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Large-scale immune monitoring is becoming routinely used in clinical trials to identify

determinants of treatment responsiveness, particularly to immunotherapies. Flow

cytometry remains one of the most versatile and high throughput approaches for single-

cell analysis; however, manual interpretation of multidimensional data poses a challenge

when attempting to capture full cellular diversity and provide reproducible results. We

present FlowCT, a semi-automated workspace empowered to analyze large data sets. It

includes pre-processing, normalization, multiple dimensionality reduction techniques,

automated clustering, and predictive modeling tools. As a proof of concept, we used

FlowCT to compare the T-cell compartment in bone marrow (BM) with peripheral blood

(PB) from patients with smoldering multiple myeloma (SMM), identify minimally inva-

sive immune biomarkers of progression from smoldering to active MM, define prognostic

T-cell subsets in the BM of patients with active MM after treatment intensification, and

assess the longitudinal effect of maintenance therapy in BM T cells. A total of 354 sam-

ples were analyzed and immune signatures predictive of malignant transformation were

identified in 150 patients with SMM (hazard ratio [HR], 1.7; P , .001). We also deter-

mined progression-free survival (HR, 4.09; P , .0001) and overall survival (HR, 3.12; P 5

.047) in 100 patients with active MM. New data also emerged about stem cell memory

T cells, the concordance between immune profiles in BM and PB, and the immunomodu-

latory effect of maintenance therapy. FlowCT is a new open-source computational
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Key Points

� FlowCT is a new
computational work-
space for unveiling
cellular diversity and
objectively identifying
biomarkers in large
immune monitoring
studies.

� FlowCT identified
T-cell biomarkers
predictive of
malignant transforma-
tion and survival in
SMM and active MM
data sets.
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approach that can be readily implemented by research laboratories to perform quality

control, analyze high-dimensional data, unveil cellular diversity, and objectively identify

biomarkers in large immune monitoring studies. These trials were registered at www.

clinicaltrials.gov as #NCT01916252 and #NCT02406144.

Introduction

The promising results of novel immunotherapies for the treatment of
solid and hematologic malignancies1-4 have boosted efforts to charac-
terize the immune escape that underlies tumor progression and deter-
mine immune responsiveness to treatment.5-13 Ideally, dissecting the
relationship between immune states and tumor depletion will acceler-
ate the development of more effective immunotherapies.14 Accord-
ingly, comprehensive studies that profile multiple cell types at different
time points are frequently included in clinical trials with the aim of
developing large immune data sets integrated with the features, treat-
ment, and outcome of patients. This is mandatory for discovering bio-
markers and for risk stratification toward precision immunotherapy.

Flow cytometry is commonly used for immune monitoring because
of its ability to rapidly measure multiple parameters with high accu-
racy and single-cell resolution, low operating costs, and wide avail-
ability. Furthermore, technological advances in flow cytometry led to
an increasing number of parameters being measured simultaneously
in millions of single cells.15 However, fast-growing high-dimensional
data continue to be manually analyzed through traditional inspection
of 2-dimensional biaxial plots and the sequential application of Bool-
ean gates, which are hand-drawn on the basis of the distribution of
marker intensity of individual cells.16 In theory, this may lead to sub-
jective and potentially biased results with low reproducibility; in prac-
tice, such time- and labor-consuming analyses are almost unfeasible
in large data sets. Thus, there is an unmet need for novel computa-
tional tools for immune monitoring using flow cytometry.

Computational flow cytometry uses a data-driven approach to ana-
lyze, visualize, and interpret data in a more automated, reproducible,
and unbiased way when compared with manual analysis.15-17 A few
software tools were developed in recent years to perform quality
control, visualize, or analyze large high-dimensional flow cytometry
data sets.18-24 However, computational frameworks with good flexi-
bility and scalability for analyzing multiple batches of high-
dimensional immunophenotypic studies are scarce.25,26 Thus, there
is a need to develop workspaces with all of the tools required for
complete processing of large data sets27,28; the workspaces should
be user friendly for flow cytometry users who have limited training in
bioinformatics, and they should be open-source for easy adoption.

