
 

 
 

 
 

 
 
 

 
 
 

Rui Miguel Lopes Gaspar de Matos 
 
 
 

 

DESIGN AND DEVELOPMENT OF A 
COMMUNICATION PLATFORM WITH THE 

CAPABILITY OF MONITORING THE 
COMMUNICATION QUALITY IN A DRONE 

SEPARATION SYSTEM 
FOR SUPPORT OF U-SPACE SEPARATION 

MANAGEMENT SERVICE 

 

 

 
Dissertação no âmbito do Mestrado em Engenharia 

Informática/Sistemas Inteligentes orientada pelo/a Professor/a 

Doutor/a Tiago Cruz e apresentada à Faculdade de Ciências e 

Tecnologia/Departamento de Engenharia Informática. 
 

Setembro de 2022 



 

 



Faculty of Sciences and Technology

Department of Informatics Engineering

Design and development of a
communication platform with the

capability of monitoring the
communication quality in a drone

separation system
for support of U-Space Separation Management Service

Rui Miguel Lopes Gaspar de Matos

Dissertation in the context of the Master in Informatics Engineering, Specialization in
Intelligent Systems advised by Prof.Tiago Cruz and Prof. César Teixeira and presented to the

Faculty of Sciences and Technology / Department of Informatics Engineering.

September 2022



This page is intentionally left blank.



Abstract

Unmaned Aerial Systems (UAS) or drones as they are most commonly known, are an
emerging concept that progressively has entered the publics conscience, having the capa-
bility to provide never seen services and fixing some existing problems.
To seize this opportunity several different groups are creating projects with the intent to
define rules, starting experimentation and constructing basic system architecture; one of
these projects is BUBBLES.
BUBBLES intends to create safe spaces around the UASs, similar to bubbles, allowing
drones to fly efficiently and safely as well as avoiding problems with the already existing
manned aviation. However, since these bubbles are relative to the drones, there is a need
for the telemetry to be constantly sent to the BUBBLES system and the system needs to
be able to define the separation, taking into account the existing context, such as network
problems.
This document describes the planned work done achieve the main goal of detecting and
minimizing network problems by utilising artificial intelligence, trying a multitude of mod-
els and techniques, comparing each of them and concluding which is the most appropriate.
Furthermore the process of the dataset acquisition, the environment description, as well
as problems and solutions throughout the development of the work and the analysis of the
results will also be present in this report.
Finally, this work will try to propose several more practical implementations based on the
results that were previously discussed.

Keywords

UAS; ANN; Drones; BUBBLES; Drone networks; Bayes Networks; Time Series;

iii



This page is intentionally left blank.



Resumo

Os Sistemas Aéreos Não Tripulados(UAS) ou drones como são mais conhecidos, são um
conceito emergente que progressivamente tem entrado na consciência do público, tendo a
capacidade de prestar serviços nunca vistos e corrigindo alguns problemas existentes.
Para aproveitar esta oportunidade, vários grupos diferentes estão a criar projetos com
o intuito de definir regras, iniciar a experimentação e construir a arquitetura básica do
sistema; um desses projetos é o BUBBLES.
O BUBBLES pretende criar espaços seguros ao redor dos UASs, semelhantes a bolhas,
permitindo aos drones voarem com eficiência e segurança, além de evitar problemas com
a aviação tripulada já existente. No entanto, como essas bolhas são relativas aos drones,
há a necessidade de que a telemetria seja constantemente enviada ao sistema BUBBLES
e o sistema precisa ser capaz de definir a separação, tendo em consideração o contexto
existente, como problemas de rede.
Este documento descreve o trabalho planeado para atingir o objetivo principal de detectar
e minimizar problemas de rede utilizando inteligência artificial, experimentando vários
modelos e técnicas, comparando cada um deles e concluindo qual é o mais adequado.
Para além disto, vai ser explicitado neste relatório o processo de aquisição de datasets, a
descripção do ambiente usado, problemas e soluções observados durante o desenvolvimento
deste trabalho e uma análise dos resultados também vai estar presente.
Finalmente, neste trabalho várias propostas num sentido mais prático vão ser propostas
baseado nos resultados discutidos previamente.

Palavras-Chave

UAS;ANN;Drones;BUBBLES;Redes de drones; Redes de Bayes; Séries temporais;

v



This page is intentionally left blank.



Contents

1 Introduction 1
1.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 BUBBLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 UAS’s market growth . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2.2 Social acceptance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.5 Document structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 SoA and Technologies 6
2.1 State Of Art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.1 Time Series Analysis and Forecasting . . . . . . . . . . . . . . . . . . 6
2.1.2 Bayesian Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.3 Artificial Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.4 A comparative study between the proposed approaches . . . . . . . . 10

2.2 Architectural components of the system . . . . . . . . . . . . . . . . . . . . 12
2.2.1 Mavlink . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.2 Kafka . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.3 DDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.4 Px4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.5 Gazebo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 Architecture for the communications platform . . . . . . . . . . . . . . . . . 15
2.4 Traffic shaper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.5 Testbed scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.6 Network emulator implementation . . . . . . . . . . . . . . . . . . . . . . . 18

3 Methodologies and planning 21
3.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2 Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2.1 Task details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.3 Planned Gantt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.4 Threshold of Success . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4 Preliminary phase 28
4.1 Alteration of packet data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.2 Dataset acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.3 Adapting the architecture for faulty run setup . . . . . . . . . . . . . . . . . 29

5 Experimentation 31
5.1 Data set acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.1.1 First phase-Dataset acquisition with QoS active . . . . . . . . . . . . 31

vii



Chapter 0

5.1.2 Second phase-Dataset acquisition with QoS inactive . . . . . . . . . 32
5.1.3 Third phase-Dataset acquisition in Edge . . . . . . . . . . . . . . . . 32
5.1.4 Fourth phase-Dataset acquisition in a realistic scenario . . . . . . . . 33

5.2 Data set analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.2.1 Normal operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.2.2 Faults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.2.3 No QoS errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.3 Development of the agents . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.3.1 CrossValidation Method . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.3.2 ARIMA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.3.3 MLP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.3.4 RNN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.3.5 Bayesian network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

6 Results and discussion 45
6.1 Time Series Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6.1.1 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
6.2 Determining window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
6.3 MLP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

6.3.1 With QoS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
6.3.2 Without QoS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
6.3.3 In edge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
6.3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

6.4 RNN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
6.4.1 With QoS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
6.4.2 Without QoS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
6.4.3 In Edge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
6.4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

6.5 Result comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

7 Conclusion 51

viii



This page is intentionally left blank.



Acronyms

DDS Data Distribution Service. 14

MLP Multi-layer perceptron. 42

QoS Quality of service. 13

RNN Recurrent Neural Network. 42, 50

UAS Unmaned Aerial System. 1

UAV Unmaned Aerial Vehicle. 3

UPV Universitat Politécnica de Valência. 28

x



This page is intentionally left blank.



List of Figures

2.1 Example of a directed graph in context . . . . . . . . . . . . . . . . . . . . . 7
2.2 Example of the MLP network used in the study by Oliveira et all[11] . . . . 9
2.3 Example of the JNN network used in the study by Oliveira et all[11] . . . . 10
2.4 Network test for the Bayesian modelling . . . . . . . . . . . . . . . . . . . . 11
2.5 Real time predictions of congestion . . . . . . . . . . . . . . . . . . . . . . . 11
2.6 Example of two producers sending messages to topic from the Kafka documentation[1] 13
2.7 BUBBLES Communications Platform Concept . . . . . . . . . . . . . . . . 15
2.8 Network Emulator usage for Communications Platform tests . . . . . . . . . 16
2.9 Environment with traffic shaper . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.10 VM and network topology deployment on the virtualized environment . . . 17
2.11 Network Emulator Traffic Shaper Hierarchy . . . . . . . . . . . . . . . . . . 19

3.1 Example of the waterfall model, extracted from Lucidchart.com . . . . . . . 21
3.2 Gantt for the project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.3 Gantt for the project evaluated at the end . . . . . . . . . . . . . . . . . . . 25

5.1 Normalized time received/time difference for 1 drone - normal distribution . 34
5.2 Normal distribution for 5 drones . . . . . . . . . . . . . . . . . . . . . . . . 35
5.3 Normalized time received/time difference 1 Drone - Error distribution . . . 36
5.4 Error distribution for 5 drones . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.5 Differential of messages per normalized time for 1 drone . . . . . . . . . . . 38
5.6 Differential of messages per normalized time for 1 drone in 5 drone simulation 38
5.7 Normalized time received/time difference for 1 drone - no QoS distribution . 39
5.8 Normalized time received/time difference for 5 drones - no QoS distribution 40
5.9 Differential of messages per normalized time for 1 drone with no QoS . . . . 41
5.10 Differential of messages per normalized time for 1 drone in 5 drone simulation

with no QoS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.11 Proposed Bayesian Network . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

xii



This page is intentionally left blank.



List of Tables

2.1 Adapted results for the comparative study of Feng et all in NRSME . . . . 10
2.2 Time in milliseconds that will take for the network to converge . . . . . . . 12
2.3 Normalized mean squared error for the prediction performance . . . . . . . 12

3.1 Tasks At the intermediate defense . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2 Tasks at the end of the project . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.1 Previous content of the messages . . . . . . . . . . . . . . . . . . . . . . . . 28
4.2 Current content of the messages . . . . . . . . . . . . . . . . . . . . . . . . . 29

6.1 Arima values in NRMSE for different training and test . . . . . . . . . . . . 45
6.2 MLP for dataset with window 2 . . . . . . . . . . . . . . . . . . . . . . . . . 46
6.3 MLP for datasets with window 3 . . . . . . . . . . . . . . . . . . . . . . . . 46
6.4 MLP for datasets with window 5 . . . . . . . . . . . . . . . . . . . . . . . . 46
6.5 MLP for datasets with QoS using 5 drones . . . . . . . . . . . . . . . . . . . 47
6.6 MLP for datasets with QoS using 10 drones . . . . . . . . . . . . . . . . . . 47
6.7 MLP for datasets with and without QoS using 5 drones . . . . . . . . . . . 47
6.8 MLP for datasets with and without QoS using 10 drones . . . . . . . . . . . 47
6.9 MLP for datasets from edge using 5 drones . . . . . . . . . . . . . . . . . . 47
6.10 MLP for datasets from edge using 10 drones . . . . . . . . . . . . . . . . . . 48
6.11 RNN for datasets with and without QoS for 5 drones . . . . . . . . . . . . . 48
6.12 RNN for datasets with and without QoS for 10 drones . . . . . . . . . . . . 49
6.13 RNN for datasets with and without QoS for 5 drones . . . . . . . . . . . . . 49
6.14 RNN for datasets with and without QoS for 10 drones . . . . . . . . . . . . 49
6.15 RNN for datasets from edge for 5 drones . . . . . . . . . . . . . . . . . . . . 49
6.16 RNN for datasets from edge for 10 drones . . . . . . . . . . . . . . . . . . . 49

xiv



This page is intentionally left blank.



