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Abstract: Dementia remains an extremely prevalent syndrome among older people and represents
a major cause of disability and dependency. Alzheimer’s disease (AD) accounts for the majority
of dementia cases and stands as the most common neurodegenerative disease. Since age is the
major risk factor for AD, the increase in lifespan not only represents a rise in the prevalence but
also adds complexity to the diagnosis. Moreover, the lack of disease-modifying therapies highlights
another constraint. A shift from a curative to a preventive approach is imminent and we are moving
towards the application of personalized medicine where we can shape the best clinical intervention
for an individual patient at a given point. This new step in medicine requires the most recent
tools and analysis of enormous amounts of data where the application of artificial intelligence (AI)
plays a critical role on the depiction of disease—patient dynamics, crucial in reaching early/optimal
diagnosis, monitoring and intervention. Predictive models and algorithms are the key elements
in this innovative field. In this review, we present an overview of relevant topics regarding the
application of Al in AD, detailing the algorithms and their applications in the fields of drug discovery,
and biomarkers.
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1. Introduction

Alzheimer’s disease (AD) remains the most common neurodegenerative disorder
worldwide, with a prevalence of 3.9% for individuals over the age of 60 [1,2]. Being an
age-related disease, diagnosis has become a great challenge, and early detection is therefore
crucial to allow for future planning and in providing better methods for individuals to be
selected for clinical trials before the pathology reaches levels of irreversible neurological
loss [3].

AD is characterized by the accumulation of amyloid-beta (Af3) plaques and tau-related
neurofibrillary tangles that affect the prefrontal and mesial-temporal areas of the brain.
The detrimental effects of these changes translate to a progressive decline of memory and
cognitive function caused by the loss of brain tissue (atrophy) and alterations in neural
circuitries [4], especially in those related to acquisition, consolidation, reconsolidation, and
extinction of memory and learning [5]. In addition to the neuropathological hallmarks of
AD, metabolic [6] and neuroinflammatory [7] pathways are stated to influence the disease
course and etiology.

Owing to several failed attempts in delivering effective therapies for AD patients, the
general interest has switched from a curative approach to a preventive perspective, where
with the intent of testing disease-modifying therapies [8], studies have shifted focus on
selecting individuals in preclinical or prodromic stages. In these early phases, patients
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are largely asymptomatic or present with a pure memory deficit, commonly referred to as
mild cognitive impairment (MCI), which could eventually progress to AD-dementia, with
a conversion rate of 12-15% per year [9]. Therefore, improving diagnosis and predicting
the progression and conversion to dementia constitute major goals in the search towards
personalized medicine in AD.

The goal of treatment in AD patients is to mitigate (and whenever possible, improve)
cognitive loss and to maintain autonomous function. The pharmacological alternatives
for therapy (related to the symptomology) range from targeting the modulation of the
affected neural circuitries, by extensive and diverse molecular targets, to the improvement
of behavioral manifestations [6]. Alternatively, there are non-pharmacological approaches
such as psychotherapy and non-invasive brain stimulation (NIBS). As a novel technique,
NIBS has delivered promising results in the restoration of cerebral activity regarding the
consolidation and reconsolidation processes [10].

Due to an increased lifespan, the number of patients assisted in dementia clinics has
risen and the amount of clinical information continues to grow exponentially, requiring a
more technological approach for data analysis. Traditional data analysis methods usually
evaluate occurrence, providing results that can lack precision and are time-consuming and
costly. Therefore, applying the most advanced techniques can lead to an accurate evaluation
of classifications and relationships, that could be generalized to new data. These are suited
for handling large and complex data and are typically applied for prediction and pattern
recognition [11], and also for complementing a correct diagnosis and categorization into
clinical trials. Moreover, storage sustains a crucial role, as the development of databases
provide the opportunity to organize, label and classify individuals at a faster rate. Bearing
this in mind, there is a need for designing and implementing specific architectures to store
the information of interest in a more secure and efficient manner, allowing for easier access
and analysis.

Concerning the possibility of improving diagnosis and predicting progression and con-
version to AD, it could be beneficial to apply technological approaches such as algorithms,
known as artificial intelligence (AI) or machine learning (ML), that are low-cost tools with
great performance metrics. In such algorithms, a specific set of features or variables is
established, through which a given set of instructions is commanded to discover patterns
that can express categorization or associations. Behind this process is a strong mathematical
component mainly focused on probability and delineating limits through the measure of
distances between points.

The application of precision medicine, with the use of Al techniques, represents an
emerging approach for disease treatment and prevention that combines multimodal infor-
mation with variables such as lifestyle, genetics, physiology, and environmental factors.

This review consists of an overview of the most relevant concepts of the use of
Al—highlighting ML and DL models—in AD research. The structure will be divided
into two sections: (1) implemented algorithms and their fundaments—omitting the deep
technical aspects; and (2) the data-driven applications.

The topics depicted within each section will be selected based on those aspects that
were more commonly applied to AD, according to the scientific literature published in
the last five years. This review represents an overview of the main characteristics, current
applicability, and future perspectives of the implementation of Al in healthcare, specifically
in dementia.

