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Simple Summary: Normal-to-malignant transition in human cells is still a poorly understood process,
as well as the mechanisms leading to cancer invasion and metastasis. An in-depth characterisation
and understanding of the genetic and chemical variations underlying carcinogenesis and cancer
progression are paramount for improving diagnosis and design better therapeutic strategies, aiming
at a better prognosis for oncology patients. The present study reports the application of spectroscopic
methods (micro-Raman and infrared) for identifying specific biomarkers of malignancy in several
types of human breast cancer cells. The results thus obtained led to an accurate discrimination
between the highly metastatic mammary tumours (triple-negative) and the less aggressive ones
(non-triple negative), as well as among triple-negative subtypes.

Abstract: (1) Breast cancer is presently the leading cause of death in women worldwide. This
study aims at identifying molecular biomarkers of cancer in human breast cancer cells, in order to
differentiate highly aggressive triple-negative from non-triple-negative cancers, as well as distinct
triple-negative subtypes, which is currently an unmet clinical need paramount for an improved
patient care. (2) Raman and FTIR (Fourier transform infrared) microspectroscopy state-of-the-art
techniques were applied, as highly sensitive, specific and non-invasive methods for probing heteroge-
neous biological samples such as human cells. (3) Particular biochemical features of malignancy were
unveiled based on the cells’ vibrational signature, upon principal component analysis of the data.
This enabled discrimination between TNBC (triple-negative breast cancer) and non-TNBC, TNBC
MSL (mesenchymal stem cell-like) and TNBC BL1 (basal-like 1) and TNBC BL1 highly metastatic and
low-metastatic cell lines. This specific differentiation between distinct TNBC subtypes—mesenchymal
from basal-like, and basal-like 1 with high-metastatic potential from basal-like 1 with low-metastatic
potential—is a pioneer result, of potential high impact in cancer diagnosis and treatment.

Keywords: Raman microspectroscopy; FTIR microspectroscopy; human breast cancer cells; breast
cancer differentiation; triple-negative breast cancer (TNBC); TNBC breast cancer subtyping; cancer
diagnosis; cancer chemotherapy

1. Introduction

Breast cancer, a highly heterogeneous disease originating from the epithelial cells lining
the milk ducts, is the second most common type of cancer and the most common in women
(affecting one in every four). Despite all efforts regarding screening and treatment, this type
of neoplasia, with a growing incidence in the last four decades, remains a leading cause of
death among women worldwide (mainly due to bone, lung, brain and liver metastasis) [1,2].
Based on their overall morphology and structural organisation, breast tumours were
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classified into multiple categories, two major groups having been identified (accounting
for ca. 90% of the total cases): invasive ductal and invasive lobular [3,4]. This molecular
classification is based on the presence of specific markers which can define cancer subtypes,
with different prognosis and distinct susceptibility to chemotherapy [5]. The most common
of these biomarkers are the oestrogen receptor (ER), the progesterone receptor (PR) and the
human epidermal growth factor 2 receptor (HER2) [6–8]. A combined assessment of the
three markers (ER/PR/HER2) allows an accurate assignment to specific categories, namely
ER+ (ER+/HER2−), HER2+ (ER−/HER2+), triple-negative (ER−/PR−/HER2−) and triple-
positive (ER+/PR+/HER2+). Additionally, breast cancer sub-classification differentiates
these tumours into five groups [9]: basal-like (BL), luminal (luminal A/HER2 negative,
luminal B/HER2 negative and luminal B/HER2 positive), normal-like, HER2 and claudin-
low. Particularly regarding triple-negative breast cancer (TNBC), a further discrimination
was achieved into several molecular subtypes [7,10–14]: basal-like 1 (BL1), basal-like 2
(BL2), mesenchymal (M), mesenchymal stem cell-like (MSL), immunomodulatory (IM),
luminal androgen receptor (LAR) and an unstable subtype (UNS).

The ER+ breast tumours are those with a best overall outcome, while TNBC (the
majority of which are basal-like) are the ones with the poorest prognosis [15,16], along
with inflammatory breast cancer (a rare and very aggressive type of tumour). TNBC
accounts for ca. 15% of all breast cancers, being more prevalent in premenopausal young
women (under 40 years old) [17,18]. Due to its aggressiveness and metastatic potential
(despite surgical removal of the primary tumour), it has a high risk of recurrence leading to
mortality in the first 5 years after diagnosis [17,19,20]. The overall survival for women with
TNBC is 13.3 months, and less than 30% of the cases survive longer than 5 years [15,18].
While the average time relapse for non-TNBC is 35–67 months, in TNBC patients it is only
19–40 months [18]. Accordingly, the development of novel chemotherapeutic strategies
against triple-negative breast cancer is an urgent clinical need, specifically aiming at a higher
efficacy regarding cell growth inhibition and decreased angiogenesis and invasiveness,
coupled to lower acquired resistance and deleterious side effects.

An early diagnosis is critical for identifying the exact type/subtype of neoplasm with
a view to choose the most effective treatment approach, thus improving chemotherapy
success and survival rates of oncology patients. This relies on a thorough knowledge
of the molecular features of the different types of cancer, that will allow an accurate
discrimination in a rapid and reliable way. The transition from normal to malignant state
and between non-invasive and invasive tumours, are still poorly understood processes.
This type of cell transformation is associated with chemical and morphological variations.
Particularly regarding breast cancer (mainly TNBC), current data suggests that its initiation
and progression may be associated to epigenetic alterations (such as DNA methylation
or chromatin remodelling) [17,21]. Recent studies have focused on the biophysics of the
cancer state, shedding a new light on carcinogenesis beyond the recognised biochemical and
genetic variations associated to malignancy. A strong correlation between neoplasia and
cellular plasticity has been identified, cancer cells displaying an enhanced deformability
relative to non-malignant ones [22–25] which seems to favour uncontrollable growth.
Changes in the dynamical activity of intracellular water between healthy and cancerous
human cells were recently probed by the authors (using neutron scattering techniques) [25].
However, it is still not clear how these chemical and dynamical changes are produced and
how they accumulate in cells, particularly within the tumour microenvironment.

