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Exponentiating Trajectories on a Realistic Potential Energy Surface for Na, 
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A classical intramolecular dynamics study for the ground electronic state of the sodium trimer has been carried out using 
a realistic potential energy surface previously reported by the authors. It is shown that the trajectories are exponentially 
diverging even for very low energies close to the bottom of the potential well. This fact is confinned by the calculated maximum 
Lyapunov characteristic numbers, which suggest that the Na3 molecule possesses a small vibrational relaxation time. This 
result corroborates previous findings on atom-diatom reactive scattering for analogous systems, which have indicated a high 
degree of statistical behavior in the dynamics of these reactions. 

1. Introduction 
As it is well-known, a long-standing problem in equilibrium 

statistical mechanics is the justification of the assumption of 
equipartition of the energy, which plays a central role in several 
statistical theories of unimolecular reactions (such as the RRKM 
theory’,2). In fact, those statistical theories contain assumptions 
connected with the stochastic motion of molecules at their dis- 
sociation energies. It is therefore important to understand the 
mechanisms that govern the transition to stochastic motion, as 
well as the rate of energy randomization between the molecular 
degrees of freedom. 

In the past few decades there has been great progress in the 
theoretical study of dynamical systems which is relevant for the 
understanding of the transition from dynamics to statistical me- 
chanics. In particular, several numerical experiments have been 
performed in order to verify the validity of the assumptions ac- 
cepted by classical statistical mechanics. Unfortunately the vast 
majority of those numerical calculations refer to simple model 
systems with few degrees of freedom. 
Those advances have shown that the classical motion of a bound 

system with N degrees of freedom, governed by a nonseparable 
potential, can fall into several different patterns. At low energies, 
and for approximately integrable potentials, the dynamical system 
is completely integrable and its trajectories are constrained to an 
N dimensional hypersurface in the 2N dimensional phase space, 
called an invariant toroid, which is completely defmed by the values 
of the N isolating integrals of motion. This behavior is usually 
termed quasipericdic motion and can be characterized by two 
major features: (1) the power spectra of dynamical variables are 
discrete and vary sharp and (2) initially adjacent trajectories 
deviate linearly with time. 

On the other hand, at high energies or large anharmonicities, 
the number of isolating integrals of motion is drastically reduced. 
For nonrotating systems the only isolating integral of motion is 
then the total energy and its trajectory tends to cover (after a 
possibly long time) the whole 2 N -  1 dimensional energy shell. 
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In this regime the system is said to have an ergodic or chaotic 
behavior. 

The power spectra of dynamical variables are now almost 
continuous and trajectories initially in close proximity tend to 
deviate exponentially in such a way that they become completely 
uncorrelated, which accounts for the mixing properties of the 
~ y s t e m . ~ , ~  Stochastic trajectories in ergodic theory have been 
considered as the main cause for statistical beha~ior.~” 

The inverse of the rate of exponential divergence has been 
interpreted as the time that the system needs to achieve a mi- 
crocanonical distribution (or better, as the inverse decay time of 
correlati~ns).~~’ This rate of divergence is the maximal Lyapunov 
characteristic number and it has been proved that it is related to 
the Kolmogorov 

The onset of chaotic behavior in dynamical systems is of great 
importance because of its connection with the possibility of oc- 
currence of rapid relaxation of the internal energy among its 
degrees of freedom. Numerical studies have shown that the 
transition from predominantly regular to predominantly irregular 
behavior is usually rather abrupt.I0 Nevertheless, numerical 
calculations by Contopoulos et al.” for a system of three degrees 
of freedom with a galactic type potential have shown that sto- 
chastic and quasipericdic trajectories can exist at the same energy. 
In this case two regions of phase space with different stochastic 
behavior could be distinguished on the basis of the maximal 
Lyapunov characteristic numbers: one which shows the existence 
of an isolating integral of motion beyond the energy and the other 
with the energy as the only constant of the motion. It a n  therefore 
be concluded that microscopically small regions of instability may 
exist at low energies, and, conversely, it may happen that a small 
fraction of phase space is occupied by quasipericdic trajectories 
at high energies.IoJ2 

