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Abstract: Diels–Alder cycloaddition reaction is one of the most powerful strategies for the con-
struction of six-membered carbocyclic and heterocyclic systems, in most cases with high regio- and
stereoselectivity. In this review, an insight into the most relevant advances on sustainable Diels–Alder
reactions since 2010 is provided. Various environmentally benign solvent systems are discussed,
namely bio-based derived solvents (such as glycerol and gluconic acid), polyethylene glycol, deep
eutectic solvents, supercritical carbon dioxide, water and water-based aqueous systems. Issues such
as method’s scope, efficiency, selectivity and reaction mechanism, as well as sustainability, advantages
and limitations of these reaction media, are addressed.
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1. Introduction

The Diels–Alder reaction, a concerted [4 + 2] cycloaddition of a conjugated diene
and a dienophile, is a powerful tool for the regio- and stereoselective construction of
six-membered rings [1–6]. In its original version, two new C–C bonds are created in the
Diels–Alder reaction and six-membered carbocyclic systems are obtained. Beyond this
classical Diels–Alder reaction, other well-known types include the hetero-Diels–Alder
reaction (at least one heteroatom is present on the diene or dienophile) leading to six-
membered heterocycles and the intramolecular Diels–Alder reaction in which fused cyclic
systems are obtained. Additionally, the Lewis acid catalyzed and organocatalytic Diels–
Alder reactions have been developed, widening the scope of these reactions, namely the
synthesis of optically active compounds via catalyzed asymmetric Diels–Alder reactions.
Notably, a century after its discovery, the Diels–Alder reaction remains one of the most
important green synthetic methodologies due to its theoretical 100% atom economy [7].

Driven by the green chemistry principles [8], the demand for sustainable and safe
chemical processes over the last two decades has promoted the replacement of volatile
organic compounds (VOCs) traditionally used as solvent media in synthetic chemistry
with alternative green solvents [9–14] or even solvent-free conditions [15]. This endeavor
gave rise to the introduction of new solvent media for chemical transformations featuring
reduced environmental risk, reduced toxicity, reduced flammability, cost-effectiveness and
reusability properties as the major advantages. Leading VOC alternatives for organic trans-
formations are bio-based derived solvents (e.g., glycerol, lactic acid, gluconic acid) [16–19],
liquid polymers (e.g., PEG) [20], ionic liquids [21,22], deep eutectic solvents [23–26], super-
critical fluids [27–31], water and water-based aqueous systems [32–37]. The Diels–Alder
reaction was no exception to this trend, leading to the advent of several studies, some of
which were elegantly highlighted earlier by Wach and Brummond [38].

In this review, the most recent advances in the Diels–Alder reaction in environmentally
benign and sustainable solvent systems since 2010 are covered, and [4 + 2] cycloaddition
reactions performed in biomass-derived solvents, polyethylene glycol, organic carbonates,
deep eutectic solvents, supercritical CO2 and water as solvent media are presented. Diels–
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Alder reactions in ionic liquids are not covered since reviews on this topic have recently
been released [39,40].

2. Bio-Based Solvents
2.1. Glycerol

Glycerol, the main by-product in the biodiesel industry, is a nontoxic, biodegradable,
recyclable and inexpensive viscous liquid. These properties, allied with the high stability,
biocompatibility and ability to dissolve organic compounds poorly miscible in water as
well as inorganic compounds (e.g., salts, acids, bases and transition metal complexes), make
glycerol a valuable green solvent in synthetic organic chemistry [41–43].

The three-component aza-Diels–Alder reaction of substituted anilines, aldehydes and
electron-rich alkenes, also known as three-component imino-Diels–Alder reaction, or mul-
ticomponent Povarov reaction (MCPR), is one of the most straightforward, efficient and
atom-economical strategies towards complex cores starting from simple, inexpensive and
available materials. This environmentally friendly methodology gives access to tetrahy-
droquinolines, quinolines and julolidines, which are scaffolds of great interest in synthetic
organic and medicinal chemistry [44,45]. Perin and coworkers explored the intramolecular
version of this reaction for the catalyst-free synthesis of octahydroacridines starting from
(R)-citronellal (1) and substituted arylamines 2 using glycerol as a recyclable and eco-
friendly solvent (Scheme 1) [46]. Cycloadducts 3 and 4 were obtained as diastereoisomeric
mixtures in good to high yields (75–98%) and moderate cis-selectivity when the reaction
was carried out at 90 ◦C. Cycloadducts 3/4 (R = H) were obtained in lower yield (62%)
using water as solvent, whereas the reaction carried out in organic solvents (DMSO, ace-
tonitrile or ethanol) afforded the corresponding adducts in only trace amounts. Due to the
insolubility of 3 and 4 in glycerol, products could be removed from the reaction medium by
decantation, and the solvent could be reused for further aza-Diels–Alder reactions without
loss of activity.
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Scheme 1. Catalyst-free intramolecular aza-Diels–Alder reaction of (R)-citronellal and substituted
arylamines in glycerol.

Glycerol was also used as an efficient reaction medium in the one-pot three-component
aza-Diels–Alder reaction of anilines, aromatic aldehydes and cyclic enol ethers (Scheme 2) [47].
4-Aryl-furo[3,2-c]quinolines 7 were obtained selectively as endo-isomers from the reaction of
2,3-dihydrofuran (6), anilines 2 and aldehydes 5 in glycerol at 90 ◦C. The use of 3,4-dihydro-
2H-pyran (8) as dienophile led to the formation of 5-aryl-2H-pyrano[3,2-c]quinolines as
a mixture of endo- and exo-isomers 9 and 10, respectively, and the endo-isomer was the
major adduct. However, cycloadducts were extracted from the reaction medium using an
organic solvent.
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glycerol through a DBU-catalyzed domino aldol/hetero-Diels–Alder domino sequence 
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Scheme 2. One-pot multicomponent aza-Diels–Alder reaction of anilines, aromatic aldehydes and
cyclic enol ethers in glycerol.

The domino Knoevenagel/hetero-Diels–Alder reaction (DKHDA) is a powerful syn-
thetic tool for the construction of polycyclic heterocycles [48]. Parmar and coworkers re-
ported the catalyst-free one-pot synthesis of heteropolycycles incorporating a thiochromeno
[2,3-b]quinoline unit via a domino Knoevenagel/oxa-Diels–Alder reaction in glycerol [49].
The reaction of 2H-thiopyrano[2,3-b]quinoline-3-carbaldehydes incorporating an internal
dienophile 11 and 5-pyrazolones 12, carried out in glycerol at 120 ◦C over 3 h, furnished
polyheterocycles 13, with cis-fusion between pyran and six-membered carbocyclic rings, in
high yields (82–93%) (Scheme 3). The proposed mechanism involves the formation of the
Knoevenagel alkene intermediate 15 mediated by glycerol via intermediate 14, followed
by intramolecular oxa-Diels–Alder reaction. Solvent studies reveal that the reaction is
also feasible with organic solvents or under solvent-free conditions; however, under these
conditions, the use of a catalyst is required. Moreover, it was demonstrated that glycerol
can be recycled and reused five times.
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3-carbaldehydes incorporating an internal dienophile and 5-pyrazolones in glycerol.

The same group reported the one-pot synthesis of pyrano[3,4-c]chromene derivatives
18 from prenyl ether-tethered aldehydes 16 and acyclic or cyclic enolizable ketones 17 in
glycerol through a DBU-catalyzed domino aldol/hetero-Diels–Alder domino sequence
(Scheme 4) [50]. Cycloadducts 18 with cis-fusion between the pyran rings were obtained in
high yields (75–89%) when the reaction was carried out at 120 ◦C in the presence of DBU
(25 mol%). The reaction involves an initial aldol condensation followed by an oxa-Diels–
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Alder reaction. Aldol intermediates with E geometry were isolated when using shorter
reaction times, allowing the authors to conclude that the cycloaddition reaction occurs
through the most favorable endo-E-syn transition state. It has been shown that glycerol can
be reused at least three times without losing its activity.
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Scheme 4. One-pot domino aldol/oxa-Diels–Alder reaction of prenyl ether-tethered aldehydes and
ketones in glycerol.

2.2. Gluconic Acid

Gluconic acid (GA) can be obtained from biomass and possesses the ideal properties
for being classified as a green and sustainable solvent (e.g., nontoxicity, biodegradability,
recyclability, high boiling point, low vapor pressure) [51]. Due to the high solubility of glu-
conic acid in water, gluconic acid aqueous solutions (GAASs) have found wide application
as solvent media for organic reactions, namely for the Knoevenagel condensation reaction.
The Gu group reported the synthesis of 2H-pyrans by a one-pot multicomponent reaction
between β-ketosulfones, formaldehyde and styrenes in a bio-based binary mixture solvent
system composed of GAAS and a sugar-based organic base, meglumine [52]. The disclosed
protocol involves the in situ generation of α-methylene-β-ketosulfones 21 through a Kno-
evenagel reaction of β-ketosulfones 19 and formaldehyde. Next, nucleophilic trap of 21
with styrenes 22 via oxa-Diels–Alder reaction afforded 2,6-diaryl-5-(phenylsulfonyl)-3,4-
dihydro-2H-pyrans 23 in moderate to good yields (50–82%) (Scheme 5). The binary solvent
system GAAS/meglumine proved to play a pivotal role in controlling the selectivity of
the hydroxymethylation step. Moreover, the hydrophilic properties of bio-based solvent
meglumine allowed it to be easily recycled and reused in the GAAS/meglumine system
without significant loss of activity.
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3. Polyethylene Glycol

Polyethylene glycol (PEG), HO–(CH2CH2O)n–H, is a biodegradable, nontoxic, odor-
less, neutral, nonvolatile and inexpensive water-soluble polymer that has found widespread
application as a green reaction medium for several organic transformations [20]. The
Kouznetsov group reported the diastereoselective synthesis of heterolignan-like 6,7-
methylendioxy-tetrahydroquinolines via a BF3

.OEt-catalyzed three-component Povarov
reaction using clove bud essential oil as a renewable raw material and PEG-400 as green
solvent (Scheme 6) [53]. Clove bud essential oil enriched with eugenol 24 (60.5%) was
obtained by hydrodistillation of dried flower buds and then subjected to a solid base-
catalyzed isomerization to give trans/cis-isoeugenol 25, which could be used as a dienophile
in the multicomponent hetero-Diels–Alder reaction without further purification. The re-
action of 25 with aldimines generated in situ from substituted benzaldehydes 27 and
3,4-(methylendioxy)aniline (26) afforded trans-2,4-diaryl-1,2,3,4-tetrahydroquinolines 28
as racemic mixtures in moderate yields (35–55%). The reaction with phthalaldehydic acid
(29) afforded isoindolo[2,1-a]quinolin-11(5H)-one 30 via an intramolecular condensation of
the initially generated NH-tetrahydroquinoline core with the o-carboxylic acid function
leading to the formation of the γ-lactam ring. It is noteworthy that these reactions also
worked using acetonitrile as solvent media; however, less solvent volume and reduced
reaction times were required when using PEG-400.
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(methylendioxy)aniline, aromatic aldehydes and trans/cis-isoeugenol in PEG-400.

