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The transition state resonances of Mu+ H2 and Mu+ D2 collisions are investigated on the accurate DMBE
potential energy surface for H3 using a three-dimensional (3D) time-dependent quantum-mechanical method
for total angular momentumJ ) 0. The discrete variable representation-finite basis representation (DVR-
FBR) transform method is used to describe the dynamics in the bending coordinate, while the two stretching
coordinates are treated by a sine fast Fourier transform (FFT) technique. The time propagation of the
wavepacket is carried out using the Feit-Fleck split operator algorithm. For both systems, the progressions
of the resonance states in 3D are the same as in 2D. Compared with the 2D results, their lifetimes tend to
be shorter.

Introduction

Transition state resonances in bimolecular reactive collisions
have received considerable attention in recent years.1-8 The
prototypical chemical reaction H+ H2 has been in this context
particularly well studied.9-18 For this system, several short-
lifetime resonances at energies between 0.54 and 4.63 eV have
been discovered in both two- and three-dimensional (2D and
3D, respectively) quantum mechanical calculations. Moreover,
most 3D resonance energies have been shown to be consistently
related to the collinear resonance energies by adding to the latter
the nearly separable degenerate bends.
Although there have been many experimental mea-

surements19-21 and theoretical calculations22-27 for the isotopic
reactions Mu+ H2 and Mu+ D2, all focused on studies of
reaction rates. Thus, much less is known about their transition
state resonances. In a previous paper,28 we reported a collinear
calculation of transition state resonances for the Mu+ H2 and
Mu + D2 systems using the accurate DMBE potential energy
surface29 for H3 and the split operator algorithm proposed by
Feit and Fleck30,31to propagate the wavepacket. In that work,28

we reported 12 transition state resonances for Mu+ H2 and 16
for Mu + D2. Compared to their isotope analogues H+ H2

and D+ H2, which have been studied in detail by Skodje and
co-workers,15-18 it has been found that the muonic systems show
a distinct resonance pattern. These new features of the transition
state resonance for the muonic systems prompted us to carry
out the 3D calculations reported in the present work. Similarly
to the H+ H2

16 case, the resonance structure predicted in our
collinear calculations for the title systems will be shown to
persist in 3D.
The structure of this work is as follows. After a brief

description of the methodology, the results and discussion are
presented, followed by a brief summary.

Methodology

We seek a description of the Mu+ A2 (A ) H or D)
transition state dynamics in terms of a quantum-mechanical
wavepacketψ(r, R, θ, t), which is calculated by solving the
time-dependent Schro¨dinger equation

where (r, R, θ) are the usual Jacobi coordinates. For total
angular momentumJ ) 0, the interaction Hamiltonian can be
written as32

where

with µ being the reduced mass of A2, m the reduced mass of
Mu + A2, I ) mµr2R2/(µr2 + mR2) the moment of inertia, and
V(r, R, θ) the H3 DMBE potential energy surface.29

Following our previous collinear study,28 the initial wave
function ψ(r, R, θ, t ) 0) has been taken as a Gaussian
wavepacket in terms of the MuA and AA bond distances and
the Jacobi angleθ

and then placed in the vicinity of the saddle point of the H3

potential energy surface using a 3D discrete grid;r0 and θ0
specify the initial position of the wavepacket, andδi (i ) 1, 2,
θ) specifies the width parameters. Such a grid includes a 2D
uniform rectangular grid of dimension 128× 128 used to
represent the wavefunction in (r, R) coordinates and a 1D grid
of dimension 29 in theθ coordinate; this consists of the
quadrature points (the corresponding weights are denotedωR)
of a 29-point Gauss-Legendre quadrature. The discrete variable
representation (DVR) wave functionψDVR has then beenX Abstract published inAdVance ACS Abstracts,August 1, 1996.