Chapter 1

Introduction

Whenever new technologies appear or become readily available to the general public there
are as many advantages as there are disadvantages. In our current time, due to the several
factors, a great number of new technologies are emerging or changing to fit the needs of
the general public. One of these cases are Unmaned Aerial System (UAS), more commonly
known as drones, i.e. an aircraft without a human pilot aboard.
Being initially created for the use of the military, drones have become progressively more
accessible and popular, being one of the uses with many foreseeable uses in the medium
to long term future, as its the case for transportation. However, leveraging UAS’s to their
full potential is something that depends on a series of critical factors, also requiring proper
risk evaluation.
One of the main problems with bringing UAV services to the masses has to do with avoiding
conflicts, such as collisions between UAS, other airborne vehicles, people of even buildings.
Regardless of being controlled by an autopilot or manned ground station, navigation and
surveillance are critical aspects, providing information for location and tracking of UAVs
which is necessary for automatic or manual conflict detection and/or avoidance.
Currently these needs are not guaranteed neither by infrastructure, nor services, rules or
most necessary tools. Nevertheless several governments are trying to change that so that
they can use these UAS’s in a safe way. To achieve this, several organizations including
Single European Sky ATM Research (SESAR), Air Traffic Control(ATC), European Or-
ganisation for Civil Aviation Equipment (EUROCAE), Civil Aviation Organization (ICAO)
and European Union Aviation Safety Agency (EASA) approached the problem by adapting
manned aviation infrastructure to support unmanned aviation.

1.1 Context

As previously mentioned one of the organizations that is trying to promote RD efforts
towards building a future UAV service ecosystem is SESAR[8]. This organization, created
in 2004 has as its main goal the creation of a central technological pillar: the Single Euro-
pean Sky(SES). This SES is an attempt created by the European Commission to update
European Air Traffic Management(ATM).
To manage SESAR a public-private partnership known as the SESAR Joint Undertak-
ing(SESAR JU) was established. This conglomerate of organizations was set in 2007 and
includes more than 19 members, consolidating 100+ organizations each one with its re-
spective experts.
In 2015 the EU entrusted to SESAR JU the definition of a blueprint on how to safely and

1



Chapter 1

efficiently use UAV’s. From there the concept of U-Space originated, i.e. an "ecosystem"
made to support drone functionalities as well as improve all missions on the airspace and
in all kinds of environment. Currently, these U-Spaces are in a exploratory phase and
to achieve an understanding of them several different projects were created; being one of
these proposals the Building Basic Blocks for a U-Space Separation Management Service
(BUBBLES) project.

1.1.1 BUBBLES

BUBBLES is one of the projects approved by SESAR JU in the description of the call of
proposals H2020-SESAR-2019-2.
Its main challenge is the identification of the needs for service users as well as the discovery
of safety levels in terms of collision using algorithms developed ad-hoc for UAS. Further-
more, there is a necessity to define the architecture of the system as well as the formulation
of the Separation Management Service.
The intent of the Separation Management is to create safety areas around the UAS, envi-
sioned as bubbles, for operations in Very Low Level(VLL) (below 150m), that need to be
large enough to insure the safety of the drones, while being small enough to maximize the
number of drones in use, considering that there might be communication problem between
them.
Additionally, these VLL spaces are not exclusive for UAS, allowing conflicts between
manned and unmanned aerial vehicles, that have to be considered in the development
of the service.
In short, the spaces defined by BUBBLES will need to communicate between each other,
guarantee that the separation between each space is appropriate to all conditions and, in
the case of failure or changes in conditions, resolve the issues. All this while not affecting
the current manned aircraft services.

1.2 Motivation

UAS are a recent concept and are still maturing, both in terms of social awareness to
their capabilities as well as a technology. BUBBLES and this work by proxy grant several
advantages to this emerging technology as will be presented in the two following points.

1.2.1 UAS’s market growth

As it was previously stated, the demand for drone-based services is expected to grow in
the next years, with an equal impact in terms of revenue. In a report from 2016, SESAR
JU analysed the market of UAS in the EU and foresaw that by 2050 the demand for drone
services will approximately be 400.000 drones. Of these services it is also foreseen that
90% of the flight time of operations will be on professional VLL missions.
This increase of drones will create a need for more new jobs, stimulating the economic
growth, however to accompany this development there will be a need to study and prepare
the foundations.

2



Introduction

1.2.2 Social acceptance

There have been a large number of occasions where the illegal or unsupervised use of UAS’s
have caused danger for manned aviation. This is due to the fact that due to the increase in
production of drones there will be more private owners. Just in 2018 the UK Airprox Board
reported a steady increment in separation minima infringements due to UAS, ranging from
6 in 2014 to 125 in 2018.
Due to this it is important to study and prepare better systems and environments that
detect or automatically avoid these situation, or at least register the infringement for public
safety, which will allow for greater acceptance from the general public in the use of this
technology, possibly accelerating the point provided in the previous section.

1.3 Contributions

The work done in the scope of this thesis is aimed to the creation of AI agents that will
contribute to the BUBBLES’ development by allowing the control and monitoring of the
Communications performance.
For the decision of the correct separation minima there is a need to accurately and consis-
tently evaluate the state of the communication. To accomplish this several different models
with different advantages and disadvantages are going to be evaluated in a ’laboratory like’
environment.
Furthermore, since this work is also in charge of the maintenance of the system used by
several of the BUBBLES projects groups, such as the fault injector and the UPV team,
there is a need to guarantee that several of the components are changed to allow those
teams to work correctly. The impact of this work is also more objectively noticeable in the
deliverables where

1.4 Objectives

To add to the previous section and to be more concrete the main objectives will be intro-
duced in this section.
The intent of this work is to create models that allow for the detection of failures in the
communication network. While the main objective of the work is to prove experimentally
that those agents can be constructed in practice, due to the inclusion of this work in the
BUBBLES project it would be interesting to be able to implement these models in practice,
however due to the limitation of the scope of the project, being more of an introductory
study in the field this aspect might not be accomplished.

1.5 Document structure

This document is organized in five sections. This introductory section has the intent of
contextualizing the work, both in scope as well as in the relation with other projects,
present the main motivation for this work, especially in terms of the capabilities of Un-
maned Aerial Vehicle (UAV) and display the structure of the entire document.

Chapter 2 presents the State-of-the-Art and related research done to identify the tech-
niques/models related to the scope of this project; furthermore some technologies that are

3



Chapter 1

vital to the validation necessary for the work. More specifically the areas approached will
be related to the management of networks and discovery of problems within those.

Chapter 3 presents the project goals with more detail. It also presents the methodology
chosen, the tasks and their status as well as a threshold of success considered for this
project.

Chapter 4 introduces some of the work that was accomplished in the first semester, with a
more preparatory nature, as well as the impact that it will have in the future of the project.

Chapter chapter 5 presents both the dataset gathering process as well as an analysis of
that dataset.

Chapter chapter 6 contains the values acquired in this work, offers a brief analysis in each
and discusses both conclusions extrapolated from them as well as possible practical uses.

Finally, chapter 7 presents an evaluation of the work, possible future works and some result
discussion.

4



This page is intentionally left blank.



Chapter 2

SoA and Technologies

2.1 State Of Art

The study of the UASs is a more recent subject, due to the original difficulty of finding
an environment where they could be studied efficiently and safely, as well as the main
military focus on which they first appeared. However, drone networks are basically a series
of interconnected nodes that transmit and exchange information, like directions, video
and audio, that move along the physical space. If we subtract the movement that the
UASs naturally do, we can see that the definition is very similar to a computer network
or a telecommunication network, and these subjects have been thoroughly studied, with
a variety of different techniques. Due to this fact, this report will present techniques that
have been already studied with the intent of utilizing those in an UAS network. From
the research done three possible techniques will be beheld: Time Series Analysis, Bayesian
Networks and Artificial Neural Networks.

2.1.1 Time Series Analysis and Forecasting

A time series is a series of data points ordered by time, being equally spaced. Time series
analysis is the statistical study of these time series.

One of the most common techniques is ARIMA which uses several smaller techniques and
combines them into a final model.The AR in ARIMA signifies the auto-regressive model,
that uses the previous values of a time series to extrapolate the following. This is given by
the formula:

Xt = c+
∑p

i=1 ϕiXt−i + ϵt

Where Xt is the value we are trying to predict, c is a constant, Xt−i is the previous
values, ϕi is a variable parameter and ϵt is white noise. The idea behind this formulation
lies in the fact that it is expected that previous elements influence the next element and,
depending on the concrete problem, there might exist an upwards or downwards tendency.
Furthermore, in a real scenario there is a stochastic part that can not be calculated; thus
there is a need to add some randomness to the predicted value.

The MA part of the acronym represents the moving average model, that tries to minimize
the current error introduced by the white noise parcel by using the previous errors. The
formula is given by:

6



SoA and Technologies

Xt = µ+ ϵt +
∑q

i=1 θiϵt−i

Where Xt is the value we want to predict, µ is the mean of the series, the θi represents the
parameters and ϵt is the white noise. Similarly to the previous model the MA also assumes
that previous values determine the next, however the difference is in how those previous
data points are considered. In the moving average the mean of all values is used and the
elements that are considered are the errors between the predicted and actual results. This
allows for a better global notion of the values, however it minimizes the impact of sudden
shifts in expected results.

