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Abstract 

Forest cleaning is of great importance in fighting forest fires, because in addition to 

removing fuel for fires, it makes access to land easier for fighting possible fires. Being 

uncontrolled fires of great danger to humans, it is necessary to find ways to prevent them 

from happening. For this there are fuel management strips along roads, high voltage lines, 

around housing clusters and other infrastructure at the urban forestry interface. A major 

problem in carrying out forest cleanings is the lack of manpower to allow the cleaning of all 

land and places defined as places of high danger for society in the event of fire before the 

start of the fire season. With technological developments, the problem of lack of manpower 

can be compensated, by using autonomous vehicles, capable of carrying out forest cleanings 

and adapting to the terrain. 

This work consists of the development of a control algorithm to implement in an 

autonomous robot moving in rough terrains. Its objective is the development of an algorithm 

capable of detecting deviations in the robot’s trajectory and correcting them, and an 

algorithm that allows real-time knowledge of the robot’s yaw value. 

This work was developed in virtual environments, using Robot Operating Systems 

(ROS) and Python programming language.  

Initially, the work consisted of determining the robot’s yaw value and reading  this 

same value to know the robot’s orientation at each instant. The next step consisted of the 

development of an algorithm that, by reading the robot’s orientation data, would correct the 

robot’s trajectory so that its movement would be rectilinear, suffering only small deviations, 

immediately compensated. Finally, tests were carried out in virtual environments to validate 

the work developed. The tests allowed to conclude the best angular velocity of the robot 

whenever it was necessary to correct its trajectory, and to obtain the best approximation of 

the robot’s orientation data due to the noise caused by the sensors. It also allowed to verify 

the trajectory performed by the robot in different virtual environments, comparing the 

behavior of the robot with the use of the developed control and the non-use, verifying its 

operation. 
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Resumo 

A limpeza florestal é muito importante no combate a incêndios florestais, além de 

remover combustível para os incêndios, torna o acesso aos terrenos mais fácil para o combate 

de eventuais incêndios.  Sendo os incêndios não controlados de grande perigo para o ser 

humano, é necessário arranjar formas de prevenir que estes aconteçam. Para isso existem 

faixas de gestão de combustível ao longo das estradas, linhas de alta tensão, em torno de 

aglomerados habitacionais e outras infraestruturas na interface urbano florestal. Um grande 

problema na realização das limpezas florestais é a falta de mão de obra, não permitindo a 

limpeza de todos os terrenos e locais definidos como locais de alto perigo para a sociedade 

em caso de incêndio, antes do início da época de incêndios. Com a evolução tecnológica, 

pode compensar-se o problema da falta de mão de obra, recorrendo a veículos autónomos 

capazes de realizar limpezas florestais e de se adaptarem ao terreno. 

Este trabalho consiste no desenvolvimento de um algoritmo de controlo para 

implementar num robô autónomo a mover-se em terrenos acidentados. Tem como objetivo 

o desenvolvimento de um algoritmo capaz de detetar desvios na trajetória do robô e fazer a 

sua correção e de um algoritmo que permite o saber em tempo real o valor do yaw do robô. 

Este trabalho foi desenvolvido em ambiente virtuais, utilizando Robot Operating 

System (ROS), a linguagem de programação Python. 

Inicialmente, o trabalho consistiu na determinação do valor de yaw do robô e leitura 

desse mesmo valor de modo a conhecer a orientação do robô em cada instante. O passo 

seguinte consistiu no desenvolvimento de um algoritmo que através da leitura dos dados da 

orientação do robô, corrigiria a trajetória do robô de modo que o movimento deste fosse 

retilíneo, sofrendo apenas pequenos desvios, imediatamente compensados. Por fim foram 

realizados testes em ambientes virtuais de modo a validar o trabalho desenvolvido. Os testes 

permitiram concluir a melhor velocidade angular do robô sempre que era necessário corrigir 

a sua trajetória, obter a melhor aproximação dos dados da orientação do robô devido ao ruído 

dos sensores. Permitiram também verificar a trajetória realizada pelo robô em diferentes 

ambientes virtuais, comparando o comportamento do robô com a utilização do controlo e a 

não utilização do controlo desenvolvido, verificando o seu funcionamento. 
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1. INTRODUCTION 

The use and development of tools are part of the evolution of the human being, that 

always worked to use more and better tools for every type of work, making it easier to do. 

Fire always threatened human lives, and because of that it was necessary to have some 

control over it, but wildfires still represent a huge threat to humans, animals, and every kind 

of life because it is impossible to have full control over it, so it is important to have something 

that helps avoid wildfires or, in case that happens, that allows better control over those. One 

way to have some type of control over it starts with forest cleaning. In the beginning human 

beings created tools to facilitate that job that had evolved to be easier to use and more 

effectives. The use of vehicles such as trucks, airplanes and helicopters increased the 

effectiveness of firefighting, but the loss of lives is inevitable and continues to happen, to 

combat this problem it is necessary to increase the use of unmanned vehicles. 

Unmanned vehicles allow more effective cleanings of forests and firefighting, safer 

and without danger to human lives. These vehicles can move autonomously and adapt to the 

type of terrain, allowing a more effective forest cleaning that reduce which risk of forest 

fires.   

1.1. Motivation 

The evolution of technology makes it possible to build or improve tools to make tasks 

easier and more effective. The use of autonomous vehicles is growing and brings benefits to 

society. 

Forest cleaning is very important not only in extinguishing, but also in controlling 

forest fires because in addition to removing fire fuel, facilitates firefighting by improving 

the access to the forest zones, but the lack of manpower makes it impossible to realize the 

cleaning in useful time before the beginning of fire season. There are several cleaning lanes 

along roads, high voltage lines, around housing clusters, and other infrastructures at the 

forest urban interface but, once again, it is not possible to accomplish this goal because of 

the lack of manpower. 
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According to a report of 2020 from ANP (Associação Natureza Portugal) in 

association with WWF (World Wide Fund for Nature) [1] in the last 30 years, Portugal is 

the country with more hectares burned and is the first country in Europe and the fourth in 

the world to have lost the largest forest mass since the beginning of XXI century, largely due 

to the wildfires that ravage the country every summer. “If we continue with this dynamic, 

fires, especially those that affect the rural-urban interface area, will increasingly put people’s 

lives at serious risk”. In Europe, Portugal and Spain could become vulnerable to super fires. 

That being said, it is very important and beneficial to develop and use autonomous 

vehicles, without the need for human monitoring, thus compensating for the lack of 

manpower, but to make this possible, autonomous vehicles must be able to automatically 

adapt to the terrain they travel on. It is necessary to develop a system of automatic dynamic 

drive adjustment to allow the vehicle to overcome the difficulties imposed by rough terrains 

and move autonomously with the capacity to maintain the course, regardless of the slope and 

type of terrain. 

1.2. Objectives 

The goal of this thesis work is to develop a generic traction control algorithm for 

tracked autonomous vehicles moving on rough terrain. For this, it will be used a tracked 

vehicle equipped with several sensors and controllers. The algorithm should be able to: 

• Be implemented in any type of tracked or differential drive vehicle; 

• Adjust in real time the traction control of the vehicle to improve its movement 

as a function of the type and configuration of the terrain; 

• Keep a straight line movement, even in rough terrain conditions; 

1.3. Outline 

This dissertation is divided into seven chapters. 

The first chapter is the introduction to the theme of this dissertation and the exposition 

of the existing problem that inspired this dissertation. 

The second chapter is the state of the art that consists of the research about the existing 

robots and articles information about research already done by other authors. This chapter is 
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divided into three sub-chapters. The first one is a comparison of the tracked vehicles existing 

on the market, the second one is about the sensors used and the third one is about the research 

on the autonomous dynamic drive in rough terrain. 

In the third chapter the methodology is presented. This chapter is divided in three sub-

chapters, the first one about Ubuntu and its functionalities, the second one about Swift 

Navigation and its services and the third one is about the robot’s orientation. 

The fourth chapter is the work development and is divided into three sub-chapters, the 

first one is about the ROS topics and the data provided by them. The second one is about the 

operating mode of the control and explains how the control works and the last one is about 

the location of the robot, and how it can be determined. 

The fifth chapter is divided into two sub-chapters, the first one is about the realized 

tests and the environments where the tests were realized and the conditions of each test, and 

the second sub-chapter is about the results obtained in each test. 

