

Jaime Domingos Marques

AUTOMATIC DATA MODEL CONVERSION

Dissertation in the context of the Master in Informatics Engineering, specialization in
Software Engineering advised by Professor Ph.D. Catarina Helena Branco Simões da

Silva and Engineer João Garcia and presented to the Department of Informatics
Engineering of the Faculty of Sciences and Technology of the University of Coimbra.

September 2022

This page is intentionally left blank.

Faculty of Sciences and Technology

Department of Informatics Engineering

Automatic Data Model Conversion

Jaime Domingos Marques

Dissertation in the context of the Master in Informatics Engineering, Specialization in Software
Engineering advised by Professor Ph.D. Catarina Helena Branco Simões da Silva and Engineer

João Garcia and presented to the
Faculty of Sciences and Technology / Department of Informatics Engineering.

September 2022

This page is intentionally left blank.

Acknowledgements

I would like to express my sincere gratitude to everyone who, directly or indirectly, con-
tributed to the elaboration of this dissertation. Whether it is for your concrete tips or
simple encouragement words, thank you!

iii

This page is intentionally left blank.

Abstract

As urban areas grow and become more developed, municipal governments look for new ways
of managing their cities. Urban Platform is Ubiwhere’s product which aims at fulfilling
this necessity, presenting interactive maps and statistics in real time that help the decision
process.

However, as new cities adhere to the platform, the number of data sources also increases
and their manual integration in the Urban Platform becomes time-consuming and labour-
intensive.

The present dissertation contributes to tackle this problem, addressing the integration of
new data models into the Urban Platform as an automatic schema matching task.

First, a state of the art of the techniques and systems currently used is provided. Among
them are natural language processing, graph theory and matrix combination techniques.
Then, all the steps for building the automatic solution are detailed.

The proposed solution includes four main steps: the source handling and entity recognition;
the selection of candidate pairs of entities from the Urban Platform and from the new data
source; the similarity calculation of those pairs; the extraction of a final mapping between
the new source and the Urban Platform.

The experimental study showed the solution’s potential. Yet it is far from being production-
ready, since the average f1-score (61%) is still not high enough to be worth replacing the
traditional manual integration, particularly regarding harder matching cases.

Keywords

Data Integration, Schema Matching, Schemas, Ontologies, Natural Language Processing,
Smart Cities, Urban Platform

v

This page is intentionally left blank.

Resumo

Com o crescente desenvolvimento das áreas urbanas, os governos municipais procuram
novas formas de gerirem as suas cidades. A Urban Platform é o produto da empresa
Ubiwhere que procura dar resposta a este problema, apresentando mapas interativos e
estatísticas em tempo real, que ajudam na tomada de decisões.

Porém, com o aumento do número de novas cidades a aderirem à plataforma, o número
de fontes de dados a serem integradas na plataforma também aumenta e a sua integração
manual na Urban Platform, torna-se muito morosa e dispendiosa no que diz respeito à
mão-de-obra.

A presente dissertação visa contribuir para a resolução desta problemática, abordando
esta integração de novos modelos de dados na Urban Platform como um problema de
correspondência automática entre esquemas.

Primeiramente, é apresentado o estado da arte das técnicas e sistemas atualmente utilizados
nesta área. Entre elas estão técnicas de processamento de linguagem natural, de teoria de
grafos e técnicas de combinação matricial. Posteriormente, são detalhados todos os passos
para o desenvolvimento do programa.

A solução proposta é constituída por quatro etapas principais, sendo elas: a leitura das
fontes e reconhecimento de entidades; a seleção de pares candidatos constituídos por en-
tidades do modelo de dados da Urban Platform e do modelo de dados da nova fonte; o
cálculo das similaridades desses pares; a extração de mapeamentos finais entre o modelo
da nova fonte e o modelo da Urban Platform.

As experiências realizadas demonstraram algum potencial desta solução. Contudo, esta
ainda se encontra longe de poder ser colocada em produção, pois o valor médio do f1-score
(61%) ainda não é suficientemente elevado para que compense substituir a correspondência
tradicional, sobretudo no que toca aos casos de maior dificuldade de correspondência.

Palavras-Chave

Integração de Dados, Correspondência entre Esquemas, Esquemas, Ontologias, Processa-
mento de Linguagem Natural, Cidades Inteligentes, Urban Platform

vii

This page is intentionally left blank.

Acronyms

AHP Analytic Hierarchy Process.

AOA Attention-over-Attention.

APFEL Alignment Process Feature Estimation and Learning.

API Application Programming Interface.

BERT Bidirectional Encoder Representations from Transformers.

BiLSTM Bidirectional Long Short Term Memory.

BMPM Beider-Morse Phonetic Matching.

BPE Byte-Pair Encoding.

CBoW Continuous Bag of Words.

CBSR Controlled Batch Sample Ratio.

COMA Combination of Matching Algorithms.

CPU Central Processing Unit.

CSV Comma-separated Values.

DAG Directed Acyclic Graph.

DC Dublin Core.

DOLCE Descriptive Ontology for Linguistic and Cognitive Engineering.

ELMo Embedding from Language Models.

FOAF Friend of a Friend.

GIL Global Interpreter Lock.

GloVe Global Vectors.

GUI Graphical Interface.

HTTP Hypertext Transfer Protocol.

IRI Internationalized Resource Identifier.

JSON JavaScript Object Notation.

JSON-LD JavaScript Object Notation for Linked Data.

ix

Chapter 0

KSTEM Krovetz Stemmer.

LCA Lowest Common Ancestor.

LCS Longest Common Sub-string.

LEAPME LEArning-based Property Matching with Embeddings.

LOD Linked Open Data.

LSD Learning Source Descriptions.

LSTM Long Short-Term Memory.

N3 Notation 3.

NGD Normalized Google Distance.

NLP Natural Language Processing.

NLTK Natural Language Toolkit.

OAEI Ontology Alignment Evaluation Initiative.

OID Object Identifier.

OWA Ordered Weighted Averaging.

OWL Ontology Web Language.

POSIX Portable Operating System Interface.

RAM Random Access Memory.

RDF Resource Description Framework.

RDFS Resource Description Framework Schema.

REST Representational State Transfer.

RF4SM Random Forest for Schema Matching.

SAX Simple API for XML.

SDG Sustainable Development Goal.

SemInt Semantic Integrator.

SMB Schema Matcher Boosting.

SPARQL SPARQL Protocol and RDF Query Language.

SQL Structured Query Language.

SUMO Suggested Upper Merged Ontology.

ToS Threshold of Success.

UBP Urban Platform.

URI Uniform Resource Identifier.

W3C World Wide Web Consortium.

x

Acronyms

XML Extensible Markup Language.

XSD XML Schema Definition.

YAGO Yet Another Good Ontology.

xi

This page is intentionally left blank.

Contents

1 Introduction 1
1.1 Context and Motivation . 1
1.2 Challenges . 3
1.3 Goals . 4
1.4 Document Structure . 4

2 Background 5
2.1 Urban Platform Architecture . 5
2.2 Semantic Web . 6

2.2.1 Schemas and Ontologies . 10
2.3 Data Integration and Sub-Problems . 13

2.3.1 Schema and Ontology Matching . 14
2.4 Conclusion . 16

3 State of the Art 17
3.1 Taxonomy . 17

3.1.1 Individual Matching . 20
3.1.2 Combining Matching . 20

3.2 Individual Techniques . 21
3.2.1 Linguistic . 21
3.2.2 Reuse-Oriented . 26
3.2.3 Constraints . 27

3.3 Combination Techniques . 30
3.4 Evaluation Metrics . 32
3.5 Systems . 33

3.5.1 Cupid . 34
3.5.2 COMA . 34
3.5.3 LSD . 35
3.5.4 JSONGlue . 36
3.5.5 LEAPME . 36
3.5.6 It’s AI Match . 37
3.5.7 Smat . 37

3.6 Conclusion . 40

4 Planning and Methodology 41
4.1 Process Management . 41
4.2 Planning . 42

4.2.1 First Semester . 42
4.2.2 Second Semester . 42

4.3 Success Criteria . 44
4.4 Risk Assessment and Management . 44

xiii

Chapter 0

5 Requirements Specification and Architectural Decisions 47
5.1 Scope and Stakeholders . 47
5.2 Functional Requirements . 47
5.3 Non-Functional Requirements . 49

5.3.1 Maintainability . 49
5.3.2 Performance . 49

5.4 Restrictions . 50
5.5 Architecture . 50

5.5.1 Schema Module . 54
5.5.2 Normalization Module . 54
5.5.3 Candidate Selection Module . 55
5.5.4 Parallel Matching Module . 55
5.5.5 Mapping Module . 56
5.5.6 Statistics Module . 56

5.6 Technologies . 57
5.6.1 Schema Module . 57
5.6.2 Normalization Module . 58
5.6.3 Candidate Selection Module . 58
5.6.4 Parallel Matching Module . 58
5.6.5 Mapping Module . 58
5.6.6 Statistics Module . 59

5.7 Conclusion . 59

6 Implementation 61
6.1 Environment . 61
6.2 Functionalities . 61

6.2.1 Schema Module . 62
6.2.2 Normalization Module . 67
6.2.3 Candidate Selection Module . 68
6.2.4 Parallel Matching Module . 69
6.2.5 Mapping Module . 78
6.2.6 Statistics Module . 81

6.3 Conclusion . 83

7 Experimental Study 85
7.1 Dataset . 85
7.2 Experimental Setup . 86
7.3 Threshold . 88
7.4 Tuning Parallel Matchers . 95
7.5 Normalization . 101
7.6 Conclusion . 108

8 Conclusions and Future Work 109

xiv

This page is intentionally left blank.

List of Figures

1.1 Analytics on Urban Platform . 2
1.2 Urban Platform’s Live Map . 2

2.1 UBP Architecture . 5
2.2 The Semantic Web stack [15] . 7
2.3 Turtle Syntax [23] . 8
2.4 N-Triples [23] . 8
2.5 RDF/XML [23] . 9
2.6 JSON-LD [23] . 9
2.7 Expressivity of RDF, RDFS and OWL in a diagram form 10
2.8 Knowledge graph of the Bob Marley’s example [23] 11
2.9 SROIQ(D) [91] . 12
2.10 SROIQ(D) [91] . 13
2.11 Matching Process (Adapted from [64]) . 15
2.12 Examples of types of global cardinality (Adapted from [65]) 15

3.1 Taxonomy proposed by Rahm and Bernstein (Adapted from [119] and [76]) 19
3.2 Combinatorial Matching Process (Adapted from [113]) 30

4.1 Gantt diagram of the first semester . 42
4.2 Risk Matrix . 45

5.1 Traditional Airflow configuration . 51
5.2 New Airflow configuration proposal . 51
5.3 General architecture of the automatic converter 52
5.4 Inputs and outputs overview . 53
5.5 Schema Module architecture . 54
5.6 Normalization Module architecture . 55
5.7 Candidate Selection Module architecture . 55
5.8 Parallel Matching Module architecture . 56
5.9 Mapping Module architecture . 56
5.10 Statistics Module architecture . 57

6.1 HADAPT method example . 74
6.2 System’s data type hierarchy . 77
6.3 W3C’s data type hierarchy [110] . 78
6.4 Graph example . 82
6.5 Heat map example . 83

7.1 Easy Cases: example file . 86
7.2 Hard Cases: example file . 87
7.3 Easy Cases: database tables . 88

xvi

List of Figures

7.4 Hard Cases: database tables . 88
7.5 Example of a matrix resulted from all combined matrices 89
7.6 Scores for the thresholds 0.25, 0.50 and 0.75 (Easy Cases) 90
7.7 Scores for the thresholds 0.25, 0.50 and 0.75 (Hard Cases) 90
7.8 Scores for the thresholds 0.25, 0.50 and 0.75 (overall) 91
7.9 Scores for the thresholds 0.313, 0.375 and 0.438 (Easy Cases) 93
7.10 Scores for the thresholds 0.313, 0.375 and 0.438 (Hard Cases) 93
7.11 Scores for the thresholds 0.313, 0.375 and 0.438 (overall) 94
7.12 Scores for the grams two, three and four (Easy Cases) 96
7.13 Scores for the grams two, three and four (Hard Cases) 96
7.14 Scores for the grams two, three and four (overall) 97
7.15 Scores for the Levenshtein and Jaro-Winkler’s similarity measures (Easy

Cases) . 99
7.16 Scores for the Levenshtein and Jaro-Winkler’s similarity measures (Hard

Cases) . 99
7.17 Scores for the Levenshtein and Jaro-Winkler’s similarity measures (overall) . 100
7.18 Scores for none, simple normalization, normalization with translation and

normalization with translation and lemmatization (Easy Cases) 102
7.19 Scores for none, simple normalization, normalization with translation and

normalization with translation and lemmatization (Hard Cases) 103
7.20 Scores for none, simple normalization, normalization with translation and

normalization with translation and lemmatization (overall) 104
7.21 Runtime dispersion according to the normalization method 106
7.22 Time distribution across different phases of the system’s pipeline 108

xvii

This page is intentionally left blank.

List of Tables

3.1 Soundex table [49] . 25
3.2 Phonix table [49] . 25
3.3 Data type compatibility table (Adapted from [98]) 28
3.4 Summary of the systems’ characteristics . 39

4.1 Reproduction of the task table (March 2022) 43
4.2 Risk assessment . 45
4.3 Risk management . 45

5.1 Functional requirements . 48
5.2 Non-functional requirements . 49
5.3 Maintainability scenario (addition) . 49
5.4 Maintainability scenario (substitution) . 50
5.5 Performance scenario . 50

6.1 Status of functional requirements . 62
6.2 simpleNormalization input and output examples 67
6.3 transLemNormalization input and output examples 68

7.1 Sum up of the first threshold experiment . 91
7.2 Sum up of the second threshold experiment 94
7.3 Sum up of the n-gram experiment . 97
7.4 Sum up of the string similarity experiment 100
7.5 Sum up of the normalization experiment . 105
7.6 Outliers for the normalization experiment (mean for five executions per file) 107
7.7 Benefit-cost ratio for each normalization method 107

xix

This page is intentionally left blank.

Chapter 1

Introduction

According to the 2018 United Nations’ Prospects on World Urbanization, more than 55%
of the world’s population lives in cities and that value is expected to shoot up to 68% until
2050 [24].

Modern cities are much more than concrete jungles. They are living entities that grow,
each one at its own pace, having their population as the blood which fills and feeds the
entire organism. Like any other living thing, a city needs a brain. This role is played by
municipal governments who control the operations and call the shots when something fails.

As modern cities turn into mega cities, their management becomes harder, since many
events occur at the same time. Luckily for city mayors, technology can facilitate that.

"Smart cities" was a term first used in the 1990’s [153], although the concept emerged in
the 1970’s with the Los Angeles’ "Community Analysis Bureau" [7] where collected data
was analysed to establish city policies.

The concept evolved to something much more than just that, so nowadays we have plat-
forms like Ubiwhere’s Urban Platform (UBP)1 on which relevant data is displayed over
interactive maps. These platforms auxiliate city administrative teams to visualize all oc-
currences [22]. At the same time, they show real-time statistics, allowing a quick and
cross-domain analysis of city data. But how can we generalize a single platform to work
properly for every city? Different cities have different inputs producing all sorts of data
structures and formats. How can we read, interpret and display these data correctly on a
platform?

This dissertation aims at finding an automatic solution to standardize the data structures
arriving at the Urban Platform.

1.1 Context and Motivation

UBP is a city management all-in-one tool, launched in 2018 by Ubiwhere, which shows a
variety of different figures, such as traffic, parking occupancy and air quality in a centralized
dashboard [22]. The platform’s targets are teams of people working for municipal services,
whether they are infrastructure personnel or even decision makers who need to analyse
real-time data in order to make the best decision possible (Figure 1.1). The control panel
offers a map where the occurrences are displayed in a more pleasant way (Figure 1.2).

1https://urbanplatform.city

1

https://urbanplatform.city

Chapter 1

Urban Platform’s versatility allows clients to customize the panel and stack different layers
of information. The map is able to host new information collected by different sources,
from sensors to cameras.

Figure 1.1: Analytics on Urban Platform

Figure 1.2: Urban Platform’s Live Map

Besides the scope of features enumerated before, the potential of this platform goes way
beyond that. Sustainability issues often arise when the subject is big cities. Projects like
the UBP are important for responsible resource management. For instance, if a water pipe
leaks water and the incident is reported on the platform, it allows authorities to act quicker
avoiding the wastage of thousands of liters. In addition, it may be useful to monitor specific
parameters, like air quality, important for public health. All things combined contribute
for the accomplishment of the Sustainable Development Goals (SDGs) [25] in matters like
"Sustainable Cities and Communities", "Good Health and Well Being", "Industry, Inno-
vation and Infrastructure" and "Responsible Consumption and Production" [5]. Details
about Urban Platform’s architecture are going to be presented later on.

UBP needs to stay modular as new cities adopt the platform and features are added. New
cities mean new sources of data, which can introduce heterogeneity, from the file format
(e.g. JSON, XML, CSV. . .) to the way the data is organized inside the file. When the files

2

Introduction

reach UBP, they are processed. The information is extracted and put into a standardized
form. In other words, there is a matching between the attributes on both ends. In the
literature this process is often called schema matching [85] and it is part of a wider data
integration task. This case study has the particularity of one of the end-points being a
semi-structured data file and the other one a rigid relational schema to which we want to
correspond the first one. This poses several challenges such as the amount of instance data
to work with, since it will depend on how filled is the database.

In the current UBP’s implementation, the matching between attributes is done manually.
Developers inspect the files, make decisions and cover all the scenarios resorting to tradi-
tional conditions. We may call it not practical, slow or boring, but it works. However, if a
huge number of cities decide to adopt the platform, having the sensing devices their own
exporting formats, the reliance on human intervention becomes unbearable.

The motivation for this project comes from the possibility of creating a tool that performs
the matching automatically, facilitating the integration and reducing human interaction
and effort, as much as possible. By automatically corresponding arriving data to the right
models on the system, the flexibility of the platform increases, since there is no need for
installing different sensors from the ones that already exist, thus significantly lowering
UBP’s installation costs for new cities.

1.2 Challenges

Since it is a complex task, we may divide the main problem into several smaller yet still
complex challenges.

File handling: This first step is responsible for reading the file content. The files come in
many different formats. The program has to take all, or at least the most used ones into
consideration.

Recognize the different entities: After reading the file, one needs to recognize the
structures and entity hierarchy present in the file.

Perform the similarity evaluation: Probably the biggest challenge of them all is to
extract the similar entity pairs. Several sub-problems might appear depending on the file.
Some of those are listed as follows:

Fuzzy Matching: In certain cases, it is not possible to get a direct match, for
instance if an attribute provides us more information than the one we need to char-
acterize the destination entity. In these scenarios we can match entities based on part
of the information [35]. Ultimately we want to do schema or model matching which is
a mapping between objects that share semantic relationships. Such process is ham-
pered by representational (file extension), structural (different attribute hierarchy
and data types), syntactic (different idioms can be present, for instance) and seman-
tic (since the same entity may be referred via different terms) differences [135][28].

Entity Merging and Merge-Purge/Record Deduplication: Entity merging is
necessary when the target entity represents a broader concept, where two or more
source entities fit. Finally, when mapping the entities, the records need to be merged,
a process called merge-purge or record deduplication, in order to get a unique piece
of information that meets the destination entity’s requirements and to avoid redun-
dancy [35][54].

3

Chapter 1

Validate the solution: Finally, we need to find a way to validate the solution found.
This includes building or finding a testing dataset and designing the experiment so
that useful conclusions can be drawn and the actual requirements to be met are
correctly tested.

1.3 Goals

The main goal is to develop an automatic data model conversion system which overcomes
the challenges stated above. In other words, a program that is able to handle sources
of different formats, recognize their structure and entities, determine similarities between
entities of different sources, and calculate statistics that contribute to its validation.

Its components must be modular, so that future additions can be done effortlessly by
developers who have never had contact with the project.

This system must work at least for the source files found to be the most heterogeneous or
for the UBP’s models used in most cities, such as traffic readings, air quality or parking
occupancy.

Ideally, the solution should outperform the manual integration currently in place, especially
regarding execution times.

1.4 Document Structure

This document acts in accordance to the following structure. The second chapter is where
basic background concepts and formal definitions are presented for better contextualization
and understanding of the problem.

The third chapter corresponds to the State of the Art, where a combination of strategies
and attempts of solutions are reported and analyzed.

The fourth chapter is reserved for planning. It is discussed how the project was be con-
ducted, as well as the different tasks to be completed and the risks associated with them.

The fifth chapter of this document is dedicated to present specific attributes the new
component should have and the architectural choices that materialize them.

The sixth chapter explains how the different components of the proposed solution were
implemented.

The seventh chapter is a description of the testing phase. This includes what and how
experiments were done, and their results.

The last chapter, the eighth, concludes the dissertation and gives some hints about what
can be done in the future to improve the current solution.

4

Chapter 2

Background

This chapter provides an understanding of the background fields explored when writing this
dissertation. Even though some may not be directly related to the project’s main theme,
it is important to address these subjects to understand the problem in its full extension
and making rigorous decisions when planning a solution.

The first section is dedicated to break down into details the Urban Platform’s architecture,
as well as locating the system components belonging to the project’s area of interest. This
section is followed by some more theoretical ones, being them in the order in which they
appear the "Semantic Web", where ontologies and schemas are introduced, and "Data
Integration and Sub-Problems", dedicated to formally characterize schema matching and
adjacent topics. The chapter finalizes with a conclusion and sum up of the concepts
discussed.

2.1 Urban Platform Architecture

The Urban Platform (UBP) was launched in 2018 as Ubiwhere’s urban management as-
sistant tool. The platform can be deployed for any city and it shows gathered data from
sensors that can either be mounted by Ubiwhere or reused from previous applications.
The challenge has been expanding UBP to new cities without worrying too much about
different sensor exporting formats while doing the bare minimum adjustments to the code.

Figure 2.1 represents the architecture of UBP’s current implementation. The data flow
follows three main stages: import, processing and persistence.

Figure 2.1: UBP Architecture

5

Chapter 2

The files are primarily imported to Airflow. Apache Airflow1 is an open-source work-
flow manager prepared to deal with very complex orchestrations. Its main features are
scheduling and automation but it also helps in monitoring and diagnosing issues in work-
flows [1][2]. Data pipelines are represented as Directed Acyclic Graph (DAG) which are
encoded in python files. There are several instances of the UBP, one for each city, having
them their own DAGs according to what needs to be imported. Each DAG has the task
of importing and sending a file corresponding to one specific type of statistics (parking,
weather, air quality etc.). The imported file is formatted and sent to Rabbit Message
Queue, a popular open-source message broker which implements Advanced Message Queu-
ing Protocol (AMQP). RabbitMQ2 receives messages and sends them to subscribers, in
this case, UBP’s Celery3, a library to run asynchronous processes [4]. The imported files
are persisted at UBP’s database for later use. Then, tasks are distributed across different
Django apps, so that data can be requested and displayed in front-end. These apps have
their separate functionalities (e.g. parking, traffic, air quality data) and their use is op-
tional, depending on what is meant to be shown on the platform. These characteristics
contribute for the modularity of UBP, making it suitable for most city scenarios.

Having all those steps in mind, it is safe to say that the main concern for this research is
the processing stage, more specifically inside the Airflow, because it is where most code
changes happen when creating new UBP instances. On behalf of the platform’s scalability,
a new correspondence system will have to be designed so that the data parsing occurs as
if all data is consistently coming from the same source.

2.2 Semantic Web

Semantic Web is an extension of the World Wide Web that attempts to define content
elaborated by humans in a way that it is meaningful to machines [16][17]. As Sir Tim
Berners-Lee described in [146][40], semantic web brings structure to content, which is then
parsed by the computer and displayed into a human readable form.

Semantic Web is therefore the basis of data integration. Anything, whether it is commer-
cial, medical, or academic information, can be put online and different applications are
able to share files with each other.

This new dimension is achieved by several standards which are established by the World
Wide Web Consortium (W3C)4. They promote common formats and protocols around the
web and different models and languages are suited for different purposes [18]. Having that
in mind, we can present the semantic web as a stack of different building blocks (Figure
2.2), each one with its function [79].

The foundation of the stack is the web platform already in existence. It includes well-
established standards like Uniform Resource Identifier (URI)5 or Internationalized Re-
source Identifier (IRI)6, an international version of URIs, to uniquely identify the data,
Unicode7 to encode the message and protocols like Hypertext Transfer Protocol (HTTP)8

for communication.
1https://airflow.apache.org
2https://www.rabbitmq.com
3https://docs.celeryq.dev/en/stable/
4https://www.w3.org/Consortium/
5https://www.w3.org/wiki/URI
6https://www.ietf.org/rfc/rfc3987.txt
7https://datatracker.ietf.org/doc/html/rfc5198
8https://datatracker.ietf.org/doc/html/rfc2616

6

https://airflow.apache.org
https://www.rabbitmq.com
https://docs.celeryq.dev/en/stable/
https://www.w3.org/Consortium/
https://www.w3.org/wiki/URI
https://www.ietf.org/rfc/rfc3987.txt
https://datatracker.ietf.org/doc/html/rfc5198
https://datatracker.ietf.org/doc/html/rfc2616

Background

Figure 2.2: The Semantic Web stack [15]

The second layer refers to the document types. The formats provide the syntax for the
document. Among these serialization formats are Extensible Markup Language (XML),
Turtle, N-Triples and JavaScript Object Notation for Linked Data (JSON-LD).

The information interchange block is above the format one. This layer represents the data
model, the content of the file. Considering the analogy of a book [9], the book can be in
braille, digital or in regular print. Despite not everyone being able to read the book in
braille, for example, all those formats represent the same information.

The standard used is Resource Description Framework (RDF), which connects resources
of different types via uniform triples: subject, predicate and object [26].

Bellow, an example is presented [23] where the same linked data is represented in different
formats.

Turtle: Turtle is a RDF syntax with file extension .ttl, compatible with Notation 3
(N3), that allows the files to be written in a compact and human friendly way (Figure
2.3) [20]. The URIs are enclosed in <> similarly to other syntaxes. To get a much
cleaner definition, URI abbreviations are possible. Such abbreviations are defined as
prefixes (@prefix) so that the same URI is not repeated over and over. Predicates
may be abbreviated as well, which is convenient to keep the reading simple. E.g. the
URI <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> is equivalent to the
keyword "a".