Here we present FlowCT, an all-in-one workspace empowered to
process large flow cytometry data sets that include high numbers of
cells and parameters in multiple samples from large cohorts. The
workflow includes data pre-processing and normalization, automated
clustering, dimensionality reduction, and predictive modeling cou-
pled with statistical tools; in addition, our framework facilitates the
incorporation of single-cell tools developed for other omics (eg, Seu-
rat and Monocle). As a proof of concept, we used FlowCT to
address 4 research questions in multiple myeloma (MM) and T-cell
biology. We deliberately selected MM because of the growing inter-
est in immune monitoring of premalignant stages to understand,

predict, and overcome disease progression,29,30 for profiling
patients’ immune status to identify determinants of response and
resistance to therapies, and for defining posttreatment signatures of
immune surveillance.31

Patients and methods

Patients and samples

A total of 354 samples from 250 patients were included in this
study. There were 164 peripheral blood (PB) and 10 bone marrow
(BM) specimens from 150 patients with smoldering MM (SMM), as
well as 180 BM aspirates from 100 patients with active MM. These
cohorts were selected to evaluate the performance of FlowCT while
addressing a specific research question. Thus, paired BM and PB
samples from 10 patients with SMM were analyzed to objectively
compare T-cell distribution in both specimens. PB samples from
150 patients with SMM were analyzed for discovery of immune bio-
markers associated with disease progression. PB samples from 14
patients were profiled to compare the distribution of T-cell subsets
at baseline and the moment of progression. BM specimens from
100 patients with MM collected before maintenance were mined to
impartially identify immune signatures predictive of outcome. A total
of 120 BM aspirates from 40 patients with MM collected at the
beginning of and after 1 and 2 years of maintenance therapy were
selected to analyze multiple batches of experiments performed at
different time points, while determining the effect of prolonged
immune modulation on T cells.

Median time between diagnosis and immune profiling of patients
with SMM was 20 months. Patients with active MM were treated
according to the GEM2012MENOS65 and GEM2014MAIN clinical
trials.32,33 The first trial included 6 induction cycles of bortezomib,
lenalidomide, and dexamethasone (VRD), autologous transplanta-
tion, and 2 consolidation cycles of VRD. Afterward, patients were
enrolled in the GEM2014MAIN clinical trial, which randomly
assigned maintenance therapy with lenalidomide and dexametha-
sone (RD) or RD with ixazomib for 2 years, after which patients con-
tinued maintenance with RD for 3 additional years if they were
minimal residual disease (MRD) positive or stopped maintenance if
they were MRD negative. Each study site’s independent ethics com-
mittee approved the protocol and informed consent forms, which
were required before patients could enroll. Studies were conducted
per the ethical principles of the Declaration of Helsinki.

Multidimensional flow cytometry

immunophenotyping

Samples were collected in tubes containing EDTA and were proc-
essed within 24 hours after the EuroFlow lyse-wash-and-stain proto-
col (adjusted to 106 nucleated cells).34 Detailed information about
monoclonal antibodies (mAbs) per combination (Tubes) used in this
study is provided in supplemental Table 1. Paired BM and PB
specimens from 10 patients with SMM were stained with a mAb
combination designed to characterize the polarization of CD4
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T cells (Tube 1). PB samples from 150 patients with SMM were
analyzed with another mAb combination to evaluate the expression
of activation molecules and checkpoint inhibitors in multiple T-cell
subsets (Tube 2). Then, 180 BM aspirates from 100 patients with
MM collected before and during maintenance were profiled with a
combination of markers to characterize T-cell subsets (Tube 3).
Data acquisition of 8-color mAb combinations was performed in a
FACSCanto II flow cytometer using FACSDiva 8.0.1 software (both
from Becton Dickinson Biosciences, San Jose, CA). Data acquisi-
tion of 8 and 17 markers (Tubes 4 and 5) was performed in a Cyto-
Flex LX flow cytometer using CytExpert software (both from
Beckman Coulter Life Sciences, Indianapolis, IN). Data acquisition
of a 24-mAb combination (Tube 6) was performed by using an
Aurora flow cytometer and SpectroFlo software (both from Cytek
Biosciences, Fremont, CA).

Fluorescence-activated cell sorting

Ten different T-cell subsets were sorted from PB samples from 3
healthy adults, processed immediately after collection by using a
FACSAria II flow cytometer (Becton Dickinson Biosciences) and a
combination of 8 mAbs (CD27-BV421, CD4-BV510, CD45RA-fluo-
rescein isothiocyanate [FITC], CXCR3-phycoerythrin [PE], CD8-
peridinin chlorophyll protein complex Cy5.5 (PerCPCy5.5), CCR4-
PECy7, CCR6-allophycocyanin [APC], and CD197-APC-H7). Each
subset was defined by its singular immunophenotypic profile deter-
mined by FlowCT. Approximately 30000 isolated cells per subset
were collected in 100 mL of lysis/binding buffer (Thermo Fisher Sci-
entific, Waltham, MA) and immediately processed for RNA sequenc-
ing (RNA-seq).