The sixth chapter is the conclusion and relates if the main objectives were 

accomplished or not and gives a summary of the approach used during all the work. The sub-

chapter is about the future work that can be made. 
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2. STATE OF THE ART 

Tracked vehicles are special vehicles designed to move on rough terrain. The use of 

tracks augments the contact area with the ground, thus providing an increased, amount of 

traction, while reducing the pressure on the ground surface, making it easier for heavy 

vehicles to move on soft grounds. 

Since the appearance of the first tracked vehicle for agricultural purposes, these have 

constantly evolved and today there are tracked vehicles for civilian use or even tracked 

autonomous vehicles for forest cleaning or cargo transportation. 

This chapter will make an overview of existing unmanned tracked vehicles for forestry 

applications. It will then dwell on the sensors used in autonomous vehicles and the 

mathematic models used for vehicle control. 

2.1. Tracked vehicles 

2.1.1. Howe & Howe 

Howe & Howe it’s the company that builds tracked vehicles for defense, that requires 

a pilot and for civilian use that can be driven by people, as in the case of the Ripsaw F4, or 

remote controlled, like the Thermit series of the company. 

The Thermite series robots are firefighters’ robots operated by remote belly-pack 

controllers and are one of the most capable, durable firefighting robots on the market. The 

pilot has access to a real-time video feed, so he can control the robot at a large distance, 

enabling its function in extreme conditions without endangering human lives. 

 

Figure 2.1 - Thermite RS1. Adapted from [2] 

2.1.2. Vallfirest 

Vallfirest is a reference company in the manufacturing of equipment, tools, and 

solutions to fight and prevent forest fires. One of the pieces of equipment manufactured by 
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them is the VF Dronster, a multipurpose remote-controlled robot, capable of being controlled 

up to a distance of 25 meters.  

The VF Dronster operates with a 3-cylinder motor with 24,5kW of power and can 

work on rough terrains with slopes up until 40 degrees, going up or down, and 30 degrees 

going sideways, as shown in figure 2.4. 

 

Figure 2.2 - VF Dronster work gradient. Adapted from [3] 

 

Due to its narrow structure, the VF Dronster can move easily on the terrain, managing 

to pass through spaces of 90cm between trees. It can also be equipped with several 

attachments that can be used by the operated in case of need. 

 

Figure 2.3 - VF Dronster. Adapted from [3] 

2.1.3. McConnel 

This United Kingdom company builds a huge amount of types of equipment, including 

power arms, remote control technology, rotary and flail mowers, arable machinery, sprayers 

and spreaders, pasture and livestock. The remote control technology encompasses several 
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cut robots, with different dimensions, capacities and sizes, and all can be operated remotely 

from a distance up to 150 meters. 

One of their robots is the ROBOCUT2 RC40 which operates with a 3 cylinder motor 

and 27,5kW of power, and can work on rough terrains with slopes up until 40 degrees, with 

the standard tracks, but can be added special tracks with spikes that allow the robot to work 

on slopes up until 55 degrees. The ROBOCUT2 RC40 can be seen in figure 2.6. 

 

Figure 2.4 - ROBOCUT2 RC40. Adapted from [4] 

2.1.4. Bermarthor 

Bermarthor is a company that manufactures, commercializes and repairs all kind of 

agricultural and forestry cleaning machines.  

This company manufactures the E-TRAIL, which is a 2-speed diesel engine with 

approximately 29,8kW that can be operated by remote control up to 150m and can work on 

slops with 55 degrees in every direction. The E-TRAIL by Bermarthor can be seen in figure 

2.7. 

 

Figure 2.5 - E-TRAIL. Adapted from[5] 
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2.1.5. Green Climber 

 The company Green Climber builds remoted control slope mowers that can handle 

the most difficult tasks. The slope mowers can work on rough terrains with slopes up to 56 

degrees and can be operated by remote control from 150m. In this thesis, will be used the 

robot LV400 Pro from Green Climber.  

The LV400 Pro operates with a 3 cylinders motor with 26,9kW of power and has a 

work gradient of 56 degrees at the maximum width and has the dimensions shown in figure 

2.6. 

 

Figure 2.6 - Green Climber LV400. Adapted from [6] 
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2.1.6. Comparison between robots 

Table 1 - Comparison between robots 

Company Model 
Length 
[mm] 

Width 
[mm] 

Height 
[mm] 

Motor 
Power 
[kW] 

Remote 
control 
Range 

[m] 

Weight 
[kg] 

Work 
Gradient 

[˚] 

Howe&Howe 
Thermite 

RS1 
1962 1118 1625 

3 cylinder 
Diesel 

18 
300-
500 

725 - 

Vallfirest VF Dronster 1710 887 1023 
3 cylinder 

Diesel 
24,5 25 850 

Up to 
30/40* 

McConnel 
ROBOCUT2 

RC40 
1960 1310 1120 

3 cylinder 
Diesel 

27,5 150 1150 
Up to 

40/55** 

Bermarthor E-TRAIL 1580 1430 1060 
4 cylinder 

Diesel 
29 150 1100 Up to 55 

Green 
Climber 

LV400 Pro 1860 1570 1110 
3 cylinder 

Diesel 
26,9 150 875 Up to 56 

 

*Front/lateral gradient 

**Depending on tracks 

2.2. Sensors 

There are several types of sensors and cameras on the market, that can be installed on 

robots to allow their localization and recognition of the terrain, being able to detect the type 

of terrain and its characteristics in the way to adapt is locomotion. 

2.2.1. RTK GPS 

The RTK (Real Time Kinematic) allows error reduction to just a few centimeters, 

reducing the GPS (Global Positioning System) error. 

As mentioned by Feng & Wang (2008) at [7], “an RTK system consists of a continuous 

operating reference station network and data links between a network server and reference 

stations and between the server and user-terminal”. 

The RTK accuracy is defined as the degree of conformance of an estimated RTK 

position at a given time to a defined reference coordinate value, which is obtained from an 

independent approach. The availability, in terms of accuracy, is the percentage of the time 
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during which the RTK solutions are available at a certain accuracy using the ambiguity-fixed 

and ambiguity-float phase measurements. The availability, in terms of ambiguity resolution, 

is the percentage of the time, in which position estimation is based on all the phase 

measurements whose integers have been correctly fixed at each epoch, assuming all the 

ambiguity-fixed solutions will give required accuracy. The RTK integrity relates to the 

confidential level that can be placed in the information provided by the RTK system. The 

continuity of the RTK is the availability over a certain operational period and conditions. [7] 

 

Figure 2.7 - RTK GPS. Adapted from [8] 

2.2.2. LiDAR 

LiDAR (Light Detection and Ranging) sensors are very important and are on the rise 

due to the need to make vehicles fully autonomous. As described by Roriz et al. (2021) at 

[9] “it can measure distances by simply calculating the round-trip time of a laser pulse 

travelled to the target and back”. 

The detection range values may change due to sunlight interferences and the target’s 

surface reflectivity. The transmitted power of the laser is limited by eye safety regulations 

and various factors change the calculated value as the laser’s wavelength, beam diameter, 

motion, pulse width and repetition rate for pulsed operations. Currently, LiDAR uses two 

wavelengths, 905 nm, and 1550 nm, making possible lights spatial resolution on the order 

of 0.1 degrees, which allows for extremely high-resolution 3D representation of objects 

around the vehicle. The Field of View (FoV) is the angle at which LiDAR signals are emitted 

and it must provide both horizontal and vertical FoV to allow a 3D representation of the 

vehicle’s surroundings.[9] 
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Figure 2.8 – LiDAR. Adapted from [10] 

2.2.3. Traversability maps 

Traversability maps are very useful when autonomous vehicles are moving on rough 

terrains. These maps make it possible to distinguish traversable paths from non-traversable 

paths. To create a traversability map can be used several sensors and algorithms. 