Studying the classical dynamics of a molecule requires an 
analytical function for the potential energy surface. The char- 
acteristics of the dynamics clearly depend entirely on such 
functions (for example, the two-dimensional Tcda potential,I3J4 
although anharmonic, gives a completely integrable system for 
all energies up to infinity). In this paper we report a classical 
intramolecular dynamics study for the electronic ground doublet 
state of Na3 using a realistic potential energy surface which has 
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been described elsewhere.15 The present calculations are based 
on the premise that only the lowest sheet of this ground doublet 
state potential energy surface is necessary. Thus, no allowance 
is made for the hopping of trajectories from this sheet to the upper 
one, which forms a degenerate pair with the former at Djh ge- 
ometries. 

The paper is organized as follows. In the next section we 
describe the equations of motion and computational methods used. 
The details of the potential energy surface used for Na3 are then 
briefly reviewed in section 3. Section 4 contains the results while 
some conclusions are gathered in section 5 where we also compare 
our results with those from previous work. We examine only the 
rotationless molecule. Accordingly, we are dealing with a system 
having three degrees of freedom. 

2. Equations of Motion and Computational Methods 
Let us consider a nonrotating triatomic molecule ABC, and let 

M A ,  mB, and mc be the masses of atoms A, B, and C, respectively. 
Neglecting the (uniform) motion of the center of mass, the 
Hamiltonian for such a system can be written asI6J7 
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I = AQ (9) 

where, as usual, the boldface notation identifies matrix variables. 
These transformations also allow the transformation between 
internal (PI, P2, P3) and normal (Ill, 112, n3) momenta. The initial 
conditions are next chosen such that the molecule always starts 
its motion at the minimum of the potential energy surface, which 
in this case has the geometry of an isosceles triangle with Ql = 
Qz = 6 . 1 2 ~ ~  and an “obtuse” included angle of Q3 = 101.35O, 
corresponding to the electronic state 2B2. (Unless mentioned 
otherwise, atomic units were used in this work au of length, a. 
= 0.529 177 X m; au of energy, E,, = 2625.47 kJ mol-’; au 
of time (atu) = 2.419 X lo-’’ s.) With this choice of the initial 
configuration, one obtains for the initial values of the normal 
coordinates 

51 = 5 2  = 5 3  = 0 
The energy of the molecule in the vibrational quantum state with 
quantum numbers (nl,n2,n3) m a y  then be written (referred to the 
minimum of the potential energy surface, which is taken as the 
zero of energy) as 

(10) 

3 

i= 1 
E = Chui(ni + t / z )  (1 1) 

or, classically, as 
3 

i- 1 
E = x’/z(II? + 4?r20)5?) (12) 

where ui = cwi, wi ( i  = 1, 2, 3) are the harmonic frequencies in 
units of cm-I, and c is the speed of the light in the vacuum. At 
the minimum of the potential energy surface one then gets from 
eq 10 to eq 12 

(13) Ei = hui(ni + y2) = ’/zIl) 

Ili = f[2hui(ni + !/2)]1/2 

or, solving for the normal momenta 

(14) 

Thus, eqs 13 and 14 allow us to specify the initial values of the 
normal momenta. 

The next step required to initiate the integration of the Hamilton 
equations, eqs 3-8, is then to obtain the initial values of the internal 
momenta, through the inverse of transformation of eq 9. The 
integration of the Hamilton equations may now be carried out 
numerically using any of the available numerical integration 
algorithms. 