To finish the construction of the ARIMA model, other than joining both of the previous
models, the only thing that needs to be changed is the fact that instead of using the raw
data points, it is used the difference between the consecutive data points. Thus the ARIMA
formula is a cascade of 2 models:
Yt = (1− L)dXt

(1−
∑p

i=1 ϕiL
i)Yt=(1 +

∑q
i=1 θiL

i)ϵt

Where d is the degree of differencing, L is the lag operator (Li ∗ Xt = Xt−i) and the
remaining variables are the same as in the MA and AR previously explained. The ARIMA
model is useful since a great number of time series don’t have immediately stationarity to
be able to use AR and MA, as well as utilising the advantages of the general notion of
the series provided by the MA model and the more recent tendencies provided by the AR
model.
The FARIMA model is an adaptation of the ARIMA model where the d parameter can
take fractional values, which makes the decay follow a power-law distribution.

2.1.2 Bayesian Network

A Bayesian network is a graphical representation that utilises the Bayes rule and Markov
chains to predict, given some pre-established events, the probability of a certain event to
occur. The structure itself is a directed acyclic graph (DAG) that connects the known
variables (effects) to the possible causes and predicts based on the values of the effects the
chance that the cause is also happening.

Figure 2.1: Example of a directed graph in context

The Bayes rule states that for two given events, A and B, the probability of A happening,
knowing B happened, is dependent of the probability of B knowing A, the probability of
A and of B. In other words, this theorem allows the connection between cause and effects,
i.e. in the previous example if B is an observable event and A is a cause, knowing that B
is happening allows the calculus of the probability that A is happening.
One of the advantages for the use of this technique is the capability to use previously

7



Chapter 2

known information and combine with statistical data, however this is also its greatest
disadvantage, since without this data it is impractical to construct such a model.

2.1.3 Artificial Neural Networks

An artificial neural network is a collection of connected nodes, that simulate the functioning
of the brain, where the nodes “feed” each other a signal, which is a real number, that is
processed by the node. Eventually this signal will reach the output layer where the network
will decide on an action. This technique is very powerful, since the number of nodes can
be increased to allow for more computational power, however they are less intuitive for
a human to understand their decisions and the training time might be quite high. The
presented study considers 2 different neural networks: the multilayer perceptron and the
recurrent neural network.
To explain in a more complete way we can look at ANNs as directed graphs, where each
node has a underlying function and parameters, known as weights, that multiply the inputs
to give each the correct importance. As the values received in the input level are fowarded
in the network these functions alter them, in a way that the last layer, the output layer,
can accurately decide which state the system is in or what action to take. However, these
functions hardly are correct in a pre-trained neural network, thus there is a need to change
them to fit the expected outputs. This is achieved by the use of learning techniques such
as backpropagation.
To better understand backpropagation let’s first properly formalize the last paragraph.
Let us assume that x is the input vector, y is output, g is the function represented by the
entirety of the ANN, L is the number of layers,W i is the weights matrix for layer i and f i

is the activation function for layer i. This means that we can write y = g(x) = fL(WL ∗
fL−1(WL−1 ∗ fL−2(....f1(W 1x)))). Now, assuming that r is the correct output we can say
that the error or cost (C) is given by C(r,y), which in turn can be represented by C(r,g(x)).
It is evident that the best value for C is 0, where r and g(x) has the same value. To arrive
at this value we can consider the gradient of C, ∇C that will point in the direction of 0,
which in turn can be calculated using the chain rule, i.e. ∇C = ∂C

∂al
◦ ∂al

∂zl
∗ ∂zl

∂al−1 ◦ ∂al−1

∂zl−1 ∗..∂z
1

∂x

where zi is the input for a layer and ai is the output of a layer i. This gradient can be
rewritten as ∇xC = (W 1)T ∗ (f1)′.... ◦ (WL−1)T ∗ (fL−1)′ ◦ (WL)T ∗ (fL)′ ◦ ∇aLC or for
a specific layer δ = (fL)′ ◦ (WL+1)T .... ◦ (WL−1)T ∗ (fL−1)′ ◦ (WL)T ∗ (fL)′ ◦ ∇aLC. By
changing the order of actions we can notice that it can be calculated recursively by utilising
the formulation δL−1 = (fL−1)′◦(W l)T ∗δl, so the gradient for each layer can be calculated
with a single pass if don recursively from end to beginning. That is backpropagation. The
wrights are then updated per node depending on the learning rate, where a big value causes
great fluctuations in results and small values diminishes the speed of convergence to the
optimal result.

A Multilayer Perceptron is a shallow feedforward neural network, considered one of the
simplest. It is composed by at least 3 layers: the input layer where each node receives a
value, one or more hidden layers and an output layer.

8



SoA and Technologies

Figure 2.2: Example of the MLP network used in the study by Oliveira et all[11]

A non-linear activation function is used in each node for both the hidden and the output
layers. MLP utilizes backpropagation, a supervised learning approach, for training. In the
analysed literature another version of the backpropagation was used, called the resilient
backpropagation, that dynamically alters the learning rate parameter to avoid either high
fluctuation or slow improvement in the training process.

There is also another option for the construction of the MLP in the choice of the chosen
activation function, that will impact both the convergence rate as well as the performance
of the network. In the studied approach the activation function was the sigmoid, one of
the most used functions, however it will be interesting to explore other options. A RNN is
a network that is based on the MLP network that utilises memory by feeding the outputs
from either the hidden layer (Elman network) or the output layer (Jordan) backwards to
the hidden layer serving as part of its input. In this way cycles are created which serves
as the previously mentioned memory.

9



Chapter 2

Figure 2.3: Example of the JNN network used in the study by Oliveira et all[11]

2.1.4 A comparative study between the proposed approaches

Three major models were proposed: the time series analysis, the Bayesian network and
the ANN. In this section the studies will be more thoroughly discussed.

In the study by Feng et all[9], 4 different datasets were analysed and compared using the
different models. The first three datasets are taken from a real scenario, t040318 and
t030801 being from the WiFi testbed in the Network Research Laboratory of Tianjin
University and final.anon was from the Mobile Computing Group at Stanford University.
The final dataset was acquired from a synthetic trace using Chaotic Map. The results are
presented in the following table:

ARIMA FARIMA ANN
t040318 0.31 0.27 0.28
t030801 0.83 0.80 0.81

final.anon 0.80 0.72 0.70
synthetic 0.57 0.55 0.55

Table 2.1: Adapted results for the comparative study of Feng et all in NRSME

It is important to denote that the used metric is the NRMSE, which is a comparison made
between the tested predictor and a trivial predictor, being 0 the perfect prediction and
1 the same capabilities between the two. As we can see, all the results are smaller than
1. Furthermore, all the techniques have some similar values, except ARIMA; nonetheless,
since the environment of the UAS network is more unstable and can have faster changes
the ARIMA modelling will also be tested for this case.
This sort of modelling is going to mostly be used as the baseline for comparison of the
following approaches, since this model doesn’t learn information, it just utilizes the previous
values for the calculation of the current one, however the weights and values are given
parameters that might be optimized.

For the specific case of the network analysis and prediction with Bayesian networks, Hara-

10



SoA and Technologies

hap et al[10] utilises a model that, from the throughput on router, end-to-end throughput
and the packet-loss, extrapolates the chance for the congestion to occur. After training the
model, they tested it on a simulated scenario represented in figure 2.4. and then applied
the model which gives results presented in figure 2.5.

Figure 2.4: Network test for the Bayesian modelling

Figure 2.5: Real time predictions of congestion

There is an argument that the result isn’t statistically significant, due to the low number
of runs, however the values and the ease of interpretability makes it appealing enough to
warrant further study. To further elaborate, if a human can more easily understand the
problem they can also have a better understanding of the specific problem the network
is having, which is even more interesting in the case of a dynamic network such as an
UAS network. Furthermore, the time window where the prediction occurs will allow the
controller more reaction time to take precautions.

In the work of Oliveira et all[11], 3 different types of neural networks with differing degrees
of complexity were implemented to study its application on computer networks by evalu-
ating: time needed to train, efficiency in result and scalability of the data set. Those three
networks being: MLP, with and without resilient backpropagation; a JNN network and a
stacked autoencoder. The results of the study will be shown in the following tables.

11



Chapter 2

MLP-BP MLP-RP RNN SAE
A-1d 268 79 67 8,874
A-1h 2,373 1,482 1,473 585,761
A-5m 86,296 56,078 33,981 6,724,641
B-1d 558 326 108 17,280
B-5m 117,652 78,078 45,968 8,691,876

Table 2.2: Time in milliseconds that will take for the network to converge

MLP-BP MLP-RP RNN SAE
A-1d 0.19985 0.20227 0.19724 0.366
A-1h 0.05524 0.04145 0.04197 0.09399
A-5m 0.01939 0.01657 0.01649 0.02226
B-1d 0.12668 0.14606 0.11604 0.21552
B-5m 0.01306 0.01008 0.00994 0.01949

Table 2.3: Normalized mean squared error for the prediction performance

As we can see, in table 2.2 the time taken by the stacked autoencoder is much greater than
for the other two, due to the fact of it being a deep network. Furthermore, in terms of
performance it is worse than the other networks and the other networks have some con-
siderably good results, as shown in table 2.3. It is also important to denote that the MLP
network with resilient backpropagation is strictly better then with classic backpropagation.
Thus, the stacked autoencoder and the MLP approach with backpropagation would not
be considered for the future work, however, in the further studies it was discovered that
most libraries do not use resilient backpropagation and due to the more practical nature of
this work, it was decided that it would be more valuable generalization rather than purely
results. Due to that the backpropagation alghorithm will be used. In terms of the rest of
the results, the RNN is superior to the MLP in time needed to train and, in most cases,
in the normalized root mean squared error. However they are similar enough where there
might be an advantage in the context of UAS’s.

The time series model has the advantage of its simplicity, however it is not expected
that it becomes the best technique, specially due to what was mentioned in its section of
not learning and just being a mathematical formulation. The greatest advantage of the
Bayesian network is the explainability of the results, still its biggest problem is the dataset,
that needs more varied information than the other two and the need for the assumptions
being correct. Finally, the ANN are the ones that are expected to have the greatest
performance, nonetheless they have low explainability and they are the model with the
most complex and costly architecture.

Due to the fact each technique has considerable advantages, in further studies they will be
evaluated for their performance.

2.2 Architectural components of the system

As will be explained in further section, this thesis has been based on the architecture
planned and constructed in the scope of the BUBBLES project.
To have a better notion of the system, this section exposes several of the components that

12



SoA and Technologies

make it, allowing for a more critical analysis of the project.