Sock et al. (2016) [11] used 3D-LiDAR and a camera to generate probabilistic 

traversability maps. Their approach estimates traversability of the terrain and build a 2D 

probabilistic grid map online using 3D-LiDAR and camera. The detection results by LiDAR 

and camera needed to be represented in a form which was both simple and intuitive. It is 

used the Bayesian fusion to create the maps produced by LiDAR and camera. The 

traversability map with camera follows some steps to map probabilistic pixel value to a dense 

grid map using spatially sparse LiDAR. Initially it extracts LiDAR points projected to an 

image and transform their coordinates to GPS coordinate. The next step is to triangulate the 

points with Delaunay triangulation. After that, it assumes each triangle has a single 

probability value and then project the triangle’s centroid to the image and map the 

corresponding pixel value to a grid map. The traversability map with LiDAR needs to 

convert range data to n × n elevation map, interpolate the elevation map to fill the missing 

cells and convert the slope feature probabilistic value. Then it is used Bayesian fusion to 

produce the complete traversability map, as shown in figure 2.9. [11] 
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Figure 2.9 - Bayesian fusion. Adapted from [11] 

2.3. Autonomous dynamic drive in rough terrain 

There are several autonomous dynamic drive models with different goals that can be 

used on autonomous tracked vehicles. 

Those models allow autonomous navigation, enabling problem-solving such as 

avoiding obstacles and correcting the trajectory so that the robot can reach its goal, without 

requiring human intervention.  

Bijo & Pinhas (2019) [12] described the use of an active disturbance rejection 

controller (ADRC) to estimate and compensate for the effect of slip in an online manner to 

improve the path tracking the performance of autonomous ground vehicles. It is used as a 

generalized model, of the many proposed over the years to account for the effect of slip in 

autonomous ground vehicles. The generic model proposed by them considers the scaling and 

shift produced in the robot states as result of a slip. Their model uses an observer EKF 

(extended Kalman filter). The low-level controller uses a simple behavior “go-to-goal”, that 

guides the robot to the target point from an initial position and orientation. 

The experimental validation considered different types of terrain, such as vinyl 

flooring, asphalt, artificial turf, and grass and gravel. For the ADRC implementation 

encoders were used on both tracks to obtain the forward and angular velocities. It used a 

POZYX positioning system, an ultra-wide band positioning system that uses four anchors 

placed on the perimeter of the experimental area along with a tag placed on the robot. Path 

following trials were conducted to compare the use of ADRC which provides smooth 
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corrections and the low-level controller alone (PD) that sub-corrects which results in a jerky 

motion. Figure 2.10 shows the improvement obtained by using the ADRC over the PD. 

Notably, the path done has more accuracy when is used ADRC architecture instead of the 

low-level controller alone. 

 

Figure 2.10 - Path tracking results on grass and gravel. Adapted from [12] 

Zou et al. (2018) [13] proposed a novel approach to the dynamic modeling and motion 

control of tracked vehicles undergoing skid-steering on horizontal, hard terrain, under 

nonholonomic constrains. They proposed a motion control methodology, using the back-

stepping method, based on a modified Proportional-Integral-Derivative (PID) computed-

torque controller. To verify the proposed approach were made simulations that resulted in 

high accuracy of the motion-control performance. 

The authors did the modeling of tracked vehicles regarding the kinematics, the 

nonholonomic constraints of tracked vehicles and the mathematic model. 

The kinematics modeling considers two coordinate frames, the vehicle-fixed frame, 

and the inertial frame. Also consider the slip angle that is caused by the skid-steering turning 

maneuver of the vehicle. The mathematic model has into account the tractive force, the 

longitudinal and lateral resistance forces and the turning moment and moment of turning 

resistance. 

Several systems for localization and navigation were proposed, with the authors opting 

to use three bi-axial accelerometers that form an IMU (inertial measurement unit), which 

enable the estimation of the pose and the twist of the tracked vehicle. Instead of the regular 
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IMU composed of accelerometers and gyroscopes, an accelerometer strap-down was 

employed. A modified PID computed-torque controller was designed for this nonlinear 

system. 

The authors devised an experimental test where the vehicle should follow a circular 

path with a 10m radius, at a constant angular velocity of 0,8rad/s. During the test was 

possible to verify that due to the significant slip at the initial stage of motion the trajectory 

of the tracked vehicle does not converge to the desired path but can follow the desired path 

quite closely after a significantly short period, as shown in figure 2.12. 

 

Figure 2.11 - Vehicle following a desired circular path. Adapted from [13] 

In manned controlled vehicles the driver decides the optimal turning speed, but in 

autonomous vehicles, the speed is decided by the autonomous control system. For tracked 

autonomous vehicles, the velocity is an important factor while turning to maintain the desire 

path.  

Naumov et al. (2019) [14] studied tracked autonomous vehicles’ effectiveness 

estimation while turning. Their study considers the relation power-weight on dry ground 

roads. The algorithm is represented by them as follows: “when the robotic vehicle is moving, 

the angular velocities of the right and left boards are determined. The angular velocities enter 

the valuator unit for calculating the theoretical angular velocity of the chassis steering. Next, 

go to the divider unit. The actual angular velocity from the sensors is fed into the divider 
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unit. Next, the comparison with the reference signal and the command to the actuator” and 

the structural diagram of the system can be seen in figure 2.13. 

 

Figure 2.12 - Scheme of the robotic tracked vehicle uncontrolled movement prevention system. Adapted 
from [14] 

After that, they realized some simulations at different speeds with a steering radius of 

25 meters. Figure 2.14 shows the path followed by the vehicle during the simulations at 

different speeds. 

 

Figure 2.13 - Simulation results. Adapted from [14] 

When a goal is defined for the autonomous robot to reach, it is necessary to understand 

if the robot can avoid all the obstacles that can be found. In that case, the robot needs to 

select the best path on its own, using systems that allow the robot to define what direction it 

should take, avoiding obstacles and terrain conditions that it cannot overcome, for that Bijo 
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& Pinhas (2019) [15] proposed a method that allows the autonomous system to recognize 

the terrain conditions and obstacles and defines the path to follow until reaching the goal. 

The proposed architecture uses the D* Lite algorithm working on a 2D grid 

representation of the terrain as the high-level planner. The proposed approach for the path 

planning algorithm needs to consider the dynamic interactions between the robot and the 

terrain by simulating the closed-loop motion of the robot with a low-level controller on a 

realistic terrain model inside a physics engine. 

To obtain the terrain topology of the robot’s current position and the close cells, the 

high-level planner starts with a 2D grid map of the region in which the terrain topology is 

initially flat, and then with the help of sensors, like LiDAR it actualizes the grid to include 

close obstacles. After knowing the neighboring cells, the robot tries to reach the next cell, if 

after a certain time the robot doesn’t move, the next cell is defined as unreachable, and the 

robot tries to reach another neighboured cell. Figure 2.15 shows a block diagram and figure 

2.16 a flow chart explaining the work of the proposed method. 

 

Figure 2.14 - Block diagram representation of the proposed planner. Adapted from [15] 
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Figure 2.15 - Flow chart showing the working of the proposed planning algorithm. Adapted from [15] 

The low-level plane used continuously monitoring the state of the robot and the 

environment through sensors to generate control inputs to ensure stable navigation from the 

current state to the next waypoint. 

The system uses two different behaviors, the go-to-goal (GTG), and then avoid 

obstacle (AO) behaviors. It starts at go-to-goal and stays in it until an obstacle point is 

detected at a close distance, when it chances to avoid-obstacle-and-go-to-goal, as shown in 

figure 2.17. 
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Figure 2.16 - Work of the system. Adapted from [15] 

At the experimental validation, the goal was given to the robot, and it is possible to see 

in figure 2.18 that were proposed two different paths to the robot. The kinematic planner 

proposed the shortest path that failed because the robot was unable to cross the ridge on the 

map. While proposed planner, provided with the complete map of the terrain within the 

physics engine proposed a longer but feasible path that successfully guided the robot to the 

goal. Concluding that the proposed method works and can guide a robot to the desired point 

avoiding obstacles and terrain hard conditions. 

 

Figure 2.17 – Terrain topography map showing the 3D path followed by the robot under both the planners 
over the experimental setup. Adapted from [15] 
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3. METHODOLOGY 

This chapter introduces the methodology used in this work, such as the operating 

system (Ubuntu) of the virtual environment, for performing simulations (ROS), the sensors 

applied (Duro Inertial) in the real robot (Green Climber LV 400 Pro) and the concepts used 

for the evaluation of the robot’s position (quaternions and Euler angles). 

The Ubuntu operating system was used to use ROS and perform simulations that 

allowed the developing and the test of algorithms for the vehicle’s traction control. To test 

the developed algorithms were installed two different robots and three different virtual 

environments where the tests were performed. 

