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Abstract

The problem that motivated the choice of the subject of this thesis is related to the description of the
behaviour of electromagnetic waves in the human cornea, in order to understand the reasons that lead
to the opacity of the cornea. Maxwell’s equations, which describe the propagation of electromagnetic
fields, are the natural mathematical model for our study. In this work, we have chosen to consider a
simplified model given by the Helmholtz equation, assuming the harmonic variation in time of the
electromagnetic fields.

To solve the Helmholtz equation we use the discontinuous finite element method Galerkin (DG).
Since we are interested in solving the equation in a domain with a curved boundary, which intends
to mimic the human cornea, polygonal meshes do not polygonal meshes do not fit exactly into the
physical domain, which leads to a reduction in the accuracy of the numerical method.

In this thesis we propose two approaches to deal with the reduction in the accuracy of the DG
method in a domain with a curved boundary, in solving the Helmholtz problem in two dimensions with
homogeneous Dirichlet boundary conditions. The first method is called DG-ROD (Reconstruction
for Off-site Data), is based on a polynomial reconstruction of the boundary condition imposed on
the computational domain that takes into account the boundary condition imposed on the physical
domain. The numerical tests show a reduction of the error and an increase in the order of convergence
of the method, in relation to the classical DG method. The second method proposed, called DG-NM
(Nelder-Mead) with step size control, is based on changing the boundary condition imposed on the
computational domain by solving an unconstrained minimisation problem. This minimisation problem
is solved with a variant of the Nelder-Mead method. The numerical tests evidence a decrease in the
error in relation to the classical DG method and a decrease in the number of iterations in relation to
the classical NM method. Both methods suggested in this thesis have the advantage of not requiring
the generation of curved meshes to adjust the boundary nor complex nonlinear transformations to map
the curved elements to the reference one, in relation to other alternatives to deal with curved boundary
domains.

Keywords: Helmholtz’s equation, discontinuous Galerkin method, curved boundary domains, poly-
nomial reconstruction, optimisation, Nelder-Mead method.





Resumo

O problema que motivou a escolha do tema desta tese prende-se com descrição do comportamento das
ondas electromagnéticas na córnea humana, a fim de compreender as razões que conduzem à opacidade
da córnea. As equações de Maxwell, que descrevem a propagação de campos electromagnéticos,
constituem o modelo matemático natural para o nosso estudo. Neste trabalho, optámos por considerar
um modelo simplificado dado pela equação de Helmholtz, assumindo a variação harmónica no tempo
dos campos electromagnéticos.

Para resolver a equação de Helmholtz recorremos ao método dos elementos finitos descontínuos
Galerkin (DG). Uma vez que estamos interessados em resolver a equação num domínio com fronteira
curva, que pretende mimetizar a córnea humana, as malhas poligonais não malhas poligonais não se
ajustam exactamente ao domínio físico, o que conduz a uma redução da precisão do método numérico.

Nesta tese propomos duas abordagens para lidar com a redução da precisão do método da DG
num domínio com fronteira curva, na resolução do problema de Helmholtz em duas dimensões
com condições de fronteira de Dirichlet homogéneas. O primeiro método designa-se por DG-ROD
(Reconstruction for Off-site Data) e baseia-se na reconstrução polinomial da condição de fronteira
imposta no domínio computacional, tendo em conta a condição de fronteira imposta no domínio
físico. Os testes numéricos realizados evidenciam a diminuição do erro e o aumento da ordem de
convergência do método, em relação ao método DG clássico. O segundo método proposto designa-se
DG-NM (Nelder-Mead) com controlo do passo e baseia-se na alteração da condição de fronteira
imposta no domínio computacional através da resolução de um problema de minimização sem
restrições. Esse problema de minimização é resolvido com uma variante do método de Nelder-
Mead. Os testes numéricos realizados evidenciam a diminuição do erro em relação ao método DG
clássico e uma diminuição do número de iterações em relação ao método de NM clássico. Ambos
os métodos sugeridos nesta tese têm a vantagem de não utilizar malhas com elementos curvos nem
transformações não lineares do elemento da malha para o elemento de referência, comparativamente a
outras alternativas para lidar com domínios com fronteira curva.

Palavras-Chave: Equação de Helmholtz, método de Galerkin descontínuo, domínios com fronteira
curva, rescontrução polinomial, otimização, método Nelder-Mead.
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Chapter 1

Introduction

The Helmholtz equation has an important role in physics and has several applications, particularly
in the fields of optics, acoustics, electrostatics and quantum mechanics. This equation is usually
associated with vibrating membranes (such as drums), lasers and the propagation of sound and
electromagnetic waves. The Helmholtz equation, −∇2u− ν2u = 0, with wave number ν , is the
simplest model of wave propagation. For instance, if U(x, t) = u(x)eiωt is solution of the wave
equation ∂ 2U/∂ t2 − c2∇2U = 0, then the function u(x) satisfies the Helmholtz’s equation with
ν = ω/c. Assuming an analogous relationship in time, Maxwell’s equations reduce to the time-
harmonic Maxwell equations and, under certain conditions, can be further reduced to the Helmholtz
equation. Similarly, the time-harmonic elastic wave equation (often called the Navier equation) also
reduces to the Helmholtz equation under certain conditions. Thus, the main reason for interest of
the Helmholtz equation in the area of physics is the fact that this equation describes the solution
of the wave equation, when we consider a harmonic variation in time. This allows us to state that
the Helmholtz equation is at the heart of the description of linear wave propagation and so efficient
methods for solving the equation and studying the properties of its solutions have been discussed in
literature.

This work is part of a more generic project that consists in analysing the incidence and reflection
of light in the cornea [1]. The cornea (see Figure 1.1) corresponds to the transparent part of the outer
layer of the eye and its curved interface provides three-quarters of the eye’s focusing power (the
rest being provided by the lens). Thus, maintaining the curvature and transparency of the cornea is
essential for good vision, which is translated by less light reflection and therefore more information
is captured. The reasons that lead to corneal opacity are not yet completely determined, but there
is consensus that corneal transparency is related to the shape, size and organisation of the stromal
extracellular matrix and its elements, in particular collagen fibrils and their refractive indices, which
translate the speed of light as it passes through the medium in question (see [9], [11], [21] and the
references therein).

To model the incidence and reflection of light on the cornea, we consider Maxwell’s equations,
which describe the electromagnetic field. In this thesis we will focus on Maxwell’s equations in
time-harmonic form, and consequently, its formulation as the Helmholtz equation.

The most common techniques for solving partial derivative equations are: the finite element
method, the finite difference method and the finite volume method. The discontinuous Galerkin
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2 Introduction

Fig. 1.1 Anatomy of the human eye with corneal cross-section.
Source: National Eye Institute.

(DG) finite element method, which we will use to solve the Helmholtz equation, results from the
combination of the ideas used in the finite volume and finite element methods, taking much advantage
of the individual advantages of each of them [15]. The DG method is a high-order precision method.
Moreover, it is a local method, which allows more flexibility when complex meshes are considered
and admits discontinuous solutions. Analogously to the numerical flow in the finite volume method,
which transports information from one local element to another, the numerical flow in the DG method
connects adjacent elements, allowing the construction of the global approximation.

Since we intend to solve the equation in a domain that mimics the human cornea, polygonal
meshes do not exactly fit the curved physical domain, thus reducing the accuracy of the method. In
order to overcome this problem, we will equip our numerical scheme with an optimisation method.
In this thesis we suggest two alternatives based on changing the boundary condition imposed on the
computational domain. One of the approaches is based on a polynomial reconstruction developed
in the context of the finite volume method, following the work developed in [2]. The main idea of
this method is to design a polynomial reconstruction of the boundary condition of the polygonal
computational domain that takes into account the boundary condition in the physical domain. The
second approach aims to overcome a drawback of the first alternative, improving the efficiency of the
method. It is based on changing the boundary condition imposed on the computational domain by
solving an unconstrained minimisation problem. This minimisation problem is solved with variant of
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the Nelder-Mead (NM) method, which is one of the most popular derivative-free methods. Despite
being a widely used algorithm, quite a few results are known on the convergence of this method.
Moreover, the method may fail to converge to a stationary point of the objective function f because
the simplices can became arbitrarily flat or needle shaped . In this sense, we suggest a modified
Nelder-Mead algorithm that controls the geometry of the simplex.

In Chapter 2, we start by presenting the Maxwell’s equations as a fundamental set of equations to
describe electromagnetic wave propagation. Moreover, we deduce the Helmholtz’s equation in the
context of electromagnetism, under certain conditions, and we analyze the existence and uniqueness of
the solution of the Helmholtz problem. Once presented the equation of interest, Chapter 3 is dedicated
to a description of the numerical method used (the DG method) and of some aspects of the numerical
implementation of the method. In Chapter 4, we discuss the treatment of curved boundary domains,
highlighting the necessity for an alternative approach, which is proposed in this chapter. We end this
chapter with a comparison of the numerical results obtained with the classical DG method and with
the alternative method. In Chapter 5, we present another approach to overcome the difficulties in the
boundary treatment of curved domains and we analyze some theoretical aspects of the method used to
solve the problem. We also present the numerical experiments with this method. Finally, in the last
chapter, we present a brief conclusion and perspectives for future work. We also include a comparison
of the methods suggested in this thesis in Appendix A.





Chapter 2

Helmholtz’s equation in electromagnetism

Maxwell’s equations are essential to explain all chemical and biological phenomena that involve
interactions between atoms. These equations describe how the electromagnetic field propagates in
free space and any medium. In this thesis, we consider an isotropic, linear, and time-invariant medium
and we deduce an equation directly related to Maxwell’s equations, which is the Helmholtz equation.

In Section 2.1, we present Maxwell’s equation and their constitutive relations. Furthermore, we
discuss the two-dimensional reduction of these equations, considering the so-called transverse electric
(TE) mode. Afterwards, in Section 2.2, we focus on a time-harmonic variation of the electromagnetic
wave propagation which, under certain conditions allows us to reduce Maxwell’s equations to the
Helmholtz equation. We end the chapter with a brief analysis of the existence and uniqueness of
solution for a particular Helmholtz problem.

2.1 Maxwell’s equations

Maxwell’s equations, formulated by James Clerk Maxwell in 1873, are considered the greatest
intellectual event of the 19th century. These equations describe the electromagnetic interaction, one
of the four fundamental interactions, in addition to gravitational, strong and weak interactions. The
electromagnetic interaction relates the electric and magnetic fields to their sources, which are electric
charges and currents, respectively. Maxwell’s equations are essential to explain all chemical and
biological phenomena involving interactions between atoms.

The work of Maxwell was based on Faraday’s discoveries, which had already shown that a
time-varying of a magnetic field produces an electric field. Starting from physical arguments but also
observable, Maxwell proved that the opposite was also true, i.e., that a time-varying of an electric
field produced a magnetic field. In addition, also showed that it is possible to create a self-sustained
electromagnetic pulse, which propagates at the speed of light, concluding that light is simply a form
of electromagnetic radiation. Maxwell described all these phenomena in only four equations which

5



6 Helmholtz’s equation in electromagnetism

can be written in the differential form for fields in a continuous medium Ω ⊂ R3 [16]:

∂DDD
∂ t

= ∇×HHH − JJJ, (2.1a)

∂BBB
∂ t

=−∇×EEE, (2.1b)

∇ ·DDD = ρ, (2.1c)

∇ ·BBB = 0, (2.1d)

where EEE(xxx, t) [V m−1] denotes the electric field intensity, HHH(xxx, t) [A m−1] the magnetic fiel intensity,
DDD(xxx, t) [A s m−2] the electric displacement field (electric flux), BBB(xxx, t) [V s m−2] the magnetic induc-
tion field (magnetic flux), ρ(xxx, t) [A s m−3] the charge density and JJJ(xxx, t) [A m−2] the current density
function. The SI units denotes meter [m], seconds [s], Volt [V] and Ampere [A].

In defining Maxwell’s equations, we used the divergence operator ∇·, which is defined for a vector
field uuu = (ux,uy,uz), ui = ui(x,y,z), i = x,y,z, by

∇ ·uuu =
∂ux

∂x
+

∂uy

∂y
+

∂uz

∂ z
.

We also used the curl operator defined by

∇×uuu =

∣∣∣∣∣∣∣
îii ĵjj k̂kk
∂

∂x
∂

∂y
∂

∂ z

ux uy uz

∣∣∣∣∣∣∣=
(

∂uz

∂y
−

∂uy

∂ z
,
∂ux

∂ z
− ∂uz

∂x
,
∂uy

∂x
− ∂ux

∂y

)T

,

where îii, ĵjj, k̂kk are the unit vectors for the x−, y− and z−axes, respectively. In this thesis we will also
need the definitions of gradient and Laplacian. If u is a scalar field, the gradient is defined by

∇u =

(
∂u
∂x

,
∂u
∂y

,
∂u
∂ z

)T

and the Laplacian by

∇
2u =

∂ 2u
∂x2 +

∂ 2u
∂y2 +

∂ 2u
∂ z2 .

The four Maxwell’s equations are the basics of electricity and magnetism in differential form.
Equation (2.1b) is the differential form of Faraday’s law for induction and describes the creation of an
induced electric field due to a time-varying magnetic flux. The creation of an induced magnetic field
due to charge flow is described by Equation (2.1a) known as Ampère’s law. The divergence equations
(2.1c)) and (2.1d) are Gauss’s electric law and Gauss’s magnetic law, respectively. Equation (2.1c)
describes the relation between the electric field distribution and the charge distribution. Equation
(2.1d) is a statement of the absence of free magnetic monopoles. The equation (2.2) is known as
continuity equation. Equations (2.1b) and (2.1a) are also called curl equations, and equations (2.1c)
and (2.1d) are divergence equations. Differentiating (2.1c) with respect to time and using (2.1b) gives

∂ρ

∂ t
+∇ · J = 0 (2.2)



2.1 Maxwell’s equations 7

which expresses the conservation of the charge of the system.
Although, the Maxwell’s equations fully describe the propagation of electromagnetic radiation in

any medium, they are not sufficient to determine the electromagnetic field in matter and additional
relations known as constitutive equations are needed to model the electromagnetic field interaction with
matter. To uniquely determine the electromagnetic field, Maxwell’s equations must be supplemented
by relations that describe the way fields interact with the matter. These relationships are called
constitutive relations and, for linear materials, they can be written as DDD = εEEE and BBB = µHHH, where ε

e µ are material’s permittivity and permeability, respectively, and characterize the response of this
material to electrical and magnetic fields. The current density, JJJ, is typically assumed to be related to
the electric field, EEE, through Ohm’s law, JJJ = σEEE, where σ is the material’s conductivity. Thus, this
three parameters fully characterize the electromagnetic properties of a medium.

A usual assumption in optical problems is to consider the electrical conductivity and the charge
density as zero, i.e., σ = 0 e ρ = 0. We also assume that the propagation material is isotropic1,
time-invariant and linear In this case, the values of ε and µ are scalar functions that depend only on
the spatial variable. In the vacuum, the values of these quantities are fundamental physical constants
given, in SI units, by µ0 = 4π ×10−7 kg m2s−2A−2 and ε0 = 1/µ0c2

0 = 8.85×10−12 A2s4kg−1m−2,
where c0 denotes the speed of light in a vacuum.

In this work, we consider the non-dimensional variables xxx = xxx/L e t = t/(L/c0), where L is a
reference length, and the constitutive relations of the form

DDD = εrEEE, BBB = µrHHH, (2.3)

where εr and µr refer to the relative permittivity and relative permeability, respectively, given by
εr = ε/ε0 and µr = µ/µ0. The relative permittivity is the permittivity of a material in relation to the
permittivity of free space and the relative permeability is defined similarly. Under these conditions,
the normalized time-domain form of Maxwell’s equations is given by

εr
∂EEE
∂ t

= ∇×HHH, (2.4)

µr
∂HHH
∂ t

=−∇×EEE, (2.5)

∇ · εrEEE = 0, ∇ ·µrHHH = 0. (2.6)

If the continuity equation (2.2) holds, the two divergence equations (2.6) are implicitly satisfied.
The electromagnetic wave propagation in such a medium formulated as a set of first order coupled
differential equations has the form

εr
∂EEE
∂ t

= ∇×HHH,

µr
∂HHH
∂ t

=−∇×EEE,

where EEE = (Ex,Ey,Ez) , HHH = (Hx,Hy,Hz).

1A material is isotropic if the optical properties are the same for any direction, at any given spatial location in that
medium.



