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Abstract
In this paper we propose a new paradigm to create superlenses inspired by n–p–n junctions of
graphene. We show that by adjoining an n-type region and a p-type region with a crystal
dislocation, it is possible to mimic the interaction of complementary Hamiltonians and achieve
subwavelength imaging. We introduce an effective model of the system, and show that it predicts
perfect lensing for both propagating and evanescent waves due to the excitation of a resonant
mode at the interface between each region. This phenomenon is the consequence of a nontrivial
boundary condition at the n–p interfaces due to a dislocation of the graphene ‘atoms’. We discuss
practical realizations of such superlenses in electronic and photonic platforms. Using full wave
simulations, we study in detail the performance of a photonic realization of the lens based on a
honeycomb array of dielectric cylinders embedded in a metal.

1. Introduction

The ability to transport the evanescent part of the electromagnetic waves is the key ingredient to create
perfect imaging devices with a resolution that is not limited by diffraction. In that respect, the
groundbreaking discovery that a slab of material with simultaneously negative permittivity and
permeability, the so-called superlens [1], is able to focus not only the far-field but also the near-field
components of the electromagnetic field, generated a strong excitement in the scientific community [2–5].
Subsequently, a plethora of new ideas to mimic or approximate the behavior of this ideal lens were
developed not only for electromagnetic waves [6–25] but also for electronic [26–29] and acoustic waves
[30, 31].

Here, by combining the concepts of complementary materials [19, 26, 28] and of graphene n–p–n
junctions [32], we propose a new paradigm to realize photonic superlenses. First, we show in section 2 that
a graphene n–p–n junction with a dislocation at the n–p interfaces may enable a perfect electron tunneling
for all incident angles. Then, in section 3, by using a strict analogy between the two dimensional (2D)
Schrödinger and Maxwell equations, we extend this scheme to photonics and propose a specific realization
based on dielectrics and metals. We study numerically the performance of the proposed lens and
demonstrate that its resolution is ultimately determined by the lattice constant of the crystal.

2. Graphene inspired electronic superlens

Generally, perfect lensing relies on two effects: negative refraction, to focus the diverging rays, and
amplification of evanescent waves, to restore the subwavelength spectrum [1, 20]. In this section we
combine the concepts of n–p junction [32] and of complementary materials [19, 26, 28], and describe a
general scheme to create ‘perfect’ lenses for electron waves.

2.1. Electronic superlens based on a graphene n–p–n junction
As shown in [32], an incident electron wave propagating towards the boundary between the n- and p-doped
graphene regions [33] can be negatively refracted at the interface. As illustrated in figures 1(a)–(c) for an
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Figure 1. (a) Schematic of an electronic lens of thickness d made of a graphene n–p–n junction as proposed in [32].
The graphene sheet is on top of three electrodes with potentials V1 (n-doped regions) and V2 (p-doped region).
(b) Energy band diagram (Dirac cones centered at K or K′) in each section of the lens for electrons with a fixed energy E = E0.
Here, q = qxx̂ + qy ŷ is the wavevector measured relatively to the K or K′ point. (c) Contours of constant energy for the situation
depicted in (b). The wavevectors in the different regions are represented by the black arrows, and their projections on the
coordinate axes by the red and blue arrows. The green arrows indicate the group velocity. The conservation of the parallel
wavevector qy at the interfaces and the choice of a transmitted wave with group velocity oriented towards the +x direction imply
a negative refraction. (d) Transmissivity |T|2 of the n–p–n junction as a function of the normalized parallel wavevector qy with

q0 ≡ |EF,2−EF,1 |
2�vF

at the energy E = E0 for two thicknesses of the p-doped region (d2 > d1). Dashed lines: Cheianov lens represented
in figure 1(a). Solid lines: superlens represented in figure 2 with the n-type and p-type regions behaving as complementary
materials. In both cases, the structure is assumed infinite along the y direction. The thicknesses used are d1 = 2λ0 and d2 = 20λ0

with λ0 = 2π/|K| the wavelength associated with the K or K′ points.