The intramolecular Povarov reaction of 2-aminoarylaldehydes bearing a tethered
alkyne moiety with heterocyclic amines catalyzed by Amberlyst-15 in PEG-200 has been
described [54]. This metal-free green protocol allowed the synthesis of [1,6]-naphthyridine-
fused heterocycles 33 and 35 in good yields (60–81%) starting from 2-(N-propargylamino)-
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arylaldehydes 31 and 3-aminocoumarins 32 or 3-methyl-1-aryl-1H-pyrazol-5-amines 34,
respectively (Scheme 7). The synthesis of these heterocyclic systems involves the initial
formation of imine intermediate 36, followed by an Amberlyst-15 promoted intramolecular
[4 + 2] hetero Diels–Alder reaction as the key step. Deprotonation followed by air oxidation
afforded the final products. It is worth mentioning the high atom economy of the protocol
(over 96%) since water is the only by-product, as well as the use of an eco-friendly solvent
and a recyclable catalyst.
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Scheme 7. Metal-free intramolecular aza-Diels–Alder reaction of 2-(N-propargylamino)-
arylaldehydes with heterocyclic amines catalyzed by Amberlyst-15 in PEG-200.

Chandrasekhar and coworkers described the Diels–Alder reaction of cyclopentadiene
(39) with substituted cinnamaldehydes 40, catalyzed by (S)-TMS-diphenylprolinol (41)
using PEG-400 as solvent (Scheme 8) [55]. It was demonstrated that the endo/exo selectivity
of the cycloaddition can be controlled by the addition of an acid cocatalyst which favors
the formation of the endo-adduct. Thus, the reaction of cyclopentadiene (39) with cin-
namaldehydes 40 in the presence of 41 as organocatalyst and perchloric acid as cocatalyst
gave selectively endo-cycloadducts 42 as major products. The observed diastereoselectivity
was rationalized by considering the involvement of the enamine complex intermediate
44 which was formed from cinnamaldehyde and the proline-derived organocatalyst and
then enclosed in PEG-400 and stabilized by perchloric acid. The authors suggested that the
cavity-like arrangement of the complex may be responsible for the facial selectivity which
leads to the preferential formation of the endo-cycloadduct.
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4. Organic Carbonates

Propylene carbonate (PC) is a polar aprotic solvent that can be obtained from propy-
lene oxide and carbon dioxide, a renewable source of carbon, in a 100% atom economy
reaction with relevance regarding the development of CO2 fixation processes. The noncorro-
sive, nontoxic, odorless and biodegradable properties of PC, allied with high boiling point,
low vapor pressure and low cost, make this solvent a green and sustainable alternative to
conventional organic solvents [56]. The Povarov reaction has also been explored using PC
as an environmentally friendly solvent [57]. The one-pot iodine-catalyzed reaction of mono-
or disubstituted anilines 2, aromatic aldehydes 5 and isoeugenol (45) carried out at room
temperature using PC as solvent medium afforded functionalized tetrahydroquinolines 46
in good to high yields (77–95%) and high diastereoselectivity (dr up to >99:1) (Scheme 9).
The same cycloadducts were obtained using organic solvents (e.g., dichloromethane, ace-
tonitrile, toluene), albeit in low yields and requiring longer reaction times. It is noteworthy
that, in general, products precipitated from the reaction medium and were purified by
recrystallization.
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aldehydes and isoeugenol in propylene carbonate.

Dimethyl carbonate (DMC) is a nontoxic methylating and/or methoxycarbonylating
agent with wide application in the sustainable valorization of renewables [58,59]. Like PC,
DMC can be synthesized by a green process using CO2 as a building block and can also be
used as an eco-friendly solvent in several organic transformations. Ollevier and coworkers
reported the Diels–Alder reaction of α,β-unsaturated carbonyl and N-acyloxazolidinone
derivatives 47 with cyclopentadiene (39) using DMC as a green solvent (Scheme 10) [60].
Among the solvents tested, from conventional organic solvents (dichloromethane and THF)
to greener solvents (e.g., N-methylpyrrolidone, cyclopentyl methyl ether), DMC proved to
be the most selective, affording cycloadducts with the highest yields and endo/exo ratio.
Thus, the reaction of diene 39 and dienophiles 47, catalyzed by the recyclable iron(II)
caffeine-derived ionic salt 48 and carried out in DMC, afforded cycloadducts 49 and 50 in
good yields (up to 99%) and endo-selectivity. The reaction was also carried out in cyclohexa-
1,3-diene; however, a longer reaction time was needed and the corresponding cycloadducts
were obtained in low overall yield (20%) and 77:23 endo/exo ratio.
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5. Deep Eutectic Solvents

First introduced by Abbot [61], deep eutectic solvents (DESs) are low melting mixtures
obtained by combination of at least two components, a hydrogen bond acceptor (HBA),
generally a quaternary ammonium or metal salt, and a hydrogen bond donor (HBD), to
form a eutectic phase via hydrogen bond interactions. DESs are characterized by a melting
point lower than those of the single components. The properties of DESs are very similar to
those of room-temperature ionic liquids; however, the main difference from ionic liquids is
that DESs also contain an organic molecular component, the HBD (e.g., urea, amide, polyol),
generally as a major component. Due to their low vapor pressure, nonflammability, thermal
and chemical stability, nontoxicity, biodegradability, recyclability and low price, DESs have
emerged as green and sustainable media in different areas of chemical research [62–65],
namely organic synthesis and catalysis [23–26].

In 2011, Nagare and Kumare reported a kinetic study of the Diels–Alder reaction
between cyclopentadiene (39) and methyl acrylate (51a) using binary mixtures of urea,
or methylated urea (DMU), with carbohydrates, or ternary mixtures of urea derivatives,
NH4Cl and carbohydrates, demonstrating the potential of these eutectic mixtures as solvent
media to accelerate this bimolecular reaction (Scheme 11) [66]. They observed that the
experimental rate constants were dependent on the percentage of urea in the carbohydrate
melt; however, the best correlation was found to be with the solvent viscosity, which is in
agreement with previous reports by the authors [67].
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eutectic melts, including kinetic and solvent viscosity data.

The Diels–Alder reaction of 9-anthracenemethanol (54) and N-ethylmaleimide (55a)
in different solvent media under conventional heating and ultrasonic activation has been
reported [68]. The influence of the solvent medium in the yield of the reaction was assessed
by comparing DESs, obtained by the combination of different HBAs (e.g., choline chlo-
ride, methyltriphenylphosphonium chloride, (±)-menthol) and HBDs (e.g., glycerol (Gly),
ethylene glycol (EG), urea), with water and organic solvents. In general, the Diels–Alder
reaction of 54 and 55a proved to be more efficient when carried out in eutectic mixtures
than in conventional solvents (Scheme 12). Moreover, it has been demonstrated that DESs
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could be recycled up to eight times without yield decrease and that the reaction time can be
reduced from 24 h to 70 min when carrying out the reaction under ultrasound irradiation.
The activating effect of DESs was attributed to the combined action of solvent viscosity,
polarity and structure.
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Scheme 12. Diels–Alder reaction of 9-anthracenemethanol and N-ethylmaleimide in deep eutectic
mixtures, conventional organic solvents and water.

The effect of bio-based DESs on the endo/exo ratio of the Diels–Alder reaction of
cyclopentadiene (39) and acrylates 51 has been recently described (Scheme 13) [69]. DESs,
prepared from racemic and optically enriched HBAs obtained from crude glycerol, proved
to be more effective than organic solvents or ionic liquids, allowing cycloadducts to be
obtained in higher yields and selectivity. The higher yields and endo-selectivity were
achieved using lactic acid (LA) as the HBD of the eutectic mixture. However, a direct
relationship between the chiral environment of the solvent and the observed selectivity
was not demonstrated. It is noteworthy that cycloadducts were isolated from the reaction
mixture by simple extraction with diethyl ether.
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Scheme 13. Diels–Alder reaction of cyclopentadiene and acrylates in deep eutectic mixtures.

Garcia-Álvarez’s group reported a one-pot tandem cycloisomerization/Diels–Alder
reaction using a ChCl (choline chloride)-based eutectic mixture as solvent [70]. The protocol
involves the in situ generation of furans 59 by cycloisomerization of (Z)-enynols 57 using
a ChCl/Gly (1:2) eutectic mixture as solvent and bis(iminophosphorane)-Au(I) complex
58 as catalyst (Scheme 14). The Diels–Alder reaction of furans 59 with activated alkynes
60 afforded 7-oxanorbornadienes 61, whereas the reaction with activated alkenes, 55b or
62, afforded selectively exo-7-oxanorbornenes 63. The authors have demonstrated that
complex 58 is crucial for the cycloisomerization step; however, it does not participate in the
cycloaddition step.
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Scheme 14. One-pot tandem cycloisomerization/Diels–Alder reaction of (Z)-enynols in a ChCl/Gly
deep eutectic solvent.

The synthesis of 3,5-dimethylcyclohex-4-ene-1,2-dicarboxylates using a ChCl-based
DES medium has been reported [71]. The methodology involves a Raney Ni-catalyzed
hydrogenation of diacetone alcohol 64 followed by a one-step dehydration/Diels–Alder re-
action of the resulting 2-methylpentane-2,4-diol 65 and diethyl fumarate (67) in a ChCl/EG
deep eutectic mixture, catalyzed by Amberlyst-15, leading to the formation of compound
68 as a single product (Scheme 15). Mechanistic studies demonstrated that the ChCl/EG
and Amberlyst-15 play a role in the dehydration of 65, affording 1,3-dienes 66a and 66b
as a mixture (1:1.5). The observed selectivity was rationalized considering that the Diels–
Alder reaction between 67 and 66b is faster than that between 67 and 66a, shifting the
equilibrium from 66a to 66b and favoring the exclusive formation of 68. Compound 68 and
analogous derivatives could be further hydrogenated to give compounds that can serve as
safe plasticizers for PVC materials.
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fumarate in a ChCl/EG deep eutectic solvent.