Raman and Fourier transform infrared (FTIR) vibrational spectroscopies are promising
tools in medicinal chemistry, since they are non-invasive, reproducible, cost-effective
and highly accurate analytical techniques that enable rapid measurements and deliver
unique molecular level signatures of biospecimens with high accuracy, sensitivity and
specificity. Instead of monitoring morphological differences as in current histopathological
methods, they probe chemical variations which usually arise earlier. Coupled to optical
microscopy, they allow to interrogate heterogeneous biological samples with unmatched
sub-cellular spatial resolution. They are label-free, deliver chemical image maps apart from
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average biochemical information and can be reliably applied to both in vitro and in vivo
conditions. Hence, there is an increasing number of reported studies on the application
of infrared and Raman spectroscopies to monitor cells, both live and fixed (e.g., healthy
from cancer discrimination and metabolic response to drugs) and tissues (e.g., cancer
diagnosis and treatment monitoring) [4,26–44]. Thanks to their distinctive characteristics
and ease of automation, these techniques constitute an improved approach for cancer
detection when compared to the currently used diagnostic methods such as the gold
standard histopathological assessment (which lacks sensitivity and specificity at an early
stage of the disease). Therefore, their application in the clinical arena may greatly accelerate
point-of-care decisions and improve patient outcomes.

The aim of the present study was to take a step forward and apply complementary
Raman and FTIR microspectroscopy (upon multivariate analysis) to unveil specific and sen-
sitive molecular biomarkers of cancer in human neoplastic breast cells, assessing whether
these techniques are able to detect even more subtle differences than those between malig-
nant and non-malignant cells. Accordingly, an unambiguous discrimination was sought
between: (i) triple-negative and non-triple-negative; (ii) different TNBC subtypes, namely
mesenchymal vs. basal-like and (iii) TNBC basal-like 1 with high-metastatic potential vs.
TNBC basal-like 1 with low-metastatic potential. The results thus obtained should provide
particular features of malignancy and identify specific biochemical reporters, which will
contribute to differentiate different types of human breast carcinoma. This constitutes a
paramount advance in cancer diagnosis, particularly regarding a type of malignancy with
high morbidity and mortality.

2. Materials and Methods

The list of chemicals as well as the details of the cell culture procedure, Raman and
FTIR microspectroscopy measurements, spectral pre-processing and multivariate analysis
are described in the Supplementary Materials.

2.1. Cell Lines

Four human breast cancer cells were investigated in this work: (i) triple negative
(TNBC)-MDA-MB-231 ductal carcinoma, claudin-low/MSL, metastatic; MDA-MB-468
ductal carcinoma, BL1, high-metastatic potential; and HCC-1143 invasive ductal carcinoma,
BL1, low-metastatic potential; (ii) non-triple-negative—MCF-7 adenocarcinoma, luminal
A/HER2 negative, metastatic.

2.2. Sample Preparation for Spectroscopic Analysis

Upon harvesting by trypsinisation, the cells were centrifuged and the pellet was
resuspended in culture medium and seeded at a concentration of 3 × 104 cells cm−2 onto
optical substrates suitable for either Raman [45] or FTIR data collection [46]: respectively
MgF2 (2 × 20 mm) or CaF2 (UV-grade, 1 × 13 mm) disks, previously cleaned with 70%
ethanol and sterilised.

After a 24 h incubation period (allowing the cells to attach), the growth medium was
removed and the cells were washed twice with phosphate buffered saline (PBS), upon
which they were fixed in 4% formalin (diluted in NaCl-0.9% from the commercial 10%
neutral-buffered formalin solution) for 10 min [46]. After repeated washing with pure
water (to remove any residual salt), the disks were allowed to air-dry (at room temperature)
prior to spectroscopic analysis.

All samples were prepared in triplicate, in a single experiment.

2.3. Raman Microspectroscopy

The Raman spectra were recorded in a WITec confocal Raman microscope system
alpha 300R (WITec GmbH, Ulm, Germany) with an automated sample stage, coupled to an
ultrahigh-throughput spectrometer UHTS 300Vis-NIR, using a frequency-doubled Nd:YAG
exciting laser line, at 532 nm.
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2.4. FTIR Microspectroscopy

The microFTIR spectra were acquired in the mid-IR interval (400–4000 cm−1), in
transmission mode, using a Bruker Optics Vertex 70 FTIR spectrometer coupled to a Bruker
Hyperion 2000 microscope, both purged by CO2-free dry air.

Both FTIR and Raman data were captured as single point spectra, each spectrum
recorded on a different single cell, across a cell population comprising randomly distributed
cells displaying a high heterogeneity.

3. Results
3.1. All Breast Cancer Cells—Overall Characterisation

Table 1 comprises the Raman and FTIR experimental wavenumbers obtained for
the cancer cells under study, reflecting their biochemical profile (mainly signals from
DNA, proteins, lipids and polysaccharides) and high heterogeneity. The FTIR and Raman
fingerprint spectra of each cell line were pre-processed and normalized (Figure S1).

Mean spectral biochemical signatures were generated for each type of cell line, by av-
eraging the corresponding Raman or FTIR spectra acquired from different cellular locations
(Figure 1a–d, respectively).

The cells were chemically fixed with a 4% formaldehyde solution (formalin). Formalin
causes crosslinking between the aldehyde and the primary and secondary amine groups of
cellular proteins, thus retaining the cellular constituents in a close to in vivo relationship. It
is expected that formalin fixation procedure induces some reduction of vibrational band
intensities, related to the disruption of lipid assembly and conformational protein changes.
Nevertheless, the fixation has shown to have a weak impact on the overall molecular
content and yielding the spectral profile closest to that observed in the live state. This being
a comparative study, all cell lines were virtually equally affected by the fixation process,
which does not impact on the discrimination attained between the distinct types of cancer
cell lines under the same conditions.

Table 1. Raman and FTIR experimental data for the human breast cancer cell lines MDA-MB-231,
MDA-MB-468, HCC-1143 and MCF-7.