RNA-seq

RNA-seq was performed after massively parallel single-cell RNA-seq
(MARS-seq) protocol with minor modifications adapted for measur-
ing RNA expression in bulk cells.10 Poly-A RNA was reverse tran-
scribed using poly-dT oligos carrying a 7-bp index. Pooled samples
were subjected to linear amplification by in vitro transcription. The
resulting RNA was fragmented and dephosphorylated. Ligation of
partial Illumina adaptor sequences was followed by a second
reverse transcriptase reaction. Full Illumina adaptor sequences were
added during final library amplification. Quantification of RNA-seq
libraries was performed with a Qubit 3.0 Fluorometer (Life Technolo-
gies, Carlsbad, CA) and size profiles were examined with a 4200
TapeStation System (Agilent Technologies, Santa Clara, CA). Librar-
ies were sequenced in an Illumina NextSeq 500 (Illumina, San
Diego, CA) at a depth of 10 million reads per sample.

Data analysis and system requirements

Immunophenotypic data were analyzed using R version 4.0.0 soft-
ware. All phases of the workflow were performed on laptops
equipped with an i7 8565u central processing unit and 16 GB
DDR4 random access memory, except the analysis of 150 patients
with SMM and 100 patients with MM that was run on an x86_64-
redhat-linux-gnu platform (under CentOS Linux 7 [Core]). When
indicated, other flow cytometry software was used (Infinicyt v2.0;
Cytognos SL, Salamanca, Spain). FlowCT can be installed from
GitHub and a detailed tutorial is available at https://github.com/
paiva-s-lab/FlowCT/blob/main/tutorial.md. Table 1 describes the al-
gorithms embedded in FlowCT and a list of the main software pack-
ages included in FlowCT is available in supplemental Table 2.

Those interested in using FlowCT should have a basic knowledge
of R software to understand and use its script, which is described
in the tutorial. A brief description of the FlowCT workflow is pro-
vided in the supplemental Material.

Statistical analyses were performed using FlowCT. The Mann-
Whitney and Kruskall-Wallis nonparametric tests were used to com-
pare differences between groups. Time to progression (TTP),
progression-free survival (PFS), and overall survival (OS) were esti-
mated using the Kaplan-Meier method, and differences were tested
for statistical significance with the (two-sided) log-rank test. TTP
was defined as the time from immunophenotyping until the date of
disease progression to active MM; patients not known to have pro-
gressed at last follow-up were censored on the date they were last
examined. PFS was defined as the time from immunophenotyping
until disease progression or death as a result of any cause. OS was
defined as the time from immunophenotyping until death as a result
of any cause; patients not known to have progressed or died at last
follow-up were censored on the date they were last examined.

RNA-seq data were analyzed as described elsewere.10 Briefly, raw
sequencing data were demultiplexed using bcl2fastq software (ver-
sion 2.20.0; Illumina) and aligned to the GRCh37 human genome
using STAR35 aligner (version 2.6.1c). Matrixes with gene counts
were generated with quant3p (a wrapper based on HTSeq36

dynamics). Analysis of differentially expressed genes was performed
using DESeq237 and DEGreports38 R packages available in version
3.5.1. A likelihood-ratio test was used to select genes differentially
expressed across all cell types identified by using FlowCT (Bonfer-
roni-adjusted P , .01), which were then used to perform a super-
vised hierarchical clustering of different samples.

Results

T-cell distribution in paired PB and BM samples

It is expected that monitoring tumor immune surveillance and
escape could help identify patients with SMM at risk of malignant
transformation.39 In this case, it would be desirable if immune moni-
toring could be performed periodically in PB samples as opposed
to a (single) BM aspirate analyzed at diagnosis. However, it is cur-
rently unknown whether the immune composition in PB mirrors the
one found in the tumor microenvironment. So we used FlowCT to
perform a holistic and objective comparison of the T-cell compart-
ment in paired PB and BM specimens from patients with SMM (n
5 10). We also selected this example for a stepwise detailed expla-
nation of its workflow in the online tutorial.