Owing to their high reactivity and versatility, nitrosoalkenes and azoalkenes have
been extensively used as building blocks for the synthesis and functionalization of an
array of heterocycles. These electron-deficient heterodienes participate in inverse electron
demand hetero-Diels–Alder reactions with a wide range of electron-rich heterocycles and
nucleophilic olefins [72].

Pinho e Melo and coworkers disclosed the first example of an inverse electron de-
mand hetero-Diels–Alder reaction in natural DESs [73]. Oxime- and hydrazone-bis(indolyl)
methanes (BIMs) 71 were obtained as single Z-isomers via one-pot bis-hetero-Diels–Alder
reaction of nitrosoalkenes and azoalkenes with indoles using a ternary mixture of water
with ChCl/Gly (Scheme 16). The protocol allowed the synthesis of BIMs in a more efficient
and sustainable way than the previously reported strategies using DCM or a water/DCM
solvent system [74,75]. The proposed mechanism involves the in situ generation of ni-
trosoalkenes or azoalkenes 73 by base-mediated dehydrohalogenation of α,α-dihalooximes
or α,α-dihalohydrazones 69, respectively, followed by hetero-Diels–Alder reaction with
indoles to give cycloadducts 74. Rearomatization of the indole unit triggers ring-opening
of the six-membered ring affording 3-alkylindoles 75 bearing an α-halogenated oxime
or hydrazone at the side chain. Dehydrohalogenation of 75 generates the corresponding
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3-alkylheterodienes which react with another indole molecule, at the s-cis conformation,
via a second hetero-Diels–Alder reaction to give BIMs 71 as single Z-isomers. In some cases,
the formation of E/Z-isomeric mixtures of 71 resulting from an alternative mechanistic
pathway via conjugated addition reactions was observed. When longer reaction times
were used, carbonyl-BIMs 72 were obtained via a one-pot tandem hetero-Diels–Alder or
conjugate addition/hydrolysis sequence.
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Ochoa-Puentes and coworkers explored the multicomponent Povarov reaction for the
one-pot synthesis of quinoline derivatives using zinc chloride based eutectic mixtures as
reaction media [76,77]. Tetrahydroquinolines 77 were obtained with endo-selectively by
the reaction of trans-anethole (76), the major component of star anise oil obtained by hy-
drodistillation of anise seeds, with anilines 2 and aromatic aldehydes 5 using a ChCl/ZnCl2
eutectic mixture (Scheme 17a) [76]. On the other hand, the reaction of anilines 2, aromatic
aldehydes 5 and indene (78) performed in a urea/ZnCl2 eutectic mixture led to the synthe-
sis of indeno[2,1-c]quinolines 79 in high yields (89–99%) (Scheme 17b) [77]. The proposed
mechanism for the formation of quinolines involves the initial reaction of amine 2 with
DES-activated aldehyde to give N-aryl imine (Schiff’s base) 80 followed by DES activation
to generate intermediate 81. The endo-selectivity could be rationalized considering that
81 participates in a [4 + 2] concerted cycloaddition via a trans-endo-favored transition state
followed by a 1,3-H shift. However, the most plausible mechanism was rationalized consid-
ering a two-step ionic mechanism involving an endo-selective nucleophilic dienophile attack
to imine 81 followed by an intramolecular Friedel–Crafts reaction to give selectively the
2,4-cis-isomer 77. In the formation of indenoquinolines 79 an additional aerobic oxidative
dehydrogenation was proposed. It is noteworthy that for both synthetic procedures, DESs
were reused up to three cycles and green metric analysis demonstrated that the synthetic
strategy has a favorable environmental impact.
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DESs have also been successfully employed as environmentally friendly reaction
media for the covalent functionalization of carbon nanomaterials via catalyst-free Diels–
Alder click reaction. In 2018, Lim’s group reported the functionalization of multiwalled
carbon nanotubes (MWNTs) with polymeric materials containing ionic liquids (ILs) in
their repeating units [78]. The Diels–Alder reaction of MWNTs 83 and imidazolium-based
poly(ionic liquid)s featuring furfuryl moieties (P(F-ILs)) 84 was performed in a Ch/EG
eutectic mixture under ultrasound irradiation at 60 ◦C (Scheme 18). Functionalized MWNTs
85 were obtained with shorter reaction times and higher grafting density of P(F-ILs) on
MWNTs when compared with the reaction in water. Recently, the same strategy was
applied for the covalent functionalization of reduced graphene oxide (rGO) with P(F-
ILs), delivering a new rGO-P(F-IL) hybrid material with good electrochemical capacitor
behavior [79].
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Scheme 18. Ultrasound-accelerated covalent functionalization of MWNTs with P(F-ILs) by Diels–
Alder click reaction in a Ch/EG eutectic mixture.

6. Supercritical Carbon Dioxide

Supercritical carbon dioxide (scCO2) is an abundant, low-cost, nontoxic and non-
flammable fluid. The physical properties of scCO2 are intermediate between the gas and
the liquid phases. These properties can be tuned by changing pressure and temperature;
in particular, changes close to the critical point enable drastic changes in density, viscosity
and diffusion. Among supercritical fluids (SCFs), scCO2 has received special attention
since it is readily accessible at a low critical temperature (Tc = 31 ◦C) and moderate critical
pressure (Pc = 75.8 bar) [80,81]. In addition, scCO2 has the ability to dissolve organic
compounds and can be easily removed from the reaction mixture, making it a sustainable
alternative to conventional organic solvents in synthetic transformations [27–31]. Keshtov
et al. disclosed a green approach for the synthesis of photoluminescent polymers based
on phenyl-substituted polyfluorenes using scCO2 as the solvent medium [82]. Pheny-
lated polyfluorenes 88 were synthesized through a catalyst-free Diels–Alder reaction of
fluorene-containing bis(tetraarylcyclopentadienone) monomer 86, acting as diene, with
bis(acetylenes) 87 acting as 2π-component (Scheme 19). Phenyl-substituted polyfluorenes
synthesized using scCO2 as solvent showed similar properties to those synthesized using
chloronaphthalene as solvent, demonstrating that scCO2 is a suitable alternative to organic
solvents for the synthesis of phenylated polyfluorenes via the Diels–Alder reaction.
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Scheme 19. Diels–Alder reaction of fluorene-containing bis(tetraarylcyclopentadienone) and
bis(acetylenes) in scCO2.

The Diels–Alder reaction of cyclopentadiene (39) and 1,3-butadiene (89) in scCO2
has been reported, allowing the synthesis of 5-vinyl-2-norbornene 90, a precursor of 5-
ethylidene-2-norbornene which is a valuable monomer used in the manufacture of ethylene
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propylene rubber (Scheme 20) [83]. The major drawback of this reaction is the reactivity
pattern of the starting materials, cyclopentadiene and 1,3-butadiene, that can act as both
dienes and dienophiles in the Diels–Alder reaction and therefore give rise to a panoply
of by-products (e.g., 91). The Diels–Alder reaction of 39 and 89 was carried out in neat
conditions, in the presence of organic solvents and in scCO2. The most satisfactory yields
and selectivities were achieved when using scCO2 as the solvent medium, providing the
target compound 90 in 25% yield, by-product 91 in 17% yield and other unidentified
compounds in 6% yield. The observed slight increase in selectivity was rationalized
considering the unique physical properties of scCO2 acting as a thinner and allowing the
suppression of eventual side reactions, being an alternative to the commonly used large
amounts of solvents and/or inhibitors.
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Ito and coworkers disclosed a protocol for the synthesis of isoindoles from bicyclopy-
rroles by a retro-Diels–Alder reaction in scCO2 [84]. In general, bicyclopyrroles were
converted into the corresponding isoindoles in high yields; however, in some cases, the
instability associated with the exomethylenic structure causes the decomposition of the
isoindole derivatives. In these cases, the formation of the retro-Diels–Alder product in
the reaction medium was confirmed by performing the retro-Diels–Alder reaction in the
presence of a trapping agent for isoindole. Thus, the reaction of N-tosylated bicyclopyrrole
92 in the presence of N-phenylmaleimide (55c) carried out in scCO2 (20 MPa) at 185 ◦C
over 210 min led to the formation of the exo-Diels–Alder adduct 94 in 72% yield, which
confirms the generation of isoindole 93 under the reaction conditions (Scheme 21).
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7. Water

The use of water as an alternative benign and sustainable solvent in promoting Diels–
Alder cycloaddition reactions has been widely explored since the seminal work of Breslow’s
and Grieco’s groups [85–88]. The remarkable rate enhancements and selectivities achieved
on moving from conventional organic solvents to aqueous conditions are the major driv-
ing force behind the growing interest in the study of the Diels–Alder reaction in this
medium [37,38].