3. Potential Energy Surface 
The Na3 potential energy surface used for the calculations of 

the present work is of the extended-LEPS form described else- 
where,l5 the reader being referred to the original paper for details. 
It suffices to mention here that we use the potential energy surface 
associated to the parameter value y = 2.5 defined in ref 15. The 
reason for this choice is that the potential energy surface so defined 
has a somewhat larger energy separation between the most relevant 
topographical features and hence is expected to be best suited for 
displaying a transition from quasiperiodic to chaotic motion. Such 
topographical details are clearly seen from Figure 1, which shows 
a relaxed triangular plot” of the Na3 potential energy surface used 
in the present work. To obtain this plot, the perimeter of the 
triangle formed by the three atoms has been relaxed so as to give 
the lowest potential energy at each value of the geometry defined 
by (Q2*, e,*). A total of 1501 perimeters (which were obtained 
by varying P between 0.56 and 75.5% at intervals of O.OSa,,) were 
sampled. As shown in Figure 1, this Na3 potential energy surface 
predicts the absolute minima to have an isosceles “obtuse” triangle 
geometry (2B2), with equal sides of 6.12474, and an included angle 
of 101.35O. The other critical points of the Na3 potential energy 
function shown in Figure 1 are three equivalent saddle points 
connecting the 2B2 minima, corresponding to isosceles triangles 
(zA1) with sides equal to 7 .348h and an included angle of 46.64O, 

(1) 
where Q1 and Q2 are the interatomic distances A-C and B-C, 
respectively, Q3 is the included angle and P I ,  P2, and P3 are the 
momenta conjugate to canonical coordinates Q1,  Q2, and Q3. In 
the above equation A represents a numerical factor defined as 
A =  

m A ( m  + mc)Qi2 + mdmA + mc)Qz2 - ~ ~ A ~ B Q I Q ~  COS Q3 

( 2 )  
The Hamiltonian equations of motion for this system are then 
given by 

api ( m ~  + d Q 2  - ~ A Q I  COS Q 3 p 3 2  - sin Q3 

at ~ A M C  Q I Q2 mcQi 
2 p 2 p 3  - vl 

- -  - 
(3) 

~ Q I  mA + mc cos Q3 sin Q3 
at mAmC mC mcQ2 

aQ2 COS Q3 mB + mC sin Q3 
at mc MBmC mcQi 

P, + -P2 - - p3 

PI + -P2 - - p3 

(6) 

(7) 

- -  - 

- = -  

aQ3 sin Q3 A sin Q3 
at mcQi ~ A M B ~ C Q I ~ Q ~ ~  mcQ2 
- = --P2 + ( 

where the notation V,  ( i  = 1, 2, 3) stands for the first partial 
derivative of the potential energy surface with respect to the 
coordinate Qi. 

In order to solve the dynamical problem one needs to specify 
the initial conditions for the system of differential equations 3-8. 
To achieve this goal in a straightforward manner the concept of 
normal modes reveals great utility. It must be noted however that 
normal mode descriptions are strictly valid only for purely 
quadratic (harmonic) hamiltonians. 

The normal mode analysis may then be carried out using the 
Wilson FG method18919 yielding the transformation matrix, A, from 
internal (el, Q2, Qg) to normal mass scale coordinates ( F I ,  F2. C 3 )  
and its inverse 
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0.31 

I -0.3 

- 0 . 4  
-0.3 -0.2 -0.1 0 . 0  0 . 1  0.2 0.3 

Q,' 
Figure 1. Relaxed triangular plot" for the Na3 potential energy surface 
used in the present work. Contours are equally spaced by 1.5 kJ mol-', 
starting at -26 kJ mol-'. The special contours shown by the dashed lines 
indicate the energies associated to the (O,O,O) and ( l , l , l )  vibrational 
levels, being numbered 1 and 2, respectively. Q2* = (s2 - s3)/v'T, Q3* 
= (2s, - s2 - s3)/V'6, si = R i / z $ , R ,  (i = 1-3). 