After developing the algorithm, a validation phase with the real machine followed, 

where a high-precision GNSS (global navigation satellite system)  system was used (Duro 

Inertial). 

3.1. Ubuntu 

Ubuntu is a Linux open-source operating system available for free with professional 

and community support. It has a built-in firewall and virus protection software making it one 

of the most secure operating systems, is fully translated into over 50 languages and includes 

essential assistive technologies. 

It provides the fastest way from development to deployment on desktop, mobile, server 

or cloud. It offers the best development tools and libraries and has the most popular 

productivity tools such as Zoom, Microsoft Teams, Telegram, and Discord. It also provides 

easier game and artificial intelligence development with NVIDIA GPU supported out the 

box hassle-free.[16] 

3.1.1. Robot Operating System (ROS) 

ROS is an open-source framework that helps researchers and developers build and 

reuse code between robotic applications, are a global open-source community of engineers, 

developers, and hobbyists who contribute to making robots better, more accessible, and 

available to everyone. ROS is powering the future of robotics in industry, in the enterprise, 

and for developers. 
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ROS is used by some of the biggest names in robotics. It is used across numerous 

industries from agriculture to medical devices and even vacuum cleaners and is spreading to 

include all kinds of automation and software-defined dynamic use-cases.[17] 

3.1.1.1. Why use ROS? 

ROS allows developers to easily simulate their robot environment before deployment 

in the real world. Tools like Gazebo allow the creation of simulations with countless robotic 

platforms. The base code and knowledge can be applied across all robotic platforms, like 

drones, robotic arms, mobile bases, etc. 

The robots from ROS can speak any language as Python and C++ and it is even 

possible to get libraries to allow the use of most other languages or install rosbridge and use 

any languages that can speak JSON. There are ROS packages for everything, whether to 

compute a trajectory, conduct SLAM algorithms or implement remote control.[17] 

3.1.1.2. ROS Gazebo 

ROS gazebo is an open-source 3D robotics simulator. Gazebo simulates real-world 

physics in a high-fidelity simulation. It helps developers rapidly test algorithms and design 

robots using digital environments. 

Robotic simulations save a lot of time and money because it allows engineers to test 

how robots work without having to deploy or risk such robots in a real environment. It helps 

to replicate gravity, friction, torques, and any other real-life conditions that could affect the 

robot’s behavior and performance. 

Gazebo helps to integrate a multitude of sensors, and it gives the tools to test these 

sensors and develop algorithms to best use them. In situations where it is not possible to 

access robotic hardware or it is necessary to test hundreds of robots simultaneously, Gazebo 

allows such simulations, seemingly and hassle-free.[18] 

3.1.1.3. Gazebo simulation 

The gazebo has several robots and worlds where the simulations can be performed, 

from worlds with a completely flat surface to more complex ones, as shown in figure 3.1. 
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a)   b)  

c)  

Figure 3.1 - a) Inspection world; b) Agriculture world; c) Empty world 

Several robots can be used on gazebo simulations with several configurations that 

allow multiple different simulations. It is possible to use robotic arms to manipulate objects,  

aerial robots to simulate flights, and different types of ground robots, as shown in figure 3.2. 

a)   b)  

Figure 3.2 - a) Turtlebot3, model “waffle_pi”; b) Husky robot 

3.1.1.4. ROS topics 

While performing a simulation in Gazebo, there are several data topics, given by the 

implemented sensors on the robots which are constantly updated, and accessible, providing 

critical data about the robot. The topics available depend on which sensors are implemented 

on each robot. For the Husky robot, the available topics are shown in figure 3.3. 
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a)  b)  

Figure 3.3 - ROS topics 

3.1.1.5. Rviz 

Rviz is a ROS tool that allows the visualization of the robot and the data from the 

sensor implemented in it in real-time. It is a highly configurable environment, being possible 

to add or remove data information according to needs or availability. The tool is used 

simultaneously with the simulations in the Gazebo and provides all the information about 

the world of Gazebo simulation. Figure 3.4 it is possible to see some of the sensors that can 

be applied to the robot and figure 3.5 shows the tool in action, with some data information 

being provided and shown on the map. 

 

Figure 3.4 – Some of Rviz’s available sensors. 
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Figure 3.5 - Data demonstration on map. 

 

3.2. Robot Orientation 

3.2.1. Quaternions 

The quaternions were discovered by Sir William Rowan Hamilton and are an extension 

of the complex number, a hyper-complex number, and are written as a scalar plus a vector, 

as shown in equation 3.1. Its representation can be seen in figure 3.13. [27] 

And are denoted as shown in equation 3.2.         

          q̇ = 𝑠 + 𝑣 = 𝑠 + 𝑣1𝑖 + 𝑣2𝑗 + 𝑣3𝑘         ( 3.1) 

 

Where the orthogonal complex numbers are defined as in equation 3.3 

                                         𝑖2 = 𝑗2 = 𝑘2 = 𝑖𝑗𝑘 = −1   ( 3.3) 

 

The matrix of rotations is given by equation 3.4. 

                                                            q̇ = 𝑠 < 𝑣1, 𝑣2, 𝑣3 >   ( 3.2) 
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R(𝑠, 𝑣) =  [

2(𝑠2 + 𝑣1
2) − 1 2(𝑣1𝑣2 − 𝑠𝑣3) 2(𝑣1𝑣3 + 𝑠𝑣2)

2(𝑣1𝑣2 + 𝑠𝑣3) 2(𝑠2 + 𝑣2
2) − 1 2(𝑣2𝑣3 − 𝑠𝑣1)

2(𝑣1𝑣3 − 𝑠𝑣2) 2(𝑣2𝑣3 + 𝑠𝑣1) 2(𝑠2 + 𝑣3
2) − 1

] ( 3.4) 

 

 

Figure 3.6 - Quaternions representation. Adapted from [28]. 

3.2.2. Euler angles 

The Euler angles, roll, pitch, and yaw are angles sequences, relative to a fixed frame 

reference, widely used in the description of vehicles behavior. The roll, pitch, and yaw 

rotation matrix can be expressed as shown in equation 3.5. 

 

RPY(𝜙, 𝜃, 𝜓) = [

C(𝜙)C(𝜃) −S(𝜙)C(𝜓) + C(𝜙)S(𝜃)S(𝜓) S(𝜙)S(𝜓) + C(𝜙)S(𝜃)C(𝜓)

S(𝜙)C(𝜃) 𝐶(𝜙)C(𝜓) + S(𝜙)S(𝜃)S(𝜓) −C(𝜙)S(𝜓) + S(𝜙)S(𝜃)C(𝜓)

−S(𝜃) C(𝜃)S(𝜓) C(𝜃)C(𝜓)

]  ( 3.5) 

 

Where the letters “C” and “S” mean cos and sin, respectively. 

The roll corresponds to the rotation on the x axe, the pitch to the y axe, and the yaw to 

the z axe, as shown in figure 3.7. 
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Figure 3.7 - Roll, pitch, and yaw axes. Adapted from [29]. 

3.3. Swift Navigation 

Swift Navigation offers services (Skylark™), software (Starling®), and hardware 

(SwiftPath™, Duro®, Duro Inertial, Piski® Multi, Piski Multi Inertial) for several kinds of 

mechanisms, as shown in figure 3.8, allowing precise positioning solutions to deliver proven 

performance and high accuracy. 

 

 

Figure 3.8 - Swift Navigation ecosystem. Adapted from [19] 

3.3.1. Skylark™ 

Skylark™ is a wide area, cloud-based GNSS correction service that provides real-time 

high-precision positioning to autonomous vehicles, automotive, mobile, and mass-market 

applications. It delivers seamless corrections to continents across the globe. It was built from 

the ground-up for autonomy at scale, allowing lane-level positioning, fast convergence 

times, and high integrity and availability required by mass-market automotive and 
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autonomous applications. It uses observations of hundreds of GNSS reference stations 

around the globe to provide real-time atmospheric and other errors affecting GNSS. The 

corrected data is available on the internet for the user and can be accessed anywhere within 

the Skylark network, the connected users only need to turn on their devices to access to get 

the correction stream they need. The Skylark™ network is shown in figure 3.9.[20] 

 

Figure 3.9 - Skylark™ network. Adapted from [20] 

3.3.2. Starling® 

Starling® is an advanced, high-precision positioning engine designed for automotive, 

industrial, and consumer applications that require centimeter or decimeter accuracy using 

GNSS and dead reckoning sensor fusion. A flow chart of Starling® is shown in figure 3.10. 