Band (cm−1)
Assignment a

Nucleic Acids Proteins Lipids Carbohydrates

640–642 ν(CS), τ(CC)Tyr

670 (ν(CC)ring)B-DNA/G, T

698 (ν(CC)ring)B-DNA/dG ν(CS)Met

718–722 (νs(CC)ring)B-DNA/A (νs(CC)ring)Trp

754–756 (ν(CC)ring)B-DNA/dT
ν(OPO)DNA

(νs(CC)ring)Trp

780–800 (ν(CC)ring)C, T, U

826–830 (ν(OPO)backbone)B-DNA ν(CC)Pro, Tyr

850–852 ν(CC)Pro, Tyr, Val, δ(CCH)
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934–936 ν(CC)(α-helix) ν(COC)glycolipids ν(COC)glycosidic

1000 (νs(CC)ring)Phe

1030 δ(CH)Phe, ν(O-CH3) ν(CC),
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Table 1. Cont.

Band (cm−1)
Assignment a

Nucleic Acids Proteins Lipids Carbohydrates

1092 νs(PO2
−)B-DNA

1124 ν(CO)RNA/ribose ν(CN) ν(CC)acyl (trans conformation) ν(CO), ν(CC)

1157 ν(CC), ν(CN), ρCH2) ρ(CH2),
ν(=C-C=)conjugated

ρ(CH2)

1172 (ν(CC)ring)C,G,T δ(CH)Tyr, Phe

1206 ν(CC)Hyp, Phe, Tyr

1234 amide III/β-sheet

1238 (νas(PO2
−))B-DNA

1250 amide III/ random coil

1252–1264 (ν(CC)ring)A,T ω(CH2), δ(C=C-H) ω(CH2),δ(C=C-
H)phospholipids

ω(CH2), t(CH2)

1272 amide III/α-helix ω(CH2), t(CH2) ω(CH2), t(CH2)

1302 (ν(CC)ring)RNA/A,C

1312 (ν(CC)ring)G t(CH2) t(CH2) t(CH2)

1334 (ν(CC)ring)G
1372 b (ν(CC)ring)A,G,T (δs(CH3))glycoproteins (δs(CH3))lipids/acyl chains (ω(CH2))saccharides
1400 t(NH2)

1444–1450 α(CH2)
1480 b δs(NH3

+)
1508 Tyr (ν(CC)ring)
1546 ((δ(CN-H)/ν(CN))amide II

1552 (ν(CC)ring)G
(ν(CC)ring)Trp,
ν(C=C)porphyrin

1572–1574 (ν(CC)ring)A,G

1580 ν(C=C), ν(C=N) ν(C=C), ν(C=N)

1602 (ν(CC)ring)T (δ(C=CH))Phe

1612–1690 amide I/β-sheet
antiparallel

1614 (ν(CC)ring)A, δ(NH2)C ν(C=C)Phe, Tyr, Trp, α(NH2)

1612–1690 amide I/β-sheet
antiparallel

1627–1640 amide I/β-sheet
antiparallel

1640–1650 amide I/random coil

1650 δ(NH)DNA ν(C=O)amide I/α-helix ν(C=C)
1690 ν(C=O)amino acid side chain
1717 ν(C=O)B-DNA
1730–42 (ν(C=O)ester)phospholipids
2846–2854 νs(CH2) νs(CH2) νs(CH2)

2873–2878 νs(CH3) νs(CH3) νs(CH3)

2892 νas(CH2) νas(CH2) νas(CH2)

2919 νas(CH2) νas(CH2) νas(CH2)

2924–2930 νas(CH2) νas(CH2) νas(CH2)

2954–2958 νas(CH3)
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Table 1. Cont.

Band (cm−1)
Assignment a

Nucleic Acids Proteins Lipids Carbohydrates

2964 νas(CH3) νas(CH3) νas(CH3)

3070 amide B

3250–3290 ν(NH)amide A

3340–3370 ν(OH)

The signals exclusively detected by either infrared or Raman are shaded in grey or in orange, respectively.
a A—adenine; C—cytosine; dG—deoxyguanine; dT—deoxythymine; G—guanine; Hyp—hydroxyproline; Met—
methionine; Phe—phenylalanine; Pro—proline; T—thymine; Trp—tryptophan; Tyr—tyrosine; U—uracil; Val—
valine. δ—deformation;

Cancers 2022, 14, x FOR PEER REVIEW 4 of 19 
 

 

2.3. Raman Microspectroscopy 
The Raman spectra were recorded in a WITec confocal Raman microscope system 

alpha 300R (WITec GmbH, Ulm, Germany) with an automated sample stage, coupled to 
an ultrahigh-throughput spectrometer UHTS 300Vis-NIR, using a frequency-doubled 
Nd:YAG exciting laser line, at 532 nm. 

2.4. FTIR Microspectroscopy 
The microFTIR spectra were acquired in the mid-IR interval (400–4000 cm−1), in 

transmission mode, using a Bruker Optics Vertex 70 FTIR spectrometer coupled to a 
Bruker Hyperion 2000 microscope, both purged by CO2-free dry air. 

Both FTIR and Raman data were captured as single point spectra, each spectrum 
recorded on a different single cell, across a cell population comprising randomly 
distributed cells displaying a high heterogeneity. 

3. Results 
3.1. All Breast Cancer Cells—Overall Characterisation 

Table 1 comprises the Raman and FTIR experimental wavenumbers obtained for the 
cancer cells under study, reflecting their biochemical profile (mainly signals from DNA, 
proteins, lipids and polysaccharides) and high heterogeneity. The FTIR and Raman 
fingerprint spectra of each cell line were pre-processed and normalized (Figure S1). 

Mean spectral biochemical signatures were generated for each type of cell line, by 
averaging the corresponding Raman or FTIR spectra acquired from different cellular 
locations (Figure 1 a–d, respectively). 

The cells were chemically fixed with a 4% formaldehyde solution (formalin). 
Formalin causes crosslinking between the aldehyde and the primary and secondary amine 
groups of cellular proteins, thus retaining the cellular constituents in a close to in vivo 
relationship. It is expected that formalin fixation procedure induces some reduction of 
vibrational band intensities, related to the disruption of lipid assembly and 
conformational protein changes. Nevertheless, the fixation has shown to have a weak 
impact on the overall molecular content and yielding the spectral profile closest to that 
observed in the live state. This being a comparative study, all cell lines were virtually 
equally affected by the fixation process, which does not impact on the discrimination 
attained between the distinct types of cancer cell lines under the same conditions. 