N-Triples: N-Triples is a common format used to store and read RDF since the
triples can easily form a direct knowledge graph. The file extension is .nt and
the syntax is as simple as (<subject> <predicate> <object>). The linked data
may be obtained using knowledge bases that extract information from websites such
as Wikipedia9, WordNet10, GeoNames11. Some examples are DBpedia [93], Wiki-
data [149] and YAGO [120]. Objects can be URIs or simply strings, called literals,

9https://www.wikipedia.org
10https://wordnet.princeton.edu/
11https://www.geonames.org

7

https://www.wikipedia.org
https://wordnet.princeton.edu/
https://www.geonames.org

Chapter 2

Figure 2.3: Turtle Syntax [23]

to which we can attach tags, marked by @ or even constraint the type of an object
usingˆ̂ (Figure 2.4). The latter is useful to ensure the validity of an assigned object.
Ontologies (e.g. Friend of a Friend (FOAF), Good Relations, Dublin Core (DC)) [6]
can also be used to connect different entities.

Figure 2.4: N-Triples [23]

RDF/XML: RDF/XML is the oldest format. It has some features similar to turtle,
such has prefixes, which help the file to be a little more intelligible (Figure 2.5). It
is losing popularity, although it is still considered a standard format.

JSON-LD: JSON-LD is harder to interpret by humans comparing to the other
formats (Figure 2.6). Despite the decreasing in popularity, it has the advantage
of using an already existent format (JSON) [14], just like RDF/XML. Entities are
defined at the top of hierarchical blocks while data types and literals stay within the
blocks.

The fourth block has the task of building the classes, relations and restrictions between
them. They are expressed by languages such as Resource Description Framework Schema
(RDFS) and Ontology Web Language (OWL), the highest level of expressivity. The def-
inition of such relationships is supported by rules, logics and proofs. Here an example
in Turtle adapted from [27][21][13] shows the usage of RDF, RDFS and OWL (Listings
2.1, 2.2 and 2.3). By comparing side by side, the differences in expressivity are notorious
(Figure 2.7).

8

Background

Figure 2.5: RDF/XML [23]

Figure 2.6: JSON-LD [23]

1 @prefix rdf: <http :// www.w3.org /1999/02/22 -rdf -syntax -ns#>.
2 ...
3

4 :John rdf:type :Man .
5 :John :livesIn "New -York" .
6 :livesIn rdf:type rdf:Property .

Listing 2.1: RDF example

9

Chapter 2

1 @prefix rdf: <http :// www.w3.org /1999/02/22 -rdf -syntax -ns#>.
2 @prefix rdfs: <http :// www.w3.org /2000/01/rdf -schema#>.
3 ...
4

5 :John rdf:type :Man .
6 :Man rdfs:subClassOf :Human .
7 :John :livesIn "New -York" .
8 :livesIn rdf:type rdf:Property .

Listing 2.2: RDFS example

1 @prefix rdf: <http :// www.w3.org /1999/02/22 -rdf -syntax -ns#>.
2 @prefix rdfs: <http :// www.w3.org /2000/01/rdf -schema#>.
3 @prefix owl: <http :// www.w3.org /2002/07/ owl#>.
4 ...
5

6 :livesIn rdf:type owl:DatatypeProperty .
7 :Human rdf:type owl:Class .
8 :Man rdf:type owl:Class .
9 :Man rdfs:subClassOf :Human .

10 :John rdf:type :Man .
11 :John rdf:type owl:NamedIndividual .

Listing 2.3: OWL example

Figure 2.7: Expressivity of RDF, RDFS and OWL in a diagram form

The last two layers combined add semantics to data, allowing the creation of a knowl-
edge graph. A knowledge graph is an interlinked, interoperable and flexible information
structure. Different elements of a data structure have now a meaning. Figure 2.8 is the
knowledge graph for the Bob Marley’s example presented before. Circles represent entities,
rectangles literals and arrows the predicates.

Knowledge graphs are an excellent framework for data integration, since they combine
expressivity, because various types of data can be represented, formal and standardized
definition of semantics, which allows both humans and machines worldwide to interpret
the graph and interoperability, backed up by SPARQL Protocol and RDF Query Language
(SPARQL), a language similar to SQL used to query over knowledge graphs. All this comes
with the possibility of efficient graph management [26].

2.2.1 Schemas and Ontologies

In the last section the different layers of the semantic web were characterized. This section
rather focuses on formally define schemas and ontologies that are used in the matching
process. A schema is defined as a set of elements linked by a structure [76]. XML Schema
Definition (XSD) is perhaps the most well-known Schema language out there, used to
express rules and specify data types a XML file must conform to.

10

Background

Figure 2.8: Knowledge graph of the Bob Marley’s example [23]

Definition 1. Formally, a schema S is defined by S = (IS , LabS , FS , RS) [156] where:

1. IS = {s1, s2, ..., sn}, IS ̸= ∅, n ∈ N, n < ∞. Each idividual si (i = {1, 2, ..., n}) is
uniquely identified by an Object Identifier (OID). The size of this set is the size of
the schema |IS | = |S| = n;

2. LabS = {LabS1 , LabS2 , ..., LabSi }, i ∈ N, i < ∞ is constant. Each LabSi is a string
describing an individual n;

3. FS = {fS
1 , f

S
2 , ..., f

S
j }, j ∈ N, j < ∞ a set of labeling functions for each individual

sn (i = {1, 2, ..., n});

4. RS = {R1, R2, ..., Rk}, RS ̸= ∅, k ∈ N, k < ∞ is the set of relations between in-
dividuals. In general the relations are binary, but if the relations are b-ary, then
R ⊆ (IS)b.

In practical example adapted from [155] the schema definition can be seen in action.

<schema xmlns="...">
<complexType name="Product">

<element name="ProductID" type="xs:int"/>
<element name="ProductName" type="xs:string"/>
<element name="ProductType" type="xs:string"/>

</complexType>
</schema>

After a short analysis, it is deductible that IS = {s1, s2, s3, s4} and that |S| = |IS | = 4. The
label collection is composed by the name set NS = {Product, ProductID, ProductName,
ProductType}, the concept set of individuals CS = {(product#n#1), (ID#n#2),
(name#n#1), (type#n#1)} obtained by an external source such as WordNet, two type
sets for individuals TS

1 = {complexType, element} and TS
2 = {xs : int, xs : string} and

finally a set for relations LS
R = {include} (in this example inclusion is the only relation

present in the schema). So, LabS = {NS , CS , TS
1 , T

S
2 , L

S
R}. From that we get five different

label functions FS = {f1, f2, f3, f4, f5}. f1 is the funtion to attribute the name set of

11

Chapter 2

individuals (e.g. f1(s1) = Product, f1(s2) = ProductID...), f2 for obtaining the concept
set of individuals and so on and so forth. It is important to note the fifth label function
has two inputs, because the relations require more than one individual (e.g. f5(s1, s2) =
include). Given the simplicity of this case study, the only relations are the ones with
individual s1: RS = {(s1, s2), (s1, s3), (s1, s4)}. Since the schema has several labels, it is
called a multi-labeled schema. These labels provide crucial information for the matching
process.

In Philosophy, Ontology is a sub-field of Metaphysics, which deals with the study of "what
exists" [147][139]. When applied to Computer Science, an ontology is the abstract model
of shared concepts [73][116][44]. In other words, it is the formal representation of the
properties and relations between different entities of a domain.

Definition 2. Being O an ontology, O =< C, I,R, P,A >, where C is a set of classes, I
the set of all individuals, R the set of relations, P the set of data types and A the set of
axioms [74]. Other equivalent definitions can be found in [84][65]

An ontology describes a vocabulary, which contains terms, relationships between those
terms and axioms on using the terms [11].

RDFS and OWL are both languages for writing ontologies. Despite being in the same layer
of the semantic web stack, RDFS are more commonly used to describe simpler vocabularies
than OWL, a much more powerful language, although it is more complex to implement.
Behind OWL there is a description logic called SROIQ(D) (Figure 2.9 2.10). Thus, OWL
can also be represented by description logic:

...
:publicationYear a owl:DatatypeProperty;

rdfs:domain :Book;
rdfs:range xsd:integer.

It is equivalent to ∃ publicationY ear.⊤ ⊑ Book, ⊤ ⊑ ∀ publicationY ear.Integer [127]

Figure 2.9: SROIQ(D) [91]

12

Background

Figure 2.10: SROIQ(D) [91]

All Semantic web technologies described in this section are somehow related and are meant
to be inter-operable, that is why, sometimes, these concepts may seem hard to properly
specify. However, all sources seem to be consensual on the fact that schemas are more
focused on data and its structure, whereas ontologies are more focused on semantics. The
choice on one or the other depends on the complexity of the model we are dealing with.

2.3 Data Integration and Sub-Problems

Semantic Web was meant to provide an extra layer of information to the contents of the
World Wide Web, so websites could interpret and derive new knowledge based on that.
However, the Semantic Web did not reach the scale initially envisioned. The languages
are complex, the metadata has to be updated constantly to avoid becoming obsolete,
and the interoperability between different sites or institutions was not facilitated enough.
Therefore, the goal of enriching all the web content with a new layer of metadata, was not
fulfilled entirely. It is fair to say that it left its mark, though. The developed technologies
survived and keep being used successfully, mostly on a smaller scale, in companies or
archives, for instance [70].

Data integration is still a problem and, depending on the application domain, it may be
expressed in many different sub-problems [35][60]. For instance, in the medical domain,
hospitals may need to merge patient records so that a single registry has all the information
from one patient. In addition to that, in distributed systems, database applications may
differ and, in order to integrate them, a matching between database schemas is required.
When interoperability between heterogeneous sources is required the problem of ambiguous
interpretation of concepts arises. Hence, corporations face an increasingly harder challenge,
because the linkage is rarely a straightforward procedure. Heterogeneity in schemas or
ontologies is organized in different levels [65]:

Syntactic heterogeneity: It occurs when the two sources are not written in the
same language. The challenge here is to convert the schemas or ontologies to be
matched in a standard format, while preserving all the knowledge.

Semantic heterogeneity: It happens when sources define concepts in a different
way. These conceptual differences may be granularity differences, if the same domain
is described with different levels of detail, coverage differences, if the two domains are
different but have parts in common, and differences in perspective, when the same
domain is described with the same level of detail but from another perspective (e.g.
political and topographic maps).

13

Chapter 2

Terminological heterogeneity: It results from differences in the terminology used
for the same entities. Synonyms, acronyms, different idioms, distinctive technical
vocabulary, all contribute to terminological heterogeneity.

Semiotic heterogeneity: Semiotic heterogeneity is the most difficult to mitigate.
It concerns to the way people around the world interpret a term in different contexts.
A good example is the concept "ontology" itself.

2.3.1 Schema and Ontology Matching

One of the main challenges to solve is schema or ontology matching. Schema matching aims
at finding the mapping between two different schemas. It differs from ontology matching
by the amount of information available a priori. Schemas often do not provide explicit
complex semantics for their data, so techniques to extract information encoded in a schema
frequently complement the matching itself. Certain characteristics of the schemas involved
have direct impact in the results:

Label complexity: The analysis of the labels from a schema/ontology plays a
big role in a matching system. Although background knowledge sources help, very
specific technical domains or the adoption of abbreviations heavily impact the per-
formance of the system.

Structure complexity: Structure is also a good indicator of how hard the matching
procedure will be for the computer, since almost all tools resort to its comparison
to perform a match. Previously matching results may help with very expressive
ontologies with various kinds of relationships and constraints between classes.

Definition 3. Given two schemas/ontologies, S and S′, the matching is given by a set
of alignments A = {a1, a2, ..., an}, n ∈ N. Each ai (i = {1, 2, ..., n}) is quintuple ai =
(id, e, e′, v, R). id corresponds to a unique identifier for ai; e, e′ are elements from both
schemas/ontologies; v is a measure, typically in the range [0,1], that expresses a confidence
level for that alignment; R is the relation holding between the two entities (e.g. equivalence
≡, inclusion ⊑, overlapping ⊓) [65][90][116].

Generally speaking, a schema/ontology matching algorithm receives as input two schemas/
ontologies and an optional input alignment set, a pre-mapping. Depending on the tech-
nique, other parameters and external sources (e.g. dictionaries) may also be introduced in
the system. The output is the final alignment set, as Figure 2.11 depicts, and it is given
by A′ = f(S, S′, A, p, r), being S and S′ the two schemas/ontologies, A an input alignment
set, p and r the parameters and external sources, respectively [65].

Typically the matching process follows the following pipeline [12][65]:

Parsing: In the first step, inputs are read using an interpreter (e.g. SAX and OWL
API), all the information is normalized and stored for future usage.

Lexical equivalence matching: The second step is dedicated to find equivalent
labels.

14

Background

Figure 2.11: Matching Process (Adapted from [64])

Other matching techniques: Different strategies are put in place to map the
entities not previously matched. This is where most tools differ, due to the variety
of techniques available.

Combination and filtering: The outputs are combined if various techniques are
used in parallel and the alignment set is filtered in order to produce a final verdict.

Reasoning and repair: This last stage only occurs if a tool to assess the coherence
of the produced match is implemented.

It was mentioned above that structure actively impacts the matching. Having that in
mind, different structures lead to a variety of different kinds of output alignments. The
alignment cardinality of the alignment can be one-to-one (1 : 1), one-to-many (1 : m),
many-to-one (n : 1) and many-to-many (n : m). If we consider the whole set of alignments
(Figure 2.12), the multiplicity is denoted by + if the match is total (all elements belong
to an alignment), 1 if the match is injective and total (all elements belong to one and only
one alignment), ? for an injective match (not all classes are matched but each alignment
has cardinality 1:1), and ∗ if contrary (not all elements match and the local cardinality
can be anyone) [65].

Figure 2.12: Examples of types of global cardinality (Adapted from [65])

15

Chapter 2

2.4 Conclusion

In conclusion, this chapter introduced the basic concepts involved in this project. They
are UBP’s architecture and the origin of semi-structured data.

Although it did not totally succeed, the Semantic Web introduced some concepts that
prevailed, for instance, schemas and ontologies, which became part of the web as it is today.
Other visions of big data and machine learning technologies, for example, have emerged,
which allowed the interpretation of that data. However, because there is not an agreed
formatting standard between all sources, they remain heterogeneous and the integration
dilemma persists. It is this problem that schema/ontology matching is concerned with.
Such process is complex and it is not trivial nor direct, so heuristic methods are the choice
for the majority of cases.

The next chapter makes an overview of several technique categories utilized in schema/on-
tology matching, as well as a few examples of known implemented systems, which served
as inspiration for the development of the UBP’s integration solution.

16

Chapter 3

State of the Art

The state of the art provides an understanding of the research that has been done so far
about a certain topic. It helps the scientist being aware of what others have been working
on, avoiding past mistakes and supporting future decisions.

This chapter provides information about the development of schema matching as a research
field in the past years. The central subject matter thought is the categorization of the
techniques commonly adopted by several systems, some of them presented later on. The
chapter ends with a brief reflection on the knowledge acquired.

3.1 Taxonomy

As introduced in the last chapter, schema matching is a complex task often difficult to
generalize. It highly depends on the domain, input (e.g. XML, relational model, ontology
etc.) and how the output is meant to be shaped (e.g. final mapping, suggested matches
displayed on a Graphical Interface (GUI) for an operator to validate etc.). Therefore the
techniques used vary a lot and there is not a secret recipe nor guaranteed results.

Schema Matching saw its beginnings in the 1980s but, back then, it was addressed as
part of a specific data integration problem [42][141][92]. During the 1990s, there was
a boom of research done on the topic and, by the end of the decade, beginning of the
2000s, clear efforts were made to compile all the advances at that time [119][84][118].
These studies allowed the consolidation of generic schema matching and mapping as an
independent research field. At the same time, the first generation of tools dedicated to
perform schema integration were born, as observable in projects like Microsoft’s Cupid
(generic matching) [98] and IBM’s Clio project1 in collaboration with the University of
Toronto (entity mapping) [106].

In their famous paper "A survey of approaches to automatic schema matching" [119],
Rahm and Bernstein compiled and elaborated a classification for matching approaches,
which has been the basis for the development of a solid taxonomy over the past years. For
that, they considered several criteria worth to mention.

Individual or Combination: The two main categories distinguish the usage of one
matching approach from the combination of multiple ones.

1https://researcher.watson.ibm.com/researcher/view_page.php?id=6965

17

https://researcher.watson.ibm.com/researcher/view_page.php?id=6965

Chapter 3

Element or Structure: The data considered may be instance data or just schema
information.

Language or Constraints: Usage of relationships or textual descriptions of schema
elements.

Other criteria: Other criteria like auxiliary information and cardinality may also
be accepted.

Such taxonomy tree can be illustrated by a scheme similar to Figure 3.1. The two main
branches of the tree are specified into more depth in Subsections 3.1.1 and 3.1.2.

18

State
of

the
A

rt

Figure 3.1: Taxonomy proposed by Rahm and Bernstein (Adapted from [119] and [76])

19

Chapter 3

It is important to remark another classification diagram proposed by Shvaiko and Eu-
zenat [65][137], where only individual matching approaches were taken into consideration.
The diagram comprises three levels. At a core level, the basic techniques are differentiated,
from string-based to graph-based. The outer opposite layers classify the basic techniques
considering the kind of input and how the algorithm interprets that input (granularity).

3.1.1 Individual Matching

On the left sub-tree (Figure 3.1), individual approaches are divided according to specific
characteristics they exploit when trying to acquire valuable information for the matching.
Its child nodes help differentiating the different techniques by levels.

Schema-level: Schema-level matchers utilize the available information in the schema.
This includes names, descriptions, restrictions and the structure itself [119]. In the taxo-
nomic tree, this level can be broken down into two other levels. They depend on whether
the matcher analyzes the schema structurally or element-wise.

Element-level: It exploits the attributes of the schemas to be matched. At the
finest level of granularity, it works with the atomic level attributes.

Structure-level: Structure-level combines the context where each attribute is with
the overall schema structure. In other words, it considers the surroundings of an
element, for example, which is the father attribute or which other elements are present
at the same level in the structure. This becomes really useful when uncertainties
appear, due to the possibility of only a partial match.

Instance-level: On the other hand, instance-level matchers consider instance data when
performing the match. They play an important role when schema information is not that
vast [29].

Reuse-oriented: Rahm and Bernstein proposed a taxonomy tree that can be extended
according to new criteria. Reuse-oriented techniques explore external resources, often
collected in previous matching executions [76]. The two main sub-categories are as follow.

Schema-based: Frequently used names can be stored in an internal global dictio-
nary and used as a later reference. This principle works, not only for attributes, but
also for entire schema fragments.

Mapping-bases: Taking reuse even further, it is possible to benefit from previous
mappings or similarity values in favor of a quicker and precise matching.

3.1.2 Combining Matching

The majority of systems are combined matchers, which means that several individual
matchers are put together, complementing each other, in order to improve the results. The
combining techniques are divided into the following classes, seen in Figure 3.1.

Hybrid Matching: Hybrid matchers combine several approaches in order to take the
most of the characteristics of both schemas/ontologies. For instance, one can combine
linguistic techniques with external sources [29].

Composite Matching: Different matches are performed independently and then the
results are combined. Composite matchers are flexible enough to allow free ordering of

20

State of the Art

matchers. The matchers can be sequential, if the output of a matcher is the input of
another, or simultaneous, if they execute at the same time [90].

3.2 Individual Techniques

The same procedures may be applied, for example, to build an instance-level matcher and
an element-level one. It is up to the system architect to decide whether a technique is
applicable to a certain situation. Nevertheless, all fall into one of the next categories.

3.2.1 Linguistic

Linguistic approaches are among the most common approaches. They are a helpful and
indispensable resource for determining matches. As it is a vast category, sub-categories
can also be identified.

Language-based

Language-based techniques are based on Natural Language Processing (NLP), making use
of the morphological processes, such as inflection, the process of modification a base form
in order to express number, gender, tense or person (e.g. go −→ went); derivation, which
is creating new words from existing more simple ones (e.g. treat −→ maltreat); and
compounding, when two independent lexical items are combined to form a new word (e.g.
god + parent −→ godparent) [48]. These techniques are commonly applied before any
other linguistic procedure, since it maximizes their results [65].

• Tokenization: Names are parsed into smaller yet meaningful tokens (e.g. FirstName
−→ First,Name). The separators include punctuation, blank spaces, cases etc.

• Elimination: Unnecessary tokens are eliminated, such as prepositions, conjunctions
and other stop words (e.g. TheFirst −→ First).

• Stemming: Stemming puts strings into their canonical form. It is done by removing
or replacing sufixes. It is good at identifying common root forms among different
words (e.g. running −→ run). The first stemmer was published in 1968 by Julie
Beth Lovins [96], but perhaps the most popular is Porter’s Stemmer [114] and its
successor, Porter2. Lovins’ algorithm removes the longest suffix from a word. The
remaining is converted into a valid word via partial matching of words in a technical
vocabulary. It can handle some irregular forms, but it frequently returns erroneous
results. Porter is a rule-based stemmer, limited to English and It is widely used
as it maintains a good balance between efficiency and simplicity. Since then, other
contributions, such as Snowball2 a framework for developing stemmers, has opened
doors for new stemmers for different languages [115]. There are other less known
stemmers available like Krovetz Stemmer (KSTEM) a hybrid technique (combination
of dictionary and set of rules), ideal for using in conjunction with other stemmers,
Paice/Husk’s, an iterative stemmer, or Xerox’s, that uses a lexicon database for
mapping different word forms [140]. Despite all the advances, the perfect stemmer is
still to be found.

2https://snowballstem.org

21

https://snowballstem.org

Chapter 3

• Lemmatization: Just like stemming the goal of lemmatization is to reduce inflectional
forms to root form, also known as lemma. Unlike stemming, lemmatizers are able to
take into consideration the part of speech to perform a morphological analysis on a
word, so is typically more powerful than stemming (e.g. saw −→ see) [57]. Examples
of tools that do lemmatization are Natural Language Toolkit (NLTK)’s WordNet lem-
matizer3, peharps the most well known, SpaCy’s lemmatizer4, TextBlob’s5, Stanford
CoreNLP’s6, LemmInflect7 and TreeTagger8 [131][130].

String-Based

String-based approaches is another set of techniques. These are used to match entities
from two different schemas. They rely on the basic principle that the more similar two
strings are, the more likely they refer to the same concept [65].

• Prefix: Checks whether one of the strings to be matched is a prefix in the other string
(e.g. super is a prefix in supermarket) [136].

• Suffix: Tests if an attribute’s name is present at the end of the potential match string
(e.g. Name is present at the the end of attribute FirstName so they likely refer to
the same entity, or part of the same in this case) [136].

• Equality of Names: Another technique that goes in line with the previous ones is
comparing the two strings to assess how similar they are. The similarity can be
quantified using a simple measure like the Jaccard similarity coefficient, given by the
formula

J(A,B) =
|A ∩B|
|A ∪B|

=
A ∩B

A+B −A ∩B
,

where A and B are the two sets of characters and J(A,B) ∈ [0, 1], being J(A,B) = 1
if A and B are the same word. (e.g. occupation and occupied share the five first
characters, therefore J(occupation, occupied) = 5

8+10−5 ≈ 0.385)

• N-gram: N-gram [83, Chapter 3] is a sequence of N characters in a string. It can
be used to compute the number of common character sequences in two strings. The
more n-grams two words share, the higher the chances of them being semantically
similar [109]. One could also apply the Jaccard formula presented above, or use
instead the Dice Coefficient similarity [88]

DSC(A,B) =
2 · |A ∩B|
|A|+ |B|

,

where A and B are the two N-gram sets and DSC(A,B) ∈ [0, 1], meaning DSC(A,B)
= 1 a comparison between the same word. (e.g. S3(occupation) = {occ, ccu, cup, upa,
pat, ati, tio, ion} and S3(occupied) = {occ, ccu, cup, upi, pie, ied} share three 3-grams.
Therefore, DSC(S3(occupation), S3(occupied)) ≈ 0.333).

3https://www.nltk.org/_modules/nltk/stem/wordnet.html
4https://spacy.io/api/lemmatizer
5https://textblob.readthedocs.io/en/dev/quickstart.html#words-inflection-and-lemmatization
6https://stanfordnlp.github.io/CoreNLP/lemma.html
7https://github.com/bjascob/LemmInflect
8https://www.cis.uni-muenchen.de/ schmid/tools/TreeTagger/

22

https://www.nltk.org/_modules/nltk/stem/wordnet.html
https://spacy.io/api/lemmatizer
https://textblob.readthedocs.io/en/dev/quickstart.html#words-inflection-and-lemmatization
https://stanfordnlp.github.io/CoreNLP/lemma.html
https://github.com/bjascob/LemmInflect
https://www.cis.uni-muenchen.de/~schmid/tools/TreeTagger/

State of the Art

• Google Similarity Distance: Comparing N-grams may not be a good approach when
multiple domains share some common words. By using Normalized Google Distance
(NGD) it is possible to calculate semantic distances based on the returned results in
Google’s search engine.

NGD(x, y) =
max{logf(x), logf(y)} − logf(x, y)

logN −min{logf(x), logf(y)}
,

where x and y are two terms to be compared, f is the function that returns the
number of search hits, N is the number of web pages indexed by Google and log
is a binary logarithm. It is also important to note that NGD(x, y) ∈ [0,∞[, which
means, the closer to 0, the more related x and y are (e.g. If, when searching for horse,
the number of results was 46700000, the number of hits for rider was 1220000, the
number of pages where both terms occur was 2630000 and the total number of web
pages indexed by Google was 8058044651, then NGD(horse, rider) ≈ 0.443) [50].

• Regular expressions: Regular expressions, RegEx as abbreviation, describe a pattern
in text. They are convenient in tasks like search, input validation, lexical analysis or
word matching. In schema matching, regular expressions are useful when inspecting
instances, mostly because attributes’ instances, such as phone numbers or addresses
follow a regular pattern (e.g. For the purpose of this example, lets simplify and
assume all phone numbers begin with a thee capital letter calling code and are fol-
lowed by a 5 minimum digit sequence. Then a valid regular expression for all phone
numbers would be [A− Z]{3}[0− 9]{5, }, in the POSIX9 standard) [99].

• Embedding: Words and sentences can be represented in the form of vectors encoding
their meaning. The closer they are, the more similar they are. Embeddings are
trained on large texts such as books or internet pages, and one can choose to use
a pre-trained model or build local embeddings for a specific domain [47]. Besides
schema and entity matching, the variety of use cases where embeddings can be applied
range from speech recognition [39] to image classification [71]. Popular algorithms
for training embeddings include Word2Vec, GloVe, ELMo and BERT.