and three other equivalent saddle points (located at the middle 
point on the sides of the triangle in Figure 1) that correspond to 
symmetric linear species (22,+) with sides equal to 6.1066~~. Also 
shown at the center of the triangular plot is the minimum energy 
structure along the D3h line corresponding to the conical inter- 
section between the lower and upper sheets of the Na, potential 
energy surface. Such structure has the shape of an equilateral 
triangle (2E') with sides equal to 6 .5653~~.  The energies of these 
various configurations relative to the atom-diatom asymptote are 
(-1.0106 X (-26.5 kJ mol-') for the 'B2 minimum, 
(-8.3745 X (-22.0 kJ mol-') for the 2A1 saddle point, 
(-9.7254 X 10-3)Eh (-25.5 kJ mol-') for the 22u+ saddle point, 
and (-4.1801 X 10-3)Eh (-1 1.0 kJ mol-') for the 2E' species. The 
harmonic normal frequencies for the 2B2 species are 130 (sym- 
metric stretching), 106 (asymmetric stretching), and 21 cm-' 
(bending). 

4. Results 
For the present investigation on the nature of the intramolecular 

dynamics for the sodium trimer we followed two different 
methodologies. First a global analysis involving the integration 
of some trajectories, and the subsequent calculation of the power 
spectra for selected dynamical variables, has been made. Then 
we performed a more local analysis leading to the evaluation of 
the rate of divergence of initially adjacent trajectories, which is 
measured by the so-called maximal Lyapunov characteristic 
number. 

4.1. Spectral Analysis. Trajectories, with initial conditions 
specified as above, were integrated at several energies using an 
Adams-Moulton eleventh-order predictor-corrector algorithm 
initialized by a RungtKutta fourth-order method2' with a time 
step of s. Due to the well-known flat nature of the potential 
energy surfaces for the alkali metal trimers,l5Vz2 only states with 
very low kinetic energies have been considered in the current study, 
namely 1.54, 2.156, and 3.08 kJ mol-' that are associated to the 
classical vibrational states (nl,n2,n3) = (O,O,O), (0.2,0.2,0.2), and 
(0.5,0.5,0.5), respectively. The numerical integration has been 
carried out in intemal coordinates, with some periodical sampling 
of the calculated trajectories being done to obtain the normal 
coordinates and momenta. The frequency of this sampling, to- 
gether with the total time for the integration, are the critical factors 

__L 
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Jj , 

0 139 278 417 556 

Frequency /cm- ' 
Figure 2. Power spectra for the (0,O.O) vibrational state of Na3 of (a) 
HI; (b) n2; (c) t 3 .  

0 139 278 417 556 
Requency/cm-' 

Figure 3. Power spectrum of the C3 normal coordinate of Na3 for a 
vibrational state defined by (0.2,0.2,0.2); see the text. 

that determine the resolution of the resulting Fourier spectrum. 
For the present work we have chosen to integrate the trajectories 
for a time of 245.73 p, and performed the above sampling at 8192 

evenly spaced occasions. The power spectrum could then 
be estimated at 512 frequency values. The fast Fourier transform 
analysis was carried out using the IMSL routine FTFPS.z3*z4 

Shown in Figures 2-4 are the power spectra calculated at the 
above mentioned energies. These results are consistent with the 
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0 139 278 417 556 

Requency/cm-' 

Figure 4. Same as in Figure 3 but for the vibrational state (0.5,0.5,0.5). 

5 8 . 2  

3 9 . 1  

1 9 . 9  

$ 0 . 8  
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- 3 7 . 4  

- 5 6 . 5  
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E1 

1 0 4 . 9 1  A 
7 0  9 

3 6 . 9  

CJ - 2 9  

- 3 1  1 

- 6 5 . 1  

- 9 9 . 1  4 

-70.3 -44.2 -18.2 7 . 9  34.0 60.1 86.1 

E1 
Figure 5. Projections onto the phase space plane (&,F2) of trajectories 
for Na3 with (a) molecule prepared in the (O,O,O) vibrational state; (b) 
molecule in (0.5,0.5,0.5). 