It is ideal for mass-market autonomous applications because it works with a variety of 

GNSS chipsets and inertial sensors. Its software is written in C++ which makes it possible 

to run on a variety of computing platforms. It uses commercially available GNSS receivers 

to provide centimeter accuracy and high integrity. It supports the calculation of precise 

position, velocity, and time (PVT), and when combined with inertial sensor measurements, 

wheel odometry, and other sensors inputs, it can assist with localization, decision, and 

control. 

Starling® works with multi-frequency, multi-constellation and commercial grade 

GNSS measurements engines that when combined with the wide-area Skylark™ cloud-
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based GNSS precise positioning service, significantly reduce the cost of high-accuracy 

positioning for autonomous applications.[21], [22] 

 

Figure 3.10 - Flow chart of Starling®. Adapted from[22] 

3.3.3. Duro Inertial 

The Duro Inertial combines the position, velocity and time solution of the Starling® 

position engine with the on-board IMU to deliver a continuous and precise positioning 

solution, even when the visibility of GNSS is low or none.  

It is easy to integrate and supports several interfaces, including RS232, CAN 

(controller area network), and Ethernet. The Starter Kit has everything necessary for easy 

deployment and is available in an RTK Pack for highly accurate assessment with an IMU. 

It has military-grade ruggedness, is packed in an IP67-rated ruggedized enclosure, and 

is designed for deployment in rough terrains. The Duro Inertial will be used on the real robot 

to provide data about it as can be seen in figure 3.11.[23] 

 

Figure 3.11 - Duro Inertial. Adapted from [23]  

The typical architecture of the Duro Inertial system is shown in figure 3.12. 
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Figure 3.12 - Duro Inertial system architecture. Adapted from[24] 

The Duro Inertial data can be consulted on the Swift Console, which provides data 

from the IMU, the Magnetometer, the INS and also the speed and velocity, as shown in 

figures 3.13 and 3.14. 
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Figure 3.13 - Swift Console Magnetometer window. Adapted from[25] 

 

Figure 3.14 - Swift Console Velocity window. Adapted from[25] 

The Duro Inertial combines the GNSS, RTK and IMU technologies and has continuous 

position outputs even when GNSS is not available, and increased robustness to challenging 

GNSS environments. 
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The Hardware is future-proof with in-field software upgrades and has intuitive LEDs 

for status and diagnostic and flexible and electrically protected ports. 

The provided solutions are 100 times more accurate when utilizing RTK technology 

in conjunction with GNSS than standard GNSS-only solutions. It can operate in temperatures 

that go from -40˚C to 75˚C and can provide position update rate (GNSS + INS (inertial 

navigation solution)), measurement (raw data), standard position outputs, and RTK position 

outputs up to 10 Hz and has a maximum operating velocity of 515 m/s.[26] 

The Duro Inertial can provide the Euler angles that allow knowing the vehicle frame 

orientation and it is also possible to use the Euler angles to configure the device frame 

orientation to the vehicle frame orientation. For example, a rotation matrix that can be used 

to rotate a vector from the device frame to the vehicle frame can be represented 

mathematically as follows in equation 3.6.[24] 

 

[

𝑣𝑥−𝑣𝑒ℎ𝑖𝑐𝑙𝑒

𝑣𝑦−𝑣𝑒ℎ𝑖𝑐𝑙𝑒

𝑣𝑧−𝑣𝑒ℎ𝑖𝑐𝑙𝑒

] = [
cos (𝑦𝑎𝑤) −sin (𝑦𝑎𝑤) 0
sin (𝑦𝑎𝑤) cos (𝑦𝑎𝑤) 0

0 0 1

] [
cos (𝑝𝑖𝑡𝑐ℎ) 0 sin (𝑝𝑖𝑡𝑐ℎ)

0 1 0
−sin (𝑝𝑖𝑡𝑐ℎ) 0 cos (𝑦𝑎𝑤)

] 

[

1 0 0
 0 cos (𝑝𝑖𝑡𝑐ℎ) −sin (𝑟𝑜𝑙𝑙)
0 sin (𝑟𝑜𝑙𝑙) cos (𝑟𝑜𝑙𝑙)

] ∗ [

𝑣𝑥−𝑑𝑒𝑣𝑖𝑐𝑒

𝑣𝑦−𝑑𝑒𝑣𝑖𝑐𝑒

𝑣𝑧−𝑑𝑒𝑣𝑖𝑐𝑒

] 

( 3.6) 
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4. WORK DEVELOPMENT 

This chapter describes the work developed to create the robot control. 

For the work development, it was necessary to become familiar with the Python 

programming language and the ROS. The Turtlebot3 was installed in ROS to be used in 

simulations and code development for the robot control. One of the biggest difficulties in 

Gazebo’s simulations is the instability of the robot coordinates, which are constantly 

changing even with the robot stopped. Initially, Turtlebot3 was used in a planar world, in 

which the control of the robot was developed because although the world has no slopes, the 

robot tends not to perform a movement in a straight line.  

The control was developed in phases, starting initially with the conversion of the 

quaternions into Euler angles, followed by the development of the code that keeps the robot 

in a straight line. Once the robot control was developed, it was necessary to perform the 

simulation in virtual worlds with real characteristics. For this, it was necessary to install the 

Husky robot and the worlds so that any necessary adjustments could be made in the control 

code. 

The work procedures are described in more detail throughout this chapter. 

4.1. ROS Topics 

The most important topics, in this case, are the “imu/data” that provide the orientation 

of the robot in quaternions (x, y, z, w), the angular velocity (x, y, z) and the linear 

acceleration (x, y, z) of the robot, shown at figure 4.1, and the “cmd_vel” that provides the 

linear velocity (x, y, z) and the angular velocity (x, y, z) of the robot, shown at figure 4.2.  
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Figure 4.1 - ROS topic "imu/data" data. The presented values serve as a mere example. 

 
Figure 4.2 – ROS topic "cmd_vel" data. The presented values serve as mere examples. 

From the data provided by these two topics, the most relevant is the orientation of the 

robot and the linear velocity. 

 The orientation of the robot in quaternions can be transformed in Euler angles (roll, 

pitch, and yaw) allowing a much easier understanding of the robot orientation. To achieve 

that objective, it was created a python code that can read, in real-time, the values of the 

quaternions given by the IMU and transforms, trough equations of the library, the x, y, z, 

and w values into Euler angles. A range of values was constructed for the yaw angle. This 

means that whenever the yaw value is in an interval of +0.00001 and -0.00001 concerning 

the first read value, this yaw value will be considered to be equal to the initial yaw value. 
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This strategy was employed to filter the signal noise on the magnetic compass and IMU. The 

data provided by the IMU that allows the conversion of the quaternions to Euler angels are 

constantly changing and it has 17 decimal places which means that to keep a constant yaw, 

without a defined range of values, there is the possibility that once this value changes, the 

data provided will never match that value again and so, even if the value is very close to the 

initial one, without this approximation the program would assume that it never returned to 

its initial value. The defined range of values was chosen trough tests, for the initial 

development of the code it started with a different range of values from the one applied at 

the end of the code, because once the control was developed it was possible to verify the 

influence of this range on the success of the control. 

To write the code that allows transforming quaternions into Euler angles is necessary 

to have access to the robot’s IMU, so, while writing it is necessary to import that data to use 

it. In figure 4.3 is possible to see the command line that does the importation of the data. 

 
Figure 4.3 - Importing library, data, and functions to code. 

Once the data from IMU was available to use, it was necessary to define a function 

that read, transform and filter the data. Initially, the quaternions values and the path to get 

them were defined, after that, through the python function “euler_from_quaternion”, 

imported to the code, as shown in figure 4.3, it was possible to transform the quaternions (x, 

y, z, w) into Euler angles (roll, pitch, yaw). As soon as the transformation was done, an “if” 

function defined the limit to the values of the yaw angle, as shown in figure 4.4. 

 
Figure 4.4 – Approximate small variations to the initial yaw. 