Word2Vec is a family of architectures that can be divided in two main methods:
Continuous Bag of Words (CBoW) model, which is specialized in prediction a target
word based on other words around it; Continuous Skip-gram model, which predicts
words before and after a given word [125][103][104].

Global Vectors (GloVe), unlike Word2Vec, does not rely on local context words, so the
semantic learnt is more broad, since it takes the whole set of texts into consideration,
and not only the surroundings [111].

Embedding from Language Models (ELMo) follows a bi-directional LSTM architec-
ture and it is good at capturing a word’s different levels of meaning, i.e. polysemy
(e.g. "park the car" and "play at the park") [112].

Bidirectional Encoder Representations from Transformers (BERT) is another alter-
native for extracting contextualized meaning of words. BERT is based on a trans-
formers architecture [148], a newer alternative to LSTMs, and offers two options:
BERT Base with twelve encoder layers and BERT Large, with twenty four layers,
suited for more demanding tasks [55]. The input are sentences that are tokenized
into different pieces within the delimiters [CLS] and [SEP]. BERT is capable of
processing unseen words, because it slices them into sub-words (e.g. "My embedded
sentence."−→ [′[CLS]′,′My′,′ em′,′##bed′,′##ded′,′ sentence′,′ .′,′ [SEP]’] 10).

9https://en.wikibooks.org/wiki/Regular_Expressions/POSIX_Basic_Regular_Expressions
10http://mccormickml.com/2019/05/14/BERT-word-embeddings-tutorial/

23

https://en.wikibooks.org/wiki/Regular_Expressions/POSIX_Basic_Regular_Expressions
http://mccormickml.com/2019/05/14/BERT-word-embeddings-tutorial/

Chapter 3

The output vectors can be compared using cosine similarity measure11 to determine
how distant two concepts are, based on the angle between the vectors. That is,

sim(A,B) = cos(θ) =
A ·B
∥A∥∥B∥

=

∑n
i=1AiBi√∑n

i=1A
2
i

√∑n
i=1B

2
i

,

where A and B are vectors, and Ai and Bi are their respective components.

In schema matching applications, over the last few years, new approaches have
been exploring embeddings [32] mainly for extracting information from instance
data [77][81].

• Edit distance: Edit distance is the number of operations needed to transform one
word into another. There are several algorithms for calculating the distance such
as Hamming distance, Longest Common Sub-string (LCS), Jaro and Jaro-Winkler
variant, as well as Levenshtein and its variant Damerau-Levenshtein. Hamming
distance only allows substitution, so it is not used to compare words of different
lengths.

LCS only allows insertions and deletions. It first finds the longest common sub-
string and then calculates the similarity measure dividing the length of the common
sequence, by the minimum, maximum or average lengths of the compared strings.

Jaro and Jaro-Winkler are a family of commonly used metrics in entity matching
related applications [150], which measure the common characters in two words. They
are among the fastest algorithms [49]. In Jaro only transpositions are possible. The
score is given by

simj =

{
0 ,m = 0

1
3(

m
|s1| +

m
|s2| +

m−t
m) ,m ̸= 0

,

where s1 and s2 are the lengths of the compared strings, m is the number of matching
characters and t the number of transpositions.

Jaro-Winkler is based on Jaro distance but it favors strings with common prefixes.

simw = simj + lp(1− simj),

where simj is the Jaro distance between the two strings, l is the length of a common
prefix (up to a maximum four) and p is a constant scaling factor, 0.1 by default.

Levenshtein distance allows insertions, deletions and substitutions. There is also a
variant of Levenshtein distance, called Damerau-Levenshtein, which counts transpo-
sitions too as single word edits [49].

(e.g. Simple Levenshtein exercise12: The difference between kitten and sitting is
kitten −→ sitten; sitten −→ sittin; sittin −→ sitting, which makes a total of three
edits. The output can be normalized by aplying such formula 1−(dist(s1,s2)

max(|s1|,|s2|)), being
the numerator the number of edits and the denominator the length of the longest
string. Thus, sim(s1, s2) =

3
7).

Phonetic

Phonetics are important in schema matching as they allow to bypass double spelling words
and mistakes up to a certain point. Phonetic techniques encode a string according to the

11https://en.wikipedia.org/wiki/Cosine_similarity
12https://en.wikipedia.org/wiki/Levenshtein_distance

24

https://en.wikipedia.org/wiki/Cosine_similarity
https://en.wikipedia.org/wiki/Levenshtein_distance

State of the Art

a, e, h, i, o, u, w, y −→ 0
b, f, p, v −→ 1
c, g, j, k, q, s, x, z −→ 2
d, t −→ 3
l −→ 4
m, n −→ 5
r −→ 6

Table 3.1: Soundex table [49]

a, e, h, i, o, u, w, y −→ 0
b, p −→ 1
c, g, j, k, q −→ 2
d, t −→ 3
l −→ 4
m, n −→ 5
r −→ 6
f, v −→ 7
s, x, z −→ 8

Table 3.2: Phonix table [49]

way it is pronounced. The main limitation of these techniques is their language dependence,
because every language has different pronunciation aspects. Homonyms (words read and/or
written in the same way but with different meanings, for instance right −→ correct and
right −→ direction) can also be an obstacle to phonetic algorithms.

• Soundex: Designed for the English pronunciation, Soundex’s history started in 1918
but surprisingly it has been a very popular algorithm. The idea is that the characters
after the first letter are replaced by numbers (see Table 3.1). Adjacent letters with
the same number are merged and the returned code is always four characters length,
which means it may be shortened if the word has more letters or padded with zeros,
if shorter (e.g. judge −→ J320).

• Phonix: Phonix [72] intends to be an improved version of Soundex, like many other
that appeared after it. More than a hundred rules were added to make a pre-
processing before the encoding using Table 3.2. Due to its complexity the algorithm
is slow comparing to other approaches [49]

• Double-Metaphone: Double-Metaphone is the second version of another encoder,
Mataphone, developed by Lawrence Phillips. It attempts to deal with non-English
words [49]. Just like Phonix, has many pre-proccessing rules and the result are 2
codes only made of letters (e.g. judge −→ [jj, aj]).

• Beider-Morse: Beider-Morse Phonetic Matching (BMPM) is an algorithm that was
designed to tackle the problem of false positives in Soundex based systems. It does
so by taking into consideration, not only the sound of the words, but also their
linguistic properties. It also supports ten different languages. BMPM has been
proved especially useful, when comparing different spelling names [36][69] (e.g. names
like Schwarz and Schwartz, two alternative German spellings13).

13https://avotaynuonline.com/2008/07/beider-morse-phonetic-matching-an-alternative-to-soundex-
with-fewer-false-hits-by-alexander-beider-and-stephen-p-morse/

25

https://avotaynuonline.com/2008/07/beider-morse-phonetic-matching-an-alternative-to-soundex-with-fewer-false-hits-by-alexander-beider-and-stephen-p-morse/
https://avotaynuonline.com/2008/07/beider-morse-phonetic-matching-an-alternative-to-soundex-with-fewer-false-hits-by-alexander-beider-and-stephen-p-morse/

Chapter 3

3.2.2 Reuse-Oriented

Most of the times, the information available for matching is insufficient. For this reason,
the reuse of information previously obtained, whether it is a mapping or another external
resource, is crucial not only to facilitate the matching process, but also to improve the
matching quality.

Schema and Mapping-based

As introduced in the preceding section, reuse oriented techniques are mainly based on data
previously analyzed, either it is parts of the schema or alignments already determined.

• Alignment reuse: When the two schemas/ontologies to be matched are similar to
already matched schemas/ontologies or even too big, previous matches may be reused
to expedite the process [38]. The simplest approach on alignment reuse is to compare
the attributes to be matched with similar previous matches, also known as transitive
matching (e.g. if A −→ B and B −→ C, then it is likely that A −→ C). The
transitive matching can be calculated by multiplying the two similarities or averaging
them (e.g. if sim(x, y) = 0.5 and sim(y, z) = 0.7, then sim(x, z) = 0.35 if the
multiplication method is applied [58])

• Schema/Ontology reuse: Related schemas/ontologies are also good pieces of infor-
mation and their applications are varied. The use of a reference schema/ontology in
the matching process is known to reduce complexity in multi-schema matching. The
idea is that, by comparing all schemas individually with a reference ontology and
then extracting the relationships between different schemas/ontologies from the first
set of relationships with the reference schema/ontology [136][67].
Previous matched and validated schemas may also constitute great training datasets,
that can feed a machine learning algorithm. Some research has been done about this,
such as Semantic Integrator (SemInt) [94], one of the first approaches using neural
networks, Learning Source Descriptions (LSD) [59], detailed in the next section, clus-
tering at an element or schema level [87][117], normally used for large scale schema
matching [129], and Random Forest for Schema Matching (RF4SM), a family of tech-
niques popular for its simplicity and input flexibility [124]. However, since most of
these methods require a lot of training data, machine learning techniques are often
too difficult to apply in the schema matching context.

• Instance data reuse: Instance data is one abundant resource, comparing to schema
information. Hence, it is easier to employ instance data in the training of models that
extract the characteristics of different attributes. The use of these models improves
the ability to discover relationships between entities, since some attributes’ instances
may not have a clear structure defined by a simple regular expression. However,
using instance data is not possible, for instance, when those instances contain users’
individual sensitive [154] information and it is less effective when instances have high
variability [82].

Other External Resources

The use of other external resources, for instance dictionaries, thesauri and ontologies, is a
good way to complement the available information. They are also necessary when a deeper

26

State of the Art

semantic context is wanted [76]. Therefore, external resources go hand in hand with the
use of other linguistic techniques.

• Thesauri: A thesaurus is a collection of words grouped by meaning [19]. Thesauri can
be common knowledge, for general use, or domain specific thesauri, which may limit
the usage but often offers better results (e.g. a thesaurus for geography terms) [136].
WordNet14 is a good example of a lexical database where different concepts are
put together as sets of synonyms (synsets) alongside a short definition and usage
examples [65, Chapter 5][105]. From these sets it is possible to cluster words seman-
tically [151] and extract other relationships between words, for instance antonomy,
hyponymy and hypernymy, and holonymy and meronymy15. Such relationships al-
low, in the schema matching context, to conclude whether an attribute is a subclass
of another [38, Chapter 3]. An alternative way of finding matching candidates is
to compare two words’ synonym sets [119], for example. Some similarity measures
applicable to quantify semantic similarity are the Wu and Palmer’s, Resnik’s, as it
will be detailed later when clarifying taxonomy-based techniques [107][132].

• Upper level ontologies: Upper level ontologies like Suggested Upper Merged On-
tology (SUMO) and Descriptive Ontology for Linguistic and Cognitive Engineering
(DOLCE) are a good external knowledge extensions [145]. These ontologies describe
general concepts providing a basic semantic structure for ontologies specific for a
domain.

• Linked Data: As the web grew, more and more datasets became available online. As
explained in the previous chapter, structured data is connected forming a knowledge
graph, a dense nest of linked data, such as DBpedia16 and Wikidata17, which can also
be interlinked to compose even bigger clouds like the Linked Open Data (LOD)18.
To manipulate data, RDF triples can be queried using SPARQL. Several attempts of
integrating these resources as a way to enrich schema information have been made,
such as [86][30].

3.2.3 Constraints

Constraints are a big part of a schema/ontology. Ranges, data types, uniqueness and
relationships should provide good support in matching decisions. Despite adding valu-
able knowledge, constraints are not as effective when they are the only information level
considered, because only considering data types, for instance, may lead to several misin-
terpretations of the schema/ontology.

Data Type

Data types are, many times, the only data available, besides attribute names and instances,

14https://wordnet.princeton.edu/
15Antonyms are words that denote opposite concepts (e.g. sad, happy). Hyponymy and hypernymy are

relations that specify a concept generally or particularly, respectively (e.g. appliance is the hypernym of
dishwasher and dishwasher is the hyponym of appliance). Holonymy and meronymy express a whole from
a given part and a part form a given whole, respectively (e.g. body is the holonym of feet, legs and head,
while teeth is a meronym of mouth)

16https://www.dbpedia.org/
17https://www.wikidata.org/wiki/Wikidata:MainP age
18https://lod-cloud.net/#about

27

https://wordnet.princeton.edu/
https://www.dbpedia.org/
https://www.wikidata.org/wiki/Wikidata:Main_Page
https://lod-cloud.net/##about

Chapter 3

thus they represent a big part of constraint matching. Some data type comparison tech-
niques can be seen below.

• Compatibility Table: The simplest way of comparing data types is to manually build a
table, like Table 3.3, with all combinations and respective similarity values. However,
this method is not objective nor reliable [62].

• Data Type Hierarchy: Another approach to determine the similarity between data
types is to organize the data types in a tree structure. The similarities can be
calculated as follows.

sim(x, y) =

{
e−βl × eαh−e−αh

eαh+e−αh , x ̸= y

1 , x = y
,

where x and y are the two type nodes being compared, l is the shortest path length
between x and y, h is the depth of the LCA, α and β are adjustable parameters, and
sim(x, y) ∈ [0, 1]. This measure is based in the distance between the two types in
the tree and on the depth of the LCA, and supported by Shepard’s law, a similarity
function applied in many research fields [78]. More on this topic in [62]

Type x Type y Compatibility (x, y)
string string 1.0
decimal float 0.8
string date 0.2
float integer 0.9

Table 3.3: Data type compatibility table (Adapted from [98])

Graph-based

Graph-based techniques are a good example of the use of relationships between attributes
within the same schema/ontology. Schemas/Ontologies are usually cast into a standard-
ized format before matching. Usually they are converted into labeled-graphs, because
graph theory has been extensively studied and the techniques for matching graphs are well
developed. In a labeled-graph vertices represent entities and edges the relations between
them [34]. The similarity between nodes is a result of the comparison of their positions in
the two graphs.

• Graph Matching: Graph isomorphism is a classic problem studied for many years
[51]. Due to its complexity (NP-complete), usually approximate methods are used to
find an error-tolerant solution for graph or sub-graph matching. More on this topic
here [152].

• Children nodes: One of the similarity criteria for matching nodes is the similarity
between their non-leaf children.

• Leaves: The basic principle of this technique is that two nodes are assumed to be
similar if their leaves are identical, even if the nodes in between are not.

• Relations: One can also look at the relations between nodes to infer if there is a high
degree of similarity. If two nodes have all the same types of edge attached to them,
the chance of them being similar too is high.

28

State of the Art

Taxonomy-based

Taxonomy-based techniques belong to structured-level techniques and the principle behind
them is that subsets/supersets of similar sets are likely to be similar too [65].

• Bounded path matching: The match is done by cutting two paths of the schemas/on-
tologies and comparing the a term to another in the same position in the other path.

• Super/sub-concepts rules: The matcher takes into consideration the concepts above
and beyond an attribute. If, for instance, two attributes’ sub-concepts are the same,
then they are similar too.

In spite of being primarily used for linguistic support, external sources such as WorNet
can also be used to implement these techniques, as words, the nodes, can be connected
with "is-a" relationships, the edges [132][134]. There are multiple similarity measures, but
two basic categories of approaches stand out: edge-based, which use edge information and
node-based, which use node information. An example of a very well known edge-based
measure is Wu and Palmer’s. Wu and Palmer similarity is based on the distance to the
root and the distance to the common ancestor of the nodes that are being compared.
Thereby, Wu and Palmer similarity measure is given by the following expression

sim(x, y) =
depth(cca(x, y))

depth(x) + depth(y)
,

where x and y are the two nodes being compared, cca is a function that returns the closest
common ancestor of two nodes, depth is a function that returns the distance from the
root to a node, and sim(x, y) ∈]0, 1] (e.g. if carnivore is cat and dog’s closest common
ancestor, depth(cat), animal −→ irrational −→ carnivore −→ feline −→ cat, and
depth(dog), animal −→ irrational −→ carnivore −→ canine −→ dog, are both five, and
depth(carnivore) is three. Then sim(dog, cat) = 3

10).
Perhaps the most used node-based measures are Resnik’s and Lin’s measures. Resnik
similarity [123] considers the content of the compared nodes’ closest common ancestor and
it is given by

sim(x, y) = ic(cca(x, y)),

where x and y are the two nodes being compared, cca is a function that returns the closest
common ancestor of two nodes, ic is a function returning the information content in a
particular node, and sim(x, y) ∈ [0,∞[.
Lin’s measure [95] is a variation of Resnik’s formula. The information content of the
ancestor is enriched with the information content of the two compared nodes. It is defined
as

sim(x, y) =
2× ic(cca(x, y))

ic(x) + ic(y)
,

where x and y are the two nodes being compared, cca is a function that returns the closest
common ancestor of two nodes, ic is a function returning the information content in a
particular node, and sim(x, y) ∈ [0, 1].

29

Chapter 3

3.3 Combination Techniques

As mentioned before, several matchers can work together for performance improvements.
The results of individual matchers require some sort of combination system, so that the
similarity cube (the matrices with all similarity values between attributes) is reduced to
only a bidimentional matrix and a final veredict for each pair is output, according to a
threshold, as shown in Figure 3.2. The techniques presented bellow are the combining
methods most commonly referred in the literature.

Figure 3.2: Combinatorial Matching Process (Adapted from [113])

• Minimum: This technique chooses, for each pair, the minimum similarity value com-
puted by different matchers. For a value to be chosen, the others have to be much
higher, that is why minimum is a pessimistic solution [76].

• Maximum: The maximum approach, on the other hand, chooses the highest value
computed for a pair, which makes it a very optimistic method [76].

• K-order: For this aggregation operator, it is necessary to order all the values for a
pair from the smallest to the biggest one and then the k element is chosen, usually
the median [53].

• Average: The average is the simplest example of a weighted technique for the decision
process, because considers equal weights for every output. It is one of the most used,
due to the consistency of results, derived from the balance between the matcher’s
strengths and weaknesses [113].

• AHP: Analytic Hierarchy Process (AHP), developed by Thommas Saaty, is a method
for analyzing complex decisions [126]. The idea behind it is the organization of
the problem model in a structured way with a goal on top and several attributes
beneath, each one with different levels of priority in respect to the goal, according to
a scale from one (same importance) to nine (extreme importance). A matrix is then
composed with all the relative priorities and a normalized vector by squaring the
matrix and dividing the sum of all lines by the sum of each line. The final attribute
ranking is obtained when multiplying the original matrix by the normalized vector.
The weights can then be used in a weighted arithmetic mean, for instance, defined
in the following equation.

simagg(x, y) =

∑n
k=1wk · simk(x, y)∑n

k=1wk
,

where x and y constitute the pair for each the aggregated similarity is being calcu-
lated, n is the number of similarity matrices, wk is the weight attributed to each
matcher and simagg(x, y) ∈ [0, 1] (e.g. apply AHP given three matchers a, b, c that
return three similarity matrices. Lets say the relative priorities are defined in a matrix

30

State of the Art

M . Notice that the elements below and above the main diagonal are reciprocal.

M =

a b c a 1 2 1
3

b 1
2 1 1

4

c 3 4 1

The next step is to calculate the normalized matrix N .1 2 1
3

1
2 1 1

4

3 4 1

 ·
1 2 1

3
1
2 1 1

4

3 4 1

 ≈
3.000 5.333 1.166
1.750 3.000 1.750
8.000 14.000 3.000

Total = 3.000+5.333+1.166+1.750+3.000+1.750+8.000+14.000+3.000 ≈ 13.083

N ≈

3.000+5.333+1.166

13.083

1.750+3.000+1.750
13.083

8.000+14.000+3.000
13.083

 ≈
4.3166.308
1.640

Finally, the ranking is given by

R = M ·N ≈

1 2 1
3

1
2 1 1

4

3 4 1

 ·
4.3166.308
1.640

 ≈
17.4788.875
39.818

The weights can be used for calculating the final similarity of a pair. If a, b and c re-
turn, for a certain pair (x, y), the similarity values 0.500, 0.580 and 0.690 respectively,
the final similarity for that pair is calculated as

simagg(x, y) =
17.478× 0.500 + 8.875× 0.580 + 39.818× 0.690

17.478 + 8.875 + 39.818
≈ 0.625

Example adapted from [97]).

• HADAPT: This method is based on a measure called harmony, determined by the
entries in matrices that are maximums both in their column and row. The match
results with higher harmony value will also have a higher weight [113].

• OWA: Ordered Weighted Averaging (OWA) are a set of operators that allow the
choosing of weights according to several established criteria. For that, all values
for a pair are sorted and then the weights are assigned. Minimum and maximum
combination methods are particular cases of OWA operators, for example, where the
minimum or maximum is assigned with weight one and the remainder elements with
weight zero [53][52].

• Sigmoid: Sigmoid combination acts as a filter. It processes the results adjusting
them to a sigmoid function. This increases significantly higher similarity values and
penalises lower ones [113]. The formula of a sigmoid

f(x) =
1

1 + e−t(x−s)
,

where t is the slope, s is the shifting factor and f(x) ∈ [0, 1]. These parameters can
be ajusted for better results.

31

Chapter 3

• OpenII: OpenII converts the similarity values from an [0, 1] interval to an [−1, 1]
interval. Values bellow zero have a low confidence so they are penalised, whereas
values above zero will weigh more [113]. For a given pair the aggregated similarity
is calculated using the following expression.

simagg(x, y) = f−1

(∑n
k=1 |f(simk(x, y))| · f(simk(x, y))∑n

k=1 |f(simk(x, y))|

)
,

where x and y are the pair for each the aggregated similarity is being calculated, n is
the number of similarity matrices, simagg(x, y) ∈ [0, 1], f is the function to convert
the interval [0, 1] into [−1, 1] and f−1, its inverse, that transforms the interval [−1, 1]
back into [0, 1].

• Non-linear: Non-linear combination first performs a weighted sum, showed by the
first part of the expression. After that, a correlation between similarities is calculated
and, depending on the result of the sum, the value is added or subtracted to the sum
calculated in the first step. A constant λ is always present, so that the combined
similarity does not escape the [0, 1] interval [113]. For a pair x, y the combined
similarity is given by the following formula.

simagg(x, y) = λ

n∑
k=1

wk · simk(x, y)± (1− λ)

n∑
c=1

n∑
k=1

simc(x, y) · simk(x, y),

where x and y constitute the pair for each the aggregated similarity is being calcu-
lated, n is the number of similarity matrices, wk is the weight attributed to each
matcher and λ is a constant, as explained earlier, and simagg(x, y) ∈ [0, 1].

• Machine Learning: It is also worth to mention that machine learning can also be used
to automatically determine the weights of individual matchers. Some examples of
these techniques include Meta Learner from LSD which uses stacking for learning how
to combine in the best way the individual predictions from different matchers [59],
Schema Matcher Boosting (SMB) which uses boosting as the ensemble model [100],
and Alignment Process Feature Estimation and Learning (APFEL) a bootstrapping-
based approach that generates new samples from pre-validated ones [63].

After calculating the final similarity matrix is necessary to return a final verdict for each
pair. For that, it is important to determine a threshold that separates the matches from
the non-matches. Some of the classic approaches include choosing the top N matches (ideal
for n : 1 cardinality), MaxDelta, which returns the top candidate plus all others differing
in similarities up to a certain value [58], and manual threshold, such as Cupid [98], that
requires a specialist to input the desire threshold. Other approaches include supervised
learning [32], active learning, the use of reward functions and statistical analysis, such as
using bivariate normal distributions (representing the frequencies of hits and misses) to
find the best threshold, so that false positives and false negatives are minimized [142].

3.4 Evaluation Metrics

Matching schemas/ontologies is impossible to perform always without an associated error,
in the light of the present technology. The complexity of the process also makes the com-
parison between purposed solutions much harder. Therefore, it is important to quantify, in
a standardized way, how close the obtained results are to the expected ones. The following

32

State of the Art

metrics are often used in the area to quantify how close the results are to the ground
truth. They are based on the notions of true/false positives and true/false negatives, as
highlighted by the formulas [37].

• Precision: The precision calculates the proportion of discovered matches that are
truly relevant.

Precision =
tp

tp+ fp
,

where tp is the number of true positives, fp the number of false positives and
Precision ∈ [0, 1] (e.g. if tp = 30 and fp = 20, then Precision = 3

5 , which means
60% of the discovered matches are relevant).

• Recall: Recall, also known as sensitivity, is the proportion of relevant matches that
were returned with respect to all relevant matches.

Recall =
tp

tp+ fn
,

where tp is the number of true positives, fn the number of false negatives and
Recall ∈ [0, 1] (e.g. if tp = 30 and fn = 10, then Recall = 3

4 , which means 75% of
the relevant matches were returned).

• F-measure: F-measure, or f-score, is the harmonic mean of precision and recall. It has
the disadvantage, however, of not showing when these two metrics are imbalanced.

F−measure(α) =
(α2 + 1)× Precision×Recall

(α2 × Precision) +Recall
,

where α is a parameter often set to one and F−measure ∈ [0, 1] (e.g. if α = 1,
Precision = 0.6 and Recall = 0.75, then F−measure(1) = (12+1)×0.6×0.75

(12×0.6)+0.75
= 2

3 ≈
0.667. In this case, there is a good balance between Precision and Recall, not one
being much higher than the other).

• Runtime: Runtime quantifies the time a program takes to run. Besides runtime,
knowing execution time of each operation is useful when trying to optimize the code.
Units may vary depending on the type of program and resolution of the machine
measuring it (milliseconds, minutes, hour etc.).

3.5 Systems

Over the years, data integration became a daily-life challenge for the ones working with
large volumes of data. This includes industries like E-commerce, large companies with
lots of services and even researchers from biomedical sciences. Consequently, different re-
searchers and institutions sought for their own solutions. After the first attempts, more
and more tools and comparative studies were published, and schema/ontology matching
and mapping started growing roots as the problem was formalized [102]. Later, the intro-
duction of other techniques that explore linked data and machine learning models allowed
taking advantage of large volumes of data [30][41]. In the recent years, as formats like
JSON gained popularity, new other tools also came to fill the gap [107].

Although a lot is still to be done regarding the evaluation and comparison of techniques,
some advancements such as the Ontology Alignment Evaluation Initiative (OAEI) have

33

Chapter 3

been a success. OAEI19 is an international initiative that was founded with the goal of
creating a singular and consensual evaluation of ontology matching systems. Not only does
this aids in choosing the best approaches, but also their developers, who actually get a
report of identified weaknesses of their systems. Every year, a conference is organized and
a paper is published with a sum up of all evaluated tools.