(ip)[∂ψ(r, R, θ, t)/∂t] ) Hψ(r, R, θ, t) (1)

H ) Kr + Kθ + V(r, R, θ) (2)

Kr ) - p2

2µ
∂
2

∂r2
- p2

2m
∂
2

∂R2
(3)

Kθ ) - p2

2I
1

sinθ
∂

∂θ
[sin θ(∂/∂θ)] (4)

ψ(r, R, θ, t ) 0)) N exp{-
[(rMuA - r0) + (rAA - r0)]

2

8δ1
2

-

[(rMuA - r0) - (rAA - r0)]
2

2δ2
2 }×

{exp[-
(θ - θ0)

2

2δθ
2 ] + exp[-

(θ - π + θ0)
2

2δθ
2 ]} (5)

14598 J. Phys. Chem.1996,100,14598-14601

S0022-3654(96)01037-4 CCC: $12.00 © 1996 American Chemical Society

+ +

+ +



obtained by multiplying the initial wave function in the
coordinate space with a factor ofωR

1/2. Finally, the mixed grid-
finite basis representation (FBR) wave functionψFBR has been
defined through the unitary transformation33

whereT is a unitary matrix defined by

with θR being the quadrature point,ωR the weights of the
underlying Gauss-Legendre quadrature, andæj(cos θ) the
orthonormal Legendre polynomial, which is the eigenfunction
of the angular momentum operator. It should be noted from
eq 5 that the initial wavefunctionψ(r, R, θ, t ) 0) is symmetric
with respect to permutation of the Mu-A and A-A bond
distances and shows the properC2V symmetry with respect to
the Jacobi angleθ.
To propagate the wavepacket, we have used the split-operator

algorithm described by Feit and Fleck.30,31,34 For a short time
step∆t, the wavefunctionψFBR(t0 + ∆t) can be written as

whereKr andKθ are the operators defined in eqs 3 and 4 and
V is the potential energy matrix operator which includes the
absorbing (negative imaginary) potentials35 (NIPs) to prevent
reflections of the wavepacket from the edges of the grid; this
approach has also been adopted in our previous28 collinear study.
The evolution of the spatial kinetic operators has been carried
out using a sine fast Fourier transform technique such that the
singularity atR) 0 is surpressed. Since the angular momentum
operators are diagonal in this mixed grid-basis set representa-
tion, they can easily be propagated. However, becauseV is
nondiagonal in FBR, the propagations of the potential energy
operator have been done with the help of the FBR-DVR
transformation in eq 6.
The autocorrelation function

is computed at each time step, and the Fourier transform of
C(t) is carried out to generate the pseudo-spectral intensity

The resonance energiesEn and the lifetimesτn can be extracted
from the strong peak positions and widths in the spectrum by
using a nonlinear least-squares fitting ofI(E) to a sum of
Lorentzians. In practice, the filtered half-spectrum

is generally more effective thanI(E) in reducing the contribu-
tions from the background (see also ref 14);W(t) is the
normalized Hanning window function.36 Moreover, we have
used the Prony method as modified by Gray37,38 as a supple-
mentary technique to determine the resonance energies and
widths from the autocorrelation function.
Finally, we mention a simple and useful scheme proposed

by Engel.39 It states that, for time-independent Hamiltonian
operators and real initial wavepackets, the autocorrelation
function for time 2t can be constructed from the intermediate
wavepacket at timet as

Thus, this techqnique allows the computation time for the
calculation of the autocorrelation function to be reduced by a
factor of 2. The absolute accuracy ofC(t) has been checked in
the present study to be better than 10-8 with respect to the
influence of the NIPs and numerical errors.

Results and Discussion

For the Mu+ H2 system, we have propagated five wave-
packets having different initial positions and other parameters.
One of these has been located at the linear configurationrMuH
) rHH ) 3.10a0, with an angular Gaussian width ofδθ ) 0.25
rad; the spatial Gaussian widths areδ1 ) 1.0a0 andδ2 ) 0.45a0
for the symmetric and asymmetric bond stretching coordinates,
respectively. Thus, it is a very broad wavepacket in the
symmetric stretch coordinate with low bend excitation. Its
average energy has been calculated to be 3.223 eV. This
wavepacket has been propagated during 220 fs, which has been
found sufficient to converge the spectrum.
The 3D transition state spectrum obtained from the above