Table 1. Raman and FTIR experimental data for the human breast cancer cell lines MDA-MB-231, 
MDA-MB-468, HCC-1143 and MCF-7. 

Band 
(cm−1) 

Assignment a 

Nucleic Acids Proteins Lipids Carbohydrates 
640–642  ν(CS), τ(CC)Tyr   
670 (ν(CC)ring)B-DNA/G, T    
698 (ν(CC)ring)B-DNA/dG ν(CS)Met   
718–722 (νs(CC)ring)B-DNA/A (νs(CC)ring)Trp   
754–756 (ν(CC)ring)B-DNA/dT 

ν(OPO)DNA 

(νs(CC)ring)Trp   

780–800 (ν(CC)ring)C, T, U    
826–830 (ν(OPO)backbone)B-DNA ν(CC)Pro, Tyr   
850–852  ν(CC)Pro, Tyr, Val, δ(CCH)  ϒ (COC)polysaccharides 
874–878 (ribose, ν(CC)ring)RNA (ν(CC)ring)Tyr, (ν(CC))Hyp  νs(CCN+)phosphocholine ν(CC), ν(C-O)ring 

890–898  ρ(CH2)   
934–936  ν(CC)(α-helix) ν(COC)glycolipids ν(COC)glycosidic 

1000  (νs(CC)ring)Phe   
1030  δ(CH)Phe, ν(O-CH3) ν(CC), 

ρ(CH2)phospholipids 
ν(CC), ν(CO), ν(C-
OH) 

1062 ν(CO)B-DNA/deoxyribose ν(CC), ν(CN) ν(CC), ν(CO) ν(CC), ν(CO), 
δ(OCH) 

—out-of-plane deformation; τ—torsion; ν—stretching; α—scissoring; ρ—rocking;
t—twisting;ω—wagging. s—symmetric; as—antisymmetric. (FTIR experimental fingerprint wavenumber range
presented in this table were limited to 1000–1800 cm−1, whereas Raman experimental fingerprint wavenumber
range is 600–1800 cm−1.), b Observed only for the MDA-MB-468 cell line.

The spectral regions that showed statistically significant differences across cell lines
comprise contributions from the major cellular components (Table 1): nucleic acids, lipids
(including membrane phospholipids), proteins and carbohydrates (876, 934, 1030, 1062 cm−1).
Significant variations were detected in the Raman profiles, namely regarding the bands as-
signed to the modes ν(CC)DNA/bases (ca. 780 cm−1), ν(CC)RNA (ca. 1302 cm−1),
ν(C=C)proteins/lipids (ca. 1580 cm−1) and ν(CH2)proteins/lipids (ca. 2850 cm−1), the main
differences having been observed for the TNBC BL1 ductal carcinoma (MDA-MB-468)
relative to the other cell lines under analysis. Protein (Amide I and III, respectively at 1650
and 1272 cm−1) and lipid ratios were found to vary among these breast cancer subtypes.
Specifically, regarding the protein spectral profile, these variations are ascribed to the differ-
ent structures and conformations present within the cell (mainly α-helix or β-sheet) [47,48].
In addition, proteins are regarded as important indicators in cancer biology, since protein
metabolism is closely associated to cell proliferation and division, transcription (RNA
synthesis), translation (protein synthesis) and migration processes [4,48]. Some authors
have reported a predominance of proteins in abnormal tissue, both benign and malig-
nant [28,48,49]. In addition, Mohamed and co-workers [35] verified good discrimination
between two TNBC cell lines (MDA-MB-231 and SUM-149) mainly based on the spec-
tral signature of proteins, nucleic acids and amino acids. Furthermore, the characteristic
CH2/CH3 stretching modes (namely from lipid carbon chains), detected at high wavenum-
bers (Table 1), are considered relevant spectral biomarkers for the identification of distinct
types of cancer [48]. These modes are known to vary considerably regarding the type (e.g.,
unsaturation degree) and amount of cellular lipids (e.g., membrane fatty acids). Studies by
Ozek and co-workers [50] highlighted the influence of high amounts of polyunsaturated
fatty acids on the transport and signalling pathways, associated to cell reshaping and adhe-
sion processes that determine metastatic ability. The current study revealed an increased
amount of lipids in the two TNBC BL1 cell lines (MDA-MB-468 and HCC-1143), which is
in accordance with the infrared and Raman data formerly obtained by the authors for the
TNBC MSL MDA-MB-231 cell line [33] that evidenced a high lipid content, particularly
regarding glycerophospholipids known to be augmented in cancer cells [51]. In addition,
other studies have reported an increase in the lipid content in breast cancer cells as com-
pared to normal breast cells [43,52]. Several authors have shown a correlation between the
rise in cytoplasmic lipid droplets and the increase in cancer aggressiveness [38,52,53]—the
number of lipid droplets in non-malignant breast cells being reported as two- and four
times lower than in non-TNBC and TNBC cells, respectively. In addition, a recent Raman
study of human breast cancer cell lines (MDA-MB-231, MDA-MB-435s and SK-BR-3) [38]
also detected a noticeable lipid expression in the MDA-MB-231 TNBC cells when compared
to the non-TNBC (luminal HER2+) SK-BR-3, which was suggested to be due to an increased
content in unsaturated fatty acids (mostly within the membrane). It should be emphasised,
however, that the epithelial MDA-MB-435s cell line was wrongly included in this study
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since it was found to have undergone phenotypic and genotypic drift thus expressing
melanoma-specific genes [54–57].
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Figure 1. Mean Raman spectra (600–1800 cm−1 and 2700–3140 cm−1, (a,b) and mean FTIR spectra
(1000–1800 cm−1 and 2700–3650 cm−1, (c,d)) for the human breast cancer cell lines MDA-MB-231,
MDA-MB-468, HCC-1143 and MCF-7. (δ—deformation; ν—stretching; s—symmetric; as—anti-
symmetric. Phe—phenylalanine; Pro—proline; Tyr—tyrosine; Val—valine. For clarity’s sake, the
mean spectra are offset along the y-axes).