n–p–n junction, the negative refraction is a consequence of two properties: the isotropy of the energy
dispersion close to the Dirac cones and the fact that the electrons propagating in the n-doped regions
belong to the conduction band whereas the electrons propagating in the p-doped region belong to the
valence band. For an incoming wave with energy E exactly equidistant from the Fermi energies EF,1 and EF,2

of the n- and p-doped regions, i.e. for E = E0 with E0 ≡ (EF,1 + EF,2)/2, a thin n–p–n junction can focus
almost perfectly an incoming plane wave for any incidence angle up to grazing incidence as shown in
figure 1(d) (dashed red curve), due to two successive negative refractions at the interfaces. Unfortunately,
despite these interesting features, the imaging properties of the n–p–n junction, hereafter referred to as a
‘Cheianov lens’, are quickly degraded as soon as the thickness of the lens (i.e. of the p-doped region) is a
significant fraction of the wavelength. In fact, for large values of d, the transmissivity of the lens is near
unity only for incidence angles close to normal incidence (see the dashed black curve in figure 1(d)).
Furthermore, the Cheianov lens is unable to focus evanescent waves. Thus, its resolution is limited by
diffraction.

An interesting solution for this problem based on complementary graphene superlattices was proposed
some time ago [27, 34]. In this system, the electrons in the jth superlattice behave as massless particles
described by a generalized Dirac Hamiltonian

Ĥj = −i�vF

(
σxx̂ + χjσyŷ

)
· ∇+ Vj, (1)

where Vj is a constant potential, σx, σy are the Pauli matrices, vF is the Fermi velocity of graphene (assumed
to be independent of the doping level) and χj is the anisotropy parameter. The parameter χj is typically less
than 1 in absolute value because in a superlattice the electron wave can propagate with different velocities
along the x and y directions. A perfect electron tunneling can be achieved with a lens analogous to the
n–p–n junction described above and made of two complementary superlattices A and B such that
χA = −χB [27].

Remarkably, the Hamiltonian of graphene is also given by equation (1) with χj = 1 at the K point and
χj = −1 at K′. However, even though the required material complementarity naturally occurs for the Dirac
electrons of graphene [28], the coupling between waves propagating near the K and K′ points is negligible.
Interestingly, as described next, it is possible to effectively implement the complementary material with
χ = −1 in graphene, simply by tailoring the boundary conditions at the interfaces of the n–p–n junction.

To explain this idea, we start by noting that the standard boundary condition in graphene involves the

continuity of the pseudo-spinor ψj =
(
ψ1j ψ2j

)T
at the two sides of an interface: ψ1A = ψ1B,ψ2A = ψ2B.

Suppose however that somehow one can engineer a boundary condition of the form ψ1A = ψ2B,ψ2A = ψ1B

so that the first (second) component of the pseudospinor in region A is identical to the second (first)
component of the pseudo-spinor in region B. This boundary condition can be written in a
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Figure 2. Schematic of the n–p–n junction with crystal dislocations at the interfaces. The dislocations effectively interchange the
two graphene sublattices at interfaces (represented by the red and green circles). Due to the dislocations, the p-type region
effectively behaves as the complementary material of the n-type region. Within the effective model approximation, the system
behaves as a perfect lens. The different background colors indicate the different gate voltages applied to each region of the
junction. The first Brillouin zone together with the points of high symmetry of the honeycomb lattice are represented on the left.

compact form as:
ψA = σxψB. (2)

Note that this boundary condition ensures the continuity of the probability current [34]. It can be easily
shown that the boundary condition (2) is equivalent to redefine the Hamiltonian in region B as
ĤB,ef = σxĤBσx, combined with the continuity of the pseudo-spinor at the interface. But it is simple to
check that if ĤB is the standard Hamiltonian of graphene near the K point with χ = 1, then ĤB,ef

corresponds exactly to the complementary Hamiltonian with χ = −1. Thereby, it follows that by tailoring
the boundary condition satisfied by the pseudo-spinor as in equation (2) it is possible to effectively emulate
the interface between two complementary regions, even though the two regions are effectively identical (i.e.,
are the same material) apart from the applied gate voltages.