Then it was necessary to define a new function that read the values of the Euler angles 

and publish them into a new topic, created for this purpose. The robot data of roll, pitch, and 

yaw is now available to understand more about the robot’s orientation. The Python 

conversion code can be seen in annex A. 
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4.2. Operating Mode of the Control Code 

Once the code to convert quaternions into Euler angles its done, it is possible to read 

and manipulate the values of the angles and know more about the robot orientation. The code 

to control the robot is based, essentially, on the control of the yaw values given by the sensors 

of the robot and its angular velocity, whenever the yaw values suffer alterations.  

 To make sure that the robot is moving in a straight line, ideally, the yaw values should 

remain constant, meaning that the robot is not suffering any deviation from its intended path. 

If the yaw value suffers any alteration, means that the robot is starting to move in a different 

direction than the one intended. 

To correct the trajectory, it is necessary to know the distance traveled since the 

variation of the yaw was detected. To calculate the traveled distance, it is only necessary to 

know the velocity of the robot which is given in the ROS topic “cmd_vel”, the new yaw 

value in radians which must be converted to degrees using the equation 4.1 and the time in 

seconds since the deviation was detected. The deviation can now be calculated through 

equation 4.2. The time calculation is done by the control code, which starts to count at the 

moment that a deviation is detected. 

 

yaw[°] = yaw[rad] × 
180

𝜋
 ( 4.1) 

 

deviation = cos(yaw[°]) × velocity [m/s] × time [s] ( 4.2) 

 

 Now it is possible to know the deviation value, represented as “deviation” in the figure 

4.5. 
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Figure 4.5 - Deviation (x) calculation 

The calculation of the deviation is also done by the python code and once is done it is 

necessary to recover the deviation already suffered. To start the recovery the first step is to 

transform the yaw value into negative if it was positive, or into positive if it was negative, 

and give the robot an angular velocity, contrary to the deviation movement, making it turn 

to the other away and start to move in the opposite direction. Regardless of the yaw of 

deviation being positive or negative it starts a new time counting and the yaw value is once 

again converted to degrees using equation 4.1, and the recover distance can be calculated by 

equation 4.3 until it is equal to the deviation distance. 

 

recover = cos(yaw[°]) × velocity [m/s] × time [s] ( 4.3) 

 

Once the distance of recovery is equal to the distance of deviation, the yaw value 

should now be the initial value again and the angular velocity returns to the value of zero, 

causing the robot to return to its initial direction and trajectory. 
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Figure 4.6 – Expected robot movement while the code is running, and a deviation is detected. 

On an enlarged scale, while the code is working, it is supposed to see the robot being 

controlled, as shown in figure 4.6, where the initial position is represented by the letter A 

and de initial yaw value is represented by “yaw_i”. At this moment the robot is moving in a 

straight line with constant yaw value and velocity. At position B, it was detected a deviation 

and at that moment, the yaw value, is represented by “yaw_dev”, and the code already started 

calculating the time and converting the yaw from radians into degrees, to get the value of the 

deviation. In position C, an angular velocity was given to the robot and a new time is running 

to calculate the robot’s recovery. It is also necessary to know the new yaw value, that is 

given by the multiplication of the “yaw_dev” by -1. At position D, the yaw value is still the 

same as it was at C, but it detected the total recover of the trajectory, so a new yaw value 

applies to the robot, being the same as the beginning. The robot keeps moving in a straight 

line until it suffers a new deviation, repeating the process while the user doesn’t shut it down. 
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The linear velocity of the robot is constant during the entire process and its frame is shown 

in figure 4.7. The Python code can be seen in annex B. 

 

 

Figure 4.7 - Robot frame. 

4.3. Calculation of expected final position 

The final position of the robot can be estimated in at least two different ways. The first 

one is calculating the line equation, for that is only necessary to know the value of the initial 

yaw and the robot coordinates (x, y) at the beginning, and if the robot is moving in a straight 

line, it should keep is movement trough that line, so the final position, will be a point on that 

line. To estimate the final position of the robot in a second way, it is necessary to know the 

velocity of the robot, the time it is running, and the initial value of the yaw. After that, it is 

possible to know the expected final position. 

In both cases, it is possible to do a comparison between the estimated values and the 

actual values obtained for both movements, with the control code activated to keep the robot 

moving in a straight line and to the uncontrolled movement. 

4.3.1. Line equation  

The line equation can be obtained by knowing the x and y coordinates, the slope of the 

line (m), and one constant value (b), as shown in equation 4.4. 
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𝑦 = m𝑥 + b ( 4.4) 

 

The calculation of the constant slope of the line, m, is done by knowing the initial 

value of yaw in degrees and can be done by equation 4.5. 

 

m = tan(yaw[°]) ( 4.5) 

 

After that, and by knowing the initial coordinates of the robot (x, y) the value of the 

constant b can now be calculated, replacing in equation 4.4 the values of x and y by the initial 

coordinates of the robot, so the b value is given by the equation 4.6. 

 

b = 𝑦 −  m𝑥 ( 4.6) 

 

When the initial value of yaw is zero, that means that the slope value will be null and 

the constant b will be equal to the y coordinate of the robot meaning that the robot is only 

moving in the x and z axes, keeping the y value constant from the beginning of the movement 

until it stops. 

If the robot movement was done in a straight line, at the end of his movement x and y 

coordinates should belong to the line, if they don’t belong to it, it means that the robot has 

suffered a deviation and ended up moving on a different direction than the initial. 

4.3.2. Calculate the final coordinates 

To calculate the final coordinates a time count has to be done, that together with the 

initial value of yaw and the movement velocity of the robot, can provide the final coordinates 

of the robot. The traveled distance on the x and y axes are given by equations 4.7 and 4.8, 

respectively. 

 

𝑥𝑓𝑖𝑛𝑎𝑙 =  𝑥𝑖𝑛𝑖𝑡𝑖𝑎𝑙 +  cos(yaw[°]) × velocity [m/s] × time [s] ( 4.7) 

 

𝑦𝑓𝑖𝑛𝑎𝑙 =  𝑦𝑖𝑛𝑖𝑡𝑖𝑎𝑙 +  sin(yaw[°]) × velocity [m/s] × time [s] ( 4.8) 
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Then, it is possible to get the expectable values of x and y of the robot at the end of its 

trajectory, assuming that the robot was always moving in a straight line. The detection of a 

deviation is done by calculating the supposed final coordinates and comparing the obtained 

values with the real coordinates of the robot.  
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5. VIRTUAL SIMULATIONS AND RESULTS 

This chapter will show the tests performed to validate the created control and the 

results obtained in each test, making a comparison between the use and non-use of the control 

in the robot’s movement. The tests were carried out on three different maps, with two 

different robots. For each position of the robot and velocity, two tests were done, one using 

the control and the other one using the “Teleop” (velocity command name, to remotely 

control the mobile robot via keyboard, it allows to drive the robot trough the virtual 

environment without the need to implement code that gives the robot information about what 

to do). Tests were also carried out to determine the angular velocity that would be used 

whenever the robot needed to recover its trajectory and also to determine the best 

approximation to the yaw values. 

A completely flat map was used with the Turtlebot3 waffle_pi robot moving at three 

different speeds in each test. The Husky robot was also used to carry out tests on the 

“agriculture world”, a map that contain some slight slopes, and “inspection world”, a map 

that contains very steep slopes. In these two maps, the tests were also carried out using 

different speeds and, in addition, with different initial positions of the robot. 

5.1. Realized tests 

5.1.1. Angular velocity 

Whenever the robot suffers a deviation, to enable recovery, it needs a certain value of 

angular velocity, so that it is possible to return to the initial trajectory. As the linear speed of 

the robot can change, it was decided to test the angular velocity as a percentage of the liner 

velocity of the robot. To determine the best angular velocity, several tests were performed 

with different values of angular velocity and with some parameters to consider, such as: 

• Recovery should be smooth; 

• Recovery should be relatively fast to avoid large deviations from the desired 

trajectory; 

• Recovery should not induce a new deviation. 
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5.1.2. Yaw approximation 

Tests were carried out to select the best approximation of the yaw angle value to its 

initial value. The need for this approximation stems from the fact that the yaw values contain 

17 decimal places and are the transformation of the IMU quaternions, which contains noise 

and can cause the robot to move in a circular path after the first deviation is detected, as it is 

difficult to obtain the exactly initial yaw value again and thus closing the recovery cycle and 

starting the straight line trajectory again. To determine the best approximation, several tests 

were performed, increasing one decimal place at each test and it was verified in which of the 

situations the robot’s trajectory was more linear.  