2.2.1 Mavlink

Mavlink is a communication protocol specifically created for Micro Air Vehicles(MAV) [6].
It supports TCP, UDP as well as serial telemetry low bandwidth channels operating under
the 1Ghz.
Its architecture has several different systems, forming a network, where each has an id.
For each message sent all different systems will access it, due to the fact that it will be
broadcast; then each system will verify if they are the intended recipient, proceeding to
broadcast the message again to all channels that haven’t seen the message.
In terms of Quality of service (QoS), it depends on how it is setup. If the message was
sent following a predefined Command Protocol, i.e. a set of rules for how the system will
treat the message. If the system is using a Protocol that does not expect an acknowledg-
ment, MAVLink offers at-most-once delivery. However, if the system expects a matching
acknowledgment, it offers the at-least-once type of delivery because if no ACK is received,
it will resend the message.

2.2.2 Kafka

Apache Kafka is an open-source message-broker middleware with additional streaming
capabilities[1]. It uses a binary protocol over TCP/IP that defines all APIs as response-
request message pairs.

The principles behind it are the same as other message-oriented middleware: Producers
push messages to a queue while Subscribers access those messages. These messages are
pushed to a topic, which are similar to a folder in a filesystem, while the messages will
be the files. In Kafka all topics are multi-producer and multi-subscriber, being able to
accommodate 0,1 or many consumers.

It is also important to denote that each of these topics are partitioned , as in, a topic is
spread on several Kafka brokers, which allows for greater scalability. Furthermore Kafka
also guarantees that the messages are sent to the same partition if their key is the same
and that consumers will acquire the messages ordered by the time where they were written.

Figure 2.6: Example of two producers sending messages to topic from the Kafka
documentation[1]

13



Chapter 2

Kafka also has three different levels of QoS: at-most-once, at-least-once and exactly-once.
At-most-once means that the message sent might be lost, but will never be redelivered,
which allows less congestion in the network by sacrificing reliability; at-least-once guar-
antees that all messages will be delivered, however there is a chance that they will be
redelivered, its benefits are symmetrical to previous level of QoS. Finally, exactly-once
guarantees that the message is delivered only once, with the additional cost on the net-
work.

2.2.3 DDS

Just like the previous protocol, the Data Distribution Service (DDS)[2] is a publish-
subscribe model, utilised for real-time systems and machine-to-machine communication
standard.It is also brokerless, utilising instead multicast to provide reliable and efficient
communication over both TCP and UDP.
One of its main advantages is the way that the communication is setup almost automat-
ically, reducing programming time; this includes not needing to know where the other
machine is, determining who should receive the message or what happens if the message
is not received.
In terms of QoS, DDS loads the intended QoS message into the packet, in case of a pub-
lisher, while the subscriber expects that the package it receives have a corresponding level
of QoS.
From the QoS files, two attributes were configured: RELIABILITY_QOS and the DURA-
BILITY_QOS.
The RELIABILITY_QOS was configured on both the DataReaders and DataWriters to
offers at least once delivery (RELIABLE). For the communications to be reliable, the HIS-
TORY_QOS needed to be configured on the DataWriter.
For durability, the selected type was KEEP_ALL_HISTORY_QOS. This way, all mes-
sages sent by the DataWriter are saved, and in case of error, due to the RELIABIL-
ITY_QOS being configured, it will resend saved messages that the subscriber could not
access.

2.2.4 Px4

PX4 is an open-sourced autopilot software system[7]. It is hosted under the governance of
the Dronecode Project. Since it was created in 2009 it has had time to improve and refine
its systems.
PX4 can utilise both Software-in-the-loop(SITL) or Hardware-in-the-loop(HITL). In the
testbed environment it was only tested using SITL, i.e. every thing is simulated utilising
software, from the sensor data to the environment. The PX4 autopilot receives the data
from the simulator utilising Mavlink; these are then processed and the commands will be
sent back to the virtual drone.

2.2.5 Gazebo

Gazebo is a collection of open source libraries that is designed to simplify development of
high-performance applications[3].
This system is widely used in various different robotics applications due to its principles
of generality, stability, constant updates, ease of use, modularity, extensibility, flexibility,
maintainability and portability.

14



SoA and Technologies

The facet of Gazebo that was used was Gazebo simulator, a robotics and physics simulator
where the drones were already defined in one of the public libraries, which the BUBBLES
team used to perform most of the tests.

2.3 Architecture for the communications platform

The BUBBLES communications architecture proof-of-concept was also integrated within
the BUBBLES UC-UPV validation scenario (instantiated in the VMs created on the CAN-
VAS testbed). From an integrated service perspective, the BUBBLES communications
architecture relies on publisher-subscriber message queue mechanisms for supporting the
communication flows between U-Space service components. Also, UAV communications
are provided by means of a communications agent embedded in its embedded software
stack, which will provide a continuous telemetry feed to the tracker service.
The specific implementation for the BUBBLES communications architecture (depicted in
Figure 2.7), encompasses the key components of the communications architecture, which
is also used for service integration, with a particular focus on the clear separation between
edge and core communications. Edge brokers provide the first communications endpoint,
ideally within a 1-hop radius from the UAV, while core brokers provide a reliable back-
bone, designed to provide scalability and reliability properties by means of partitioning
mechanisms and distributed geographic points-of-presence.

Figure 2.7: BUBBLES Communications Platform Concept

The Communications Performance Monitoring mechanisms (CPM) are implemented by
resorting to instrumentation of the agent, edge broker and core broker components. In
this way, it becomes possible to measure the impact of communications. A network
emulator (which is part of the validation environment, providing communications shap-
ing/impairment capabilities) is managed by the fault injection tool, providing the means
to generate network fault/failure situations for controlled experimental validation, as shown
in Figure 2.8.

15



Chapter 2

Figure 2.8: Network Emulator usage for Communications Platform tests

A publisher/subscriber model is used to implement communications between the drone and
edge brokers, having communication between the edge and core to forward the messages.
To achieve this, the DDS protocol was used for drone-edge communication and Kafka for
edge-broker communication. In a real scenario there would be a need for some external
equipment to be attached to the drone, so that it could have access to the flight information,
needing some sort of serial communication, but in the specific case of the UC-UPV platform,
information is extracted from PX4 via Mavlink.

2.4 Traffic shaper

Other than the communication agent, a network controller was added to the communication
by utilising a bridge. This controller sets several network parameters in the communication
such as the latency, packet loss, jitter, etc.
This is achieved by the use of a Token Bucket based queue, more specifically Hierarchical
Token Bucket(HTB) queue, where each packet is put in a queue and sarcastically gets
attributed a token. These tokens are refreshed by a set rate and represent a certain
amount of bandwith, that will be used to pass the messages.
Since the technique used is the HTB a class hierarchy can be setup, wheretree-like topology
where subclasses (who have their own token buckets) can borrow tokens from the upper
classes, if they are available.

Figure 2.9: Environment with traffic shaper

Another advantage for the network emulator is the fact that it remains invisible from any
of the machines, not directly affecting them. It is also easily exportable allowing a seamless
deployment in several scenarios.

16



SoA and Technologies

2.5 Testbed scenario

Figure 2.9 depicts the network topology for the UC-UPV validation environment, hosted
within a VMware ESXi type-1 hypervisor infrastructure. Represented components include
virtual machines (green) and virtual network switches with respective port groups (yellow
for the test network, blue to the management network).

Figure 2.10: VM and network topology deployment on the virtualized environment

VM and network topology deployment on the virtualized environment There are two net-
works in the testbed setup: the internal Departmental network (DEI stands for UC’s
“Department of Informatics Engineering”) and the private BUBBLES network. Each VM
may have more than one virtual Network Interface Card (NIC) connected to different net-
works. The connectivity is arranged as such:
-Connections on the Private BUBBLES Network (yellow – SWLeft and SWRight): BUB-
BLES_VM1, BUBBLES_VM2, BUBBLES_Fault_Injector (via NIC2 in the three cases,
private IP addresses to be defined) and BUBBLES_Emunet (via NIC1 and NIC2, which
do not require an IP).

• Connections on the Public DEI Network (blue - VM Network): BUBBLES_VM1,
BUBBLES_VM2, BUBBLES_Fault_Injector (via NIC1 in all cases), BUBBLES_Emunet
(NIC3). In this network, IP addresses are already configured.

• Connections to the DEI network already have a configured IP address – the VMs are
accessible via SSH. These interfaces must be used for out-of-band configuration of
the test setups and VM maintenance/configuration – this is due to the fact to these
connections will never be affected by the network emulator VM

17



Chapter 2

The private BUBBLES network is spread across two virtual ethernet switches (BUB-
BLES_SWLeft and BUBBLES_SWRight). The idea is that emulated drones will be
connected on the Left side and the fault injector VM will be connected on the Right side.
This terminology is also used on the configurations for the sidekick agent, described in
subsection 3.4 – communications between this agent and the fault injector are provided by
means of the Experimental Middleware Controller VM. Connectivity between the two sides
(Left and Right) will be established by means of the BUBBLES_Emunet VM, which is in
charge of introducing communication disturbances and/or faults (using a network emula-
tor). For instance, in the depicted scenario, all communications between BUBBLES_VM1
and BUBBLES_VM2 (via NIC2) and the BUBBLES_Fault_Injector (via NIC2) VMs
will only be possible through the path that is controlled by the BUBBLES_Emunet VM
emulator. Special care must be taken regarding the following aspects:

1. All the components involved in the PX4/Gazebo/Fault Injection scenario must com-
municate with each other only within the private BUBBLES network

2. NIC2 on BUBBLES_VM1, BUBBLES_VM2 and BUBBLES_Fault_Injector must
have manually configured IPs (to be defined during the configuration of the compo-
nents referred in item 1). These NICs belong to the private network – therefore, an
IP address range must be chosen in order to avoid conflicts with the rest of the DEI
networks (the range 192.168.2.0/24 is probably adequate).

3. NIC1 on BUBBLES_VM1, BUBBLES_VM2 and BUBBLES_Fault_Injector must
only be used for remote access/maintenance or for test configuration purposes, con-
trolled via the Fault Injector VM (which has a single NIC)

NIC1 and NIC2 on the BUBBLES_Emunet VM do not require a configured IP, since this
VM operates as a transparent network bridge (thus, at Layer 2).

