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Resumo

Tudo o que queremos alcançar, cada experiência que desejamos vivenciar e qualquer esper-

ança de uma vida boa pressupõe, em primeiro lugar, uma boa saúde.

Não é por isso surpreendente que muitos esforços e recursos sejam investidos na melhoria

da qualidade da assistência à saúde, seja por meio de estudos do corpo e da mente ou pela

aplicação de novas tecnologias. Felizmente, a maioria dos sintomas que afetam a nossa saúde

são representados em fenómenos fisicos, e podem portanto ser medidos. É por esta razão

que cientistas de todo o mundo se esforçam para desenvolver métodos versáteis, compactos,

energicamente eficientes e de baixo custo, não só para a deteção destes sinais, mas também

para a extração relevente dos mesmos.

Essa aplicação de sensores levou ao surgimento de redes de sensores corporais que con-

tinuamente monitorizam os sinais mais relevantes para a condição fisica de um paciente ao

anexar sensores diretamente ao seu corpo. Isto é feito não só para verificar a condição do

paciente, mas também com a esperança de poder detectar mais cedo sinais de condições de

saúde graves. Um dos exemplos desse tipo de arquitetura é o projeto WoW, que visa utilizar

sensores mais confortaveis para os pacientes e extrair deles informações significativas. Assim,

o principal objetivo desta dissertação é implementar formas de monitorizar a respiração de

um paciente de forma fiável, visto que este sinal é um dos mais importantes em qualquer

aplicação de saúde. Esta dissertação implementa 2 métodos para a monitorização da respi-

ração dos pacientes. Para isto, é proposto um algoritmo para calcular a taxa de respiração

em tempo real. No entanto, em situações de alto ruído, como por exemplo, quando um

indivíduo está a andar, o método mostrou possuir algum erro.

Algoritmos de extração ECG Derived Respiration (EDR) foram também implementados

para fornecer uma fonte secundária de respiração e melhorar a qualidade da taxa de respi-

ração extraída. Esses métodos de EDR foram testados com dados recolhidos com o hardware

local assim como em datasets amplamente usados. Onde os resultados dos testes realizados

demonstraram que estes médos são capazes de extrair ondas muito semelhantes ao sinal de

respiração original, e o seu desempenho é equivalente ou melhor que os demais métodos de

última geração testados.
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Abstract

Everything we want to achieve, everything we want to experience, and the hope for a good

life, assumes first of all good health.

Therefore, it is not surprising that many resources are being put into improving the qual-

ity of healthcare, whether through studies of the mind and body or through the application

of new technologies. Fortunately, most of the symptoms that affect our health manifest in

physical ways and can therefore be measured. As a result, scientists around the world are

striving to develop low-cost, compact, energy-efficient, and versatile methods to not only

detect these signals, but also extract reliable information from them.

This application of sensors has led to the emergence of body sensor networks that con-

tinuously monitor relevant signals by attaching sensors directly to a patient’s body. This is

done not only to check on the patient’s condition, but also in the hope of early detecting

signals of more serious health conditions. An example of this type of architecture is the

WoW project, which aims to use sensors that are more comfortable for the patient while still

providing meaningful information. Therefore, the main goal of this dissertation is to find

ways to reliably monitor a patient’s breathing, as this is one of the most important signals

in any healthcare application. To this end, this dissertation proposes two methods for mon-

itoring patients’ breathing. For this purpose, an algorithm for computing the respiration

rate in real time is proposed. However, in situations with high noise, e.g., when a person is

walking, this method proved to be erroneous in some cases.

Additional EDR extraction algorithms were also implemented to provide a secondary

source of respiration and improve the quality of the extracted respiration rate. These EDR

methods were tested with both local hardware data and widely distributed databases. These

methods have been shown to be capable of extracting waves very similar to the original

respiration signal, and their performance is equivalent or better than the other state-of-the-

art methods tested.
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“A preguiça é a mãe do progresso. Se o homem não tivesse preguiça de

caminhar, não teria inventado a roda."
— Mário Quintana
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1 Introduction

1.1 Motivation

Healthcare is one of the topics that people put more resources and energy into. Over the

years, in the search for ways to improve our current level of treatments, several seemingly

unrelated technologies have been applied to healthcare, from automatic fall detection to

emotion recognition, in efficient, energy-conscious ways [18, 43, 48]. Today, we strive for

solutions that are cost-effective, compact, energy-efficient, versatile, and multicommunicative

to detect and monitor various health conditions.

In many cases, the most important and powerful tool that we have at our disposal to

prevent major problems is the early diagnosis of potential risk signs that can develop, if

untreated, into a stage where a patient can no longer be helped. Looking for these risk signs

in otherwise healthy-looking patients, and to accurately and quickly react to changes in the

conditions of those who are already in treatment is a major challenge.

This difficulty in monitoring the condition of patients stems from the fact that health

professionals are typically only a few when compared to the number of patients under their

responsibility. Since they have several other responsibilities, full on medical monitoring is

out of the question. Therefor in order to alleviate the need of constant human intervention,

various technologies have been developed for this end.

1.2 Sensors in Healthcare

Fortunately, a wide range of problems can be diagnosed using physical means [25] measured

using sensors such as thermal sensors, airflow sensors, accelerometers, gyroscopes, pressure

sensors, magnetometers, light sensors, and so on. Unfortunately, the most common methods

for patient monitoring make use of very large, expensive, battery-dependent, and uncom-

fortable devices. Yet thanks to new and remarkable advances in Microelectromechanical

systems (MEMS) technology, new flexible, skin adherent, wireless powered sensors are being

developed to measure signals from the patient body in a less intrusive and uncomfortable
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way. This new technology not only improves the overall quality of the monitoring process

for patients, but it also improves the reading quality by allowing the placement of dedi-

cated sensors in previously impractical areas due to the nature of traditional sensors. It

also provides the ability to obtain data on the same phenomenon from different parts of the

body and improve confidence in the physical values measure and to estimate more complex

representations about the patient, such as using posture, oxygen and blood pressure data to

determine whether the patient is walking or sitting.

Although getting more and more accurate data while increasing patient comfort in using

the sensors is not enough to truly improve healthcare conditions, processing, organizing, and

classifying that data is necessary to track what the symptoms mean for the patient’s current

condition to get meaningful results.

To solve this problem in an automated manner, numeral algorithms are being explored

to extract meaningful information from the collected data. In this way, robust, accurate

signal processing algorithms can be used both in hospitals and in monitoring patients at

home, with the goal of eliminating the need for constant human monitoring. This not

only helps reduce the burden on patients, but also frees up healthcare staff and resources

without compromising, and sometimes even improving, the quality of patient care. Another

advantage of the studies conducted is the discovery that it is possible to retrieve the same

information from multiple sensor sources. This opens up the possibility of eliminating some

of the sensors needed to monitor patients’ conditions and replacing them with better, less

expensive sensors.