5.1.3. Empty world 

To carry out the tests the robot was placed at the origin of the map, due to the constant 

change of values of the robot coordinates, its position is just approximated to the origin 

(location 1). The tests were carried out with three different linear speeds, a test with a speed 

of 0.11 [m/s], a test with 0.15 [m/s] and a test with the maximum speed of the robot of 0.25 

[m/s], being verified by initial coordinates of the robot for each test, to predict the final 

position of the robot. For each velocity, the tests were repeated three times, and the average 

coordinates, the average initial value of yaw, and the respective velocity can be seen in table 

2.  

Table 2 - Average initial robot position for each realized test, at location 1. 

Location 1 
Vx = 0.11 [m/s] Vx = 0.15 [m/s] Vx = 0.25 [m/s] 

Code Teleop Code Teleop Code Teleop 

x initial -0.000005 -0.000005 -0.000005 0.000005 -0.000005 -0.000005 

y initial 0.000001 0.000001 0.000001 0.000001 0.000001 0.000001 

yaw initial 0.000004 0.000004 0.000004 0.000008 0.000004 0.000004 

5.1.4. Agriculture world 

In order to carry out the tests in the agriculture world, the robot was positioned with a 

certain yaw value, approximated in each test due to the instability of the simulations, so that 

the trajectory it should travel passed through the areas of the map with the greatest slopes 

(location 2). Twelve tests were performed, six of them without the use of the control and the 

other six with the use of it and were also used at three different speeds, approximately, 

0.8053 [m/s], 1.0718 [m/s] and 1.5692 [m/s], for each velocity, the test was repeated twice. 
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The initial position of the robot can be seen in figure 5.1, and the blue circle represents the 

zone where the robot should stop. 

 
Figure 5.1 - Approximately initial position of the robot in each test of location 2. 

The average position of the robot at the beginning of each test can be seen in table 3. 

Table 3 - Medium initial position of the robot for each realized test in agriculture world, at location 2. 

Location 2 
Vx = 0.8053 [m/s] Vx = 1.0718 [m/s] Vx = 1.5692 [m/s] 

Code Teleop Code Teleop Code Teleop 

x initial 57.0039 57.0039 57.0039 57.0039 57.0039 57.0039 

y initial 12.9984 12.9984 12.9986 12.9983 12.9985 12.9985 

yaw initial 1.578652 1.578622 1.578632 1.578634 1.578628 1.578647 

5.1.5. Inspection world 

In the inspection world, were performed test in two different locations on the map. The 

first one, with a flattering start and slight slopes and an end with a great slope (location 3). 

In this location, twelve tests were performed, six with the use of the control and the rest 

without the use of it, being used, as in the agriculture world, at the same three different 

speeds, repeating each one twice. The second location (location 4) on the map was an area 

with average slopes during the entire route taken by the robot. The testing method was the 
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same as in the previous location, twelve tests were carried out under the same conditions. In 

both locations, the movement of the robot is, approximately, 40 meters for each test.  

The test locations can be seen in figures 5.2 and 5.3, and the blue circle represents the 

zone where the robot should stop. 

a)  

Figure 5.2 - Approximately initial position of the robot in each test of location 3. 

 
Figure 5.3 - Approximately initial position of the robot in each test of location 4. 
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The following tables, 4 and 5 show the average initial position of the robot for each 

realized test at locations 3 and 4, respectively. 

Table 4 - Medium initial position of the robot for each realized test, in the inspection world, at location 3. 

Location 3 
Vx = 0.8053 [m/s] Vx = 1.0718 [m/s] Vx = 1.5692 [m/s] 

Code Teleop Code Teleop Code Teleop 

x initial 15.9836 15.9740 15.9762 15.9803 15.9832 15.9728 

y initial -10.4949 -10.4594 -10.4630 -10.4619 -10.4630 -10.4158 

yaw initial -0.059591 0.008033 -0.072311 0.004628 -0.068076 0.005785 

 

Table 5 - Medium initial position of the robot for each realized test in the inspection world, at location 4. 

Location 4 
Vx = 0.8053 [m/s] Vx = 1.0718 [m/s] Vx = 1.5692 [m/s] 

Code Teleop Code Teleop Code Teleop 

x initial -23.0718 -23.0549 -23.0142 -23.0724 -23.1077 -23.0670 

y initial -27.4949 -27.5011 -27.5092 -27.4949 -27.5038 -27.5017 

yaw initial 0.088506 0.014949 0.042036 0.029483 0.039488 0.030777 

5.2. Results 

5.2.1. Angular velocity 

The obtained results in the tests to determine the angular velocity of the robot can be 

seen in figure 5.4, where the trajectory of the robot can be seen depending on the increase of 

angular velocity.  

It can be noted that for an angular velocity corresponding to 10% of the linear velocity, 

the robot recoveries are slightly slow, which may induce large deviations from the desired 

trajectory, thus not fulfilling the necessary parameters. For angular velocities of 25% and 

30% of the linear velocity, it is possible to verify that some of the recoveries induced new 

deviations, which causes a constant change in the trajectory of the robot and does not fulfill 

the necessary parameters. From 40% to 70% of the linear velocity, the recoveries are too 

fast, inducing new deviations and causing a constant change of direction, which does not 

meet the pre-defined parameters. The angular velocity selected to use in the control was 20% 

of the linear velocity, which can be seen that the recoveries are relatively fast, not causing 

circular trajectories, and are also smooth and without inducing new deviations. 
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Figure 5.4 - Robot's trajectory considering the variation of the angular velocity. 

5.2.2. Yaw approximation 

The obtained results in the approximation of the yaw values to the initial yaw can be 

seen in figure 5.5. Each test shows the trajectory made by the robot is possible to distinguish 

the most rectilinear ones. 

For each performed test, one decimal place was increased to the yaw value to 

approximate it to the initial yaw. The objective of these tests was to detect an approximation 
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that guarantees a straight line trajectory and that does not make an approximation too large 

so that the read value is constantly considered equal to the initial value. 

Some good results were obtained that kept the robot’s trajectory in a straight line, one 

of them was selected for use in the control, being, the letter “d” represented in figure 5.5, 

because it was enough to fulfill the requirements. 

 
Figure 5.5 - Robot's trajectory considering the approximation of the yaw values. 
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5.2.3. Empty world 

The obtained results in the tests showed a great improvement regarding the use of the 

control while the robot was moving. 

With the initial coordinates and yaw value, it was possible to determine the expected 

position of the robot at the end of its trajectory. After the robot’s movement, the final 

coordinates of the robot on the map were read allowing the calculation of the robot’s 

deviation. The expected and the real final coordinates can be seen in table 6. At each test, 

the robot did a trajectory of approximately 50 meters. At figure 5.6 is possible to see the 

average deviation of the robot for each test after the 50 meters trajectory for the use and non-

use (Teleop) of the control. It allows to understand that the robot’s deviation decreases with 

the increase of its linear velocity with the non-use of the control. It is also possible to notice 

that even with the maximum linear velocity of the robot, the final deviation, after a 

movement of 50 meters, is in the order of 4 meters. It can be compared with the movement 

performed by the robot with the use of the control, verifying that in this case, regardless of 

the robot´s linear velocity, the final deviation is minimal. 

Table 6 – Average final robot position for each realized test, at location 1. 

Location 1 
Vx = 0.11 [m/s] Vx = 0.15 [m/s] Vx = 0.25 [m/s] 

Code Teleop Code Teleop Code Teleop 

y final -0.0106694 10.07538 0.047632 7.013503 0.1571106 3.650052 

y expected 0.0114602 0.0114602 0.011663 0.022980 0.011527 0.011484 
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Figure 5.6 - Deviation of the robot after approximately 50 meters. 