The chemical differences among cell lines were clearly unveiled upon PCA analysis of
the spectroscopic results—both FTIR and Raman (Figures 2 and 3, respectively). Overall, the
FTIR data allowed to differentiate the TNBC cell lines from the non-TNBC (MDA-MB-231,
MDA-MB-468 and HCC-1143 vs. MCF-7) (Figure 2a–f). In addition, there was a very good
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discrimination between TNBC mesenchymal and basal-like cells (MDA-MB-231 vs. HCC-
1143). Major differences in the spectral fingerprint region were along PC-1, explaining 55.0%
of the total data variance. The loading plots corresponding to each principal component
provided information on the main biochemical differences between cells, mainly along
PC-1: a higher contribution from νas(PO2

−)DNA, α(CH2)lipids and ν(C=O)aminoacid/side chain

(at 1238, 1450 and 1690 cm−1, respectively) for MDA-MB-231 (TNBC MSL); a lower input
from Amide I/ν(C=O)peptid bond and ν(C=O)ester/phospholipids (at 1650 and 1730–42 cm−1,
respectively) for MDA-MB-231 and HCC-1143 (TNBC MSL and TNBC BL1—low-metastatic
potential) relative to MDA-MB-468 and MCF-7 (TNBC BL1—high-metastatic potential and
non-TNBC). Analysis along PC-2 did not yield a significant distinction, MCF-7 and MDA-
MB-468 showing a wider dispersion relative to the TNBC cell lines MDA-MB-231 and
HCC-1143: the bands ascribed to ν(CC), ν(CN), ν(CO) and ρ(CH2) from proteins and
carbohydrates, and ν(=C-C=)conjugated from lipids (at 1157 cm−1) displayed the strongest
contribution for the TNBC MSL cell line (MDA-MB-231) and the weakest for TNBC BL1
MDA-MB-468, as opposed to ν(C=O)B-DNA (at 1717 cm−1) which showed an inverse trend;
in turn, α(CH2)membrane lipids (at 1450 cm−1) contributed more for the HCC-1143 cells (TNBC
BL1—low-metastatic potential) and less for the MDA-MB-468 (TNBC BL1—high-metastatic
potential). Regarding the high-wavenumber range the major differences between cell-lines
were detected along PC-2 (mainly for MDA-MB-231), explaining 10.5% of the total data
variance: the ν(CH2)lipids, proteins vibrational modes (at ca. 2850, 2919 cm−1) appear to be
the main responsible for the separation of the TNBC MSL cell line (MDA-MB-231) from
all the others; a stronger contribution from νs(CH3) (at 2877 cm−1) and a lower one from
ν(NH)amide A (at 3250–90 cm−1) was detected for MDA-MB-231; in addition, the Amide A
signal was predominant for the TNBC BL1 cells (MDA-MB-468 and HCC-1143).
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Figure 2. PCA of FTIR data for all cell lines studied (MCF-7, MDA-MB-231, HCC-1143 and MDA-
MB-468). (a,b) Scores and loading plots of the fingerprint region (1000–1800 cm−1). (c) Hierarchical
clustering-derived dendrogram of the mean fingerprint FTIR spectra for the four cell lines. (d,e)
Scores and loading plots of the high wavenumber region (2700–3650 cm−1). (f) Hierarchical clustering-
derived dendrogram of the mean high-wavenumber FTIR spectra for the four cell lines. For clarity’s
sake the spectral loadings are offset, the dashed horizontal lines indicating zero loading.
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From the dendrograms obtained from the average FTIR spectra (Figure 2c,f) a clear
differentiation is observed between MDA-MB-231 and the other cell lines, MCF-7 and
MDA-MB-468 showing the highest similarity (in both spectral regions). It is also evident
that the cluster distance scale shown in the first dendrogram is larger, evidencing that the
underlying variability of the fingerprint region is more relevant for this discrimination.

The Raman data (Figure 3a–f) yielded a much less significant differentiation between
cell lines when compared to infrared. In the fingerprint interval the major differences were
found along PC-1 followed by PC-3 (explaining 45.7% and 7.9% of the total data variance,
respectively), while in the high wavenumber region discrimination was mainly along PC-2
(4.5% of the total data variance). Separation was evident only for the TNBC BL1 cells
(MDA-MB-468 and HCC-1143), based on the signals from ν(CC)DNA/bases (at ca. 780–800
cm−1), ν(PO2

−)DNA (at 1092 cm−1), α(CH2)lipids (at ca. 1450 cm−1), Amide I (at 1650 cm−1)
and νs(CH2/CH3) (at 2846–2964 cm−1).

The dendrograms obtained from the average Raman spectra (Figure 3c,f) reveal that
MDA-MB-468 differentiates well from the other cell lines. Considering the fingerprint
region-derived dendrogram, MCF-7 and MDA-MB-231 are the cell lines that show the
highest similarity, as opposed to the high-wavenumber region where the cell lines with
the highest resemblance are HCC-1143 and MCF-7. Again, the distance scale shown in the
dendrogram from the fingerprint region is larger, reflecting the highest variability in this
spectral region.
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Figure 3. PCA of Raman data for all cell lines studied (MCF-7, MDA-MB-231, HCC-1143 and MDA-
MB-468). (a,b) Scores and loading plots of the fingerprint region (600–1800 cm−1). (c) Hierarchical
clustering-derived dendrogram of the mean fingerprint Raman spectra for the four cell lines. (d,e)
Scores and loading plots of the high wavenumber region (2700–3150 cm−1). (f) Hierarchical clustering-
derived dendrogram of the mean high-wavenumber Raman spectra for the four cell lines.

Tables 2 and 3 represent the confusion tables of the RF classification model validation
for the FTIR and Raman data, respectively. The rows correspond to the cell lines true class
and the columns correspond to the results of the classification model. The values along
the primary diagonal represent the number of correctly classified spectra. Regarding the
FTIR classification model (Table 2), sensitivities of 68.6%-99.7%, specificities of 90.9%-100%
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and overall accuracies of 91.4–99.9% were obtained. MDA-MB-468 is the cell line with the
highest number of misclassifications while MDA-MB-231 is the one with less misclassified
spectra. The highest number of incorrect classifications occurred between MCF-7 and
MDA-MB-468, followed by MCF-7 and HCC-1143 and by MCF-7 and MDA-MB-468. This
is expected given the PCA scores plot shown in Figure 2a, where MCF-7 and MDA-MB-468
show the lowest separation, and the hierarchical clustering-derived dendrogram showing
the shortest cluster distance (Figure 2c).