After quality control using flowAI23 to remove outliers, margin
events, and doublets (supplemental Figure 2), automated clustering
was performed by using self-organized maps (FlowSOM) (supple-
mental Figure 3A-B). At this stage, cluster annotation can be
achieved by visualizing expression levels of each marker on uniform
manifold approximation and projection (UMAP) (supplemental Figure
3C) and on 2-dimensional biaxial plots using either FlowCT (supple-
mental Figure 3D) or standard flow cytometry software on saved
flow cytometry standard (FCS) files (supplemental Figure 4). Lym-
phocytes were selected for downstream subclustering after super-
vised annotation (Figure 1A). Batch effect was removed with
canonical correlation analysis (supplemental Figure 5) and lympho-
cytes were subclustered using phenotyping by accelerated refined
community partitioning (PARC). Automated clustering identified 25
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subsets (Figure 1B; supplemental Figure 6), and a significant corre-
lation between PB and BM was observed in 20 of the 25 subsets
(Figure 1C). Conversely, the percentage of CD4 central memory
(CM) T cells (CD4 CM CCR41CXCR31, CD4 CM CCR61, CD4
CM Th17) and CD4 stem cell memory (SCM) T cells (CD4 SCM
CCR41) was significantly higher in PB than in BM, whereas a natu-
ral killer cell subset without CD8 expression was significantly
reduced (Figure 1D; supplemental Figure 7A-B). Significant correla-
tions within PB and BM subsets were observed and could poten-
tially be related to antigen-dependent differentiation of CD4 and
CD8 T cells (supplemental Figure 8).

Automated clustering using PARC uncovered the presence of 13
CD4 T-cell clusters, including 2 CD4 TSCM subsets with (poten-
tially) divergent polarization based on differential expression of
CCR4 and CXCR3 (Figure 2A). To assess whether these unique
phenotypic clusters were linked to well-defined transcriptional states
and were not an artifact of computational flow cytometry, we iso-
lated 10 subsets associated with the transition from CD4 naïve to
CD4 CM cells from PB samples of 3 healthy adults (to avoid con-
founding factors associated with cancer or treatment in patients)
and performed RNA-seq (Figure 2A-B). There was identical cluster-
ing according to gene expression profiles of the 10 CD4 T-cell

subsets defined on phenotypic grounds, including the 2 CD4
TSCM clusters identified by differential expression of CCR4 and
CXCR3 (Figure 2C). Thus, while performing an objective compari-
son of lymphocyte distribution in the PB and BM of patients with
SMM, FlowCT enabled the identification of unique phenotypic and
transcriptional states within the CD4 differentiation and polarization
trajectories (Figure 2D).

T-cell subsets associated with the malignant

transformation of SMM

Immune dysfunction is a hallmark of benign and active stages of
MM.9,29,40 However, which immune cell types are significantly asso-
ciated with its malignant transformation remains largely
unknown.29,41 So we evaluated the performance of FlowCT for
immune biomarker discovery in 150 PB samples from patients with
SMM. In spite of the large data set and the length of time needed
to gather it (22 months), technical variability was successfully cor-
rected using the gaussNorm method. Afterward, we narrowed the
analysis to CD4 and CD8 T cells that were subclustered after initial
clustering of PB lymphocytes using FlowSOM (Figure 3A). FlowCT
identified 22 CD4 and 18 CD8 T-cell subsets. A statistical compari-
son between patients with SMM who had stable disease (n 5 124)

Table 1. Main functions embedded in FlowCT and their application

Embedded functions Utility

Quality control

flowAI flow_auto_qc Removes low-quality events by evaluating flow rate, signal acquisition, and
dynamic range.

Marker normalization

flowStats gaussNorm & warpSet Normalizes flow cytometry data sets by aligning high-density regions (ie,
landmarks or peaks) for each channel.

Seurat SelectIntegrationFeatures & IntegrateData Identifies anchors between pairs of data sets and uses them to remove
confounding factors.

harmony HarmonyMatrix Corrects batch effects through a maximum diversity algorithm (ie, soft k-
means) and a mixture model–based linear correction.

Automatic clustering

FlowSOM BuildSOM & ConsensusClusterPlus Creates clusters from flow cytometry data sets based on self-organizing
map (SOM) and minimal spanning trees (MSTs).

PARC PARC Identifies single-cell clusters through a combination of graph-based
clustering and pruning, coupled with the Leiden community-detection
algorithm.

Rphenograph Rphenograph Clusters single cells by using the Louvain method based on a previous
phenotypically defined graph.

Seurat FindNeighbors & FindClusters Finds single-cell communities based on k-nearest neighbor (KNN) graphs
and clustering via Louvain or smart local moving (SLM) algorithms.