2. Approaches for Developing ML Models in AD Research

The terms Al and ML [12] (their relation can be seen in Figure 1) refer to the method
where a computer can simulate the human processes of learning and reasoning, by ana-
lyzing information and performing tasks following a logical sequence (through a set of
instructions). In an oversimplified way, during these processes, when presented with a
new object/information, we are able to extract a number of characteristics similar to those
of previously known elements (feature extraction) and those that are distinctive of the
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new elements (rule-based reasoning), and then name or label it to be quickly recognizable
(classification). When applying a more complex system, it is expected that the computer
can process enormous amounts of information rapidly and reach solutions to complex
problems or follow patterns to generate logical results, with a smaller error rate.

{ARTIFICIAL INTELLIGENCE ]

1950 1990 2010
LEARNING RANDOM LARGE-SCALE
MACHINE DECISION TREES ~ COMPUTING

Figure 1. Timeline of the developments of artificial intelligence as an evolution of innovative algorithms.

The steps to develop an ML model (shown in Figure 2a) consist of three main aspects:
(I) A well-structured and well-conceptualized data frame—since the quality of the input
data will reflect on the quality of the output-; (II) The separation of the data frame into
training and testing data, where it is recommended to add a cross-validation step, as a
resampling method, with the intent of excluding results caused by chance; (III) The final
model providing the best performance metric, bearing in mind several aspects such as if it
answers the scientific question, if it can be generalizable to the population and if the results
can be replicated.

TRAINING SET

Cross-validation |

1
i
1
i e, HYPERPARAMETER
| P .. OPTIMIZATION
! H
1
1
PRE-PROCESSING E i \ A
T 75-90% E
INITIAL ! | SPLIT / |
DATASET | ! - e e e MODEL-T==={* gesr
1
e 2510%  TESTING SET FEATURE/ALGORITHM
N / PERFORMANCE
(a)
Linear Regression
SUPERVISED LEARNING = o010 Losisi Regression
MACHINE LEARNING Cateqgorized or labeled — CLASSIFICATION Decision Tree k-Nearest Neighbor
9 input data Random Forests Support Vector Machine
k-means
CLUSTERING ’ )
WSUPER\"SED LEARNING — Hierarchical Clustering
Dataset without previous \ DIMENSIONALITY Principal Component Analysis
classification REDUCTION tSNE

(b)

Figure 2. Basis of machine learning: (a) Scheme of the stages of development of a machine learning
prediction model; (b) Types of machine learning algorithms.
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Additional to the information presented in the introduction, the advantages of apply-
ing algorithms in dementia rely on the capacity of handling data more efficiently and the
ability to automate, especially in the development of tools that can aid decision making in
the dementia clinics. They also have disadvantages, mainly linked to inadvertent errors
and the inclusion of biases. Tackling these limitations is dependent on sound preprocessing
methods, where the normalization of the data and the handling of missing values are
crucial. As these algorithms are always based on mathematical and statistical principles,
they follow the concepts of logic, discrimination, and probability theories.

One of the aspects requiring caution is the possibility of overfitting, a statistical term
where the model uses noise as a component negatively influencing the outcome, since
it can add the contribution of features that are not part of the underlying distribution.
This is the case when there are excessive features or variables in display and insufficient
subjects [13]. As a counterpart there is the possibility of underfitting, where there are
insufficient variables presented as input.

One key constraint of Al refers to the quality of the data “fed” to the computer. As
with any scientific process, the manipulation of the information to be analyzed, where
characteristics are fitted to reach a particular purpose, can damage the inference about the
underlying pathological process. Hence, the production of biases is generally introduced
by the scientist/data analyst, resulting in a compromised output due to erroneous premises.
The recommendation of preprocessing to “clean” the data and the removal of certain
outliers, translating to an exclusion bias, could tamper the final conclusions. Moreover,
with the intent of evaluating generalizability: excessive heterogeneity presented on the
sample can harm the results, the same applies to its counterpart (homogeneity). It is always
important to keep the research question in mind and the interpretability of the results
within the biological context, and to remain aware of the high degree of complexity.

ML algorithms are divided into two branches (Figure 2b): supervised learning, where
it is required to present the category or class of the groups of interest, and unsupervised
learning, where there is no need to provide a labelled variable of class. Both will be
presented and further detailed in the following sections.

2.1. Supervised Training

The first scientific article using ML algorithms applied in AD was from Mundt and
collaborators in 2000. The objective was to create and evaluate a psychometric screening
instrument where the scale and performance metrics would help discriminate between con-
trols and probable Alzheimer’s patients. The authors collected and analyzed several items
on surveys performed to caregivers and the neuropsychological scores from patients. They
applied a decision tree to discriminate nondemented patients and those with probable AD.

The algorithm used in this work, and decision trees, consist of recursive partitions
of data into increasingly homogeneous subsets. Each partition gives rise to a node, that
represents a single variable—a decision point—that helps maximize the separation between
two groups, in its simpler form as binary classes [14,15]. Although the application could
translate to classification, its purpose was to evaluate associations, therefore the statistical
process behind it was based on regression.

Since decision trees are susceptible to small changes in the data, altering the structure
of the tree and as consequence the results, other algorithms were used for more reliable
and robust outputs.

In 2008, Teramoto, published an article based on the application of a semi-supervised
algorithm with random forests and a method of label propagation that he concluded was
beneficial for having high performance outcomes in predicting an AD patient in the early
stages using a small training sample.