Previously in this chapter, techniques taking advantage of several schema/ontology features
were clarified. The following paragraphs are dedicated to cover relevant historical and
state of the art tools that apply some of the above principles and methodologies. Table
3.4 synthesizes each system’s features and highlights the main differences between them.

3.5.1 Cupid

Cupid is a hybrid system created by Jayant Madhavanm, Philip A. Bernstein, and Erhard
Rahm. Despite of being one of the first attempts to solve generic schema matching, it is
still a reference for the newer systems. It consists of three main phases. First, XML and
relational schemas are imported and the attributes are normalized by performing tokeniza-
tion, elimination of stop words, extra spaces etc. Abbreviations and acronyms are expanded
too. An auxiliary thesaurus is key for this step. After that, the system categorizes all the
elements in each schema, clustering them into categories based on characteristics such as
data types and hierarchy inside the schema. A comparison is then done between elements
of the two schemas from similar categories, extracting synonym and hypernym relation-
ships, helped by a thesaurus. These three steps constitute the linguistic phase. The second
phase corresponds to the structural matching. First inputs are converted into trees. The
structure matcher is based on the intuition that leaf nodes encode much of their ancestors’
information. The algorithm calculates structure similarity for leaf nodes by evaluating their
data types compatibility. For non-leaf elements the structural similarity between elements
of the two schemas is determined as the fraction of leaves that have at least one strong link
to another leaf in the other element sub-tree. Two leaves share a strong link if the weighted
sum between their linguistic and structural similarities (weighted similarity) stays above a
given threshold. The algorithm also rewards or penalizes whenever two elements’ weighted
similarity is above or below a given threshold. The third phase uses the weighted mean
between linguistic and structural similarities of each pair to produce the output, a set of
1 : 1 leaf mappings, according to a threshold provided by the user [98][119][76].

3.5.2 COMA

Combination of Matching Algorithms (COMA) is a composite matcher, originally devel-
oped by Hong-Hai Do and Erhard Rahm. Since its release in 2002 the system has suffered
two main updates, named COMA++ [31] and COMA3.0 [101][3]. In the latest major
iteration, COMA3.0, there was even launched a business version, besides the open source
version already available. Due to space reasons, only common features to all the ver-
sions will be discussed in detail. The system’s core is divided in three modules: storage,
matching and mapping. In newer versions a new interface module was also introduced,
with support for an API and a GUI. The storage module, imports the XML schemas and
relational schemas, ontologies (new versions) and the external resources (thesaurus and
previous mappings) mapping schemas/ontologies into DAGs. The matching module con-
sists of a library of elementary, hybrid and reuse-oriented matchers that can be configured
by a configuration engine. The simple matchers include a matcher to look for common

19http://oaei.ontologymatching.org

34

http://oaei.ontologymatching.org

State of the Art

prefixes and suffixes, a N-Gram matcher, an edit distance-based matcher, which uses the
Levenshtein measure, a phonetic matcher implementing Soundex, a synonym matcher that
uses a thesaurus to search for related words, and a data type matcher that follows a refer-
ence table specifying the compatibility between the different types. User can also provide
input feedback in order to refine the matches. Hybrid matchers are combinations of differ-
ent simple matchers. A Name matcher which resorts to affixation, N-gram, synonyms and
Levenshtein distance to perform the matching. A TypeName matcher that computes the
similarity based on the Name matcher and data type matching. NamePath is a matcher
that combines name similarity (Name matcher) with schemas’ strutural characteristics.
This is achieved by joining all attribute names from each path in a single string and then
using the Name matcher to compare these strings. There are two more hybrid matchers
based on the structure of the schemas/ontologies, which are Leaves and Children matcher.
The Children matcher considers, of two non-leaf nodes, the similarity of their children,
which is recursively calculated from the similarity between their respective children. The
similarity between the leaf elements is computed by the TypeName, as a default. On
the other hand, the Leaves matcher only considers the leaves of the two compared nodes.
This strategy helps reducing the computational cost, but it is also more stable in cases of
structural conflicts. The last matcher is the reuse-oriented matcher, which showed to be
important for improving matching results. Previous matches are stored in a repository and
they are used to calculate transitive similarities. The similarities for all pairs are calculated
and then combined. Finally, the mapping module carries out the final processing before
exporting the mappings. This is also where ontology merging and manual mapping cor-
rection takes place in newer versions. Among the similarity aggregation strategies are the
minimum, maximum and average, although the average has shown higher consistency as
it better compensates defects of different matchers. The returned results consider mainly
a 1 : 1 cardinality [76][90][136]. Overall, the authors claim that the best configurations
are the ones with multiple matchers, exploring different parts of the sources (structure,
elements, constraints etc.) [58].

3.5.3 LSD

LSD is a composite system, developed by AnHai Doan, Pedro Domingos and Alon Levy,
for matching XML sources. The system relies on several machine learning matchers that
explore distinct parts of the schema, like the attribute names and word frequencies. Just
like all supervised techniques, there is a learning phase and after that a classification phase.
The learning phase comprises five learners, being them nearest neighbor Whirl learner, a
Naive Bayesian learner, name matcher, county-name recognizer and Meta Learner. Nearest
neighbor Whirl learner classifies an instance based on the labels of its neighbors in the
training set. According to the authors, this matcher performs best when the elements have
long textual values as instances. The Naive Bayesian matcher learns from word frequencies
and it suits cases where there are words that clearly distinguish an entity. On the other
hand, it does not work well for short numeric values. Name matcher is responsible for
learning to detect synonyms. However, it does not work well for ambiguous names (e.g.
office and office_phone). Another matcher is the County-Name Recognizer, which matches
a certain entity (in this case a county) using external domain specific sources. These models
are applied to data during the classification phase. The last learner is the Meta learner,
introduced previously in this chapter, designed for automatically determining the weights
when combining results. The application phase applies the trained models for computing
the correspondences. Because there are several matchers involved in the process, there is
also a final phase where the results are combined using by the Meta matcher. The matches
produced have 1 : 1 cardinality [59][119][76]. LSD modularity allowed other systems to be

35

Chapter 3

developed on top of the original system. Such extension examples include Glue [61] and
iMAP [56].

3.5.4 JSONGlue

JSONGlue is a hybrid tool designed by Vitor Marini Blaselbauer and João Marcelo Borov-
ina Josko. This system stood out for being one of the only approaches dedicated specifically
to match JSON sources. The system is made of four modules. The first module is the
normalization module which is divided into three steps. In the first step the JSON files
are imported and any irrelevant characters from the attribute names (extra spaces, stop
words, punctuation etc.) are removed. The second step is the transformation of attribute
names if there is a naming standard convention file available. The third step is respon-
sible for building a disconnected graph composed of the imported schemas’ sub-graphs,
to facilitate the rest of the process. The second module is the linguistic one, which is
responsible for measuring the string similarity between attributes of the schemas that are
being compared. This is done using the Jaro-Winkler similarity described earlier in this
chapter. For each comparison, the algorithm produces an edge with the similarity value,
linking the two compared nodes in the graph. The third module, the semantic module. It
uses WordNet20 to look for the synset with the highest similarity for each pair of nodes.
The similarity is calculated using Wu and Palmer explained in further detail too. Just
like in the linguistic module a new edge is created for each pair in the graph. Finally the
last module is the instance-based, which is divided into three steps. In the first step, the
difference between attributes’ average instance length is calculated. The second one also
calculates a difference but it considers the standard deviation. The last step is responsible
for building histograms for the characters’ frequency and determining the distance between
them. The system’s current iteration does not include automatic threshold determination
nor calculates the combined similarity results. The output is therefore the bipartite graph
of n : m similarities [43].

3.5.5 LEAPME

Developed by Daniel Ayala, Inma Hernandez, David Ruiz and Erhard Rahm, LEArning-
based Property Matching with Embeddings (LEAPME) is a hybrid state of the art system
that uses embeddings to help in the matching process. It supports many sources in an
undefined number of formats, despite the first instance feature extractor working with
JSON. The first step is the extraction of instance features. three hundred and twenty nine
features are computed in this phase, three hundred of which are from the embeddings of
the instances and the other twenty nine for other features such as punctuation, separators,
numerical characters, token frequency etc. with the help of the semantic labelling system
Tapon [33]. Then, the attribute features of the are calculated by averaging the previous in-
stance features and complementing it with the average embeddings vector of the attributes’
names. After that, features for each attribute pair are obtained by calculating the differ-
ence between the vectors of the two attributes that form the pair and another eight features
dedicated to traditional string similarity. The final six hundred and thirty seven features
comprise all of the previous features. After the feature extraction, the vectors are fed into
a machine learning based classifier that will attribute weights and define thresholds auto-
matically. Finally, a knowledge graph is generated based on the classifier results. Since
many sources are supported, the final matches can be n : m. This approach showed to be

20https://wordnet.princeton.edu/

36

https://wordnet.princeton.edu/

State of the Art

effective even with pre-trained word embeddings from other domains, which opens doors
for the future use of transfer learning whenever training data is not available [32].

3.5.6 It’s AI Match

"It’s AI Match", developed by Benjamin Hattaschis, Michael Truong-Ngoc, Andreas Schmidt
and Carsten Binnig, is a composite state of the art tool that aims at finding matches with
embeddings. The inputs are relational tables and it consists of two main steps. The first
phase is dedicated to shorten the search space when finding possible candidate tables. Ta-
ble matching offers three different configurations. A structure based matcher that encodes
table names, and attribute names into vectors. An instance based matcher that utilizes the
instances. Encoding all instances may be very expensive, so a possibility is to choose only
a few instances. Sampling may be done by selecting only the distinct instances, choosing N
random samples, or choosing the most common instances. Besides instance and structural
matching, it is also available a third configuration, which combines the previous two. After
the first phase, there is an optional candidate verification, in which a human operator can
add or remove matches. The second step is attribute matching. The goal is to find the final
matches by comparing candidate attributes, produced in the first step. There are three
matchers available. A name based matcher, that uses embeddings to represent and com-
pare attribute names. An instance based matcher that works with the instances, similarly
to the table’s instance matcher. A third matcher, dedicated to extract information from
comments that might exist in the schema. To the returned matrix a threshold is applied
or several of these matchers’ results can be combined. The output is a set of match results,
1 : 1 or 1 : m. The authors also suggest that this tool is used as a supplement of other
techniques [81].

3.5.7 Smat

Smat, developed by Jing Zhang, Bonggun Shin, Jinho D. Choi and Joyce C Ho, is an indi-
vidual schema-level state of the art approach, that uses deep learning for schema matching.
It consists of four modules. First, the inputs, collumn names and descriptions in relational
tables, are tokenized by a Byte-Pair Encoding (BPE) and embedded into vectors. After
that, Bidirectional Long Short Term Memory (BiLSTM) networks are used to capture
the semantics in the description and names. BiLSTMs have the advantage, compared
to LSTMs, of being able to use previous and future information in a sentence to better
extract its semantics. The third step is the Attention-over-Attention (AOA) mechanism,
which models the correlation between each attribute name and its description. For that, a
pair-wise interaction matrix between attribute name words and description words is first
calculated. Then, a column-wise softmax is applied to the interaction matrix to obtain
the "column name to description" attention and a row-wise softmax followed by a column-
wise averaging is applied so that column name attention is obtained. The final attribute
attention matrix is obtained by computing the scalar product between "column name to
description" attention and the transpose of the inverse column name attention attention
matrix, i.e. a weighted sum of each individual "column name to description" attention.
To predict whether two columns represent the same concept, the attributes’ final atten-
tion matrices are concatenated with the difference between the two max-pooled attribute
description matrices and input into the fourth and final step of the system, which consists
of several fully-connected layers and a softmax layer. The output returned has n : 1 cardi-
nality. It is important to note that data augmentation and Controlled Batch Sample Ratio
(CBSR) were also used to better deal with class imbalance. The fact that Smat does not

37

Chapter 3

work with instances, allows its applicability to scenarios where sensitive data is involved,
such as banking or healthcare [154].

38

State
of

the
A

rt

Approach Input
External
Sources Techniques Cardinality GUI

Cupid hybrid

XML,
relational,
thresholds thesaurus

structural,
constraints,
linguistic,

reuse 1 : 1 No

COMA family composite

XML,
relational,

OWL,
user hints,

match
combination

thesaurus,
previous
mappings
(optional)

structural,
constraints,
linguistic,

reuse 1 : 1 Yes

LSD composite

XML,
match

combination training data

constraints,
linguistic,
instances,

reuse 1 : 1 No

JSONGlue hybrid
JSON,

thresholds

thesaurus,
naming

standards
(optional)

linguistic,
instances,

reuse

n : m
(despite not

processing the
similarities) No

LEAPME hybrid

set of property
instances, JSON
(not confirmed)

training data
(optional)

linguistic,
instances n : m No

It’s AI Match composite

relational,
thresholds,
user hints,

match
combination training data

structural,
instances,

schema information,
reuse

1 : 1,
1 : m No

Smat individual

relational (column
names and

descriptions,
reuse) training data

linguistic,
schema information n : 1 No

Table 3.4: Summary of the systems’ characteristics

39

Chapter 3

3.6 Conclusion

Schema/ontology matching first appeared associated with data integration and specific use
cases. Although it still often appears associated with other integration tasks, schema/ontol-
ogy matching gained importance, due to an increment in heterogeneous sources that need
to be integrated, and now occupies more space as an independent and context decoupled
research field.

This chapter introduced and described some of the techniques used in the schema/ontology
matching process, following the core of Rahm and Bernstein’s suggested taxonomy [119].
The techniques which support attribute correspondence, are imported, most of the times,
from other scientific areas, including NLP and graph theory.

Matchers can be based on one single technique or may combine different techniques. Most
systems implement combined matchers, because it allows them to explore different char-
acteristics of the schema/ontology and, therefore, producing better results.

Although new advanced machine learning approaches to extract similarities, set automatic
thresholds and weights have emerged, classic techniques are still very popular. Moreover,
the seek for new generic systems seem to have slowed its pace over the last decade. The
bibliographic review presented in this chapter also demonstrates lack of systems working
with JSON format sources.

With all this in mind the next chapters propose and discuss the planning, requirements,
architecture, implementation and testing of a solution for integrating data arriving Ubi-
where’s UBP.

40

Chapter 4

Planning and Methodology

The good outlining of a project is key to its success. Project goals serve as reference during
implementation, avoiding wastes of time, budget overruns and the identification of possible
obstacles contributes to risk mitigation early on.

This chapter is focused on describing the methodology for this dissertation, as well as
presenting the planning for all phases of execution. Firstly, the methodology chosen for
this project is described. Then, the planning is presented, split into two different parts,
corresponding to the two semesters of the year. The definition of success criteria and
management of risks identified in preliminary studies end this chapter.

4.1 Process Management

During the course of this project, an Agile-based methodology was adopted. Agile is an
iterative software engineering technique, in which requirements are divided into modules
for an adaptive development [133]. Contrary to Waterfall methodology, Agile processes
require less planning, avoiding micromanagement and providing more flexibility to the
project. These characteristics benefit collaboration with the advisors, since there were
scheduled weekly meetings with the project manager and a monthly meeting with both
advisors to sum up everything done in that particular month. In these meetings the work
done was discussed, and the next steps shaped around that. This keeps the project under
control without ever curbing the intern’s autonomous work.

Product Owner: Ubiwhere (represented by Ricardo Vitorino)

Project Manager: João Garcia

Developer: Jaime Marques

For the organization of this project GitLab1 was chosen as the main tool. Not only does it
offer a wide range of tools, from version control to a Kanban table for better visualization
of the tasks, but it was also used for previous implementations of the UBP, which is an
advantage when adding features to the platform. Furthermore, the time spent every week,
was recorded on Easy Redmine2, a solution for project management used by Ubiwhere to
evaluate project costs.

1https://gitlab.com
2https://ubiwhere.easyredmine.com

41

https://gitlab.com
https://ubiwhere.easyredmine.com

Chapter 4

4.2 Planning

The internship comprises two main phases organized in two semesters. This section
presents the planning for both semesters, what aspects are approached first and at what
time. There is a lot of debate around whether Gantt diagrams should be used or not in
Agile-inspired methodologies [144][143], since they are very rigid and need constant up-
dates. Nevertheless, it is safe to say that Gantt diagrams are used by many companies as
they can be a great addition to the project from a software engineering standpoint. So, in
this intermediate planning document a Gantt will be used to illustrate the past semester
and the tasks for the second one will be displayed in a Kanban table.

4.2.1 First Semester

The first semester started in September 2021 and ended in February 2022. The tasks are
summarized in Figure 4.1.

Intermediate Report: This set of tasks corresponds to all sub tasks related to the
intermediate report. Firstly a draft of the report was made so that a structure was
previously defined and agreed on. Eventually, the reported was written and delivered
on 24th January 2021. After that, the presentation to the jury was prepared.

Project Management: The planning was part of a first iteration of work. Risk
Assessment and management were present as the problem became well known and
the obstacles for the project became clearer.

Research: Research represented the majority of the work developed in the first
semester. The problem to be solved was initially identified and the literature review
was done around that.

Figure 4.1: Gantt diagram of the first semester

4.2.2 Second Semester

For the second semester, the workload corresponds to the specification of the requirements,
development and testing of the solution, as well as writing the final report. The tasks are
condensed in a Kanban-style table on the GitLab project created earlier. Kanban tables

42

Planning and Methodology

are a great way to display and group different tasks, make changes to them as the project
progresses, but also keeping estimates and deadlines. The following table (Table 4.1)
reproduces the Gitlab board for a better visualization of the tasks. As the project advances
and different challenges arise, new sub tasks will probably be added. This flexibility is one
of the biggest advantages of using a Kanban table and it was the main reason why it was
chosen for the second semester over other planning methods like Gantt charts.

Task To Do Doing Done
Category Description Deadline

Report Review Planning document Mar 1 X
Report Review Organize sections Jul 15 X
Report Review Improve SoA conclusion Jul 15 X

Report Review

Explain how schema
matching helps mitigate

some of Semantic Web’s issues Jul 15 X
Report Review Math correction Jul 15 X
Report Review Add new techniques Jul 15 X

Preparation
Study UBP models

and importers Feb 20 X
Preparation Find test datasets Feb 25 X

Preparation

Decide how to test
the solution.

thresholds and the
metrics to be used. Feb 25 X

Preparation

Analyze the datasets
and decide the

techniques that will
be implemented Mar 4 X

Documentation Write the requirements Mar 10 X
Documentation Draw the architecture diagram Mar 15 X
Development Importing and pre processing Mar 30 X

Development
Calculation of

similarity values (matchers) Apr 30 X
Development Combination of results May 15 X
Development Final mapping Jun 15 X
Development Test the solution Jul 1 X

Final Report
Write the

final document Aug 1 X

Final Report
Review of the
final document Sep 1 X

Final Report
Preparation for the
final presentation Sep 5 X

Table 4.1: Reproduction of the task table (March 2022)

The tasks were grouped in five main categories to help organize them.

Report Review: Tasks related to the report review include initial corrections based
on the jury’s feedback. This planning document is also included.

Preparation: Preparation tasks including final studies of the platform and tech-
niques in order to decide which solution is going to be developed.

Documentation: Elaboration of support documentation for development.

43

Chapter 4

Development: Development is the most important group of activities. This group
of tasks aims at implement the requirements written earlier. Testing is also present,
since the solution needs somehow to be validated.

Final Report: Final Report is the group responsible for all activities related to the
composition of the final document and presentation to be delivery to the jury.

4.3 Success Criteria

The Success criteria is the agreement with Ubiwhere to ensure all guidelines are respected.
To assess the success of this project, the following criteria were established:

• The specified requirements and architecture are approved by Ubiwhere.

• A minimal set of functionalities, also approved by Ubiwhere, marked as "Must Have"
has to be implemented and tested.

• The final product must fulfill the functional requirements and quality attributes
defined.

4.4 Risk Assessment and Management

There is a line separating a successful project from a failure. That line is embodied by a
minimum set of conditions that must be met so that the project is considered a success, the
Threshold of Success (ToS) [8]. ToS pictures, not only what is a successful project, but also
what does not represent the success of a project, its failure, as a strategy to achieve good
results. Those potential failure scenarios are risks. There are a lot of definitions of risk,
but maybe the most common one defines risk as the probability times impact [157]. This
rather simplistic definition has the advantage of attributing a number to risks, allowing
us to sort them. The risks can then be displayed on a risk matrix, where the x-axis is
the impact and y-axis the probability. Depending on the level of granularity one wants
to achieve, these scales should be divided into different zones. In this case, both impact
and probability are only separated into three levels, because it is simpler and there are
not that many risks to justify sharper differences between them. For impact the levels are
Low Impact (marked as 1), Medium Impact (marked as 2) and High Impact (marked as
3). For probability we have Low Probability (marked as 1), if the probability is less than
40%, Medium (marked as 2) when between 40% and 70%, and High (marked as 3) if it is
above 70%. Risk assessment for this project is showed in Table 4.2 and Figure 4.2.

Another table was created for the mitigation strategies (Table 4.3). Mitigation plans help
reduce the impact of a risk before it is too late.

When planning a project, having a global view of what will be done, how and when is
important and provides valuable hints for what parts will require special attention. The
planning divided this project in two semesters. Identification of the risks and possible
mitigation strategies were made after that and made clear what challenges will possibly
appear and what can be done to overcome them and maximize the chances of project
success.

44

Planning and Methodology

ID Risk Probability Impact
R1 Lack of experience using technologies involved in this project. 3 2
R2 A task exceeds the time expected for its completion. 2 2
R3 Forced modifications in requirements and architecture. 2 3
R4 Schedule and workload conflicts with other university courses. 2 2
R5 COVID-19 pandemic restrictions. 2 1
R6 Not enough datasets to train/validate/test the solution. 3 1
R7 Too complex cases. 3 2
R8 One matcher does not work as expected. 2 2
R9 Not enough computational resources available. 2 2

Table 4.2: Risk assessment

Figure 4.2: Risk Matrix

ID Mitigation Plan

R1
More time should be allocated for learning the

technologies necessary for the project.

R2
The delays have to be reported to the advisors, so that the task

is reassessed and, if necessary, new priorities are established.

R3
Reevaluation of the requirements to keep the

attention on those that really have high priority.
R4 Explain the situation to professors and negotiate alternatives.
R5 Alternative communication model agreed between the intern and the advisors.

R6

Avoid techniques that require a lot of
training data such as machine learning techniques.

Create new test cases manually.

R7

Limit the matching to a specific domain
such as parking occupancy. Pre process

the data in favour of an easier matching process.
R8 Consider at least one backup matching technique for every category implemented.
R9 Avoid computationally expensive techniques, opting for traditional ones.

Table 4.3: Risk management

45

This page is intentionally left blank.

Chapter 5

Requirements Specification and
Architectural Decisions

Before the implementation it is important to gather and specify the requirements from the
client. Requirements help the team to fully comprehend the problem, so that priorities are
set in a pragmatic way, risks mitigated, and misconceptions avoided. It is also important
to mention that requirements help managing expectations, as they represent a negotiation
with the stakeholders. Therefore, to ensure high quality software, it is imperative that the
specification of these requirements is unambiguous. Architecture definition is what comes
after and it looks for the best system configuration that meets all the requirements.

This chapter specifies the requirements gathered from stakeholders, then presents the ar-
chitecture of the solution, and later on it enumerates the technologies selected to implement
the solution.

5.1 Scope and Stakeholders

As mentioned in the first chapter, this work is about integrating new data sources into
UBP’s data models automatically, without interfering too much with the system’s pipeline.
Hence, it was necessary to create a component that would fit the space occupied by manual
conversion (after data import and before the entity mapping). To achieve such goals, it
was decided to approach the subject as a schema matching problem.

Regarding the stakeholders involved, Ubiwhere was the only collaborator on this project.
The company’s role was to provide important feedback, always indicating the direction
wanted for this project. The final result should be a relevant piece of software that meets
the requirements previously established.

5.2 Functional Requirements

Functional requirements represent the necessities a software needs to fulfil through its
operations and services. In addition to their definition, it is necessary to characterize them
according to their priority degrees. For this, techniques such as the MoSCoW method
can be used [10]. MoSCoW consists of assigning one of four levels to each attribute. The
different levels are presented below.

47

Chapter 5

Must Have (M): The requirements marked as Must Have must be present in the
final solution. They represent the top priority and they are critical for the project’s
success.

Should Have (S): Should Have requirements represent a medium priority, as they
are important and have some degree of urgency. However, the project’s success is
not entirely dependent on them.

Could Have (C): Could Have requirements are great additions to the project, but
their implementation is not urgent. They represent a low priority.

Won’t Have (W): This set of requirements represent a minimal level of priority.
Won’t Have requirements will not be implemented, although it could be developed
in future iterations.

The functional requirements and their respective priorities can be found in Table 5.1.

ID Functional Requirement Priority
Source Handling

FR1 Import JSON files. (M)
FR2 Import CSV files. (S)
FR3 Import XML files. (C)
FR4 Extract sensor file schema. (M)
FR5 Extract database schema. (M)

Matching Process
FR6 Automatically select the set of tables in the database to match a file. (W)
FR7 Match a file to a pre-selected group of tables. (M)
FR8 Compute linguistic similarities. (M)
FR9 Compute semantic similarities. (M)
FR10 Compute data type similarities. (S)
FR11 Compute similarities through external sources of knowledge. (S)
FR12 Compute phonetic similarities. (C)
FR13 Compute structural similarities. (C)

Result Combination and Verdict
FR14 Combine the results from the matchers. (M)
FR15 Extract 1 : 1 mappings. (M)
FR16 Extract n : 1 mappings. (S)
FR17 Extract n : m mappings. (C)
FR18 Export mappings. (M)

Statistics
FR19 Show total run-time. (M)
FR20 Show run-time for each task. (S)
FR21 Show precision, recall and f1-score percentages. (M)

Table 5.1: Functional requirements

48

Requirements Specification and Architectural Decisions

5.3 Non-Functional Requirements

Non-functional requirements are quality attributes that complement the functionality of
the system, specifying how the system must behave in certain scenarios. They indicate
how well the system satisfies the stakeholders’ needs [138].

The following subsections detail the non-functional requirements for this project. Similarly
to functional requirements, one can rank non-functional requirements. Their priorities can
be found in Table 5.2

ID Non-Functional Requirement Priority
NFR1 Maintainability (M)
NFR2 Performance (S)

Table 5.2: Non-functional requirements

5.3.1 Maintainability

Maintenance is a reality for all systems. Either because new requirements need to be
met, or due to the necessity of replacing a faulty piece. Good maintenance is key to a
product’s longevity, so, the easier it is to maintain it, the better. Maintainability is a way
of characterizing how easy is to perform maintenance on a system component. It can be
expressed into more specific requirements such as modularity and modifiability, which have
a notable applicability in this project [80].