Dimensionality reduction

Rtsne Rtsne Calculates t-distributed stochastic neighbor embedding (t-SNE).

uwot tumap Calculates uniform manifold approximation and projection (UMAP).

densvis densmap & densne Produces lower-dimensional embeddings (t-SNE- and UMAP-based)
preserving the density of cells.

Machine learning

biosigner biosign Features selection by running partial least squares-discriminant analysis
(PLS-DA), random forest, and support vector machine (SVM)
simultaneously (all methods as binary classifiers).

randomForestSRC rfsrc Selects immune populations based on random forest building and
incorporates survival information.

SurvBoost boosting_core Detects more relevant populations through gradient boosting algorithm and
includes survival data.
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and those who had progressive disease (n 5 26) uncovered signifi-
cantly higher frequencies of TCD41CD28–TIGIT1CD127low,
TCD41CD28–CD1271, TCD81CD28–TIGIT1, and TCD81CD28–

TIGIT1CD1271 T cells in the latter (supplemental Figure 9).

We next sought to identify an immune signature associated with
TTP. Because of the risk of overfitting when using Cox proportional
hazard models to analyze high-dimensional data,42 we implemented
the FlowCT machine learning tools that were designed to overcome
this limitation. By applying the gradient boosting algorithm to the
data set (with patients being classified into different groups based

on high, intermediate, or low frequency of each subset according to
their 66th and 33rd percentiles) (supplemental Table 3), we
identified 6 populations—double positive, TCD41CD281CD1271,
TCD41CD281TIGIT1CD127low, regulatory T cell (Treg) TIGIT1

CD39dim, Treg TIGIT1CD391, and TCD81CD28–TIGIT1PD11

CD1271 T cells—whose frequency was associated with TTP. On
the basis of the weight direction of the 6 immune subsets (ie, high-
est values being associated with inferior TTP; supplemental
Figure 10A), we developed a model in which low, intermediate, or
high frequency of these cell groups were assigned 1, 2, or 3 points,
respectively. After dividing patients with SMM into 2 groups on the
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Figure 1. T-cell distribution in paired BM and PB samples. (A) UMAP of eosinophils, erythroblasts, granulocytes, lymphocytes, and monocytes. (B) UMAP of 25

lymphocyte subsets identified in BM and PB samples from patients with SMM (n 5 10). (C) Correlation map comparing the frequency of each lymphocyte subset in BM to

the subsets in PB. Size and color of circles are proportional to the correlation coefficients, and the number of asterisks represents significance. *, .05; **, .01; ***, .001.

(D) Dumbbell plot reporting lymphocyte subset distribution between BM and PB (statistically significant differences are identified by red lines).
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basis of a score below or above the median scoring value, we
observed that those with more than 24 points had significantly
higher risk of transformation (n 5 21 of 65) compared with patients
with equal to or less than 24 points (n 5 5 of 85) (hazard ratio

[HR], 1.7; 95% confidence interval [CI], 1.33-2.18; P 5 .00002)
(Figure 3B). Interestingly, the frequency of Treg CD39dim, double-
positive, and CD81CD28–TIGIT1PD11CD1271 T cells further
increased from baseline to the moment of progression
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Figure 2. CD4 T-cell subsets with singular transcriptional states. (A) UMAP of peripheral blood lymphocytes from 3 healthy adults analyzed by flow cytometry

immunophenotyping. (B) Principal component (PC) analysis of RNA-seq data from 10 subsets identified within the CD4 T-cell compartment and isolated by multidimensional

fluorescence-activated cell sorting. A putative trajectory is indicated in (A) and from Naïve to central memory (CM) CD4 T cells (B), which subsequently diverge according to

T-helper polarization. (C) Heatmap based on gene expression of 10 CD4 T-cell subsets: naive, SCM CCR41, TSCM CXCR31, central memory (CM) CXCR31 and

CXCR41, CM without expression of any marker, T-helper type 1 (Th1), T-helper type 1/17 (Th 1/17), T-helper type 2 (Th2), T-helper type 17 (Th17), and CCR61 CM. Tran-

scriptional programs were defined by k-means clustering. Gene expression is represented by a row z-score. (D) The z-score of gene expression in CD4 T-cell subsets

according to their transcriptional program.
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(supplemental Figure 10B). We found a significant correlation
between our risk model (based on immune profiling) and the 2/20/
20 [.2 g/dL of serum M-protein, .20% serum free light-chain ratio,

and .20% plasma cells found by BM biopsy] risk model proposed
by the International Myeloma Working Group (IMWG) (P 5 .02)
(Figure 3C).
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Figure 3. T-cell subsets associated with the malignant transformation of SMM. (A) UMAP of the entire T-cell compartment and CD4 and CD8 subsets in PB of