7.1. The Water Effect: Experimental and Theoretical Studies

Hydrophobic interactions, along with hydrogen bonding, polarity and cohesive en-
ergy density, are the major factors responsible for the rate enhancement in “on-water”
Diels–Alder cycloadditions. Several systematic experimental and theoretical studies ana-
lyzing the pivotal role of water in the rate enhancement and selectivity of the Diels–Alder
cycloaddition reactions have been disclosed. Shrinidhi reported a comparative study of the
rates and efficiency of the Diels–Alder cycloaddition reaction between cyclopentadiene (39)
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and electron-poor alkenes 95 in solvent media featuring different polarities (organic sol-
vents and water) (Scheme 22) [89]. For each dienophile, it was observed that cycloadducts
96 yield increases with the increase in solvent polarity (hexane < dichloromethane < THF–
water < water) and concomitantly with the solvophilicity of the dienophile. The effect
of adding a catalytic amount of water along with organic solvents (dichloromethane and
THF) was also explored, demonstrating that the reaction is more efficient in the presence of
catalytic amounts of water than in pure organic solvents. Based on these results, combined
hydrophobic and hydrogen bonding effects were attributed to the rate enhancement of
the Diels–Alder reaction when carried out in water as compared to conventional organic
solvents. The hydrogen bonding effect was previously reported by Domingo’s group
supported by a density functional theory (DFT) study on the catalytic effect of water in
the intramolecular Diels–Alder reaction of a quinone system [90]. Theoretical calculations
demonstrated the pivotal role of water in stabilizing the polarized transition state through
hydrogen bond formation with the internal electron-deficient dienophile.
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The Vilches-Herrera group reported an experimental and theoretical study on the in-
fluence of noncovalent interactions in the stereo- and regioselectivity of the aza-Diels–Alder
reaction between 5-aminopyrrole-derived aldimines and electron-poor dienophiles [91].
Depending on the nature of substituents present on both diene and dienophile, the re-
action of aldimines 97 and electron-poor styryl substrates 98, carried out in water un-
der MW irradiation over 20 min, afforded regio- and stereoselectively the exo-adducts
of tetrahydro-1H-pyrrolo[2,3-b]pyridines 99, or 7-azaindoles 100, also in a regioselective
fashion (Scheme 23). The reaction is also compatible with alkynes (dimethyl acetylenedi-
carboxylate) and monosubstituted alkenes (ethyl acrylate and acrylonitrile); however, in
the latter case, mixtures of regioisomers were obtained. The experimental results were
corroborated by DFT calculations which suggest that the regioselectivity and the unusual
exo-selectivity were controlled by noncovalent attractive π–π interactions at the TS region in-
stead of secondary orbital interactions. In the absence of noncovalent interactions (e.g., with
ethyl acrylate), thermodynamic control prevails and regioisomeric mixtures were obtained.
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A comparative study on the rates of the Diels–Alder reaction of 9-hydroxymethylanthracene
(54) and N-phenylmaleimide (55c) in water, ethylene glycol and conventional organic sol-
vents (butan-1-ol, acetonitrile, chloroform and 1,4-dioxane) has been reported (Scheme 24) [92].
Kinetic measurements, performed at 45 ◦C using spectrophotometric methods, showed
that, under homogeneous conditions, no relevant increase in the reaction rate on going
to protic solvents (butan-1-ol) or to more polar ones (e.g., acetonitrile) was observed. On
the other hand, for the heterogeneous Diels–Alder reaction, carried out under vigorous
stirring, a significant acceleration was observed, attributed to the reactants’ activation on
the water–organic phase boundary.
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The kinetics of the Diels–Alder cycloaddition reactions in water can be modified by
the presence of inorganic salts, which can change the hydrophobic interactions involving
the diene and dienophile, the internal pressure (by changing the cohesive energy) and
the solvation of the transition states. The Kumar group studied the influence of qua-
ternary ammonium salts in the cycloaddition of 9-hydroxymethylanthracene (54) and
N-ethylmaleimide (55a) in water, concluding that higher concentrations of salt in the re-
action media lead to a deceleration of the reaction rate [93]. This was rationalized by the
reduction in hydrophobic interactions, responsible for bringing the reactants closer, which
were progressively blocked upon the continuous increase in the concentration of salt. They
also concluded that ammonium salts bearing long alkyl groups promote the dissolution
of the nonpolar reactants by rearranging water molecules up to a second solvation shell
around the dissolved salts, thus behaving as anti-hydrophobic or salting-in agents. In
another study, Shimizu and coworkers investigated the effect of several rate-enhancing
salts (e.g., LiCl, guanidinium sulfate) and rate-reducing salts (e.g., NaClO4, guanidinium
acetate) for the same reaction, demonstrating that the interactions between ions and diene
54 are crucial for controlling the reaction rate [94]. A rate reduction was observed for the
reaction in the presence of rate-reducing salts, which show a preferential interaction with
diene, and is consistent with the increased 54 solubility. On the other hand, the major
driving force behind the rate enhancement with rate-enhancing salts is the salting-out of
the hydrophobic diene 54 by the rate-enhancing salt, which exhibits a stronger affinity with
the transition state. The effect of LiCl on the Diels–Alder reaction of cyclopentadiene (39)
and methyl vinyl ketone in water was also investigated, demonstrating a rate enhancement
in the presence of this salt arising from the destabilization of the reactants by hydrophobic
effect resulting in the decrease in the activation barrier [95]. The instability associated
with the hydrophobic interaction in the transition state complexes is suppressed by the
formation of hydrogen bonds, which are stronger compared to those of the dienophile.

Kumar and coworkers reported a Diels–Alder cycloaddition reaction of cyclopen-
tadiene (39) with methyl acrylate (51a) using a recyclable and highly viscous supersat-
urated water-based solvent obtained by supersaturation of water (~18% w/w) with car-
bohydrates, an organic acid and an organic ketone [96]. The second-order rate constant
(k2, 7.92 × 10−5 M−1 s−1) determined for the reaction carried at room temperature is about
26-fold higher than that obtained for the same reaction in water. This rate enhancement
was attributed to the combined presence of OH groups from the carbohydrates, which
allows multiple hydrogen bonding sites, and the hydrophobic effect by water molecules.
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It is noteworthy that it is also possible to carry out the reaction of cyclopentadiene (39)
and methyl acrylate (51a) using eutectic mixtures of carbohydrates as solvent medium;
however, to ensure these mixtures were in a liquid state, higher temperatures (>85 ◦C) were
required (cf. Scheme 11) [66,96].

7.2. Noncatalyzed Diels–Alder Cycloaddition Reactions

Romám and coworkers reported a catalyst-free protocol for the Diels–Alder cycloaddi-
tion of water-insoluble furan derivatives and N-substituted maleimides using “on-water”
conditions [97]. The reaction of furans 102 and maleimides 55 carried out at room tem-
perature afforded cycloadducts 103 and 104 in quantitative yields and endo-selectivity
(Scheme 25a). When the reaction was carried out at 65 ◦C, the reaction times were short-
ened and an increase in the exo-adducts was observed. On the other hand, the reaction
between furfural N,N-dimethylhydrazone (105) and maleimides 55 afforded selectively
the exo-adducts 106 obtained as single products, mixtures of 106 and phthalimides 107, or
107 as the sole products, depending on the maleimide precursors and reaction conditions
(Scheme 25b). Upon heating, cycloadducts 106 can be converted into the corresponding
phthalimides 107, whose formation was rationalized considering the ring-opening of the
exo-7-oxabicycle followed by dehydration. A comparison with previously reported condi-
tions for the same reaction, using organic solvents or solvent-free conditions, demonstrated
the advantages of the “on-water” methodology, namely shorter reaction times, higher
yields, simple workup, milder reaction conditions and the absence of a catalyst.
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Scheme 25. Diels–Alder reaction of maleimides and (a) furans or (b) furfural N,N-dimethylhydrazone
in water.

The aqueous Diels–Alder cycloaddition reaction of bio-based furans derived from
renewable feedstocks represents a valuable example of a green and sustainable process in
organic synthesis. Hailes and coworkers reported the synthesis of phthalimide-hydrazones
110 via an uncatalyzed one-pot tandem reaction in water starting from substituted furfurals
108 (Scheme 26a) [98]. The three-step cascade protocol involves the initial in situ formation
of hydrazones 109 by reacting 108 and N,N-dimethylhydrazine, cycloaddition reaction
with maleimides 55 and subsequent aromatization. The cycloaddition/aromatization also
works for the reaction of hydrazone 109a with non-maleimide dienophiles 111, acrylonitrile
and fumaronitrile, affording benzonitrile-hydrazones 112 in moderate yields (24–68%)
(Scheme 26b). The one-pot three-step reaction of furfural 108a (R1 = R2 = R3 = H) in the
presence of dimethyl maleate afforded the corresponding cycloadduct, albeit in low yield.
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Ananikov and coworkers disclosed a three-step synthesis of polycyclic compound 116
from bio-based 5-(hydroxymethyl)furfural (HMF) (113) involving a Diels–Alder cycloaddi-
tion step (Scheme 27) [99]. Computational calculations demonstrated that the Diels–Alder
reaction of 2,5-bis(hydroxymethyl)furan (BHMF) (114) and maleimide is energetically more
favorable than that of HMF (113) with the same dienophile. Thus, HMF (113) was re-
duced to BHMF (114) in aqueous solution. Subsequent cycloaddition reaction of 114 with
maleimide (55d) in water furnished compound 115 diastereoselectively (96% de) as the
endo-adduct in 67% yield. To prevent the retro-Diels–Alder transformation, 115 was further
reduced, giving compound 116 in 87% yield (58% overall yield). It is noteworthy that the
three-step one-pot protocol in water, starting from HMF (113), proved to be more efficient,
allowing the synthesis of 116 in 73% yield.
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Recently, the Bruijnincx group disclosed the Diels–Alder reaction of furfurals with
water-soluble maleimides in aqueous medium [100]. The reaction of furfurals 117 with
maleimides 55 at 60 ◦C in water furnished cycloadducts 118 and 119 in low to moderate
yields (1–58%) with exo-selectivity (Scheme 28a). Different selectivity was observed for
the Diels–Alder reaction of HMF (113) with a maleimide, which led to the formation
of the endo-cycloadduct as the major product. It is noteworthy that for more lipophilic
adducts (R2 6= H), an increased preference for dehydration of the geminal diol 118/119
back to the aldehydes 120/121 and partitioning to the organic phase was observed. DFT
calculations demonstrated that the limitation of the Diels–Alder reaction of furfural, and
other related electron-poor furans, is of thermodynamic rather than kinetic nature and can
be circumvented by using water, which acts both as solvent and as reactant in the geminal
diol formation. Hydration of the formyl group is thermodynamically possible whether it
occurs prior to or after the cyclization step, by favoring the rate of the direct reaction or
decreasing the rate of the retro-Diels–Alder reaction, respectively.
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Scheme 28. Diels–Alder reaction of maleimides with (a) furfurals and (b) furoic acids in water.

The same group reported the use of oxidized furfurals, furoic acids, as dienes in the
aqueous Diels–Alder cycloaddition reaction with maleimides [101]. The base-mediated
reaction of furoic acids 122 and maleimides 55, carried out in water under mild conditions,
led to the formation of cycloadducts 123/124 in moderate to good yields and exo-selectivity
(Scheme 28b). In this case, the cycloaddition reaction benefits from the rate enhancement
caused by the water effect as well as from the activation of the 2-furoic acids by conversion
to the corresponding carboxylate salts. Notably, the reaction also works well when using
2-furoic acid esters or furamides as dienes, affording selectively exo-adducts as major
products in moderate to good yields. It is noteworthy that when 2-furoic acid esters are
used as dienes, the system is no longer homogeneous and reactions proceed “on-water”.

Ohmic heating (ΩH)-assisted synthesis has emerged as a new methodology in organic
synthesis, circumventing some of the limitations presented by the microwave irradiation
(MW) and conventional heating methods. The advantages of ΩH-assisted synthesis were
illustrated by the Diels–Alder cycloaddition of 9-hydroxymethylanthracene 54 with N-
methylmaleimide (55b) under three different heating processes: conventional, MW and
ohmic heating (Scheme 29a) [102]. After only two minutes of reaction, cycloadduct 125
was obtained in 80% yield using ohmic heating, whereas under microwave irradiation the
yield was significantly lower (53%). The conventional heating conditions also afforded the
desired product in relatively lower yield (57%).