Random forests (RF) is a supervised learning method based on decision trees and
regression trees. It uses a resampling method creating pseudo-replicates, known as boot-
strapping. Each sample creates a tree classifier selecting a variable at each node, and then
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selects the best split given an averaged result. It is considered a classifier since it constructs
the task-specific distance metric, a measure of similarity or ranking [16-18].

In the late 2000s, another type of ML algorithm, support vector machine, began taking
over in the areas of neuroimaging and genetics. Studies by Capriotti and collaborators [19]
in 2006, used this algorithm to predict human neurodegenerative diseases due to a single
point mutation at the start of a protein sequence; and Li and collaborators in 2007 [20]
used it specifically for processing magnetic resonance images of AD patients with the
intent of determining subtle changes in the hippocampus that could discriminate them
from controls.

Support vector machine (SVM) is another supervised learning algorithm that provides
classification. It is based on a mixture of geometric and probabilistic concepts, in which the
goal is to create a separation of two well-defined sections of points, and due to the inherent
complexity of the distribution of the dataset, it generates a hyperplane (a mathematical
extrapolation to create boundaries in higher dimensions). In the algorithm the selection
is determined from the best suited hyperplane, calculated by the maximal distance, and
then converted to a separation of clusters in minimal dimensions. One characteristic is
that it prevents an unclean separation by allowing some misclassifications, known as a soft
margin [21-23].

2.2. Unsupervised Training

In the early 2000s, unsupervised learning algorithms were also applied in neuroimag-
ing and genetics specifically for AD. Studies by Royall and collaborators [24], and Zhang
and colleagues [25], published in 2002, applied hierarchical cluster analysis. The former,
sought to determine the contribution of cortical regions of interest in spatial distribution
of tauopathy in autopsy material and to perform a dimensionality reduction simply as
a statistical method. The latter, used hierarchical cluster analysis to determine gene ex-
pression patterns searching for the associated genes for the development of the human
hippocampus with those AD-related.

As mentioned above, hierarchical clustering is a statistical method that was imple-
mented as an algorithm. It consists of the identification of distinct groups (clusters), with
similar characteristics determined by specific features. It uses a measure of spatial ap-
proximation between points in a plane. Additionally, it orders the distances between each
possible cluster formation by creating a node, in the shape of a tree, following the maxi-
mum likelihood, and generates a dendrogram of this measure [26]. At the end, if there is
good separation between the clusters, they would be identified as the classes or categories
of subjects.

Besides clustering, another section of unsupervised learning methods consist of those
developed to perform dimensionality reductions. Gottfries and collaborators in 2001,
published a study where they analyzed multimodal information collected from elderly
patients who complained about cognitive disturbances. Of the 19 variables they established,
two principal components indicated the two routes of cognitive impairment, one related
to one-carbon metabolism and the other related to dementia. They emphasized that the
results of the application of principal component analysis should be used to generate a
biological hypothesis and explained them as speculations over its generalizability, as a tool
that requires further discernment.

Since the data used in health sciences are of increased complexity, having a great
number of variable inputs, an enormous effort is required to process them simultaneously.
Principal component analysis (PCA) was developed as a tool to reduce the number of
dimensions. It determines the lesser components containing most of the data variation,
requiring extraction of those that represent more than 90% of variance. It can help to define
differences and similarities in the sample. Mathematically, it can be used as a symmetrical
covariance matrix, by a specific set of vectors of a linear transformation. Overall, the
more-varied component is stated as the most important contributor [27-29].
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All the algorithms described above, of supervised and unsupervised learning, bear
some limitations that have allowed for the deployment of new strategies and new codes.
Related to trees and forests, Gradient Boosting (GB) (for example, XGBoost) aimed to
minimize errors in the pruning of trees that misclassified the most and allowed for an
improved generalization [30,31]. Unsupervised learning has evolved to a greater extent
given its plasticity, especially due the advances in neural networks.

One of the technological milestones of recent decades refers to the creation of super-
computers. Due to the improvements in processing capacity, less time is needed for the
computer to perform an increasing number of operations, and we now have the power to
analyze enormous quantities of information quicker. This has opened the window for the
rise of deep learning, also known as artificial neural networks [31].

2.3. Deep Learning

Deep learning remains essential in the field of image and language processing, ge-
nomics, and drug discovery. Neural networks are based on a specific set of decision rules,
in imaging for example, these help to recognize and distinguish between an object and
its background. The model is set as a multilayer architecture, based on a series of stages
or modules. On each layer the weighted sum of inputs from the previous one results in a
non-linear function that passes into the next, referred to as backpropagation, and overall
assembling a hierarchical composition of similar features [32]. The layers allow for the
amplification of aspects that are established as important in the data, analyzing them in
detail at each level, due to the application of several subsampling methods. To perform
optimally, it is important to contain a great magnitude of information as an input, hence
the concept of big data remains deeply associated to deep learning implementation.

Having covered all the key aspects -in a simple perspective- of ML algorithms applied
to AD, we wish to revisit a topic described in the introduction: the databases. Fostering
the enrichment of the information collected and analyzed in single clinics to bring in the
opportunity of convergence to multicenter studies, which has increased substantially in the
number of subjects and provided diversity, thus allowing us to unravel hypotheses about
the underlying aspects of the disease from a broader perspective.