150 patients with SMM. (B) Risk stratification according to the presence of 24 or fewer vs 24 or more points (prognostic scores of 1 and 2, respectively) based on 1, 2,

or 3 points being attributed according to low, intermediate, or high frequency of double-positive (DP), TCD41CD281CD1271, TCD41CD281TIGIT1CD127low, Treg

TIGIT1CD39dim, Treg TIGIT1CD391, and TCD81CD28–TIGIT1PD11CD1271 T cells. (C) Pie charts display the distribution of patients based on the 2/20/20 [.2 g/dL of

serum M-protein, .20% serum free light-chain ratio, and .20% plasma cells found by BM biopsy] risk model of the IMWG in each subgroup of patients defined by their
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immune scores.
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Figure 4. T-cell biomarkers of survival in active MM. (A) UMAP of BM lymphocytes in BM aspirates from 100 patients with MM that were collected after treatment

intensification (GEM2012MENOS65) and before maintenance (GEM2014MAIN). (B-C) Gradient boosting was performed in all 33 subsets to identify prognostic T-cell biomarkers;

6 T-cell types (TCD41Naive, TCD41EM CD127lowPD11, TCD41CM CD127lowPD1–, TCD81EM CD127lowPD11, TCD81TEMRA CD127low PD11, and Tgd CD8– TEMRA)

were associated with survival and were modeled to generate a prognostic score. Based on the negative or positive weight of the 6 subsets, a model was developed in which low

frequency was assigned 1 point and high frequency was assigned 2 points. Patients were stratified according to the presence of #5 points (prognostic score 1) or .5 points

(prognostic score 2). PFS (B) and OS are shown (C). (D) Number of MRD-positive and MRD-negative patients in each immune risk group.
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T-cell biomarkers of survival in active MM

Despite the longstanding enthusiasm regarding the putative role of
the immune system in controlling low levels of MRD, there is virtually
no information regarding which cell types are prognostically relevant
in this disease setting. So we used FlowCT to analyze the BM
T-cell compartment of 100 patients with MM after treatment intensi-
fication and before maintenance therapy to identify immune bio-
markers of prolonged survival.

Technical variability was corrected by using the warpSet and gauss-
Norm algorithms, and BM lymphocytes were clustered with Flow-
SOM. A total of 33 subpopulations were identified: 15 CD4, 11
CD8, and 4 gd T-cell subsets plus a single CD4 and CD8 double-
positive T-cell cluster (Figure 4A). We then performed an unsuper-
vised hierarchical clustering to evaluate possible correlations
between patients’ tumor immune microenvironment and clinical fea-
tures by using the Revised International Staging System, standard-
risk vs high-risk cytogenetic abnormalities, and MRD response
assessed by next-generation flow cytometry. There was no evident
correlation between patient clustering according to the distribution
of the 33 immune cell types and clinical features (supplemental Fig-
ure 11A); no significant differences were observed between MRD1

and MRD– patients.

We then applied the gradient boosting algorithm and identified 6
immune subsets whose frequency was significantly associated with
PFS: TCD41 Naive, TCD41 EM CD127lowPD11, TCD41 CM
CD127lowPD1–, TCD81 EM CD127lowPD11, TCD81 EMRA
CD127lowPD11, and Tgd TCD8– TEMRA T cells [TEMRA is
defined as effector memory CD45RA1 T cell] (supplemental Figure
11B). High and low frequencies of each subset were defined by
using cutoffs identified by maxstat and were respectively assigned 1
or 2 points. Patients were then scored and divided into 2 risk
groups on the basis of a score below or above the median scoring
value; the frequency of each cell type in both groups is shown in
supplemental Figure 11C. Patients with high-risk score (#5 points)
showed significantly inferior PFS (HR, 4.09; 95% CI, 1.98-8.45; P
5 .0001) and OS (HR, 3.12; 95% CI, 0.95-10.23; P 5 .047) (Fig-
ure 4B-C). There were no significant differences in patients’ MRD
status according to the immune risk score (Figure 4D).

Immune modulation of BM T cells during

maintenance

Current maintenance regimens in MM use lenalidomide for long
periods, but knowledge about the effects of prolonged immune
modulation remains limited. Thus, we used FlowCT to analyze the
BM T-cell compartments of 40 patients with MM before and after 1
and 2 years of maintenance. This is an ideal data set for evaluating
the performance of FlowCT in processing data collected over time
and resolving inevitable technical variation in studies conducted
over long periods.