Ohmic heating was also successfully applied in the regioselective and site-selective
synthesis of coumarinyl porphyrin derivatives (Scheme 29b) [103]. The sequential Kno-
evenagel condensation of 4-hydroxycoumarin 126 and aromatic aldehydes 127 leading to
α-methylenechromane derivatives 128, followed by hetero-Diels–Alder reaction of these in
situ generated dienes with 2-vinyl-5,10,15,20-tetraphenylporphyrinatozinc(II) (129), was
performed in aqueous medium using ohmic and conventional heating. The ΩH-assisted
synthesis provided the coumarinyl porphyrin derivatives 130 in higher yield and shorter
reaction time. The higher efficiency of these transformations under ohmic heating was
rationalized as resulting from the high heating rates achieved in the beginning of the reac-
tions which may lead to a more uniform heating and to less decomposition of the reactants.
Additionally, the electrical dynamic perturbation in ohmic heating may also influence the
polarization of the reaction medium and improve the transport properties.
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and N-methylmaleimide; (b) α-methylenechromane and 2-vinyl-5,10,15,20-tetrphenylporphy-
rinatozinc(II).

A series of diversely substituted 6H-benzo[c]chromenes 134 have been prepared via
intramolecular Diels–Alder reactions of furan with unactivated alkenes in an aqueous
medium under MW irradiation (Scheme 30) [104]. The reaction pathway involves the
initial formation of cycloadduct 132 which undergoes ring-opening to give intermediate
133, followed by aromatization to yield the desired 6H-benzo[c]chromenes 134 in yields
ranging from 45 to 85%. This methodology was successfully extended to the synthesis of
6H-benzo[c]chromen-8-ols by employing 2-(2-(propargyloxy)phenyl)furan derivatives as
reactants; however, the use of a mixture H2O/EtOH (4:1) as reaction medium was required
to attain good efficiency.
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vated alkenes.

The use of a thin film microfluidic platform, namely a vortex fluidic device (VFD), to
promote Diels–Alder reactions between 9-substituted anthracenes 135 and N-substituted
maleimides 55 in media with a high mole fraction of water, without the need for catalysts,
has been disclosed by Raston and coworkers (Scheme 31) [105]. Using the confined mode of
VFD processing, a dynamic thin fluid film is formed on the walls of the tube where there is
intensive shear, with high mass and heat transfer, thus accelerating the Diels–Alder reaction
by providing a constant “soft energy”. Carrying out the reactions under the optimized VDF
processing parameters (e.g., 5000 rpm, tilt angle θ = 45◦), at 50 ◦C in 10% ethanol in water,
led to the formation of the expected cycloadducts 136 in good to excellent yield, after 30 min
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of reaction. In contrast to previous studies, in which a higher speed favored the reaction
progress, it was observed that changing the speed had little effect on the reaction outcome.
In fact, for rotations higher than 5000 rpm, a slight decrease in the yield was observed.
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Scheme 31. Vortex fluidic-promoted Diels–Alder reactions of anthracenes and N-substituted
maleimides in water.

A synthetic methodology towards dipyrromethanes involving two consecutive Diels–
Alder reactions of azoalkenes and pyrrole has been accomplished by Pinho e Melo and
coworkers (Scheme 32) [106]. The base-mediated dehydrohalogenation of alkyl and aryl
α,α-dihalohydrazones 69 originates azoalkenes 73 and 140 which undergo a hetero-Diels–
Alder reaction with pyrrole to give selectively the desired dipyrromethanes 138 in moderate
to good yields. The “on-water” reaction conditions afforded the target products in higher
yields with significantly shorter reaction times and simpler purification procedures than
carrying out the reaction in dichloromethane or in solvent-free conditions. This one-pot
methodology was further applied to the synthesis of dipyrromethanes derived from α,α-
dihalooximes and pyrrole.
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azoalkenes with pyrroles in water.

The reactivity of phosphorylated nitrosoalkenes towards enol ethers and pyrrole has
been explored by Palacios and coworkers (Scheme 33) [107,108]. The one-pot synthetic
methodologies gave access to functionalized 4-phosphorylated 1,2-oxazines 144 and open-
chain 2-substituted pyrroles 145 through the treatment of the α-halooxime precursors 141
with base, followed by [4 + 2] cycloaddition reaction of the in situ generated 142 with
enol ethers and pyrrole, respectively, in a regioselective fashion. The formation of pyrroles
145 was rationalized considering the rearomatization of pyrrole unit of the firstly formed
cycloadducts. The substrate scope includes nitrosoalkenes bearing a variety of substituents
at C-3 (Me, Et, Ph and CO2Me) and C-4 (P(O)Ph2, P(O)(OEt)2). Once again, the “on-water”
protocol showed higher chemical efficiency and selectivity than the solvent-free conditions
or the use of organic solvents, leading to 1,2-oxazines 144 with excellent diastereoselectivity.
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Scheme 33. Hetero-Diels–Alder reaction of phosphinyl nitrosoalkenes with pyrrole and enol ethers
in water.

A chemo- and diastereoselective synthetic multicomponent route to pyrazolo-
tetrahydropyridines involving an intramolecular aza-Diels–Alder reaction was disclosed
by Shaabani and coworkers (Scheme 34) [109]. A plethora of pyrazolo-tetrahydropyridines
151 was efficiently prepared from benzoylacetonitrile derivatives 146, hydrazines 147, aro-
matic aldehydes 150 and styrenesulfonyl or cinnamoyl chloride in water in the presence
of base, using the group-assisted purification (GAP) chemistry strategy. In this one-pot
procedure, 5-amino-pyrazoles 148 were initially formed from benzoylacetonitrile deriva-
tives 146 and hydrazines 147 through tandem condensation and thermal cyclization, under
solvent-free conditions at 120 ◦C. Then, intermediates 148 reacted chemoselectively with
2-formylphenyl-(E)-2-phenylethenesulfonate derivatives (e.g., 154), generated in situ from
149 and 150, to give intermediate 155 which undergoes an intramolecular aza-Diels–Alder
reaction via exo-approach to yield pyrazolo-tetrahydropyridines 151 as single diastereoiso-
mers (Scheme 34). The proposed reaction mechanism was corroborated by some control
experiments in which the synthesis of an intermediate (e.g., 155) was accomplished.

Vilches-Herrera and coworkers developed a microwave-assisted methodology for the
preparation of annulated tetrahydropyridines by intramolecular aza-Diels–Alder reaction
(Scheme 35) [110]. Featuring several requirements for sustainable chemistry such as the use
of water as solvent, microwave irradiation, absence of catalyst and easy product isolation by
precipitation, it gives access to important scaffolds bearing the tetrahydropyridine and the
chromane moieties. Under the optimized reaction conditions at 200 ◦C, a range of alkenyl
2-iminopyrroles and 2-iminopyrazoles 156 underwent intramolecular aza-Diels–Alder
reaction giving rise to the corresponding dihydrochromeno-pyrrolo- and dihydrochromeno-
pyrazolo-tetrahydropyridines 157 in moderate to high yield and with overall excellent trans-
diastereoselectivity. Moreover, when propargylic derivatives were used as dienophiles,
aromatic annulated pyridines 158 were isolated in good yields. As observed for other
aza-Diels–Alder reactions, the stereoselectivity of the process was strongly dependent on
the solvent used, with selective formation of trans-157 when reactions were performed in
water, whereas the use of nonpolar solvents such p-xylene led to a mixture of cis/trans-
157 products.
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Scheme 34. Multicomponent synthesis of pyrazolo-tetrahydropyridines via intramolecular aza-Diels–
Alder reaction in water.
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A multicomponent chemo-, regio- and stereoselective approach to spiro{pyrazolo[1.3]-
dioxanopyridine}-4,6-diones and spiro{isoxazolo[1.3]-dioxanopyridine}-4,6-diones deriva-
tives 161 carried out in water under microwave irradiation was reported by Tu and Li
(Scheme 36a) [111]. Using Meldrum’s acid (159), a wide variety of aromatic aldehydes
and 3-methylisoxazol-5-amine (160a) or 3-methyl-1-phenylpyrazol-5-amine (160b) as sub-
strates, the target products 161 were obtained in high yield within a very short reaction
time (9–13 min). The key step in this domino reaction involves the hetero-Diels–Alder
reaction between imine 162 and Knoevenagel adduct 163, which follows the endo rule
and gives rise to syn-161 as single stereoisomers. Interestingly, a different chemoselec-
tivity was observed when N-H- and N-Me-pyrazol-5-amines were employed, leading to
pyrazolo[3,4-b]pyridines in high yields. This outcome resulted from a different reaction
pathway in which a Michael addition of pyrazole’s amino group onto intermediate 166
occurs, followed by addition to the carbonyl favored by the higher reactivity of the amino
group. This protocol was further applied to the synthesis of pyrimidinespiroisoxazolo[5,4-
b]pyridines 165 (Scheme 36b) [112]. Under the same reaction conditions, barbituric acids
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164, two equivalents of aromatic aldehydes and 3-methylisoxazol-5-amine (160a) provided
the desired syn-165 in yields ranging from 78 to 89%.
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Majundar and coworkers explored the reactivity of O-propargylated salicylaldehy-
des 167 towards 1-methylindoline-2-thione (168a) and 4-hydroxydithiocoumarin 170, un-
der catalyst-free and aqueous medium conditions, uncovering synthetic routes to indole-
annulated [6,6]-fused thiopyranobenzopyrans 169 and benzopyran-annulated thiopyrano[2,3-
b] thiochromen-5(4H)-ones 171, respectively (Scheme 37) [113,114]. The mechanism in-
volves initial Knoevenagel condensation to give the heterodiene intermediates 172 or
173, followed by an intramolecular aza-Diels–Alder reaction to afford the correspond-
ing heteropolycyclic compounds in high yield. The high efficiency of these catalyst-free
transformations, as well as the observed regioselectivity in the synthesis of 171, was at-
tributed to the presence of the softer sulfur atom in the diene moiety. This reactivity was
further extended to O-allylsalicylaldehydes which under the same reaction conditions
originated cis-annulated [6,6]-fused thiopyrano benzopyran derivatives in a highly regio-
and stereoselective fashion [115].