8 Helmholtz’s equation in electromagnetism

In order to reduce the dimensionality of the system, it is usual to assume, in the context of
optical applications [13], that the electromagnetic fields is homogeneous in one of its directions, e.g.
z-direction. Thus, all z-derivatives vanish and we obtain two disjunctive sets of equations called
transverse electric (TE) mode and transverse magnetic (TM) mode. We will consider the mode that
describes the propagation where the electric field lies in the plane of propagation. In this case, the
Maxwell’s curl-equations (2.4) and (2.5) are reduced to the TE mode, where EEE = (Ex,Ey) and HHH = Hz

εr
∂Ex

∂ t
=

∂Hz

∂y
, εr

∂Ey

∂ t
=−∂Hz

∂x
, µr

∂Hz

∂ t
=

∂Ex

∂y
−

∂Ey

∂x
. (2.7)

The equations must be completed with appropriated boundary conditions.

2.2 Helmholtz’s equation

In this section we focus on a time-harmonic variation of the electromagnetic wave propagation and we
deduce the Helmholtz equation. Moreover, we analyze the existence and uniqueness of the solution of
a Helmholtz problem with homogeneous Dirichlet boundary conditions.

2.2.1 From Maxwell to Helmholtz

Let us assume that the electric and magnetic fields are time-harmonic, i.e., they can be written as

EEE(xxx, t) = eiωt ÊEE(xxx) and HHH(xxx, t) = eiωtĤHH(xxx),

where ω denotes the time frequency of the electromagnetic wave, i is the imaginary unit, and ÊEE and
ĤHH are complex-valued functions. With this assumption, we can write the equations (2.4) and (2.5) as
follows

εr
∂eiωt ÊEE

∂ t
= ∇×

(
eiωtĤHH

)
⇒ eiωt iωεrÊEE = eiωt (

∇× ĤHH
)
⇒ iωεrÊEE = ∇× ĤHH,

µr
∂eiωtĤHH

∂ t
=−∇×

(
eiωt ÊEE

)
⇒ eiωt iωµrĤHH =−eiωt (

∇× ÊEE
)
⇒ iωµrĤHH =−∇× ÊEE.

We also have,

∇ ·
(
εreiωt ÊEE

)
= 0 ⇒ eiωt

∇ ·
(
εrÊEE
)
= 0 ⇒ ∇ · εrÊEE = 0,

∇ ·
(
µreiωtĤHH

)
= 0 ⇒ eiωt

∇ ·
(
µrĤHH

)
= 0 ⇒ ∇ ·µrĤHH = 0,

leading to the first order form of Maxwell’s equations in the frequency domain

iωεrÊEE = ∇× ĤHH, iωµrĤHH =−∇× ÊEE, (2.8)

∇ · εrÊEE = 0, ∇ ·µrĤHH = 0. (2.9)
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The previous equations are now recovered as

iωεrÊEE = ∇× ĤHH ⇒ iω∇× ÊEE = ∇× 1
εr

∇× ĤHH ⇒ ∇× 1
εr

∇× ĤHH = µrω
2ĤHH,

iωµrĤHH =−∇× ÊEE ⇒ iω∇× ĤHH =−∇× 1
µr

∇× ÊEE ⇒ ∇× 1
µr

∇× ÊEE = εrω
2ÊEE.

Therefore, equations (2.8) and (2.9) can be written as

∇× 1
εr

∇× ĤHH = µrω
2ĤHH, ∇ ·µrĤHH = 0 (2.10)

∇× 1
µr

∇× ÊEE = εrω
2ÊEE, ∇ · εrÊEE = 0. (2.11)

We refer to these equations as the second-order curl-curl form. If we consider a homogeneous
material, i.e., εr and µr are not space-dependent, and if we apply the following identity

∇×∇×uuu = ∇(∇ ·uuu)−∇
2uuu,

where uuu = (ÊEE, ĤHH), equations (2.10) and (2.11) both reduce to the Helmholtz equation

−∇
2

[
ÊEE(xxx)
ĤHH(xxx)

]
= ω

2
µrεr

[
ÊEE(xxx)
ĤHH(xxx)

]
.

Now consider the TE-mode Maxwell’s equations in 2D (2.7) with a time-harmonic variation in an
homogeneous media. Note that, in this case, we have ÊEE = (Êx, Êy), ĤHH = Ĥz and

Êx =
−i
ωεr

∂ Ĥz

∂y
⇒ ∂ Êx

∂y
=

−i
ωεr

∂ 2Ĥz

∂y2

Êy =
i

ωεr

∂ Ĥz

∂x
⇒

∂ Êy

∂x
=

i
ωεr

∂ 2Ĥz

∂x2

Ĥz =
−i

ωµr

(
∂ Êx

∂y
−

∂ Êy

∂x

)
.

Thus

Ĥz =
−i

ωµr

(
−i
ωεr

∂ 2Ĥz

∂y2 − i
ωεr

∂ 2Ĥz

∂x2

)
=

−1
ω2µrεr

(
∂ 2Ĥz

∂x2 +
∂ 2Ĥz

∂y2

)
,

and we get the Helmholtz equation in scalar form,

−∇
2Ĥz(x,y) = ω

2
µrεrĤz(x,y). (2.12)

As mentioned above Ĥz is a complex-valued function but, as can be easily seen, the real part
of Ĥz also satisfies the same equation. In this thesis we focus on the scalar Helmholtz equation for
real-valued functions.
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2.2.2 Existence and uniqueness of solution

We will present present a brief study on the existence and uniqueness of the solution of the Helmholtz
problem with homogeneous Dirichlet boundary conditions. Let Ω ⊂ R2 be a bounded open set of
smooth boundary ∂Ω and xxx = (x,y). Our aim is to solve the problem

−∇
2u(xxx)−ν

2(xxx)u(xxx) = f (xxx), xxx ∈ Ω (2.13)

u(xxx) = 0, xxx ∈ ∂Ω,

where ν = ω
√

εrµr is a strictly positive piecewise continuous real function that depends on the relative
permittivity, εr, and the relative permeability, µr, of the medium, as well as on the (constant) frequency,
ω . Let us assume that ν2(xxx)≤ ν2

max, for all xxx, and the source term f ∈ L2(Ω). The Lebesgue space
L2(Ω) is defined as a space of mensurable functions u : Ω → R such that ||u||2L2(Ω)

<+∞, equipped
with norm ||u||2L2(Ω)

= (u,u)L2(Ω) and inner product

(u,w)L2(Ω) =

ˆ
Ω

u(xxx)w(xxx) dxxx.

Our goal is to find conditions that guarantee that (2.13) has a unique weak solution. We will use
variational arguments and classical results from the theory of partial differential equations.

Let w be a sufficiently smooth test function that vanishes on ∂Ω. We multiply (2.13) by w, and
we integrate over Ω

−
ˆ

Ω

∇
2u(xxx)w(xxx) dxxx−

ˆ
Ω

ν
2(xxx)u(xxx)w(xxx) dxxx =

ˆ
Ω

f (xxx)w(xxx) dxxx.

Integrating by parts and taking w satisfying the same boundary conditions as u, yields
ˆ

Ω

∇u(xxx) ·∇w(xxx) dxxx−
ˆ

Ω

ν
2(xxx)u(xxx)w(xxx) dxxx =

ˆ
Ω

f (xxx)w(xxx) dxxx.

The functions u and w need to have a first-order weak derivative, u satisfies the boundary conditions
and w vanishes on ∂Ω in the sense of trace. Therefore, u,w ∈ H1

0 (Ω) where

H1
0 (Ω) =

{
w ∈ L2(Ω) :

∂w
∂x

,
∂w
∂y

∈ L2(Ω) and w|∂Ω = 0
}
.

Its norm given as

||w||H1(Ω) =
(
||w||2L2(Ω)+ |w|2H1(Ω)

)1/2
,

where |w|H1(Ω) denotes the semi-norm defined as

|w|2H1(Ω) = (∇w,∇w)L2(Ω).

Thus, the variational problem (2.13) can be reformulated as follows: find u ∈ H1
0 (Ω) such that

a(u,w) = ( f ,w)L2(Ω), ∀w ∈ H1
0 (Ω), (2.14)
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where the bilinear form a(·, ·) is defined as

a(u,w) = (∇u,∇w)L2(Ω)− (νu,w)L2(Ω).

To prove the existence and uniqueness of (2.13), we use the Lax-Milgram theorem (whose proof
can be seen in [31]) to show that there is a unique u ∈ H1

0 (Ω) that satisfies (2.14).

Theorem 2.2.1 (Lax-Milgram). Let V be a Hilbert space with norm || · ||V , a(·, ·) a bilinear form
on V ×V and ℓ(·) a bounded linear functional on V such that a(·, ·) is coercive – there is c0 > 0
such that a(w,w)≥ c0||w||2V , ∀w ∈V and a(·, ·) is bounded – there is c1 > 0 such that |a(w1,w2)| ≤
c1||w1||V ||w2||V , ∀w1,w2 ∈V . Then, there exists a unique u ∈V such that a(u,w) = ℓ(w), ∀w ∈V .

It can be easily proved that a(·, ·) is a symmetric bilinear form on H1
0 (Ω)×H1

0 (Ω) and that ℓ(·) is
linear and bounded on H1

0 (Ω). First, we will show that a(·, ·) is bounded. Considering u,v ∈ H1
0 (Ω)

and using the Cauchy-Schwarz inequality

|a(u,w)| =
∣∣∣(∇u,∇w)L2(Ω)− (ν2u,w)L2(Ω)

∣∣∣≤ ∣∣∣(∇u,∇w)L2(Ω)

∣∣∣+ ∣∣∣(ν2u,w)L2(Ω)

∣∣∣
≤ ||∇u||L2(Ω)||∇w||L2(Ω)+ν

2
max||u||L2(Ω)||w||L2(Ω).

Taking into account the definition of norms and considering c1 = 1+ ν2
max, we conclude that the

bilinear form is bounded since

|a(u,w)| ≤ ||u||H1(Ω)||w||H1(Ω)+ν
2
max||u||H1(Ω)||w||H1(Ω) = c1||u||H1(Ω)||w||H1(Ω).

To prove the coercivity, we use the Poincaré-Friedrichs’ inequality

||u||L2(Ω) ≤ c∗|u|H1(Ω), ∀u ∈ H1
0 (Ω),

whose proof can be found in [10]. Considering u ∈ H1
0 (Ω)\{0}, we have

1
c2
∗
≤ λmin = inf

u∈H1
0 (Ω)\{0}

|u|2H1(Ω)

||u||2L2(Ω)

.

Now, since |u|H1(Ω) ̸= 0, we have

a(u,u) = (∇u,∇u)L2(Ω)− (ν2u,u)L2(Ω) ≥ |u|2H1(Ω)−ν
2
max

||u||2L2(Ω)

|u|2H1(Ω)

|u|2H1(Ω)

≥ |u|2H1(Ω)−
ν2

max

λmin
|u|2H1(Ω) =

(
1− ν2

max

λmin

)(
1
2
|u|2H1(Ω)+

1
2
|u|2H1(Ω)

)
.

If we consider ν2
max < λmin, using the Poincaré-Friedrichs’ inequality

a(u,u) ≥
(

1− ν2
max

λmin

)(
1
2
|u|2H1(Ω)+

1
2c2

∗
||u||2L2(Ω)

)
≥

(
1− ν2

max

λmin

)
min

{
1
2
,

1
2c2

∗

}
||u||2H1(Ω) = c0||u||2H1(Ω)
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where

c0 =

(
1− ν2

max

λmin

)
min

{
1
2
,

1
2c2

∗

}
> 0.

Thus, if ν2
max < λmin, by the Lax-Milgram theorem, there exists a unique u ∈ H1

0 (Ω) such that
a(u,w) = ( f ,w)L2(Ω), ∀w ∈ H1

0 (Ω). Furthermore, considering the Cauchy-Schwarz inequality, we
have

c0||u||2H1(Ω) ≤ a(u,u) = ( f ,u)L2(Ω) ≤ |( f ,u)L2(Ω)| ≤ ||u||L2(Ω)|| f ||L2(Ω) ≤ || f ||L2(Ω)||u||H1(Ω),

which allows to conclude that
||u||H1(Ω) ≤

1
c0
|| f ||L2(Ω)

and therefore the problem (2.14) is well posed.
Note that if ν2

max ≥ λmin the coercivity is not fulfilled and therefore the Lax-Milgram Theorem
cannot be applied. However, if we consider the Helmholtz problem with impedance boundary
conditions [22, 27], the existence and uniqueness of solution can be prove using the Fredholm theory
and the Gårding’s inequality .

In the remaining part of this thesis, we will consider the Helmholtz problem homogeneous
Dirichlet boundary conditions with sufficiently small scalar wave number, i.e., ν2(xxx) = ν2, for all
xxx ∈ Ω, such that ν2 < λmin.



Chapter 3

Discontinuous Galerkin finite element
method

In this chapter we will describe the application of the discontinuous Galerkin (DG) finite element
method [15] to the Helmholtz problem with a sufficiently small (constant) wave number and Dirichlet
boundary conditions, considering a polygonal computational domain. The DG finite element method
seems to have been introduced as a way to solve the neutron transport equation, in 1973 [25]. Since
then, there has been significant developments in the extensions of this method leading to numerous
applications, particularly in the fields of acoustics, electromagnetism and fluid dynamics. With the
growing need to solve geometrically complex large-scale problems, this method has gained relevance
since it gathers many desirable features. The DG method admits discontinuous solutions and it is
a method with a high order of accuracy. Moreover, being a local method it allows great flexibility
when considering complex meshes. Analogously to the finite volume method, a main ingredient of
the DG scheme is the numerical flow which transports information from one local element to another,
connecting adjacent elements and allowing to build the global approximation.

We begin, in Section 3.1, by presenting the DG formulation for the 2D Helmholtz equation on a
polygonal domain. Section 3.2 is devoted to the discussion of some details of the implementation of
the algorithm, which are responsible for the efficiency and robustness of the DG method. In particular,
we analyse the issue of mesh generation and the tools needed for polynomial interpolation. Finally,
in Section 3.3, we apply the method to particular problem for which its exact solution is known and
analyse its order of convergence.

3.1 Discontinuous Galerkin formulation for the Helmholtz equation

Let Ω ⊂ R2 be a bounded open set of smooth boundary ∂Ω and xxx = (x,y). We want to solve the
problem

−∇
2u(xxx)−ν

2u(xxx) = f (xxx), xxx ∈ Ω (3.1)

u(xxx) = 0, xxx ∈ ∂Ω,

with a sufficiently small (constant) wave number.

13
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Assume that the physical domain Ω can be approximated by the computational domain Ωh,
represented as a union of K non-overlapping straight-sided triangles T k,k = 1, ...,K, i.e.,

Ω ≈ Ωh =
K⋃

k=1

T k. (3.2)

The triangulation Th =
{

T k,k = 1, ...,K
}

is assumed to be geometrically conforming, that is the
intersection of two elements is either a complete edge, a vertex or the empty set. The parameter h
represents the maximum element diameter, i.e.,

h = max
T k∈Th

{hk}, hk = sup
P1,P2∈T k

||P1 −P2||.

We also assume that the triangulation is sufficiently smooth [13] in the sense that we can define a
upper boundary for the quotient between hk and the maximum diameter of a ball inscribed in each
element T k ∈ Th.

The numerical approximation uh to the exact solution u of the Helmholtz problem (3.1) is defined
in the following way

uh(xxx) =
K⊕

k=1

uk
h(xxx) ∈ Vh, (3.3)

where
Vh = {uh ∈ L2(Ωh) : uk

h = uh|T k ∈ PN(T k),∀T k ∈ Th},

and PN(T k) denotes the space of polynomials of degree less than or equal to N on T k. Then, on each
element T k, the local solution uk

h can be expressed as a polynomial of degree N

xxx ∈ T k ∈ Th : uk
h(xxx) =

Np

∑
i=1

uk
h(xxx

k
i )ℓ

k
i (xxx), (3.4)

where ℓk
i (xxx) is the multidimensional Lagrange polynomial defined by the grid points xxxk

i , i = 1, ...,Np,
Np = (N +1)(N +2)/2, on T k, which can be determined using an optimised explicit Warp & Blend
construction procedure [29].

