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We report calculations of the vibrational spectrum of HD2 in its first-excited electronic state by using a
coordinate-transformation technique. The implications of the geometric phase (GP) effect in the spectrum
have been investigated. The results show that the lowest 45 vibrational levels calculated using the traditional
Longuet-Higgins phase (φ/2, whereφ is the pseudorotation angle) are in good agreement with those obtained
by using a single-surface generalized Born-Oppenheimer equation previously reported by the authors.

1. Introduction

About 40 years ago, Herzberg and Longuet-Higgins1 showed
that a real-valued electronic wave function changes sign when
the nuclear coordinates traverse a closed path encircling a
conical intersection. This implies a breakdown of the standard
Born-Oppenheimer (BO) treatment2 whenever such an inter-
section is present.1,3-8 In 1979, Mead and Truhlar9-11 showed
that the single-surface BO treatment could be generalized by
introducing a vector potential into the nuclear Schro¨dinger
equation. Five years later, Berry12 proved the GP effect (also
known13 as Berry’s phase effect and Aharonov-Bohm14 effect)
in a wider context by showing that it can be present on the
adiabatic evolution of other quantum systems.

It is well established that the GP effect plays a significant
role in molecular spectra,15-18 and scattering;19-27 for reviews,
see refs 13 and 28. In fact, it was shown in 1979 by Varandas,
Tennyson, and Murrell29 using ab initio calculations, that it may
be present even when the system has no symmetry such as is
the case for the ground electronic state of LiNaK. Thus, for
accuracy, the GP effect must be taken into consideration
whenever studying the nuclear dynamics using a single BO
surface.

Two alternative schemes have been suggested to account for
the GP effect in the case of homonuclear triatomic species (X3).
One consists of multiplying the real double-valued electronic
wave functions by a complex phase factor that changes sign on
encircling the conical intersection and hence makes the resulting
complex electronic wave function to be single-valued.21,30,31

Indeed, such a complex phase factor leads to the vector potential
of Mead and Truhlar9,11mentioned above. However, in general,
such an approach is difficult to apply24,32and its practical value
may require further exploitation. The other method is due to
Billing and Markovic33 who have utilized hyperspherical
coordinates to include the GP effect in X3 systems having a
singleD3h conical intersection seam. In this case, the complex
phase factor is incorporated into the nuclear wave function so
as to make the total electronuclear wave function single-valued.
A similar method has been employed by us15,17,18to study the
resonance and vibrational spectra of H3 and Li3. This work has
recently been reviewed,34 while J ) 0 calculations of the
vibrational states of Li3 in its lowest electronic doublet state by

using a reliable double many-body expansion35,36 (DMBE)
potential energy surface37,38 and a minimum-residual filter
diagonalization39 (MFD) technique, both without consideration
(NGP) and with consideration (GP) of the GP effect, can be
found elsewhere.17,18Another system that has been much studied
is H3 and its isotopomers.15,17,18,22,23,40-48 However, a complica-
tion arises when one investigates the GP effect in such
isotopomers, which is due to the mass scaling involved in
defining the hyperspherical coordinates. Kuppermann and Wu22

studied the GP effect in DH2 using a mass-scaled Jacobi-
vectors49 formula. More recently, we proposed a novel split-
basis (SB) technique50 to treat the same problem. In all such
treatments, the GP angle has been assumed to be path-
independent, and hence one must supplement another boundary
condition to the nuclear wave functions for nonsymmetric
isotopomers of X3 systems since the conical intersection moves
away from theD3h line (see later).