Moghaddam and coworkers demonstrated that O-acrylated salicylaldehydes 174 can
also undergo DKHDA with dihydroindole-2-thiones (e.g., 168a) in water under reflux to
afford polycyclic indole-annulated thiopyranocoumarin derivatives, in good to high yields
with high regio- and stereoselectivity [116]. However, a different outcome was observed in
the DKHDA of these dienophiles 174 with 4-hydroxydithiocoumarin 170 (Scheme 38) [117].
Although the efficiency of the domino reaction remained high, yielding thiochromone-
annulated thiopyranocoumarin 175 and 176 in good overall yield, the diastereoselectivity
of the domino reaction varied significantly with the substituents on the O-acrylated sal-
icylaldehydes, namely the substituent on the carbon–carbon double bond (R3). Thus,
methyl-substituted O-acrylated salicylaldehydes 174 afforded selectively cis-176 via an
endo-transition state, whereas phenyl-substituted O-acrylated salicylaldehydes 174 gave
predominantly trans-175 resulting from an exo-transition state.
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Scheme 38. Synthesis of thiochromone-annulated thiopyranocoumarins via domino
Knoevenagel/hetero-Diels–Alder reaction in water.

A similar synthetic strategy has been described for the preparation of a wide vari-
ety of benzo-δ-sultones bearing hexahydro-chromene (e.g., 178), tetrahydro-pyrano[2,3-
d]pyrimidine (e.g., 179) and thiopyrano indole (e.g., 180) motifs (Scheme 39) [118,119].
Initial Knoevenagel reaction of aldehydes 177 with dimedone 149, N,N-dimethylbarbituric
acid (164a) or indoline-2-thiones 168 generates the dienophile tethered to the correspond-
ing diene moiety by a sulfonate link, which undergoes intramolecular hetero-Diels–Alder
reaction to give the desired annulated benzo-δ-sultone derivatives in moderate to high
yield, with good to high diastereoselectivity. As in the aforementioned methodologies, the
reactions were carried out in refluxing water under catalyst-free conditions, affording the
cis-trans-annulated cycloadducts as major isomers.
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Scheme 39. Synthesis of benzo-δ-sultone derivatives via domino Knoevenagel/hetero-Diels–Alder
reaction in water.

Recently, the domino Knoevenagel/hetero-Diels–Alder reaction of (E)-N-alkyl-2-aryl-
N-(2-formylphenyl)ethane-1-sulfonamides 181 with indoline-2-thiones 168 in water has
been disclosed by Langer and Kiamehr (Scheme 40) [120]. After 5 h under refluxing con-
ditions, the resulting pentacyclic benzosultam-annulated thiopyranoindole derivatives
182 and 183 were obtained regioselectively in high yields albeit with poor stereoselectiv-
ity. The N-methyl indoline-2-thione led to preferential formation of the cis-isomers 182,
whereas the N-ethyl indoline-2-thione afforded the trans-183 as major products. This was
suggested to result from the higher steric hindrance of the ethyl group which favored the
exo-transition state.
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A series of cyclic 1,3-dicarbonyls, namely dimedone, N,N-dimethylbarbituric acid,
1,3-indanedione, 4-hydroxy-6-methyl-2H-pyran-2-one and chroman-2,4-diones, under-
went a catalyst-free domino Knoevenagel/hetero-Diels–Alder reaction with (E)-N-(2-
formylphenyl)-N-methylcinnamamide derivatives in water, giving access to a variety
of tetra- and pentacyclic dihydroquinolinones annulated with diverse cyclic motifs in
high yields, albeit with low stereoselectivity in most cases (Scheme 41) [121]. Neverthe-
less, the DKHDA reaction of 184 with chroman-2,4-diones 185 proceeded selectivity via
exo-transition state yielding the trans-186 as single diastereoisomers.
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Knoevenagel/hetero-Diels–Alder reaction in water.

The one-pot three-component synthesis of a range of pentacyclic-fused pyranochromenone
and pyranoquinolinone benzosultone derivatives was successfully accomplished by Ghandi
and coworkers (Scheme 42) [122]. The developed synthetic methodology involved suc-
cessive addition of 2-hydroxybenzaldehydes 187, 4-hydroxycoumarins 185 and a catalytic
amount of EDDA to an aqueous solution of styrenesulfonyl chloride and K2CO3, followed
by refluxing conditions. The reactions proceeded smoothly through O-sulfonylation/ Kno-
evenagel condensation/hetero-Diels–Alder reaction cascade affording cis-trans-annulated
coumarins 188 as major products in good to high yields. Similarly, when 4-hydroxy-2-
quinolones were used, cis-trans-pyranoquinolinone benzosultone derivatives were obtained
selectively, thus demonstrating that the hetero-Diels–Alder reaction proceeds via endo-E-syn
transition states.
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Scheme 42. O-Sulfonylation/Knoevenagel condensation/hetero-Diels–Alder reaction cascade lead-
ing to pentacyclic-fused pyranochromenones.

A range of pyrano[2,3-d]pyrimidines were efficiently prepared through a three-
component one-pot domino Knoevenagel/Diels–Alder reaction in aqueous suspension
(Scheme 43) [123]. Reactions of barbituric acids, aldehydes and ethyl vinyl ether were per-
formed at room temperature, while the use of a styrene derivative or N-vinyl-2-oxazolidinone
as dienophiles required increasing the reaction temperature to 60 ◦C. These transforma-
tions were highly diastereoselective, furnishing preferentially or exclusively the endo-cis-
annulated uracils 191 and 192 in high yields. Along with pyrano[2,3-d]pyrimidines 192,
5-methyl-substituted derivatives 193 arising from the reaction with in situ generated ac-
etaldehyde were also formed as minor products.
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Frapper et al. investigated experimentally and theoretically the role of water in a
Knoevenagel/hetero-Diels–Alder sequence involving α-methylstyrene 194, formaldehyde
(195) and 2,4-pentanedione (196) as reactants (Scheme 44) [124]. It was experimentally
observed that the multicomponent reaction performed in water leads to dehydropyran
197 in higher yield than that carried out in water-miscible organic solvents (e.g., THF,
acetonitrile) or water-immiscible solvents (e.g., CHCl3 or toluene). On the other hand,
the mechanistic studies revealed the role of water in the elimination step leading to 199,
which favors the formation of six-membered transition state 198 and consequently a lower
activation free energy barrier. In addition, it was found that owing to the presence of water,
the activation free energy barriers of all chemical steps involved in the Knoevenagel/hetero-
Diels–Alder sequence were lower than 39 kcal mol−1 at 25 ◦C, thus confirming that the use
of catalyst is not necessary for the reaction to occur.
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The furan/maleimide Diels–Alder reaction has been used for the covalent function-
alization of graphene with polymers; however, in general, long reaction times and high
temperatures were required. Recently, Lim and coworkers reported a mild protocol for the
covalent direct functionalization of reduced graphene oxide (rGO) by furan/maleimide
Diels–Alder click reaction in water [125]. rGO/PSMF hybrids 201 were obtained by reaction
of rGO with poly(styrene-alt-maleic anhydride) bearing furfuryl groups (PSMF) 200 under
ultrasound irradiation at a frequency of 35 kHz (Scheme 45). It is noteworthy that under
these conditions, rGO/PSMF hybrids 201 were obtained with 13 wt% grafted PSMF, while
for the reaction under conventional stirring conditions over 48 h, the grafting was only
8 wt%, thus demonstrating the ability of sonication to accelerate the Diels–Alder reaction.

In the last decade, the furan/maleimide Diels–Alder click reaction in water has found
wide application in the synthesis of biopolymer-based hydrogels. Wei and coworkers
reported the synthesis of thermoresponsive hydrogels 204 through a Diels–Alder reaction in
water between poly(N,N-dimethylacrylamide-co-furfuryl methacrylate) 202 and N-maleolyl
alanine poly(ethylene glycol) 203 (Scheme 46) [126]. The reaction proceeds efficiently under
mild conditions (37 ◦C) in the absence of catalysts, initiators or coupling reagents, thus
providing an alternative to conventional conjugation strategies such as copper-catalyzed
azide–alkyne cycloaddition whose intrinsic toxicity limits its application in biological
systems. It is noteworthy that the hydrogels 204 are stable in water and that the thermal
reversibility was demonstrated since the retro-Diels–Alder reaction could be carried out
easily in N,N-dimethylformamide at higher temperatures (80–100 ◦C). The aqueous Diels–
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Alder click reaction was also applied to the synthesis of degradable poly(ethylene glycol)-
based hydrogels using maleimide- and furyl-substituted PEG macromonomers as starting
materials [127]. In this case, hydrogel degradation occurs within days to weeks at body
temperature via retro-Diels–Alder reaction followed by hydrolysis of the maleimide groups.
The straightforwardness of the synthesis and the degradability of these hydrogels make
them valuable biomaterials for application in controlled drug/protein release or in the area
of tissue engineering, where degradation of the biomaterial is often necessary.
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Scheme 46. Diels–Alder reaction of poly(N,N-dimethylacrylamide-co-furfuryl methacrylate) and
N-maleolyl alanine poly(ethylene glycol) in aqueous medium.

In 2011, Shoichet and coworkers disclosed the first synthesis of cross-linked hyaluronic
acid (HA) hydrogels based on Diels–Alder click chemistry [128]. The synthetic procedure,
involving a clean one-step, catalyst-free, aqueous-based Diels–Alder reaction between
furan-modified HA derivatives 205 and dimaleimide poly(ethylene glycol) 206, led to the
formation of cytocompatible HA-PEG hydrogels 207 with potential application in tissue
engineering and regenerative medicine (Scheme 47).
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Scheme 47. Diels–Alder reaction of furan-modified HA derivatives and dimaleimide poly(ethylene
glycol) in aqueous medium.

In the same year, Marra and coworkers reported the synthesis of polysaccharide
biodegradable hydrogels 210 for protein encapsulation via the Diels–Alder reaction of
maleimide-functionalized HA 208 and furan-functionalized HA 209 using water as solvent
medium (Scheme 48) [129]. The cycloaddition reaction was selective and efficient for the
polysaccharide bioconjugation, allowing the direct encapsulation of positive and nega-
tive proteins, lysosome and insulin, respectively, in the biodegradable hydrogels within
40 min of gelation time. Furthermore, it has been shown that proteins can be released
from the hydrogel into the local microenvironment in a controlled manner. The furan-
and maleimide-functionalized polysaccharide coupling via aqueous Diels–Alder reaction
was also explored for the development of controlled drug delivery systems, namely the
synthesis of biodegradable hyaluronic acid hydrogels to control the release of dexametha-
sone [130]. In this case, furan- and maleimide-functionalized hyaluronic acids were used to
conjugate the hydrogel, and furan-functionalized dexamethasone was used for the covalent
immobilization.
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The aqueous furan/maleimide Diels–Alder click reaction strategy was also applied to
the synthesis of thermally reversible nanocellulose hydrogels using furan-functionalized
nanocellulose fibers and water-soluble oligoether bismaleimides [131]. In this case, the
cross-linking reaction was carried out at 65 ◦C, and the reaction could be reverted at 95 ◦C
via retro-Diels–Alder reaction.