Modularity: Modularity translates into the ability of dividing the system into
smaller components in a way that they can operate independently, completing part
of a bigger task. For this specific project, modularity is particularly relevant, not
only to facilitate the system building and its reconfiguration, but also to help testing
subsystems individually.

Modifiability: Modifiability is the capacity of a system to be modified without
introducing bugs or reducing the software quality. Since this project is the first itera-
tion of a data model conversion system, it is important to establish good foundations
to support future changes and additions.

Maintanability scenarios can be found in Tables 5.3 and 5.4.

Source of Stimulus Developer
Stimulus Developer wants to add a new module to the system.

Environment Development
Artifact Source code.
Response The addition does not cause any side effects on the system.

Response Measure The addition takes less than twenty minutes.

Table 5.3: Maintainability scenario (addition)

5.3.2 Performance

Performance quantifies the amount of resources used to execute the program under various
circumstances [138]. Resources may include time, memory, CPU usage etc. It was defined

49

Chapter 5

Source of Stimulus Developer
Stimulus Developer wants to replace a module.

Environment Development
Artifact Component’s source code.
Response The substitution does not cause any side effects on the system.

Response Measure The substitution takes less than five minutes.

Table 5.4: Maintainability scenario (substitution)

that the performance of the developed system would be measured as the run-time. The
defined threshold for the execution time is given by the time an average Ubiwhere’s em-
ployee takes to complete the manual integration. The performance scenario is showed in
Table 5.5.

Source of Stimulus Airflow DAG.
Stimulus New source import.

Environment Normal conditions.
Artifact System
Response The system returns the mapping.

Response Measure The system takes less than five minutes to return the mapping.

Table 5.5: Performance scenario

5.4 Restrictions

Ubiwhere imposed restrictions with respect to software and data during development and
testing. Any software used for this project had to be open-source. In addition, all real
data used to test the solution, needed to be open-source or already Ubiwhere’s property,
instead. Such restrictions were purely due to business reasons, since Ubiwhere wanted to
reduce the investment in development as much as possible. Furthermore, the company
wanted to avoid relying on vendors’ licences and policies.

5.5 Architecture

Software architecture is a continuous development process throughout the project that aims
at finding the best system organization in order to meet the requirements established. It
should also describe the relationships between the different parts.

As mentioned several times across this document, the purpose of the automatic matching
system is to replace a traditional manual conversion. The manual conversion is part of
UBP’s Airflow component, which is responsible for importing and mapping the sources,
as explained in section 2.1 and depicted in Figure 2.1. Figures 5.1 and 5.2 denote the
differences between the two approaches. In the classic way, each DAG has an import
function, a function to map the arriving files to UBP’s data models, and a sender, which
forwards the data to the next phase. On the other hand, the new approach resorts to
the same mapping system for every DAG, contributing to a quicker and easier integration
of new sources, represented by new DAGs. It is important to point out that in the new
configuration the automatic converter runs just once for every new file source, so that, if

50

Requirements Specification and Architectural Decisions

a new file from the same source arrives, the mapping previously determined and stored in
cache is returned immediately, without the necessity of matching the data models again.

Figure 5.1: Traditional Airflow configuration

Figure 5.2: New Airflow configuration proposal

General architecture can be seen in Figure 5.3. Arrows represent data flows. An overview
of each module’s inputs and outputs is pictured in Figure 5.4. Given the complexity and
requirements of the project, the automatic converter system was built of several modules.
Each module is in charge of a specific phase of the pipeline. The modules are Schema
Module, Normalization Module, Candidate Selection Module, Parallel Matching Module,
Mapping Module and Statistics Module. Further details on them will be given in the
following subsections.

51

C
hapter

5

Figure 5.3: General architecture of the automatic converter

52

R
equirem

ents
Specification

and
A

rchitecturalD
ecisions

Figure 5.4: Inputs and outputs overview53

Chapter 5

5.5.1 Schema Module

Schema Module is the first module of the pipeline. It is responsible for handling the
imported files, extracting the schemas and converting them into a common internal tree
format, which allows easy access to attributes and grants the permanence of each source’s
structure. This module’s architecture can be fount in Figure 5.5 and it is composed of
three smaller components, each one responsible for treating a different input format. Table
Extractor picks the tables in the database, Attribute Extractors and Column Extractor
obtain the attribute names, Data Types Extractors verify the data type of a given attribute,
Relationship Extractors check if an attribute has descendants and Graph Builders build
the graph, encoding all the previously obtained information into nodes and edges. This
module receives raw files from city sensors as input and outputs a common graph structured
representation of these sources.

Figure 5.5: Schema Module architecture

5.5.2 Normalization Module

Normalization Module is an complementary component composed of several normalization
functions, pictured in Figure 5.6, useful in the several stages of the system. These functions
treat the attributes input, returning the normalized strings, before other modules perform
operations on them.

54

Requirements Specification and Architectural Decisions

Figure 5.6: Normalization Module architecture

5.5.3 Candidate Selection Module

After the parsing of the sources, Candidate Selection Module extracts all paths, from the
root node to the leaves of the graphs, and computes a similarity based on the embeddings
of the paths. From these similarities, the most similar pairs are appointed as possible
match candidates. An internal dictionary formed with specific scientific terminologies
also extracts direct matches. The module returns direct matches and a list of candidate
pairs, that are going to be analyzed in the following stages. Candidate Selection Module
architecture is schematized in Figure 5.7.

Figure 5.7: Candidate Selection Module architecture

5.5.4 Parallel Matching Module

Seen in Figure 5.8, Parallel Matching Module is composed of smaller modules that compute
different similarities in parallel, exploring different features of the schemas. This module
includes a string matcher, a token matcher, a matcher based on external information and a
type matcher, but the idea is that new matchers can easily be added to the set of existing

55

Chapter 5

ones. Candidate paths determined before are loaded and a similarity cube, shaped from
every matcher’s similarity matrices, is sent to the next phase.

Figure 5.8: Parallel Matching Module architecture

5.5.5 Mapping Module

Mapping Module combines the results of the parallel matchers in a single matrix, gives the
verdict and returns the final mappings between attributes of the new source and UBP’s
database attributes. The module diagram is shown in Figure 5.9.

Figure 5.9: Mapping Module architecture

5.5.6 Statistics Module

Statistics Module is an auxiliary module whose job is to calculate statistics and display
plots. This module can be used throughout the system to easily analyze the performance
the different modules and help in the validation of the system. The architecture is repre-
sented in Figure 5.10.

56

Requirements Specification and Architectural Decisions

Figure 5.10: Statistics Module architecture

5.6 Technologies

The technologies chosen for the development of this project were primarily based on the
ones already used in UBP and by Ubiwhere, in general, because it would facilitate the inte-
gration of the developed system and Ubiwhere’s employees could perform changes without
major difficulties. Each technology had to meet the set of features needed to implement
the project’s list of functionalities. Besides that, the popularity of the technology and the
documentation available, heavy influenced the choices. Finally, despite not being many,
restrictions were taken into account too, so that all technologies adopted were open-source.

Python was the language chosen for the development of the project, mainly because it was
the language in which the UBP was coded, but also because it is familiar to most developers,
specially at Ubiwhere. Regarding libraries, Python offers a variety of well-stocked tools,
ideal for expedite the project development.

5.6.1 Schema Module

For the Schema Module, one imperative library is the NetworkX1 library, which provides
a set of functions to easily build and represent graph-like structures. It was released in
2008 [75], but it has since been updated multiple times, being one of the most, if not
the most, well documented open-source library for building graphs. Thus it was utilized
to convert the sources to be matched into tree structures. Among other libraries chosen
for this module are psycopg2 2, the PostgreSQL database adapter used to query tables’
information; json3 and csv4, two libraries for handling JSON and CSV files, respectively;
datetime5 and dateutil6, used to parse date and time attribute data types.

1https://networkx.org/documentation/stable/index.html
2https://www.psycopg.org
3https://docs.python.org/3/library/json.html
4https://docs.python.org/3/library/csv.html
5https://docs.python.org/3/library/datetime.html
6https://dateutil.readthedocs.io/en/stable/

57

https://networkx.org/documentation/stable/index.html
https://www.psycopg.org
https://docs.python.org/3/library/json.html
https://docs.python.org/3/library/csv.html
https://docs.python.org/3/library/datetime.html
https://dateutil.readthedocs.io/en/stable/

Chapter 5

5.6.2 Normalization Module

Normalization Module, as explained before, is a module with a set of functions to normalize
strings. Therefore, the modules used in this component are unicodedata7, to help treat
special characters; re8 to build regular expressions that remove unecessary parts of strings;
NLTK9, a kit with lots of tools to process text, including stemmers, lemmatizers, tokenizers
etc.; googletrans10, a free version of Google Translate API. All these libraries are free to
use, well documented, well maintained, with the exception of googletrans, and NLTK even
has an active discussion forum.

5.6.3 Candidate Selection Module

Just like Schema Module, Candidate Selection Module uses NetworkX to be able to process
the schemas in a tree format and json to interpret the internal dictionary. To build the
similarity matrix, numpy11 library was the choice, since it is open-source and well known
for its performance when manipulating large arrays. For calculating the similarities, the
choices were SentenceTransformers12, a framework for text and image embeddings, which
offers a large variety of free pre-trained models; scikit-learn13, a large open-source machine
learning library that implements lots of functions including metrics like the cosine similarity
used in this module.

5.6.4 Parallel Matching Module

Parallel Matching Module runs several matchers at the same time. For that, it was decided
that multiprocessing14 library was preferred over threading, because it allows the functions
to run concurrently, bypassing the Global Interpreter Lock (GIL) [108]. Once again, to
build similarity matrices, numpy was chosen and NLTK was used as well but this time to
access WordNet. To compute edit distances pyjarowinkler15 and Levenshtein16 extensions
were chosen.

5.6.5 Mapping Module

Mapping Module combines all the similarity matrices, so the only library needed for this
module is numpy.

7https://docs.python.org/3/library/unicodedata.html
8https://docs.python.org/3/library/re.html
9https://www.nltk.org

10https://pypi.org/project/googletrans/
11https://numpy.org
12https://www.sbert.net
13https://scikit-learn.org/stable/index.html
14https://docs.python.org/3/library/multiprocessing.html
15https://pypi.org/project/pyjarowinkler/
16https://pypi.org/project/Levenshtein/

58

https://docs.python.org/3/library/unicodedata.html
https://docs.python.org/3/library/re.html
https://www.nltk.org
https://pypi.org/project/googletrans/
https://numpy.org
https://www.sbert.net
https://scikit-learn.org/stable/index.html
https://docs.python.org/3/library/multiprocessing.html
https://pypi.org/project/pyjarowinkler/
https://pypi.org/project/Levenshtein/

Requirements Specification and Architectural Decisions

5.6.6 Statistics Module

Statistics Module utilizes json to read mapping files and numpy to work with the similarity
matrices. Regarding visualization, pydot17 and Graphviz 18 help building the graph struc-
ture of the sources to be matched. Additionally, the libraries seaborn19 and matplotlib20

were employed to help plotting the similarity matrices in a more readable and pleasant
way.

5.7 Conclusion

This chapter enumerated the functional and non-functional requirements agreed with the
stakeholders, ranked by levels of priority, according to their importance for the project.
They dictate what is going to be done and, together with the restrictions, they help shaping
the architecture. Lastly, the general architecture was presented. All architectural and
technological decisions were described and duly justified.

Next chapter guides the reader through the process of implementation, showing step-by-
step how the different algorithms accomplish their purpose.

17https://pypi.org/project/pydot/
18https://graphviz.org
19https://seaborn.pydata.org
20https://matplotlib.org

59

https://pypi.org/project/pydot/
https://graphviz.org
https://seaborn.pydata.org
https://matplotlib.org

This page is intentionally left blank.

Chapter 6

Implementation

Implementation constitutes the development of a solution that materializes the architecture
and, subsequently, meets the requirements previously gathered and specified.

This chapter presents the steps followed during the implementation of this project, accom-
panied by an explanation of the modules’ technicalities and algorithms at a lower level.

6.1 Environment

Before writing any code it is unavoidable having to set up the development environment.
As mentioned already in chapter 4, GitLab was the organizational platform and version
control tool adopted. A new repository was created just to accommodate this project.
During the implementation, updates would be pushed to a development branch.

Together with the cloned repository, a virtual environment was configured on the develop-
ment computer. A virtual environment helps isolating different projects’ dependencies and
it can be conveniently created using python libraries like virtualenv1 or venv2. On this
environment, all the basic dependencies to run UBP’s Airflow importers were installed,
along with the libraries needed for the system that was being implemented.

The modules were organized in distinct python scripts. Moreover, inside the project folder
there is even a separate folder with test datasets and their respective mappings. The
database was reproduced using a dump of the UBP’s database, supplied by Ubiwhere.

It was decided that it made sense developing this project in a separate environment from
the rest of the UBP to accelerate the set up of the environment and simplify the testing. On
top of that, detaching the system development from the already working UBP, promoted
the creation of a modular solution that does not depend too much on the application
context.

6.2 Functionalities

The majority of the functionalities were implemented, as it can be seen in Table 6.1, which
condenses the functional requirements and their status at the time of this report.

1https://virtualenv.pypa.io/en/latest/
2https://docs.python.org/3/library/venv.html

61

https://virtualenv.pypa.io/en/latest/
https://docs.python.org/3/library/venv.html

Chapter 6

ID Functional Requirement Status
Source Handling

FR1 Import JSON files. Complete
FR2 Import CSV files. Complete
FR3 Import XML files. Lacking
FR4 Extract sensor file schema. Complete
FR5 Extract database schema. Complete

Matching Process
FR6 Automatically select the set of tables in the database to match a file. Lacking
FR7 Match a file to a pre-selected group of tables. Complete
FR8 Compute linguistic similarities. Complete
FR9 Compute semantic similarities. Complete
FR10 Compute data type similarities. Complete
FR11 Compute similarities through external sources of knowledge. Complete
FR12 Compute phonetic similarities. Lacking
FR13 Compute structural similarities. Lacking

Result Combination and Verdict
FR14 Combine the results from the matchers. Complete
FR15 Extract 1 : 1 mappings. Complete
FR16 Extract n : 1 mappings. Complete
FR17 Extract n : m mappings. Lacking
FR18 Export mappings. Complete

Statistics
FR19 Show total run-time. Complete
FR20 Show run-time for each task. Complete
FR21 Show precision, recall and f1-score percentages. Complete

Table 6.1: Status of functional requirements

Given the exploratory nature of the development, very much based on the testing and
analysis of the results, some algorithms suffered changes over the course of this project.
Although there is still room for improvements, it is important to emphasize that this
version of the system carries the basic functionalities of a system of this kind , represented
by high priority functional requirements (Table 5.1). These functionalities are enumerated
and clarified in the next subsections.

6.2.1 Schema Module

Schema Module is the first module of the pipeline and its functions correspond to the first
stages of the matching process. Three smaller components form this module and each one
has the role of dealing with one file format. They are JSON Reader, CSV Reader and
Database Reader. The returned graphs display a structure similar to the one in Figure 6.4.

62

Implementation

JSON Reader

Most sources provide their data in JSON format. JSON is a semi-structured file format,
which means it does have not follow a strict schema. Its flexibility made JSON a popular
format for exchanging information in APIs and web applications over the last decade [128].
Hence, being able to handle JSON files was indispensable for this project.

After fetching the source file, to extract its structure a function graphBuilder is called (see
Algorithm 1). This function recursively builds the graph that represents the structure of
the file. It starts by checking if the value of an attribute is a dictionary or a list. If it is a
list, it means that either the value is an instance 6.1 or another structure has been reached
6.2.
1 {
2 "attribute_A ": [" value1", "value2", "valueN "]
3 }

Listing 6.1: JSON instance inside a list

1 {
2 "attribute_A ":
3 [
4 {
5 "attribute_Aa ": "value1",
6 "attribute_Ab ": "value1",
7 },
8 {
9 "attribute_Aa ": "value2",

10 "attribute_Ab ": "value2",
11 },
12]
13 }

Listing 6.2: JSON structure inside a list

On the contrary, if a dictionary is spotted, it is a sign that the end attribute has not been
reached yet 6.3, so the new node is added and the function is called again to crawl over
the value of that attribute.
1 {
2 "attribute_A ": {
3 "attribute_B ": {
4 attribute_C: "value1"
5 }
6 }
7 }

Listing 6.3: JSON attribute of and attribute

Together with the attribute name, a property stating the attribute’s type is added. Some-
times, various data types come encapsulated in strings, which hinders the correct corre-
spondence to UBP’s database columns. For that, a group of functions specializes in finding
the real data type of that attribute. These functions evaluate whether the value is really
a string or if can be represented as an integer, decimal or even date.

63

Chapter 6

Algorithm 1 JSON reader
function jsonReader(source_name)

root← source_name
data← fetchSource(root)
G← DAG(root)
G← graphBuilder(G, root, data)
return G

end function

function graphBuilder(G, parent, data)
if data is a list then

graphBuilder(G, root, data[0])
else if data is a dictionary then

for k in data do
type← checkType(data[k])
G← addNode(G, k, type)
G← addEdge(G, parent, k)
graphBuilder(G, k, data[k])

end for
end if
return G

end function

CSV Reader

This is the simplest component of the Schema Module. The file is opened, the attribute
names present in the header are extracted and a sample of the instances is analyzed to
verify what is the data type. To ascertain the types, the same set of functions used in
JSON Reader is called. Algorithm 2 shows the pseudo-code that builds the graph, whose
nodes are named as column names and data types are stored in node too.

Database Reader

Algorithms 3 and 4 show the steps to build the database schema. In dbReader the con-
nection with the database is established and the graph is initialized. After that, all the
table names are queried and stored (Listing 6.4). This list is important to keep track of
what tables’ structures have already been analyzed. Function buildTable is responsible for
building the schema. For a given table, it queries the column names and all foreign keys
with the help of queryTableInfo. The queries used for this can be found in Listings 6.5 and
6.6. Then, the column nodes are added to the graph and in case of existing foreign keys,
the program checks if the referenced tables have already been traversed and, consequently,
if their structure is already part of the schema. If that is the case, the program simply
checks what is the column which is being referenced, by calling checkRefCol, and adds a
new edge to it. If not, it builds the referenced table before adding the new edge.

64

Implementation

Algorithm 2 CSV reader
function csvReader(source_name)

root← source_name
data← fetchSource(root)
G← DAG(root)
G← graphBuilder(G, root, data)
return G

end function

function graphBuilder(G, data)
header ← readLine(data)
count← 0
for c in header do

type← checkType(readLine(data)[count])
G← addNode(G, c, type)
G← addEdge(G, root, c)
count← count+ 1

end for
return G

end function

1 SELECT table_name
2 FROM information_schema.tables
3 WHERE table_schema = ’<schema_name >’;

Listing 6.4: Query to get all table names

1 SELECT *
2 FROM information_schema.columns
3 WHERE table_schema = ’<schema_name >’ AND table_name = ’<table_name >’;

Listing 6.5: Query to get columns’ information

1 SELECT
2 from_table.table_name AS from_table ,
3 from_column.column_name AS from_column ,
4 to_table.table_name AS to_table ,
5 to_table.column_name AS to_column
6 FROM information_schema.table_constraints AS from_table
7 JOIN information_schema.constraint_column_usage AS to_table
8 ON to_table.constraint_name = from_table.constraint_name AND

to_table.table_schema = from_table.table_schema
9 JOIN information_schema.key_column_usage AS from_column

10 ON from_column.constraint_name = from_table.constraint_name AND
from_column.table_schema = from_table.table_schema

11 WHERE from_table.constraint_type = ’FOREIGN KEY’ AND from_table.
table_name=’<table_name >’ AND from_table.table_schema = ’<schema_name
>’;

Listing 6.6: Query to get foreign keys

65

Chapter 6

Algorithm 3 Database reader
function dbReader

G← DAG()
try

connection← dbConnection()
tables← queryTableNames()
for table in tables do

G, tables← buildTable(G, tables, table)
end for

catch Exception
finally

if connection then
closeConnection(connection)
return G

end if
end try

end function

function buildTable(G, tables, table)
columns, fks← queryTableInfo(table)
for c in columns do

type← c[1] ▷ c[0] is the column’s name and c[1] its data type
G← addNode(G, c[0], type)
G← addEdge(G, table, c[0])
for fk in fks do

if fk[1] = c[0] then ▷ f[1] is the name of the origin table and f[2] is the
referenced table

ref_table← fk[2]
if ref_table in tables then

buildTable(G, tables, ref_table)
end if
ref_col← checkRefCol(G, fk[3], ref_table) ▷ fk[3] is the referenced

column
G← addEdge(G, ref_col, c[0])

end if
end for

end for
tables.remove(table)
return G, tables

end function

66

Implementation

Algorithm 4 Database reader (auxiliary functions)

function queryTableInfo(table)
cols← queryColumns()
fks← queryFKs()
columns←[]
for c in cols do ▷ c[3] is the column name and c[27] its data type

columns.insert([c[3], c[27]])
end for
return columns

end function

function checkRefCol(G, item, root)
for node in G.successors(root) do

if item in node then
return node

end if
end for

end function

6.2.2 Normalization Module

Normalization Module comprises three normalization functions. The simpleNormalization,
Algorithm 5, is actually the basis of the other functions. It starts by removing the accents.
The accents can mislead a matcher especially when working with Romance languages.
Then, special characters, such as punctuation and digits, are removed, followed by the
replacement of underscores (used in Snake case) and Camel cases by a white space. Af-
terwards, the word is converted to lowercase. It finishes by striping the extra spaces that
might be on the edges or in the middle of the string. As explained in the last chapter, li-
braries like re and unicodedata support this process. Some examples of inputs and outputs
can be found bellow in Table 6.2.

Input Output
parkingSpot parking spot

sCheDúle! schedule

Address01 address

Street Name street name

Table 6.2: simpleNormalization input and output examples

Algorithm 5 Simple normalization
function simpleNormalization(word)

norm_word← removeAccents(word)
norm_word← removeSpecialChars(norm_word)
norm_word← replaceCamelSnake(norm_word, ’ ’)
norm_word← toLower(norm_word)
norm_word← stripWord(norm_word)
return norm_word

end function

The second algorithm is a simpleNormalization at its core but instead it identifies in which

67

Chapter 6

language the word/expression is written and, if it is not in English, it tries to translate the
word/expression, as it can be seen in Algorithm 6.

Algorithm 6 Normalization with translation
function transNormalization(word)

norm_word← simpleNormalization(word)
lang ← getLanguage(norm_word)
if lang != ’en’ then

norm_word← translateWord(norm_word, ′en′)
end if
return norm_word

end function

Finally, the third function, does everything the others do, but also lemmatizes the word.
Different verb conjugations like feet, foot are graphically different, but have the same
lemma, foot, which may help identifying similar concepts. Once again, the algorithm can
be found in Algorithm 7 and examples of inputs and outputs can be observed in Table 6.3.

Algorithm 7 Normalization with translation and lemmatization
function transLemNormalization(word)

norm_word← transNormalization(norm_word)
norm_word← split(norm_word, ’ ’)
result← ′′

count← 0
for w in norm_word do

if count != 0 then
result← result+ ’ ’

end if
w ← lemmatize(w)
result← result+ w
count← count+ 1

end for
return result

end function

Input Output
parkingSpots parking spot

Ruas_? street

Corpora01 corpus

Table 6.3: transLemNormalization input and output examples

6.2.3 Candidate Selection Module

Candidate Selection Module selects obvious matches and the pairs that have higher chances
of being matches. Its steps are shown in Algorithm 8. The first step is to get all the paths
from the root to the leaves (Algorithms 9 and 10). This way, it is possible to encode all
the information of each branch, represented by the leaf attribute.

Earlier matches are the direct correspondences between attributes (Algorithm 11). These
matches do not constitute any kind of ambiguity and are mostly associated with certain

68

Implementation

acronyms that represent specific measures, such as concentrations and air quality indices.
These matches are kept in an internal dictionary (Listing 6.7).

1 {
2 {
3 "Chemistry ":{
4 "CO": [" carbon monoxide", "monoxido de carbono", "monoxyde de

carbone"],
5 "CO2": [" carbon dioxide", "dioxido de carbono", "anidrido

carbonico", "dioxyde de carbone", "gaz carbonique", "anhydride
carbonique "],

6 "H2O": ["water", "agua", "agua", "eau"],
7 "NO": [" nitric oxide", "oxido nitrico", "monoxido de nitrogenio",

"monoxido de azoto", "oxyde azotique", "oxyde nitrique"],
8 "NO2": [" nitrogen dioxide", "dioxido de nitrogenio", "dioxido de

azoto", "dioxido de nitrogeno", "dioxyde dazote "]
9 },

10 "Ecology ":{
11 "AQI": ["air quality index", "indice de qualidade do ar"],
12 "PM2 .5": ["pm25", "Particulate matter 2.5"],
13 "VOCs": [" volatile organic compounds", "composto organico volatil

"]
14 }
15 }
16 }

Listing 6.7: Sample of the internal dictionary

After the earlier matching, it is time to load the model and encode the paths (Algorithm
12). sBERT, or sentence BERT, is a network composed of two siamese BERT subnetworks.
Its architecture allows greater and faster performance over traditional BERT networks. Be-
sides the insights on embedders given in Chapter 3, additional information on sBERT and
BERT can be found in [122] [89] [45] [46]. The library SentenceTransformers provides all
the necessary tools as well as pre-trained models, from which all-MiniLM-L6-v2 was se-
lected. The official Hugging Face repository states that it was trained with over one billion
training pairs from Reddit comments, Stack Exchange and Yahoo Answers posts, among
other sources [66], which makes it suitable to be a general purpose model. Another re-
port shows that the model offers one of the best relationships between sentence embedding
performance and speed [121].

The similarity matrix is then filled with all pairs’ cosine similarity scores. To determine
what is a pair and what is not, the methodology HADAPT, detailed in Chapter 3. To
the maximum values of each row and column is assigned the value one. For the positions
housing a row and a column maximums at the same time, the value two is assigned (Al-
gorithm 13). The hierarchy in candidates determine if more or less weight should be given
to a candidate pair in future measurements. The effects of these operations are pictured
by Figure 6.1.