Multicenter associations originated with the objective of validating diagnostic tools
(such as neuropsychological tests and biomarkers), and continually seek to innovative
effective therapies. In the early 1990s, the Alzheimer’s Disease Cooperative Study (ADCS)
was created as a consortium of research facilities around the United States of America and
Canada fostering new drugs for AD [33]. Otherwise in Europe, the efforts to build co-joint
studies came with the creation of the European Union, giving rise to programs such as
the EU Joint Programme-Neurodegenerative Disease Research (JPND) and the European
Alzheimer’s Disease Consortium (EADC).

Acknowledging the benefits of a multicentric approach led to the foundation and
growth of the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database. ADNI started
in 2004 in North America with the purpose of validating biomarkers and designing thera-
peutic trials in AD. This cohort includes subjects with AD, amnestic MCI, and cognitively
normal elders. It has enrolled thousands of patients and complies information on clinical,
genetic, biofluids, neuroimaging and neuropsychological data that are updated in periods
up to 48 months [34]. ADNI remains, up until now, the largest public longitudinal database
for AD patients with easy and fast access to information [11].

ADNI remains a major contributor to the progress on the application of ML due
to its policies of public access. It has allowed for close to 2000 publications and nearly
300 scientific articles related to Al It is believed that to further improve this field, it is
necessary to start sharing the validated models and apply them in single-center data
(protecting the subject’s confidentiality) at a global scale. Moreover, the harmonization of
the data collected in dementia clinics and the protocols established in its processing need
to be of consensus.
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3. Main Applications of Al in AD Research

The potentialities of applying Al are vast but limited by data availability (i.e., sam-
ple size and data acquisition) and the barriers in the fields of mathematics and physics
when considering modelling complex biological systems, where some elements cannot be
explained and consequently remain elusive.

In the past 20 years, the field of AD has allowed for the application of new technologies
in different areas.

Having access to big data, the fields of neuroimaging and genetics [35,36] are more
prone to work with algorithms. Moreover, with the creation of biobanks and telehealth,
the field of fluid biomarkers expanded its studies to a more multimodal approach, inte-
grating large amounts of clinical and neuropsychological information for the development
of models.

Tackling the theme of the applications of ML in AD in greater detail, we will dedicate
this subsection to the five more relevant and abundant topics on scientific publications:
drug discovery, neuroimaging, biomarkers, conversion, and progression (exemplified in
Figure 3).

PROGRESSION
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Figure 3. Main applications of machine learning in Alzheimer’s disease: (a) Definition of progression

and conversion as time-to-event measures due to cognitive decline; (b) Fields of study of Alzheimer’s
disease, converging in the development of biomarkers.
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3.1. Neuroimaging

As mentioned before, one of the major advancements performed with ML and deep
learning algorithms was in image processing. Since the discovery of X-rays in the 19th cen-
tury, and the development of computerized tomography (CT), medical imaging/radiology
has been a discipline intertwined with technological and scientific breakthroughs. Seventy-
six years later arose the invention of magnetic resonance imaging (MRI) and, a few years
later, positron emission tomography (PET). All of these techniques allowed researchers to
visualize and measure the physiology of an individual and since their discovery there has
been a continuum of innovative enhancements to improve the precision of these images.

Neuroimaging represents a crucial tool on the characterization of AD. MRI images
allow for the evaluation of the structural status of the brain and are usually used to estab-
lish neurological damage or atrophy [15,37—42]. Additionally, functional MRI [23,29,43,44]
can be performed for detecting brain activity through the changes in blood flow. PET
scans [39,40,45-48] are more invasive, expensive, and require the administration of spe-
cific radioactive tracers that allow for the measure of specific changes in metabolic and
physiological processes.

Tam et al. (2019) developed a multimodal signature of Alzheimer’s dementia from
T1-weighted MRI scans from cognitively normal (CN), MCI and AD patients from the
ADNI database. They applied voxel-based morphometry analysis, with segmentation
into probabilistic maps, normalized to a predefined grey matter template and smoothed
by a Gaussian blurring kernel. They merged these results with demographic, clinical,
neuropsychological, and cerebrospinal fluid (CSF) information and developed a SVM
prediction model with an accuracy of 0.949 differentiating between CN and AD. They
reached the conclusion that in MCI patients, the cognitive features have a higher predictive
score than structural ones and that there were some redundancies between cognition
and atrophy.

Moreover, Nguyen et al. (2019) used the ADNI database to extract information
from CN, MCI, and AD patients, and used for comparison a cohort from the Chosun
University Hospital. In this case, they acquired the measures from resting-state functional
MRI (rs-fMRI). They performed several steps of preprocessing to guarantee good quality
imaging (calibration, realignment, normalization, smoothing, etc.); the structural images
(T1-weighted) were co-registered to the functional ones after realignment. They developed a
SVM model, after a leave-one-out cross-validation and dimensionality reduction obtaining
an accuracy of 0.988. Lastly, they extracted the regions of interest (ROI) with significant
changes, determined by a univariate t-test, showing a pattern of discrimination in the
prefrontal cortex and cingulate cortex/precuneus. Additionally, they obtained different
significant regional features according to the dataset, hinting at demographic differences.