In practice, the desired boundary condition requires that the roles of sublattices 1 and 2 are
interchanged in the n- and p-type regions. This suggests that the interface should be such that the atoms on
the interface should belong to different sublattices of the n- and p-type regions. This can be done with the
construction represented in figure 2. As seen, the scattering centers on the interfaces are shared by the
crystalline structures in regions A and B, but are associated with different sublattices. From a technical
standpoint, each of the interfaces is characterized by a dislocation [35]. Thus, with suitable crystal
dislocations at the interfaces, it may be possible to transform a regular n–p–n junction into a superlens.

It is curious to point out that the wave propagation along K or K′ in a honeycomb lattice can be
discriminated by looking at the relative position of the two constituents of the unit cell. By following the
two oblique dashed lines passing through the centers of the green disks in figure 2, one can see that the
nearest neighbors are located below (above) the dashed line in the n-doped regions and above (below) it in
the p-doped regions, as if the meaning of K and K′ is interchanged when an interface is crossed. This gives a
different perspective on the reason why the p-type region effectively emulates (due to the dislocations) the
Hamiltonian of the K′ point. Finally, it should be mentioned that the construction of figure 2 is not unique.
In principle, other dislocations that effectively interchange the sublattices of the n- and p-doped regions at
the interfaces, may also be suitable to implement a superlens.

The transmissivity of the n–p–n junction with the dislocations can be found by writing the electronic
wave function ψ in each region and imposing the boundary condition (2). Assuming without loss of
generality that the propagation is close to K point, it follows that the wavefunction in each region is [36]

ψ(x, y) =
eiqyy

√
2

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎝ 1

eiθq1

⎞
⎠ eiqx,1x + R

⎛
⎝ 1

−e−iθq1

⎞
⎠ e−iqx,1x, x � 0

A1

(
1

−eiθq2

)
eiqx,2x + A2

(
1

e−iθq2

)
e−iqx,2x, 0 � x � d

T

(
1

eiθq1

)
eiqx,1(x−d), x � d

, (3)
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where θqi = arg
(
qx,i + iqy

)
, q2

x,i = q2
i − q2

y with qi =
|E−EF,i|
�vF

, R and T are the reflection and transmission
coefficients, and A1 and A2 are the amplitude of the waves in the p-doped region. By enforcing the
boundary condition (2) at the interfaces, it is found that the transmissivity of the lens is:

|T|2 =

∣∣∣∣∣∣
1

cos(qx,2d) + i sin(qx,2d)
q1q2−q2

y

qx,1qx,2

∣∣∣∣∣∣
2

. (4)

This is exactly the same result that would be obtained with the continuity of pseudospinor and with a
p-type region described by the Dirac Hamiltonian of the K′ point.

Remarkably for electron states with energy E = E0, one has q1 = q2 and the transmissivity simplifies

exactly to |T|2 =
∣∣e−iqx,1d

∣∣2
[27]. For this energy the propagating electron waves are perfectly transmitted by

the lens whereas the evanescent waves are exponentially amplified with a growing rate proportional to the
thickness of the lens. These properties are illustrated in figure 1(d) (solid lines) for two different values of
the lens thickness d. Thus, regardless of the thickness, the amplification compensates the evanescent decay
of the waves outside the p-doped region and allows for a perfect imaging.

It should be noted that a related electronic superlens made of complementary graphene ribbons was
studied in reference [26] by Kobayashi based on a different theoretical framework. In particular, Kobayashi
formalism leads to lenses similar to the one shown in figure 2. However, different from our solution, the
Kobayashi superlens is not coupled to an n–p–n junction and consequently only works for electron states
with energy coincident with the Dirac point, which is of limited interest because the density of electronic
states vanishes at the Dirac point; furthermore, the Dirac point is a singular point as it may give rise to
conical diffraction [37]. These problems are solved by our solution which is a modification of the n–p–n
junction.

In graphene each carbon atom is linked to three neighbors by three covalent bonds. Thereby, interfaces
such as the ones materialized by the dashed vertical lines in figure 2 or those considered in reference [26]
may be chemically unstable. Fortunately, the scheme described above is applicable not only to graphene but
also to any system described by a Dirac Hamiltonian. In particular, any platform that mimics the properties
of graphene [38]—hereafter referred to as artificial graphene—and that enables creating interfaces as in
figure 2 is a suitable candidate to realize the superlens. An electronic implementation of the lens could, for
example, rely on a 2D electron gas (2DEG) modulated by a periodic electrostatic potential V(r) with the
honeycomb symmetry [39–41]. Furthermore, the proposed superlens is not restricted to electrons but can
as well be implemented with electromagnetic or matter waves [38]. Motivated by this possibility, in the next
section we investigate a photonic realization of the superlens.