initial wavepacket is shown in Figure 1. For comparison, the
complete transition state spectrum calculated28 for the collinear
Mu + H2 problem is also given in the upper pannel of Figure
1. It can be seen that the progressions of both barrier and
conventional resonances are the same in 2D and 3D, except for
the two highest states. By introducing a small shift in the
frequency toward high energies due to the bend zero-point
energy, we have located the zero-bend resonance positions
which correspond to the collinear resonance states. The results
are presented in Table 1. We note that the energy shift tends
to decrease with increasing energy, while the resonance lifetimes
are seen to be smaller in the 3D case. Thus, transition state
resonances tend to become somewhat unstabilized with increas-
ing dimensionality due to having more degrees of freedom to
decay. In addition, we have observed two peaks at 3.944 and
4.404 eV in the 3D collisions, which correspond to the peaks
at 3.906 and 4.383 eV in the collinear study28 in the same order.
These resonances have been assigned as “mixed” resonance
states in our previous work.28 It appears that there is an
unknown dynamical structure for the Mu+ H2 system, which
has not been observed for H+ H2

14,15 and D+ H2.17 Many
bend excited resonances are also apparent in Figure 1, which
could not be assigned.
The resonance energies and widths can be determined through

a nonlinear least-squares fitting procedure using a sum of
Lorentzians. The calculated values are summarized in Table
2. These resonances have been carefully identified by varying
the initial wavepacket and using the Prony method as modified
by Gray37,38 to fit the autocorrelation functionC(t) to a sum of
complex exponentials in time. In particular, for the high-energy
resonances, their energies can be well located in terms of the
half-spectrum filtered by the Hanning window function. As
shown in Figure 2, this half-spectrum is almost noise free. Thus,
the accuracy of resonance energies is about 0.005 eV, while
the uncertainty of lifetime may be as much as 20%.
Similarly to the Mu+ H2 system, we have propagated four

symmetric Gaussian wavepackets for the Mu+ D2 system. The
calculated resonance energies and lifetimes are listed in Table
2, while a comparison of the 3D zero-bend resonance states
with the 2D ones is given in Table 3. As for the 2D collisions,
three progressions are apparent in the resonances calculated from
the 3D study of the Mu+ D2 reaction. However, the energy
shifts of the zero-bend resonances are not a monotonous function

ψFBR ) TψDVR (6)

TjR ) ωR
1/2æj(cosθR) (7)

ψFBR(t0 + ∆t) ≈
e-iKr∆t/2pe-iKθ∆t/2pe-iV∆t/pe-iKθ∆t/2pe-iKr∆t/2pψFBR(t0) (8)

C(t) ) 〈ψ(0)|ψ(t)〉 (9)

I(E) ∼ ∫-∞

+∞
C(t)eiEt/p dt (10)

J(E) ∼ |∫0∞C(t)W(t)eiEt/p dt|2 (11)

C(2t) ) 〈ψ*( t)|ψ(t)〉 (12)
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of resonance energy. The shifts of barrier resonances are bigger
than those of conventional resonances. Compared with the
symmetric H+ H2 system,15,16 for which the 3D resonance
energies can be consistently related to the approximate sum of
2D resonance energies and the nearly separable degenerate

bends, the Mu+ D2 system exhibits a more intrincate behavior
due to its lower symmetry. Thus, for this system, it is difficult
to assign the excited resonance states using proper quantum
numbers. This is mainly due to the different spacing of the
threshold states in the reactant and product channels and to the
high resonance energies. In addition, we have noticed that the
conventional transition state resonances can be well linked to
the reactant and product threshold states. If the difference
between a reactant threshold state and a product one is small,

Figure 1. Transition state spectraI(E) for the Mu+ H2 system: two-
dimensional (2D) results and three-dimensional (3D) results at the total
angular momentumJ ) 0.

Figure 2. Transition state spectraJ(E) for the Mu + H2 system
obtained after the spectrumI(E) of Figure 1 was filtered through a
Hanning window function.