Table 2. Confusion matrix of RF classification model on independent FTIR data (fingerprint region)
using the 25% held-out validation method, and respective performance metrics (ROC area, sensitivity,
specificity and overall accuracy) of the model towards each group of samples (true class).

Classified as

MCF-7 MDA-
MB-231

HCC-
1143

MDA-
MB-468

ROC
AUC

Sensitivity
(%)

Specificity
(%)

Accuracy
(%)

Tr
ue

cl
as

s MCF-7 415 0 11 22 0.97 92.6 90.9 91.4
MDA-MB-231 0 450 1 0 0.99 99.7 100.0 99.9

HCC-1143 31 0 347 15 0.97 88.3 97.6 95.2
MDA-MB-468 71 0 17 192 0.96 68.6 97.1 92.0

Table 3. Confusion matrix of RF classification model on independent Raman data (fingerprint region)
using the 25% held-out validation method, and respective performance metrics (ROC area, sensitivity,
specificity and overall accuracy) of the model towards each group of samples (true class).

Classified as

MCF-7 MDA-
MB-231

HCC-
1143

MDA-
MB-468

ROC
AUC

Sensitivity
(%)

Specificity
(%)

Accuracy
(%)

Tr
ue

cl
as

s MCF-7 63 15 5 4 0.90 72.2 89.8 85.8
MDA-MB-231 25 48 1 2 0.89 63.6 93.8 87.6

HCC-1143 3 1 83 1 0.97 94.3 96.2 95.8
MDA-MB-468 2 3 5 119 0.97 92.2 97.2 95.5

For the Raman classification model, sensitivities of 63.6%–94.3%, specificities of 89.8%–
97.2% and overall accuracies of 85.8–95.8% were obtained (Table 3), the latter being lower
than those obtained with FTIR. MDA-MB-231 is the cell line with the highest number
of misclassifications (with a limited sensitivity of 63.6% and specificity of 93.8%), and
HCC-1143 and MDA-MB-468 present the lowest number of misclassified spectra (with
sensitivities and specificities above 92% and an overall accuracy above 95%). The most
incorrect classifications were found for MDA-MB-231, which was misclassified as MCF-
7. This result was expected given the PCA scores plot shown in Figure 3a (MCF-7 and
MDA-MB-231 not discriminated along either PC-1, PC-2 or PC-3). Although the number
of spectra per class did not vary substantially in this study, and a large number of spectra
were used, a careful analysis must be performed when using decision trees algorithms
given their sensitivity to class imbalance.

3.2. TNBC versus Non-TNBC Cells

A PCA analysis was performed for the vibrational data obtained for TNBC (MDA-MB-
231, HCC-1143 and MDA-MB-468) as compared to non-TNBC (MCF-7) cell lines (Figure 4a–
i), enabling to discriminate between them. For the infrared fingerprint region, separation
was obtained along PC-1 (upon a PC-1 vs. PC-5 combination, representing 55.0% and 3.3%
of the total data variance, respectively) based on: a higher contribution from νas(PO2)DNA
(at 1238 cm−1) coupled to a lower input from ν(CC)RNA/bases (at 1302 cm−1) and Amide
I (at 1650 cm−1) for TNBC cells. Regarding the Raman data, PC-2 explains 25.8% of the
total data variance for the fingerprint interval, followed by PC-3 (7.4%), the separation
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between triple-negative and non-triple negative cells being more evident along PC-3,
mainly according to: ν(CC)DNA/bases (at ca. 780–800 cm−1), Amide I (at ca. 1650 cm−1) and
ν(PO2

−)DNA (at 1092 cm−1), which contribute more significantly for the TNBC cells, while
α(CH2) (at 1450 cm−1) is predominant for non-TNBC. For the Raman high wavenumber
range, in turn, separation between triple-negative and non-triple-negative cell lines occurs
along PC-2 (4.4%) based on the νs(CH2/CH3) modes (at ca. 2846–2970 cm−1), possibly due
mostly to variations in the lipidic cellular content (which are known to be closely linked to
invasiveness and metastatic ability, that characterise TNBC).
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Figure 4. PCA of FTIR and Raman data for TNBC vs. non-TNBC cells. (a,b) Score and loading
plots of the FTIR fingerprint region. (c) Confusion table of the FTIR classification model tested
on independent data. (d,e) Scores and loading plots of the Raman fingerprint region. (g,h) Scores
and loading plots of the Raman high wavenumber region. (f,i)—Confusion tables of the Raman
fingerprint (f) and high wavenumber (i) classification models tested on independent data.
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Figure 4c,f,i shows the confusion tables of the FTIR classification models concerning the
comparison between TBNC and non-TNBC cell lines. Spectra from TNBC achieved a higher
percentage of correct classification than spectra from non-TNBC. Considering TNBC as the
positive class, a sensitivity of 89.6% and a specificity of 81.7 % were obtained, with an overall
accuracy of 87.3%. The Raman results led to higher sensitivities (94.4% and 97.0% for the
fingerprint and high wavenumber regions, respectively), at the cost of poorer specificities
(43.0% and 54.4% for the fingerprint and high wavenumber regions, respectively), with an
overall accuracy of 80.5% and 85.4% respectively for the fingerprint and high wavenumber
regions). This reflects the incomplete TBNC vs. non-TNBC separation already evidenced in
the corresponding PCA scores (Figure 4d,g).