Regarding studies with PET, three types of PET methodologies are performed accord-
ing to the target of the radiotracers: metabolic PET, usually performed with fludeoxyglucose
(FDG) [15] details the metabolic activity in the brain, as a measure of connectivity; due to
the rapid intake of glucose any pathological effect such as neuronal death or the formation
of plaques, can decrease the signal. Amyloid PET, usually performed with Pittsburgh
compound B (PiB) and Florbetapir, displays affinity for amyloid deposits and is used for
Alzheimer’s and cerebral amyloid angiopathy (CAA) studies. In addition, tau PET with
Flortaucipir, allows for the estimation of the aggregates of neurofibrillary tangles mainly
composed of phosphorylated tau protein. PET studies have also been the subject of ML
approaches, as described in the following examples:

Ding et al. (2019) developed a deep learning model using FDG-PET for early prediction
of AD. They used longitudinal data of ADNI database and also tested the model on a
small cohort (n = 40) from patients referred to Californian memory clinics. Similar to the
studies on MRI, they followed several steps of preprocessing. They created a convolutional
neural network, based on 14 million images of 1000 classes from the ADNI dataset. The
model resulted in an AUC for prediction of AD, MCI, and non-AD/MCI of 0.92, 0.63, and
0.73, respectively.
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Ezzati et al. (2020) created a predictive ML model for A3+ risk. They extracted
multimodal information (neuropsychological scores, MRI and PET scans, ApoE4 status,
CSF biomarkers, and demographic information) from amnestic MCI patients of the ADNI
database. They labelled the patients as AB+ and AB— according to the result from the
processing of the Florbetapir PET images. The algorithm used was Ensemble Linear
Discriminant, a classification method that results in the higher accuracy from an ensemble
decision rule obtained from each individual classifier and was optimized by selecting the
best hyperparameter. After evaluating several feature combinations as models, the best
one contained demographics, ApoE4, and CSF markers given an AUC of 0.86.

Jo et al. (2020) established a 3D convolutional neural network using the Flortaucipir
PET scans from CN, MCI, and AD patients of the ADNI database. Additionally, they
applied a layer-wise relevance propagation algorithm to determine the contribution of a
single pixel (input) to the prediction of the classification task (output), a more detailed
measure of accuracy. Based on the model, they calculated the AD probability scores of the
MCI patients, separated into early (EMCI) and late (LMCI). The greater AD probability
score was associated with increased accumulation of tau in the medial temporal lobe, with
a correlation of 0.49 for LMCI. Finally, they concluded that the classifier associated the tau
deposition in LMCI to be more similar to AD than the EMCI participants.

As described by these studies, the use of multimodal imaging data, where the authors
were able to extract information about structural and functional abnormalities [16], in-
creased the discriminatory capability, mainly when there was an overlapping presentation.
One of those cases was exemplified by a “mixed” vascular dementia (VD)-AD profile,
where the progressive cognitive impairment resulted from brain tissue damage caused
by vascular disease which could be misinterpreted as AD-related. As a result, the use of
diffusion tensor imaging (DTI) from MRI studies can help elucidate the distinct patterns of
white matter changes determining a distinction between VD and AD [4].

3.2. Multimodal Biomarker-Based Studies

The framework of AD diagnosis and research has changed dramatically through
the development and application of biomarkers. Core AD biomarkers include: (1) cere-
brospinal fluid (CSF) low levels of A(342 or the A342/40 ratio and brain amyloid deposition
evidenced by PET imaging; (2) increased total tau (t-Tau) and phosphorylated tau (p-Tau)
representing cortical neuronal loss and cortical tangle formation, respectively; and (3) hip-
pocampal atrophy shown on MRI [34]. These markers showed high diagnostic accuracy
for established AD [42,49] and identified AD before onset of dementia at the MCI stage,
evidenced in single center [1,50] and large-scale multicenter studies [51]. Their high sensi-
tivity and specificity —-between 85-95% if combined-led to their incorporation in diagnostic
criteria, proposed by the National Institute of Aging-Alzheimer Association (NIA-AA) for
AD dementia [34], MCI [52] and preclinical states [53].

However, given the constraints related to neuroimaging and the collection of CSF
samples (respectively, cost and invasiveness), efforts were put into the development of more
sensitive instruments and methods to be able to quantify brain-derived proteins through
immunoassays in blood [54]. Nowadays, blood measures of the core AD biomarkers were
proven effective and showed promising results in several studies [55-58].

Although single biomarker studies usually perform well as indicators of disease
studies, using ML models, that gather as much variables as possible, and allows for the
development of multimodal biomarker studies, to try to discern patterns that due to its
global complexity could be overlooked at first sight. An example of such an approach was
seen in the study of Beltran and collaborators (2020) who focused on blood biomarkers.
They developed a predictive model of Alzheimer’s progression based on a combination of
plasma biomarkers, due to the variety of potentially involved pathways. The model was
based on the ADNI database, and they selected the best model out of several ML algorithms
implemented (classification and regression tree, GB, RF, and SVM). Additionally, a PCA
and a feature reduction analysis was performed. The authors created two classes of binary



Biomedicines 2022, 10, 315

10 of 19

outcomes (stable and progressive) taking into consideration the interval of transition
from MCI to AD. The plasma biomarkers were divided accordingly by groups as cardiac,
inflammatory, metabolic, and neuronal markers. Finally, RF and GB exhibited the highest
AUC. Overall, they highlighted the potential applicability of blood biomarkers as a first
contact to determine risk and transition to additional testing for confirmation (as MRI, PET
or CSF sampling).