1.3 Context and Outline

An example of a study using multiple wearable sensors to continuously monitor a patient’s

condition is the WoW project 1 [14], under which this dissertation was developed. The

goal of this project is therefore to provide an intuitive system capable of remotely monitor-

ing a patient’s relevant physical signals and making simple condition assessments, typically

combining individually performed health assessment algorithms into a more general model.

The focus is therefore on exploring the reliability of health monitoring using an architecture

that includes wearable sensors, IoT modules, and knowledge extraction and data processing

algorithms.

To this end, a skin patch was developed in conjunction with wireless communication

hardware that adheres so firmly to the skin that it does not come off easily even when the

patient is moving or sweating profusely, paving the way for clinical trials. The architecture
1https://inovglintt.com/financiamento/wow/
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of the project is therefore shown in Fig. 1.1, and the areas that this dissertation mainly

focuses on, namely data processing and analysis, are highlighted in orange.

This dissertation adresses the analysis and use of methods for continuous monitoring of

a patient’s respiratory data, such as classification of the patient’s respiratory rate. However,

for a more robust analysis of a patient’s breathing, various EDR extraction algorithms are

also applied to the ECG data. This not only ensures that the patient’s breathing can be

monitored even if one of the sensors fails, but also allows for a more accurate diagnosis of

the patient’s breathing. This is critical as it can help monitor the most immediate issues

related to the patient’s condition, such as the occurrence of hyperventilation.

In addition, the above methods are tested using either a belt with a set of MEMS sensors,

including a respiratory sensor, an Electrocardiography (ECG), and other sensors commonly

used in healthcare, or a set of widely used databases. This is done not only to compare the

performance of the implemented algorithms with other state-of-the-art approaches, but also

to evaluate the robustness and adaptability of the implemented algorithms with different

datasets and to test their applicability in real-time scenarios.
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Figure 1.1: WoW project architecture with the areas of focus for this dissertation signalize

in orange [1].

The remainder of the dissertation is divided as follows: Section 2 reviews existing work

and general techniques for monitoring respiration, addressing the aspects that are most

relevant to this work. Section 3 presents the implemented methods in detail and Section 4

examines the results. Finally, a conclusion for this work is presented in Section 5.
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2 Related Work

In this chapter, an overview of the studies conducted in the field of respiratory monitoring

is presented. The purpose of this review is to familiarize readers with some of the main

techniques used in this field, as well as their advantages and disadvantages. However, it

should be noted that the sensors used in these works tend to differ. Therefore, a brief

introduction to the concept of multi-sensor fusion is given to show how it can be used to

improve the current paradigm of health monitoring. To this end, this chapter first explores

the sensor context, then builds on this to show the application of multi-sensor fusion, and

finally provides an overview of respiratory monitoring methods.

A transducer is a device that converts a change in a physical quantity, such as temper-

ature, flow rate, light intensity, pressure, or other parameters, into an electrical signal [44].

Engineers have been using information from sensors to assess the state of a given physical

phenomenon in order to estimate and monitor its condition and make decisions based on our

perception of the current state of the world. That is, we attempt to capture the world into a

model based on all of its relevant properties in order to monitor and control it in a way that

is beneficial to us [44]. In the process, we have developed increasingly precise and dedicated

sensors for measuring a wide range of relevant phenomena of interest in a broad range of

environments. However, this does not come without a cost, either because the dedicated

sensor is too large or bulky and actually influences the medium being measured, there is

too information being acquired that the embedded computers cannot keep up with it [25],

or because of power consumption [22, 25, 48]. These facts need to be kept in mind when

addressing this kind of systems. The bottom line is that sensor-based systems have been

subjected to new approaches over the years to mitigate these problems.

Consequently, since there are no universal sensors capable of measuring all physical phe-

nomena, and since real-world systems are complex and subject to a variety of forces, it

is impossible to have an accurate understanding of what the world around our systems is

without the incorporation of multiple sensors. This leads to the notion of incorporating in-

formation from multiple sensorial sources in a model to improve the efficiency of the system,

thus performing multi-sensor fusion [25, 44].
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2.1 Benefits of Multi-Sensor Fusion and its Application

in Healthcare

Multi-sensor fusion is defined as any stage of the integration process in which different sources

of sensory information are actually combined into one representational format [44] as can

be seen in Fig. 2.1 where multiple sensor data is fused in order to obtain an output of the

desired information.

Figure 2.1: An example of using multiple sensors and combining their data to achieve a

desired result. In this case, position, thermal, cardiac, and respiratory data are used to

assess a patient’s stress level, well-being and if they need urgent care.

This definition can be extended by the Joint Directors Laboratories (JDL) definition

about information fusion, which defines it as a process dealing with the association, correla-

tion, and combination of data and information from single and multiple sources to achieve

defined position and identity estimates, as well as complete assessments of situations and

their significance [55].

The multi-sensor fusion process can be done either to provide more complete and reliable

information about a physical phenomenon of interest, obtain positional and environmental

awareness, select the appropriate set of sensors to better complete the task at hand or to

determine if a sensor is faulty [25, 44, 55].

In order to accomplish this, a variety of useful techniques and technologies can be used

to build on the advantages that multi-sensor fusion offers when adressing a variety of real

world phenomena.
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2.1.1 Advantages of multi-sensor fusion

Because multi-sensor systems are used in a wide variety of environments and circumstances,

there are numerous potential sources of error, such as the sensor actively interfering with

the property being measured, as well as other types of errors. For example, accelerometers,

which are one of the most commonly used sensor types for measuring acceleration and

classifying position, can be subjected to rotational error, a type of error caused by potential

sensor displacement, as well as random noise from uncontrollable sources [75]. This can

be extended to virtually all kinds of sensor and multi-sensor architectures, because most

models that employ these strategies are subject to the following assumptions [75]: The

sensors are placed in an optimal position to detect activities so that they do not interfere

with the measured phenomena, and they are also assumed to be stationary over time; To

reduce obtrusiveness, the number of sensors is reduced; The sensor’s characteristics remain

constant over time, which means that it will always measure with the same level of accuracy

in the predicted environments; Sensor interconnections are dependable, never failing and

always transmitting accurate data.

However, this is not always possible, and problems can arise to undermine these assump-

tions. Sensors placed in harsh environments eventually degrade and fail [38, 75], and those

that use wireless communication or measure any type of wave-based phenomenon are always

susceptible to inference and failure [38, 75], just like the unavoidable deterioration caused by

the passage of time and the disconnection of sensors and servers, therefore countermeasures

need to be put in to place.

As an example, in order to reduce power consumption and space constrictions, MEMS

technology is frequently favored over other sensor types, despite its potential for unreliability

and fault [15, 75]. When adding jitter to this and other sources of noise and error that are

characteristic of all kinds of sensors, such as the material they are made of and the quality

of the build and position [68], creates the need to implement solutions that take this into

account. For instance a thermometer measuring temperature, may give incorrect readings

because the room temperature is significantly different from the one that it was designed to

measure in, meaning that if not taken into account it will display different values of relative

temperature change [32, 71].