We introduce a new vector function qqq = (qx,qy)
T , such that qqq = ∇u. Thus, the Helmholtz equation

may be written by −∇ · qqq− ν2u = f , where the local solution for the auxiliary variables can be
expressed as qqqk

h = (qk
h,x,q

k
h,y)

T with

xxx ∈ T k ∈ Th : qk
h, j(xxx) =

Np

∑
i=1

qk
h, j(xxx

k
i )ℓ

k
i (xxx), j = x,y. (3.5)

To define the numerical method, we require that the local residuals given by −∇ ·qqqk
h(xxx)−ν2uk

h(xxx)−
f (xxx) and qqq(xxx)−∇u(xxx) are orthogonal to the Lagrange polynomials with respect to the inner product
on Vh given by

(u,v)L2(Ωh) =
K

∑
k=1

(u,v)L2(T k),
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where (u,v)L2(T k) denotes the usual inner product on L2(T k), as defined in the previous chapter.
Therefore, we have

−
(
ℓk

i ,∇ ·qqqk
h

)
L2(T k)

−ν
2
(
ℓk

i ,u
k
h

)
L2(T k)

=
(
ℓk

i , f
)

L2(T k)
. (3.6)

and (
ℓk

i , ·qqqk
h

)
L2(T k)

−
(
ℓk

i ,∇uk
h

)
L2(T k)

= 0. (3.7)

Integrating (3.6) by parts yields

−
ˆ

∂T k
n̂nn ·qqqk

h(xxx)ℓ
k
i (xxx) dxxx+

(
∇ℓk

i ,qqq
k
h

)
L2(T k)

−ν
2
(
ℓk

i ,u
k
h

)
L2(T k)

=
(
ℓk

i , f
)

L2(T k)
,

where n̂nn is the outward unit normal vector pointing from T k to adjacent element T l . Now, replacing
the physical flux by a numerical flux qqq∗h,k, we obtain the weak form

−
ˆ

∂T k
n̂nn ·qqq∗h,k(xxx)ℓk

i (xxx) dxxx+
(

∇ℓk
i ,qqq

k
h

)
L2(T k)

−ν
2
(
ℓk

i ,u
k
h

)
L2(T k)

=
(
ℓk

i , f
)

L2(T k)
.

Integration by parts again, we get the strong form

−
(

∇ ·qqqk
h, ℓ

k
i

)
L2(T k)

+

ˆ
∂T k

n̂nn ·
(

qqqk
h(xxx)−qqq∗h,k(xxx)

)
ℓk

i (xxx) dxxx−ν
2
(
ℓk

i ,u
k
h

)
L2(T k)

=
(
ℓk

i , f
)

L2(T k)
.

The numerical flux is defined considering the internal penalty fluxes given by (see [15])

qqq∗h,k = {{∇uk
h}}− τ

k[[uk
h]], u∗h,k = {{uk

h}}. (3.8)

The average and jumps along a normal, n̂nn, are defined, respectively, by

{{u}}= u−+u+

2
, [[u]] = n̂nn−u−+ n̂nn+u+, [[uuu]] = n̂nn− ·uuu−+ n̂nn+ ·uuu+,

where the superscripts ”− ” and ”+ ” refer to the interior and exterior information, respectively. Note
that the jumps along a normal, n̂nn, are defined differently depending if u is a scalar or a vector, uuu,
whereas the average is defined in the same way. The parameter τk is a real parameter that may depend
on the diameter of triangle T k and the degree of the polynomial defined in that triangle. In [15],
authors considered

τ
k ≥C

(N +1)2

h
, C ≥ 1.

For τk = 0, equation (3.8) reduces to the central flux. In the numerical tests presented in this thesis,
we considered

τ
k = 200

(N +1)2

hk
.
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Using the same arguments for the equation (3.7) and taking into account (3.4) and (3.5), we get
the strong form of the DG method

−∇Skqqqk
h +

ˆ
∂T k

n̂nn ·
(

qqqk
h(xxx)−qqq∗h,k(xxx)

)
ℓℓℓk(xxx) dxxx−ν

2Mkuuuk
h = Mk fff h,

Mkqqqk
h,x = Sk

xuuuk
h −
ˆ

∂T k
n̂x

(
uuuk

h(xxx)−uuu∗h,k(xxx)
)
ℓℓℓk(xxx) dxxx,

Mkqqqk
h,y = Sk

yuuuk
h −
ˆ

∂T k
n̂y

(
uuuk

h(xxx)−uuu∗h,k(xxx)
)
ℓℓℓk(xxx) dxxx,

where, for i, j = 1, . . . ,Np,

Mk
i j =

(
ℓk

i , ℓ
k
j

)
L2(T k)

, ∇Sk =
[
Sk

x,S
k
y

]
, Sk

x,i j =
(
ℓk

i ,∂ℓ
k
j/∂x

)
L2(T k)

, Sk
y,i j =

(
ℓk

i ,∂ℓ
k
j/∂y

)
L2(T k)

,

uuuk
h =

[
uk

h(x
k
j,y

k
j)
]Np

j=1
, qqqk

h, j =
[
qk

h, j(x
k
n,y

k
n)
]Np

n=1
, j = x,y, ℓℓℓk(xxx) =

[
ℓk

j(xxx)
]Np

j=1

We conclude that the DG solution can be obtained by solving a system of linear equations

(−A−ν
2B)U = F,

where U = [uuuk
h]

K
k=1, B is the standard block-diagonal mass matrix NpK ×NpK (where the diagonal

block is the local mass matrix Mk), A is a symmetric block matrix NpK ×NpK with the remaining
terms on the right hand-side of the equation, where each element with a common edge with the
computational boundary contributes with 3 blocks and each inner element contributes with 4 blocks.
Furthermore, F denotes the source term with the contribution of the boundary conditions.

Algorithm 1 DG method
1. Mesh generation
2. Determine the matrices A,B e F .
3. Solve the system of linear equations: (−A−ν2B)U = F

3.2 Implementation and numerical aspects

In order to bridge the gap between the mathematical formulation and the computational implementa-
tion, we discuss some details of the implementation of the algorithm responsible for the efficiency and
robustness of the DG method. After giving some ideas related to mesh generation, we present the
tools needed for polynomial interpolation over triangles, in particular how the nodes and the local
matrices can be determined.

3.2.1 Mesh generation

The mesh Th was generated by the free mesh generator Gmsh (version 4.6.0) [12]. This software
package allows us to obtain important information for the DG method. When defining the boundary
of the domain Ω, we assign a value to a certain boundary condition: for instance, 6 corresponds to
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the Dirichlet boundary conditions and 7 to the Neumann boundary conditions. Assume, for example,
that we assign the value 6 to the entire boundary ∂Ω. Then, the triangulation is done and from the
generated mesh Th we know the abscissae and ordinates of the vertices in the grid, which are stored
in the vectors V X and VY , respectively. We also know the number of elements, K, and the matrices
BCType and EToV needed to compute the connectivities between the elements. These matrices are
described below.

The matrix BCType, of size K ×3, whose entries are 0 and 6 (in the case of Dirichlet boundary
conditions), allows us to identify the elements with a common edge with the computational boundary
and, in particular, which side of these triangles is on the computational boundary. If (BCType)i j ̸= 0,
then the element i has common edge with the computational boundary. Moreover, we know that the
side j of the element i is located at the computational boundary, i = 1, . . . ,K, j = 1,2,3, and has a
Dirichlet boundary condition.

The matrix EToV (Element-To-Vertice), of size K ×3, contains in each row i the indices of the
three vertices that form an element i, i = 1, . . . ,K. Furthermore, it is assumed that the three vertices are
ordered counterclockwise. From this matrix we can combine the K elements into a continuous region
of elements by computing the connectivity of the elements. We determine the following connectivity
matrices: EToE and EToF . The matrix EToE (Element-To-Element), of size K × 3, allow us to
identify the neighbor elements of the element i, on each side of the triangle i and counterclockwise.
For instance, if (EToE)i j = l (see Figure 3.1), then the side j of the element i connects to the element
l, i, l = 1, . . . ,K, j = 1,2,3. Moreover, if (EToE)i j = i, then side j of the element i self-connects and
is therefore taken to be a boundary side. On the other hand, the matrix EToF (Element-To-Face),
of size K ×3, identifies the neighbor sides of each side of the triangle i and counterclockwise. E.g.,
if (EToF)i j = k (see Figure 3.1), then the side j of the element i connects to side k (of the triangle
l, considering the previous example). Thus, this matrix has an important role in the flux between
elements.

Element i

Element l

Fig. 3.1 Element-to-element and element-to-face connectivity.
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3.2.2 Modes and interpolation nodes in two dimensions

In order to simplify the numerical aspects, we introduce a local coordinate system rrr = (r,s) and a
standard triangle defined as

∆ = {rrr = (r,s) such that r,s ≥−1,r+ s ≤ 0}.

We also consider a linear mapping rrr = (r,s)−→ xxx = (x,y) connecting ∆ with T k, whose details can
be seen in [15], and the Jacobian matrix of this transformation is given by

∂xxx
∂ rrr

=

[
xr xs

yr ys

]
.

Considering Jk its determinant (the Jacobian),

∂ rrr
∂xxx

=

[
rx ry

sx sy

]
=

1
Jk

[
ys −xs

−yr xr

]
.

We can now focus on the development of polynomials and operators defined on the standard
triangle ∆. Consider local two-dimensional polynomial basis of order N, {ψn(xxx)}

Np
n=1, Np = (N +

1)(N +2)/2, we can define the local solution, where we have dropped the superscript ∆ to simply the
notation, as

uh(rrr) =
Np

∑
n=1

ûnψn(rrr) =
Np

∑
i=1

uh(rrri)ℓi(rrr), (3.9)

where the coefficients ûn, n = 1, · · · ,Np, ar defined such that the approximation is interpolatory on the
grids points rrri, that is u(rrri) = uh(rrri). We can now establish the connection between the modes, ûuu, and
the nodal values, uuuh,

V ûuu = uuuh, (3.10)

where ûuu = [û1, · · · , ûN p]
T are the Np expansion coefficientes, uuuh = [uh(rrr111), · · · ,uh(rrrNp)]

T and V is the
generalized Vandermonde matrix. Furthermore, with relation (3.10) we are capable to evaluate 2D
Lagrange polynomials for which an explicit expression does not exist [15].

Considering (3.9) we get that uuuT
h ℓℓℓ(rrr) = ûuuT

ψ(rrr) and, taking into account (3.10), this yields

V Tℓℓℓ(r) =ψψψ(r)⇔


ψ1(rrr1) ψ1(rrr2) ... ψ1(rrrNp)

ψ2(rrr1) ψ2(rrr2) ... ψ2(rrrNp)
...

... ...
...

ψNp(rrr1) ψNp(rrr2) ... ψNp(rrrNp)



ℓ1(rrr)
2(rrr)

...
ℓNp(rrr)

=


ψ1(rrr)
ψ2(rrr)

...
ψNp(rrr)

 . (3.11)

To ensure stable numerical behavior of the generalized Vandermonde matrix we need to identify
an orthonormal polynomial basis, ψ j(rrr), defined on the standard triangle ∆ and to identify a family of
interpolation points. As a first approach, we could consider

ψm(rrr) = ris j, (i, j)≥ 0, i+ j ≤ N, m = j+(N +1)i+1− i
2
(i−1), (i, j)≥ 0, i+ j ≤ N,
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which spans the space of N–dimensional polynomials in two variables, (r,s). This basis leads to
the ill-conditioning of the system and, as such, is not a good choice [15]. Using the Gram-Schmidt
process, we obtain the orthonormal basis

ψm(rrr) =
√

2P(0,0)
i (2(1+ r)/(1− s))P(2i+1,0)

j (s)(1− s)i, (3.12)

where P(α,β )
n (x) is the n–th order Jacobi polynomial. When α = β = 0, we get the Legendre polyno-

mial.
As a first choice to determine the Np interpolation nodes, equidistant points could be considered.

As it is proved in [15], this choice leads to ill-conditioned linear systems. For the one-dimensional
case, the Legendre-Gauss-Lobatto (LGL) quadrature points lead to a well-conditioned DG formulation
and for higher dimensions the LGL nodes are used to define suitable distributed nodes through the
Warp & Blend construction procedure described in [29].

The main idea of this construction procedure is to transform an equidistant grid into a grid that is
better suited for interpolation, considering an equilateral triangle with vertices

(
0, 2√

3

)
,
(

1,− 1√
3

)
and(

−1,− 1√
3

)
. For that purpose, we create, for each edge j, j = 1,2,3, a warp (deformation) function

www j that uses the one-dimensional warp function

w(x) =
Np

∑
i=1

(xLGL
i − xe

i )ℓ
e
i (x), r ∈ [−1,1], (3.13)

where xe
i = −1+2i/N, i = 0, . . . ,N, are the equidistant points on [−1,1], xLGL

i are the LGL points
and ℓe

i (x) are the Lagrange polynomials based on xe
i . Thus, w(x) measures the difference between the

equidistant points and the LGL points. We can extend the edge warp into the triangle by considering
blending function b j, j = 1,2,3, (see [29]). In Figure 3.2, we present a schematic representation of
the deformation of the sum of the Warp & Blend functions for the three edges, where the arrows show
how the nodes are moved from the equidistant nodal set.

Simplex Nodes 9

In Section 3.1 we show results for this construction. However, given
the flexibility of the construction of such a transform we relaxed the
constraint that the transform should be isoparametric. Examining the
node descriptions we observed that the nodes did not cluster particu-
larly strongly around the triangle edges. This is due to the blending
functions used which drop to zero at the edges of the elements. A
simple modification to the blending yields node sets with potentially
better Lebesgue constants:

g
(
λ1, λ2, λ3

)
=

(
1 +

(
αλ1

)2
)

b1w1 +

(
1 +

(
αλ2

)2
)

b2w2

+

(
1 +

(
αλ3

)2
)

b3w3

In Figure 4 we show plots of the vector functions g1,g2,g3 sampled
at equi-spaced points in the triangle.

a) b) c)

d)

Figure 4. (a-c): warp & blend functions for each of the three edges, constructed with
warping which reproduces a 10 point Gauss-Lobatto-Legendre quadrature.(d): sum
of warp & blend functions for the three edges .

In Section 6 we have included three Matlab functions: gll.m, warp-
factor.m, nodes.m which compute the Gauss-Lobatto-Legendre nodes,
the warping factor with end roots deflated and the warp & blend nodes
for the triangle respectively.

2.3. Tetrahedron

The construction of the coordinate transform can be generalized for
the equilateral tetrahedron. For each face of the tetrahedron we use
the transform constructed for the triangle. These transforms are then
blended into the interior of the tetrahedron. The vector warp functions
for each of the four faces are:

nodesmain.tex; 28/09/2005; 14:49; p.9

Fig. 3.2 Deformation of the equidistant nodes, considering the sum of the Warp & Blend functions
for the three edges. Adapted from [29].

Considering a generalized warping function, the sum of the Warp & Blend functions for the three
edges is given by

g(λ 1,λ 2,λ 3) =
3

∑
j=1

(1+(αλ
j)2)b jwww j, (3.14)
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where (λ 1,λ 2,λ 3) are the barycentric coordinates. Thus, (3.14) form a set of α–optimised nodes
suitable for interpolation. A measure of the quality of the interpolation is the Lebesgue constant
defined as

Λ = max
xxx∈T k

Np

∑
i=1

|ℓk
i (xxx)|,

since

||u−uh||∞ = ||u−u∗+u∗−uh||∞ ≤ ||u−u∗||∞ + ||u∗−uh||∞ = ||u−u∗||∞ + ||u∗−
Np

∑
i=1

u(xxxk
i )ℓ(xxx)))||∞

≤ ||u−u∗||∞ +max
xxx∈T k

Np

∑
i=1

|ℓk
i (xxx)|× ||u−u∗||∞ = (1+Λ)||u−u∗||∞,

where u∗ represents the best approximating polynomial of order N. Thus, it is natural to choose α

that minimise the Lebesgue constant. In Figure 3.3 we illustrate some examples of the resulting
nodal sets, considering polynomials of order N = 4,6,8. Note that the black lines highlight the
effect of the Warp & Blend deformation on the lines that connect the undeformed equidistant nodes.
Furthermore, note that the nodes are computed in the equilateral triangle and the orthonormal basis
is defined in the standard triangle ∆. Thus, we need to map the nodes into ∆ using a linear mapping
xxx = (x,y)−→ rrr = (r,s).

14 T. Warburton

(p=4) (p=6)

(p=8) (p=10)

(p=12) (p=14)

Figure 5. Node distributions for p = 4, 6, 8, 10, 12, 14. The black lines represent the
effect of the warp & blend transform on the lines of constant λ1, λ2, or λ3 which
connect the undeformed equi-distributed nodes.

the possibility that our explict formulae may benefit from additional
terms and perhaps more parameters to capture the extra dynamic in
the coordinate transform.
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(a) N = 4.

14 T. Warburton
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Figure 5. Node distributions for p = 4, 6, 8, 10, 12, 14. The black lines represent the
effect of the warp & blend transform on the lines of constant λ1, λ2, or λ3 which
connect the undeformed equi-distributed nodes.

the possibility that our explict formulae may benefit from additional
terms and perhaps more parameters to capture the extra dynamic in
the coordinate transform.
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(b) N = 6.