The potential capability of the application of blood biomarkers is the differential
diagnosis between neurodegenerative dementias. Lin et al. (2020) created a linear discrimi-
nant analysis model with a RF classifier based on plasma biomarkers (Af42, A{340, t-Tau,
p-Taul81, and «-synuclein) from healthy controls, patients with AD spectrum, Parkin-
son’s disease (PD) spectrum, and frontotemporal dementia (FID). The model displayed
an accuracy of 0.76 when classifying the neurodegenerative disorders and was capable of
distinguishing disease severity on the AD and PD spectrums with an accuracy of 0.83 and
0.63, respectively.

Another important component of biomarkers studies is a neuropsychological assess-
ment [59]. One key component of the generation of classes for supervised learning models
are based on the score obtained by the Clinical Dementia Rating (CDR). This is a staging
tool crucial to determine whether an individual is diagnosed as MCI or AD, and is usually
complemented by the Mini Mental State Examination (MMSE) score, which measures
overall cognitive status. For instance, the study by Yao and colleagues (2020 [60]. described
the use of a ML model (GB and SVM) that helped to generate a cognitive resilience score,
which they defined as the difference between the observed and expected cognitive status
displayed by an AD patient with a specific presumed level of AD pathology. They used
the data from two longitudinal cohort studies (the Religious Orders Study and the Rush
Memory and Aging Project) and the information from a battery of 21 cognitive tests admin-
istered annually, that assessed five cognitive domains (episodic memory, semantic memory,
working memory, perceptual speed, and visuospatial ability). Additionally, information
regarding comorbidities, demographics, lifestyle, and postmortem neuropathological eval-
uation was included. The predictive performance with measures collected at baseline
reached an accuracy of 0.77 and was suggestive that the model could be applied as a tool
for intervention in subjects that were classified as having low cognitive reserve.

Another promising source of biomarkers in AD is neuro-ophthalmological evaluation.
The retina is often referred as the window into the brain since the morphological changes
in the brain during the neurodegenerative process are replicated in the retina. In the study
by Nunes et al. (2019) optical coherence tomography was used to assess the thickness of
inner retinal layers performing a texture analysis in healthy controls, AD and PD patients.
They analyzed the data collected and applied SVM as a classification model, with an
accuracy up to 0.88. This method represents a simple, inexpensive, and non-invasive tool
for early diagnosis that could be implemented for assessing neurodegeneration in addition
to other techniques.

3.3. Conversion and Progression

Regarding the application of ML algorithms in AD using longitudinal data, the most
frequent objective was the development of prediction models that determine the risk/time
of conversion from MCI to AD [22,30,61-69], or the course of the disease in terms of sever-
ity [50,70-80]. These models are based on time, which adds another layer of complexity.
Repeated measures design, as a statistical method, is well-established and helps to vali-
date results while maintaining low variability, yet time-to-event prediction in ML remains
more challenging.

Longitudinal studies that are data-driven bear several limitations, having to maintain
consistency for long periods of time usually requires more investment of resources and
a higher risk of dropouts. Additionally, among the AD spectrum the progression of the
disease is, in its majority, extremely slow taking up to decades. Embarking on a project that
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requires decades, to provide astonishing results, and preserving thousands of patients with
regular visitations, would be regarded as a titanic endeavor.

Taking into consideration these issues, technological approaches were developed
towards digitalization. For instance, the collection of data could be performed remotely
through tracking devices [81,82], telemedicine consultations [83] or an array of sensors and
gadgets installed at home [84]. Although these may seem expensive at first, it is expected
to decrease the indirect costs that accumulate with time.

Without the implementation of these technologies, another approach has been the
development of models that can predict dropouts and failed appearances to scheduled med-
ical appointments [85], and application of different techniques of data imputation [75] or
creation of simulations [37] with the objective of substituting missing values and somewhat
improving the quality of the data.

Grassi et al. (2019) reported that only a fraction of 20 to 40% of MCI patients progress to
AD within 3 years after the initial diagnosis. Therefore, they used the information from the
ADNI database from 550 MCI patients classified as converters and non-converters with at
least 3 years follow-up and applied 13 supervised ML algorithms based on a weighted rank
average ensemble of them all reaching an AUC of 0.88, that ultimately would determine
the probability of an individual with a specific set of values of being a converter during that
3 year period. To determine an exact timepoint of conversion, Khanna and collaborators
(2018) also used the information available in the ADNI database over 8 years of study
and generated a GB algorithm with a Kaplan-Meier estimator generating a time-to-event
output with an AUC of 0.86. Another approach presented by Moscoso et al. (2019) was
to study the MRI changes of stable MCI patients, also fetched from the ADNI database,
through stratified intervals of time (2 and 5 years) and obtained a signature of volumetric
measures for converters.

Regarding progression, Bhagwat et al. (2018) developed a model for prototypical
symptom trajectory based on the multimodal data from ADNI and the Australian Imaging,
Biomarker and Lifestyle Flagship Study of Ageing (AIBL), where they applied hierarchical
clustering to obtain nine timepoints through 6 years. For further analysis they generated
five trajectory classes: stable and decline, based on MMSE and stable, slow-decline, and
fast-decline based on ADAS-Cog 13 scores, through a longitudinal Siamese neural-network
with an accuracy of 0.9. In a similar approach, Geifman and collaborators (2018) obtained
three distinct subgroups of patients: rapid decliners, slow decliners, and severely impaired
slow decliners through the application of latent class mixed algorithm based on datasets
from 18 studies. Moreover, Fisher et al. (2019) applied an unsupervised learning algorithm,
Conditional Restricted Boltzman Machine—a method that generates imputations of missing
data-, to simulate in detail the patients’ trajectories based on the Coalition Against Major
Diseases (CAMD) Online Data Repository for AD (CODR-AD) as a forecasting tool.