2.6 Network emulator implementation

To limit outgoing traffic on a NIC, a Token Bucket based queue discipline is used, namely
the Hierarchical Token Bucket (HTB) [4]. In the HTB queuing discipline egress traffic
bytes are serviced by tokens, refreshed at an established output rate. Tokens are saved up
in a bucket of limited size, allowing for a bandwidth credit, since smaller bursts of traffic
can be handled at a higher rate.
On a HTB arrangement, the class hierarchy expands upon the basic token bucket concept,
allowing for the creation of a tree-like topology where subclasses (who have their own token
buckets) can borrow tokens from the upper classes, if they are available.

18



SoA and Technologies

Figure 2.11: Network Emulator Traffic Shaper Hierarchy

To limit outgoing traffic on a network interface, a Token Bucket based queue discipline is
used, namely the Hierarchical Token Bucket (HTB). In the HTB stochastically fair queu-
ing discipline, egress traffic bytes are serviced by tokens. Such tokens are refreshed at an
established output rate, controlled by a clock source. Tokens are saved up in a bucket of
limited size, allowing for a bandwidth credit, since smaller bursts of traffic can be handled
at a higher rate. With HTB providing rate control, the netEm[5] capability embedded
within the Linux traffic control feature set provides emulation mechanisms to implement
packet loss, latency and jitter disturbance/impairment.
The deployment of the HTB + netEm tandem forms the basis for the Network Emulator
tool, which is be hosted on a Linux Virtual Machine (VM), fine-tuned for a real-time pro-
file, with locked CPU and memory reservations and configured to behave as a transparent
layer 2 bridge (thus being completely invisible for any communications parties). The design
of the network emulator allows for it to be packaged as an Open Virtualization Format
(OVF) appliance to be seamlessly deployed in scenarios involving network communications
between 2 or more nodes.

19



This page is intentionally left blank.



Chapter 3

Methodologies and planning

This chapter objective is the definition of the methodology chosen as well as delineating
the tasks and planned progress for the entirety of the project lifetime.

3.1 Methodology

For a project to be successful it is important to have a set of rules and structure, allowing
easier segmentation of objectives. These structured processes are the methodologies, tested
over a different number of projects and with definite strengths and weaknesses.

In this project the adopted methodology will be the waterfall model, where the more
rigid structure allow for easier estimation of deadlines and the initial evaluations help in
avoiding wastefulness. Furthermore the biggest weakness of this model, its rigidity, will
not be detrimental, since the requirements won’t change.

Figure 3.1: Example of the waterfall model, extracted from Lucidchart.com

The only difference from the classical approach of this methodology and the one that will
be used is that the test phase and development phase will be merged into one, due to the
more stochastic relation of the developed models.

21



Chapter 3

3.2 Tasks

In the following table several different tasks are presented that allow for the natural pro-
gression of the work. These tasks aren’t expected to change, however there is a chance
that more will be added.

Tasks Progress
Understanding the architecture Done

Research on communications monitoring techniques Done
Gather datasets In Progress
Analyse datasets In Progress

Adapt the system to run faulty runs Done
Gather requirements To Be Done

Construct the models(TSA and ANN) for QoS active To Be done
Construct the models(TSA and ANN) for Qos active and inactive To Be done

Construct models aware of the situation (Bayesian and ANN) To Be done
Construct a model to be placed on the edge broker To Be Done

Run tests To Be done
Write thesis To Be done

Table 3.1: Tasks At the intermediate defense

After the study of the area and the more concrete realisation of the project’s goals, the
requirements were created and described as tasks. Furthermore, the planned order of
difficulty in the creation of the agents, as well as the attempt to organize the work with
the rest of the BUBBlES team allowed for a more structured development.

Throughout the timeline of the project the report was changed and adapted to accurately
reflect the status of the work. Moreover, each task was tested several times, even after
their intended completion, to guarantee the results were irreproachable.

Tasks Progress
Understanding the architecture Done

Research on communications monitoring techniques Done
Gather datasets Done
Analyse datasets Done

Adapt the system to run faulty runs Done
Gather requirements To Be Done

Construct the models(TSA and ANN) for QoS active Done
Construct the models(TSA and ANN) for Qos active and inactive Done

Construct models aware of the situation (Bayesian and ANN) Not done
Construct a model to be placed on the edge broker Done

Run tests Done
Write thesis Done

Table 3.2: Tasks at the end of the project

The more impactfull change was the impossibility of the use of realistic datasets, due to
reasons that will be explained in further sections.

22



Methodologies and planning

3.2.1 Task details

In this subsection each task will be explained with more detail.

• Understanding the architecture - Since the architecture of the BUBBLES com-
munication system was created and needed to be used, in the beginning, the main
task was the understanding of the protocols as well as the logic behind it.

• Research on communications monitoring techniques- The main objective of
this work is the detection of network problems; due to this there was a need to re-
search about this topic.

• Gather datasets- This task will be better explained in the following section 4.

• Analyse datasets- Some studies apply a more brute force approach to the use of
the datasets, i.e. trying to utilise either the known methods or the most complex
ones, however it was decided that the analysis of the dataset, utilising some pattern
recognition techniques would greatly enrich this work.

• Adapt the system to run faulty runs - Another team that is working on the
project developed a fault injector, that realistically recreates in the simulation several
common problems in drone aviation. Due to this there was a need to assure that the
fault injector and the communication agent worked together, especially because for
the datasets to contain more interesting data this merging will need to be complete.

• Gather requirements- After obtaining the datasets there was the need to evaluate
what exactly needs to be accomplished to achieve the following tasks.

• Construct the models(TSA and ANN) for QoS active - In a first attempt and
as the minimum for the success of the project, the agents that are more directed to
the original, less complete datasets for the main state of the communication system,
i.e, with the QoS active.

• Construct the models(TSA and ANN) for Qos active and inactive- After
the success of the previous task an interesting improvement is the capability of the
communication system to dynamically change the level of QoS, however to accom-
plish this the agent has to be able to understand both modes of the system and
provide accurate estimations.

• Construct models aware of the situation (Bayesian and ANN)- When the
gathering of faulty runs datasets is completed it will be interesting the use of these
more complete datasets for the prediction of the network state. This is especially
true for the Bayes network, since it will allow for a human pilot to have a better
notion of the problems.

23



Chapter 3

• Construct a model to be placed on the edge broker- As stated in ?? the
edge broker has only the job of forwarding messages, which is an inefficient use of
resources, especially considering the fact that it is the broker that is closest to the
drones. To improve this an agent will be implemented that, with less information,
can provide an estimation of problems that will be forwarded to the core broker, as
well as a regulator that will allow the activation of measures to counterbalance any
problems that were detected.

• Run tests- Throughout the development phase several different tests will be done
to assure the correct functioning of each agent, also providing inputs for further re-
finement, in line with the spirit of the waterfall development approach.

• Write thesis- To allow for an easier and more detailed comprehension of the work
done, the thesis will be constantly updated while the other tasks are being done.Moreover,
this effort is also closely linked with the need to provide inputs to official BUBBLES
project deliverables, which will be undertaken in line with the outputs of the under-
going work, also incorporated into the thesis document.

• Gather dataset - Second iteration - After studying the datasets in task Analyse
datasets it was discovered that due to various reasons they were insufficient. Thus
there was a need to create new datasets taking into account those conclusions.

• Resolve problems with agents - In the review of the models and their training
process some inconsistencies and non-expected values gave rise to a need to under-
stand the problems and correct them, guaranteeing the correct behaviour of the
agents.

3.3 Planned Gantt

In this section a Gantt diagram of work done and to be done is presented and discussed
for the first semester. This Gantt is based on the work that has been done, as well as some
estimations.
Furthermore, there is a Gantt representing the actual development of the work, which will
be used as a comparison tool to allow for the detection of problems with the work itself.

24



Methodologies and planning

Figure 3.2: Gantt for the project

The most important thing in this Gantt is the size of the dataset gathering task. This
happened due to some problems in setting the environment, as well as the natural time
that it takes to generate a dataset, which originally was much larger. Other than that, the
waterfall model is very explicit when the practical side is examined.

Figure 3.3: Gantt for the project evaluated at the end

We can notice several differences from the expected gantt, mostly centered around the
second iteration of the gathering of datasets and the removal of crating agents using realistic

25



Chapter 3

datasets.
This was caused due to different reasons: firstly, a large amount of problems only discovered
after the analysis of the dataset created a need to redo them. Furthermore, as will be
discussed ahead, the units used for the fault injector, the UPV team and the system
utilised were not compatible and since the tests with real drones were not done with just
the BUBBLES team, they could not be rescheduled.
We can additionally also notice a problem with the model chosen, where the impact from
the need of adding a second iteration for the datasets delayed the entirity of the remaining
work.

3.4 Threshold of Success

For a project to be successful there is a need to define clear and concise objectives that, if
completed guarantee its completion or failure. A Threshold of Success is a technique which
defines the minimum requirements or tasks that if not completed mean that the project
failed. The ones that will be defined for this project are:
-having all the requirements completed in the allotted time for the work.
- guaranteeing that at least one of the models can detect problems, as in the accuracy and
precison have to be over 0.6.

26



This page is intentionally left blank.



Chapter 4

Preliminary phase

In the first semester the main focus was on preparatory work that allowed the later im-
plementation of the more practical variety that is present in chapter 5 and chapter 6. On
the first half the objective was to learn the communication system developed by Pedro
Ribeiro. After this initial moment and with the help of Pedro there was some decisions
made to improve the system. Following this moment the work was done individually which
includes the dataset acquisition and adaptation to an environment of faulty runs.

This section will describe in more detail the work previously mentioned.

4.1 Alteration of packet data

As was stated in chapter 1 the BUBBLES project is undertaken by a consortium as a group,
thus this system will be used for the entire team, one of which is the Universitat Politécnica
de Valência (UPV), which has the job of constructing a tracker to detect conflicts both in
the strategic (pre-flight) tactical (in flight) phases.
In the integration with the tracker developed by the team from the UPV it was discovered
that the information sent was insufficient, so there was a need to adapt the information
sent by the system from the model identified by table 4.1 to the model identified by table
4.2.
The main difficulty in this part was discovering if PX4 and Mavlink could provide the
required data.