6.2.4 Parallel Matching Module

This module has four matchers that run in parallel. Each one explores a different set of
features that try to find commonalities between attributes. They are independent and
execute in parallel, so that time is saved. However, with time saving efforts come some
trade-offs, as the comparisons are only made between the end node attributes. For this
project, only traditional techniques were employed, as modern machine learning ones re-
quire an abundance of training data not available at the moment. Furthermore, traditional

69

Chapter 6

Algorithm 8 Candidates determination
function candidates(graph1, file_name, graph2, table_names,model_name)

file_paths← extractFilePaths(graph1, file_name)
db_paths← extractPathsDB(graph2, table_names)
earlier_matches, file_paths, db_paths← acronymMatches(file_paths, db_paths)
model← loadModel(model_n)
sim_matrix← pathSimilarity(file_paths, db_paths,model))
candidate_matrix← candidatesSelection(sim_matrix))
return candidate_matrix

end function

Algorithm 9 File paths extraction
function extractFilePaths(graph, root)

all_paths← []
path← []
all_paths← buildFilePaths(root, path, all_paths)
return all_paths

end function

function buildFilePaths(graph, root, path, all_paths)
type← getType(graph, root)
path.insert([root, type])
children← getDescendants(graph, root)
if not children and path not in all_paths then

all_paths.insert(path)
else

for child in children do
extractFilePaths(graph, child, path, all_paths)

end for
end if
return all_paths

end function

70

Implementation

Algorithm 10 Database paths extraction
function extractPathsDB(graph, table_names)

all_paths← []
path← []
for root in table_names do

all_paths← buildPathsDB(root, path, all_paths)
end for
return all_paths

end function

function buildPathsDB(graph, root, path, all_paths)
type← getType(graph, root)
path.insert([root, type])
children← getDescendants(graph, root)
if not children and path not in all_paths then

all_paths.insert(path)
else ▷ If the attribute has children, means it is a foreign key

for child in children do
child_table← tableOrigin(graph, child)
all_paths← buildPathsDB(graph, child, path, all_paths)
for p in all_paths do

if child_table in p and child in p then
path← concat(path, p)
all_paths.insert(path)

end if
end for

end for
end if
return all_paths

end function

71

Chapter 6

Algorithm 11 Earlier matcher
function acronymMatches(file_paths, db_paths, internal_dict)

data← importF ile(internal_dict)
earlier_matches← []
for category in data do

for entry in data[category] do
for f_path in file_paths do

for db_path in db_paths do
file_paths, db_paths, earlier_matches ←

earlierMatcher(f_path, file_paths, db_path, db_paths, earlier_matches, entry)
file_paths, db_paths, earlier_matches ←

earlierMatcher(db_path, file_paths, f_path, db_paths, earlier_matches, entry)
end for

end for
end for

end for
return earlier_matches

end function

function earlierMatcher(path1, file_paths, path2, db_paths, earlier_matches, entry)
att1← path1[length(path1)− 1][0]
if toLower(att1) = toLower(entry) then

att← path2[length(path1)− 1][0]
if toLower(att) in data[category][entry] or toLower(att) = toLower(entry) then

▷ A normalization may be applied if desired
earlier_matches.insert([path1, path2])
file_paths.remove(path1)
db_paths.remove(path2))

end if
end if
return file_paths, db_paths, earlier_matches

end function

72

Implementation

Algorithm 12 Path similarity
function pathSimilarity(paths1, paths2,model)

matrix← []
sent1←′′

sent2←′′

for r ← 0 to length(paths1) do
p1← paths1[r]
for att1 in p1 do

if sent1 then
sent1← sent1 + att1

end if
sent1← sent1+ ’ ’

end for
for c← 0 to length(paths2) do

p2← paths2[c]
for att2 in p2 do

if sent2 then
sent2← sent2 + att2

end if
sent2← sent2+ ’ ’

end for
matrix[r, c]← similarity(sent1, sent2,model)

end for
end for
return matrix

end function

function similarity(sent1, sent2,model)
vec1← encode(sent1,model)
vec2← encode(sent2,model)
sim← cosineSimilarity(vec1, vec2)
return sim

end function

Algorithm 13 Candidates selection
function candidatesSelection(matrix)

cand_matrix← zerosMatrixShape(matrix)
for row in getRows(matrix) do

r, c← getPosBestScore(row)
matrix[r][c]← matrix[r][c] + 1

end for
for col in getColumns(matrix) do

r, c← getPosBestScore(col)
matrix[r][c]← matrix[r][c] + 1

end for
return cand_matrix

end function

73

Chapter 6

Figure 6.1: HADAPT method example

74

Implementation

methods are reliable and continue to be implemented in most state of the art systems (as
addressed in Section 3.5) .

String matching is analogous to almost every matching system. Comparing the two strings
by their spelling is thus a fundamental operation. First, a similarity matrix is initialized to
store the similarity values. This matrix’s dimensions are the same as the previous module’s,
to facilitate the following stages of the pipeline, where the final maps are extracted. So, for
every previously determined candidate pair, an edit distance is calculated and the other
pairs remain zero. The matrix is then stored in a shared variable (Algorithm 14).

Algorithm 14 String matcher
function stringMatch(candidates, cand_matrix, shared_var)

sim_matrix← zerosMatrixShape(cand_matrix)
for cand_list in candidates do ▷ There are two candidate lists: one for good

candidates and one for the best candidates
for cand in cand_list do

w1← cand[0][length(cand[0]− 1)][0] ▷ the leaf attribute name of the first
path

w2← cand[1][length(cand[1]− 1)][0] ▷ A normalization may be applied if
desired

max_l← getMaxLength(w1, w2)
s← 1− (levenshteinSim(w1, w2)/max_l) ▷ Other measures, like

Jaro-Winkler’s, can be applied too
pos← cand[2] ▷ checks the position of the pair on the matrix
sim_matrix[pos]← s

end for
end for
shared_var.insert(sim_matrix)

end function

Another way of comparing two words is by breaking each word in smaller fixed sized grams
and comparing them afterwards. It is exactly what the Algorithm 15 does. The elementary
procedures are the same as the string matcher, but, instead of calculating an edit distance,
it uses the Jaccard measure to return a score based on the common N-grams two words
have.

Sometimes, comparing just the attributes’ names is not sufficient. That is why it is im-
portant to gather as much information from as much sources as possible. Comparing the
data types of two attributes should add a little bit more context to the comparison. This
matcher implements the similarity measure described in [78] and explained in Chapter 3
(Algorithm 16). The hierarchy tree was adapted from W3C’s data type hierarchy (Figure
6.3) and built upon establiched correspondences such as [68], since the tree had to support
multiple equivalent data types. The final hierarchy can be found in Figure 6.2. Notice
that the two colors distinguish the Python data types and PostgreSQL’s and boxes enclose
equivalent data types. The fact that the tree is decoupled from the similarity measure
itself, makes changing the hierarchy relatively easy.

75

Chapter 6

Algorithm 15 Token matcher
function tokenMatch(candidates, cand_matrix, shared_var, n)

sim_matrix← zerosMatrixShape(cand_matrix)
for cand_list in candidates do ▷ There are two candidate lists: one for good

candidates and one for the best candidates
for cand in cand_list do

w1← cand[0][length(cand[0]− 1)][0] ▷ the leaf attribute name of the first
path

w2← cand[1][length(cand[1]− 1)][0] ▷ A normalization may be applied if
desired

grams1← nGram(w1, n)
grams2← CallnGramw2, n
s← jaccardSim(grams1, grams2)
pos← cand[2] ▷ checks the position of the pair on the matrix
sim_matrix[pos]← s

end for
end for
shared_var.insert(sim_matrix)

end function

function nGram(word, n)
grams← []
for i← 0 to length(word− n+ 1)] do

g ← word[i : i+ n]
grams.insert(gram)

end for
return grams

end function

76

Im
plem

entation

Figure 6.2: System’s data type hierarchy

77

Chapter 6

Figure 6.3: W3C’s data type hierarchy [110]

Lastly, external sources of knowledge always help when there is not much information
available. WordNet was the chosen thesaurus to support this similarity measure. For each
leaf attribute it compares the WorNet synsets and, if the attribute has multiple terms and
the whole expression does not have an entry on WordNet, it calculates the mean of the
similarities between the terms that form the attributes. The synset comparison is done by
firstly fetching both attributes’ synsets. Then, the Wu and Palmer similarity is calculated
for each pair of attributes and the highest similarity value is returned. The whole method
is specified in Algorithm 17.

6.2.5 Mapping Module

Mapping Module deals with the matrices returned after the Parallel Module and delivers the
final matches. The first step is the combination of all four matrices from the four parallel
matchers. Since all matrices have the same dimensions and each position represents the
same pair being compared, for each index an operation is performed, for instance, the mean,
maximum or minimum. The library numpy offers a variety of these functions. The result is
a final matrix which combines all four results in some way, as Algorithm 18 demonstrates.

To give the final verdict, the candidate selection performed earlier is taken into account
and a weight (one or two) is multiplied to each value. In the end, a mapping is added to
the final list of matches if the its score falls under a certain condition, for example, the

78

Implementation

Algorithm 16 Type matcher
function typeMatch(hierarchy, alpha, beta, candidates, cand_matrix, shared_var)

sim_matrix← zerosMatrixShape(cand_matrix)
for cand_list in candidates do ▷ There are two candidate lists: one for good

candidates and one for the best candidates
for cand in cand_list do

type1← cand[0][length(cand[0]− 1)][1] ▷ the leaf attribute data type of the
first path

type1← cand[1][length(cand[1]− 1)][1] ▷ the leaf attribute data type of the
second path

s← typeSimilarity(hierarchy, alpha, beta, type1, type2)
pos← cand[2] ▷ checks the position of the pair on the matrix
sim_matrix[pos]← sim

end for
end for
shared_var.insert(sim_matrix)

end function

function typeSimilarity(hierarchy, alpha, beta, type1, type2)
if type1 != type2 then

l← shortestPathLength(hierarchy, type1, type2)
lca← lowestCommonAncestor(hierarchy, type1, type2)
h← shortestPathLength(hierarchy, ”AnyType”, lca)
f ← exp(−beta ∗ l)
g ← (exp(alpha ∗ h)− exp(−alpha ∗ h))/(exp(alpha ∗ h) + exp(−alpha ∗ h))
sim← f ∗ g

else
sim← 1

end if
return sim

end function

79

Chapter 6

Algorithm 17 Reuse matcher
function reuseMatch(candidates, cand_matrix, shared_var)

sim_matrix← zerosMatrixShape(cand_matrix)
for cand_list in candidates do ▷ There are two candidate lists: one for good

candidates and one for the best candidates
for cand in cand_list do

w1← cand[0][length(cand[0]− 1)][0] ▷ the leaf attribute name of the first
path

w2← cand[1][length(cand[1]− 1)][0] ▷ A normalization may be applied if
desired

s← compareSynsets(w1, w2)
if s = 0 then

elem_sims← []
w1← split(w1, ’ ’)
w2← split(w2, ’ ’)
for elem1 in w1 do

for elem2 in w2 do d ← compareSynsets(elem1, elem2)
elem_sims.insert(d)

end for
end for
s← mean(elem_sims)

end if
pos← cand[2] ▷ checks the position of the pair on the matrix
sim_matrix[pos]← s

end for
end for
shared_var.insert(sim_matrix)

end function

function compareSynsets(word1, word2)
synsets1← getSynsets(word1)
synsets2← getSynsets(word2)
scores← []
for syn1 in synsets1 do

for syn2 in synsets2 do
s← wuPalmerSim(syn1, syn2)
scores.insert(s)

end for
end for
if scores then

sim← max(scores)
else

sim← 0
end if
return sim

end function

80

Implementation

Algorithm 18 Combination and verdict
function combinationVerdict(matrices, candidates, threshold)

axis← 0
final_matrix← mean(matrices, axis)
candnum← 0
final_mappings← []
for cand_list in candidates do ▷ There are two candidate lists: one for good

candidates and one for the best candidates
candnum← candnum+ 1
for cand in cand_list do

pos← cand[2] ▷ checks the position of the pair in the matrix
final_matrix[pos]← final_matrix[pos] ∗ cand_num
if final_matrix[pos] > threshold then

final_mappings.insert(cand)
end if

end for
end for
return final_matrix, final_mappings

end function

similarity being above a threshold.

It is important to note that the system is able to output 1 : 1 and n : 1 mappings, achieving
a global cardinality of ? : ∗.

6.2.6 Statistics Module

The auxiliary Statistics Module provides backup functions, making it possible to visualize
and analyze the whole intermediate stages of the pipeline. The first function shows the
graph. The Python code to replicate the graph observable in Figure 6.4 can be found in
Listing 6.8.

1 import pydot
2 from networkx.drawing.nx_pydot import graphviz_layout
3 import matplotlib.pyplot as plt
4

5 #function to plot a graph
6 def plotGraph(G):
7

8 #shows graph in a top -down tree format
9 pos = graphviz_layout(G, prog= "dot")

10 nx.draw_networkx(G, pos , with_labels=True)
11 plt.show()
12

13 return

Listing 6.8: Python code to plot a graph

The second algorithm (Algorithm 19) returns the candidate pairs selected. The rows
and columns of the candidate matrix represent the attribute paths in the file and in the
database, respectively, that are being compared. If the element is equal to one, it means
that the pair is a good matching candidate. In addition, if the value is equal to two,
it means that the pair was determined a high probability candidate. These two lists of
candidates are the output of this function.

81

Chapter 6

Figure 6.4: Graph example

The third function plots the heat map, showing similarity matrices in a more pleasant way.
Once again, the Python code to replicate the image observable in Figure 6.5 can be found
in Listing 6.9.
1 import seaborn as sns
2 import matplotlib.pylab as plt
3

4 #function to show a similarity matrix in a more pleasant way
5 def heatMap(matrix , labely , labelx):
6 plt.style.use("seaborn")
7

8 #Plots the heatmap
9 plt.figure(figsize =(10 ,10))

10 heat_map = sns.heatmap(matrix , xticklabels=labelx , yticklabels=
labely , linewidth =1 , annot=True)

11 plt.title("Similarity matrix")
12 plt.show()
13

14 return

Listing 6.9: Python code to plot a heat map

The last function (Algorithm 20) calculates all the necessary scores to evaluate the per-
formance of the matcher. For that, it consults the mapping files, similar to Listing 6.10,
created for testing. These are JSON files with the file attribute as key and the corre-
spondent database columns as value. It crawls over all the mappings and counts the true
positives. Next, it calculates the other values, and finally the scores.
1 {
2 "ExternalIdentification ": [" offstreet_spots_offstreetparkingarea ","

external_id "],
3 "Designation ": [" offstreet_spots_offstreetparkingarea", "name"],
4 "description ": [" offstreet_spots_offstreetparkingarea", "description

"],
5 "street ": [" offstreet_spots_offstreetparkingarea", "address "]
6 }

Listing 6.10: Sample of a mapping file

82

Implementation

Algorithm 19 Candidate information
function candidateInfo(file_paths, db_paths, cand_matrix)

good← []
best← []
for row ← 0 to length(file_paths)− 1 do

for col← 0 to length(db_paths)− 1 do
if cand_matrix[row][col] = 2 then

best.insert([file_paths[row], db_paths[col], [row, col]]) ▷ The candidate
position in the matrix is also added to help future matrix queries

else if cand_matrix[row][col] = 1 then
good.insert([file_paths[row], db_paths[col], [row, col]])

end if
end for

end for
return good, best

end function

Figure 6.5: Heat map example

6.3 Conclusion

It was shown in this chapter how to reproduce a similar matching system. The explanation
was grouped by modules and the algorithms were presented in pseudo-code to be transversal
to all coding languages and frameworks.

The next chapter demonstrates how were the tests conducted, as well as interpreting their
results.

83

Chapter 6

Algorithm 20 Scores calculation
function getScores(final_mappings,mapping_name, file_paths, db_paths)

mapping_file← importF ile(mapping_name)
tp← 0
num_mappings← 0
num_final_mappings← 0
for key in mapping_file do

num_mappings← num_mappings+ 1
for map in final_mappings do

num_final_mappings← num_final_mappings+ 1
if map[0] = key and map[1] = mapping_file[key] then

tp← tp+ 1
end if

end for
end for
total← length() ∗ lentgh()
fp← num_final_mappings− tp
fn← num_mappings− tp
tn← total − tp− fp− fn
if tp+ fp > 0 then

precision← tp/(tp+ fp)
else

precision← 0
end if
if fn+ tp > 0 then

recall← tp/(fn+ tp)
else

recall← 0
end if
if precision+ recall > 0 then

f1_score← (2 ∗ (precision ∗ recall))/(precision+ recall)
else

f1_score← 0
end if
return precision, recall, f1_score

end function

84

Chapter 7

Experimental Study

Experimentation was an essential part of this project. During and after the development
tests were performed to ensure that every component worked properly and to maximize
results within known options that could potentially bring better results. This empirical
study is equally important to evaluate if the solution developed meets the performance re-
quirements previously established and to provide important clues for future improvements.

That being said, this chapter presents how the dataset was put together, the experiment
setup and procedure followed to compare different configurations, and the results obtained.

7.1 Dataset

Assembling the dataset to validate the solution was a big challenge. For the most part,
because Ubiwhere did not have that many sources yet to compose a robust dataset. The
lack of open-source data which fitted UBP’s data models, was also an obstacle. For those
reasons, it was decided that it would be reasonable to create a dataset with real world files
mixed with fictional files, generated according to what was expected from real sources.

To simplify and standardize the tests, it was decided that the files would be loaded off a local
folder instead of requesting some of them through sensor APIs and loading the artificial
ones. This makes the dataset more viable in the long term, since it is not dependent on
any API maintenance.

Having all that in mind, the testing dataset, having a total of twenty files was split in two
parts. The first half, named Easy Cases, focus on simpler cases of the UBP, in other words,
simpler schemas, with less attributes with more or less direct mappings to a single database
table (Figure 7.1). The second half, on the other hand, is called Hard Cases, because it
aggregates larger and harder examples, whose mappings are not always trivial (Figure 7.2).
To add an extra factor of realism to the artificial sources, attributes in languages such as
Portuguese, French and Spanish were mixed with the English ones

For each part of the dataset, the database tables that would take part of the test were
chosen for how easy would be the isolation of the problem from other challenges inherent
to the UBP’s data model conversion, such as the matching of tables, but also for how
easy would it be to find or build examples that fitted those same tables. Some tables
had already very straightforward mappings which did not justify to be part of the testing
dataset. Others had columns whose values were the result of operations with other tables’
columns, making the case unnecessarily complex and diverting focus from the problem that

85

Chapter 7

Figure 7.1: Easy Cases: example file

was being studied.

For Easy Cases, the database tables chosen to integrate the experiment, were the air quality
reading and the radar reading tables (Figure 7.3). For Hard Cases the tables selected were
all tables related with parking (Figure 7.4), parking events and occupancy history. Most
difficult cases arose from the perspective of evaluating the extent to which it was possible
to map to different tables even within the same context, parking related data in this case.

7.2 Experimental Setup

The purpose of the testing phase was to properly tune the system, as well as evaluating it
and getting justified clues on what and how it can be improved. Statistics Module played an
important role, as it provided the functions needed to calculate the scores and to perform
the analysis. A new branch was also opened on the repository, so that eventual necessary
changes to the code could be done without losing the normal system setting.

The experiment took place entirely on the development computer, a device equipped with
a 2.5 GHz Intel Core i7 dual core, 16 GB of RAM and an Intel Iris Plus Graphics 640.
The internet connection supplied via Ethernet had 200Mbps and 120Mbps download and
upload speeds respectively1.

The tests themselves were focused on the following aspects:

Threshold: The threshold is the edge separating a match from a non-matching pair.
After computing the final matching it is necessary to give a verdict to each pair. For
this system a static threshold was set manually. The key to a good threshold is a
value that balances well the true positives and the false positives.

N-grams: As explained in the above chapter the Parallel Matching Module has a
token-based matcher, which splits attributes into smaller chunks and then compares
them. These sub-strings can have different lengths that can affect the final similarity
calculated.

1measured with: https://www.speedtest.net/

86

https://www.speedtest.net/

Experimental Study

Figure 7.2: Hard Cases: example file

String Similarity: String similarity also takes place during the parallel matching
phase. There are many measures, but the two most widely adopted are the Leven-
shtein and Jaro-Winkler’s.

Normalization: Throughout the course of this project several normalization func-
tions were implemented in an attempt to tackle some of the obstacles raw attributes
had. These functions include a simple normalization function, a normalization with
language detection and translation, and a function with lemmatization added on top
of the other normalization functions.

It is important to mention that the combination method was kept the same throughout the
whole experiment, since evidences have been found in the literature showing the mean as
the best option for most cases, as it captures equally the best and the worse of all match-
ers [113]. The constants α and β were also kept 0.3057 according to the recommendations
of the method’s original paper [78]. Therefore, the study comprises three smaller exper-
iments, one for tuning the threshold, other for tuning the parallel matchers’ parameters

87

Chapter 7

Figure 7.3: Easy Cases: database tables

Figure 7.4: Hard Cases: database tables

and the last one for evaluating the normalization functions, which will be detailed in the
upcoming sections.

7.3 Threshold

The first set of tests had the objective of finding the best threshold possible. It is hard
to separate and evaluate each parameter individually in a non biased way, because the

88

Experimental Study

final result is shaped by all of them. To overcome this obstacle, three distinct cases
were defined, where the number of grams (two, three and four), string similarity measure
(Levenshtein and Jaro-Winkler) and normalization method (without normalization, simple,
with translation and with translation and lemmatization) were randomly combined and
tested for each threshold. Thereby, the scores could be compared and it became possible
to have a clear idea of how different thresholds influence the system’s performance. The
base settings picked for testing the thresholds were:

Two grams; Levenshtein similarity; no normalization.

Three grams; Levenshtein similarity; normalization with translation.

Three grams; Jaro-Winkler’s similarity; simple normalization.

The first thresholds being tested were 0.25, 0.50 and 0.75, so to bracket the window within
what the ideal threshold would be. A preliminary analysis points out to the conclusion that
smaller thresholds work better than higher ones, since the combination of every matrix,
each one of them focusing in certain aspects of the attribute, produces relatively small
values for the majority of the ambiguous cases (Figure 7.5).

Figure 7.5: Example of a matrix resulted from all combined matrices

The plots below show the scores obtained for each threshold (Figures 7.6, 7.7 and 7.8). On
the yellow bar is displayed the precision, the blue shows the recall, the green the f1-score
and the red exhibits the percentage of the testing attributes that match a column of a
table in the database. This last percentage is just another characteristic which dictates
the difficulty of the matching schemas, evidenced by the Hard Cases, which have a smaller
percentage of attributes with an actual match.

Each plot expresses the mean of the files’ scores for each threshold, either for the Easy Cases
(Figure 7.6) and the Hard Cases (Figure 7.7) separately (ten files for each category), or
the mean of all twenty cases, referred as "overall" (Figure 7.8).

89

C
hapter

7

Figure 7.6: Scores for the thresholds 0.25, 0.50 and 0.75 (Easy Cases)

Figure 7.7: Scores for the thresholds 0.25, 0.50 and 0.75 (Hard Cases)

90

E
xperim

entalStudy

Figure 7.8: Scores for the thresholds 0.25, 0.50 and 0.75 (overall)

Threshold Mean Precision (%) Mean Recall (%) Mean F1-score (%) Mean Runtime (min.)
Easy Cases (93.37% of matching attributes in average)

0.25 59.55 76.85 66.02 0.29
0.50 84.88 54.58 64.57 0.32
0.75 91.28 40.49 53.66 0.17

Hard Cases (72.48% of matching attributes in average)
0.25 33.81 55.85 39.2 1.83
0.50 55.06 34.57 39.53 1.28
0.75 38.11 17.85 22.83 0.76

Overall (82.93% of matching attributes in average)
0.25 46.68 66.35 52.61 1.06
0.50 69.97 44.57 52.05 0.80
0.75 64.69 29.17 38.24 0.47

Table 7.1: Sum up of the first threshold experiment

91

Chapter 7

The results, summarized in Table 7.1, confirm what had been observed in the produced
matrices during the Mapping Module. The best scores are reached when choosing thresholds
bellow 0.50. Scores for the Easy Cases are better in average than for the Hard Cases, as
expected, but they both react in the same way to the different thresholds, showing 0.25
and 0.50 the best performances.

Although the focus of this test suite has been the scores, the average running times were
controlled to make sure the execution stayed within the temporal limits imposed by the
non-functional requirements, as it can be seen in Table 7.1.

Due to the similarity of the f1-score values for thresholds 0.25 and 0.50, a second test suite
was done to more precisely determine the best threshold. This time, the chosen values
were 0.313, 0.375 and 0.438, being, therefore, within 0.25 and 0.50.

92

E
xperim

entalStudy

Figure 7.9: Scores for the thresholds 0.313, 0.375 and 0.438 (Easy Cases)

Figure 7.10: Scores for the thresholds 0.313, 0.375 and 0.438 (Hard Cases)

93

C
hapter

7

Figure 7.11: Scores for the thresholds 0.313, 0.375 and 0.438 (overall)

Threshold Mean Precision (%) Mean Recall (%) Mean F1-score (%) Mean Runtime (min.)
Easy Cases (93.37% of matching attributes in average)

0.313 66.31 73.94 68.48 0.15
0.375 74.27 69.2 70.39 0.16
0.438 83.15 63.14 70.46 0.15

Hard Cases (72.48% of matching attributes in average)
0.313 42.02 51.52 43.23 0.38
0.375 53.11 48.12 45.3 0.39
0.438 55.6 41.89 43.56 0.38

Overall (82.93% of matching attributes in average)
0.313 54.16 62.73 55.86 0.26
0.375 63.69 58.66 57.85 0.27
0.438 69.37 52.52 57.01 0.27

Table 7.2: Sum up of the second threshold experiment

94

Experimental Study

The results (see Figure 7.11 and Table 7.2) indicate that 0.375 is the best of the tested
threshold values, as it corresponds to the best precision-recall compromise overall. That
being said the chosen threshold was 0.375. This value was maintained as a reference for
the remaining experimental study.

7.4 Tuning Parallel Matchers

Once fixed the threshold, the next phase of the experiment could begin, which involved
testing the matcher’s configurations during the parallel stage of the pipeline.

Thanks to its modularity, the code was easily adapted, so that the token and the string
matchers, would not run simultaneously. Preventing these two matches to execute at the
same time, isolated the two matchers, allowing the different parameters to be tested indi-
vidually without interfering with one another. Of course that by not executing all matchers,
the scores become inevitably lower, but the goal here was not the absolute percentages,
but rather compare scores among configurations, to check which one performed better.