Due to the variability in clinical manifestations and route of progression exhibited in
the AD patients, it was suggested that the diagnosis of probable AD should be stratified in
subtypes [86]. The examples described above attempted to resolve this premise, dealing
with the increased complexity through the application of more intricate unsupervised learn-
ing algorithms and assessment of simulations. It is expected that this synthetic approach
would be replicated in real conditions, although at this point, they still require validation.

3.4. Drug Discovery

Traditional methods of drug discovery and development are expensive, time-consuming,
and represent a high risk. The advancements in Al allowed for the development of
technological-oriented methodologies. These in silico analyses allowed for the assessment
of drug design [17,87-89], repositioning [90,91], and pharmacological combinations [92,93].
Additionally, contributed as tools used in genetic [94,95] and immune-targeted [7,96] therapies.

As an example of drug design, Vignaux and collaborators published a study in 2020
where they developed a Bayesian ML model based on the CHEMBL and PubChem openly
available data for AD-related proteins, with the intent of finding a novel small-molecule
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that could be administered as treatment. They selected glycogen synthase kinase 3 beta
(GSK3p), an enzyme that phosphorylates tau protein, as a target of interest. Ultimately,
the model identified several small-molecule inhibitors already approved for safety, ex-
tracted from the SuperDRUG2 library. The model for GSK3§ used a 732.8 nM threshold
analyzed 2368 compounds and reached a precision of 0.858 after a 5-fold cross validation.
Afterwards, they evaluated the GSK3f IC5) prediction model to score the SuperDRUG2
database for a measure of the confidence in the inhibitory activity of compounds against
the target and its applicability, finally selecting ruboxistaurin (prediction score = 0.76,
applicability = 0.82). Then, they tested in vitro the top five best performing inhibitors, with
ruboxistaurin displaying the highest inhibition (96% at 100 uM).

On in silico drug repurposing, Zeng et al. (2019) developed a deep learning model
(deepDR) based on a multimodal deep autoencoder with the objective of systematically
inferring new drug-disease associations. They assembled clinical and experimental vali-
dated drug-disease network data from DrugBank and repoDB. Then, they integrated the
high-level features into multiple networks and constructed a low-dimensional feature rep-
resentation. The model predicted drug-disease relationships validated by ClinicalTrials.gov
database with an area under the curve (AUC) of 0.83 and identified 20 candidates for AD.

Anastacio (2019) estimated the correlation of the epidemiological benefit of drug
combinations, derived from the Rush Alzheimer’s Disease Center (RADC) database. The
computational model mimicked the microglia-mediated neuroinflammation by inputting
the cell activation of receptors, cell-signaling pathways, and protein expression. The model
was a recurrent network learning algorithm of nonlinear units bounded by a binary range
that received 90 inputs of endogenous and exogenous receptor ligands and drugs. The
parameters were the weights of the connections between the elements and were optimized
by the results of in vivo and in vitro experiments described in the literature. He concluded
that the ten best drug combinations included at least two of the main type of drugs used
to treat hypertension, and the use of aspirin with the already established medication
approximate (in efficacy) to the results of the antihypertensives.

4. Discussion

The applications of ML in AD for the fields of neuroimaging, biomarkers, conversion,
progression, and drug discovery, supported the implementation of complementary tools
for disease prevention, diagnosis, patient monitoring, and development of new protocols
for treatment, and mainly contributed to the process of analyzing voluminous data in an
accurate and efficient manner moving towards automation.

From a medical standpoint it remains important to highlight, that although there are
clinical guidelines for diagnosis of probable AD, there remain challenges in providing a
correct diagnosis [34,55]. Moreover, there are early-and late-life onset, presymptomatic and
symptomatic stages, and typical and atypical clinical manifestations, and as a result AD
is defined as a spectrum [6]. Since definite diagnosis can only be acquired postmortem,
there are many unknowns standing from disease onset to the course that each patient
follows. Predicting how an individual will evolve (at which rate and how severe it would
be), represents one of the main goals for the use of ML tools.

Concerning radiology, due to the high costs associated with equipment, structural
and functional neuroimaging continues to mainly evolve in improving the quality of the
images and refining the software for processing and analysis (for example, more specialized
and diverse Atlases—the topographic collection of brain images delimited and labeled-
)- In ideal conditions, AD patients should be evaluated at baseline with MRI and PET
scans and continue these procedures alongside follow-ups, but the resources (monetary,
infrastructural and of staff) are substantial and cannot be supported by every health facility,
therefore neuroimaging is complemented with other measures.

As seen in the previous section, the strength of the uses of multimodal information
allows for the advancements in AD research proceeding towards personalized medicine,
developing a set of precise categories (as code) that estimates the changes during the disease
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course of each patient (developing a signature or profile), and for the addition of validated
and accurate biomarkers, such as the novel and automated blood based measures.