Attributes Description Attribute type Data Specificity
altitude altitude float m
latitude latitude coordinate float ◦

longitude longitude coordinate float ◦

yaw yaw angle float ◦

roll roll angle float ◦

pitch pitch angle float ◦

battery Battery remaining float %
time time for telemetry poll uint64 ms Unix format

Table 4.1: Previous content of the messages

28



Preliminary phase

Attributes Description Attribute type Data Specificity
altitude altitude float m
latitude latitude coordinate float ◦

longitude longitude coordinate float ◦

yaw yaw angle float ◦

roll roll angle float ◦

pitch pitch angle float ◦

x_vel Velocity in X float m/s
y_vel Velocity in Y float m/s
z_vel Velocity in Z float m/s

horizontal_uncertainty Position uncertainty float m
vertical_uncertainty Altitude uncertainty float m

vel_uncertainty Velocity uncertainty float m/s
battery Battery remaining float %
time time for telemetry poll uint64 ms Unix format

Table 4.2: Current content of the messages

4.2 Dataset acquisition

To acquire datasets there were two approaches that were followed: the first, in which there
was a research effort to investigate possible datasets and a second where the datasets were
created using the testbed explained in section 2.3.

After looking through several different datasets the conclusion achieved was that the faults
given were less about communication and more about either mechanical problems of the
drone or security attacks to the network. Thus the majority of the data used will be from
the second approach, since it allows more control over the created data.

The methodology for acquiring data is as follows: with the scenario activated a certain
number of drones will be initialized both in gazebo and in the system; furthermore the
core broker will be started, using the timeout capabilities of Linux to guarantee an even
amount of time. Core will also log the received time of each packet as well as the rest of
the message.

The previous experiment will be run for 1,5 and 10 drones with a rate of 4 Messages
per second and the QoS might be active or not. Furthermore the network emulator will
simulate abnormal conditions such as Packet Loss and Latency.

It was planned that in a posterior attempt these datasets will be acquired utilising the
faulty run setup, in which some more complex faults inherent to UAS’s will be beheld in
a more accurate simulation.

4.3 Adapting the architecture for faulty run setup

The creation of datasets is vital to the development of the rest of the project, to utilise a
faulty run setup, i.e. a setup where network faults are injected as the simulation is run,
there was a need to remake the architecture due to the fact that both the drone and the
fault injector were using the same UDP port, because the stream would be blocked by one
of the services and unable to receive from the two sources simultaneously.

29



Chapter 4

To deal with these problems a TCP server was nested in the VM responsible for the drone
simulator that then received messages by TCP from the python fault injector and then
sent them to the communication platform using the DDS protocol.

More specifically, the fault injector connects to the virtual UAS, sending it the instruc-
tions after some distortions, created by typical telecommunication problems such as GPS
malfunctions, or areas with a large amount of disturbances. However, as previously men-
tioned this capability controls the only direct communication with the drone, not allowing
it to connect to the communication system. This was solved by making it so each thread
from the fault injector, responsible for each drone, creates a TCP connection to what was
previously described as the Drone.
The main challenge of this part was the discovery of the problem, as well as understanding
if the solution could affect the rest of the system or not.
However, due to a difference in units, that is not established yet for the scope of UAS’s, it
was impossible to utilise the fault injector without several changes for the dataset acqui-
sition, moreover the fault injector architecture was not studied in detail so it could not be
changed.

30



Chapter 5

Experimentation

5.1 Data set acquisition

The first step which created some concrete value of the thesis project was the dataset ac-
quisition. As was previously mentioned the datasets were obtained by utilising the testbed
scenario mentioned in section 2.3 by utilising several delay and loss parameters. For the
first we used values of 10, 20 and 30ms, while for the latter we introduced losses of 10, 20
and 30%.

In the following subsections each level of dataset creation will be presented, justified and
any problems during these steps will be discussed, as well as the corrections.

5.1.1 First phase-Dataset acquisition with QoS active

The first group of datasets that were gathered were the ones where the full system is
completely operational, i.e. with the QoS active and using data in the core.

However as the datasets were obtained several problems were detected:

• since this was the first time the setup was constructed and with the intention of
setting this exact setup for future studies that need it, all the software was updated
to work in Ubuntu 20. However some of the libraries used were outdated.

• since the system has a number of different VM’s, if the clock isn’t coherent between
them timestamps will be unreliable.

• due to the use of a multicast-based technique, the DDS protocol is too efficient in
discovering alternative routes to reach the address of the edge, which made it so the
packets avoided the supposed added loss from the traffic shaper.

• due to the fact that it was a shared environment with other projects the network was
affected by the use of other virtual machines.

31



Chapter 5

• another problem that will be further discussed in the section 5.2 was the fact that a
lot of the possible parameters for the network faults were not useful, either because
there is no noticeable impact or the values were too unrealistic.

To diagnose and solve these problems some time was needed, both for the reruns of the
system as well as for their discovery. These problems were individually solved, using several
methods:

• for the update problem the approach was an investigation of the current versions of
the software and a trial and error approach to fit the scenario.

• for the problem related with the clock of the system an option was activated to guar-
antee that the VM clocks and the hypervisor host clock are in sync.

• to solve the problems with DDS any network interface that wasn’t part of the system
was disabled, making it so no alternate routes could be used forcing the packets into
the correct path.

• to solve the problem with other projects, the non-necessary machines for the running
of the simulation were nonoperational during the dataset acquisition.

• to solve the parameterization problem two approaches were used, one which was a
trial and error approach, balancing the distinctiveness of the data with the possibility
of those errors occurring; the second was to use both loss and delay to create a more
realistic failure that produced actual results.

5.1.2 Second phase-Dataset acquisition with QoS inactive

In this phase the QoS of the DDS was disabled to allow for a scenario where it was con-
sidered that it was most efficient to disable the QoS.
This section of the work did not have many problems and the ones that existed overlapped
with the ones presented in the previous subsection, mainly the parameterization problem.

5.1.3 Third phase-Dataset acquisition in Edge

In this phase more tools were used other than the system presented in section 2.3, such
as the linux iperf tool to monitor the datastream. The problem with this data is that, as
we will see in the next subsections, the features that were used for both the MLP and the
RNN are differences between consecutive values, and that caused that the core and edge to
have similar values, making it so the models obatined for these datastes to be very similar
in terms of results to the ones obtained for the first phase datasets.

32



Experimentation

5.1.4 Fourth phase-Dataset acquisition in a realistic scenario

To balance the not expected results of the previously mentioned edge datasets and in line
with the BUBBLES project milestones, real drone data was acquired by the UPV team
using the system developed by the Coimbra team, which allowed for the use of some realistic
datasets. However, these datasets were not indicative of rules, guidelines or studies that
involved a safe control of drones, which impacted the work as we will see in the section
section 5.3.
Furthermore, due to the fact that distinct units were used for the UPV/injector team it was
discovered that these datasets could not be used in the training of the model, nonetheless
since there was work in adapting the system to allow a the creation of these datasets there
was a need to discuss it.

5.2 Data set analysis

After obtaining the datasets it was important to analyse them to identify interesting char-
acteristics, especially depending on the parameters utilised. This section presents both the
datasets in graphical form as well as the analysis.

5.2.1 Normal operation

The first phase is to set a baseline for the datasets establishing their normal properties
and creating assumptions for how the errors will impact them. The following graphs will
represent the time normalized in the simulation interval, where 0 is the instant the first
packet is received and 1 is the instant where the last packet was received, compared to the
difference between the time it was received with the time it was sent in microseconds.

33



Chapter 5

Figure 5.1: Normalized time received/time difference for 1 drone - normal distribution

The initial expected result was a linear distribution where most of the packets would take
the same amount of time with some variance, however as we can see in Figure 5.1 while
the interval of differences is delineated, some interesting aspects can be observed, such as
the initial packets having a larger variance of difference between the time they were sent
and the time they were received as well as some patterns in some ranges of time. This
was probably caused due to some queueing effects, in an initial phase were expected to be
exacerbated by the network problems.

34



Experimentation

Figure 5.2: Normal distribution for 5 drones

To verify the scalability of the models, there was a need to increase the number of drones
in the simulation, represented in Figure 5.2. Contrary to an initial supposition instead of
making the intervals significantly larger, the main difference with increasing the number
of drones was the increase in the spread of values making it so the area between 0.0 and
1.06 microseconds to be fully occupied with points. This phenomena repeats itself for the
close interval of 5 to 10 drones, however there were no studies that involved more than
10 drones. It is interesting to denote, that for the moment of around 0.1 we can see the
greatest difference.

5.2.2 Faults

Based on the distributions discussed in subsection 5.2.1 it was expected that adding loss
or delay would create a more random variance for the use of 1 drone and that for the use
of more than 5 drones the interval of differences would increase, nevertheless the results
obtained differed. The following graphs will show a run with errors where the failures
started being injected from 0.33 to 0.66.

35



Chapter 5

Figure 5.3: Normalized time received/time difference 1 Drone - Error distribution

As we can see in Figure 5.3 instead of a more random behaviour with the distributions
of the delay, what was instead presented was a more stable queuing phenomena. Further-
more, the maximum delay wasn’t increased substantially. However, in both the 0.33 and
0.66 mark of the time, we can notice a shift in the values, indicating that the faults have
a noticeable impact on the datasets.

36



Experimentation

Figure 5.4: Error distribution for 5 drones

Figure 5.4 seems very similar to the normal datasets, however there are some noticeable
differences such as the increased number of points above the 16 microseconds and the slight
increased in the minimum value of the delay in the fault interval.

Since loss is also introduced in these datasets it is also important to observe the distribu-
tion of consecutive message numbers, through the difference between them. In Figure 5.5
and Figure 5.6 the difference between consecutive messages is presented for 1 drone, since
consecutive messages between different drones wouldn’t be consistent due to queuing phe-
nomena. The first value being 0 signifies the first message that is compared to itself, used
for convenience in the analysis.

37



Chapter 5

Figure 5.5: Differential of messages per normalized time for 1 drone

Figure 5.6: Differential of messages per normalized time for 1 drone in 5 drone simulation

It is important to notice that in the interval where the faults are injected there starts to
be a delay in the consecutive packet number. Furthermore, the bigger the delay the less
usual it occurs, noticeable for the value of 4 that has in both cases less than 4 occurrences.

