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Intermolecular forces, determined by the critical balance of interacting components
having physical and chemical natures, control most of the static and dynamic properties
of matter such as their existence in solid, liquid and gaseous phases, with their relative
stability, and their chemical reactivity. In particular, they form simple interacting systems
that represent the weakly bound precursor states of myriad phenomena. In some cases,
such states promote the following nucleation, leading to the formation of large clusters
and nanostructures, and in others, they open the passage to specific configurations of
the reaction transition state of elementary reactions. Therefore, the characterization of
intermolecular forces at a high level of detail is a question of crucial interest in several
advanced research fields and represents a challenge for both experimentalists and theoreti-
cians that will open new avenues in the study of systems of increasing complexity and of
applied interest.

The core of this Special Issue is on the building up process that controls the transition
from simple no covalent adducts to complex chemical structures. This Research Topic aims
to underline the relationship between forces established among the particles of the system
and other properties across different scales, i.e., from molecules, simple aggregates or small
clusters to nanostructures and other types of matter at the mesoscale.

The Special Issue has 13 papers written by 50 authors from different countries with
theoretical or experimental contributions (or both) in this research area. The work of
González-Veloso et al. [1] unravels the interactions in magnetic ionic liquids (MILs) by
applying Symmetry-Adapted Perturbation Theory (SAPT) for two different cations and
several metal halide anions. The main contribution to the interaction energy is the elec-
trostatic component, followed by the dispersion one in most of the cases. Furthermore,
the calculated SAPT interaction energies had a good correlation with the experimentally
measured melting points for these MILs, suggesting that the SAPT interaction energy could
be used to predict melting points.

The paper from Espinosa-Garcia and co-workers [2] presents the first analytical full-
dimensional Potential Energy Surface (PES) for the hydrogen abstraction CN + NH3 reac-
tion, which is based on high-level ab initio calculations. The authors performed rigorous
tests to analyze the quality and accuracy of the PES, from the Quasi-Classical Trajectory
(QCT) calculations, and the results were compared with available experimental data. In
turn, Raczyński et al. [3] have investigated the competition of intra- and intermolecular
forces in anthraquinone and in some of its derivatives. These authors have employed
Møller–Plesset second-order perturbation theory (MP2), Density Functional Theory (DFT)
and time-dependent DFT (TD-DFT) methods to study the properties of intramolecular
hydrogen bonds: the bridged protons are on the donor side for the electronic ground state,
while secondary minima were found at the acceptor side in two excited states, which opens
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the possibility for excited-state intramolecular proton transfer (ESIPT). Concerning the
intermolecular contacts, they are favored by the presence of nitro substituents.

The role of σ-hole in non-covalent interactions has been analyzed in complexes of
ArBeO with simple ligands (L) by Borocci et al. [4]. These authors employed methods of
bonding analysis to discern the factors associated with the transition from the essentially
dispersive domain of LAr to the σ-hole domain of the L-ArBeO complexes. In another
methodological contribution, Vázquez and collaborators [5] have proposed improved
corrections for amides and amines within the framework of the recently proposed PM6-
FGC semi-empirical quantum mechanical approach. Substantial improvements in the
calculation of noncovalent interactions are achieved when methylamine and acetamide are
used as representatives of amine and amide groups.

The importance of the solvent effect in nonpolar solvents for the pyridone–hydroxy–pyridine
tautomeric equilibrium and the dissociation of alkali metal halides have been studied
by Shenderovich and Denisov [6]. Specifically, they analyzed how the modeling results
change in connection with the polarizable continuum model (PCM) and with the use of the
Adduct under Field (AuF) approach to nonpolar solvents, and how the AuF approach can
simulate the dissociation of alkali metal halides. The solvation of Ca+ with helium has been
investigated at the atomic level by Bartolomei et al. [7] in a combined experimental and
theoretical work, which employs quantum Monte Carlo calculations and basin-hopping
structure optimization based on the improved Lennard–Jones (ILJ) pair potential, while a
reflectron time-of-flight mass spectrometer was applied to analyze the product ions ejected.
These authors concluded that 25 helium atoms complete the first solvation shell (the
optimum packing of HeNCa+ is N ≈ 17), and the corresponding clusters are essentially
liquid-like structures. Oliveira et al. [8] have also employed the ILJ function to model
the complete family of rare-gas diatomic molecules by fitting CCSD(T)/CBS energies.
This work shows that most of the LJ inadequacies both at large and short intermolecular
distances are corrected by ILJ. Indeed, the rovibrational spectroscopic constants calculated
by the ILJ function show a more effective agreement with experiment than those obtained
with the LJ potential model.

The importance of intermolecular forces in the ionic polymerization process on large
clusters of acetylene molecules to form polyaromatic hydrocarbons (PAHs) has been studied
by Molina and Stein [9]. They employed ab initio molecular dynamics (AIMD) simulations
within interstellar medium (ISM) conditions and showed that four acetylene units can
aggregate to form C8H+

8 -bonded species, some of which are bicyclic structures. As for
adsorption–desorption processes, the potential barriers resulting from a balance among
the intervening intermolecular forces affect the corresponding low-pressure hysteresis in
open slit-like micropores. Based on two thermodynamic models for the hysteresis loop, this
phenomenon has been analyzed within the framework of thermodynamically irreversible
processes and fractal geometry by Dragan et al. [10].

The formation of complex supramolecular structures via self-assembly of small molecules
is a phenomenon also conducted by intermolecular forces. An example is the competition
between hydrogen bonding and aromatic-rings stacking, which may lead to a dramatic
change in the structure of biological systems. By using supersonic jet expansions, Zimmer-
mann et al. [11] have prepared mixture of phenol, acetophenone and six of its halogenated
derivatives and detected the formation of complexes through infrared spectroscopy, which
allowed to observe that halogenation has a great effect on the docking site, with a wide
range of energies for either the phenyl or the methyl side of the ketone. In the phenol
complex with nonhalogenated acetophenone, by contrast, methyl docking is the most
prevailing one.

Fernández et al. [12] have applied DFT calculations to analyzed the supramolecular
helical aggregation of oligo(phenyleneethynylene) monomers. From the minimum structures
obtained at the DFT/6-31G∗∗ with the dispersion-corrected B3LYP-D3 functional, these
authors calculated absorption and circular dichroism spectra at the TD-DFT (CAM-B3LYP/3-
21G) level and concluded that the theoretical results display good agreement in comparison
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with available experimental spectra. Finally, Prudente and Marques [13] have characterized
the thermodynamic signatures of both structural transitions and dissociation of charged
colloidal clusters that are modeled with pair-potentials comprising a short-range attractive
contribution and a long-range repulsive component. The competition between attractive and
repulsive interactions may lead to the formation of metastable structures with spherical-like
geometries (for small clusters), Bernal spirals (for intermediate-size clusters) and beaded-
necklace shapes (for large-size clusters) that can survive at non-zero temperatures.

Thus, as we have seen, these papers covered different aspects of the research presently
carried out on intermolecular forces and showcase the diversity of methodologies employed
by theoreticians and experimentalists, making this Special Issue an interesting contribution
to this field of knowledge.
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