Computational tools are supporting the change towards improvements for precise,
fast, cost-effective, and non-invasive strategies for correct diagnosis and monitorization,
from CSF to blood-based biomarkers to the use of less harmful neuroimaging techniques
such as DTI and novel PET radiotracers.

Moreover, the application of data mining allows researchers to comprehend the depth
of details in the classification process, combining the analysis of multifactorial information
and time, which would be useful in customizing treatment when the appropriate therapies
become available.

Regarding the treatment for AD, efforts sustained into achieving successful therapies
had given mostly negative results. Pharmacological companies have spent enormous
amounts of time and money into the field of dementia resulting in failed attempts. The
reason behind those negative results puzzles experts to this day; it is believed that there
are many unknown factors surrounding the underlying neuropathological causes of AD
and/or that the participants on the clinical trials are already at a phase of deep neurological
loss that cannot be reverted, and the progression could be too small or even eclipsed by
other detrimental effects.

The lack of efficient treatment disengages the relationship between diagnosis and
therapeutics, where the clinician is left with a surrogate strategy: the medication prescribed
targets the symptomatology, alleviating some of the detrimental effects associated with
cognitive deterioration [6], as mentioned in the introduction.

Even with the promising results of aducanumab [97] and its conditional approval by
the United States Food and Drug Administration (FDA) as a treatment for AD in June 2021,
skepticism remains among clinicians. Other A plaque-targeted antibody drugs such as
gantenerumab and solanezumab proved inefficient on patients with dominantly inherited
Alzheimer’s disease (DIAD) [98]. These controversial results in several clinical trials prove
that it is necessary to continue funding studies for drug discovery in AD complemented
with computational tools.

These in silico approaches require a multidisciplinary structure of research. They rep-
resent the first step in the discovery of new compounds that are theoretically efficient. The
next stage should consist of preclinical studies directed to test these drugs and ultimately,
to administer them in clinical trials.

In general, the application of ML algorithms in AD represents an emerging field that
is moving fast. The technological advancements in healthcare consolidate the future of our
society in the coming years. Even with some degree of resilience, these methods represent
a tool to enhance the skills of the health professionals, and overall, the objectives rely on
increasing the depth of knowledge and providing better care for affected patients.

Lastly, the Al-specialized teams continue to address these concerns and persist in
trying to create solutions seeded from academic, business, and governmental institutions.

5. Limitations and Future Directions

From a technical standpoint, there were some weakness presented in these studies that
are worth highlighting. The nature of the data presents an inherent limitation, since the
authors worked with a convenience sample, where the data was obtained from dementia
clinics or by accessing databases, the sample size was insufficient (underpowered) when
working with a high number of variables, returning to the matter of overfitting (already
described), where something could emerge as significant but could simply be a product of
chance [99].

Additionally, these methods of data acquisition can lead to selection bias where the
researcher might be moving away from reaching a representative profile of the population
and inadvertently increasing the sampling error, which leads to a misspecified model.

It is not necessary to accumulate enormous amounts of information to answer a scien-
tific question in statistical ML but remains preferable to gather pertinent and sufficiently



Biomedicines 2022, 10, 315

14 of 19

sparse data that is representative of the population. On the other hand, missing data and
outliers are sources of useful information and are increasingly difficult to track when big
data is used.

After seeing all of these studies performed with Al algorithms one can only questions
what is the best algorithm or why there are so many and what do the outputs mean? At
this moment, we can only define this work as a beta-test. These models require to further
testing and validation in real conditions (the clinical context), and time is necessary to see
how well they perform. Most of these models need to be inserted into a learning loop
where they can evolve with the introduction of new data.

Even with the diverse and expanding amount of literature related to Al techniques and
ML models in AD research, the overall assessment suggests that the researchers presented
the highest possible measure of how accurate the new data was classified, for values above
80%, and aimed for a balanced and high percentage of sensitivity and specificity (correct
classification), that fluctuates between 65 and 98. Having these different results represents a
constraint that requires an ongoing process that remains to be refined, especially when the
human diagnosis (referred as the one given by the neurologist) remains already pertinent.

In summary, these studies represent an initial stage with some known challenges: the
need for standardization of the procedures, the harmonization of the data, translation of
these theoretical models to the clinical context, the generalizability of the results and the
integration of multidisciplinary teams.

At this moment, the multicentric collaborations, such as that by van Maurik and
collaborators (2019) who undertook the comparison of model performance of different
European datasets, reaching 2611 individuals with MCI in four cohorts, and obtained only
a limited sample size.

Therefore, it may not be enough to apply ML techniques on a few hundred or thou-
sands individuals from a disease that affects millions, and a solution may be to resort
to traditional sampling tools and build global networks with multicenter collaborations,
guaranteeing data quality and representativeness.

Moreover, there is the need to replicate these studies on independent datasets of
appropriate size, that could be more adequate to those high dimensionality problems that
researchers are trying to answer, and to being able to corroborate the results obtained.

6. Conclusions

This review has introduced the most recent and noteworthy computational advances
in AD. We hope that the contents will help to acknowledge the strengths of this area
and motivate the creation of projects for preventive therapies and the engagement of
multidisciplinary teams. These techniques represent a tool that would only enrich the
basic sciences and clinical practices working altogether to reach a mutual goal: to improve
healthcare in dementia. Certainly, this field will continue moving forward to help provide
solutions for the aging population.
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