3.3. TNBC—Mesenchymal Stem-Cell Like versus Basal-like 1 Cells

The results gathered for the mesenchymal stem cell-like (MDA-MB-231) and basal-
like (MDA-MB-468 and HCC-1143) triple-negative breast cancer cell lines were anal-
ysed by PCA and compared (Figure 5a–i). A clear separation was achieved between
these two groups by FTIR and Raman. For the former, discrimination was observed
along PC-1 for the fingerprint interval (51.1%) and along PC-2 for the high wavenumber
range (18.3%), based on the following spectral differences reflected in the loading plots
(Figure 5b,e): a higher contribution from ρ(CH2)phospholipids (at 1030 cm−1), Amide I (at ca.
1650 cm−1), ν(C=O)ester/phospholipids (at 1730–42 cm−1) and Amide A (ν(NH)peptidic (at 3250–
90 cm−1), combined with a smaller influence from ν(=CC=)conjugated/lipids (at 1157 cm−1)
and (CH2)lipids (at 1450 and 2846–78 cm−1) for BL1 cells as compared to MSL. Concerning
the Raman data, a MSL from BL1 separation was attained by combining PC-2 and PC-3,
based on: ν(CC)DNA/bases (at ca. 720 and 754 cm−1), ν(CO)DNA/deoxyribose/ν(CC/CN)proteins/lipids

(at 1062 cm−1) and α(CH2)lipids (at 1450 cm−1) more significant for MSL, as compared to
ν(OPO)DNA/backbone (at 780 cm−1) and Amide I (at 1650 cm−1), higher for BL1.

This discrimination between mesenchymal- and basal-like TNBC subtypes is note-
worthy and suggests a significant biochemical variation among them. To the best of the
authors´ knowledge, this is the first report of such a differentiation based on FTIR and
Raman microspectroscopic techniques.

Figure 5c,f,i depicts the confusion tables of the classification models concerning the
MSL vs. TBNC BL1 cells. Regarding the FTIR data, sensitivities of 99.6% and 96.2%, and
specificities of 99.9% and 99.4%, were achieved for the fingerprint and high-wavenumber
regions, respectively (considering MSL as the positive class). The number of misclassified
spectra were lower in the fingerprint region than in the high wavenumber interval (only
3 misclassified spectra in a total of 1124). The overall accuracy was 99.8% and 98.1%, for the
fingerprint and high wavenumber ranges, respectively. The Raman results were reflected a
slightly less clear separation (Figure 5g), with a sensitivity of 86.4%, a specificity of 93.2%,
and an overall accuracy of 90.9%. A higher percentage of Raman spectra from MSL cells
were misclassified when compared to TNBC BL1.

3.4. TNBC Basal-like 1 Cells—High-Metastatic versus Low-Metastatic Potential

Apart from being able to differentiate MSL from BL1 triple-negative breast cancer
cells, discrimination between the TNBC BL1 cell lines under study was also attained—
high-metastatic potential MDA-MB-468 vs. low-metastatic potential HCC-1143 ductal
carcinomas (Figure 6a–l).

According to the infrared results this separation was evident along PC-2 (explaining
28.8% and 12.4% of the data variance respectively in the fingerprint and high wavenum-
ber regions), mainly based on: a higher contribution from ν(CC/CO)DNA/lipids/carbohydrates/
ν(CN)proteins/δ(OCH)carbohydrates (at 1062 cm−1), Amide I (at ca. 1650 cm−1) and
ν(CH2)lipids/proteins. (at ca. 2850 and 2919 cm−1) for metastatic MDA-MB-468, coupled to a
smaller input from t(NH2)proteins (at 1400 cm−1) and Amide A (at ca. 3290 cm−1). Concern-
ing the Raman data, MDA-MB-468 from HCC-1143 discrimination occurred along PC-1
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for the fingerprint interval (57.6%) and along PC-2 for the high wavenumber range (3.9%),
centred on: a larger influence from ν(CC)DNA bases (at 780, 1334 and 1372 cm−1), Amide
IIIβ sheet (at 1234 cm−1),ω(CH2)carbohydrates δs(CH3)glycoproteins/acyl chains (at 1372 cm−1) and
νs(CH2)lipids/proteins/carbohydrates (at ca. 2848 cm−1) for MDA-MB-468, combined to a lower
contribution from α(CH2)lipids (at ca. 1440 cm−1) and νas(CH2)lipids/proteins/carbohydrates (at
2924–30 cm−1).
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Figure 5. PCA of FTIR and Raman data for TNBC MSL vs. TNBC BL1 cell lines. (a,b) Score
and loading plots of the FTIR fingerprint region. (d,e) Scores and loading plots of the FTIR high
wavenumber region. (c,f) Confusion tables of the fingerprint (c) and high wavenumber (f) FTIR
classification models tested on independent data. (g,h) Scores and loading plots of the Raman
fingerprint region. (i) Confusion table of the Raman classification model tested on independent data.
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plots of the Raman high-wavenumber region. (i,l) Confusion tables of the fingerprint (i) and high 
wavenumber (l) Raman classification models tested on independent data. 

According to the infrared results this separation was evident along PC-2 (explaining 
28.8% and 12.4% of the data variance respectively in the fingerprint and high wavenumber 
regions), mainly based on: a higher contribution from ν(CC/CO)DNA/lipids/carbohydrates/ν(CN)pro-

teins/δ(OCH)carbohydrates (at 1062 cm−1), Amide I (at ca. 1650 cm−1) and ν(CH2)lipids/proteins. (at ca. 
2850 and 2919 cm−1) for metastatic MDA-MB-468, coupled to a smaller input from 
t(NH2)proteins (at 1400 cm−1) and Amide A (at ca. 3290 cm−1). Concerning the Raman data, 
MDA-MB-468 from HCC-1143 discrimination occurred along PC-1 for the fingerprint in-
terval (57.6%) and along PC-2 for the high wavenumber range (3.9%), centred on: a larger 
influence from ν(CC)DNA bases (at 780, 1334 and 1372 cm−1), Amide IIIβ sheet (at 1234 cm−1), 
ω(CH2)carbohydrates δs(CH3)glycoproteins/acyl chains (at 1372 cm−1) and νs(CH2)lipids/proteins/carbohydrates (at ca. 

Figure 6. PCA of FTIR and Raman data for TNBC BL1/high-metastatic potential (MDA-MB-468) vs.
TNBC BL1/low-metastatic potential (HCC-1143) cell lines. (a,b) Scores and loading plots of the FTIR
fingerprint region. (d,e) Scores and loading plots of FTIR high wavenumber region. (c,f) Confusion
tables of the fingerprint (c) and high wavenumber (f) FTIR classification models tested on independent
data. (g,h) Scores and loading plots of the Raman fingerprint region. (j,k) Scores and loading
plots of the Raman high-wavenumber region. (i,l) Confusion tables of the fingerprint (i) and high
wavenumber (l) Raman classification models tested on independent data.