Most of these issues can be avoided, or at least mitigated, by implementing a systems

which use multiple sensors to measure the same physical or completely unrelated phenomena

[25]. Where some of the most outstanding benefits of multi-sensor fusion systems [25] include:

The noise ratio of the data to be examined can be reduced by fusing data from

several sensors of the same type to provide a more accurate depiction of the true value.
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Mitigating the effects of malfunctioning sensors, noise, and poor sensor selection;

It can reduce ambiguity, improve robustness, and confidence in measured data

by fusing sensor data from multiple sources, as it can compensate for faulty sensors, as well

as verifying the quality of a sensor by comparing it to the overall value read by consensus;

Multi-sensor fusion can also identify the correct sensors to measure a specific pa-

rameter by comparing the data received and analyzing the course of action that improves

its ability to meet the assigned functions [38, 44]; It can increase the system’s robust-

ness against environmental interference by using different sensors to measure the same

phenomenon, which also improves the data resolution; By placing multiple sensors in

different areas of interest, one can obtain an overall and more complete estimation of

the target variables, while also improving precision [25, 55]; It can provide coverage of

all relevant aspects of a phenomenon that a single sensor cannot measure, because it is

possible to classify complex tasks (e.g running) that involve a complex array of parameters

and truly understand it by evaluating different complementary physical aspects, e.g heart

beat and acceleration; It decreases the logic complexity of the systems by allowing

for the standardization of inputs, reducing the logic component to a lower level of the

application, making maintenance easier, and making the systems more reliable, effective,

and cost-efficient, freeing resources;

Due to the booming revolution of IoT and wireless communication safety protocols, the

use of multi-sensor fusion opens the path to wide area monitoring, either of targets,

field conditions, or remote relevant data sources. It allows the generation of a larger

data sets to reduce ambiguity, improve coverage efficiency, ease maintenance and fault de-

tection, and generally providing more relevant data to improve decision making [6, 55];

Multi-sensor fusion allows systems to respond to unforeseen issues as it enables the de-

tection of faulty sensors and uses this information to solve the problem. This can be done

either by forcing a reinstallation of the sensor software if possible, or by allowing the closest

sensors capable of measuring the same phenomena to take over the "workload" of the faulty

sensor and trigger a warning so that the faulty sensor can be manually corrected so that the

system continues to meet requirements [21]; Multi-sensor fusion enables the detection of

patterns on bigger, more complete data sets, as well as the detection of potentially

lethal circumstances and the discovery of correlations between data to further reduce the

number of sensors while retaining performance [15, 23, 41];

All of this contributes to the development of more stable, reliable, accurate, precise, and

flexible systems, as well as their performance improvement while maintaining an appropri-

ate balance between cost, hardware, computational burden, and the range of the system’s

capabilities, strengthening the position of multi-sensor technologies in the current world.
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2.1.2 Application in Healthcare

Multi-sensor fusion is a technique used to assemble information from multiple sources to

improve the understanding and monitoring of complex systems. So it is not surprising that it

has found application in the monitoring and knowledge discovery of one of the most complex

systems known, the human body. Healthcare professionals use the information collected by

different sources to make a diagnoses, and so it is possible to apply data fusion to improve

the diagnosis validity, such as in [4], where the usage of structured and unstructured data of

relevant cases is used to improve heart diseases monitoring. Multi-sensor fusion can improve

the ways we monitor the human body while also improving patient conditions and allowing

for continuous monitoring even when the patient is not in a specialized facility [47], usually

in the form of an BSN(Body Sensor Network). The benefits of this type of approach are

numerous, with the following being some of the most important:

1. With the development of more reliable, smaller, and flexible sensors, it is now possible

to increase the comfort of a patient who requires long-term monitoring,

because new body-worn materials can be used to create multi-sensor wireless systems

that move with the body, not obstructing any major movement while remaining

comfortable and fixedly placed above the skin [3, 25];

2. The ability to use IoT to remotely monitor a patient signal enables comfortable

home monitoring, reducing the time required for routine trips, freeing per-

sonal and resources of dedicated facilities, all while assisting the patient in being

comfortable and relaxed in their home, reducing stress [19, 25, 43];

3. With the use of multiple sensors, it is possible to not only havemore reliable, ac-

curate measurements of key vital signals, also to use this fused information to

identify patterns, either between sensors signals or other factors. This allows for the

discovery of more efficient treatments as well as the possibility of early detection

of symptoms of diseases that can be then promptly diagnosed and treated [19, 25];

4. Faster and more accurate diagnoses and decisions [19].

In this regard, BSNs are very similar to standard wearable multi-sensor systems; however,

due to the nature of the topic and the subjects being measured, the sensors must be lighter,

smaller, more ergonomic, bio-compatible, with easy battery access and a fast battery charge

cycle for the most on-time autonomy possible, as well as more reliable and with stricter

safety protocols, either between the sensors themselves and between sensors, and servers

[19, 25, 38].
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This is only possible through the use of cutting-edge technologies such as IoT (Internet of

Things) and ML (Machine Learning). Since a large amount of diverse data can be collected

from different patients and used to train models for generic monitoring of daily life or regular

checkups, as well as models that look for specific patterns for diagnosis. As such, multi-sensor

fusion techniques are used in healthcare today [19, 25], with contributions to healthcare [19,

25]: activity recognition [22]; activity level estimation [47], caloric expending estimation [26],

joint angle estimation [41], activity based prompting [20], medication adherence assessment

[9], telecare [47], emotional classification [43], disease patterns [61], genome patter recognition

[72], rehabilitation [16].

In conclusion, previous works have shown that the use of this technology can be beneficial

to healthcare, contributing to its improvement at a lower cost [4].

2.2 Artificial Intelligence

An important factor is the ability to fuse signals and analyze the resulting arrays of data to

extract meaning. This can be done trough AI, which can be defined as follows:

"Artificial intelligence (AI) is an integration of computer science and physiology. Ar-

tificial in simple language is the computational part of the ability to achieve goals in the

world. Intelligence is the ability to think to imagine creating memorizing and understanding,

recognizing patterns, making choices adapting to change and learn from experience. Artifi-

cial intelligence concerns with making computers behave like humans in a more human like

fashion and in much less time than a human takes" [35] .

Having proven to be very useful in the field of healthcare where multiple subsections

of AI where adapted in diverse forms for an array of problems like incomplete datasets,

image recognition and classification, finding patterns in large datasets [54], searching online

for possible drug reactions [60], analysing complex time related variables [28, 27] and even

recently in the fight against the COVID-19 [66].

Nevertheless, in the context of healthcare, there is no need for complex implementations

when a reliable and summary representation of the available data is sufficient for decision

making and monitoring by healthcare experts [4]. Therefore, the general goal of AI applica-

tions in healthcare is to generate a less complex, more tangible solution for prediction and

classification when possible.