known topographical features of the potential energy surface and 
were then expected. For the fundamental vibrational state (Figure 
2) the spectra are essentially discrete, with well-defined absorption 
peaks that can be unambiguously assigned to the fundamental 
frequencies calculated in the harmonic approximation, namely 
to1 = 130 cm-', w2 = 21 cm-', and w3 = 106 cm-'. This type of 
spectra is indeed expected for trajectories initiated with an integral 
set of small vibrational quantum numbers.25 The Occurrence of 
small additional absorption peaks in each spectrum is also noted. 
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(2 
Figure 6. Same as in Figure 5 but for projections onto the phase space 
plane (&,n2): (a) molecule in (O,O,O); (b) molecule in (0.5,0.5,0.5). 

We believe that these satellite peaks may be attributed to some 
reminiscent chaoticity even though one is dealing with very low 
energies. 

On the other hand, for higher vibrational excitations (Figures 
3 and 4), the spectra are no longer sharp rather becoming in- 
creasingly broadened and continuous. These features clearly 
reflect considerable deviations from the quasi-periodic regime. 
Nevertheless, although the line widths are quite large, we observe 
that peaks corresponding to different normal modes are clearly 
distinguishable. 

The same behavior is apparent in Figures 5 and 6, which show 
plots of the projections of the trajectories onto selected space planes 
are displayed. The predominant quasi-periodic nature of the 
(O,O,O) trajectory is clearly visible although, in a large time scale, 
a trend to uniformly fill up all the available phase space delimited 
by the caustics is also apparent. This behavior may be contrasted 
with the highly erratic motion of the trajectory for the (0.5,0.5,0.5) 
vibrational state. Note that the jagged nature of the trajectories 
in Figure 5b and Figure 6b is simply due to the limited number 
of points used to make the plot, which is smaller than that em- 
ployed for the Fourier analysis. The noise and line broadening 
in the power spectra are thus believed to be a genuine indication 
of the onset of chaotic behavior, and not a consequence of the 
sampling used for the Fourier analysis. In fact, the number of 
such sampled points has been selected as a power of 2 with the 
optimum exponent being chosen from the requirement that the 
spectral features were stable. 

Two major conclusions may then be drawn from the above 
results regarding the intramolecular dynamics of Na3: (i) cha- 
oticity grows, as expected, with increasing internal energy; (ii) 
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the nature of the vibrational motion at the zero-point vibrational 
energy is predominantly quasi-periodic, although some contam- 
ination of chaotic origin is already present. Thus, without more 
quantitative results, we cannot unambiguously characterize the 
unimolecular dynamics at this energy as being purely quasi-pe- 
riodic. 

4.2. Maximum Lyapunov Characteristic Numbers. For the 
estimation of the value of the maximal Lyapunov characteristic 
number (A) we have used the method described by Benettin et 
a1.,8 which involves running two parallel adjacent trajectories and 
periodically resetting their distance to the initial value. Ac- 
cordingly, A has been estimated as 

where Idol is the initial separation between the two trajectories. 
The other Idi[ are defined as follows: ldll is the separation after 
a time T. The trajectories are slid a distance Idol apart again and 
integrated a time T to produce a separation ld21, and so on. The 
process is repeated until convergence of eq 15, which Benettin et 
al. have shown to exist on the basis of previously proved theorems. 
Moreover, they have shown that the maximal Lyapunov char- 
acteristic number so obtained is independent of the time interval 
T (provided it is small enough) and the initial conditions Aq and 
Ap. In addition, numerical calculations on model potentials have 
shown that X is zero for quasi-periodic trajectories and is a positive 
number for stochastic trajectories. In this case, X may assume 
different (positive) values for trajectories initiated in regions of 
phase space with different ergodic components." Thus A becomes 
a function of the total energy, and is essentially a global measure 
of local exponential instability. 