38



Experimentation

This distribution was the expected before the datasets were created. The case of the one
negative value in Figure 5.6 that is also the one that show the need for the use of both loss
and delay, since it could only happen if there is a delay and the retransmited message is lost.

After this session of dataset acquirement there was the need to analyse the datasets that
had no QoS system active.

5.2.3 No QoS errors

In the dataset for faults with no QoS, several things were expected to happen. Firstly, it
was expected that the delay datasets wouldn’t be too impacted, since the packets would
never reach the core, but the loss graph would have an increase in the number of ocurrences
and the difference between consecutive messages.

Figure 5.7: Normalized time received/time difference for 1 drone - no QoS distribution

39



Chapter 5

Figure 5.8: Normalized time received/time difference for 5 drones - no QoS distribution

We can see in Figure 5.7 that it is similar to the other scenarios, however there are less
irregularities in each pattern. This happens due to the fact that since messages are being
lost the TCP queue is less full, which causes a more continues dispersion of delays. This
phenomena can be extrapolated to Figure 5.8 where we can notice that the values greater
than 1.06 are less frequent and less distant.

40



Experimentation

Figure 5.9: Differential of messages per normalized time for 1 drone with no QoS

Figure 5.10: Differential of messages per normalized time for 1 drone in 5 drone simulation
with no QoS

For the loss, the proposed impact of the disabling of the QoS was verified, being an increase
in both the number of occurrences and their value.

41



Chapter 5

5.3 Development of the agents

In this section, we will discuss how the agents were created in more concrete terms, such
as the datasets utilised, the training method, the crossvalidation method.

5.3.1 CrossValidation Method

For the purpose of verifying if the results are significant, in this work an adapation of
the repeated random sub-sample validation method was used. This method consists in
extracting some samples for testing from the training set, depending on a probability, in
this case 33%, meaning that around a third of the dataset is used for validation. Each of
the values is guaranteed to be used either for training set or dataset.

5.3.2 ARIMA

To utilise the time series analysis the dataset had to be transformed into a time series.
To achieve this the unit utilised was number of packets per second, which allows for the
implicit utilisation of the features used in the following agents.
In terms of training, it utilises the first half of the values to obtain the coefficients and
the testing set would be the remaining data. Furthermore, in terms of testing this model,
contrary to the following sections, the for of measure is the NRMSE to be in line with the
values presented in section 2.1, since this model can’t expressly detect errors.

5.3.3 MLP

For the Multi-layer perceptron (MLP), it was necessary to define the features to be used
and, since the MLP does not use previous results directly to train there was a need to
create those features in a way that allowed for a time window to be considered. To achieve
this a window of values was used. The window corresponded to the double of the number
of packet differences considered, because half pertained to the delay from the previous
packet (the odd index) and the rest to the difference of the checksum.
In terms of the model itself, it has 100 neurons in the hidden layer utilizing the tanh
activation function, using the adam solver and the learning rate of 0.01. In a first attempt
the learning rate of 0.1 was used, however the model never converged.
In terms of training 30 different models were obtained, furthermore each model was trained
by achieving either 1000 iterations or 150 iterations with no changes. The trainig of each
model used a specific seed so it can be replicable.

5.3.4 RNN

The construction of the Recurrent Neural Network (RNN) was very similar to the construc-
tion of the MLP, however the RNN only needed to ascertain the number of datapoints that
were considered as inputs, due to the fact that the features .
The model consists of 2 layers: the Simple RNN layer and the Dense layer. The first layer
is the one where the features are processed while the second one compounds the values
to obtain the output which is the probability of the existence of an error; to simplify the

42



Experimentation

calculus of the statistical measurement this probability is rounded and that value is the
one used to evaluate the agent. The parameters of the model are different to the MLP
agent being 150 hidden nodes, due to the higher complexity, the number of epochs is 50
due to time constraints, the activation function for the Simple RNN layer is the tanh and
for the Dense layer the sigmoid function is used.

5.3.5 Bayesian network

As was mentioned previously, the Bayesian network was one of the agents with the greatest
chance of not being able to succeed, due to the datasets of the paper where the idea of the
implementation originated. However the problem that was found was that since the UAV
sector hasn’t been developed sufficiently for the creation of the proper distributions of the
states. Nevertheless, there is value in the creation of the model even if the implementation
isn’t feasible in this case, due to the possible modularity and ease of integration in future
works.

Figure 5.11: Proposed Bayesian Network

Figure 5.11 is the proposed bayesian network. It includes three main states: technical
problems, previous problems and traffic problems; the first identifies the same type of
fault as the rest of the agents, being things such as delay and loss of the network and the
possibility of stacking the other existing agents utilising the possibility of error. Previous
problem is used due to the fact that the bayesian network is a state machine and it is
believed that errors that occur will extend for an amount of time; this state could be
changed to allow for a bigger window of previous states. Finally, the traffic problems
state is dependent on the physical condition of the space where the drones fly and as
such the substates pertain to such aspects as the average distance between drones, the

43



Chapter 5

average speed of the UAV group, the average altitude where the drones are flying and,
as a normal danger to aviation, the density of birds in the area. This last state was the
one that created the impossibility of the implementation, since the idea behind it was to
use norms or regulations, much like for normal traffic, however, as stated previously, the
UAV area hasn’t been explored to that point, so it would be an agent based entirely on
estimations. Nevertheless, due to the nature of Bayeseian Networks when these regulations
are established the implementation of this model could bring the previously proposed
benefits.

44



Chapter 6

Results and discussion

In this chapter the several different results will be presented, as well as the progress of the
objectives presented in section 3.2 and the Gantt diagram of the work developed as well
as a subsequent analysis of each.
In terms of objective results, this chapter is divided by the different types of agents and
then those agents results are divided in the results of the agents themselves and a discussion
on the values obtained.

6.1 Time Series Analysis

Trained Tested Mean STD
5 drones 5 drones 0.06 0.03
5 drones 10 drones 0.52 0.01
10 drones 10 drones 0.053 0.030
10 drones 5 drones 0.89 0.09

Table 6.1: Arima values in NRMSE for different training and test

We can notice that for the results pertaining to different number of drones for training and
testing that the error increases and the deviation is also larger. Nevertheless, compared
with the results presented in chapter 2 the error has been smaller for most cases.

6.1.1 Discussion

As we can see in the results the agent is very resilient for determining the next value for
the same number of drones. However, the error increases when the number of training and
testing differ, even though those cases are also comparable to the studies presented.
The behaviour with the differing number of drones was expected, however the fact that
the error was comparable to the studies was not. This possibly indicates a very similar be-
haviour for the time series distribution, which indicates that utilising the feature presented
for the ARIMA allows for a good prediction of the values, being it’s greatest fault that it
does not understand explicitly when there is a change, needing either a human operator
or another agent to trigger the error warning.
In the initial plan it was not expected to develop an agent for the edge or for QoS disabled,
due to the fact that it was expected that the values for this agent to be worse, nonetheless

45



Chapter 6

with the results obtained we can conclude that there would exist value in exercising that
experimentation.

6.2 Determining window

In this section some agents were prepared, due to the need of the decision of the parame-
terization, since contrary to the ARIMA there doesn’t exist any mathematical method to
determine the correct parameters without experimentation.
The main reason was to determine which window should be used for subsequent studies.

Mean Std
Accuracy 0.93 0.01
Precision 0.87 0.03

Table 6.2: MLP for dataset with window 2

Mean Std
Accuracy 0.96 0.01
Precision 0.93 0.02

Table 6.3: MLP for datasets with window 3

Mean Std
Accuracy 0.98 0.01
Precision 0.96 0.01

Table 6.4: MLP for datasets with window 5

As we can see in the above tables the bigger the window the better the results obtained,
however, due to the attempt at maintaining realism the window of 5 elements was not
chosen, since it would involve the arrival of 6 different packets and it doesn’t increase
substantially from the values of Table 6.3, thus the value for the window will be 3. Fur-
thermore, since the values themselves seem to be quite high the learning rate of 0.01 will
be used, as well as the tanh and adam solver; in future works it might be interesting to
test different parameters, even so since it was not the objective of this work and due to
the already high values obtained that study wasn’t accomplished.

6.3 MLP

This section will present and discuss the results pertaining to the MLP agent, following
the timeline of the different developments presented in the Gantt diagram.

46



Results and discussion

6.3.1 With QoS

Mean Std
Accuracy 0.87 0.01
Precision 0.77 0.02

Table 6.5: MLP for datasets with QoS using 5 drones

Mean Std
Accuracy 0.88 0.01
Precision 0.78 0.02

Table 6.6: MLP for datasets with QoS using 10 drones

The results presented will represent the baseline for the rest of this section. We can see
that for both cases the results were greater than 80% accuracy and over 75% precision,
indicating that the state detection is very consistent. Moreover, with less than 3% values
for standard deviation these model are very consistent in the classification.

6.3.2 Without QoS

Mean Std
Accuracy 0.87 0.01
Precision 0.84 0.10

Table 6.7: MLP for datasets with and without QoS using 5 drones

Mean Std
Accuracy 0.88 0.01
Precision 0.80 0.10

Table 6.8: MLP for datasets with and without QoS using 10 drones

Comparing the results with the ones from with QoS, we can notice that they are strictly
better in terms of mean for precision while maintaining similar accuracy. However, for the
standard deviation, we can denote an increase of 9%.

6.3.3 In edge

Mean Std
Accuracy 0.86 0.01
Precision 0.79 0.02

Table 6.9: MLP for datasets from edge using 5 drones

47



Chapter 6

Mean Std
Accuracy 0.87 0.01
Precision 0.79 0.03

Table 6.10: MLP for datasets from edge using 10 drones

The values obtained for the edge are very similar with the baseline, being the main differ-
ence reflected in the values of the precision that are higher, although the standard deviation
also increased.