Starting by the number of grams in the token matcher, three values were tried initially,
being them two, three and four. For each threshold, four tests were made, in order to cover
all normalization options. Once again, the results are presented in the form of bar charts.
They show the average scores for Easy Cases (Figures 7.12), Hard Cases (Figures 7.13)
and the overall mean for each tested number (Figures 7.14).

95

C
hapter

7

Figure 7.12: Scores for the grams two, three and four (Easy Cases)

Figure 7.13: Scores for the grams two, three and four (Hard Cases)

96

E
xperim

entalStudy

Figure 7.14: Scores for the grams two, three and four (overall)

N Mean Precision (%) Mean Recall (%) Mean F1-score (%) Mean Runtime (min.)
Easy Cases (93.37% of matching attributes in average)

2 91.04 40.01 52.91 0.12
3 86.67 31.4 42.3 0.12
4 82.5 25.65 35.3 0.12

Hard Cases (72.48% of matching attributes in average)
2 44.27 29.86 33.7 0.35
3 46.49 23.9 29.02 0.36
4 52.08 22.04 26.47 0.35

Overall (82.93% of matching attributes in average)
2 67.66 34.94 43.31 0.23
3 66.58 27.65 35.66 0.24
4 67.29 23.84 30.88 0.23

Table 7.3: Sum up of the n-gram experiment

97

Chapter 7

The results, summed up in Table 7.3, show similar behaviours, for the same configuration,
between Easy Cases and Hard Cases, although the differences in scores for different con-
figurations are more pronounced in the Easy Cases. The best scores were accomplished
with grams of length two. A possible explanation for it is the fact that bigger grams, like
four-grams, force words to be way more similar, especially when dealing with small words,
which makes the token similarity technique handle poorly spelling mistakes and variations
in orthography. On the other hand, acronyms and abbreviations work better with short
tokens like bigrams, because they are obviously more compact and most words’ radicals
are small too. Since four-grams showed the worst results and the runtimes remained under
the limit, the ideal number of grams was set to two and no more tests were necessary.

The methodology used to test the string matcher was analogous to the one used for tuning
the token matcher, so the token matcher was not executed during the string matcher’s set
of tests. The statistics calculated, seen in Figures 7.15, 7.16 and 7.17, demonstrate that
Levenshtein measure is preferable over Jaro-Winkler’s.

98

E
xperim

entalStudy

Figure 7.15: Scores for the Levenshtein and Jaro-Winkler’s similarity measures (Easy Cases)

Figure 7.16: Scores for the Levenshtein and Jaro-Winkler’s similarity measures (Hard Cases)

99

C
hapter

7

Figure 7.17: Scores for the Levenshtein and Jaro-Winkler’s similarity measures (overall)

Measure Mean Precision (%) Mean Recall (%) Mean F1-score (%) Mean Runtime (min.)
Easy Cases (93.37% of matching attributes in average)

Levenshtein 88.29 48.74 61.24 0.12
Jaro-Winkler 52.63 65.16 56.38 0.86

Hard Cases (72.48% of matching attributes in average)
Levenshtein 41.6 37.1 37.56 0.35
Jaro-Winkler 15.14 56.82 23.68 0.35

Overall (82.93% of matching attributes in average)
Levenshtein 64.95 42.92 49.4 0.24
Jaro-Winkler 33.88 60.99 40.03 0.61

Table 7.4: Sum up of the string similarity experiment

100

Experimental Study

Although the best string similarity measure is difficult to assess and very dependent on
the context in which it is applied, studies suggest the Jaro-Winkler similarity is better
for short strings [49], such as first names, which is not the case for most attributes (e.g.
attributes composed of two or more words: parking_spot). The average runtimes stood
under the limit defined by the requirements, so there was no problem in that regard (Table
7.4).

7.5 Normalization

The last parameter to be tuned was the kind of normalization utilized. For this, the
variables tested in the last sections were set to the values which provided the best scores,
i.e. threshold 0.375, bigrams and Levenshtein as the string similarity measure.

101

C
hapter

7

Figure 7.18: Scores for none, simple normalization, normalization with translation and normalization with translation and lemmatization (Easy
Cases)

102

E
xperim

entalStudy

Figure 7.19: Scores for none, simple normalization, normalization with translation and normalization with translation and lemmatization (Hard
Cases)

103

C
hapter

7

Figure 7.20: Scores for none, simple normalization, normalization with translation and normalization with translation and lemmatization (overall)

104

E
xperim

entalStudy

Method Mean Precision (%) Mean Recall (%) Mean F1-score (%) Mean Runtime (min.)
Easy Cases (93.37% of matching attributes in average)

None 80.77 62.04 69.25 0.09
Simple 77.17 72.98 74.25 0.09

Translation 76.62 72.98 73.99 0.27
Translation and
Lemmatization 81.8 57.57 65.29 0.42

Hard Cases (72.48% of matching attributes in average)
None 75.7 39.63 46.69 0.23

Simple 46.09 51.48 46.78 0.23
Translation 45.07 51.48 45.91 0.7

Translation and
Lemmatization 52.31 39.55 42.46 2.3

Overall (82.93% of matching attributes in average)
None 78.23 50.84 57.97 0.16

Simple 61.63 62.23 60.51 0.16
Translation 60.84 62.23 59.95 0.49

Translation and
Lemmatization 67.05 48.56 53.87 1.36

Table 7.5: Sum up of the normalization experiment

105

Chapter 7

The three possibilities of normalization, as well as the absence of it, were tested. The
results were not conclusive, since there was not a trend in both Easy Cases (Figure 7.18)
and Hard Cases (Figure 7.19) towards a type of normalization. For the Hard Cases, the
simple normalization and the non normalization got similar f1-scores, while in the Easy
Cases the f1-scores for the simple normalization and the normalization with translation
were side-by-side (Table 7.5). In addition, by directly observing a few examples, some
outliers and timeouts were spotted. Therefore, it was decided to go deeper and verify if
the whole dataset behaved like that.

The normalization tests were executed one more time, but this time focusing on the run-
time. Each file in the dataset was repeated five times, calculating afterwards the mean of
the runtime.

Boxplots were built in order to evaluate the dispersion of mean runtimes according to the
chosen normalization method. There is a huge dispersion on the runtimes for the cases
in which a translation is involved (Figure 7.21). Additionally, several outliers exceeding
the established five minute runtime limit were found for the mean of the five executions in
several files of the dataset (Table 7.6), which demonstrates the translator’s inconsistency.
Such thing happens because the translator API is an external resource which not only
depends on a third party entity, but also needs internet to work.

Figure 7.21: Runtime dispersion according to the normalization method

Having into account that it is difficult to quantify the percentage gain between each con-
figuration because the f1-scores were all very similar, and that problems might arise when
calling the API, a benefit-cost analysis was made to make sure which normalization method
was more worth to apply. The formula to calculate the benefit-cost ratio is:

106

Experimental Study

Method Number of Outliers Outliers (min.)
None 1 0.4

Simple 0 —
Translation 4 29.8, 10.967, 3.267, 3.917

Translation and
Lemmatization 1 22.783

Table 7.6: Outliers for the normalization experiment (mean for five executions per file)

Rbenefit−cost =
f1

rt
,

where f1 is the f1-score obtained for a specific file and rt is the average runtime that it
takes to match that file. The higher the ratio Rbenefit−cost value, the better. The mean
results Easy Cases, Hard Cases and overall mean can be found in Table 7.7. For the Easy
Cases, the best is to apply a simple normalization and for the Hard cases, the absence of
it. However, in general, a simple normalization provides the best results, even if it is not
by a large margin.

Method Benefit-cost
Easy Cases

None 539.041
Simple 606.557

Translation 267.570
Translation and
Lemmatization 177.562

Hard Cases
None 220.680

Simple 188.634
Translation 48.538

Translation and
Lemmatization 39.298

Overall
None 379.860

Simple 397.596
Translation 158.054

Translation and
Lemmatization 108.430

Table 7.7: Benefit-cost ratio for each normalization method

It is important to understand the reason for these bad results when translating and lem-
matizing. Translating has its advantages, but this translator was not viable in many situ-
ations, given the lack of consistency in the API responses and also due to out of context
translations (e.g. in Portuguese, estação (meteorology) −→ station or estação (summer,
winter, autumn, spring) −→ season). Speaking of context, lemmatization suffers of similar
issues. Lemmatization does not identify the part of speech by itself, which may introduce
confusing results for words that assume different parts of speech (e.g. saw (noun) −→ saw
and saw (verb) −→ see).

After the system is all tuned, it is possible to verify which stages of the matching pipeline
take longer. The diagram pictured in Figure 7.22, helps visualizing that candidate selection
and the matchers running in parallel are the stages that take longer. On the other hand,

107

Chapter 7

parsing the sources, combining matrices and returning the final mapping corresponds to a
tiny fraction of the time spent. This makes sense since those are the phases where most
computational effort takes place.

Figure 7.22: Time distribution across different phases of the system’s pipeline

7.6 Conclusion

This chapter was focused on the execution of a set of tests whose main goal was to validate
and tune the solution. The presentation of the experiment’s setup and dataset used for it
were followed by the description of three small tests on threshold, parallel matchers and
normalization, together with their respective results.

The first test showed the ideal threshold stays bellow 0.50, because the difference between
matching and non-matching pairs is very subtle, with only small nuances separating pos-
itives from negatives. When testing parallel matchers, it was concluded that both small
grams and Levenshtein’s measure would work better, due to the attributes’ characteris-
tics to which the system is applied. Finally, the tests on nomalization proved that simple
normalization is the most effective, at least until a better translator is found.

A final configuration of threshold 0.375, bigrams, Levenshtein measure and a simple nor-
malization was set to be the ideal one found. The new configuration brought an equilibrium
between precision and recall, as well as a clear improvement to the scores, reaching an over-
all mean f1-score of almost 61%.

As expected, Hard Cases get lower scores when comparing to the Easy Cases, because the
schemas to be matched are larger, more complex and the percentage of attributes that
have a correspondent is smaller.

This study reinforces the idea that there is always room for improvement, especially on
the stages that take longer and are more flexible to customization, like candidate selection
and parallel matching. Such observations are next chapter’s matter of subject.

108

Chapter 8

Conclusions and Future Work

This internship was focused on finding an answer to the question "How can we generalize a
single platform to work properly for every city?", formulated in Chapter 1, in the context
of Ubiwhere’s product, UBP.

First off, the problem needed to be defined. That included the formal definition of the
problem and understanding in which components of the UBP where it was possible to
operate and that could be changed without compromising the current system’s pipeline. It
was soon realized that this was the application of similar schema and ontology matching
problems already defined in the literature. Schema/ontology matching as a research field
appeared in the context of an attempt to integrate different sources across the web, as
other attempts of standardizing the web, failed.

From an early stage of this project, the challenges associated with such a task were rec-
ognized. Among them were the handling of different file formats, structure and entity
recognition, attribute matching and validation of the solution.

After limiting the scope of the project, a survey was done to gather information regard-
ing the techniques and tools developed so far. The taxonomy introduced by Rahm and
Bernstein, was taken as guideline to categorize the different techniques.

Schema/ontology matching as a research field was very active in the first decade of the
century, but has suffered a slowdown since then. Even so, it is possible to watch recent
resurgences, motivated by advancements in other areas, such as deep learning, which can
be transposed to schema/ontology matching. The study of the state of the art, showed
that not all the most advanced machine learning techniques suited the project right now,
because the data provided was not enough to train an independent model. Despite these
limitations, traditional methods could be successfully used, as their reputation among
recent systems was still good.

Based on the acquired knowledge, together with the stakeholders, the requirements were
defined, so their interest would be covered.

Development followed an Agile-based methodology and all tasks were organized in a Kan-
ban table according to the project’s needs. GitLab was the prime project management
tool, as it allowed an easier supervision of the project that was being developed.

Implementation materialized the requirements in light of the proposed architecture and
the language chosen was Python. The developed solution was an hybrid system made of
several modules with different functions. A module to read and convert the sources, one
for extracting candidates using a pre-trained sentence embeddings model, one with several

109

Chapter 8

matchers running in parallel that explore different attribute features, one for extracting the
final mapping, and two modules to support the main pipeline, being them a normalization
module, equipped with normalization functions and a statistics module, for aiding the
system’s validation. The produced mappings reach a global cardinality of ? : ∗.

There are a few considerations to be made before conceiving an identical system. When
matching large schemas where not all attributes have a correspondent, it is advisable to
reduce the search space. In this situation, the candidate extraction using embeddings
was a viable solution to reduce the number of comparisons and rank the pairs by levels
of matching probability. It doubled as a simple structural analyser, as it encoded the
whole path from root to the attribute, minimizing the big structural heterogeneity among
different cases. Additionally, a modular architecture is vital for the customizing and testing
the system.

In order to test the system, an experimental study was conducted focusing mainly on
certain configurable parameters, with a perspective of validating and improving the per-
formance of the solution. The dataset built, was split in two. A first half (ten files) called
Easy Cases and a second half, Hard Cases, as a way of including the different typologies of
matching happening in the UBP. The experiments demonstrated that it is the threshold
which impacts the final score the most, but tuning the other parameters contributes for
overall improved scores, too. It also showed that simple normalization pays off over other
more complex normalization approaches.

Generally, the project fulfilled its goals, expressed by top priority requirements, and all
knowledge acquired for the company. However, it showed to be the early stages of a much
bigger project, whose goal is to automatically integrate new data sources into the UBP.
Thus, it became clear that future iterations will be required, so that the system is ready
to be put into production.

As far as future work is concerned, priority should be given to the assembly of a new dataset.
The new dataset has to include much more cases, as well as an extensive diversity of other
formats, besides JSON and CSV. Moreover, it is crucial that extra real life files are added
to it. A larger and improved dataset will open doors for training models for this specific
domain and for employing other advanced machine learning techniques exploring instances
that could possibly bring better performances. Furthermore, it will also be feasible to test
quality attributes such as scalability, otherwise impossible.

Regarding the system’s performance, the f1-score obtained for the Hard Cases is still too
low to be considered viable to apply this solution to them, as made clear by the tests.
This is due to the high schema heterogeneity, nonexistent structure, as it is for the CSV
files, mappings to several tables at a time, and matches that are unnatural, for instance
id mapping to external_id instead of Id. Performance improvements could be divided
into two parts. On a first phase, the scores could be increased by making upgrades to the
already used techniques, for example the normalization method and candidate selection.
On a second phase, introducing structural techniques or others exploring new parts of the
schema, to enhance even more the true matches. The use of reinforcement learning would
also be important, so that the system could identify the tricky mappings, like the one
described above, but also to constantly learn even after being deployed.

Finally, after raising the performance, one can think of solving the problem of selecting au-
tomatically tables from the entire database that correspond to the schema being matched.
Clustering approaches would certainly be a good fit for this problem.

It was mentioned several times in this document that Schema/ontology matching is a

110

Conclusions and Future Work

complex and expensive task, only solved heuristically and, consequently, there is always
room for improvements. Nonetheless, systems also have to mold themselves to keep up
with the integration necessities. The growth in popularity of JSON, fueled by the use of
REST APIs, and the development of machine learning technologies should be in the sights
of developers that will be in charge of future versions of the system.

111

This page is intentionally left blank.

References

[1] Airflow proposal. https://cwiki.apache.org/confluence/display/incubator/
AirflowProposal. Accessed: 2022-01-13.

[2] Apache Airflow. https://blogs.apache.org/foundation/entry/the-apache-
software-foundation-announces44. Accessed: 2022-01-13.

[3] COMA 3.0. https://dbs.uni-leipzig.de/Research/coma.html. Accessed: 2022-
01-15.

[4] Django celery. https://docs.celeryproject.org/projects/django-celery/en/
2.4/introduction.html. Accessed: 2022-01-13.

[5] Global goals for sustainable development. http://www.globalgoals.org. Accessed:
2021-12-17.

[6] Good ontologies. https://www.w3.org/wiki/Good_Ontologies. Accessed: 2021-12-
30.

[7] How LA used big data to build a smart city in the 1970s. https://
architexturez.net/pst/az-cf-169297-1435054977. Accessed: 2021-12-16.

[8] Identifying program risks. https://resources.sei.cmu.edu/asset_files/Webinar/
2008_018_101_22190.pdf. Accessed: 2022-01-22.

[9] Learn RDF: RDF vs XML. https://cambridgesemantics.com/blog/semantic-
university/learn-rdf/rdf-vs-xml/. Accessed: 2021-12-29.

[10] Moscow prioritisation. https://www.agilebusiness.org/page/
ProjectFramework_10_MoSCoWPrioritisation? Accessed: 2022-08-04.

[11] Ontology matching. http://www.ontologymatching.org/index.html. Accessed:
2022-01-03.

[12] Ontology matching in biomedical domain. http://disi.unitn.it/~pavel/OM/
articles/SWAT4HCLS_Tutorial.pdf. Accessed: 2022-01-05.

[13] Primer example Turtle. https://www.w3.org/2007/OWL/wiki/
PrimerExampleTurtle. Accessed: 2021-12-31.

[14] RDF and JSON-LD use cases. https://www.w3.org/2013/dwbp/wiki/
RDF_AND_JSON-LD_UseCases. Accessed: 2021-12-31.

[15] Semantic federation of musical and music-related information for establish-
ing a personal music knowledge base - Scientific figure on ResearchGate.
https://www.researchgate.net/figure/The-common-layered-Semantic-Web-
technology-stack-a-modification-of-Now09-see-also_fig3_215576487. Ac-
cessed: 2021-12-29.

113

https://cwiki.apache.org/confluence/display/incubator/AirflowProposal
https://cwiki.apache.org/confluence/display/incubator/AirflowProposal
https://blogs.apache.org/foundation/entry/the-apache-software-foundation-announces44
https://blogs.apache.org/foundation/entry/the-apache-software-foundation-announces44
https://dbs.uni-leipzig.de/Research/coma.html
https://docs.celeryproject.org/projects/django-celery/en/2.4/introduction.html
https://docs.celeryproject.org/projects/django-celery/en/2.4/introduction.html
http://www.globalgoals.org
https://www.w3.org/wiki/Good_Ontologies
 https://architexturez.net/pst/az-cf-169297-1435054977
 https://architexturez.net/pst/az-cf-169297-1435054977
https://resources.sei.cmu.edu/asset_files/Webinar/2008_018_101_22190.pdf
https://resources.sei.cmu.edu/asset_files/Webinar/2008_018_101_22190.pdf
https://cambridgesemantics.com/blog/semantic-university/learn-rdf/rdf-vs-xml/
https://cambridgesemantics.com/blog/semantic-university/learn-rdf/rdf-vs-xml/
https://www.agilebusiness.org/page/ProjectFramework_10_MoSCoWPrioritisation?
https://www.agilebusiness.org/page/ProjectFramework_10_MoSCoWPrioritisation?
http://www.ontologymatching.org/index.html
http://disi.unitn.it/~pavel/OM/articles/SWAT4HCLS_Tutorial.pdf
http://disi.unitn.it/~pavel/OM/articles/SWAT4HCLS_Tutorial.pdf
https://www.w3.org/2007/OWL/wiki/PrimerExampleTurtle
https://www.w3.org/2007/OWL/wiki/PrimerExampleTurtle
https://www.w3.org/2013/dwbp/wiki/RDF_AND_JSON-LD_UseCases
https://www.w3.org/2013/dwbp/wiki/RDF_AND_JSON-LD_UseCases
https://www.researchgate.net/figure/The-common-layered-Semantic-Web-technology-stack-a-modification-of-Now09-see-also_fig3_215576487
https://www.researchgate.net/figure/The-common-layered-Semantic-Web-technology-stack-a-modification-of-Now09-see-also_fig3_215576487

Chapter 8

[16] Semantic web. https://www.w3.org/2000/Talks/0906-xmlweb-tbl/text.htm. Ac-
cessed: 2021-12-26.

[17] Semantic web. https://devopedia.org/semantic-web. Accessed: 2021-12-26.

[18] Semantic web standards. https://joinup.ec.europa.eu/sites/default/files/
inline-files/W3C02.pdf. Accessed: 2021-12-28.

[19] Tesaurus. https://www.oxfordlearnersdictionaries.com/definition/english/
thesaurus?q=thesaurus. Accessed: 2022-01-14.

[20] Turtle. https://www.w3.org/TeamSubmission/turtle/. Accessed: 2021-12-30.

[21] Turtle examples. https://www.loc.gov/aba/pcc/bibco/documents/
TurtleExamples.pdf. Accessed: 2021-12-31.

[22] Ubiwhere urban platform. https://www.ubiwhere.com/en/products/smart-
cities/urban-platform. Accessed: 2021-12-16.

[23] Understanding linked data formats. https://medium.com/wallscope/
understanding-linked-data-formats-rdf-xml-vs-turtle-vs-n-triples-
eb931dbe9827. Accessed: 2021-12-30.

[24] United Nations revision of world urbanization prospects 2018. https:
//www.un.org/development/desa/en/news/population/2018-revision-of-
world-urbanization-prospects.html. Accessed: 2021-12-15.

[25] Urban platform. https://urbanplatform.city. Accessed: 2021-12-16.

[26] What is RDF? https://www.ontotext.com/knowledgehub/fundamentals/what-
is-rdf/. Accessed: 2021-12-29.

[27] What is the difference between RDF and OWL? https://stackoverflow.com/
questions/1740341/what-is-the-difference-between-rdf-and-owl, note = Ac-
cessed: 2021-12-31.

[28] Alsayed Algergawy, Eike Schallehn, and Gunter Saake. Understanding the schema
matching problem. 01 2007.

[29] Ali A. Alwan, Azlin Nordin, Mogahed Alzeber, and Abedallah Zaid Abualkishik. A
survey of schema matching research using database schemas and instances. Interna-
tional Journal of Advanced Computer Science and Applications, 8(10), 2017.

[30] Ahmad Assaf, Eldad Louw, Aline Senart, Corentin Follenfant, Raphaël Troncy, and
David Trastour. Improving schema matching with linked data. https://arxiv.org/
abs/1205.2691, 2012. Accessed: 2022-05-09.

[31] David Aumueller, Hong Do, Sabine Massmann, and Erhard Rahm. Schema and
ontology matching with coma++. pages 906–908, 01 2005.

[32] Daniel Ayala, Inma Hernández, David Ruiz, and Erhard Rahm. Leapme:
Learning-based property matching with embeddings. Data Knowledge Engineer-
ing, 137:101943, 2022.

[33] Daniel Ayala, Inma Hernández, David Ruiz, and Miguel Toro. Tapon: A two-phase
machine learning approach for semantic labelling. Knowledge-Based Systems, 163,
11 2018.

114

https://www.w3.org/2000/Talks/0906-xmlweb-tbl/text.htm
https://devopedia.org/semantic-web
https://joinup.ec.europa.eu/sites/default/files/inline-files/W3C02.pdf
https://joinup.ec.europa.eu/sites/default/files/inline-files/W3C02.pdf
https://www.oxfordlearnersdictionaries.com/definition/english/thesaurus?q=thesaurus
https://www.oxfordlearnersdictionaries.com/definition/english/thesaurus?q=thesaurus
https://www.w3.org/TeamSubmission/turtle/
https://www.loc.gov/aba/pcc/bibco/documents/TurtleExamples.pdf
https://www.loc.gov/aba/pcc/bibco/documents/TurtleExamples.pdf
 https://www.ubiwhere.com/en/products/smart-cities/urban-platform
 https://www.ubiwhere.com/en/products/smart-cities/urban-platform
https://medium.com/wallscope/understanding-linked-data-formats-rdf-xml-vs-turtle-vs-n-triples-eb931dbe9827
https://medium.com/wallscope/understanding-linked-data-formats-rdf-xml-vs-turtle-vs-n-triples-eb931dbe9827
https://medium.com/wallscope/understanding-linked-data-formats-rdf-xml-vs-turtle-vs-n-triples-eb931dbe9827
https://www.un.org/development/desa/en/news/population/2018-revision-of-world-urbanization-prospects.html
https://www.un.org/development/desa/en/news/population/2018-revision-of-world-urbanization-prospects.html
https://www.un.org/development/desa/en/news/population/2018-revision-of-world-urbanization-prospects.html
https://urbanplatform.city
https://www.ontotext.com/knowledgehub/fundamentals/what-is-rdf/
https://www.ontotext.com/knowledgehub/fundamentals/what-is-rdf/
https://stackoverflow.com/questions/1740341/what-is-the-difference-between-rdf-and-owl
https://stackoverflow.com/questions/1740341/what-is-the-difference-between-rdf-and-owl
https://arxiv.org/abs/1205.2691
https://arxiv.org/abs/1205.2691

References

[34] Rangaswami Balakrishnan and Kanna Ranganathan. A textbook of graph theory.
Springer Science & Business Media, 2012.

[35] Nils Barlaug and Jon Atle Gulla. Neural networks for entity matching: A survey.
ACM Transactions on Knowledge Discovery from Data, 15(3):1–37, 2021.

[36] Alexander Beider and Stephen Morse. Phonetic matching: A better soundex. https:
//stevemorse.org/phonetics/bmpm2.pdf, 2010. Accessed: 2022-04-20.

[37] Zohra Bellahsene, Angela Bonifati, Fabien Duchateau, and Yannis Velegrakis. On
Evaluating Schema Matching and Mapping, pages 253–291. 12 2011.

[38] Zohra Bellahsene, Angela Bonifati, and Erhard Rahm. Schema Matching and Map-
ping. Springer Publishing Company, Incorporated, 1st edition, 2011.

[39] Samy Bengio and Georg Heigold. Word embeddings for speech recognition. In Pro-
ceedings of the 15th Conference of the International Speech Communication Associ-
ation, Interspeech, 2014.

[40] Tim Berners-Lee, James Hendler, and Ora Lassila. The semantic web: A new form
of web content that is meaningful to computers will unleash a revolution of new
possibilities. ScientificAmerican.com, 05 2001.

[41] Philip Bernstein, Jayant Madhavan, and Erhard Rahm. Generic schema matching,
ten years later. PVLDB, 4:695–701, 08 2011.

[42] Philip A. Bernstein and Sergey Melnik. Model management 2.0: Manipulating richer
mappings. In Proceedings of the 2007 ACM SIGMOD International Conference on
Management of Data, SIGMOD ’07, page 1–12. Association for Computing Machin-
ery, 2007.

[43] Vitor Marini Blaselbauer and Joao Marcelo Borovina Josko. JSONGlue: A hybrid
matcher for JSON schema matching. In Proceedings of the Brazilian Symposium on
Databases, 2020.