5.2.4. Agriculture world 

The average final position of each test is shown in table 7. It is possible to verify that 

the robots move approximately 77 meters in each test with the y-axis, with the smallest 

variation being read on the x-axis, allowing us to verify if the robot suffered deviation or if 

it managed to control it using the control. It is not possible to analyze the results in the same 

way as in the empty world since there are slopes, which do not allow a correct approximation 

of the expected final coordinates of the robot through the equation of the line. To circumvent 

this problem, Rviz was used, which allows tracing the trajectory of the robot, making it 

possible to verify the movement made by the robot and analyze whether or not the trajectory 

was in a straight line. The results obtained through Rviz for the 0.8053 [m/s] velocity test 

can be seen in figure 5.7, which shows the complete robot’s trajectory, and figure 5.8, which 

shows in zoom the final zone of the trajectory and the final position of the robot, where, in 

both figures, the green and red dots correspond to the position where the robot should stop 

at the end of the trajectory, and the green line corresponds to the trajectory of the robot with 

the use of the control and the red one to the non-use of the control. The remaining results are 

presented in annex C. Through the analysis of the results, it is possible to verify that there is 

an improvement in the trajectory of the robot using the control. The improvement obtained 
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makes the movement of the robot more rectilinear and guarantees a final position much 

closer to the expected. 

Table 7 - Average final robot position for each realized test, at location 2. 

Location 2 
Vx = 0.8053 [m/s] Vx = 1.0718 [m/s] Vx = 1.5692 [m/s] 

Code Teleop Code Teleop Code Teleop 

x final 58.2942 57.8994 58.2614 57.3758 56.7408 57.3790 

y final 90.5890 90.1814 90.4875 90.3627 90.5192 90.1819 

 

 

 
Figure 5.7 - Deviation of the robot after the movement, at location 2. 

 
Figure 5.8 - Zoom of the final position of the robot, at location 2. 

 

5.2.5. Inspection world 

The obtained results for the two locations used to realize tests in the inspection world 

were analyzed in the same way as the results in the agriculture world results.  

The final average position of the robot in each of the locations can be seen in tables 8 

and 9, respectively the locations 3 and 4 on the map.  

At location 3, it can be noted, in figure 5.9, that the robot maintains a straight line 

movement, but at some point, it suffers a deviation, that is not compensated immediately, 

due to the large final slope causing a slight deviation in its movement. Although the deviation 

is not fully compensated, it is possible to verify, in figure 5.11, that the final position of the 
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robot at the end of the approximately 40 meters of movement, is quite close to the expected 

position. 

In location 4, the deviations suffered during the movement of the robot using the 

control are smaller compared to location 3, due to the smaller slopes of the path performed 

by the robot. The control worked during all the trajectories to keep the robot’s movement in 

a straight line, as is possible to see in figure 5.10, and the robot’s final position is close to 

the expected final position, as shown in figure 5.12. 

The results obtained shown in figures 5.9, 5.10, 5.11, and 5.12 correspond to the 

average of the tests done with a linear velocity of 1.5692 [m/s]. Figures 5.11 and 5.12 show 

in zoom the final zone of the trajectory and the final position of the robot, where, in all 

figures, the green and red dots correspond to the position where the robot should stop at the 

end of the trajectory, and the green line corresponds to the trajectory of the robot with the 

use of the control and the red one to the non-use of the control. The remaining tests for each 

location can be seen in Annex D. 

It is possible to notice that the use of the control increases the stability of the robot’s 

trajectory, keeping it with a more rectilinear movement and avoiding large deviations from 

the pretended trajectory. 

Table 8 - Average final robot position for each realized test, at location 3. 

Location 3 
Vx = 0.8053 [m/s] Vx = 1.0718 [m/s] Vx = 1.5692 [m/s] 

Code Teleop Code Teleop Code Teleop 

x final -24.6379 -26.1948 -25.8931 -25.4987 -25.2574 -21.9918 

y final -6.8446 -10.2306 -6.8523 -10.2604 -6.8496 -12.3971 

 

Table 9 - Average final robot position for each realized test, at location 4. 

Location 4 
Vx = 0.8053 [m/s] Vx = 1.0718 [m/s] Vx = 1.5692 [m/s] 

Code Teleop Code Teleop Code Teleop 

x final 16.0029 15.0731 16.7241 15.9400 16.5101 16.8976 

y final -23.3563 -28.1254 -25.2528 -27.8872 -25.3098 -28.0113 
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Figure 5.9 - Deviation of the robot after the movement, at location 3. 

 
Figure 5.10 - Deviation of the robot after the movement, at location 4. 

 
Figure 5.11 - Zoom of the final position of the robot, at location 3. 

 

 
Figure 5.12 - Zoom of the final position of the robot, at location 4. 
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6. CONCLUSIONS 

The main objective of this dissertation was the development of an algorithm for the 

traction control of tracked autonomous vehicles moving on rough terrain. 

For the development of the algorithm, it was necessary to understand more about this 

type of vehicle and research studies by other authors to know and avoid problems in the 

development of the algorithm. It was also necessary to study the sensors used to understand 

their characteristics and the data that each one of them could provide. The initial approach 

started by thinking of a way to control the velocity of each caterpillar of the robot 

independently to vary the velocities of each one to keep the trajectory in a straight line, 

realizing later that, with the sensors available on the real robot it would not be possible to 

do. It was necessary to move on to a different approach which consisted of analyzing the 

IMU data. 

The next process consisted of understanding the robot’s orientation, for this it was 

necessary to study quaternions to realize that they could be converted into Euler angles, 

which were also later studied, allow a better understanding of the robot’s orientation. 

After converting the quaternions into Euler angles, it was then possible to start 

developing the control. The approach taken varied throughout its development, with several 

errors and inefficient approaches being detected, which had to be circumvented and carried 

out differently. Initially, the control started by just reading and modifying the Euler angles, 

more specifically the yaw of the robot, but it was possible to perceive that this modification 

alone could not be as effective as an approach that considers the yaw reading and the 

modification of the velocity of the angular velocity of the robot. This approach allowed us 

to develop robot control efficiently and to achieve the main objective of this dissertation. 

During the development of this dissertation, some problems did not allow the testing 

of the control in the real robot (Green Climber LV 400 Pro) as initially planned, but tests 

were carried out in virtual environments that allowed to verify the operation of the control, 

with virtual robots that despite not being tracked, their operation mode is the same as tracked 

vehicles. 

The development of this dissertation was quite challenging, mainly because the topics 

treated with the development of control, such as python programming and the use of ROS, 

are not studied in a mechanical engineering course, thus forcing the learning of these topics 

from the beginning. However, the theme of this dissertation is quite interesting and allowed 
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for learning new areas, allowing us to notice the development made in the industry and to 

realize that some areas of work can be complemented with the use of robots, thus allowing 

us to compensate for the lack of manpower. 

In short, even not having tested the control in the real robot, the solution obtained 

seems to solve the problems of traction control. Considering all the tests carried out in a 

virtual environment, it can be concluded that the developed algorithm works, and some 

improvements can still be made, but it is already sufficiently capable. 

6.1. Future Work 

In future work, new functions can be implemented in the robot algorithm, such as: 

• Be able to carry out trajectories autonomously; 

• Detection and recognition of objects, stopping or circumventing to resume the 

trajectory; 

• Side slip detection; 

• Changing the robot’s speed depends on the type of terrain.
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ANNEX A 

 

Python code to convert quaternions into Euler angles. 
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ANNEX B 

Python code of the control. 
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ANNEX C 

Deviation of the robot at location 2 with the velocity of 1.5692 [m/s] and 1.0718 

[m/s],where the red dot and red line correspond to the robot’s final expected position and 

trajectory without the control, respectively. And the green dot and green line correspond to 

the robot’s final expected position and trajectory without the control, respectively. The zoom 

of the final position of each case is also shown. 

• 1.5692 [m/s] 

 
 

 
 

• 1.0718 [m/s] 
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ANNEX D 

Deviation of the robot at location 3 with the velocity of 1.0718 [m/s] and 0.8053 [m/s],  

where the red dot and red line correspond to the robot’s final expected position and trajectory 

without the control, respectively. And the green dot and green line correspond to the robot’s 

final expected position and trajectory without the control, respectively. The zoom of the final 

position of each case is also shown. 

• 1.0718 [m/s] 

 
 

    
 

• 0.8053 [m/s] 
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Deviation of the robot at location 4 with the velocity of 1.0718 [m/s] where the red dot 

and red line correspond to the robot’s final expected position and trajectory without the 

control, respectively. And the green dot and green line correspond to the robot’s final 

expected position and trajectory without the control, respectively. The zoom of the final 

position of each case is also shown. 

• 1.0718 [m/s] 

 
 

 