Successful implementations of classical AI Techniques include case-based reasoning [33,

39], rule-based systems [8, 70], fuzzy-based systems [34, 17], and multi-agent systems [74, 77].
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2.2.1 Respiration Classification

One major problem regarding the monitoring of patients’ health conditions revolves around

the idea of appropriately assessing the patient’s respiration rate in order to evaluate any

potential danger levels deviated from respiratory irregularities. Respiratory Inductance

Plethysmography (RIP) can be utilized for automatic breath segmentation in free living

situations for numerous patterns of breaths for different activities to provide more compre-

hensive monitoring [42].

That is, in order to have a proper reading of the respiration rate, especially in wear-

able sensors, data segmentation is required to extract valid conclusions, whilst being non-

intrusive. Which not only makes the patient more comfortable but also reduces the chances

of interfering with the medium that is being measured, such as the ventilatory flow. Res-

piration segmentation techniques are of particular interest because visual analysis of this

information from a source other than manual recording is desirable because it is less time

consuming and less prone to human error than the current standard of impractical, laborious

monitoring by healthcare professionals [42].

Continuous monitoring of a patient respiratory information can help in the early diagnosis

of a wide range of respiratory disorders, such as sleep breathing disorder, chronic obstructive

pulmonary disease, sudden infant death syndrome and neuromuscular disorders, narcotic

medicines, hyperpnea, tachypnea and muscle weakness [11, 53].

A wide array of sensors are used for this, divided into sensors that measure motion,

volume, or tissue changes, sensors that measure air flow, and sensors that measure gas

changes in the blood stream to evaluate not only if the patient is breathing in or out, but

also the level of important gases in the body waveform [30].

Wearable-worn sensors, such as inertial sensors, are therefore useful for developing low-

cost and easy-to-use respiratory monitoring systems because they are flexible and small,

especially for measuring respiratory rate, and are more convenient for the patient than the

very accurate but intrusive carbon dioxide sensors, ECG, transthoratic inductance, and

impedance plethysmography [5, 11, 53].In addition, respiratory rate can be calculated auto-

matically, unlike current methods for shorter examinations where medical personnel count

the respiratory rate manually. In terms of techniques for determining respiratory rate, there

are two broad areas that can be described as follows: Peak detection, a relatively good

approach since it is a simple model that detects the peaks of a wave and counts them to

calculate the respiratory rate with acceptable results, such as in [42, 53], but which are less

reliable than intrusive methods such as carbon dioxide sensors and ECG. The other major

methods for determining respiratory rate are based on the use of IMU and ECG and are
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generally very reliable. This is because these methods tend to fuse multiple sensor types

to calibrate themselves and perform frequency analysis to reduce the source of error that

occurs in these types of measurements. However, they are more complex and require special

fusion algorithms and are still not as good as intrusive methods [5, 30].

An example where ECG sensors can be used to monitor a patient’s respiration arises

from the fact that the ECG wave contains information about the respiratory wave. To this

end, there are a number of methods that focus on the extraction of respiratory waves from

the ECG, with their main focus being the extraction of an ECG Derived Respiration (EDR)

wave.

2.2.2 EDR retrieved waves from ECG signals

The use of ECG sensors to calculate respiratory rate is not a new approach, as it is a widely

used sensor in medicine that is noninvasive, inexpensive, and supported by the vast majority

of medical institutions, which facilitates the integration of algorithms for EDR extraction,

because with the introduction of an IoT module to read and store these values, EDR ex-

traction in itself would require only one processing unit to execute the desired algorithm

[31, 49]. Combined with the sensor’s ability to detect both cardiac and respiratory activity,

this makes the ECG an excellent choice for respiratory monitoring support [31]. Where an

electrocardiogram (ECG) is defined as a sensor that measures the electrical current gener-

ated by the heart muscle (myocardium) during each heartbeat. It consists of at least two

electrodes attached to the body and estimates the movement of the heart muscle by deter-

mining the voltage difference caused by the current generated between the two electrodes,

which are usually located on the chest [12].

However, what makes the ECG interesting for assessing the respiratory status of a patient

is the fact that this mechanism is subject to external disturbances such as electromagnetic

noise as well as the movements of the body. This is because respiratory motion can change

the electrical impedance of the thorax due to changes in lung volume or the position of the

cardiac vector with respect to the electrodes. Combined with the fact that breathing tends

to increase the heart rate during inspiration and decrease it during expiration, the breathing

wave becomes an additive wave in the ECG signal [31]. Because of this aspect of the ECG

signal, a variety of methods can be used to extract an EDR by exploiting the inherent

relationship between the ECG and the respiratory waves. This results in two important

and critical signals being generated by a single sensor. In this regard, it should be noted

that although multi-channel ECG-based methods for EDR extraction exist [31], the focus of

this dissertation is on methods that use only one ECG or can be adapted for single-channel

ECGs, such as [10, 51], as they better fit the materials and proposal of the project in which
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this dissertation is involved.

Below is a brief description of some of the most commonly studied methods for extracting

EDR waves, as well as some of the methods used in this dissertation:

Band-pass filtering techniques consist in removing all frequencies from the ECG wave

that are not in the frequency range of respiration (typically between 0.05 and 0.7 Hz [31]),

leaving only the desired signal unchanged, as this filtering removes the unwanted signal

components, sometimes using some linear operations [65]. These techniques are generally

more efficient than other EDR techniques in noisy environments and have a particularly

low error at low breathing frequencies. However, they are very sensitive to the range of

frequencies in which they filter the data, and achieve better results if that range is set to a

smaller range closer to the breathing frequency. This is because when trying to filter out a

wave that contains all of the breathing frequencies, a wider frequency range, such as 0.1-0.8

Hz, is required. This proves that there is no clear frequency range in the literature that

can be universally agreed upon, which means that its selection must be carefully weighed

for each individual application. This is because the selection of bigger intervals causes

other components of the ECG signal and other noisy signals with lower frequencies to fall

within the selected frequency range and distort the derived respiratory signal, as has been

demonstrated experimentally, while smaller ranges do not take into consideration most of

the possible respiration frequencies. [7, 31, 65] are some works that use band-pass filtering.