3. Photonic implementation

In a previous work, we have shown that the wave propagation in artificial graphene can be exactly
mimicked by a particular photonic crystal formed by air rods in a metallic background [42]. Inspired by
this result, and by its relative simplicity and practical interest, next we propose the realization of a photonic
graphene-type superlens.

To do so, we use a formal analogy between the 2D Schrödinger and Maxwell equations to transpose to
photonics the ideas developed thus far.

3.1. Photonic artificial graphene
The photonic graphene introduced in reference [42] consists of honeycomb array of air cylinders embedded
in a metallic background. Our solution explores an analogy between the 2D Schrödinger and Maxwell
equations, which for convenience is reviewed next.

The analogy uses as a starting point a particular realization of artificial graphene in a 2DEG patterned
with scattering centers [39–41]. The electrons in this system are microscopically described by a

Hamiltonian Ĥmic =
p̂2

2mb
+ V(r) where V(r) is a periodic potential with the honeycomb symmetry, mb is

the electron effective mass and p̂ = −i�∇ the momentum operator. The stationary states ψ with energy E
are solutions of the time-independent Schrödinger’s equation Ĥmicψ = Eψ in the 2DEG:

[
�

2

2mb
∇2 − V(r) + E

]
ψ = 0. (5)

With a suitable V with the honeycomb symmetry this system behaves effectively as graphene [39–41].
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To obtain an electromagnetic equivalent of this platform, we consider a 2D (∂/∂z = 0) nonmagnetic
photonic crystal with a relative permittivity described by a Drude model of the form

ε(r) = 1 −
ω2

p(r)

ω2
, (6)

where ωp(r) is the spatially dependent plasma frequency of the metal. For stationary states, in the absence of

sources, the wave equation for TE-waves (E = Ezẑ) in this system reduces to
[
∇2 + ω2

c2 ε(r)
]

Ez ẑ = 0. Thus,

upon substitution of (6), one finds that:

[
∇2 +

ω2

c2
−

ω2
p(r)

c2

]
Ezẑ = 0. (7)

A direct comparison between equations (5) and (7) shows that their solutions can be precisely matched by
taking

2mbE

�2
=

ω2

c2
, (8a)

2mbV(r)

�2
=

ω2
p(r)

c2
. (8b)

Thus, it follows that for TE-waves a metal with a periodically modulated plasma frequency is a photonic
equivalent of graphene. The periodic modulation has the honeycomb symmetry. As discussed in [42], this
analogy can be used for any modulated 2DEG provided the electrostatic potential V(r) only assumes
positive values. Moreover, for negative potentials bounded from below, it is always possible to shift the
energy origin in such a manner that the potential function becomes positive, and thus, in such a case, the
analogy can also be used.

Interestingly, our system can be implemented in practice by enclosing the photonic crystal with two
metallic (ideally perfectly conducting) plates separated by some distance h (the air rods are perpendicular to
the plates). Provided h is a small fraction of the wavelength the only mode that propagates in such a
parallel-plate waveguide is the TE mode considered in our analysis. Thus, for a small separation of the walls
with respect to the wavelength, a truncated photonic crystal may behave as a (quasi-)2D photonic
implementation of graphene. Note that in graphene the electron orbitals are not strictly in a plane as there
is some spreading of the wave function along the z-direction, somewhat analogous to the parallel-plate
guide electromagnetic realization.

3.2. Photonic graphene superlens
Now that a photonic equivalent of graphene was identified, the next step to realize the superlens is to find
an electromagnetic equivalent of the n–p–n junction of figure 2. Creating an n–p–n junction, involves
nothing more than shifting the value of the microscopic V in the entire p-region by a certain offset
determined by the gate voltage in the p-region. In the photonic design, this leads to a global shift of the
plasma frequency in the p-region.