Recently, the synthesis of self-healing pectin/chitosan hybrid hydrogels for drug
delivery via Diels–Alder coupling in aqueous medium has also been reported [132]. These
polysaccharide biocompatible hydrogels were efficiently obtained through the Diels–Alder
reaction of furan-functionalized pectin and maleimide-functionalized chitosan at 65 ◦C over
5 h, and they showed high swelling properties, pH-responsiveness and cytocompatibility.

Gabilondo’s group reported the synthesis of several biocompatible hydrogels by the
Diels–Alder click cross-linking reaction between functionalized furans and maleimides in
water, namely methacrylate-based hydrogels [133], methacrylate/polyetheramine [134]
and starch/graphene crosslinked hydrogels [135], chitosan-based hydrogels [136] and
starch-based nanocomposite hydrogels [137]. The starch-based nanocomposite hydrogels
were prepared through the Diels–Alder click reaction between a furan-functionalized starch
derivative 211 and a water-soluble PEG-based tetramaleimide 212, followed by the addition
of cellulose nanocrystals as nanoreinforcement (Scheme 49) [137]. The reaction, performed
at 65 ◦C over 24 h, afforded hydrogels 213 as solid-like robust materials that keep the
shape in their hydrated form. It is noteworthy that the incorporation of cellulose nanocrys-
tals influences the morphology of the hydrogels and the drug delivery performance of
the materials.
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7.3. Catalyzed Diels–Alder Cycloaddition Reactions

The aforementioned MCPRs can be classified into ABC and ACC’, referring to the
classical conditions (aniline, aldehyde and nucleophilic alkenes) and the use of aniline
and two equivalents of a nucleophilic alkene, respectively. One example of the latter,
the synthesis of furano[3,2-c]-1,2,3,4-tetrahydroquinolines involving the MCPR between
anilines 2 and two equivalents of 2,3-dihydrofuran (6), has been recently reported by
Fernandes and coworkers (Scheme 50) [138]. Using water as solvent and p-sulfonic acid
calix[4]arene (CX4SO3H) as organocatalyst, a series of tetrahydroquinoline derivatives 214
were prepared in moderate to excellent yield, with aniline and 4-halo-anilines providing
the target products in the highest yields (85–95%). The catalyst CX4SO3H could be reused
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up to four times while maintaining the catalytic activity. Isotopic labeling experiments
involving the synthesis of furano[3,2-c]-1,2,3,4-tetrahydroquinoline 216, supported by NMR
and mass spectroscopy data, were crucial for the validation of the reaction mechanism. The
reaction seems to evolve through a stepwise sequence via ionic intermediates originating
oxonium ion 215, which undergoes an intramolecular electrophilic aromatic substitution,
under CX4SO3H catalysis, to afford the final products.
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component Povarov reaction in water.

The same group developed a highly efficient and green synthetic protocol for the prepa-
ration of julolidines based on the MCPRs approach, using the same catalyst (CX4SO3H)
and star anise oil (93% content of trans-anethol) as dienophile (Scheme 51) [139]. A range
of substituted anilines 2 reacted smoothly with formaldehyde (195) and trans-anethol (76),
in water at 96 ◦C for 2.5 h, under CX4SO3H catalysis giving rise to the diastereoisomeric
mixture of julolidines 217 and 218 in yields ranging from 15 to 85%. No significant di-
astereoisomer excess was observed, albeit the trans isomer was the major isomer in all cases.
Although both electron-donating and -withdrawing groups were well tolerated, higher
yields were attained with anilines bearing electron-withdrawing groups. Furthermore, the
easy workup procedure allowed the organocatalyst to be reused up to four times without
relevant loss of catalytic activity.
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Scheme 51. Multicomponent double Povarov reaction route to julolidine synthesis in water.

The synthesis of julolidines through the one-pot cascade reaction of aniline derivatives
219 with a mixture of styrene (220) and formaldehyde (195) using silica sulfuric acid (SSA)
as catalyst has also been reported (Scheme 52) [140]. Reactions were carried out in water
under refluxing conditions for 24 h and led to the desired products 221 as diastereoisomeric
mixtures in moderate to good yield. When o-substituted anilines were used, tetrahydro-
quinolines 222 were obtained, although the increase in reaction time (48 h) was required to
attain good efficiency.
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Scheme 52. One-pot tandem cascade three-component Povarov reaction towards julolidines in water.

Beifuss and coworkers developed a straightforward procedure for the diastereose-
lective synthesis of tetrahydroquinolines based on a domino process involving in situ
reduction, imine formation and aza-Diels–Alder reaction (Scheme 53a) [141]. Using ni-
trobenzenes instead of the typical aniline derivatives, the domino process was triggered by
in situ reduction of 224 with iron in combination with citric acid as chelating ligand and
montmorillonite as catalyst of the Povarov reaction. Thus, the montmorillonite-catalyzed
three-component reaction between aldehydes 223, nitrobenzenes 224 and cyclopentadiene
(39) in aqueous citric acid at 40 ◦C, in the presence of iron, gave rise to tetrahydroquino-
lines 225/226 with high endo-selectivity and high yields. The catalytic method showed
a wide substrate scope, with several substituted nitrobenzenes and aromatic, heteroaro-
matic and aliphatic aldehydes as suitable substrates. Later, the same group established
the intramolecular version of this methodology by usingω-unsaturated aldehydes (e.g.,
227) as substrates (Scheme 53b) [142]. Under the same catalytic system, diastereomerically
pure trans-fused tetrahydrochromano[4,3-b]quinolones 228 were obtained from the one-
pot domino reduction/imine formation/intramolecular aza-Diels–Alder reaction between
nitrobenzenes 224 and ω-unsaturated aldehydes 227, in yields ranging from 69 to 87%.
However, higher temperatures (80 ◦C) and an increased amount of iron (4 equiv) and
montmorillonite (10 wt%) were necessary to attain high levels of efficiency. The observed
diastereoselectivity was rationalized as resulting from the exo-E-anti transition state 229 in
the cyclization step, in which both the C=N bond of the diene and the C=C of the dienophile
present E-configuration (Scheme 53b).
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More recently, a different methodology for preparing spiro(isoxazolo[5,4-b]pyridine-
5,5′-pyrimidine) derivatives 232 based on an L-proline-promoted one-pot aza-Diels–Alder
reaction in water has been disclosed (Scheme 54) [143]. This method has the advan-
tage of generating in situ the 5-amino-3-methylisoxazole (160a) from readily available
3-aminocrotononitrile (230) and hydroxylamine hydrochloride (231). Designed experi-
ments were performed and confirmed the formation of isoxazole 160a and Knoevenagel
adduct 166 as reaction intermediates. The presence of L-proline seems to be a requirement
for attaining high efficiency since carrying out the reaction in its absence led to 232 in
decreased yield (29%); however, no information was given regarding the stereochemistry
outcome or its role in an eventual asymmetric induction.
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Scheme 54. L-Proline-catalyzed one-pot aza-Diels–Alder reaction in water leading to
spiro(isoxazolo[5,4-b]pyridine-5,5′-pyrimidine) derivatives.

Kouznetsov and coworkers have reported a green methodology for the prepara-
tion of a series of 4-amido-N-yl-2-methyl-tetrahydroquinolines (THQs) based on an acid-
promoted domino sequence involving “Mannich-like” reaction/imino-Diels–Alder reaction
(Scheme 55) [144]. This ABB’ three-component reaction employs one molecule of function-
alized aniline 2 and two molecules of cyclic or acyclic N-vinyl amides 233 to furnish the
target cis-2,4-disubstituted THQs 235 in high to excellent yield, in acidified water using
sodium dodecyl sulfate (SDS) surfactant as catalyst. The proposed mechanism involves a
domino process ran in the proximity of the anionic SDS micelle surface, presenting some
charged species and protons (NH and H+), initiated by protonation of 233 followed by
reaction with amine 2 to give intermediate 234, which then reacts with the second molecule
of 233 to afford the desired products 235. Consequently, the reaction outcome was strongly
influenced by the micellar concentration as well as by the pH reaction medium. In fact, no
reaction occurred in the absence of SDS or when the pH was higher (e.g., pH 7). The best
results were achieved when using a 12 mM SDS concentration and pH 1. Moreover, this
protocol has the advantage of using a micellar aqueous catalyst that is biodegradable and
can be reused.
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Using a fluorous micellar system in water, several Diels–Alder reactions between typi-
cal dienophiles and dienes proceeded in high yields, with remarkable rate acceleration [145].
For example, 9-methylanthracene (236) underwent [4 + 2] annulation reaction with N-octyl
maleimide (55e) to give the corresponding cycloadduct 237 in quantitative yield, after only
10 min at room temperature (Scheme 56a). The reaction media, composed of 100 mM
perfluorohexane (PFH) and lithium perfluorooctanesulfonate (LiFOS)/water (10 mL each),
originate a large interfacial area between the fluorous solvent and the water, where the
reaction occurs more effectively due to repulsion effects from both media. Furthermore,
LiFOS acts not only as a surfactant but also as a supporting electrolyte, enabling the use
of electrochemical approaches in the micellar system. Thus, ethyl 3,4-dioxocyclohexa-1,5-
dienecarboxylate (240), generated electrochemically from ethyl 3,4-dihydroxybenzoate
(238), was trapped by dienes (e.g., 239) at the surface of the micelle or at the interface to
afford the corresponding Diels–Alder cycloadduct (e.g., 241) in excellent yield (Scheme 56b).
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Scheme 56. Diels–Alder reactions using a fluorous micellar system in water of: (a) 9-methylanthracene
and N-octyl maleimide; (b) 3,4-dihydroxybenzoate and 2,3-dimethylbuta-1,3-diene.