Wavelet decomposition methods are based on wavelets, a type of fixed-format wave

that can be scaled for different frequencies and shifted in time before being used to perform

the Discrete Wavelet Transform (DWT). These wavelets are used in EDR extraction to

find the signal most similar to a respiratory signal in the ECG and extract these signals

in their respective frequency bands. To do this, a DWT is applied to a given signal. In

this transformation, the signal is decomposed into a certain number of coefficients that

depend on the mother wavelet. This decomposition consists of successive low-pass and high-

pass filters that split the analyzed signal into two different components with half of the

original information. Since the frequency content of each decomposition is divided by half,

the successive cA (low frequency) decomposition gives an ideal bandwidth. Using these

coefficients, it is then possible to reconstruct a signal in a particular frequency band that

best represents the mother wavelet. With these coefficients, which in the case of DWT are

divided by frequency bands that are halved for each new decomposition level, the EDR wave

is generated. For this purpose, the inverse DWT function is used to reconstruct a signal

in which each coefficient whose associated frequency band is outside the possible breathing
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frequency interval is set to zero. The result is the union of all frequencies of the original

signal that are closest to the selected wavelet, and if that wavelet is correctly selected, closest

to the respiratory waveform. Normally, the decomposition level corresponding to the desired

frequencies is either 9 or 10 [56], but it has been found experimentally that it is necessary

to investigate other decomposition levels when the sampling rate of the ECG value is very

high. This method, although practical, is not suitable for determining the actual shape of the

respiratory signal, since the shape of the reconstructed respiratory signal depends strongly on

the mother wavelet used, but it tends to increase its performance with increasing respiratory

frequencies. Where [7, 56, 62] are some works that use this methodology.

Empirical mode decomposition methods or EMD for short, are methods for decom-

posing a signal into its constituent IMFs [76]. Where, an Intrinsic Mode Function (IMF)

is defined as a signal whose number of extrema (max and min) is equal to or at most one

point different from the number of zero crossings, and whose average between the upper

and lower envelopes does not differ from zero at any point [45]. This is important because

this IMF maps the upper and lower points of a wave with respect to its frequency. This

is important in the case of extracting an EDR wave because the inhalation and exhalation

of a patient results in a corresponding additive low-frequency signal reflecting this motion.

It is possible to extract an EDR by extracting the IMFs that map the highs and lows of

these additive low-frequency perturbations. For this purpose, the IMFs are extracted in fre-

quency order, with the highest frequency assigned to the first. After all IMFs are collected

in one signal, those that fall within the frequency range of respiration are selected. Since

the IMFs for these frequencies represent the waveform of the respiratory motion added to

the ECG signal, they are then combined to form the EDR wave [45]. There are variants of

this technique, such as Ensemble Empirical Mode Decomposition (EEMD), which solves the

problem of mode mixing by combining concepts of noise-assisted data analysis (NADA) with

the EMD algorithm, namely the "more heads think better" approach of ensemble techniques

to select the most appropriate IMF that reduces noise and increases the performance of the

EDR signal [69]. They are extremely dependent on the chosen domain and are subject to

noise and sampling errors that can affect the local extrema. However an important difference

between EMD techniques and other methods such as wavelet analysis is that the extracted

IMFs depend on the waveform of the input signal as they depend on its local extrema. Thus,

the EMD decomposition of the signal is data-driven. While methods such as DWT analysis

are based on the selection of an appropriate wavelet. Since EMD is inherently data-driven

and therefore adaptive, the methods are usually very flexible. Some research that uses EMD

as a basis or in general includes [45, 50, 69, 76].
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R-peaks analysis methods use information about a person’s breathing contained in the

QRS complex and can be divided into two main approaches. The first method consists

in analyzing the amplitude of R-peaks to exploit the relationship between their amplitude

and the displacement of the electrodes caused by the lung movement. The reason for this

is that this movement directly changes the impedance of the thorax and the strength of

the current measured by the ECG. This leads to higher values of the R peaks in the QRS

complex when, depending on the polarization of the ECG, the sensor is closest to the heart,

i.e., when the patient exhales, and thus there is a direct relationship between the amplitude

of the peaks of the QRS complex and the respiratory motion. The second method is to

analyze the distance between the R peaks to take advantage of the fact that the heartbeat

tends to increase when a patient inhales and decrease when he exhales. And so, in most

cases, higher concentrations of R-peaks near relatively low concentrations can be interpreted

as the direct result of a respiratory cycle, i.e., inhalation and exhalation [29]. The R-peak

amplitude is less susceptible to muscle artifacts and has high potential for detecting central

apnea episodes [29]. The performance of these methods varies depending on variables such

as resting position, age, and gender, as all of these factors strongly influence cardiac output,

making the link between the heart and breathing less clear. It is also important to note

that these methods tend to fail when the ratio of heart rate to respiratory rate is less than 2

[31]. Another disadvantage of all methods based on analysis of the QRS complex on an ECG

signal is that they also require accurate QRS and R-peak detection, as incorrect detection

leads to performance degradation [31]. This additional step slows down the entire process,

and depending on the algorithms used and the processing power of the devices, it has been

experimentally found that these methods may be too slow for real-time use, depending on the

algorithm used. Some examples of the different approaches are given in [7, 29, 36, 51, 57, 76].

Principal component analysis methods or PCA, construct the EDR signal by ana-

lyzing the QRS complex and extrapolating the relationship between it and the respiratory

signal, which contains respiratory-dependent features such as the Q and R waves, and then

using the first eigenvector to construct the EDR wave [12, 31]. This is done because the

relative position and amplitude of the peaks in the QRS complex is a direct consequence of

respiration. This is because, as mentioned earlier, the signal read from the ECG contains

an additive signal that reflects the shifted positions of the ECG leads due to the movement

of the chest and is reflected in their amplitude. In addition, the position of these peaks

iin relation to each other is a reflection of respiration, because respiration has been shown

to directly affect the movements of the heart and thus change the temporal position of the

peaks. All this information is processed by the PCA algorithm, which extracts the features
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most relevant to the signal. Therefore, the first eigenvector containing the most important

feature is selected to extract the respiration wave. The first eigenvector is found with the

help of a singular value decomposition (SVD), where the first column of the U-matrix of the

SVD corresponds to the column that contains the eigenvector with the highest eigenvalue

and thus represents the first eigenvector. Since the PCA approach usually evaluates only the

linear relationship between respiration and ECG, KPCA was developed to solve this prob-

lem and is therefore less suitable for short real-time data segments. Another disadvantage

of PCA is that it performs poorly in the presence of noise and sudden changes in ECG data.

[10, 37, 59, 73] are several research papers investigating this approach.

Although each of these methods takes a different approach to extracting the EDR waves,

they have some steps in common, such as removing the DC frequency, filtering the very

high and very low frequencies of the ECG signal, and in some cases applying a median

and/or mean filter to remove unwanted signal components (e.g., Q and T spikes in the QRS

complex). For better analysis, a cubic spline is often used to align signals with different

frequencies, and detrend algorithms, applied on both the reference signal and the EDR, are

also used to better visualize and filter the data. Although there is no universal method for

preprocessing that should be performed for algorithms to improve performance, experiments

show that some approaches, such as frequency-based, benefit from normalized signals, while

others perform better with non-normalized signals (R-peaks).