14 T. Warburton
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(p=12) (p=14)

Figure 5. Node distributions for p = 4, 6, 8, 10, 12, 14. The black lines represent the
effect of the warp & blend transform on the lines of constant λ1, λ2, or λ3 which
connect the undeformed equi-distributed nodes.

the possibility that our explict formulae may benefit from additional
terms and perhaps more parameters to capture the extra dynamic in
the coordinate transform.

nodesmain.tex; 28/09/2005; 14:49; p.14

(c) N = 8.

Fig. 3.3 Node distribution for N = 4,6,8 on the equilateral triangle. Adapted from [29].

3.2.3 Element-wise operations

We can now define the local representation of the matrices Mk,Sk
x and Sk

y in the form

Mk
i j =

ˆ
T k
ℓk

i (xxx)ℓ
k
j(xxx) dxxx = Jk

ˆ
∆

ℓi(rrr)ℓ j(rrr) drrr = JkMi j,

Sk
x,i j =

ˆ
T k
ℓk

i (xxx)
∂ℓk

j

∂x
(xxx) dxxx = Jk

ˆ
∆

ℓi(rrr)
(

∂ℓ j

∂ r
(rrr)rx +

∂ℓ j

∂ s
(rrr)sx

)
drrr

= rxJk
ˆ

∆

ℓi(rrr)
∂ℓ j

∂ r
(rrr) drrr+ sxJk

ˆ
∆

ℓi(rrr)
∂ℓ j

∂ s
(rrr) drrr

Sk
y,i j =

ˆ
T k
ℓk

i (xxx)
∂ℓk

j

∂y
(xxx) dxxx = Jk

ˆ
∆

ℓi(rrr)
(

∂ℓ j

∂ r
(rrr)ry +

∂ℓ j

∂ s
(rrr)sy

)
drrr

= ryJk
ˆ

∆

ℓi(rrr)
∂ℓ j

∂ r
(rrr) drrr+ syJk

ˆ
∆

ℓi(rrr)
∂ℓ j

∂ s
(rrr) drrr.
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Considering the generalized Vandermonde matrix we get

li(rrr) =
Np

∑
n=1

(
V T )−1

in ψn(rrr).

Thus, recalling the orthonormal basis (3.12),

Mi j =

ˆ
∆

Np

∑
n=1

(
V T )−1

in ψn(rrr)
Np

∑
m=1

(
V T )−1

jm ψm(rrr) drrr

=
Np

∑
n=1

Np

∑
m=1

(
V T )−1

in

(
V T )−1

jm (ψn(rrr),ψm(rrr))L2(∆)

=
Np

∑
n=1

(
V T )−1

in

(
V T )−1

jn ,

which implies that M =
(
VV T

)−1. We conclude that Mk = Jk
(
VV T

)−1.

To determine the matrices Sk
x and Sk

y, we introduce the differentiation matrices Dr and Ds, defined
by

Dr,i j =
∂ℓ j

∂ r

∣∣∣∣∣
rrri

, Ds,i j =
∂ℓ j

∂ s

∣∣∣∣∣
rrri

, (3.15)

and we denote Dx = rxDr + sxDs e Dy = ryDr + syDs. Moreover,we express the derivative with respect
to r of the j–th Lagrange polynomial as

∂ℓ j

∂ r
(rrr) =

Np

∑
n=1

∂ℓ j

∂ r

∣∣∣
rrrn
ℓn(rrr),

and similarly for derivative with respect to s of the j–the Lagrange polynomial.

To define the matrices (3.15), it is require

Vr,i j =
∂ψ j

∂ r

∣∣∣∣∣
rrri

, Vs,i j =
∂ψ j

∂ s

∣∣∣∣∣
rrri

. (3.16)

The coefficients of these matrices can be easily evaluated. In fact, from the relationship (3.11),
we obtain that V T DT

r = (Vr)
T , which implies DrV = Vr. Analogously, DsV = Vs. If we recall the

orthonormal basis (3.12)

∂ψ j

∂ r
=

∂a
∂ r

∂ψ j

∂a
,

∂ψ j

∂ s
=

∂a
∂ s

∂ψ j

∂a
+

∂ψ j

∂b
, where

∂a
∂ r

=
2

1− s
,

∂a
∂ s

=
−2(1+ r)
(1− s)2 .
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Taking into account the matrices just defined, the matrices Sk
x e Sk

y can now be computed. Note
that

(
MkDx

)
i j
= Jk

Np

∑
n=1

MinDx,n j = Jk
Np

∑
n=1

Min (rxDr,n j + sxDs,n j)

= Jk

(
rx

Np

∑
n=1

MinDr,n j + sx

Np

∑
n=1

MinDs,n j

)

= Jk

(
rx

Np

∑
n=1

ˆ
∆

ℓi(rrr)ℓn(rrr)
∂ℓ j

∂ r

∣∣∣∣∣
rrrn

drrr+ sx

Np

∑
n=1

ˆ
∆

ℓi(rrr)ℓn(rrr)
∂ℓ j

∂ s

∣∣∣∣∣
rrrn

drrr

)

= Jk

(
rx

ˆ
∆

ℓi(rrr)
Np

∑
n=1

∂ℓ j

∂ r

∣∣∣∣∣
rrrn

ℓn(rrr) drrr+ sx

ˆ
∆

ℓi(rrr)
Np

∑
n=1

∂ℓ j

∂ s

∣∣∣∣∣
rrrn

ℓn(rrr) drrr

)

= Jk
(

rx

ˆ
∆

ℓi(rrr)
∂ℓ j

∂ r
(rrr) drrr+ sx

ˆ
∆

ℓi(rrr)
∂ℓ j

∂ s
(rrr) drrr

)
= Jk (rxSr,i j + sxSs,i j) =

(
Sk

x

)
i j
.

Thus, we obtain

Sk
x = MkDx = JkM(rxDr + sxDs) = rxJkSr + sxJkSs,

Sk
y = MkDy = JkM(ryDr + syDs) = ryJkSr + syJkSs.

3.3 Numerical results

We intend to solve the Helmholtz problem using the DG method. In order to validate the implemen-
tation of the method and evaluate the error and the order of convergence, we consider a numerical
example for which the exact solution is known. Taking into account the problem that motivated our
study, described in the introductory chapter, we will consider the Helmholtz problem in a curved
domain, which aims to simulate the human cornea. In this chapter, we will consider the domain
defined by a unit circle centred at the origin.

Considering ν = 1 and Ω = {(x,y) ∈ R2 : x2 + y2 < 1}, we aim at solving the following problem

−∇
2u(x,y)−u(x,y) = f (x,y), (x,y) ∈ Ω (3.17)

u(x,y) = 0, (x,y) ∈ ∂Ω,

where f (x,y) = 4x
(
(x2 + y2)sin(1− x2 − y2)+2cos(1− x2 − y2)

)
−xsin(1− x2 − y2), and the exact

solution is given by u(x,y) = xsin(1− x2 − y2) (see Figure 3.4).

If we denote by uh an approximate solution determined with the numerical method, we say that
the method has order of convergence p, for a given norm ∥ · ∥, if

||u−uh|| ≤Chp,
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Fig. 3.4 Exact solution of (3.17).

with C a real constant independent of h. In this work, we consider the maximum norms, evaluating
the error for the grid points on the mesh, xxxk ∈ T k,k = 1, . . . ,K,

E∞ = ||u(xxxk)−uh(xxxk)||∞ = max
xxxk∈T k∈Th

|u(xxxk)−uh(xxxk)|.

In order to estimate the order of convergence of the method, we considered different spatial polyg-
onal meshes generated by Gmsh (version 4.6.0) [12], with different mesh parameters h. Considering
two distinct values of h, say h1 and h2 and the corresponding numerical solutions uh1 and uh2 , we
compute the maximum norms E∞,1 and E∞,2, respectively. Assuming E∞,1/E∞,2 = (h1/h2)

p, we have
that the order of convergence can be estimated by

p =
log(E∞,1/E∞,2)

log(h1/h2)

In Table 3.1, we report the errors and the convergence rates for the classical DG method for
polynomials of degree N, with N = 1,2,3,4. The numerical solutions obtained with the DG method
considering different meshes are represented in Figure 3.5.

Table 3.1 Errors and convergence rates for the classical DG formulation.

K h
N = 1 N = 2 N = 3 N = 4

E∞ p E∞ p E∞ p E∞ p
14 9.34e-01 8.37e-02 - 1.24e-01 - 1.07e-01 - 1.25e-01 -
64 4.70e-01 3.17e-02 1.4 3.66e-02 1.8 2.98e-02 1.9 3.66e-02 1.8
262 2.34e-01 6.77e-03 2.2 7.53e-03 2.3 6.05e-03 2.3 7.54e-03 2.3
1096 1.13e-01 1.45e-03 2.1 1.70e-03 2.0 1.36e-03 2.0 1.70e-03 2.0
4316 5.69e-02 4.57e-04 1.7 4.27e-04 2.0 3.42e-04 2.0 4.27e-04 2.0

The results obtained in our simulations by the DG method show that the order of convergence
for the DG method is p = 2. We notice that by increasing the order of the polynomial, N, the order
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Fig. 3.5 Numerical results obtained for polynomials of degree N = 4, with different mesh parameters.

convergence does not increase. In other words, the method reaches a second-order convergence,
independently of the degree of the polynomial. This reduction in the accuracy occurs because we are
dealing with a curved boundary domain and we are solving the Helmholtz’s equation for polygonal
meshes that do not exactly fit the physical domain. This highlights the importance of the boundary
condition treatment, especially for high-order methods because the errors in the boundary may pollute
the solution inside the domain, rendering the use of a high-order scheme useless [4]. In particular, the
DG solutions are highly sensitive to the accuracy of approximations of the curved boundaries [3, 4]
and it has been shown that given homogeneous Dirichlet boundary conditions on a physical domain Ω

if these conditions are imposed on the polygonal domain Ωh, any finite element method will be at
most second-order accurate [28]. To overcome this problem, in the following chapters, we propose
two different strategies to deal with curved domains, which arise naturally in our domain of interest
for the application, that consider polygonal meshes.



Chapter 4

Curved boundary treatment

The treatment of boundary value problems in curved boundary domains has been a subject of growing
interest in the numerical analysis community. The question that arises concerns the reduction of the
order of convergence of numerical methods when considering the approximation of the domain by a
polygonal mesh. As we saw in the previous chapter, the DG method turns out to be a second-order
accurate method when boundary conditions are not exactly located at the nodes of the mesh and the
edge of elements [3, 4].

The aim of this chapter is to present an efficient method for solving the Helmholtz problem in
a curved domain. In Section 4.1, we give an overview of the numerical methods that have been
presented to overcome the problems that occur when considering domains with curved boundary.
In order to avoid the generation of curved meshes, some alternatives considering polygonal meshes
have been proposed. Following the work developed in [2] for finite volumes, in this thesis we focus
on the polynomial reconstruction method. The main idea of this method is to design a polynomial
reconstruction of the boundary condition of the polygonal computational domain that takes into
account the boundary condition in the physical domain. We describe this approach in detail in Section
4.2. In Section 4.3, we present the numerical tests to assess the accuracy, converge rate and efficiency
of this approach to solve the Helmholtz equation with Dirichlet boundary conditions in a curved
boundary domain, with the DG method.

4.1 Treatment of curved boundary domains

A way to deal with curved boundaries is to consider the so-called isoparametric elements, introduced
by Bassi and Rebay in the context of DG methods [4]. The elements are called isoparametric since
the same functions are used to express the transformation from the reference element to the real
element and the solution in the reference element. This approach requires the use of non-linear
transformations of the reference triangle, which requires high computational effort. In addition, it
requires the generation of curved meshes, which turns out to be impractical for complex geometries.

Some alternative methods have been proposed in an attempt to overcome these difficulties. In
[17], the authors present a curvature boundary condition approach, in replacement of reflecting
boundary conditions, for steady two-dimensional Euler equations. This technique uses a polygonal
computational domain Ωh and, assuming that the only available information is the mesh itself, the

25
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physical boundary is approximated by an arc of the circle passing through the vertices vi of the
elements T k, k = 1, . . . ,K, such that vi ∈ ∂Ωh, i = 1,2. The unit normal to the circle passing through
each interpolation point on the computational boundary is computed and it replaces the unit normal
to the computational boundary. Despite the improvement in the quality of the solution, compared to
the solutions obtained with reflecting boundary conditions, the applicability of the approach seems
limited to other boundary conditions.

Another method proposed in the literature is the so-called Extensions from Subdomains [6].
The main idea of this approach consists in determining a new Dirichlet boundary condition on the
polygonal computational boundary from the one evaluated on the physical boundary. This method
does not require local mapping or generation of curved meshes, which simplifies the numerical
schemes. However, in order to determine the new Dirichlet conditions is required to define a path
between the computational boundary and the physical one. Moreover, the method is only available for
second-order operators.

In [32], the author proposes a modified DG scheme defined on polygonal meshes. The method
avoids integrals inside curved elements. However, integrations along boundary curve segments are
still necessary. Recently, this approach was extended to solving three-dimensional Euler equations
and it was simplified by considering the relation between the normal vector of the computational
domain and surface Jacobian [30]. In this case, not only the integrals over any curved element are
avoided, but also the integrations along boundary curve segments are not required.

In the context of the finite volume method, a method called ROD (Reconstruction for Off-site Data)
was presented [8]. As the name of the method suggests, a polynomial reconstruction is developed
which takes into account the real boundary conditions (which are not in the polygonal computational
domain). This approach does not require the generation of curved meshes to adjust the boundary, nor
complex nonlinear transformations, which contributes to computational efficiency and simplifies the
numerical schemes. We now intend to generalize this approach to the DG method.

4.2 Polynomial reconstruction formulation

Let Ω ⊂ R2 be a bounded open set of smooth boundary ∂Ω and xxx = (x,y). We aim at solving the
problem

−∇
2u(xxx)−ν

2u(xxx) = f (xxx), xxx ∈ Ω

B(u,xxx) = α(xxx)u(xxx)−g(xxx) = 0, xxx ∈ ∂Ω,

where the wave number ν is sufficiently small. Assume that the physical domain Ω can be approxi-
mated by the polygonal computational domain Ωh defined as (3.2), with boundary ∂Ωh.

As we have seen in the previous chapter, the numerical solution of the DG method may be written
as (3.3) and the local solution uk

h, in each element T k, can be expressed as a polynomial of degree N
given by (3.4), i.e.,

xxx ∈ T k ∈ Th : uk
h(xxx) =

Np

∑
i=1

uk
h(xxx

k
i )ℓ

k
i (xxx),
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where ℓk
i (xxx) is the multidimensional Lagrange polynomial defined by the grid points xxxk

i , i = 1, ...,Np,
on T k, and Np = (N +1)(N +2)/2.

Let us consider a a set of point Pr ∈ ∂Ω, r = 1, ...,R, on the physical boundary ∂Ω, , such that
Pr+R = Pr, r ∈ Z. This set of points defines what we will call the collar Ch. Moreover, assume that,
for each point Pr ∈ Ch, the boundary condition B(.,Pr) is known.

For each element T k with a common edge ek with the computational boundary ∂Ωh, we aim at
determining a polynomial

π
k(xxx;aaa) =

Np

∑
i=1

aiℓ
k
i (xxx), (4.1)

where aaa = [a1, · · · ,aNp ]
T , such that it is the closest polynomial from the local solution uk

h that satisfies
the boundary condition at a set of points on the boundary. We denote that polynomial by π*k. Note
that the polynomial is uniquely determined by the vector of coefficients aaa∗.