Figure 5c,f,i depicts the confusion tables of the classification models for the HCC-1143
vs. MDA-MB-468 cells. Regarding the FTIR data the classification accuracy was high, with
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sensitivities of 94.4% and 97.0%, and specificities of 98.9% and 92.9%, respectively for the
fingerprint and high-wavenumber regions (considering HCC-1143 as the positive class).
For Raman, the percentage of correctly classified spectra was even higher (both in the
fingerprint and high-wavenumber intervals), reflecting the clearer separation shown in
Figure 6g,j. Sensitivities of 95.6% and 98.9%, and specificities of 98.3% and 95.0% were
obtained (respectively for the fingerprint and high wavenumber regions).

4. Discussion

Cancer cells display a high intertumour heterogeneity—between different types of
tumour, distinct stages of neoplastic progression or even across geographical regions—not
yet fully understood at the molecular level. This heterogeneity is due to both intrinsic and
extrinsic parameters, such as genomic instability, epigenetic alterations, plastic signal trans-
duction, stemness (ability for self-renewal and differentiation) and/or variations within the
tumour microenvironment (e.g., hypoxia, vascularisation and inter-cellular interactions).
The phenotypic diversity of cancer cells is correlated to their migratory and metastatic
nature, as well as to chemoresistance [52,58,59], and has severe implications on patients´
prognosis since metastasis is one of the main reasons of cancer-related mortality and drug
resistance is a major limiting factor in therapy response and clinical outcome. Furthermore,
the multiple morphological signatures of cancer cells, marked by distinct morphodynamics,
have been found to be associated to their ability to invade (upon epithelial-to-mesenchymal
transition (EMT)) and migrate to distant loci [52,58]. A molecular level approach on this
intra-tumour heterogeneity, such as the one currently performed, will allow to determine
the main chemical differences between distinct types (and sub-types) of cancer, and is
expected to help understand tumour evolution and assist in diagnosis and treatment.

Breast cancer, in particular, is a highly heterogeneous disease triggered by a variety
of genetic alterations in mammary epithelial cells. It is associated to a large cell plasticity
and a remarkable ability to adapt to changing physiological conditions (through rapid
genetic/epigenetic reprogramming and transcriptomic/proteomic changes) [8,60]. Among
breast tumours, TNBC´s are those with a largest heterogeneity and highest mortality rates.
To this date, there are no reliable biomarkers to identify these types of tumours, nor FDA-
approved targeted therapies available for TNBC patients. The differentiation presently
obtained between TNBC and non-TNBC cell lines is therefore a relevant result with a
potential high clinical impact. This distinction was mainly based on DNA and protein
vibrational signatures, which were found to predominate in the former while the signals
from lipids appeared to be prevalent in non-TNBC cells. This agrees with the enhanced cell
cycle and cell division constituents and pathways typical of triple-negative cancer cells.

Discrimination within the TNBC MSL and BL1 cell lines, in turn, rested on major DNA
and lipid contributions for the mesenchymal stem cell-like MDA-MB-231 cells, as compared
to a higher influence of proteins and membrane phospholipids for the basal-like MDA-MB-
468 and HCC-1143 cells. These findings are compatible with the increased expression of
genes involved in cell proliferation and differentiation, cell motility and growth signalling
pathways in TNBC MSL tumours. In fact, the MDA-MB-231 cells, displaying a stellate
morphology, are the most aggressive TNBC cells based on a low expression of cell-cell
adhesion genes (low claudin levels, a key protein component of cellular junctions) coupled
to a very high expression of epithelial-to-mesenchymal transition genes [14,61,62].

Finally, separation between the TNBC basal-like low and high-metastatic potential cell
lines was established upon the larger impact of the protein constituents in the metastatic
MDA-MB-468 ductal carcinoma (displaying a grape-like morphology) relative to HCC-1143.
Actually, matrix enzymes such as metalloproteinases (MMPs) and heparanase are responsi-
ble for degradation of the extracellular matrix, which prompts epithelial-to-mesenchymal
transition thus facilitating cancer cell motility, invasion and metastasis characteristic of the
MDA-MB-468 cells.
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5. Conclusions

Single-point FTIR and Raman acquisition were performed on different human breast
cancer cells, delivering specific vibrational spectroscopic signatures that allowed us to
identify biochemical changes between cellular subtypes with high accuracy.

Upon a chemometric (PCA) analysis, several degrees of discrimination were achieved
among the cell lines under study: TNBC from non-TNBC, TNBC MSL from TNBC BL1
and TNBC BL1 with either low-metastatic or high-metastatic potential. Actually, besides a
reliable detection of triple-negative human breast cancer, a highly specific differentiation
between distinct subtypes of TNBC was obtained, which is an innovative and highly
promising result, particularly aiming at an application in the clinics. The results currently
obtained give an important insight over the expected subtle spectral changes among TNBC
cell lines, bringing complementary knowledge to the already documented differences
between normal and malignant tissues.

This molecular approach to a highly heterogeneous tumour such as breast cancer may
greatly contribute to gain an in-depth understanding of the molecular changes underlying
cell plasticity during neoplastic progression, which will hopefully allow an early identifica-
tion of low prognosis breast cancers and the development of novel therapeutic strategies
leading to an improved clinical outcome.

These results may also pave the way for a bench-top to bedside translation of FTIR
and Raman microspectroscopy techniques, in a near future (to assist histopathological
analysis), within the current efforts to apply cutting-edge technologies in personalised
health oncology.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cancers14020452/s1. The Supplementary Materials contain the
list of chemicals, as well as the details of the microRaman and microFTIR data acquisition, pre-
processing and analysis. The Supplementary Materials also comprises Figure S1: Pre-processed and
normalised FTIR (1000–1800 cm−1) and Raman (600–1800 cm−1) fingerprint spectra for each cell
line. The average spectra are plotted in black. (a,b) MCF-7; (c,d) MDA-MB-231; (e,f) HCC-1143; (g,h)
MDA-MB-468.
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