It is also important to consider the various limitations of these approaches, such as the

position of the electrodes [67, 73], age and gender [50], and the type of breathing, e.g.,

through the chest, that may affect the performance of the algorithms. Other aspects that

may affect EDR extraction performance depend on the quality of the ECG [51]. However, it

is almost universally accepted that noise and body motion negatively affect all methods and

are difficult to eliminate completely in their entirety [57]. Therefore, other approaches are

now being explored to replace or improve upon established algorithms, such as the use of

neural networks, with some even using simpler networks that work alongside other existing

methods [59].

2.3 A Review of Methods for EDR and Respiration Rate

Extraction

In this section, we provide a more detailed analysis of the reviewed articles that serve as the

basis for the methods implemented in this dissertation, which address both the extraction

of respiratory waves from a respiratory signal and the extraction of EDR signals.
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2.3.1 Determining the respiration rate

The state-of-the-art articles present in this subsection address the techniques used to de-

termine respiration rate. Two main methodologies emerged: The first uses the frequency

domain of the signal, the second the time domain. To conduct an investigation relevant

to this dissertation, the methods examined focus on the use of either a IMU, a respiration

sensor, or a combination of both.

Let us start with the study done in [42], in which the authors refer to a time-domain

approach based on the detection of peaks and valleys in the respiratory wave. This detection

of peaks is used to identify respiratory cycles, where a respiratory cycle is defined as two

peaks in the data between valleys corresponding to two inhalations and one exhalation. To

accurately distinguish these cycles, a threshold was empirically determined and implemented.

In order to test the adaptability and robustness of this method, a series of 4 controlled

activities were performed in which subjects read aloud, smoked, and relaxed. The final

results of this study showed an accuracy in estimating the correct respiratory rate between

85 and 99.6 percent compared to the manually determined respiratory rate. However, the

fact that accuracy decreased when subjects did not relax suggests that body movement may

be a source of error in correctly classifying respiratory rate. This and the lack of use of a

commonly used database are the major weaknesses of this method. Nevertheless, this study

proves that a time domain peak detection algorithm is very robust.

For an approach that now focuses on frequency domain analysis, the method [30] pre-

sented by authors P. Hung, S. Hood et al. serves as a good example. In this study, the authors

perform a spectral analysis of the data collected by an accelerometer and a respiration band

and extract the amplitude spectrum of the respiration waves. Using this spectrum, they were

then able to determine the most important frequencies in the respiration wave and calculate

the respiration rate. However, this method could only give a range for the respiration rate

and not an exact value.

One method that uses both an inertial sensor and a time-domain peak detection approach

is the study by M. Rahman and B. I. Morshed in [53]. In this study, the authors used a

commercially tested respiratorysensor placed on the abdomen and a IMU device placed in

the thorax. This allowed them to collect relevant information about a patient’s breathing

movements, regardless of whether the patient was breathing from the chest or abdomen.

Once this data was collected, the readings were normalized in a vetorial configuration.

This representation allowed for more accurate detection of the peaks that make up the

respiratory cycle. This proved to be effective, as the results showed a difference between

the two detected respiratory rates of less than 2 bpm and 0 in most cases. However, this

16



study suffers from the fact that a protocol with fixed respiratory rates was implemented,

which is not representative of a patient’s normal breathing pattern, and from the lack of use

of a common database for direct comparison. Nonetheless, the implemented algorithm has

been shown to be robust when tested with real hardware, similar to that available for this

dissertation.

Finally, concerning the computation of the respiratory rate, a conclusion in [5] is worth

mentioning. This relates to the fact that noise and motion are still a major problem in

monitoring respiration in studies with wearable sensors, as shown by the results of S. Beck

et al. In their study, they implemented what is, as far as the author knows, a very rare

approach in which the respiratory rate was determined based on the angular changes of two

IMUs. This was possible because these angular changes are a direct result of respiratory

motion. However, to accurately register these changes, a IMU device had to be placed on

the patient’s back to serve as a reference. This is not ideal because the sensor is in a very

uncomfortable location for the patient. However, the results show that this configuration is

a very stable method of correctly classifying respiratory rate. With the main drawback of

this study being that only 5 data sets from no common database were used.

2.3.2 EDR extraction: Frequency based methods

Regarding the analyzed methods for direct extraction of an EDR wave, two articles are

worth mentioning. While these articles are not specifically designed to present or compare

a particular EDR extraction method, they do provide an overview of one or more EDR

extraction methods and explain them in detail. Starting with [12], in which the authors

focus on a detailed, summary, and consistent review of the most relevant studies available

up to their publication in 2017. It explains how it is possible to extract a respiratory wave

from an ECG signal (EDR) and explains the mechanisms of the most studied methods.

This is a wonderful article for anyone interested in EDR, as it not only provides detailed

explanations of the various methods, but also includes a number of other interesting articles.

Another article worth mentioning is [10], which is less general than [12] but is a very

informative article in which the authors explain in detail in which areas of the ECG signal

PCA can be applied. They explain that PCA is typically used to analyze the differences in

amplitude and spacing between the peaks of the QRS complex, as these are a direct reflection

of respiration. Also, other applications of PCA to the ECG are be presented in addition to

EDR extraction, such as noise reduction techniques.

Thus, the remaining articles discussed in this section tend to focus on the correct extrac-

tion of an EDR wave, either as a final result or as an intermediate step.

Beginning with the article [31], in which the authors discuss the application of a Gaussian
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filter to the ECG signal to filter out the respiratory wave contained therein. This article

begins by defining a Gaussian process as a supervised learning method for solving regression

and probabilistic classification problems that fits covariance functions to different ECG com-

ponents. Therefore, the implemented algorithm focuses on estimating the hyperparameters

of the GPs covariance function to extract the EDR signal using the GP specific transform

and achieve proper separation between the EDR and the original ECG wave.

They test this approach with other state-of-the-art methods using a cross-correlation

criterion. The result showed a cross-correlation of 70 to 72 percent in direct comparison

with other methods, which ranged from 55 to 77 percent, with their bolk ranging from 60 to

77 percent. The authors therefore concluded that their method was on par with the rest of

the state of the art. However, the complexity of the algorithm was not justified compared

to the other methods, which did not perform significantly worse. Therefore, although this

approach was used for comparison, it was not pursued further.

To investigate other filtering methods as well as other very well-studied EDR extraction

methods, the article by J. Boyle et al. [7] was of interest. In this article, a combination of

algorithms of bandpass filters, wavelets, and QRS are analyzed, giving a total of 6 methods.

To test their performance, a metric was performed to evaluate the difference in the calcu-

lated respiration rate between the extracted EDR and the original respiration. The study

concluded that the bandpass methods performed best, with the best results obtained with

the bandpass filter between 0.2-0.8 Hz.

This proves that the frequency range of the analyzed frequency matters, as the other

bandpass methods performed worse for other ranges. However, this does not mean that the

other methods perform much worse. In fact, the DWT method outperforms the bandpass

methods as the breathing frequency increases, while the QRS methods do not lag behind the

others. This proves that the implementation of multiple EDR extraction algorithms might

be necessary, as their performance can be comparable, with some methods adapting better

to certain scenarios.