To illustrate these ideas, we recover a particular artificial graphene design considered in previous works
[39, 40]. It consists of a modulated 2DEG with the honeycomb symmetry and a lattice constant a = 150 nm
and R = 52.5 nm (see figure 2). The electrostatic potentials in the n-doped regions are taken as
V = 0.8 meV inside the disks of radius R and V = 0 outside. In order to implement the junctions, V suffers
an additional offset (both inside and outside the scattering centers) of +6 μeV in the p-doped region as
compared to the n-doped regions. All the numerical examples of the paper are based on this specific
geometry but it is important to note that all the design parameters can be rescaled by choosing a different
lattice constant a.

The photonic design is obtained using the transformation (8). Such a construction implies that the
photonic analogue of the n-doped artificial graphene is a photonic crystal formed by an honeycomb array
of air cylinders embedded in a metallic background with plasma frequency ωpa/c ≈ 5.626 (ωp is in the
UV). Similarly, the photonic analogue of the p-doped artificial graphene is a photonic crystal with the same
geometry, formed by metallic cylinders with plasma frequency ωpa/c ≈ 0.4872 (infrared range) embedded
in another metal with plasma frequency ωpa/c ≈ 5.647 (UV).

Figure 3 shows the frequency dispersion of the electromagnetic modes in each photonic crystal,
computed with the plane wave method [43] using 121 harmonics. As seen, the photonic dispersion near
the K and K′ points consists of a Dirac cone confirming that each region of the photonic lens indeed mimics
graphene. Moreover, the Dirac cones have a similar shape (similar group velocities) and their origins,
located at the Dirac frequencies ωD,i with i = 1, 2, are slightly shifted in frequency. Consequently, as seen in
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Figure 3. Photonic band diagrams near the K (or K′) point in the photonic analogue of the n-doped (solid blue lines) and
p-doped (dashed red lines) regions. The normalized frequencies for the Dirac cones origin ωD,i (i = 1, 2) are marked by
horizontal dotted lines. The effective medium model predicts perfect imaging at the frequency ω0 (dotted line in the center).

Figure 4. Time snapshot of the electric field Ez emitted by a short dipole antenna at ω ≈ 0.998ω0 in (a) a Cheianov n–p–n lens
(no crystal dislocations) (b) n–p–n superlens with crystal dislocations. The vertical dashed lines marks the boundaries of the
p-doped region.

section 2, an n–p–n junction of the two crystals, with suitable crystal dislocations at the interfaces, should
provide negative refraction and subwavelength imaging at the frequency ω0 ≡ (ωD,1 + ωD,2)/2. The crystal
dislocations ensure that the roles of the sublattices in the different regions are interchanged.

3.3. Numerical results
To verify these predictions, we used CST Microwave Studio to make a full-wave time-domain simulation of
the photonic n–p–n junction response. We considered two cases: an n–p–n junction with no dislocations
(figure 4(a)), and an n–p–n junction with dislocations that interchange the crystal sublattices (figure 4(b)).
The photonic crystals are truncated at planes z = const. and terminated with perfectly conducting electric
walls, analogous to the parallel plate waveguide alluded to in the end of section 3.1. This guarantees that
only TE waves can be excited in the system. The structure is fed by a dipole antenna located in the n-doped
region (left-hand side) close to the interface with the p-doped region. The antenna emits a light pulse with
spectrum centered at ω0, that is taken as ω0a/c ≈ 4.347. At frequency ω0 the values of the permittivities in
the n- and p-doped regions are ε ≈ −0.675 and ε ≈ −0.687 in the background regions, and ε = 1 and
ε ≈ 0.987 in the cylinders, respectively. Note that the scattering centers (cylinders) behave as dielectrics at
the operating frequency.
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Figure 5. (a) Frequency dispersion of the surface states of the electromagnetic superlens of figure 6(b) calculated with the
effective medium theory. (b) Plot of Re {ψ1(x, y) + ψ2(x, y)} for the point marked by a black cross in panel (a) (corresponding to
qy = 3.345q0 and ω = 1.0005ω0). The vertical dashed lines mark the boundaries of the p-doped region at x = 0 and x = 12a.