In physical terms the inverse of the maximal Lyapunov char- 
acteristic number has the dimension of a time, and may be in- 
tepreted as a characteristic time of the system to be compared 
with the periods of the vibrational motion. If the latter are of 
the same order of magnitude of X, the phase of the vibration is 
subject to a random modulation giving rise to a broadening of the 
spectral More precisely, the maximal Lyapunov 
characteristic number represents an average rate with which two 
initially infinitesimally close trajectories separate and is charac- 
teristic of the memory of the system. In this work we have chosen 
the number of points at which the two trajectories were reset to 
be lo5, a value which proved to be large enough to achieve a fast 
and uniform convergence of the results to the asymptotic limit. 

Because the trajectories may be highly unstable, accuracy in 
the numerical integrations play a critical role. For this purpose 
we have used a fifth-order Runge-Kutta method with a time step 
of 7.8125 X ps, each trajectory being propagated over a time 
interval of 5 X ps. Each primary trajectory has been started 
at the equilibrium geometry of the 2B2 minimum on the Na3 
potential energy surface, with the kinetic energy being equally 
distributed among the vibrational degrees of freedom. Classical 
states varying from (-0.49,-0.49,-0.49) to (5.0,5.0,5.0) have been 
considered, which cover the energy range 0.0308 kJ mol-' 5 E 
I 16.94 kJ mol-I. The initial (Euclidian) distance between the 
two trajectories was typically au in the direction of the 
momentum P1.  To test the reliability of the results from the 
present work, some calculations were also made with the parallel 
trajectory displaced along a different direction in phase space. 
For further testing purposes, a calculation was repeated using 2 
X lo5 resetting steps. No significant differences have been found. 

The calculations have been carried out on a CDC 4680 com- 
puter using double precision (word size = 64 bits), having some 
of these calculations been repeated for a higher numerical precision 
(120 bits) on a CDC Cyber 830. This increase in precision resulted 
in a faster convergence of the estimates for the maximal Lyapunov 
characteristic number. Because such calculations are very time 
consuming (a typical orbit takes ca. lo4 s of CPU time on the 
CDC 4680 computer), we cannot claim having done a very ex- 
haustive analysis. 

Figure 7 illustrates a typical behavior of the maximal Lyapunov 
characteristic number for the (l , l , l)  vibrational state of Na3. The 
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Figure 7. Plot of the maximal Lyapunov characteristic number (A) as 
a function of the number of calculation steps for the ( l , l , l )  vibrational 
state of 
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Figure 8. Same as in Figure 7 but for the (4,4,4) vibrational state of Na,. 

convergence of the estimate toward a small but nonzero limiting 
value is clearly seen to be rather fast. Figure 8 illustrates a similar 
plot but for an higher excited vibrational state of Na3, Le., (4,4,4). 
As for the ( l , l , l )  state, the convergence is fast but tending now 
to a somewhat larger asymptotic value, which is a clear indication 
of the stochastic nature of the dynamics at this energy. 

The global behavior of the maximal Lyapunov characteristic 
number as a function of the energy is shown in Figure 9. As 
expected from theoretical grounds, the maximal Lyapunov 
characteristic number raises almost uniformly with increasing 
energy reaching a nearly constant value of ca. 5 x atu-' before 
dissociation into an atom plus a diatom, which occurs at an energy 
of 26.5 kJ mol-' [Le., close to the (8,8,8) vibrational state]. Two 
perturbations to this general trend of increasing monotonic be- 
havior should be pointed out though. One takes place at an energy 
of a. 2 kJ mol-', i.e. between the (0.25,0.25,0.25) and (0.3,0.3,0.3) 
classical levels. The other takes place at ca. 9 kJ mol-', i.e. between 
(2.5,2.5,2.5) and (2.7,2.7,2.7). A possible rationalization for these 
abrupt changes consists in relating them to the energy barriers 
that the system must overcome (see Figure 1): 0.986 kJ mol-' 
(or, in terms of the continuous variable n = nl = n2 = n3, n = 
-0.18) to pass from the equilibrium 2B2 structure (absolute 
minimum) to linear (22,'), 4.558 kJ mol-' (n = 0.98) to pass from 
2Bz to "acute" (*Al) geometries, and 15.585 kJ mol-l (n = 4.56) 
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5. Conclusions 
We have carried out an intramolecular dynamics study for the 

sodium trimer using a realistic potential energy surface. The 
results of the present calculations seem to support the conjecture 
that a very fast redistribution of the internal energy occurs between 
the internal degrees of freedom. In fact the memory of the system 
has been found to be characterized by a rather small relaxation 
time. This is the time scale on which the details of the dynamics 
are expected to be important. It may then be argued that a 
statistical mechanics description of the system should be valid for 
most energies of interest. 