Following a strategy similar to Baer and Englman51,52 (for a
rebuttal of their work, see ref 53), we have recently54 derived
novel single-surface Born-Oppenheimer equations to study the
nuclear dynamics in the coupled two-states problem at the
vicinity of a conical intersection. Although such a formalism
may be strictly valid in the vicinity of the conical intersection,
we have conveyed generality to it by invoking the well-
known1,4-7 fact that such regions influence in a dominant way
the nuclear dynamics even when energetics allows us to sample
areas of configurational space far away from the crossing seam.
It was found54 that the GP angle,A(R), is defined by the
argument of the complex electronic vector state in the complex
plane spanned by the two real-valued electronic components.
Such an angle is identical (up to a constant) to the mixing angle
γ(R) of the orthogonal transformation that diagonalizes the
diabatic potential matrix46,55-59 in the coupled two-states
problem. We have subsequently used this equation (for brevity
referred to as VX) to study the GP effect in the vibrational
spectra of H3 and HD2 systems.54,60 Moreover, in a previous
study with Baer,48 we have employed a line-integral tech-
nique52,61-71 to study the GP effect in two coupled-state
hydrogenic systems. It was then found that the adiabatic-
diabatic-transformation (ADT) angle61-64,66is also identical (up
to a constant) to the mixing angleγ(R). We have also
discussed72 the singularities in the Hamiltonian at the crossing
seam and established the relationships linking the magnetic† Part of the special issue “Aron Kuppermann Festschrift”.

2246 J. Phys. Chem. A2001,105,2246-2250

10.1021/jp0033364 CCC: $20.00 © 2001 American Chemical Society
Published on Web 02/10/2001



vector and electronic scalar gauge potentials to the mixing angle.
In addition, the study of cyclic phases atN-fold electronic
degeneracies has been examined by various authors.73-75

The paper is organized as follows. In section 2, we survey
the methodology. The calculations of the vibrational spectrum
for HD2 are reported in section 3. The conclusions are in section
4.

2. Methodology

2.1. Coordinate-Transformation Treatment. As shown
elsewhere,48 for any isotopomer of a X3 system, the crossing
seam in hyperspherical coordinates (F,θ,φ) is generally defined
at an arbitrary value of the hyperradiusF by

wheret is given by

and

with X, Y, and Z standing for atoms A, B, and C with masses
mA, mB, andmC. In case two atomic masses are equal, namely
mB ) mC, we get forθs the simplified expression

while φs assumes the valueπ (0) whenmA> mB and the value
zero (π) whenmA < mB; in this work, we have chosen the value
φs ) 0 for mA < mB. For the case of HD2, the equation for the
(straight line) seam is therefore defined48 by θs ) 0.5048 rad
andφs ) 0. Sinceθs is different from zero, only closed paths
with constantθ g θs will enclose the seam: all other loops
corresponding toθ < θs will not satisfy such a requirement.

In the present work, we use a coordinate-transformation
approach24 to treat the GP effect. First, we note that the
hyperspherical coordinates are related to the Cartesian ones
(x, y, z) by76

Then, we introduce the new set of internal coordinates

and choose the origin (x′ ) 0, y′ ) 0) of this coordinate system
to coincide with the location of the conical intersection, such
that thez′ axis passes through the conical intersection andφ′ is
the azimuthal (pseudorotation) angle about the conical intersec-
tion. The two coordinate systems are then related through an
O(3) rotation about they axis by an angleθs

As a result, the transformed hyperspherical coordinates are given
by

with the conical intersection being in this coordinate system
always located atθ′ ) 0.

2.2. Calculation of Spectrum.The rovibrational energy states
can be calculated by solving the time-independent Schro¨dinger
equation

whereĤ is the system Hamiltonian. Because the Hamiltonian
for zero total angular momentum should be invariant to rotations
of the body-fixed coordinate system, it assumes in modified
hyperspherical coordinates the form15

where we have neglected all spin-orbit and spin-spin interac-
tions. Note that we have omitted for simplicity in eq 11 (and
will omit from here onward) the primes in the coordinates
(F′,θ′,φ′). In turn,V is the potential energy surface of the system
which depends only on the three internal coordinates (F,θ,φ).
The hyperanglesθ andφ are related15 to the Smith-Whitten’s
(Θ,Φ) hyperangles77 through the relationsθ ) π - 4Θ andφ

) 2π - 2Φ. Hence, the range ofθ is extended from 0 toπ,
and hence Jacobi polynomials in cosθ can be used as the finite
basis representation (FBR) inθ.