Technical variability was corrected using warpSet and gaussNorm.
The automated clustering of BM lymphocytes was performed with
FlowSOM, and the cluster annotation was performed with Infinicyt
(supplemental Figure 12A). Computational analysis of 8-dimensional
immunophenotypic data uncovered the presence of 33
T-lymphocyte clusters in the tumor microenvironment: 15 CD4
T-cell subsets, including 2 types of Tregs (CCR71 and CCR7–), 11
CD8 T-cell subsets, CD4 and CD8 double-positive T cells, and 6
clusters of gd T cells (Figure 5A-B; supplemental Figure 12B-F).
The frequency of TCD41 CM CD127lowPD1–, TCD41 EM
CD1271PD1–CD251, Treg CCR7–, TCD81 EM CD1271PD1–,
TCD81 EM CD1271PD1–CD251, and Tgd CD8dim EM cells
increased over time (Figure 5C). Conversely, TCD41 CM
CD127lowPD11, TCD41Naïve, and TCD41 EMRA CD127lowPD1–

cells decreased during maintenance. Moreover, we found divergent
trajectories in the distribution of 3 immune cell types (ie, double
positive, TCD41 TEMRA CD127lowPD1–, and TCD81 EM
CD1271PD1– T cells) in patients treated with RD compared with
these 2 drugs plus ixazomib (Figure 5D). It should be noted that
even though the differences are statistically significant, most of the
differences in the frequencies of T-cell clusters were subtle and their
clinical significance is unknown.

Discussion

Standard flow cytometry has been frequently used for immune moni-
toring43 and newer instruments measuring 30 or more parameters
will undoubtedly enhance the ability of flow cytometry to profile
patients with cancer. However, data interpretation based on multiple
biaxial plots that increase quadratically with the number of parame-
ters being analyzed is a dimensionality explosion that should not be
prolonged.43 Thus, the analysis of high-dimensional single-cell flow
cytometry should rely on computational methods that leverage the
multiparametric nature of this technology. Here, we present FlowCT
to empower flow cytometry users with a relatively simple workspace
to process, analyze, and visualize large data sets. Final results can
be exported in tabular format for statistical analysis and in FCS for-
mat for classical flow cytometry interpretation using other software;
however, both can be performed within FlowCT. To our knowledge,
this is the first time this type of tool has been used in MM, and we
illustrated the strength of computational flow cytometry by answer-
ing 4 research questions.

A critical aspect of immunophenotyping in large studies is the tech-
nical variation between cytometers and longitudinal differences in
samples collected across broad time scales (eg, clinical trials).16

Thus, we embedded multiple methods in FlowCT that enable data
cleaning and quality checking, including canonical correlation analy-
sis from Seurat,44 which was adopted for the first time to normalize
flow cytometry data. Indeed, we showed here how technical arti-
facts or batch effects intrinsic to large cohorts studied over long
periods were successfully normalized using FlowCT.

Figure 5. Immune modulation of BM T cells during lenalidomide maintenance. (A) UMAP of BM lymphocytes from patients with active MM (n 5 40). (B)

Phylogenetic tree and hierarchical clustering of unique subpopulations within CD4, CD8, and gd T cells. (C) Pie chart diagrams showing the distribution of T-cell subsets

significantly altered from the pre-maintenance time point to the second year of maintenance within CD41, CD81, and gd T cells. (D) Spider plots displaying the kinetics of

T-cell subsets that were significantly different between patients treated with Rd and these 2 drugs plus ixazomib (IRd). M1, 1st year of maintenance; M2, 2nd year of mainte-

nance; PC, post-consolidation; TEMRA, T-cell effector memory CD45RA1.
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There has been a massive increase in data collection in biomarker
cancer research.45 Clustering leads to the loss of single-cell resolu-
tion, but it also facilitates interpretation of large data sets, so multiple
techniques for automated clustering were included in FlowCT (ie,
FlowSOM, Phenograph, Seurat, and PARC). Unlike other algo-
rithms, FlowSOM and PARC do not require down-sampling (ie,
reducing the number of events being analyzed); therefore, they can
analyze larger numbers of cells within a reasonable computation
time.18,21 Clustering approaches using FlowSOM or PARC can pro-
vide optimal results in large flow cytometry data sets,43,46 and they
outperform Phenograph or Seurat in terms of both speed and ability
to detect rare cell populations. We demonstrated the capability of
both techniques by showing how they clustered and subclustered
major lymphocyte compartments into numerous immune subsets.
This was evident when using more conventional 8-color immunophe-
notyping and became even more evident when applied to high-
dimensional flow cytometry data (an example of increasing complexity
of scaling from 8 to 17 mAb combinations is provided in supplemen-
tal Figures 13 and 14). Although it is beyond the scope of this study,
we also evaluated the performance of FlowCT in PB samples from 3
healthy adults that were stained with 24 mAbs and measured in a
spectral flow cytometer (supplemental Figure 15). Collectively, these
findings illustrate the high level of cellular diversity within common
immune subsets, which can be depicted by FlowCT analysis of both
conventional and spectral flow cytometry data.