6.3.4 Discussion

The values obtained for the MLP were higher than expected, being better than the RNN
results. Even though it was not expected, just as was presented in the SoA, these values
are not incongruous with the beginning suppositions.
A possible reason for these events is the simplicity of the data and the impact of each
feature that possibly is overutilised in the RNN. Another explanation is the fact that the
RNN agent overestimates the importance of the order of values, something that is not
implicit in the MLP classifier.
However, the fact that the results have higher values than 0.85 for the mean of the accu-
rarcy and greater than 0.75 for precision demonstrates that the agent is robust and that
it should be tested in a controlled, realistic scenario to better observe its behaviour.
Moreover, comparing the three different scenarios with QoS, without QoS and in edge we
can observe that two phenomena. The first is that the without QoS version has better
results compared to the baseline and the second is that the edge and with QoS are very
similar. The relation observed in the second phenomena was expected from the moment
when the differentials were used, since in terms of distribution they would be very similar,
only possibly being affected by the queuing phenomena between the edge and the core,
however the first phenomena is unexpected. A possible reason for its occurrence is that,
since the impact on the differential between the time of the packets arrival is indistin-
guishable from the normal operation to the operation with errors, the alteration of normal
values from the second feature is very determinative of the state.
With these observations some conclusions can be made; for example, there was the proposi-
tion that disabling the QoS dynamically in faulty situations would allow for a more efficient
system and these results permit us to conclude that it would be an interesting idea, since
the agents can very accurately detect for both scenarios when the faults exist. Further-
more, the nested agent in the edge seems to be an idea that should be considered, since it
would be faster in warning the drones and is equally accurate.

6.4 RNN

6.4.1 With QoS

Mean Std
Accuracy 0.81 0.01
Precision 0.72 0.03

Table 6.11: RNN for datasets with and without QoS for 5 drones

48



Results and discussion

Mean Std
Accuracy 0.78 0.02
Precision 0.70 0.03

Table 6.12: RNN for datasets with and without QoS for 10 drones

Just like the previous section, the results of RNN with QoS will be used as a baseline for
the rest of the RNN agents.
Contrary to the previous section however the values of both accuracy and precision are
lower than 85 and 75% respectively. Furthermore, for most results the standard deviation
seems to be larger.

6.4.2 Without QoS

Mean Std
Accuracy 0.78 0.02
Precision 0.69 0.04

Table 6.13: RNN for datasets with and without QoS for 5 drones

Mean Std
Accuracy 0.76 0.01
Precision 0.67 0.03

Table 6.14: RNN for datasets with and without QoS for 10 drones

As we can observe in the above tables, the values of RNN strictly decreased from the
cases where QoS was active. Furthermore, the standard deviation increased in most cases,
revealing a larger variety of results.

6.4.3 In Edge

Mean Std
Accuracy 0.82 0.01
Precision 0.72 0.03

Table 6.15: RNN for datasets from edge for 5 drones

Mean Std
Accuracy 0.79 0.02
Precision 0.71 0.02

Table 6.16: RNN for datasets from edge for 10 drones

Just like with MLP, these results are very similar to the baseline. Contrary to the MLP
case, however there isn’t a determinant difference that distinguishes the values.

49



Chapter 6

6.4.4 Discussion

Opposing the results of the last agent, the RNN under performed relative to the expecta-
tion even though it has acceptable results.
The results obtained for the RNN were near 80% accuracy and 70% precision, being prob-
ably caused due to the overestimation of the order of the data. It might also be caused by
miss-parameterization or negatively affected by the cross validation method chosen.
Either way more tests should be done with this model, to determine if there exists a so-
lution that can increase the accuracy and precision, placing the values closer to the ones
obtained by the MLP classifier.
Utilising this agent in its current state for the classification of more complicated cases such
as QoS switching is not advised, however the use of the edge agent is recommended in the
case where the RNN is to be considered due to the same reason presented in the MLP
discussion.

6.5 Result comparison

In this section some comparisons of agents, advantages and disadvantages will be discussed.
The first agent the Time Series Analysis is more difficult to compare relative with the two
other agents, however a possible advantage is how it is a more "analog" agent, as in the clas-
sification isn’t made intrinsically by the agent, allowing for a greater human extrapolation
and will always provide value, since, even with error, it will always give an approximation
of the next value, not being a binary classification. Nonetheless, it’s greatest disadvantage
is the fact that there needs to be some specialization of the operator to understand the
values that are being predicted, creating a barrier to entry in the system.
The two remaining agents have a more direct comparison, however, with these datasets,
the MLP classifier is more consistent than the RNN. There is a high probability that in
a more complex setting, such as the realistic scenario, the RNN agent could provide some
advantage that is not noticeable in this study.
In terms of a possible implementation, i would argue that using both the Time Series
Analyses as well as the MLP in both the edge and with QoS change would be the config-
uration that would grant the greatest amount of knowledge.
For future works there are several possibilities: the direct comparison between the edge
agent and the QoS switching would be interesting, analysing if one manages to detect faulty
state when the other couldn’t; furthermore there is a need to explore the RNN agent in
more complex situations.

50



Chapter 7

Conclusion

To reiterate the beginning of this thesis, UAS’s are a new concept that have the potential
to impact the economy in a global levels, allowing new services that weren’t possible
before. It was also discussed some dangers that appeared connected to this new concept,
especially compared with the already existing manned aviation, so we presented some
possible countermeasures that the SESAR JU and especially BUBBLES try to implement.

After that, some technologies and techniques were exposed, the technologies, mostly related
with the environment, allowed the comprehension of the system and the techniques that
were analysed, in an attempt to better understand how to implement the models that are
the main objective of this thesis.

The general work plan is exposed to both structure and delineate clearly how the objec-
tives will be achieved. This also allows a better understanding of the next section of the
preliminary phase that allow us to conclude that the project wasn’t behind schedule at the
milestone of the first semester, as we can see especially one the first Gantt diagram.

The main concern presented in the beginning of the second half of the semester was the
practical nature of the work, which could lead into problems, which indeed happened
especially in the case of the dataset acquisition, which delayed the rest of the work con-
siderably and diminishing the amount of work that could be alteredadded explicit in the
second Gantt diagram where we notice this cascading effect.

In terms of the results themselves and the techniques researched, however the project was
a success, since there are several agents that have over 0.8 accuracy and over 0.75 precision,
indicative of reliable agents and the not tested Bayes network has potential for when the
drone space regulation is better established.

Another part of the work that is interesting is the possibility for the future, with the
implementation of the previously mentioned Bayesian network, as well as a more rigorous
parameterization attempt and the creation of more generic models, constructed in such a
way that even for a larger scale or dynamically changing the number of drones does not
create problems with the identification of network faults.

It is also important to reflect on the problems of this project, mainly being the under-
estimation of creating a credible datatset for an unexplored area. This work would have
been able to be more complex if those tasks were more accurately estimated and if a
better synchronization between the BUBBLES team occurred this work could have been
substantially improved by the use of realistic scenarios.

In conclusion, the objectives were accomplished even though the time frame was not fully

51



Chapter 7

respected, however the possibilities of future work and the agents themselves demonstrate
that this area has substantial potential that can be achieved if there is effort directed into
the area.

52



References

[1] Apache kafka documentation. https://kafka.apache.org/documentation/. 2021-
12-20.

[2] Data distribution service. https://www.dds-foundation.org/what-is-dds-3. 2022-
01-05.

[3] Gazebo simulator. https://gazebosim.org. 2022-01-06.

[4] Linux documentation project, traffic control using tcng and htb howto. https://
tldp.org/HOWTO/Traffic-Control-tcng-HTB-HOWTO/intro.html. 2022-01-06.

[5] Linux foundation, linux netem network emulator. https://wiki.linuxfoundation.
org/networking/netem. 2022-01-06.

[6] Mavlink. https://mavlink.io/en/. 2022-01-05.

[7] Px4 autopilot. https://px4.io/. 2022-01-06.

[8] Sesar joint undertaking - u-space. https://www.sesarju.eu/U-space. 2022-01-05.

[9] Huifang Feng and Yantai Shu. Study on network traffic prediction techniques. Pro-
ceedings. 2005 International Conference on Wireless Communications, Networking
and Mobile Computing, 2005., 2:1041–1044, 2005.

[10] Erwin Harahap, Wataru Sakamoto, and Hiroaki Nishi. Failure prediction method for
network management system by using bayesian network and shared database. In 8th
Asia-Pacific Symposium on Information and Telecommunication Technologies, pages
1–6, 2010.

[11] Tiago Prado Oliveira, Jamil Salem Barbar, and Alexsandro Santos Soares. Computer
network traffic prediction: a comparison between traditional and deep learning neural
networks. Int. J. Big Data Intell., 3:28–37, 2016.

53

https://kafka.apache.org/documentation/
https://www.dds-foundation.org/what-is-dds-3
https://gazebosim.org
https://tldp.org/HOWTO/Traffic-Control-tcng-HTB-HOWTO/intro.html
https://tldp.org/HOWTO/Traffic-Control-tcng-HTB-HOWTO/intro.html
https://wiki.linuxfoundation.org /networking/netem
https://wiki.linuxfoundation.org /networking/netem
https://mavlink.io/en/
https://px4.io/
https://www.sesarju.eu/U-space

	3066d767-b2f8-4c45-95cf-7c0d61b26c2e.pdf
	Introduction
	Context
	BUBBLES

	Motivation
	UAS's market growth
	Social acceptance

	Contributions
	Objectives
	Document structure

	SoA and Technologies
	State Of Art
	Time Series Analysis and Forecasting
	Bayesian Network
	Artificial Neural Networks
	A comparative study between the proposed approaches

	Architectural components of the system
	Mavlink
	Kafka
	DDS
	Px4
	Gazebo

	Architecture for the communications platform
	Traffic shaper
	Testbed scenario
	Network emulator implementation

	Methodologies and planning
	Methodology
	Tasks
	Task details

	Planned Gantt
	Threshold of Success

	Preliminary phase
	Alteration of packet data
	Dataset acquisition
	Adapting the architecture for faulty run setup

	Experimentation
	Data set acquisition
	First phase-Dataset acquisition with QoS active
	Second phase-Dataset acquisition with QoS inactive
	Third phase-Dataset acquisition in Edge
	Fourth phase-Dataset acquisition in a realistic scenario

	Data set analysis
	Normal operation
	Faults
	No QoS errors

	Development of the agents
	CrossValidation Method
	ARIMA
	MLP
	RNN
	Bayesian network


	Results and discussion
	Time Series Analysis
	Discussion

	Determining window
	MLP
	With QoS
	Without QoS
	In edge
	Discussion

	RNN
	With QoS
	Without QoS
	In Edge
	Discussion

	Result comparison

	Conclusion