As for the other frequency-based methods presented in [7], the DWT can be further

explored in [62]. In this study, the authors use the DWT property of applying successive

low-pass and high-pass filters to decompose a signal into a series of coefficients representing

the numerous signals contained in the ECG by their frequency. Then, by applying an inverse

DWT to the coefficients containing the signals whose frequency matches that of respiration,

an EDR is created. To test this implementation, the authors then apply a metric that

evaluates the difference between the respiration rate of the EDR and the original respiration

signal.

The results show that there is a small error between the respiration rate derived from the
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EDR signal and the original respiration rate. Therefor indicating that the EDR wave must

contain similar information as the original respiration wave. This confirms the assumption

that the DWT method can be successfully used to extract an EDR signal. In addition,

they use the widely available Fantasia database, which allows for a more direct and accurate

comparison with other methods.

2.3.3 EDR extraction: QRS complex analysis methods

At this point in the review, however, it became clear that frequency-based methods are

susceptible to various forms of error and are highly dependent on the frequency band in

which they operate. Therefore, an investigation of the very common analysis of the QRS

complex, see Fig. 2.2, was undertaken.

Baseline QT Interval

PR Interval

QRS
Complex

P

Q

R

S

T

Figure 2.2: Standard QRS complex configuration [2].

Let us start with the multiple-method case study proposed by E. Helfenbein et al. in [29],

which takes into account both respiration-related changes in the amplitude of the QRS peaks

and heart rate, as well as an innovative method that uses the effects of muscle movements

associated with respiration to obtain an EDR wave. The first two methods start with the

detection of R peaks in each QRS complex and then focus on the changes in amplitude and

temporal position of these peaks to extract EDR waves.
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To this end, the authors use a cubic spline interpolation to generate the EDR signals,

assuming that the amplitude changes and the interval between the peaks correlate with the

respiratory waveform. However, the most innovative and interesting method was the EMG

method, which is based on the fact that a very highly sampled ECG signal of at least 500

Hz contains information about muscle activity associated with respiration. However, since

the sampling rate required for this method is much higher than that of the ECG available

for this dissertation, it will not be discussed further.

With this in mind, the results of the two remaining algorithms that compared respiratory

rate to each other and to the ground truth proved to be sufficiently free of error to warrant

their pursuit.

Difference in amplitude and interval of the QRS complex peaks as a direct con-

sequence of respiration

Therefore, to gain a better understanding of the possibilities and limitations of methods

based on the study of the QRS complexes, a more in-depth analysis is needed. Therefore,

the next articles will focus on the direct changes in the amplitude and interval of the R peaks

as a direct consequence of respiration.

Using the study by J. Kim et al. compiled in [36] as a starting point. In this study we can

see that the assumption that the temporal information of the ECG varies with respiration in

terms of the placement of the peaks is reliable for the extraction of the EDR signal. Not only

that, but that this can be done in a variety of ways. This was demonstrated by the authors,

who implemented both the evaluation of the area under each R-peak, since this area directly

reflects the inhalation or exhalation motion, and the difference in the interval between R-

peaks. However, no information was presented on the performance of the algorithms, except

that direct visual evaluation of the waves showed that the extracted waves were similar to

the original respiratory waveform.

However, in [76] a concrete comparison is made between different state-of-the-art methods

based on the cross-correlation metric. In this study by A. Zarei and B. M., the Ramp, RSamp,

and QRS methods are compared with two new EMD methods proposed by the authors.

Although the goal of this study is to automatically detect OSA, an in-depth comparison is

also made in terms of extracting the EDR from the different methods. The results show

that all algorithms have a mean cross-correlation of about 68 to 79%, with a slightly higher

median value. In the tests performed, the Ramp algorithm is the better method in terms

of score, proving the effectiveness of the algorithms based on the analysis of the QRS peaks

compared to the state-of-the-art methods. It was also shown that the EMD methods can

produce EDR waves similar to the original respiratory waves. However, the EMD methods
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presented required a high computational cost that could not compensate for their more

robust performance compared to the other methods, with the authors even acknowledging

that their algorithms are not applicable in a real-time scenario.

Extraction of the spacial features or respiration in the QRS complex that reflect

the respiration with the use of PCA

It has been shown above that analysis of the QRS complex is not only viable, but can

outperform other modern methods depending on the scenario. However, there are other

ways to analyze the respiratory information contained in the QRS complex. To this end,

PCA algorithms are used to extract key features in the QRS complex that are related to

respiratory motion.

A practical application of PCA to the QRS complex is the method developed by P.

Langley et.al. [37], which achieves high values in cross-correlation even compared to other

state-of-the-art algorithms tested. This was demonstrated in this study, in which 14 methods

were tested, including the Ramp method and the R-Interval method. The results of the cross-

correlation metric showed that the results of the PCA algorithms were more stable and less

error-prone than those of the reference methods. In addition, they were able to achieve a

mean correlation value of 73 to 80 percent, depending on which PC was extracted and for

which input. However, the use of a protocol with fixed breathing patterns does not represent

the condition of a patient on a normal day. This and the fact that no commonly available

database was used proved to be the major weakness of this study.

Another interesting paper on the use of PCA is described in [73]. where the authors

investigate the use of a kernel function before applying the PCA algorithm. This method,

known as Kernel PCA (KPCA) can be considered a general extension of the PCA algorithm,

where non-liniarities in the data are taken into account. This is achieved by using a kernel

function that maps the raw input data to a higher dimensional level, as there are sometimes

features that can only be seen in this type of representation, to which PCA is then applied.

The authors tested the KPCA algorithm with different hyperparameters and compared

their results with the Ramp method using the cross-correlation metric. The results show

that the tested algorithms have an average cross correlation of about 70-76%. It was also

found that the method with the lowest result was the Ramp method, whose average cross-

correlation value was in the range of 50%, proving that the performance of this method

can vary greatly depending on the scenario. However, the better performance of the KPCA

algorithms was associated with high compatibility costs. Therefore, this method is not

investigated further since other methods implemented in the Fantasia database, including

normal PCA, provide performance in the same range as KPCA.
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2.3.4 EDR extraction: Empirical Mode Decomposition analyses

In this last phase of the review, the EMD methods are analyzed. This is done because this

method has been shown to achive high performance when applied to the cross-correlation

metric in [76] and is also a widely studied method. Stariting on the work of K. V. Madhav et

al. [45], which serves as a good introduction to the structure of EMD algorithms and shows

how they can be used for EDR extraction. A visual example of how the EMD algorithm

extracts the individual IMFs that comprise an signal can be seen in Fig. 2.3.