Effective visualization of large, diverse, and high-dimensionality data
is mandatory.45 Although principal component analysis is commonly
used as a linear approach, it is typically less powerful than nonlinear
methods such as t-distributed stochastic neighbor embedding (t-
SNE) and UMAP. t-SNE is frequently used in mass cytometry or for
single-cell RNA-seq data, but it struggles to analyze large numbers
of cells because of its slow computational time.47 Conversely,
recently developed UMAP overcomes this and other constraints on
t-SNE performance by preserving both local and global distances
among cells without requiring greater computational load. UMAP
also adds new observations to existing plots and recapitulates
developmental trajectories. Here we showed that FlowCT was com-
putationally efficient on standard computers, and by avoiding down-
sampling, it was able to identify clusters with low frequency such as
2 SCM T-cell subsets based on differential antigen expression of
CCR4 and CXCR3 (3.78% and 1.89% of the lymphocyte subpop-
ulation, respectively, that is, #0.5% of total PB cells), which were
associated with singular transcriptional states. We also performed
an objective comparison between lymphocyte distribution in paired
PB and BM samples from patients with SMM and observed that
most subsets showed a significant correlation. Exceptions were
TCD4 SCM or TCD4 CM cells, which could be related to the diver-
sity of antigens present in PB and BM, or in other sites from which
CD4 T cells egressed into the PB.

Using big data and machine learning for clinical cancer care is now
a realistic and achievable goal, as demonstrated recently by analyz-
ing samples from solid tumors.48 Several machine learning algo-
rithms are included in FlowCT and could be used to build predictive
models of survival (gradient boosting49 and random forest50) or to
learn classification rules (ie, to identify variables associated with a
specific feature, such as partial least squares [discriminant analysis],
random forest, and support vector machines).51 In this study, we
used gradient boosting to identify new T-cell biomarkers in patients
with SMM or active MM. It is plausible that these T-cell subsets

could remain unnoticed with manual analysis of data; thus, computa-
tional flow cytometry will likely be mandatory for biomarker discovery
and precision immunotherapy. Here, patients with SMM who had
increased percentages of 4 TIGIT1 T-cell subsets showed a higher
risk of transformation, and others have shown that MM escape can
be prevented by TIGIT blockade.52 Interestingly, patients’ immuno-
score were only partially related to the IMWG 2/20/20 criteria,53

and future studies should investigate a potential complementarity
between both models toward the identification of patients with high-
risk IMWG symptoms that may not progress at 2 years because of
active immune surveillance, as well as patients with IMWG low- or
intermediate-risk disease who progress earlier than expected
because of immune escape.

Novel tools for mining single-cell data have been specifically
designed for mass cytometry or single-cell RNA-seq. Likely because
of this and because of the fact that there are few open-source and
integrated frameworks,43,44 computational flow cytometry is not
being applied in cancer immunology. Workspaces such as FlowCT
are a prerequisite for accelerating the analysis of large immunophe-
notypic data sets toward the development of deep learning algo-
rithms, which would improve the ability of flow cytometry to predict
outcomes in patients with hematologic malignancies.54 Its open-
source nature provides room for continuous improvement and for
the development of data-driven predictive models resulting from
embedded large data sets carefully annotated with patients’ treat-
ments and outcomes. Here, we started with 100 patients with active
MM who were monitored before maintenance, and we showed a
potential complementarity between immune and MRD monitoring to
predict outcome and the impact that maintenance may have in the
frequency of singular cell types.

One limitation of this study is that the discovery of putative predic-
tive immune biomarkers in patients with SMM or active MM was not
validated in independent data sets. Ideally, these results will motivate
worldwide investigators to add immune profiles from these and
other disease scenarios to pave the way for a holistic, unbiased,
and objective association between cellular phenotypes and clinical
outcomes.
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