An approach to determine the polynomial π*k consists in minimising the norm L2(T k) of the
distance between the polynomials πk and uk

h, subject to the same constraint described above. Thus,
for each element T k with a common edge ek with the computational boundary ∂Ωh, we intend to
determine the polynomial (4.1) such that

π
*k(xxx;aaa∗) = argmin

aaa∈RNp

1
2

ˆ
T k
(πk(xxxk

i ;aaa)−uk
h(xxx

k
i ))

2 dxxx

s.a B(πk(·;aaa),PPPk) = 0,

where PPPk = [Pk
1 , . . . ,P

k
Rk ]

T are the Rk points of the collar Ch for the element T k (see Figure 4.1) and
aaa∗ = [a∗1, · · · ,a∗Np

]T is the vector of coefficients of π*k.
Another approach could be to minimise the norm of the difference between the coefficients of

the polynomials πk and uk
h, such that πk satisfies the boundary condition at a set of Rk points on the

boundary ∂Ω

π
*k(xxx;aaa*) = argmin

aaa∈RNp

1
2

Np

∑
i=1

(ai −uk
h(xxx

k
i ))

2 (4.2)

s.a B(πk(·;aaa),PPPk) = 0, (4.3)

where PPPk = [Pk
1 , . . . ,P

k
Rk ]

T . In this thesis, we consider this second approach.
In order to solve the constrained minimisation problem and determine the coefficients ai*, i =

1, . . . ,Np, of π*k we introduce the Lagrangian function given by

L(aaa,λλλ ) =
1
2

Np

∑
i=1

(ai −uk
h(xxx

k
i ))

2 +
Rk

∑
l=1

λlB(πk(· ;aaa),Pl),

where aaa = [a1, · · · ,aNp ]
T is the vector of coefficients in (4.1) and λλλ = [λ1, . . . ,λRk ]T is the set of La-

grange multipliers, λl ∈ R, l = 1, . . . ,Rk. Thus, the problem of constrained minimisation corresponds
to find aaa and λλλ such that

∇aaaL(aaa,λλλ ) = 0, ∇λλλL(aaa,λλλ ) = 0,
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Fig. 4.1 Example of an element T k with a common edge ek with the computational boundary ∂Ωh and
Rk points of the collar Ch for that element, where Rk = 1,2,3,4,5.

where

∇a jL(aaa,λλλ ) = a j −uk
h(xxx

k
j)+

Rk

∑
l=1

λl∇a jB(πk(· ;aaa),Pl), j = 1, ...,Np,

∇λlL(aaa,λλλ ) = B(πk(· ;aaa),Pl), l = 1, ...,Rk.

Taking into account the expression of the boundary condition, we may write

∇a jB(πk(· ;aaa),Pl) = ∇a j

(
α(Pl)

Np

∑
i=1

aiℓ
k
i (Pl)−g(Pl)

)
= α(Pl)ℓ

k
j(Pl), j = 1, ...,Np,

∇λlL= B(πk(· ;aaa),Pl) = α(Pl)
Np

∑
i=1

aiℓ
k
i (Pl)−g(Pl), l = 1, ...,Rk.

Then, if we consider the column vector

Bl = [α(Pl)ℓ
k
j(Pl)]

Np
j=1, l = 1, . . .Rk,
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and the matrix B = [B1 . . .BRk ], we may rewrite the minimisation problem under the matrix form[
I B

B⊺ 000

][
aaa
λλλ

]
=

[
uuuk

h

g(PPP)

]
, (4.4)

where 000 is the null matrix Rk ×Rk and uuuk
h is the vector of coefficients obtain by the DG method,

uuuk
h = [uk

h(xxx
k
j)]

Np
j=1.

The solution aaa∗ provides the expected polynomial (4.1). Note that the Hessian of the Lagrangian
function with respect to aaa is the identity matrix I, which is positive definite. Therefore, aaa∗ is a strict
local minimiser. Moreover, since L is strictly convex with respect to aaa, the local minimiser is unique
and, consequently, it also is the unique global minimiser of L.

We call the DG method combined with polynomial reconstruction by the DG-ROD method. The
DG-ROD method starts with an iteration of the DG method, obtaining, for each element T k ∈ Th,
the polynomial uk

h. After this first iteration, for each T k with a common edge ek with the boundary
∂Ωh, we determine a polynomial πk that satisfies the boundary condition at a set of Rk points on the
boundary. Then we update the DG solution by imposing that on this edge ek the boundary condition
is given by the value of πk. The procedure is repeated while the norm of the difference between
two successive iterations (which were obtained with the polynomial reconstruction) is greater than
a certain tolerance tol (we can also define the maximum number of iterations). The procedure is
performed at least twice in order to compare the solutions obtained with the polynomial reconstruction.
This process is described in Algorithm 2.

Algorithm 2 DG-ROD method

1. U (0) = DG(g)
2. Set it = 0
3. Set f lag = 1
4. while f lag = 1
5. it = it + 1
6. Evaluate g(Pl) and Bl , l = 1, . . . ,Rk

7. Solve (4.4) in order to obtain aaa*
8. Update the boundary condition by (4.1)
9. U (it) = DG(π*k)
10. if it = 1, then f lag = 1
11. elseif ||U (it)−U (it−1)||∞ > tol, then f lag = 1
12. else f lag = 0
13. end
14. end
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4.3 Numerical results

In this section, we present some numerical results performed with the DG-ROD method. We consider
the Helmholtz problem in a curved two-dimensional domain, which will be approximated by polygonal
meshes. The error and convergence order analysis will be done by numerical experiments for the
problem (3.17) presented in the previous chapter. Considering the same conditions and polygonal
meshes presented in Section 3.3, in Table 4.1 we report the errors and convergence rates for the
DG-ROD method with tol = 10−8, a maximum number of iterations equals to 100 and considering a
set of Rk = 1,2,3,4,5 points on the boundary ∂Ω for each element T k with common edge ek with the
computational boundary ∂Ωh. In Figure 4.2, we plot the error depending on the mesh parameter h for
polynomials of degree N = 1,2,3,4 considering Rk = 5.
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Fig. 4.2 Global error E∞ vs mesh parameter h, considering Rk = 5 points.

The results obtained in our simulations by the iterative DG-ROD method for polynomials of
degree N, with N = 1,2,3,4, show that this method allows to obtain a smaller error and higher order
of convergence compared to the classical DG formulation. Thus, the DG-ROD method, unlike the
classical DG method, allows to achieve high order in domains for curved boundary domains.

Moreover, the numerical results suggest that there is a relation between the number of points Rk

for each element T k with a common edge with the computational boundary ∂Ωh and the degree N of
the polynomial. In other words, to increase the convergence rate to N +1 for polynomials of degree
N, we need to consider N +1 points on the boundary for each element T k with a common edge with
the computational boundary ∂Ωh. Results for nonconstant Dirichlet boundary conditions were also
obtained and suggest this same relation.

In order to analyze the decrease of the error with the number of iterations, in Figure 4.3 we present
the global error and the error between two successive iterations as the number of iterations increases.
These results were obtained considering 100 iterations of the DG-ROD method for polynomials of
degree N = 4 and a polygonal mesh Th with h =5.69e-02.

We note that the most significant decrease in error occurs in the first iterations. Moreover, for
N = 4 we note a slightly change in the global error ||u− uh||∞ considering Rk = 3 in relation to
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Table 4.1 Errors and convergence rates for the DG-ROD method.

Rk = 1

K h
N = 1 N = 2 N = 3 N = 4

E∞ p E∞ p E∞ p E∞ p
14 9.34e-01 7.34e-02 - 2.15e-02 - 3.03e-02 - 7.23e-02 -
64 4.70e-01 2.56e-02 1.5 2.02e-03 3.4 5.02e-03 2.6 1.73e-02 2.1
262 2.34e-01 9.60e-03 1.4 1.96e-04 3.4 1.06e-03 2.2 3.68e-03 2.2
1096 1.13e-01 2.69e-03 1.8 1.81e-05 3.3 2.46e-04 2.0 8.75e-04 2.0
4316 5.69e-02 7.47e-04 1.9 1.53e-06 3.6 6.25e-05 2.0 2.25e-04 2.0
Rk = 2

K h
N = 1 N = 2 N = 3 N = 4

E∞ p E∞ p E∞ p E∞ p
14 9.34e-01 8.16e-02 - 1.19e-01 - 8.69e-03 - 3.10e-02 -
64 4.70e-01 2.14e-02 2.0 2.50e-02 2.3 2.50e-03 1.8 7.25e-03 2.1
262 2.34e-01 9.16e-03 1.2 2.20e-03 3.5 5.38e-04 2.2 1.53e-03 2.2
1096 1.13e-01 2.54e-03 1.8 1.95e-04 3.3 1.25e-04 2.0 3.54e-04 2.0
4316 5.69e-02 7.04e-04 1.9 2.80e-05 2.8 3.19e-05 2.0 8.97e-05 2.0
Rk = 3

K h
N = 1 N = 2 N = 3 N = 4

E∞ p E∞ p E∞ p E∞ p
14 9.34e-01 8.37e-02 - 2.15e-02 - 2.77e-02 - 7.13e-02 -
64 4.70e-01 3.17e-02 1.4 1.77e-03 3.6 2.51e-03 3.5 1.70e-02 2.1
262 2.34e-01 6.77e-03 2.2 1.71e-04 3.4 2.36e-04 3.4 3.69e-03 2.2
1096 1.13e-01 1.45e-03 2.1 1.66e-05 3.2 2.40e-05 3.1 8.77e-04 2.0
4316 5.69e-02 4.57e-04 1.7 1.38e-06 3.6 3.87e-06 2.7 2.26e-04 2.0
Rk = 4

K h
N = 1 N = 2 N = 3 N = 4

E∞ p E∞ p E∞ p E∞ p
14 9.34e-01 8.37e-02 - 2.15e-02 - 1.26e-03 - 2.92e-02 -
64 4.70e-01 3.17e-02 1.4 1.68e-03 3.7 1.50e-04 3.1 6.88e-03 2.1
262 2.34e-01 6.77e-03 2.2 1.70e-04 3.3 1.98e-05 2.9 1.49e-03 2.2
1096 1.13e-01 1.45e-03 2.1 1.64e-05 3.2 1.34e-06 3.7 3.46e-04 2.0
4316 5.69e-02 4.57e-04 1.7 1.37e-06 3.6 9.67e-08 3.8 8.82e-05 2.0
Rk = 5

K h
N = 1 N = 2 N = 3 N = 4

E∞ p E∞ p E∞ p E∞ p
14 9.34e-01 8.37e-02 - 7.90e-02 - 1.88e-03 - 1.32e-03 -
64 4.70e-01 3.17e-02 1.4 1.09e-02 2.9 1.97e-04 3.3 3.54e-05 5.3
262 2.34e-01 6.77e-03 2.2 1.23e-03 3.1 1.85e-05 3.4 2.10e-06 4.1
1096 1.13e-01 1.45e-03 2.1 1.12e-04 3.3 1.32e-06 3.6 4.40e-08 5.3
4316 5.69e-02 4.57e-04 1.7 1.51e-05 2.9 9.57e-08 3.8 1.53e-09 4.9

the global error when considering Rk = 1 point. Compared to Rk = 1, for Rk = 3 we only add the
information of the vertices of the edges on the computational boundary, ∂Ωh (see Figure 4.1). If we
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Fig. 4.3 Errors obtained with the DG-ROD method for polynomials of degree N = 4, considering a
polygonal mesh Th, with h =5.69e-02.

considered 3 points Pr ∈ ∂Ω\∂Ωh, r = 1,2,3, the error would decrease but we still would not obtain
a high order of accuracy for N = 4 (see Table 4.2). Note the same relation for Rk = 2 and Rk = 4.

Although the error has not decreased significantly from Rk = 1 to Rk = 3 and from Rk = 2 to
Rk = 4, for polynomial of degree N = 4, we highlight the importance of considering the vertices of
the edges on the computational boundary. If we consider only 3 points Pr ∈ ∂Ω \ ∂Ωh, r = 1,2,3,
the order of accuracy does not improve for polynomials of degree N = 4. However, if we add the 2
vertices of the edges on the computational boundary (which are known points), the method achieves a
high order of accuracy.

For polynomials of degree N = 4, the method obtains a high order when considering 5 points Pr

such that Pr ∈ ∂Ω\∂Ωh, r = 1, . . . ,5 (see Table 4.2). A high order of accuracy can also be obtained
considering 3 points Pr such that Pr ∈ ∂Ω \ ∂Ωh, r = 1,2,3, and the 2 vertices of the edges on the
computational boundary ∂Ωh (see Table 4.1). This alternative, which was chosen in this thesis, has
the advantage that we only need to determine 3 points on the boundary ∂Ω , because the other 2 points
are already known.

Table 4.2 Errors and convergence rates for the DG-ROD method for polynomials of degree N = 4
considering Pr ∈ ∂Ω\∂Ωh.

N = 4

K h
Rk = 3 Rk = 4 Rk = 5

E∞ p E∞ p E∞ p
14 9.34e-01 8.51e-03 - 1.44e-03 - 1.35e-03 -
64 4.70e-01 1.79e-03 2.3 3.83e-04 1.9 3.61e-05 5.3
262 2.34e-01 3.77e-04 2.2 1.85e-04 1.0 2.11e-06 4.1
1096 1.13e-01 8.69e-05 2.0 5.17e-05 1.8 4.39e-08 5.3
4316 5.69e-02 2.22e-05 2.0 1.35e-05 2.0 1.53e-09 4.9

As we have seen, to implement the DG-ROD method, we need to alternately apply the DG method
and the polynomial reconstruction process. In order to improve the effectiveness of the method, in the
next chapter we will consider an approach that avoids this iterative process.



Chapter 5

A variant of the Nelder–Mead algorithm

Motivated by our application of interest, which consists in solving a problem on a curved boundary
domain, we aim to present a strategy to overcome the difficulties in the boundary treatment. As we
have seen, in the last chapter, the DG-ROD method is based on a polynomial reconstruction of the
boundary condition imposed on Ωh. The coefficients of the reconstructions are determined such that
the polynomials are close to the numerical solution and adequately satisfy the boundary condition
imposed on the physical domain Ω. This requires an iterative process between the DG method and
a polynomial reconstruction. In order to avoid that iterative process, in this chapter, we suggest a
different approach. We aim at determining the boundary condition values that should be imposed on
Ωh such that the difference between the numerical solution and the exact one, both evaluated at a set
of point PPP ∈ ∂Ω, is minimised. Consider the Helmholtz equation with Dirichlet boundary conditions

−∇
2u(xxx)−ν

2u(xxx) = f (xxx), xxx ∈ Ω (5.1)

u(xxx)−g(xxx) = 0, xxx ∈ ∂Ω

and assume that the computational boundary condition is given by

u(xxx;bbb)−bbb = 0, xxx ∈ ∂Ωh. (5.2)

where bbb = [bi]
(N+1)Nb
i=1 is the vector of the decision variables which represent the ideal boundary

conditions values on the interpolation points on ∂Ωh, (N +1) is the number of interpolation points
on each side of each element T k and Nb is the number of elements T k with a common edge with the
computational boundary ∂Ωh. Therefore, our goal is to determine the vector bbb such that

bbb∗ = arg min
bbb∈R(N+1)Nb

||uh(PPP;bbb)−g(PPP)||∞,

where uh(·;bbb) is the DG solution for the Helmholtz problem with boundary conditions defined as
in (5.2), PPP is the set of all points on ∂Ω used and bbb∗ provides the computational boundary values.
Thus, by solving this minimisation problem we get the optimal boundary conditions in the polygonal
domain in order to the DG method obtain directly the solution that best fits the boundary conditions in
the curved domain.

33
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To solve the minimisation problem, we propose a method that is a variant of the Nelder-Mead (NM)
algorithm. The NM method [23] is a direct search algorithm for solving unconstrained minimisation
problems. Since its publication, this method gained high popularity in several application areas due to
its simplicity and its ability to adapt to the objective function. Despite being one of the most popular
and widely used derivative-free methods, quite a few results are known on the convergence of the NM
method [18, 19]. Moreover, the method may fail to converge to a stationary point of the objective
function f [20]. Another method that is also used to solve minimisation problems is the directional
direct search method, which guarantees the global convergence of the algorithm and uses positive
basis. The new method proposed in this thesis can be seen as a combination of the two methods just
mentioned, working as a modified NM algorithm that takes into account the cosine measure of a
positive basis, ensuring control on the geometry of the simplices of the method.

We start by describing the Nelder-Mead method in Section 5.1 and by presenting a brief analysis
of its convergence. We review the directional direct search method as well some basic properties of
positive spanning sets and positive bases in Section 5.2. The new method is described in Section 5.3
as a variant of the NM method and some of its theoretical proprieties are shown in Section 5.4. In
Section 5.5, we present the numerical results for the Helmholtz problem with homogeneous boundary
conditions, comparing the results obtained with the classical NM method and with its variant suggested
in this thesis.

5.1 Nelder-Mead method

The Nelder-Mead algorithm [23], first published in 1965, is one of the most popular derivative-free
methods. Since its publication, the NM method has been widely used in various application areas
[7, 24]. The reasons for its success are its simplicity, the fact that it does not require derivatives and its
ability to adapt to the curvature of the function [7]. Despite its wide use, few theoretical results are
known on the convergence of the NM method.