Figure 6. Top view of the central part of (a) a Cheianov n–p–n lens (no crystal dislocations) (b) n–p–n superlens with crystal
dislocations. The position of the antenna on the left side is marked by a red dot. (c) Normalized electric field as a function of the
position y on the vertical red line drawn in (a) and (b). The positions of the center of the cylinders located on this line are
marked by ticks on the horizontal axis. The distance between ticks is given by the next-nearest neighbor distance (

√
3a).

The electric field profiles near ω0 for the two configurations are represented in figure 4.
Strikingly, when the dislocations interchange the crystal sublattices the emitter can excite resonant states

at the interfaces between the p- and n-doped regions. Using the effective model, it can be checked that a
single dislocated p–n junction does not support any surface state at the interface. Instead, the resonant
modes observed in the plot of figure 4(b) can be attributed to an overall resonance of the lens [11] that
occurs at the poles of the transmission coefficient given by equation (4). These modes are the counterpart of
the resonant modes that exist in conventional electromagnetic superlenses [1, 11], and as such they are
responsible for the amplification of evanescent waves and subwavelength imaging. The frequency dispersion
of the surface states of the photonic lens predicted by effective medium theory is represented in figure 5(a).

Similar to other electromagnetic and electronic superlenses [28, 44, 45], it is seen that in the perfectly
tuned case ω = ω0 the lens does not support interface waves (qy = ∞). However, any small perturbation of
the ideal case (in frequency or in the structural parameters) leads to a high quality factor interface state with
finite qy. From the numerical simulations we estimate that the bandwidth of the interface state is smaller
than 0.3%. It is instructive to examine the field distribution of a surface state. As a rough approximation,
the microscopic wave function can be identified with the sum of the pseudo-spinor components:
ψ = ψ1(x, y) + ψ2(x, y) (calculated using equation (3)), which in the electromagnetic problem corresponds
to the electric field: ψ → Ez. As shown in figure 5(b), near the resonance the field is mainly concentrated
close to the interfaces with a distribution similar to the field of two coupled surface plasmons.
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Note that the emergence of plasmon-type modes is not trivial in our setup, because in metals plasmons
occur for transverse magnetic waves, rather than for TE waves. Importantly, the effective model does not
predict any surface state for an n–p–n junction without dislocations, consistent with the plot of figure 4(a)
where there is no signature of a resonant mode.

Figure 6 shows the (full-wave) electric field profile at the image plane. The distance between the image
plane and the output interface is identical to the distance between the emitter and the input interface. As
seen, the ‘Cheianov lens’ (with no crystal dislocations) does not produce a clear focus whereas the superlens
with crystal dislocations produces a very sharp focus. As expected, the resolution of the lens is limited by
the next nearest neighbors distance. The numerical results confirm that a simple permutation of the roles of
each sublattice strongly affects the scattering properties of the lens. Of course the proposed lens suffers the
same limitations as other superlenses made of photonic crystals
[11, 46, 47]. Similar to other implementations of superlenses, we find that the bandwidth of the lens is
rather narrow (less than 0.7%), and thereby the lens response may be quite sensitive to small perturbations
of the geometry. Moreover, parameters such as the lattice constant (which determines a cut-off for the
evanescent spectrum) or the finite size of the lens limit the resolution. Finally, losses in the metal
background also deteriorate the resolution of the superlens. Fully dielectric implementations of photonic
artificial graphene [48] may be a viable alternative to mitigate the impact of dissipation.

4. Conclusions

In this paper we studied graphene-type superlenses (electronic or photonic) based on n–p–n junctions. It
was shown that with suitable crystal dislocations the p-type region may effectively mimic the ideal
complementary material of the n-type region. We developed an effective medium model that predicts,
within its validity, a perfect imaging. Because of the restrictions imposed by covalent bonds in graphene, we
introduced an optical design of the superlens based on metallic photonic crystals. It was verified with
full-wave simulations that the crystal dislocations at the interfaces effectively swap the roles of the two
graphene sublattices in the n- and p-type regions. In particular, with the crystal dislocations the interfaces
support surface plasmon-type excitations for TE-polarization that boost the resolution of the system,
confirming the validity of the effective medium theory. The proposed scheme determines a different
paradigm to create photonic superlenses based on graphene-type materials.
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