TABLE 1: Calculated EnergiesEn (eV) and Lifetimes τn (fs)
of the Transition State Resonances for the Mu+ H2
Collisions: Two-Dimensional Results (2D) (Taken from Ref
28), Zero-Bend Three-Dimensional Results (3D), and
Difference ∆E between the 3D and 2D Energies

En
2D τn

2D En
3D τn

3D ∆E

0.778 5.5 0.924 5.6 0.146
1.691 50 1.788 6.9 0.097
2.529 16 2.585 18 0.056
2.601 90 2.618 23 0.017
3.266 15 3.305 30 0.039
3.375 93 3.404 22 0.029
3.877 41 3.902 21 0.025
3.906 45 3.944 42 0.038
4.005 58 4.018 16 0.013
4.348 73 4.366 19 0.018
4.383 58 4.404 28 0.021
4.467 76 4.486 17 0.019

TABLE 2: Calculated EnergiesEn (eV) and Lifetimes τn (fs)
of the Transition State Resonances for the Three-Dimen-
sional Mu + H2 and Mu + D2 Collisions at Total Angular
Momentum J ) 0

MuH2 MuD2

En τn En τn
0.924 5.6 0.883 8.8
1.262 3.8 1.761 9.2
1.605 5.0 1.998 7.6
1.788 6.9 2.280 12
2.072 6.6 2.504 13
2.372 6.0 2.537 31
2.585 18 2.608 25
2.618 23 2.766 8.1
2.703 24 3.038 18
2.752 19 3.083 16
2.814 18 3.275 27
2.867 21 3.320 43
2.910 25 3.360 28
3.305 30 3.432 22
3.344 33 3.475 26
3.404 22 3.512 20
3.430 13 3.722 18
3.450 50 3.772 19
3.491 10 3.798 15
3.558 11 3.823 11
3.601 32 3.906 25
3.626 15 3.967 30
3.671 16 4.052 21
3.706 21 4.113 23
3.745 19 4.156 6.5
3.902 21 4.295 24
3.944 42 4.334 24
4.018 16 4.394 23
4.069 12 4.418 29
4.131 18 4.440 12
4.173 39 4.462 25
4.215 18 4.558 9.8
4.259 38
4.366 19
4.404 28
4.444 18
4.486 17
4.544 36
4.621 17

TABLE 3: Calculated EnergiesEn (eV) and Lifetimes τn (fs)
of the Transition State Resonances for the Mu+ D2 Systema

En
2D τn2D En

3D τn
3D ∆E

0.783 7.3 0.883 8.8 0.100
1.654 19 1.761 9.2 0.107
2.473 23 2.504 13 0.031
2.538 24 2.608 25 0.070
3.019 62 3.038 18 0.019
3.230 16 3.275 27 0.045
3.306 32 3.360 28 0.054
3.701 56 3.722 18 0.021
3.872 18 3.906 25 0.024
3.938 77 3.967 30 0.029
4.238 70 4.295 24 0.057
4.368 45 4.394 23 0.026
4.415 115 4.418 29 0.003

a The symbols have the meaning given in Table 1.
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these two states may yield resonances with a near-resonance
energy. Finally, we have found that the 3D resonance lifetimes
tend to be shorter. Moreover, for both the Mu+ H2 and Mu+
D2 systems, the distributions of lifetimes of resonance states
have been found to display a non-RRKM behavior as for the
collinear cases.28

Summary

We have calculated the energies and widths of transition state
resonances of three-dimensional Mu+ H2 and Mu + D2

collisions using the time-dependent wavepacket propagation
method atJ ) 0. Thirty-nine transition state resonances have
been reported for Mu+ H2 and 32 for Mu+ D2. Their lifetimes
have been found to be shorter than in the 2D case. Finally, it
should be pointed out that the present calculations have used
only the lowest sheet of the ground state DMBE potential energy
surface for H3, which may be problematic for the high-energy
resonance structure. Work to eliminate this limitation and to
assign some of the resonance states is clearly desirable.
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