5.1.1 Brief description

The Nelder-Mead algorithm is a derivative-free method for solving the unconstrained optimisation
problem

min
xxx∈Rn

f (xxx), (5.3)

for functions f :Rn →R. The main idea of this method is to generate a sequence of simplices to approx-
imate an optimal point of (5.3). A simplex of dimension n is the convex hull of an affinely independent
set of points S = {xxx1, . . . ,xxxn+1} [7]. The affine independence of an (n+ 1)−family (xxx1, . . . ,xxxn+1)

is equivalent to linear independence of one/all of the n−families (xxx1 − xxxi, . . . ,xxxi−1 − xxxi,xxxi+1 −
xxxi, . . . ,xxxn+1 − xxxi), i = 1, . . . ,n+ 1 [5]. We denote the vertices of the simplex by xxx1,xxx2, . . . ,xxxn+1.
A simplex of dimension 0 is a point, of dimension 1 is a closed line segment, of dimension 2 is a
triangle and of dimension 3 is a tetrahedron.

At each iteration, the vertices xxx j, j = 1, . . . ,n+1, of the simplex are ordered by increasing values
of the objective function f

f (xxxbest)≤ ·· · ≤ f (xxxbad)≤ f (xxxworst).
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The worst point, xxxworst , is replaced by a new point in the line that connects xxxworst and ĉcc,

ĉcc+α j(ĉcc− xxxworst), α j ∈ R,

where

ĉcc =
1
n

[(
n+1

∑
i=1

xxxi

)
− xxxworst

]
is the centroid of the best n vertices and the value α j, j ∈ {r,e,oc, ic}, indicates the type of iteration:
reflection (r), expansion (e), outer contraction (oc) and inner contraction (ic). The standard values for
these parameters are αr = 1, αe = 2, αoc =

1
2 and αic =−1

2 . We denote the reflected point by xxxr, the
expansion point by xxxe, the outer contraction point by xxxoc and the inner contraction point by xxxic. The
algorithm can also performs a simplex shrink, where all the vertices, except xxxbest , are shrinking by the
simplex at xxxbest . The new n vertices are computed by xxxbest +αs(xxx j − xxxbest), j = 1, . . . ,n+1, such that
xxx j ̸= xxxbest . The typical value for the shrink coefficient is αs =

1
2 . In order to replace xxxworst , first the

algorithm tries the reflected point and analyses if f (xxxr) is lower than f (xxxbad). If unsuccessful or if xxxr

is the best point known, the algorithm examines one of the two contractions points or the expansion
point, respectively. If an acceptable point is found, then that point replaces xxxworst . Otherwise, the
algorithm performs a shrink. In both cases, a new simplex is produced. The Nelder-Mead method is
described in Algorithm 3 and the possible transformations are represented in Figure 5.1.
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Fig. 5.1 The five possible transformations of a simplex, where ĉcc is the centroid and w, r and b denote
xxxworst , xxxr and xxxbest , respectively. Adapted from [14].

Stopping conditions for Algorithm 3 could consist of terminating the run when acceptably small
values are obtained for the step size or the change in the value of the objective function.

The original NM algorithm paper [23] contains several ambiguities about strictness of inequalities
and tie breaking. The algorithm described in Algorithm 3 is consider the "modern interpretation"
of the NM method [18] and the major difference from the original algorithm is that in the original
version the expansion point xxxe is accepted if f (xxxe)< f (xxxbest). This method, as described in Algorithm
3, is implemented in the MATLAB as the function fminsearch. The initial simplex is constructed
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Algorithm 3 Nelder-Mead method
Initialization:

• Choose the initial simplex of vertices S(1) = {xxx1, . . . ,xxxn+1} and evaluate f at these points;

• Choose the coefficients: 0 < αs < 1 and −1 < αic < 0 < αoc < αr < αe.
For it = 1,2, . . .

0. Set S = S(it).

1. Order: Sort the vertices of the simplex so that their function values are in ascending order

f (xxxbest)≤ ·· · ≤ f (xxxbad)≤ f (xxxworst)

2. Reflect: Calculate xxxr = ĉcc+αr(ĉcc− xxxworst), where ĉcc = 1
n

[(
n+1
∑

i=1
xxxi

)
− xxxworst

]
. If f (xxxbest) ≤

f (xxxr) < f (xxxbad), then replace xxxworst by xxxr and terminate the iteration: S(it+1) = S(it) \
{xxxworst}∪{xxxr} (Step 6).

3. Expand: If f (xxxr)< f (xxxbest), then calculate xxxe = ĉcc+αe(ĉcc−xxxworst). If f (xxxe)< f (xxxr), replace
xxxworst by xxxe and terminate the iteration: S(it+1) = S(it) \{xxxworst}∪{xxxe} (Step 6). Otherwise
replace xxxworst by xxxr and terminate the iteration: S(it+1) = S(it) \{xxxworst}∪{xxxr} (Step 6).

4. Contract: If f (xxxr)≥ f (xxxbad)

(a) Outside contraction: If f (xxxr) < f (xxxworst) calculate xxxoc = ĉcc + αoc(ĉcc − xxxworst). If
f (xxxoc) ≤ f (xxxr), then replace xxxworst by xxxoc and terminate the iteration: S(it+1) =
S(it) \{xxxworst}∪{xxxoc} (Step 6). Otherwise, perform a shrink (Step 5).

(b) Inner contraction: If f (xxxworst) ≤ f (xxxr), calculate xxxic = ĉcc + αic(ĉcc − xxxworst). If
f (xxxic) < f (xxxworst), then replace xxxworst by xxxic and terminate the iteration: S(it+1) =
S(it) \{xxxworst}∪{xxxic} (Step 6). Otherwise, perform a shrink (Step 5).

5. Shrink: For all j = 1, . . . ,n+ 1 such that xxx j ̸= xxxbest calculate xxxs j = xxxbest +αs(xxx j − xxxbest).
Consider a new simplex with xxxbest and the n new vertices and terminate the iteration: S(it+1) =
{xxxbest}∪{xxxs j, j ̸= best} (Step 6).

6. Stopping criterion: If the stopping criterion is not satisfied, increment it to it +1 and return
to Step 0. Otherwise xxxbest is the value that approximates the minimiser of f .

around the initial point given to the function, say xxx0, where xxx1 = xxx0. Further n points are obtained
by perturbing one of the coordinates of xxx0 by 5% or 0.00025 if the coordinate value is zero, i.e, for
i, j = 1, . . . ,n

x j+1,i =


x0,i, if i ̸= j

(1+0.05)x0,i, if i = j ∧ x0,i ̸= 0,

0.00025, if i = j ∧ x0,i = 0,

(5.4)

where x j+1,i denotes the i-th coordinate of xxx j+1.

As stopping criterions, fminsearch considers the maximum number of function evaluations (the
default value is 200×n), the maximum number of iterations allowed (the default value is 200×n),
the change in the value of the objective function during a step (the default value is TolFun = 1e-04)
and the size of a step (the default value is TolX = 1e-04). The function fminsearch stops when it
satisfies both TolFun and TolX . Note that, for the default values considered, the maximum number of
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function evaluations is always reached at the same time or before the maximum number of iterations
allowed since the method performs at least one function evaluation per iteration.

The NM method does not require calculating the derivative of the objective function. Moreover,
it has a robust approach, in the sense that it can be used to find the optimal point of a wide range of
functions (since the simplex fits the function). Other advantage is the fact that the algorithm performs
a relatively small number of function evaluations per iteration (1 if the iteration is a reflection, 2 if
the iteration is an expansion or contraction and n+ 2 if the iteration is a shrink). However, when
increasing the number of variables the efficiency of the method may be reduced. Furthermore, it has
been shown that the method may fail to converge to a stationary point [20].

5.1.2 A convergence analysis of the Nelder-Mead method

Despite being a widely used method, only a few theoretical results are known on the convergence of
this method. A famous two dimensional example by McKinnon [20] shows that NM algorithm may
fail to converge to a stationary point of f , even if f is strictly convex and has continuous derivatives. In
the examples presented in [20], the method repeatedly applies the inside contraction step with the best
vertex remaining fixed. McKinnon referred to this behaviour as repeated focused inside contraction
(RFIC). No other type of step occurs for these examples. The simplicies tend to a straight line which
is orthogonal to the steepest descent direction. The functions are defines as

f (x,y) =

θφ |x|τ + y+ y2, x < 0,

θ |x|τ + y+ y2, x ≥ 0,
(5.5)

where θ and φ are positive constants. Note that (0,−1) is a descent direction from the origin. The
function is strictly convex if τ > 1. It has continuous first derivatives if τ > 1, continuous second
derivatives if τ > 2, and continuous third derivatives if τ > 3. The initial simplex of the NM method
is defined by the following vertices

xxx1 =

[
0
0

]
, xxx2 =

[
1
1

]
, and xxx3 =

[
1+

√
33

8
1−

√
33

8

]
. (5.6)

For values of θ ,φ and τ that satisfy a certain condition, the method converge to the origin, which
is not a stationary point [20]. An example of values that satisfy that condition are τ = 2, θ = 6 and
φ = 60. The NM algorithm converges to the origin (which is the best vertex of the initial simplex)
rather than to the minimiser (0,−1/2), performing an infinite sequence of inside contractions.

For strictly convex objective functions with bounded level sets, [18] showed the convergence of
the NM algorithm to the minimiser in one dimension. For such functions of two variables, it was
shown that the function values at the simplex vertices converge to the same value and that the diameter
of the simplices converges to zero.

To avoid the simplices to become needle-shaped, in [19], it was suggested a restricted Nelder–
Mead algorithm in two dimensions that does not allow expansion steps. The authors proved that, in
certain conditions, the algorithm always converges to the minimiser.
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As we have seen, in the examples by McKinnon, the NM method can stagnate and fail to converge
a stationary point due to the deterioration of the simplex geometry. Motivated by this fact, our goal is
to find a strategy to ensure the control of the geometry of the simplices of a variant of this method.

5.2 Directional direct search method and positive basis

In this section, we introduce the directional direct search method of the directional type [7], which
ensures the global convergence. Before introducing this method, we start by presenting some basic
properties of positive spanning sets and positive basis [7, 26], which are used in this algorithm.

The positive span of a finite set of vectors S = {ddd1, . . . ,dddk} ⊂ Rn, denoted by pos(S), is the
convex cone 1 is given by

pos(S) = {λ1ddd1 + · · ·+λkdddk : λi ≥ 0}.

We say that a finite set S ⊂ Rn is a positive spanning set of a convex cone C ∈ Rn if pos(S) = C.
In this case, S is said to positively span the convex cone C. In particular, S positively spans Rn if
pos(S) = Rn.

Theorem 5.2.1. If S = {ddd1, . . . ,dddk}⊂Rn positively spans the linear subspace V , then S\{dddi} linearly
spans V for any i = 1, · · · ,k.

The proof of this theorem can be seen in [26]. The following result, whose proof can be seen in
[26], guarantees the existence of a descent direction among the vectors in a positive spanning set of
Rn when the gradient of the objective function is not zero.

Theorem 5.2.2. Suppose that S = {ddd1, . . . ,dddk} ⊂ Rn is a set of vectors in Rn. Then S positively
spans Rn if and only if for every nonzero vector www ∈ Rn, there exist an index i ∈ {1, . . . ,k} such that
wwwT dddi > 0.

A set of vectors S = {ddd1, . . . ,dddk} ⊂ Rn is said to be positively dependent if some xxxi is a positive
combination of the others; otherwise, it is positively independent. That is, S is positively independent
if dddi /∈ pos(S\dddi) for all i = 1, . . . ,k.

The set of vectors S = {ddd1, . . . ,dddk} ⊂ Rn is a positive basis in Rn if S is a positively independent
set whose positive spans is Rn. The next theorem, whose proof can be seen in [26], provides a
procedure to construct a positive basis from a basis.

Theorem 5.2.3. Let B= {vvv1, . . . ,vvvk} be a basis of a linear subspace V of Rn and let J= {J1, . . . ,Jℓ} be

a collection of subsets of K = {1, . . . ,k} such that
ℓ⋃

i=1
Ji =K and such that Jr ̸⊆

ℓ⋃
i=1
i̸=r

Ji for all r = 1, . . . , ℓ.

Then the set B̃ = B
⋃
{ −∑ j∈J1 λ1, jvvv j, . . . ,−∑ j∈Jℓ λℓ, jvvv j}, where λi, j > 0 for all i = 1, . . . , ℓ, j ∈ Ji, is

a positive basis of V .

We define the cosine measure of a positive spanning set (with nonzero vectors) D is defined by

cm(D) = min
0̸=vvv∈Rn

max
ddd∈D

vvvT ddd
||vvv||||ddd||

.

1A set C ∈ Rn is called a convex cone if for any xxx1,xxx2 ∈C and λ1,λ2 ≥ 0, λ1xxx1 +λ2xxx2 ∈C.
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Note that cm(D) ∈ (0,1). Moreover, values of the cosine measure close to zero indicate a
deterioration of the positive spanning property.

For example, in R2, the positive basis {(1,0),(0,1),(−1,0),(0,−1)} has a cosine measure equals
to cos(π/4) =

√
2/2.

Algorithm 4 Directional direct search method
Initialization:
Choose the initial point xxx(1) and choose α0 > 0, β1 ≥ 1 and 0 < β2 ≤ β3 < 1. Let D be a set of
positive basis.
For it = 1,2, . . .

1. Search step: Try to compute a point with f (xxx)< f (xxx(it)) by evaluating the function f at a
finite number of points. If such a point is found, then set xxx(it+1) = xxx, declare the iteration and
the search step successful, and skip the poll step.

2. Poll step: Choose a positive basis D(it) from the set D. Order the poll set P(it) = {xxx(it)+
α(it)ddd : ddd ∈ D(it)}. Start evaluating f at the poll points following the chosen order. If a
poll point xxx(it)+α(it)ddd is found such that f (xxx(it)+α(it)ddd) < f (xxx(it)), then stop polling, set
xxx(it+1) = xxx(it) +α(it)ddd, and declare the iteration and the poll step successful. Otherwise,
declare the iteration (and the poll step) unsuccessful and set xxx(it+1) = xxx(it).

3. Step parameter update: If the iteration was successful, then maintain or increase the
step size parameter: α(it+1) ∈ [α(it),β1α(it)]. Otherwise, decrease the step size parameter:
α(it+1) ∈ [β2α(it),β3α(it)].

Now we present the directional direct search method, which is described in Algorithm 4. The main
idea of this algorithm at each iteration it is to find a new point xxx(it+1) such that f (xxx(it+1) < f (xxx(it)).
The process of finding the new point can be described in two phases: the search step and the poll
step. The search step is optional and it consists of evaluating the function at a finite number of points
(the choice of the points is arbitrary). The poll step is performed only if the search step has been
unsuccessful. It consists of a local search around the current point xxx(it), exploring the set of points
P(it) = {xxx(it)+α(it)ddd, ddd ∈D(it)}, α(it) > 0 and D(it) is a positive basis or a positive spanning set. The
new point can be accepted based on a simple decrease of the objective function: f (xxx(it+1))< f (xxx(it)).
As an alternative, it can be imposed a sufficient decrease condition: f (xxx(it+1))≤ f (xxx(it))−ρ(α(it)),
where the forcing function ρ : R+ → R+ is continuous, positive and satisfies

lim
t→0+

ρ(t)
t

= 0 and ρ(t1)≤ ρ(t2) if t1 < t2. (5.7)

A simple example of a forcing function is ρ(t) =Ct2, with C a positive constant.

Therefore, this method guarantees the possibility of decreasing the value of the function until a
stationary point is reached. Moreover, there is a control in the geometry of the poll directions ddd ∈ D(it)

in order to guarantee that all points in a neighborhood can be reached (since the poll directions
constitute a positive spanning set of Rn). The algorithm also allows imposing a relation between the
decrease of the value of the objective function and the step length (via the forcing function ρ(·)).
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5.3 NM method and step size control

As we have seen, despite the popularity of the NM method, its convergence to a stationary point is not
guaranteed. In this section, we suggest a modification of the classical NM. The new proposed method
aims to take advantage of the classical NM method and the directional direct search method. The NM
method requires a relatively small number of function evaluations in each iteration and it is a simple
algorithm to understand. On the other hand, the directional direct search method has the advantage of
guaranteeing the convergence of the method. One disadvantage on the classical NM method is the fact
that the simplices can become arbitrarily flat or needle-shaped. Thus, in order to control the geometry
of the simplex, we use the cosine measure of a positive basis defined by the possible poll directions in
the simplex.