The action of the HamiltonianĤ on the nuclear wave function
has been carried out using a mixed grid-basis method.78

Accordingly, the nuclear wave function|ø〉 has been expanded
as

where{|FR〉} is the grid point basis inF, and |jm〉 ) |j;m〉|m〉
are the hyperspherical harmonics defined by

x′ ) F′ sin θ′ cosφ′
y′ ) F′ sin θ′ sinφ′

z′ ) F′ cosθ′ (7)
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wherePl
(|m|,0)(cosθ) are the Jacobi polynomials andNjm are the

normalization constants. Use of such a nondirect type product
basis can somehow ameliorate the difficulties encountered in
the calculation of the vibrational spectra of HD2 which arise
due to the sigularity in eq 11 atθ ) 0.

To treat the action of the associated kinetic energy operator
∂2/∂F2, one employs a prime fast Fourier transform15 (PFFT)
method, with a uniform grid being then used for the coordinate
F. Note that the singularity atF ) 0 can be ignored, since the
molecule has a highly repulsive potential energy at such a
united-atom limit. Similarly, for theφ coordinate, a PFFT
method is applied to the sine or cosine basis defined in the
following paragraph. The GP effect is then treated during the
action of the kinetic operator∂2/∂φ2 as

whereCn are the coefficients obtained by a forward PFFT of
exp(-iφ/2)ø, with ø being the nuclear wave function in the grid
point basis.

The action ofV on the nuclear wave function can be evaluated
through the matrix transformation78

where V is the diagonal matrix with elements defined by
V(FR,θâ,φγ)ωâωγ, whereωâ andωγ are the weights correspond-
ing to the quadrature pointsθâ (â ) 0, 1, ...,Nθ) andφγ (γ )
0, 1, ...,Nφ). Note thatΦ is the collocation unitary matrix which
associates the Gauss-Chebyshev quadrature of the first kind and
has elements defined by

whereφγ ) 2πγ/Nφ. If the GP effect is considered,m is chosen
to be a half-integer. Instead,m will be an integer if one ignores
the GP effect. The elements of theΦ matrix can be further
reduced in terms of molecular symmetry. Thus, for the HD2

system, the symmetry adapted basis without consideration of
the GP effect will be cos(2nφ) (n ) 0, 1, ...) forA2 symmetry,
and sin(2nφ) (n ) 1, 2, ...) for B1 symmetry. Instead, the
symmetry adapted basis with consideration of the GP effect will
be cos[2(n + 1/2)φ] (n ) 0, 1, ...) for A2 symmetry, and
sin[2(n + 1/2)φ] (n ) 0, 1, ...) forB1 symmetry. In turn, the
elements of the collocationΘ matrix are given by

where j ) |m|/2, |m|/2 + 1, ..., Nθ - |m|/2, and jmin is the
minimum value of|m| in the FBR (finite basis representation)
used forφ. For HD2, without consideration of the GP effect,
jmin ) 0 for A2 symmetry, andjmin ) 2 for B1 symmetry. In
turn, jmin ) 1 for the cases of bothA2 andB1 with consideration
of the GP effect. The grid pointsθâ and corresponding weights
ωâ are determined by a Gauss-Jacobi quadrature method in terms
of the Jacobi function with a fixed valuem ) jmin.

The calculations of the eigenenergies have been carried out
by using the MFD technique.39 Two steps are then carried out:
first, the calculation of the filtered states created by the Green

operator (Ĥ - E)-1 from an initial random vector using a
minimum residual algorithm39 in a Lanczos subspace; second,
the diagonalization of the smaller Hamiltonian matrix repre-
sented in the space of such filtered states to get the eigenvalues.
Note that, similarly to the simple Lanczos algorithm, the MFD
approach has low storage requirements (only two iteration
vectors) and utilizes just a single Lanczos recursion for the
eigenvalue problem. Furthermore, it can eliminate spurious and
ghost eigenvalues.79