The development of new carbocatalysts which are eco-friendly and sustainable has
attracted great attention. Owing to their easy preparation from inexpensive graphite,
graphene and graphene oxide (GO) have emerged as efficient carbocatalysts for several
transformations in organic synthesis, namely the Diels–Alder reaction. De and coworkers
have disclosed the GO-promoted Diels–Alder reaction between 9-hydroxymethylanthracene
(54) and N-substituted maleimides 55 in an aqueous medium at room temperature leading
to the corresponding cycloadducts 242 in moderate to excellent yields (Scheme 57) [146].
The catalytic protocol has a wide substrate scope, and the GO catalyst can be easily re-
covered by centrifugation or filtration and reutilized up to four times without significant
loss of activity. A three-step mechanism was proposed involving the initial binding of the
hydroxyl groups and the aromatic rings to the GO surface by weak hydrogen bonding
and π–π interactions. Subsequently to the product formation, the anthracene moiety loses
its planar structure as well as the partial aromaticity leading to the weakness of the π–π
interactions and displacement of the product by another molecule of reactant. Experimental
calculations were carried out and corroborated the proposed mechanism.
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7.4. Asymmetric Diels–Alder Cycloaddition Reactions

Zhang and coworkers reported a rate-accelerating effect in the asymmetric organocat-
alytic Diels–Alder reactions between α,β-unsaturated aldehydes 40 and cyclopentadiene
(39), catalyzed by C2-symmetric bipyrrolidine 243 and HClO4 in aqueous reaction medium
(Scheme 58) [147]. In contrast with the reactions performed in organic solvents, the reac-
tions carried out in water were completed within only 2–3.5 h, furnishing cycloadducts
244 in high yields with good enantioselectivity and moderate exo-selectivity. Moreover, the
catalyst 243. 2HClO4 could be recovered by diethyl ether extraction and reused directly
up to four times while retaining its catalytic activity. DFT calculations and X-ray studies
corroborated the proposed mechanism which involves the formation of a C2-symmetric
diiminium intermediate (e.g., (E,E)-245), with two conjugated iminiums facing each other,
corresponding to two Si faces giving rise to the same enantiofacial discrimination in the
cycloaddition step.
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A poly(methylhydrosiloxane) (PMHS)-supported chiral organic catalyst derived from
MacMillan’s imidazolidin-4-ones (e.g., 246) also has the ability to promote successfully
Diels–Alder cycloaddition reactions in aqueous medium with a high degree of enan-
tioselectivity (up to 93% ee), albeit with low exo/endo selectivity (Scheme 59) [148]. The
cycloaddition reaction between trans-cinnamaldehyde (40a) and cyclopentadiene (39) was
investigated under different catalytic reaction conditions, with higher yields and enan-
tioselectivities being achieved when a preformed PMHS-supported HBF4 salt of 246 was
used in water. Nevertheless, it was observed that when using only water as solvent,
the catalyst activity decreased dramatically after the second recycle run, whereas a 95:5
acetonitrile:H2O mixture proved to be the ideal solvent system to ensure the recycling of
the PMHS-supported catalyst.
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In the same year, Wang and coworkers disclosed a straightforward route to new het-
erogeneous organocatalysts based on the functionalization of hollow-structured phenylene-
bridged periodic mesoporous organosilica (PMO) spheres with MacMillan catalyst and
investigated its use in the aforementioned Diels–Alder reaction [149]. The cycloaddition
reaction performed in water using 20 mol% of catalyst, in the presence of TFA, led to
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cycloadducts 244a in excellent overall yield (98%) and high enantiomeric excess (81% for
endo-adduct and 81% for exo-adduct). Furthermore, the H-Ph-PMO-Mac catalyst could be
reutilized for up to seven catalytic cycles without a significant loss of catalytic activity.

The “on-water” organocatalyzed [4 + 2] cycloaddition reaction of acyclic enones with
nitro dienes and allylidene malononitriles gave access to a plethora of functionalized chiral
cyclohexanones, using cinchona alkaloid-based primary amines (e.g., 249 and 252) and
benzoic acid as the organocatalytic system (Scheme 60) [150,151]. Thus, unsaturated methyl
ketones 247 reacted smoothly with primary amine catalyst 249 in the presence of benzoic
acid to give the corresponding enamine, which undergoes an endo [4 + 2] cycloaddition
with nitro dienes 248 to yield the corresponding 3,4,5-trisubstituted cyclohexanones 250
in good yield, with good diastereoselectivities and excellent enantioselectivities. The
reaction outcome was not significantly affected by the nature and positioning of the aryl
substituents of both reactants. Interestingly, mechanistic studies revealed that the kinetic
endo-cycloadduct initially formed with an α-nitro-bearing center, epimerized under the
reaction conditions to thermodynamically more stable diastereoisomer 250 with a β-nitro-
bearing center. On the other hand, the use of allylidene malononitriles 251 as dienophiles
led to the enantioselective synthesis of cyclohexanones 253 with two stereocenters and
an all-carbon quaternary center. The highest enantioselectivity was achieved from the
reaction of benzylidene acetone with allylidene malononitrile bearing a nitro-substituted
aryl group (82% ee). Moreover, allylidene cyanoacetates were also suitable dienophiles for
these transformations.
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DNA-based hybrid catalysts combine the catalytic power of a metal complex with the
unique helical chirality and chemical stability of DNA and have been employed successfully
in various asymmetric transformations, namely the asymmetric Diels–Alder reaction. A
solid-supported DNA (st-DNA/S1), prepared from purified salmon testes DNA (st-DNA)
and ammonium-functionalized silica (S1), has been used in the copper(II)-catalyzed Diels–
Alder reaction of 2-azachalcone 254a and cyclopentadiene (39) in water (Scheme 61) [152].
The catalytic protocol involves the mixing of a Cu(dmbpy) complex with st-DNA/S1 in
a MOPS buffer solution, the subsequent addition of the reactants and the continuous
rotation of the reaction mixture at 5 ◦C for 3 days. The target cycloadduct 255 was obtained
with excellent endo-selectivity (endo/exo ratio of 99:1) with 99% conversion and 94% ee.
Performing the reaction with unsupported st-DNA led to 255 with a slight increase in the
ee (99%) and similar conversion (93%), whereas the controlled experiment using only S1
without st-DNA afforded 255 in low conversion (14%) and neglectable ee (<3%). In addition,
the catalyst st-DNA/S1 was recycled and reused for 10 cycles affording conversions above
93% in each cycle and ee’s ranging from 88 to 94%, thus demonstrating its utility as a
reusable chiral source.
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Scheme 61. Solid-supported DNA as chiral source for the Cu(II)-catalyzed Diels–Alder reaction in
water.

In another example of bioinspired catalysts, Liskamp and coworkers disclosed the
asymmetric copper(II)-promoted Diels–Alder reaction in water using tris-histidine-containing
triazacyclophane (TAC), a scaffold that mimics the structure of the tris-histidine triad
metal-binding site found in several metalloenzymes (Scheme 62) [153]. Due to their ability
to coordinate efficiently with CuII in water, 2-azachalcone 254a and α,β-unsaturated 2-
acylimidazole 254b were selected as substrates for the Cu(II)-catalyzed cycloaddition with
cyclopentadiene (39). Among the several TAC-based ligands screened, compounds 256 and
257 bearing three D- and L-histidine residues, respectively, directly attached to the TAC
scaffold and acetylated α-amino groups, afforded selectively the target products 255 with
the highest ee (up to 55%). Using ligand 256, cycloadduct 255 with SS configuration was
obtained, whereas ligand 257 induced the selective synthesis of its enantiomer. Moreover,
attempts to further improve the enantioselectivity through the insertion of additional amino
acid residues on the N-termini of the histidine moieties, as well as between the TAC scaffold
and the histidine residues, resulted in significantly decreased ee.
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7.5. Total Synthesis

The generation of high structural complexity from simple starting materials through
the creation of two C–C bonds, at least two rings and up to four stereoisomers in a single
step makes the intramolecular Diels–Alder a powerful synthetic tool in the synthesis of
complex natural products such as verrubenzospirolactone, a meroterpenoid isolated from
the soft coral Simularia verruca [154–156]. The total synthesis of verrubenzospirolactone 262,
featuring a pentacyclic structure comprising a spirocyclic butenolide and five contiguous
stereocenters, was successfully accomplished in five steps starting from readily available
methylhydroquinone (258) and citral (259) (Scheme 63a) [157]. The key step of this synthesis
involved an unusual intramolecular Diels–Alder reaction between the 2H-chromene and
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diene moieties of conjugated triene (Z)-261 which upon heating “on-water” at 50 ◦C
afforded verrubenzospirolactone 262 in 61% yield, along with its C9 epimer 263 in 10%
yield. The former is the intramolecular Diels–Alder cycloadduct obtained from the s-
cis conformation of (Z)-261 via an exo transition state, whereas the latter resulted from
the exo intramolecular Diels–Alder reaction of the s-cis conformation of (E)-261. Starting
from a more functionalized aldehyde bearing a triene unit, a quadruple cascade reaction
consisting of a Knoevenagel condensation/oxa-6π-electrocyclization/Diels–Alder/oxa-
Michael sequence was developed, leading to the formation of a 3:1 mixture of hexacycles
265 (epimers at C11) in 46% yield (Scheme 63b).
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The total synthesis of natural product delitschiapyrone A, featuring an impressive
6/6/5/7/6 pentacyclic ring system with five contiguous stereocenters, has also been
recently disclosed [158]. This natural product was isolated from the fungus Delitschia sp.
FL1581 and exhibits cytotoxic activity against several cancer cell lines (IC50: 12.3–35.5 µM).
This challenging synthesis involves a seven-step sequence in which the Diels–Alder reaction
of juglone derivative 266 with diene 267 plays a crucial role (Scheme 64). The Diels–Alder
reaction, followed by concomitant α-ketol rearrangement and cyclic hemiacetalization,
proceeded smoothly at 35 ◦C in water, leading to the desired cycloadduct 270 in 75% yield,
with exclusive regioselectivity and stereoselectivity. To rationalize the observed regio- and
diastereoselectivity, the energies and coefficients of the frontier orbitals of 266 and 267 were
calculated and the DFT-optimized structure of the preferred endo transition state of the
Diels–Alder reaction was determined. The presence of the hydroxyl of diene 267 seems to
be a requirement to attain selectivity in the Diels–Alder reaction since the reaction of 266
with O-acetyl-267 led to a complex mixture.
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8. Conclusions

The Diels–Alder reaction remains one of the most commonly employed reactions for
the rapid construction of carbocyclic and heterocyclic compounds, including the synthesis
of natural products. In this review, the most significant advances on the Diels–Alder
reaction in environmentally benign solvent systems were highlighted.

The fast-growing green chemistry research area has driven successful developments
on this topic, upgrading this traditional reaction to the present sustainable needs. Notably,
high levels of chemical efficiency and selectivity were achieved in most of the described
methodologies, with the use of these sustainable solvent media leading to shorter reaction
times and simpler workup procedures than the use of conventional organic solvents.
Additionally, the Lewis acid catalysis and organocatalysis combined with nonconventional
heating methods have broadened the scope of these methodologies. Despite the recent
progress, further developments on sustainable enantioselective synthetic approaches are
required. The development of highly active catalysts, namely functionalized heterogeneous
catalysts with well-defined structures, suitable to a wider range of substrates and solvents,
is needed to overcome some of the current challenges. Therefore, innovative strategies
for the design of new catalytic systems with enhanced properties can be expected in the
near future.
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