Let us consider S = {xxx1, . . . ,xxxn+1} ⊂ Rn the set of vertices of a simplex in Rn. The NM method

considers ĉcc = 1
n

[(
n+1
∑

i=1
xxxi

)
− xxxworst

]
, now we assume that ccc = 1

n+1

n+1
∑

i=1
xxxi. We denote by D(S) the

following set D(S) = {dddi = ccc − xxxi, i = 1, . . . ,n + 1}, which is the set of possible directions (in
Proposition 5.4.1, we assure that D(S) is a positive basis in Rn and therefore it can be considered a
set of poll directions). If the algorithm performs a nonshrink step, we consider P = {xxxi +α jdddi, dddi ∈
D(S), i = 1, . . . ,n+1, j ∈ {r,e,oc, ic}} the poll points. On other hand, if the algorithm performs a
shrink step we do the procedure as described in Algorithm 3. This changes are illustrated in Figure
5.2.

𝑥3 = 𝑥𝑤𝑜𝑟𝑠𝑡 𝑥3 = 𝑥𝑤𝑜𝑟𝑠𝑡

𝑑𝑤𝑜𝑟𝑠𝑡
𝑑𝑤𝑜𝑟𝑠𝑡

 𝑐 =
𝑥1 + 𝑥2

2
𝑐 =

𝑥1 + 𝑥2 + 𝑥3
3

𝑥1 𝑥2 𝑥1 𝑥2
 𝑐 𝑐

Fig. 5.2 Classical NM method (left) and modified NM method (right).

A crucial step in this new method is to control the geometry of the simplex through the cosine
measure. In the classical NM method when the simplices become arbitrarily flat or needle-shape, the
cosine measure is close to zero. Thus, we require the cosine measure to be above a positive threshold,
γ > 0, i.e., that cm(D) ≥ γ . The next proposition establish that if the correspondent positive basis
of a simplex satisfies cm(D)≥ γ , then the same is true for the new positive basis obtained from the
reflected simplex.

Proposition 5.3.1. Let S be the set of vertices of a simplex in Rn and S be the set of vertices obtained
from the reflected simplex. If cm(D(S))≥ γ , then cm(D(S))≥ γ .

Proof. We consider that we have a (genuine or isometric) reflection, therefore the angles measure is
preserved. Thus, if cm(D(S))≥ γ , then cm(D(S))≥ γ .
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However, even if the initial simplex satisfies this condition the simplex obtained by contraction or
expansion may not satisfy that condition. In these case, the step size has to be increase or decreased
up to αr, respectively, until the condition is satisfied.

In this new method, we also require a sufficient decrease condition to accept new iterates. The
method is described in Algorithm 5.

Algorithm 5 Nelder-Mead method with step size control

Initialization:
• Choose the initial point xxx(1)1 . The other n vertices of the initial simplex are determined as in

(5.4);

• Evaluate f at S(1) = {xxx(1)1 , . . . ,xxx(1)n+1};

• Choose the coefficients: 0 < αs < 1, 0 < αic <
n+1

n < αoc < αr < αe and γ > 0;

• Choose the forcing function ρ(·) (5.7):

• Consider ccc(1) = 1
n+1

n+1
∑

i=1
xxx(1)i and D(S(1)) = {ddd(1)

i = ccc(1) − xxx(1)i , i = 1, . . . ,n + 1}. If

cm(D(S(1)))≥ γ , continue.
For it = 1,2, . . .

0. Set S = S(it).

1. Order: Sort the vertices of the simplex so that their function values are in ascending order

f (xxxbest)≤ ·· · ≤ f (xxxbad)≤ f (xxxworst)

2. Reflect: Calculate xxxr = xxxworst +αrdddworst . If f (xxxbest)≤ f (xxxr)≤ f (xxxbad)−ρ(∥dddworst∥), then
replace xxxworst by xxxr and terminate the iteration: S(it+1) = S(it) \{xxxworst}∪{xxxr} (Step 6).

3. Expand: If f (xxxr)< f (xxxbest), then calculate xxxe = xxxworst +αedddworst . If cm(D(S(it) \{xxxworst}∪
{xxxe}))< γ , decrease αe until cm(D(S(it)\{xxxworst}∪{xxxe}))≥ γ . Replace xxxworst by xxxe (S(it+1)=
S(it) \{xxxworst}∪{xxxe}) or xxxr (S(it+1) = S(it) \{xxxworst}∪{xxxr}), taking into account if f (xxxe) ≤
f (xxxr)−ρ(∥dddworst∥) or not and terminate the iteration: (Step 6).

4. Contract: If f (xxxr)> f (xxxbad)−ρ(∥dddworst∥)
(a) Outside contraction: If f (xxxr) < f (xxxworst) calculate xxxoc = xxxworst + αocdddworst . If

cm(D(S(it) \{xxxworst}∪{xxxoc}))< γ , increase αoc until cm(D(S(it) \{xxxworst}∪{xxxoc}))≥ γ .
If f (xxxoc) ≤ f (xxxr)−ρ(∥dddworst∥), then replace xxxworst by xxxoc and terminate the iteration:
S(it+1) = S(it) \{xxxworst}∪{xxxoc} (Step 6). Otherwise, perform a shrink (Step 5).

(b) Inner contraction: If f (xxxworst)≤ f (xxxr), calculate xxxic = xxxworst +αicdddworst . If cm(D(S(it) \
{xxxworst}∪{xxxic}))< γ , increase αic until cm(D(S(it) \{xxxworst}∪{xxxic}))≥ γ . If f (xxxic)<
f (xxxworst)−ρ(∥dddworst∥), then replace xxxworst by xxxic and terminate the iteration: S(it+1) =
S(it) \{xxxworst}∪{xxxic} (Step 6). Otherwise, perform a shrink (Step 5).

5. Shrink: For all j = 1, . . . ,n+ 1 such that xxx j ̸= xxxbest calculate xxxs j = xxxbest +αs(xxx j − xxxbest).
Consider a new simplex with xxxbest and the n new vertices and terminate the iteration: S(it+1) =
xxxbest ∪{xxxs j, j ̸= best} (Step 6).

6. Stopping criterion: If the stopping criterion is not satisfied, increment it to it +1 and return
to Step 0. Otherwise xxxbest is the value that approximates the minimiser of f .

We consider
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αs =
1
2
, αr = 2

n+1
n

, αe = 3
n+1

n
, αoc =

3
2

n+1
n

, αic =
1
2

n+1
n

, (5.8)

where n is the number of variables. Assuming this values, ||xxxic − ĉcc|| = 1
2 ||xxxworst − ĉcc||, ||xxxr − ĉcc|| =

||xxxworst − ĉcc||, ||xxxe − ĉcc||= 2||xxxworst − ĉcc||, ||xxxoc − ĉcc||= 1
2 ||xxxworst − ĉcc||. For αic =

n+1
n , xxxic = ĉcc. The case

for n = 2 is illustrated in Figure 5.3.

𝑥𝑤𝑜𝑟𝑠𝑡

𝑥𝑟

𝑥𝑒

𝑥𝑜𝑐

𝑥𝑖𝑐

𝑑𝑤𝑜𝑟𝑠𝑡

𝑐

𝛼𝑟 = 3

𝛼𝑒 =
9

2

𝛼𝑜𝑐 =
9

4

𝛼𝑖𝑐 =
3

4

Fig. 5.3 Transformations of a simplex for n = 2 and its coeficients α j, j ∈ {r,e,oc, ic}.

We use the NM method with step size control to solve the following minimisation problem

min
bbb∈R(N+1)Nb

||uh(PPP;bbb)−g(PPP)||∞, (5.9)

and obtain the optimal solution bbb∗. Then, we solve the Helmholtz equation on a polygonal compu-
tational domain with boundary conditions defined by bbb∗. In this way, we avoid the iterative process
described by the DG-ROD method.

5.4 Properties of the new method

In this section we proof some properties of the variant of the NM method suggested in this thesis. We
start by analysing the set of directions in each iterations, which forms a positive basis in Rn. The next
proposition state that the set of directions D(S) of a simplex S forms a positive basis in Rn.

Proposition 5.4.1. Let S be the set of the vertices of the a simplex. Then D(S) forms a positive basis
in Rn.

Proof. As xxxi, i= 1, . . . ,n+1 are vertices of a simplex, by definition, the vectors xxxi−xxx1, i= 2, . . . ,n+1,
are linearly independent. Moreover, we prove that ccc− xxxi, i = 1, . . . ,n, are linearly independent. Let
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β1, . . . ,βn ∈ R,

n

∑
i=1

βi (ccc− xxxi) = 0

⇔
n

∑
i=1

βi

(
1

n+1

n+1

∑
j=1

xxx j − xxxi

)
= 0 ⇔

n

∑
i=1

βi

n+1

∑
j=1
j ̸=i

xxx j −nxxxi

= 0

By adding (n−1)2(xxx1 − xxx1) and reordering the terms, we obtain

β1 (xxx2 − xxx1 + xxx3 − xxx1 + · · ·+ xxxn+1 − xxx1)+

β2 (xxx1 − xxx2 + xxx3 − xxx2 + xxx1 − xxx1 + · · ·+ xxxn+1 − xxx2 + xxx1 − xxx1)+ · · ·+
βn (xxx1 − xxxn + xxx2 − xxxn + xxx1 − xxx1 + · · ·+ xxxn+1 − xxxn + xxx1 − xxx1) = 0

⇔β1 ((xxx2 − xxx1)+(xxx3 − xxx1)+ · · ·+(xxxn+1 − xxx1))+

β2 (−n(xxx2 − xxx1)+(xxx3 − xxx1)+ · · ·+(xxxn+1 − xxx1))+ · · ·+
βn ((xxx2 − xxx1)+(xxx3 − xxx1)+ · · ·−n(xxxn − xxx1)+(xxxn+1 − xxx1)) = 0

⇔(β1 −nβ2 +β3 + · · ·+βn)(xxx2 − xxx1)+(β1 +β2 −nβ3 + · · ·+βn)(xxx3 − xxx1)+ · · ·+
(β1 +β2 +β3 + · · ·−nβn)(xxxn − xxx1)+(β1 +β2 +β3 + · · ·+βn)(xxxn+1 − xxx1) = 0.

Recalling the linear independence of {xxxi − xxx1} we have

1 −n 1 . . . 1 1
1 1 −n . . . 1 1
1 1 1 . . . 1 1
...

...
...

. . .
...

...
1 1 1 . . . 1 −n
1 1 1 . . . 1 1





β1

β2

β3
...

βn−1

βn


= 000,

that implies

1 −n 1 . . . 1 1
0 n+1 −n−1 . . . 0 0
0 0 n+1 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . n+1 −n−1
0 0 0 . . . 0 n+1





β1

β2

β3
...

βn−1

βn


= 000 ⇒ βi = 0, i = 1, . . . ,n.

Thus, {dddi = ccc− xxxi, i = 1, . . . ,n} is a linear independent set in Rn. Therefore, B = {dddi = ccc− xxxi, i =
1, . . . ,n} forms a basis in Rn. Moreover, considering the Theorem 5.2.3, B̃ = B∪{−∑

n
j=1 ddd j} forms
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a positive basis in Rn. Note that

−
n

∑
j=1

ddd j =−
n

∑
j=1

(ccc− xxx j) =−
n

∑
j=1

(
1

n+1

n+1

∑
i=1

xxxi − xxx j

)

=− 1
n+1

n

∑
j=1

(
n+1

∑
i=1,i ̸= j

xxxi −nxxx j

)
=− 1

n+1

n

∑
j=1

((−n+n−1)xxx j +nxxxn+1)

=− 1
n+1

n

∑
j=1

(nxxxn+1 − xxx j) =
1

n+1

n

∑
j=1

xxx j − xxxn+1 = ccc− xxxn+1 = dddn+1.

We conclude that D(S) = {ddd1,ddd2, . . . ,dddn+1} forms a positive basis in Rn.

Now, we aim at proving that if the set of directions D(S(it)) of the (it)-th simplex forms a positive
basis in Rn, then the set of directions of the next simplex also forms a positive basis in Rn.

Proposition 5.4.2. Let S(it) = {xxx(it)i , i= 1, . . . ,n+1} be the vertices of the (it)-th simplex. If D(S(it)) =
{dddit)

i = ccc(it)− xxx(it)i , i = 1, . . . ,n+1} is a positive basis in Rn, then, D(S(it+1)) = {dddit+1)
i = ccc(it+1)−

xxx(it+1)
i , i = 1, . . . ,n+1} also forms a positive basis in Rn.

Proof. We consider two cases depending if the it iteration performs a nonshrink step or if it performs
a shrink step.

Consider that the (it) iteration performs a nonshrink step and without loss of generality assume
that xxx(it)worst = xxx(it)1 . Thus xxx(it+1)

1 = xxx(it)1 +α jddd
(it)
1 , j ∈ {r,e,oc, ic}, and xxx(it+1)

i = xxx(it)i , i = 2, . . . ,n+ 1.
Note that, for j ∈ {r,e,oc, ic}

ccc(it+1) =
1

n+1

n+1

∑
i=1

xxx(it+1)
i =

1
n+1

(
xxx(it)1 +α jddd

(it)
1 +

n+1

∑
i=2

xxx(it)i

)
=

1
n+1

(
xxx(it)1 +α j(ccc(it)− xxx(it)1 )+

n+1

∑
i=2

xxx(it)i

)

=
1

n+1

(
α jccc(it)−α jxxx

(it)
1 +

n+1

∑
i=1

xxx(it)i

)
=

1
n+1

(
(n+1+α j)ccc(it)−α jxxx

(it)
1

)
.

Moreover, for j ∈ {r,e,oc, ic}

ddd(it+1)
1 = ccc(it+1)− xxx(it+1)

1 =
1

n+1

(
(n+1+α j)ccc(it)−α jxxx

(it)
1

)
− xxx(it)1 −α j(ccc(it)− xxx(it)1 )

=
n+1−nα j

n+1
(ccc(it)− xxx(it)1 ) =

n+1−nα j

n+1
ddd(it)

1

and for i = 2, . . . ,n+1

ddd(it+1)
i = ccc(it+1)− xxx(it+1)

i =
1

n+1

(
(n+1+α j)ccc(it)−α jxxx

(it)
1

)
− xxx(it)i

= ccc(it)− xxx(it)i +
α j

n+1
(ccc(it)− xxx(it)1 ) = ddd(it)

i +
α j

n+1
ddd(it)

1 .

It is known that D(S(it))= {ddd(it)
1 ,ddd(it)

2 , . . . ,ddd(it)
n+1} is a positive basis in Rn, then B(it)= {ddd(it)

1 ,ddd(it)
2 , . . . ,ddd(it)

n }
forms a basis in Rn (Theorem 5.2.1). Therefore, {ddd(it)

1 ,ddd(it)
2 , . . . ,ddd(it)

n } is a linear independent set. Now,
we prove that B(it+1) = {ddd(it+1)

1 ,ddd(it+1)
2 , . . . ,ddd(it+1)

n } is also a linear independent set in Rn.
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Let β1,β2, . . . ,βn ∈ R

n

∑
i=1

βiddd
(it+1)
i = 0 ⇔ β1

n+1−nα j

n+1
ddd(it)

1 +
n

∑
i=2

βi

(
ddd(it)

i +
α j

n+1
ddd(it)

1

)
= 0

⇔

(
β1

n+1−nα j

n+1
+

n

∑
i=2

βi
α j

n+1

)
ddd(it)

1 +
n

∑
i=2

βiddd
(it)
i = 0 ⇒



β1
n+1−nα j

n+1 +∑
n
i=2 βi

α j
n+1 = 0

β2 = 0
...

βn = 0

⇒βi = 0, i = 1, . . . ,n, assuming α j ̸= 1+ 1
n .

Since B(it+1) = {ddd(it+1)
1 ,ddd(it+1)

2 , . . . ,ddd(it+1)
n } is a linear independent set in Rn, B(it+1) is a basis in

Rn. Note that

−
n

∑
i=1

ddd(it+1)
i =−

n+1−nα j

n+1
ddd(it)

1 −ddd(it)
2 −

α j

n+1
ddd(it)

1 −·· ·−ddd(it)
n −

α j

n+1
ddd(it)

1

=−
n+1−α j

n+1
ddd(it)

1 −ddd(it)
2 −·· ·−ddd(it)

n

= ddd(it)
n+1 +

α j

n+1
ddd(it)

1 = ddd(it+1)
n+1 .