3. Results and Discussion

All calculations reported in this work have employed the
accurate H3 potential energy surface80 obtained from the double
many-body expansion (DMBE) method (for a recent review,
see ref 36). Figure 1 compares the results obtained from four
sets of calculations over the range of energies (E e 4.80 eV).
One, denoted NGP, corresponds to the case where we have
simply ignored the GP effect. The other three include the GP
effect according to distinct schemes. Of these, two employ the
traditional1,4,9,11,17,18,24Longuet-Higgins phaseφ/2, and different
techniques to account for the fact that the crossing seam moves
away from theθ ) 0 line when one employs mass-dependent
hyperspherical coordinates. The results obtained by using a
recently proposed50 split-basis technique are indicated in the
second column, while those obtained from the coordinate-
transformation technique of the present work are shown by the
third set of lines and denoted CT. The remaining set of
calculations is based on the VX equation54 and employs the
R-dependent GP angleγ(R). For completeness, the results
obtained from the CT calculations of the present work are also
defined numerically in Table 1 (all quoted decimal figures for
the eigenvalues are thought to be significant from the analysis
of the associated error norms), while similar tabulations can be
found in the original papers50,60 for the SB andγ(R) methods.
Note that in the SB technique one uses different expansions of
the nuclear wave function forθ < θs andθ > θs. According to
such an approach, the wave function forθ < θs is expanded in
terms of a cosine-type basis which allows to impose the total
electronuclear wave function to be symmetric with respect to
permutation of the two D atoms. Conversely, forθ > θs, one
uses a sine-type basis to impose antisymmetry in the nuclear
wave function and hence make the total electronuclear wave
function symmetric with respect to permutation of the two D
atoms. Clearly, the most interesting comparisons are CT versus

〈φ|m〉 ) 1

x2π
exp(imφ) (14)

∂
2ø

∂φ
2

) exp(iφ2) PFFT-1[-(n + 1
2)2

Cn] (15)

T ) Θ†Φ†VΦΘ (16)

Φm,γ
† ) 1

xNφ

exp(-imφγ) (17)

Φj,â
† ) Njmx2πωâsin|m|-jmin (θâ

2 )Pl ) j-|m|/2
(|m|,0) (cosθâ) (18)

Figure 1. Comparison of the lowest states (E e 4.80 eV) of HD2

calculated without consideration (NGP) and with consideration (GP)
of the geometric phase effect. Shown by the larger lines are the levels
which assume different values in the two sets of GP calculations. See
the text.
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SB, and CT versusγ(R), and hence we focus on them in the
remainder of this section. It is seen that the CT results from the
present work are in excellent agreement (they agree to all quoted
figures) with theγ(R) ones for the lowest 45 levels. For higher
energies, there are differences, as indicated by the larger lines
in Figure 1. Such lines have been drawn so as to extend toward
the set being compared with the CT one. For example, the larger
lines in CT pointing to the right-hand-side and those inγ(R)
pointing to the left-hand-side refer to the CT versusγ(R)
comparison. Similarly, those in CT pointing to the left-hand-
side and those in SB pointing to the right-hand-side refer to the
CT versus SB analysis. Note that all lines indicate that the
assigned levels assume different energies even if their values
coincide up to the third decimal figure. Such differences may
be tentatively explained as follows. In the case of the CT and
γ(R) sets of calculations, we note that a similar situation has
been encountered54 for the vibrational spectra of H3, and hence
the differences encountered are also attributed here to the use
of different geometric phase angles. Of course, the two phases
become identical as one approaches the crossing seam, where
they both have the value ofφ/2. As for the CT versus SB
comparison, we note that, except for level 17 in SB atE )
4.5054 eV which is absent, all other levels of both sets up to
number 45 show excellent agreement with each other. Thus,
except for the small numerical inaccuracies that are unavoidable
(and likely to increase with energy), we can only attribute such
a discrepancy to the distinct algorithms in which the two
approaches are based. A final remark to note is that one may
be tempted to conclude that an exact calculation employing the
various methods would probably yield identical results, which
would provide in itself a manifestation of the fact that physical
quantities such as vibrational levels should be gauged invariant
with respect to different functional forms for the angle around

the conical intersection. Of course, such an issue can only be
clarified when converged results are also obtained for the high-
lying energy levels.

4. Conclusions

In the present work, we have used the traditional Longuet-
Higgins GP angle and a novel coordinate transformation
technique to study the GP effect in the vibrational spectra of
HD2 first-excited electronic state. Except for one missing
vibrational level, numerical calculations have shown that the
lowest 45 levels are in very good agreement with the corre-
sponding results obtained via a split-basis technique.50 Moreover,
the results from the present work are found to be in excellent
agreement with those obtained60 by using the VX equation54

with an R-dependent GP angle. For high energy levels, one
observes significant differences that are in this case mostly due
to differences in the two considered GP angles.
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