[44] Willem Nico Borst and W.N. Borst. Construction of Engineering Ontologies for
Knowledge Sharing and Reuse. PhD thesis, University of Twente, Netherlands,
September 1997.

[45] Nadjet Bouayad-Agha. Sentence similarity with bert vs sbert. https://github.com/
nadjet/sentence_similarity. Accessed: 2022-04-20.

[46] James Briggs. Bert for measuring text similarity. https:
//towardsdatascience.com/bert-for-measuring-text-similarity-
eec91c6bf9e1. Accessed: 2022-04-20.

[47] Riccardo Cappuzzo, Paolo Papotti, and Saravanan Thirumuruganathan. Creating
embeddings of heterogeneous relational datasets for data integration tasks. pages
1335–1349, 06 2020.

[48] Andrew Carstairs-McCarthy. An Introduction to English Morphology: Words and
Their Structure (2nd edition). Edinburgh University Press, 2018.

[49] Peter Christen. A comparison of personal name matching: Techniques and practical
issues. in ‘The Second International Workshop on Mining Complex Data (MCD’06),
12 2006.

115

https://stevemorse.org/phonetics/bmpm2.pdf
https://stevemorse.org/phonetics/bmpm2.pdf
https://github.com/nadjet/sentence_similarity
https://github.com/nadjet/sentence_similarity
https://towardsdatascience.com/bert-for-measuring-text-similarity-eec91c6bf9e1
https://towardsdatascience.com/bert-for-measuring-text-similarity-eec91c6bf9e1
https://towardsdatascience.com/bert-for-measuring-text-similarity-eec91c6bf9e1

Chapter 8

[50] Rudi Cilibrasi and Paul Vitányi. The Google similarity distance. Knowledge and
Data Engineering, IEEE Transactions on, 19:370–383, 04 2007.

[51] Donatello Conte, Pasquale Foggia, Carlo Sansone, and Mario Vento. Thirty years of
graph matching in pattern recognition. IJPRAI, 18:265–298, 05 2004.

[52] Orsolya Csiszar. Ordered weighted averaging operators: A short review. IEEE
Systems, Man, and Cybernetics Magazine, 7(2):4–12, 2021.

[53] Marcin Detyniecki. Fundamentals on aggregation operators. Proceedings AGOP,
Asturias, Spain, 01 2001.

[54] R. P. Devi and Dr. V. Thigarasu. A novel approach for record deduplication using
hidden markov model. 2014.

[55] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-
training of deep bidirectional transformers for language understanding. https://
arxiv.org/abs/1810.04805, 2018. Accessed: 2022-04-10.

[56] Robin Dhamankar, Yoonkyong Lee, Anhai Doan, Alon Halevy, and Pedro Domingos.
imap: Discovering complex semantic matches between database schemas. Proceedings
of the ACM SIGMOD International Conference on Management of Data, 04 2004.

[57] Giorgio Maria Di Nunzio and Federica Vezzani. A linguistic failure analysis of clas-
sification of medical publications: A study on stemming vs lemmatization. 01 2018.

[58] Hong Do and Erhard Rahm. COMA - A system for flexible combination of schema
matching approaches. pages 610–621, 08 2002.

[59] AnHai Doan, Pedro M. Domingos, and Alon Y. Levy. Learning source descriptions
for data integration. 2000.

[60] AnHai Doan, Alon Halevy, and Zachary G Ives. Principles of data integration. Mor-
gan Kaufmann, 2012.

[61] AnHai Doan, Jayant Madhavan, Pedro Domingos, and Alon Halevy. Learning to
map between ontologies on the semantic web. page 662, 01 2002.

[62] Irvin Dongo, Firas Al Khalil, Richard Chbeir, and Yudith Cardinale. Semantic
web datatype similarity: Towards better rdf document matching. In Djamal Bensli-
mane, Ernesto Damiani, William I. Grosky, Abdelkader Hameurlain, Amit Sheth,
and Roland R. Wagner, editors, Database and Expert Systems Applications, pages
189–205, Cham, 2017. Springer International Publishing.

[63] Marc Ehrig, Steffen Staab, and York Sure. Bootstrapping ontology alignment meth-
ods with apfel. In Special Interest Tracks and Posters of the 14th International
Conference on World Wide Web, page 1148–1149, New York, NY, USA, 2005. Asso-
ciation for Computing Machinery.

[64] Jérôme Euzenat, Christian Meilicke, Pavel Shvaiko, Heiner Stuckenschmidt, and Cas-
sia Trojahn dos Santos. Ontology Alignment Evaluation Initiative: Six years of
experience. Journal on Data Semantics, XV(6720):158–192, 2011. euzenat2011b.

[65] Jérôme Euzenat and Pavel Shvaiko. Ontology matching: Second edition. 10 2013.

[66] Hugging Face. all-minilm-l6-v2. https://huggingface.co/sentence-
transformers/all-MiniLM-L6-v2. Accessed: 2022-06-10.

116

https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2

References

[67] Hongjie Fan, Junfei Liu, and Kejun Deng. Towards a composite xml schema match-
ing approach using reference ontology. In 2016 3rd International Conference on
Information Science and Control Engineering (ICISCE), pages 724–728, 2016.

[68] Daniele Varrazzo Federico Di Gregorio. Adaptation of python values to sql types.
https://www.psycopg.org/docs/usage.html#adapt-numbers. Accessed: 2022-08-
05.

[69] Apache Software Foundation. Phonetic matching. https://solr.apache.org/
guide/7_4/phonetic-matching.html#beider-morse-phonetic-matching-bmpm,
2018. Accessed: 2022-04-20.

[70] Philippe Fournier-Viger. The semantic web and why it failed. https://data-
mining.philippe-fournier-viger.com/the-semantic-web-and-why-it-failed/,
2018.

[71] Andrea Frome, Greg Corrado, Jonathon Shlens, Samy Bengio, Jeffrey Dean,
Marc’Aurelio Ranzato, and Tomas Mikolov. Devise: A deep visual-semantic em-
bedding model. In Neural Information Processing Systems (NIPS), 2013.

[72] T.N. Gadd. Phonix: The algorithm. Program 24, pages 363–366, 1990.

[73] Thomas R. Gruber. A translation approach to portable ontology specifications.
Knowledge Acquisition, 5(2):199–220, 1993.

[74] Anselmo Guedes, Fernanda Baião, and Kate Revoredo. On the identification and rep-
resentation of ontology correspondence antipatterns. CEUR Workshop Proceedings,
1248, 01 2014.

[75] Aric A. Hagberg, Daniel A. Schult, and Pieter J. Swart. Exploring network structure,
dynamics, and function using networkx. In Gaël Varoquaux, Travis Vaught, and
Jarrod Millman, editors, Proceedings of the 7th Python in Science Conference, pages
11 – 15, Pasadena, CA USA, 2008.

[76] Do Hong Hai. Schema matching and mapping-based data integration. PhD thesis,
University of Leipzig, 2005.

[77] Daniel Ayala Hernández, Inma Hernández, David Ruiz, and Erhard Rahm. Towards
the smart use of embedding and instance features for property matching. 2021 IEEE
37th International Conference on Data Engineering (ICDE), pages 2111–2116, 2021.

[78] Tran Hong-Minh and Dan Smith. Hierarchical approach for datatype matching in
xml schemas. In 24th British National Conference on Databases (BNCOD’07), pages
120–129, 2007.

[79] Ian Horrocks, Bijan Parsia, Peter Patel-Schneider, and James Hendler. Semantic
web architecture: Stack or two towers? pages 37–41, 09 2005.

[80] Dan Hughes. Non-functional requirement examples. https://wittij.com/non-
functional-requirement-examples/. Accessed: 2022-07-30.

[81] Benjamin Hättasch, Michael Truong-Ngoc, Andreas Schmidt, and Carsten Binnig.
It’s ai match: A two-step approach for schema matching using embeddings. https:
//arxiv.org/abs/2203.04366, 2022. Accessed: 2022-05-07.

[82] Andra Ionescu. Reproducing state-of-the-art schema matching algorithms. Master’s
thesis, Delft University of Technology, 2020.

117

https://www.psycopg.org/docs/usage.html#adapt-numbers
https://solr.apache.org/guide/7_4/phonetic-matching.html#beider-morse-phonetic-matching-bmpm
https://solr.apache.org/guide/7_4/phonetic-matching.html#beider-morse-phonetic-matching-bmpm
https://data-mining.philippe-fournier-viger.com/the-semantic-web-and-why-it-failed/
https://data-mining.philippe-fournier-viger.com/the-semantic-web-and-why-it-failed/
https://wittij.com/non-functional-requirement-examples/
https://wittij.com/non-functional-requirement-examples/
https://arxiv.org/abs/2203.04366
https://arxiv.org/abs/2203.04366

Chapter 8

[83] Dan Jurafsky and James H Martin. Speech and language processing (3rd draft ed.),
2019. Accessed: 2022-03-20.

[84] Yannis Kalfoglou and Marco Schorlemmer. Ontology mapping: The state of the art.
2, 01 2003.

[85] Anastasios Kementsietsidis. Schema matching. Encyclopedia of Database Systems,
2009.

[86] Mohamed Kettouch, Cristina Luca, and Mike Hobbs. Schema matching for semi-
structured and linked data. In 2017 IEEE 11th International Conference on Semantic
Computing (ICSC), pages 270–271, 2017.

[87] Mahdi Khalaf, Hayder Najm, Alaa Abdulhussein Daleh, Ali Hasan Munef, and
Ghaith Mojib. Schema matching using word-level clustering for integrating uni-
versities’ courses. In 2020 2nd Al-Noor International Conference for Science and
Technology (NICST), pages 1–6, 2020.

[88] Grzegorz Kondrak. N-gram similarity and distance. SPIRE’05, page 115–126, Berlin,
Heidelberg, 2005. Springer-Verlag.

[89] Saketh Kotamraju. An intuitive explanation of sentence-bert. https:
//towardsdatascience.com/an-intuitive-explanation-of-sentence-bert-
1984d144a868. Accessed: 2022-04-20.

[90] Saruladha Krishnamurthy, Aghila Gnanasekaran, and B Sathiya. A comparative
analysis of ontology and schema matching systems. International Journal of Com-
puter Applications, 34, 01 2011.

[91] Markus Krötzsch, František Simančík, and Ian Horrocks. A description logic primer.
CoRR, abs/1201.4089, 2012.

[92] J. A. Larson, S. B. Navathe, and R. Elmasri. A theory of attributed equivalence
in databases with application to schema integration. IEEE Trans. Softw. Eng.,
15(4):449–463, apr 1989.

[93] Jens Lehmann, Robert Isele, Max Jakob, Anja Jentzsch, Dimitris Kontokostas,
Pablo N. Mendes, Sebastian Hellmann, Mohamed Morsey, Patrick van Kleef, and
Sören et al. Auer. DBpedia – A large-scale, multilingual knowledge base extracted
from Wikipedia. Semantic Web, 6(2):167–195, 2015.

[94] Wen-Syan Li and Chris Clifton. SEMINT: A tool for identifying attribute corre-
spondences in heterogeneous databases using neural networks. Data Knowl. Eng.,
33:49–84, 04 2000.

[95] Dekang Lin. An information-theoretic definition of similarity. In Proceedings of the
Fifteenth International Conference on Machine Learning, ICML ’98, page 296–304,
San Francisco, CA, USA, 1998. Morgan Kaufmann Publishers Inc.

[96] Julie Beth Lovins. Development of a stemming algorithm. Mechanical Translation
and Computational Linguistics, 11:22–31, 1968.

[97] Fhabiana dos Santos Machado. Um processo para extração de esquemas conceituais
em fontes de dados json baseado em técnicas de similaridade de texto. Master’s
thesis, Universidade Federal de Santa Maria, 2017.

118

https://towardsdatascience.com/an-intuitive-explanation-of-sentence-bert-1984d144a868
https://towardsdatascience.com/an-intuitive-explanation-of-sentence-bert-1984d144a868
https://towardsdatascience.com/an-intuitive-explanation-of-sentence-bert-1984d144a868

References

[98] Jayant Madhavan, Philip A. Bernstein, and Erhard Rahm. Generic schema matching
with cupid. In Proceedings of the 27th International Conference on Very Large Data
Bases, VLDB ’01, page 49–58. Morgan Kaufmann Publishers Inc., 2001.

[99] Ahmed Mahdi and Sabrina Tiun. Utilizing wordnet and regular expressions for
instance-based schema matching. Research Journal of Applied Sciences, Engineering
and Technology, 8, 07 2014.

[100] Anan Marie and Avigdor Gal. A.: Boosting schema matchers. volume 5331, pages
283–300, 11 2008.

[101] Sabine Maßmann, Salvatore Raunich, David Aumüller, Patrick Arnold, and Erhard
Rahm. Evolution of the coma match system. volume 814, 01 2011.

[102] Giansalvatore Mecca, Paolo Papotti, and Donatello Santoro. A short history of
schema mapping systems. Proceedings of the 20th Italian Symposium on Advanced
Database Systems, SEBD 2012, pages 99–106, 01 2012.

[103] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation
of word representations in vector space. https://arxiv.org/abs/1301.3781, 2013.
Accessed: 2022-04-05.

[104] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, and Jeffrey Dean. Dis-
tributed representations of words and phrases and their compositionality. https:
//arxiv.org/abs/1310.4546, 2013. Accessed: 2022-04-05.

[105] George A. Miller. Wordnet: A lexical database for english. Commun. ACM,
38(11):39–41, nov 1995.

[106] Renée Miller, Mauricio Hernández, Laura Haas, Ling-Ling Yan, C. Ho, Ronald Fagin,
and Lucian Popa. The clio project: Managing heterogeneity. SIGMOD Record,
30:78–83, 03 2001.

[107] Renata Junges Padilha. Um processo para casamento de esquemas de documentos
json baseado na estrutura e nas instâncias. Master’s thesis, Universidade Federal de
Santa Maria, 2020.

[108] Sid Panjwani. Multiprocessing vs. threading in python: What you need
to know. https://timber.io/blog/multiprocessing-vs-multithreading-in-
python-what-you-need-to-know/. Accessed: 2022-05-23.

[109] Jeffrey Partyka, Latifur Khan, and Bhavani Thuraisingham. Semantic schema match-
ing without shared instances. In 2009 IEEE International Conference on Semantic
Computing, pages 297–302, 2009.

[110] Ashok Malhotra Paul V. Biron. Xml schema part 2: Datatypes second edition.
https://www.w3.org/TR/xmlschema-2/. Accessed: 2022-08-05.

[111] Jeffrey Pennington, Richard Socher, and Christopher Manning. Glove: Global vec-
tors for word representation. volume 14, pages 1532–1543, 01 2014.

[112] Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark,
Kenton Lee, and Luke Zettlemoyer. Deep contextualized word representations.
https://arxiv.org/abs/1802.05365, 2018. Accessed: 2022-04-10.

[113] Eric Peukert, Sabine Maßmann, and Kathleen König. Comparing similarity combi-
nation methods for schema matching. pages 692–701, 08 2010.

119

https://arxiv.org/abs/1301.3781
https://arxiv.org/abs/1310.4546
https://arxiv.org/abs/1310.4546
https://timber.io/blog/multiprocessing-vs-multithreading-in-python-what-you-need-to-know/
https://timber.io/blog/multiprocessing-vs-multithreading-in-python-what-you-need-to-know/
https://www.w3.org/TR/xmlschema-2/
https://arxiv.org/abs/1802.05365

Chapter 8

[114] Martin F Porter. An algorithm for suffix stripping. Program, 1980.

[115] Martin F. Porter. Snowball: A language for stemming algorithms. 2001.

[116] Jan Portisch, Michaela Hladik, and Heiko Paulheim. Background knowledge in
schema matching: Strategy vs. data. In SEMWEB, 2021.

[117] Mateusz Przyborowski, Mateusz Pabiś, Andrzej Janusz, and Dominik Ślęzak. Schema
matching using gaussian mixture models with wasserstein distance. 11 2021.

[118] Erhard Rahm and Phil Bernstein. On matching schemas automatically. Technical
Report MSR-TR-2001-17, February 2001.

[119] Erhard Rahm and Philip A. Bernstein. A survey of approaches to automatic schema
matching. The VLDB Journal, 10(4):334–350, 2001.

[120] Thomas Rebele, Fabian Suchanek, Johannes Hoffart, Joanna Biega, Erdal Kuzey, and
Gerhard Weikum. YAGO: A multilingual knowledge base from Wikipedia, Wordnet,
and Geonames. pages 177–185, 10 2016.

[121] Nils Reimers. Pretrained models. https://www.sbert.net/docs/
pretrained_models.html. Accessed: 2022-06-10.

[122] Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using siamese
bert-networks. CoRR, abs/1908.10084, 2019.

[123] Philip Resnik. Using information content to evaluate semantic similarity in a taxon-
omy. https://arxiv.org/abs/cmp-lg/9511007, 1995. Accessed: 2022-05-07.

[124] Diego Rodrigues and Altigran da Silva. A study on machine learning techniques for
the schema matching network problem. https://journal-bcs.springeropen.com/
articles/10.1186/s13173-021-00119-5#citeas, 2021. Accessed: 2022-04-27.

[125] Xin Rong. word2vec parameter learning explained. https://arxiv.org/abs/
1411.2738, 2014. Accessed: 2022-04-05.

[126] Thomas Saaty. Decision making with the analytic hierarchy process. Int. J. Services
Sciences Int. J. Services Sciences, 1:83–98, 01 2008.

[127] Harald Sack. Linked data engineering. https://www.youtube.com/watch?v=BbcD-
ah8dtE&list=PLoOmvuyo5UAfY6jb46jCpMoqb-dbVewxg&index=19, 2016.

[128] Seva Safris. A deep look at json vs. xml, part 1: The history of each standard.
https://www.toptal.com/web/json-vs-xml-part-1.

[129] Khalid Saleem and Zohra Bellahsene. New challenges in data integration: Large
scale automatic schema matching. 04 2007.

[130] Helmut Schmid. Improvements in part-of-speech tagging with an application to
german. 1999.

[131] Helmut Schmidt. Probabilistic part-of-speech tagging using decision trees. 1994.

[132] Khurram Shahzad, Ifrah Pervaz, Rao Muhammad, and Adeel Nawab. Wordnet-based
semantic similarity measures for process model matching. 09 2018.

[133] Sheetal Sharma, Darothi Sarkar, and Divya Gupta. Agile processes and methodolo-
gies: A conceptual study. International Journal on Computer Science and Engineer-
ing, 4, 05 2012.

120

https://www.sbert.net/docs/pretrained_models.html
https://www.sbert.net/docs/pretrained_models.html
https://arxiv.org/abs/cmp-lg/9511007
https://journal-bcs.springeropen.com/articles/10.1186/s13173-021-00119-5#citeas
https://journal-bcs.springeropen.com/articles/10.1186/s13173-021-00119-5#citeas
https://arxiv.org/abs/1411.2738
https://arxiv.org/abs/1411.2738
https://www.youtube.com/watch?v=BbcD-ah8dtE&list=PLoOmvuyo5UAfY6jb46jCpMoqb-dbVewxg&index=19
https://www.youtube.com/watch?v=BbcD-ah8dtE&list=PLoOmvuyo5UAfY6jb46jCpMoqb-dbVewxg&index=19
https://www.toptal.com/web/json-vs-xml-part-1

References

[134] Manjula Shenoy, Karthish Shet, and Dinesh Acharya. A new similarity measure for
taxonomy based on edge counting. 11 2012.

[135] Amit P. Sheth. Changing focus on interoperability in information systems:from sys-
tem, syntax, structure to semantics. Interoperating Geographic Information Systems,
1999.

[136] Pavel Shvaiko and Jérôme Euzenat. A survey of schema-based matching approaches.
In Journal on data semantics IV, pages 146–171. Springer, 2005.

[137] Pavel Shvaiko and Jérôme Euzenat. Tutorial on schema and ontol-
ogy matching. http://dit.unitn.it/~accord/Presentations/ESWC%2705-
MatchingHandOuts.pdf. Accessed: 2022-01-13.

[138] António Silva. How to write meaningful quality attributes for software
development. https://www.codementor.io/@antoniopfesilva/how-to-write-
meaningful-quality-%20attributes-for-software-development-ez8y90wyo.

[139] Peter Simons. Ontology. https://www.britannica.com/topic/ontology-
metaphysics, 2015.

[140] Jasmeet Singh and Vishal Gupta. A systematic review of text stemming techniques.
Artif. Intell. Rev., 48(2):157–217, 2017.

[141] John Miles Smith, Philip A. Bernstein, Umeshwar Dayal, Nathan Goodman, Terry
Landers, Ken W. T. Lin, and Eugene Wong. Multibase: Integrating heterogeneous
distributed database systems. In Proceedings of the May 4-7, 1981, National Com-
puter Conference, AFIPS ’81, page 487–499. Association for Computing Machinery,
1981.

[142] Raquel Kolitski Stasiu. Avaliação da qualidade de funções de similaridade no contexto
de consultas por abrangência. PhD thesis, Universidade Federal do Rio Grande do
Sul, 2007.

[143] Jeff Sutherland. Why gantt charts were banned in the first scrum https://
www.scruminc.com/why-gantt-charts-were-banned-in-first/. Accessed: 2022-
02-25.

[144] Thulazshini Tamilchelvan. How do gantt charts support agile develop-
ment? https://medium.com/project-managers-planet/how-do-gantt-charts-
support-agile-development-224f92c9a951. Accessed: 2022-02-25.

[145] Cássia Trojahn, Renata Vieira, Daniela Schmidt, Adam Pease, and Giancarlo Guiz-
zardi. Foundational ontologies meet ontology matching: A survey. Semantic Web,
2021.

[146] Jacco Van Ossenbruggen, Lynda Hardman, and Lloyd Rutledge. Hypermedia and
the semantic web: A research agenda. Journal of Digital Information; Vol 3, No 1
(2002), 3, 01 2002.

[147] Achille C. Varzi. On doing ontology without metaphysics. Philosophical Perspectives,
25(1):407–423, 2011.

[148] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N.
Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. https:
//arxiv.org/abs/1706.03762, 2017. Accessed: 2022-04-15.

121

http://dit.unitn.it/~accord/Presentations/ESWC%2705-MatchingHandOuts.pdf
http://dit.unitn.it/~accord/Presentations/ESWC%2705-MatchingHandOuts.pdf
https://www.codementor.io/@antoniopfesilva/how-to-write-meaningful-quality-%20attributes-for-software-development-ez8y90wyo
https://www.codementor.io/@antoniopfesilva/how-to-write-meaningful-quality-%20attributes-for-software-development-ez8y90wyo
https://www.britannica.com/topic/ontology-metaphysics
https://www.britannica.com/topic/ontology-metaphysics
https://www.scruminc.com/why-gantt-charts-were-banned-in-first/
https://www.scruminc.com/why-gantt-charts-were-banned-in-first/
https://medium.com/project-managers-planet/how-do-gantt-charts-support-agile-development-224f92c9a951
https://medium.com/project-managers-planet/how-do-gantt-charts-support-agile-development-224f92c9a951
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762

Chapter 8

[149] Denny Vrandečić and Markus Krötzsch. Wikidata: A free collaborative knowledge-
base. Commun. ACM, 57(10):78–85, sep 2014.

[150] Yaoshu Wang, Jianbin Qin, and Wei Wang. Efficient approximate entity matching
using jaro-winkler distance. pages 231–239, 10 2017.

[151] Tingting Wei, Yonghe Lu, Huiyou Chang, Qiang Zhou, and Xianyu Bao. A semantic
approach for text clustering using wordnet and lexical chains. Expert Systems with
Applications, 42(4):2264–2275, 2015.

[152] Junchi Yan, Xu-Cheng Yin, Weiyao Lin, Cheng Deng, Hongyuan Zha, and Xiaokang
Yang. A short survey of recent advances in graph matching. In Proceedings of the
2016 ACM on International Conference on Multimedia Retrieval, New York, NY,
USA, 2016. Association for Computing Machinery.

[153] ChuanTao Yin, Zhang Xiong, Hui Chen, JingYuan Wang, Daven Cooper, and
Bertrand David. A literature survey on smart cities. Science China Information
Sciences, 58(10), 2015.

[154] Jing Zhang, Bonggun Shin, Jinho D. Choi, and Joyce C. Ho. Smat: An attention-
based deep learning solution to the automation of schema matching. In Ladjel Bel-
latreche, Marlon Dumas, Panagiotis Karras, and Raimundas Matulevičius, editors,
Advances in Databases and Information Systems, pages 260–274. Springer Interna-
tional Publishing, 2021.

[155] Zhi Zhang, Pengfei Shi, Haoyang Che, and Jun Gu. An algebraic framework for
schema matching. Informatica, 19:421–446, 2008.

[156] Zhi Zhang, Pengfei Shi, Haoyang Che, and Yong Sun. Formulation schema matching
problem for combinatorial optimization problem. IBIS, 1:33–60, 01 2006.

[157] Aleksandar Šotić and Radenko Rajić. The review of the definition of risk. Online
Journal of Applied Knowledge Management, pages 17–26, 2015.

122

	Introduction
	Context and Motivation
	Challenges
	Goals
	Document Structure

	Background
	Urban Platform Architecture
	Semantic Web
	Schemas and Ontologies

	Data Integration and Sub-Problems
	Schema and Ontology Matching

	Conclusion

	State of the Art
	Taxonomy
	Individual Matching
	Combining Matching

	Individual Techniques
	Linguistic
	Reuse-Oriented
	Constraints

	Combination Techniques
	Evaluation Metrics
	Systems
	Cupid
	coma
	lsd
	JSONGlue
	leapme
	It's AI Match
	Smat

	Conclusion

	Planning and Methodology
	Process Management
	Planning
	First Semester
	Second Semester

	Success Criteria
	Risk Assessment and Management

	Requirements Specification and Architectural Decisions
	Scope and Stakeholders
	Functional Requirements
	Non-Functional Requirements
	Maintainability
	Performance

	Restrictions
	Architecture
	Schema Module
	Normalization Module
	Candidate Selection Module
	Parallel Matching Module
	Mapping Module
	Statistics Module

	Technologies
	Schema Module
	Normalization Module
	Candidate Selection Module
	Parallel Matching Module
	Mapping Module
	Statistics Module

	Conclusion

	Implementation
	Environment
	Functionalities
	Schema Module
	Normalization Module
	Candidate Selection Module
	Parallel Matching Module
	Mapping Module
	Statistics Module

	Conclusion

	Experimental Study
	Dataset
	Experimental Setup
	Threshold
	Tuning Parallel Matchers
	Normalization
	Conclusion

	Conclusions and Future Work