Thus, using the Theorem 5.2.3 again, B̃(it+1)=B(it+1)∪{−
n
∑

i=1
ddd(it+1)

i }= {ddd(it+1)
1 ,ddd(it+1)

2 , . . . ,ddd(it+1)
n+1 }=

D(S(it+1)) forms a positive basis in Rn. If iteration it performs a shrink step, assume without
loss of generality that xxx(it)best = xxx(it)1 . Therefore xxx(it+1)

1 = xxx(it)1 and xxx(it+1)
i = xxx(it)best +αs(xxx

(it)
i − xxx(it)1 ) =

(1−αs)xxx
(it)
1 +αsxxx

(it)
i , i = 2, . . . ,n+1. Note that

ccc(it+1) =
1

n+1

n+1

∑
i=1

xxx(it+1)
i =

1
n+1

(
xxx(it)1 +

n+1

∑
i=2

[(1−αs)xxx
(it)
1 +αsxxx

(it)
i ]

)

=
1

n+1

(
(n(1−αs)+1)xxx(it)1 +αs

n+1

∑
i=2

xxx(it)i +αsxxx
(it)
1 −αsxxx

(it)
1

)

=
1

n+1

(
(n+1− (n+1)αs)xxx

(it)
1 +(n+1)αsccc(it)

)
= αsccc(it)+(1−αs)xxx

(it)
1 .

Moreover,

ddd(it+1)
1 = xxx(it+1)

1 − ccc(it+1) = xxx(it)1 −αsccc(it)− (1−αs)xxx
(it)
1

= αsxxx
(it)
1 −αsccc(it) = αsddd

(it)
1
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and, for i = 2, . . . ,n+1

ddd(it+1)
i = xxx(it+1)

i − ccc(it+1) = (1−αs)xxx
(it)
1 +αsxxx

(it)
i −αsccc(it)− (1−αs)xxx

(it)
1

= αs(xxx
(it)
i − ccc(it)) = αsddd

(it)
i .

As we expected, the new directions only change the size. Thus, D(S(it+1)) still forms a positive
basis in Rn.

We showed that if S is a simplex in Rn, then its set of directions D(S) forms a positive basis in Rn.
Furthermore, we proved that the method suggested preserves the positive basis along the iterations,
i.e, if D(S(it)) forms a positive basis in Rn, then D(S(it+1)) also forms a positive basis in Rn. The last
proposition also showed that the step size is decreased when an iteration is unsuccessful.

The variant of the NM method suggested in thesis was used for the McKinnon function (5.5),
considering the initial simplex as in described in (5.6), with tol =1e-04. The algorithm performed 60
iterations and converge to xxx∗ = (9.69654e-05,−5.000e-01), where f (xxx∗) = -2.5000e-01. This result
highlights the importance of the control of the geometry through the cosine measure used in this
method.

Theorem 5.4.1. Let D(S(it)) be a positive basis in Rn. Assume that ∇ f is Lipschitz continuous (with
constant L > 0) in an open set containing all the poll points in P(it) = {xxx(it)i +α jdddi, dddi ∈ D(it), i =
1, . . . ,n+1}. Assume that α(it) is the coefficient used in the iteration it, α(it) ∈ {αr,αe,αoc,αic} and
that cm(D(S(it)))≥ γ > 0. To simplify the notation, suppose that xxx(it)worst = xxx(it). Assuming that, at each
iteration, cm(D(S(it)))≥max{||dworst−d||/||d|,d ∈D(S(it))}, if f (xxx(it))≤ f (xxx(it)+α(it)ddd)+ρ(∥ddd∥)
, i.e., the iteration it is unsuccessful, then

∥∇ f (xxx(it))∥ ≤C
(

L
2

α
(it)∥ddd∥2 +

ρ(∥ddd∥)
α(it)

)
.

Proof. Consider h : Rn \{0}→ [0,1] such that h(vvv) = max
ddd∈D(S(it))

vvvT ddd
||vvv||||ddd|| .

Given a nonzero vector www ∈ Rn, cm(D(S(it))) = min{h(vvv) : vvv ̸= 0} ≤ h(www) = max
ddd∈D(S(it))

wwwT ddd
||www||||ddd|| =

wwwT ddd
||www||||ddd|| , for some ddd ∈ D(S(it)).

Thus, 0 < cm(D(S(it))) ≤ wwwT ddd
||www||||ddd|| ⇔ 0 < cm(D)||www||||ddd|| ≤ wwwT ddd. In particular, for the negative

gradient at a given point xxx(it)

cm(D(S(it)))||∇ f (xxx(it))||||ddd|| ≤ −∇ f (xxx(it))T ddd. (5.10)

Since f (xxx(it))≤ f (xxx(it)+α(it)ddd)+ρ(∥ddd∥)„ from the integral form of the Mean Value Theorem
we obtain that

0 ≤ f (xxx(it)+α
(it)ddd)− f (xxx(it))+ρ(∥ddd∥) =

ˆ 1

0
∇ f (xxx(it)+ tα(it)ddd)T

α
(it)ddd dt +ρ(∥ddd(it)∥).

By multiplying (5.10) by α(it) and adding it to the above inequality, we get
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cm(D(S(it)))||∇ f (xxx(it))||||ddd||α(it) ≤
ˆ 1

0
∇ f (xxx(it)+ tα(it)ddd)T

α
(it)ddd dt −∇ f (xxx(it))T

α
(it)ddd +ρ(∥ddd∥)

=

ˆ 1

0

(
∇ f (xxx(it)+ tα(it)ddd)−∇ f (xxx(it))

)T
α
(it)ddd dt −∇ f (xxx(it))T

α
(it)ddd

+∇ f (xxx(it))T
α
(it)ddd +ρ(∥ddd∥)

≤
ˆ 1

0
∥∇( f (xxx(it)+ tα(it)ddd)−∇ f (xxx(it))∥ ∥α

(it)ddd∥ dt +α
(it)∥∇ f (xxx(it))∥∥ddd −ddd∥

+ρ(∥ddd∥)

≤ (α(it))2L∥ddd∥2
ˆ 1

0
t dt +α

(it)∥∇ f (xxx(it))∥∥ddd −ddd∥+ρ(∥ddd∥)

=
L
2
(α(it))2∥ddd∥2 +α

(it)∥∇ f (xxx(it))∥∥ddd −ddd∥+ρ(∥ddd∥),

where the third and the fourth inequalities follow from the Cauchy-Schwartz inequality and from the
Lipschitz continuity of the gradient of f , respectively. Thus, assumig cm(D(S(it)))≥ ∥ddd−ddd∥

∥ddd∥ we obtain

∥∇ f (xxx(it))∥ ≤C
(

L
2

α
(it)∥ddd∥2 +

ρ(∥ddd∥)
α(it)

)
,

where C = cm(D(S(it)))∥ddd∥−∥ddd −ddd∥.

5.5 Numerical results

In this section, we present some numerical experiments of the proposed convergent variant of the
NM method on polygonal meshes for solving the two-dimensional Helmholtz’s equations with
homogeneous Dirichlet boundary conditions (5.1). We compare this method with the classical NM
method, which is implemented in MATLAB as the function fminsearch. Both methods were used to
solve the minimisation problem (5.9), providing the computational boundary condition values to be
imposed in the DG method.

The numerical results were obtained considering the same conditions as in Section 3.3 and a
polygonal mesh Th with h =9.34e-01 as the one presented in that section. Moreover we consider
a set of Rk = 5 points on the boundary ∂Ω for each element T k with common edge ek with the
computational boundary ∂Ωh. The results obtained for the DG method combined with NM algorithm
with step size control are compared with the classical DG method and with the DG method combined
with the classical NM method.

We consider the same initial point (which is a null vector) for the modified NM presented in this
thesis and for the function fminsearch. Moreover, we present the results considering a tolerance
tol =1e-04 and tol =1e-06 for the stopping criterion in both methods. We consider that stopping
conditions for the NM method with step size control are satisfied when | f (xxx(it+1)

worst )− f (xxx(it)worst)|< tol
or ∥xxx(it+1)

worst − xxx(it)worst∥< tol and we consider the forcing function ρ(t) = 0.01t2.
In Table 5.1 we report the error evaluated at a set of P points on the physical boundary ∂Ω and

the number of iterations performed by each method, considering tol =1e-04. We present global error
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obtained with the computational boundary condition Eq. (5.2) given by each method in Table 5.2,
considering the same tol value.

Moreover, considering tol =1e-06, in Tables 5.3 and 5.4 we report the error evaluated at a set of P
points on the physical boundary ∂Ω and the number of iterations performed by each method, and the
global error obtained with the computational boundary condition given by each method, respectively.

The results obtained in our simulations by the function fminseach and by NM method with step
size control for polynomials of degree N, with N = 1,2,3,4, both combined with the DG method,
show a decrease in the global error and in the error evaluated in the points on the ∂Ω in relation to the
errors obtained with the classical DG method. Moreover, the convergent variant of the NM method
suggested in this thesis requires less iterations than the MATLAB function fminsearch.

In Appendix A, we include a comparison of the methods presented in this thesis: the classical DG
method, the DG-ROD method, the DG-fminsearch and the DG-NM method with step size control.

Table 5.1 Error evaluated at a set of P points on the physical boundary ∂Ω : E∞(∂Ω) = ||uh(PPP;bbb)−
g(PPP)||∞ and number of iterations it performed by the method, with tol =1e-04.

Method
N = 1 N = 2 N = 3 N = 4

E∞(∂Ω) it E∞(∂Ω) it E∞(∂Ω) it E∞(∂Ω) it
DG 2.66e-02 1 1.21e-01 1 1.54-01 1 1.63e-01 1
DG- f min 2.09e-02 327 9.54e-02 802 8.25e-02 2604 1.01e-01 2292
DG-NM_SSC 2.09e-02 325 9.55e-02 715 9.48e-02 1232 1.01e-01 2235

Table 5.2 Global error: ||u−uh(·,bbb)||∞, with tol =1e-04.

Method N = 1 N = 2 N = 3 N = 4
DG 8.37e-02 1.24e-01 1.07e-01 1.25e-01
DG- f min 8.35e-02 1.10e-01 6.77e-02 9.74e-02
DG-NM_SSC 8.35e-02 1.10e-01 7.38e-02 9.75e-02

Table 5.3 Error evaluated at a set of P points on the physical boundary ∂Ω : E∞(∂Ω) = ||uh(PPP;bbb)−
g(PPP)||∞ and number of iterations it performed by the method, with tol =1e-06.

Method
N = 1 N = 2 N = 3 N = 4

E∞(∂Ω) it E∞(∂Ω) it E∞(∂Ω) it E∞(∂Ω) it
DG 2.66e-02 1 1.21e-01 1 1.54e-01 1 1.63e-01 1
DG- f min 1.92e-02 1743 8.59e-02 2320 8.10e-02 4202 9.54e-02 6647
DG-NM_SSC 1.97e-02 966 8.64e-02 1546 8.10e-02 3736 9.77e-02 3510

Table 5.4 Global error: ||u−uh(·,bbb)||∞, with tol =1e-06.

Method N = 1 N = 2 N = 3 N = 4
DG 8.37e-02 1.24e-01 1.07e-01 1.25e-01
DG- f min 8.64e-02 1.02e-01 6.78e-02 9.83e-02
DG-NM_SSC 8.50e-02 1.03e-01 6.78e-02 9.65e-02



Chapter 6

Conclusion

Our applications of interest consists in analysing the incidence and reflection of light on the cornea,
therefore curved boundary domain arise naturally in our domain of interest. Motivated by this fact,
in this thesis, we suggest two approaches to deal with the decrease in accuracy of the discontinuous
Galerkin finite element method (DG) in a domain Ω with curved boundary. These approaches was
suggested in the context of solving the Helmholtz’s equation with Dirichlet boundary conditions. We
consider that the physical domain Ω is approximated by a polygonal computational domain Ωh. The
DG method allows to obtain a polynomial solution uh that approximates the solution u of the original
problem. This solution is defined, in each triangle T k of the mesh considered in Ωh, by a polynomial
uk

h that satisfies the boundary conditions on ∂Ωh.

The first method proposed, named DG-ROD, is based on a polynomial reconstruction of the
boundary condition imposed on the computational domain Ωh, where the associated coefficients are
determined such that the reconstructions adequately satisfy the boundary condition imposed on the
physical domain Ω. In this way, we obtain the polynomial boundary condition π*k that is close to the
numerical solution uk

h but allows to correct the error obtained by the approximation of ∂Ω by ∂Ωh.
This polynomial reconstruction is based on an iterative method that considers two independent black-
boxes: the resolution of the differential equation by the classical DG method (where the boundary
conditions are defined on Ωh) and the ROD reconstruction process on triangles with vertices on the
boundary of the physical domain ∂Ω . By analyzing the numerical tests presented, we verified that
the DG-ROD method, unlike the classical DG method, allows to obtain high order in domains with
curved boundary.

In order to avoid the iterative process inherent in the DG-ROD method, we proposed another
alternative to overcome the difficulties in the boundary treatment when dealing with curved boundary
domains. This approach consist in solving a minimisation problem to determine the boundary
condition to be imposed on the computational domain Ωh. In this method, the boundary condition
values are determined such that the error between the exact solution and the numerical one, both
evaluated at a set of point PPP on the physical boundary Ωh, is minimised. To solve this unconstrained
optimisation problem we used a variant of the Nelder-Mead (NM) method. In the modified NM
algorithm proposed, all the transformations of the classical NM method can be performed. Moreover,
the geometry of the simplex is controlled by requiring a lower bound for the cosine measure of the
possible directions on each iteration.

49
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Both methods suggested in this thesis do not require the generation of curved meshes to adjust
the boundary, nor complex nonlinear transformations, which contributes for computational efficiency
and simplifies the numerical schemes. Another advantage of these methods is the simplicity of the
representation of the boundary: it is not required to know the analytical expression of the boundary (it
is sufficient to know a set of points PPP on the boundary) and no orthogonal projection of the elements
is performed.

The treatment of curved boundary domains has been a subject of interest since most real problems
take place on arbitrary geometries. Thus, the perspectives of the research following the work of
the present thesis include a generalisation of the DG-ROD method to other boundary conditions to
B(u,xxx) = α(xxx)u(xxx)+β (xxx)∇u(xxx) · n̂nn−g(xxx) = 0, xxx ∈ ∂Ω;. Moreover, since our domain of interest
aims to mimic the cornea and it is composed of collagen fibrils, we pretend to extend the method for
curved interfaces, mimicking the interfaces between the collagen fibrils of the corneal stroma.

Another direction of future research, following the results presented in this thesis, is to analyse
the convergence of the variant of the Nelder-Mead method and to use this algorithm to solve other
optimisation problems.
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Appendix A

Comparison of methods

In Table A.1, we report the global error E∞ = ||u−uh(·,bbb)||∞ evaluated at the grid points of a polygonal
mesh Th with h =9.34e-01, the error evaluated at a set of P points on the physical boundary and the
number of iterations it performed by each method, with tol =1e-04 and tol =1e-06. We compare
the classical DG method, the DG- f minsearch method (DG- f min), the DG-NM with step size control
(DG-NM_SSC) and the DG-ROD method. We consider a null vector as initial point for all methods.

Table A.1 Comparison of the methods considering Rk = 5 and a polygonal mesh Th with h =9.34e-01.

tol N Error DG DG- f min DG-NM_SSC DG-ROD

1e−04

E∞ 8.37e-02 8.35e-02 8.35e-02 8.37e-02
1 E∞(∂Ω) 2.66e-02 2.09e-02 2.09e-02 2.66e-02

it 1 327 325 2
E∞ 1.24e-01 1.10e-01 1.10e-01 7.90e-02

2 E∞(∂Ω) 1.21e-01 9.54e-02 9.55e-02 6.44e-02
it 1 802 715 4

E∞ 1.07e-01 6.77e-02 7.38e-02 1.82e-03
3 E∞(∂Ω) 1.54e-01 8.25e-02 9.48e-02 1.19e-03

it 1 2604 1232 12
E∞ 1.25e-01 9.74e-02 9.75e-02 1.29e-03

4 E∞(∂Ω) 1.63e-01 1.01e-01 1.01e-01 9.95e-04
it 1 2292 2235 38

1e−06

E∞ 8.37e-02 8.64e-02 8.50e-02 8.37e-02
1 E∞(∂Ω) 2.66e-02 1.92e-02 1.97e-02 2.66e-02

it 1 1743 966 2
E∞ 1.24e-01 1.02e-01 1.03e-01 7.90e-02

2 E∞(∂Ω) 1.21e-01 8.59e-02 8.64e-02 6.43e-02
it 1 2320 1546 7

E∞ 1.07e-01 6.78e-02 6.78e-02 1.88e-03
3 E∞(∂Ω) 1.54e-01 8.10e-02 8.10e-02 1.24e-03

it 1 4202 3736 21
E∞ 1.25e-01 9.83e-02 9.65e-02 1.32e-03

4 E∞(∂Ω) 1.63e-01 9.54e-02 9.77e-02 1.12e-05
it 1 6647 3510 77
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