However, we have also observed a sharp nature in the power 
spectra of the sodium trimer at very low energies. This charac- 
teristic is compatible with a predominantly quasi-periodic regime 
at those energies. Although apparently contradictory, the ob- 
servation of these two regimes may indeed help to rationalize the 
hybrid direct-statistical type of behavior which was found in 
atom-diatom reaction dynamics s t ~ d i e s * ~ , ~  involving the analogous 
Li3, LiNaz, and NaKz trimeric species. It would be interesting 
if the present fiidings could be confirmed from further dynamics 
calculations on these systems, possibly based on different criteria 
to predict the onset of the chaotic behavior and on energy dis- 
tributions which bear more resemblance to those which are ob- 
served in the reactive scattering experiments. 
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Figure 9. Plot of the calculated maximal Lyapunov characteristic num- 
ber of Na3 as a function of the internal energy. The arrow indicates the 
zero-point energy. 

for reaching the minimum-energy D3* structure ( 2E'). Indeed, 
one expects a sudden increase in the accessible volume of phase 
space at such critical energies. However, to fill up the whole 
available phase space the trajectory must overpass bottlenecks. 
As a result the phase space sampled by the trajectory m y  diminish 
in relative terms if it fails to overpass those bottlenecks due to 
any dynamical restrictions, which could explain the momentary 
lowering of the maximal Lyapunov exponent. Several chaotic 
components may therefore become important in characterizing 
the true intramolecular dynamics. A word of caution is, however, 
appropriate at this point. Indeed, although unlikely, the possibility 
that the discontinuities observed in Figure 9 may partly be due 
to an insufficient convergence of the calculation or to the restricted 
number of trajectories sampled cannot be entirely ruled out. 
Moreover we cannot ensure that the discontinuities in Figure 9 
are, at least in part, not due to the specific (although commonly 
used') sampling procedure chosen for starting the trajectories and 
to the limited time of integration. Of course, if the trajectories 
were integrated over an infinite period of time then the strategy 
for sampling would become irrelevant given the possibility of 
energy randomization between the various degrees of freedom. 
In summary, a clear answer to whether the discontinuities in 
Figure 9 are a real physical effect may require further investi- 
gations on this and similar systems. 

Near the zero-point vibrational energy, and even at energies 
very close to the classical minimum of the potential energy surface, 
the maximal Lyapunov characteristic number is already nonzero 
and clearly positive. This suggests a very early onset of the chaotic 
regime for this dynamical system. Such early onset of chaos has 
already been noted in other floppy systems such as KCN.28 

The inverse of the average maximal Lyapunov characteristic 
number is a characteristic time for the randomization of the energy 
in the molecule. This relaxation time can be estimated from the 
results shown in Figure 9 to be ca. 2 X lo4 atu, which is of the 
order of two harmonic stretching vibration periods. In this time 
interval internal energy has been completely randomized among 
the internal degrees of freedom, which supports the conjecture 
of a very rapid energy relaxation. Thus, one expects statistical 
features to primarily determine the dynamics rather than dy- 
namical ones. This result supports previous findings on atom- 
diatom reactive scattering for analogous systems (namely, Li + 
Li2 - Liz + Li,29 Li + Naz .+ LiNa + Na,j0 and Na + Kz - 
NaK + K30), which have indicated a high degree of statistical 
behavior in the corresponding dynamics. 
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