulatory function of MSCs [59], explaining the stronger immunomodulatory
effect of BM-MSCs over immune cells from RA patients, in comparison to HG, as observed
in the present work.

5. Conclusions

Recent research in RA patients and animal models pointed monocytes/macrophages
as active players in RA pathophysiology. These studies have confirmed that allogeneic BM-
MSCs can suppress the proinflammatory function of monocytes and mDCs, particularly to
hamper TNF-α production. Our previous work, carried out in this same set of RA patients
and at the same time, demonstrated allogeneic BM-MSCs also impair Th1 and Th17 cells,
among others CD4+ and CD8+ T cell subsets, inhibiting the production of proinflammatory
cytokines, while increasing IL-10 and TGF-β mRNA expression [21]. Altogether, our results
suggest that BM-MSCs suppress the inflammatory response in RA at different levels, as they
are able to hamper simultaneously antigen-presenting cells’ and T cells’ immune functions.
Our findings, together with the promising results obtained after MSCs administration to
RA animal models, reinforces the assumption that MSC-based therapies can be a valuable
approach for RA treatment, especially for non-responder patients.
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Appendix A

Table A1. Demographic data and clinical characteristics of rheumatoid arthritis patients and healthy group.

Gender
Age DAS28-

CRP3v
CRP ESR TJC

(0–28)
SJC

(0–28)

Medication

ComorbiditiesMTX HCQ Sulfasalazine Prednisolone
NSAIDs

(Years) (mg/dL) (mm/h) (mg/Week) (mg/Day) (mg/Day) (mg/Day)

Patients with inactive RA *

# 1 F 61 1.81 0.08 4 1 0 15 400 2000 5 yes Osteoporosis
# 2 M 50 2.39 0.47 19 0 0 25 0 2000 5 no None
# 3 M 47 1.21 0.12 4 0 0 15 0 0 2.5 yes None
# 4 F 52 1.68 0.1 5 0 1 15 0 0 1.25 no None
# 5 F 42 2.56 0.12 24 0 0 0 0 0 0 no None
# 6 M 38 0.68 0.2 2 0 0 10 0 2000 0 no None
# 7 M 55 2.5 0.34 15 0 1 0 400 2000 5 yes Dyslipidemia

Patients with active RA *

# 8 F 60 4.65 1.92 30 6 8 25 400 3000 5 no None
# 9 F 41 5.63 5.4 70 9 14 0 0 3000 7.5 yes Depression

# 10 F 53 4.31 0.33 48 3 5 15 400 0 5 yes Obesity

# 11 F 71 3.91 4.25 40 0 12 25 400 2000 5 yes Hypertension,
osteoporosis

# 12 F 59 6.08 1.15 72 11 5 0 0 0 5 yes Depression,
dyslipidemia

HG

# 1 M 50 None
# 2 F 50 None
# 3 F 50 None
# 4 F 48 None
# 5 F 35 None
# 6 F 34 None

* Disease activity was assessed using DAS28, and classified as inactive RA if DAS28 < 2.6, and as active RA if DAS28 ≥ 2.6; CRP, C-reactive protein; DAS28-CRP3v, disease activity score
28 using CRP level (DAS28-CRP; 3-variable); ESR, erythrocyte sedimentation rate; F, female; HCQ, hydroxychloroquine; HG, healthy group; M, male; MTX, methotrexate; NSAIDs,
nonsteroidal antiinflammatory drugs; RA, rheumatoid arthritis; SJC, swollen joint count; TJC, tender joint count.
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Table A2. Effect of MSCs on the percentage (%) of cells producing cytokines (mean ± standard
deviation), upon stimulation with LPS and IFNγ.

Cytokine Cell Type Culture Conditions

Healthy
Individuals Inactive RA * Active RA * Total RA

Patients

(n = 6) (n = 5) (n = 7) (n = 12)

TNF-α Classical
monocytes

MNC +
LPS + IFNγ

85 ± 12 50 ± 9.4 68 ± 6.0 57 ± 12

MNC + MSC +
LPS + IFNγ

39 ± 23 31 ± 15 42 ± 8.6 35 ± 14

Intermediate
monocytes

MNC +
LPS + IFNγ

81 ± 13 46 ± 11 66 ± 3.8 54 ± 13

MNC + MSC +
LPS + IFNγ

31 ± 14 26 ± 8.5 31 ± 7.3 28 ± 8.1

Non-classical
monocytes

MNC +
LPS + IFNγ

87 ± 7.5 47 ± 15 59 ± 19 52 ± 17

MNC + MSC +
LPS + IFNγ

61 ± 23 20 ± 10 35 ± 17 26 ± 15

mDCs MNC +
LPS + IFNγ

16 ± 7.4 9.8 ± 7.2 15 ± 6.7 12 ± 7.2

MNC + MSC +
LPS + IFNγ

4.2 ± 1.9 5.5 ± 2.6 8.6 ± 3.8 6.7 ± 3.3

MIP-1β Classical
monocytes

MNC +
LPS + IFNγ

99 ± 0.8 94 ± 8.4 93 ± 4.2 94 ± 6.8

MNC + MSC +
LPS + IFNγ

94 ± 3.7 81 ± 14 81 ± 9.1 81 ± 12

Intermediate
monocytes

MNC +
LPS + IFNγ

99 ± 0.9 90 ± 10 88 ± 8.7 89 ± 9.2

MNC + MSC +
LPS + IFNγ

80 ± 12 70 ± 15 65 ± 14 68 ± 14

Non-classical
monocytes

MNC +
LPS + IFNγ

92 ± 9.8 82 ± 18 73 ± 7.6 78 ± 15

MNC + MSC +
LPS + IFNγ

73 ± 17 57 ± 23 45 ± 20 52 ± 22

mDCs MNC +
LPS + IFNγ

17 ± 8.4 22 ± 11 13 ± 4.6 18 ± 9.5

MNC + MSC +
LPS + IFNγ

9.6 ± 5.8 12 ± 3.7 7.6 ± 1.6 10 ± 3.7

* Disease activity was assessed using DAS28, and classified as inactive RA if DAS28 < 2.6, and as active RA if
DAS28 ≥ 2.6; IFNγ, interferon γ; LPS, lipopolysaccharide; mDC, myeloid dendritic cell; MNC, mononuclear cells;
MSC, mesenchymal stromal/stem cells; RA, rheumatoid arthritis.
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subsets (classical, intermediate and non-classical) and mDCs, producing TNF-α and MIP-1β, under
the following culture conditions: non-stimulated PBMCs (MNC), non-stimulated PBMCs in co-culture
with MSCs (MNC + MSC), PBMCs stimulated with LPS plus IFNγ (MNC + LPS + IFNγ), PBMCs in
co-culture with MSCs and stimulated with LPS plus IFNγ in the presence of MSCs (MNC + MSC
+ LPS + IFNγ), PBMCs in co-culture with MSCs and stimulated with LPS plus IFNγ immediately
after the depletion of MSCs from the culture system (MNC + MSC + Depletion + LPS + IFNγ). No
statistically significant differences were found between female and male RA patients, using the
Mann-Whitney test. HG, healthy group; IFNγ, interferon γ; LPS, lipopolysaccharide; mDCs, myeloid
dendritic cells; MFI, mean fluorescence intensity; MSCs, mesenchymal stromal/stem cells; PBMCs,
peripheral blood mononuclear cells; RA, rheumatoid arthritis; TNF-α, tumor necrosis factor α.
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