Figure 2.3: Standard example of how an EMD algorithm extracts the IMFs of a signal [58]. In section a)

you see the original signal. An upper and a lower envelope are then fitted to this signal, from which the

average of both envelopes is calculated, as seen in section b). This average contains information about the

signal with the highest frequency present in the original signal. Therefore, it is possible to extract this high

frequency signal by subtracting the calculated average (see c) from the signal in a). This residual, present in

d) is then subjected to a series of criteria to determine if it corresponds to an IMF. If it is not, the procedure

is repeated until it is. After the IMF is correctly found, it is removed from the original signal. The resulting

signal is then used to extract the second IMF by performing the same procedure until all IMFs have been

successfully extracted.

In this study, the authors provide a pseudo-algorithm as a "template" for the general

structure of the EMD and show how they extract the IMFs. After a detailed explanation

of how the model used works, both cross-correlation and respiratory rate error metrics were

applied to test its performance. The results for the EMD algorithm in the cross correlation
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metric showed an amazing mean cross correlation of over 90%. This not only makes this EMD

algorithm the highest scoring method in the cross correlation reviewed, but also supports

the idea that EMD methods are capable of extracting EDR waves that are very similar to

the original repsiratory waves. However, it is worth noting that the algorithm tested in this

study did not use the full extent of the Physiobank database MIMIC and was tested on only

a few subjects, which may have affected the results.

Another approach to using the EMD method that has attracted interest and has been

referenced in numerous other studies is the EEMD algorithms. These algorithms use the ML

technique of ensembles and its premise of "more minds think better than one" to achieve

better performance. These methods achieve this by using a subset of the data to train an

ensemble of EMDs and adjust the EMD hyperparameters. Thanks to this approach, the

EEMDs are then able to obtain the best output for their EMD configuration. The result is a

method that is both capable of extracting the EDR wave that is most similar to the original

respiratory wave and is a method with high performance and robustness.

However, this comes at a cost, as not only is a training procedure required, but also the

fact that the EEMD is inherently ensemble. This is illustrated by the study of K. T. Sweeney

et al. in [69], in which an additional white noise step was performed in each independent

EMD algorithm. The results show both the advantages and disadvantages of the EEMD

architecture, as a very efficient, robust, and noise-resistant method was created (thanks in

part to the additional white noise), but at the cost of very high computational power.

Therefore, it was concluded not to use the EEMD approach, since the performance was

not significantly better than that of the regular EMD algorithms and this increase did not

justify the very large increase in computational power, which is a major drawback for use in

a real-time system.

2.4 Literature Gaps and Statement of Contributions

In this section, we attempt to identify some of the key gaps found in our review of the current

state of the art, as well as highlight the contributions of this dissertation.

One of the major gaps in the current state of the art regarding the use of multiple sensors

for health issues is that the systems studied are usually used for very specific circumstances.

That is, and as far as the author is aware, most techniques have been used for very targeted

applications and have not taken full advantage of multi-sensor fusion. Another drawback of

current approaches is the use of multiple sensor types that focus on only one aspect, such

as using different sensors to classify posture without considering a broader range of features.

This could be addressed in a number of ways, such as using the information collected and
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processed by the different sensor modules and merging their data at a higher level to gain a

deeper understanding of how the systems they are used in work, or simply using the same

sensor to draw different conclusions. In this way, it may be possible to improve the accuracy

and robustness of measurements while minimizing the use of sensors for the same set of

signals.

Other limitations of the current state of the art include the fact that many broad studies

on this topic rely on databases that are not always widely and freely available. Alternatively,

their approaches focus on a particular group or set of conditions, making the results obtained

in these studies less representative, leading to more targeted approaches whose performance

may vary widely in an unknown scenario. This leads to uncertainty about which algorithm

performs best in a given case, with some performing differently even based on the given

data. This makes it unclear which algorithm is the most robust overall [12]. Another major

problem is that the results presented are only the best possible results and in some cases

omit data that would affect performance [37, 50]. Another major drawback of some studies is

that they only tested their methods with simulated data, which makes it difficult to evaluate

the performance of the algorithms in real-world scenarios [62].

Our contribution, therefore, is to develop a consistent and robust continuous monitoring

system for patients that will improve their overall satisfaction and increase their freedom

and physical comfort when continuous monitoring of their vital signs is required. To this

end, this dissertation focuses on the use of real data obtained from regularly available and

intensively studied databases, as well as data collected by a belt developed within WoW,

which encompasses several different sensors, including the dedicated respiratory sensor and

ECG to monitor the patient’s respiratory data. Therefore, this dissertation investigates a

respiratory rate algorithm in combination with different EDR extraction methods. This

makes it possible to apply the respiratory rate algorithm not only to the data collected by

the dedicated respiratory sensor, but also to the EDR waves extracted from the ECG. Both

sensors can be used to increase the accuracy and robustness of the respiration rate, while

continuously monitoring a patient’s breathing even if one of the sensors fails.
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3 Methodology and Implementation

In this chapter, the algorithms implemented in this dissertation to calculate the respiration

rate and the different EDR extraction techniques are explained.

3.1 Extraction of respiration rate with a peak detection

approach

Let us start with the method of classifying a patient’s respiratory rate, which ranges from

12 to 18 breaths per minute in adults [63]. This method is based on the assumption that

a complete respiratory cycle (inspiration and expiration) results in two maxima and one

minimum in the data of a respiratory wave. This is done to count the number of complete

respiratory cycles in the analyzed data window, since it is possible to truncate a respiratory

cycle when a number of x seconds of respiratory data is selected, so that only the complete

sets are considered. In the case of this dissertation, this is possible due to the elasticity of

the respiratory sensor, which changes its internal electrical resistance as it is stretched and

contracted. This produces an electrical signal that resembles a waveform very similar to

thoracic displacement. In this way, a graphical representation of a person’s inhalation and

exhalation is created, as shown in Fig. 3.1.

However, the sensor used is very sensitive and therefore detects a large amount of noise,

such as the movement of the body when walking/running or changing posture, as well as

other, more subtle signals. These more subtle signals result from normal body movements,

such as the heartbeat, which causes noise when the patient is breathing at a very low

frequency. However, the source of the noise can also be caused by the belt itself, such

as when the battery of the belt vibrates in thinner people or asthmatics because it does not

rest firmly on the chest, creating an artificial vibration. This would not be a major problem

if the patient simply breathed in a stable position with a normal breathing rhythm, as in

Fig. 3.2, where almost all peaks correspond to a true inspiratory movement. However, this

is not possible because high-frequency signals must be considered during a faster breathing

cycle or during speech, even when the position is stable, as in Fig. 3.3 . In this figure most of
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the small peaks correspond to real inhalation and exhalation movements that at first glance

would be considered noise, making the elimination of noise in the data very difficult.

Figure 3.1: Normalized data for a scale between 0 and 1 recorded by the respiratory sensor

in a variety of positions and respiratory rates. The X axis corresponds to the time in hours

at which the data was recorded, and the Y axis is the amplitude of the electrical signal

obtained from the bed.
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Figure 3.2: Normalized raw data,for a scale of between 0 and 1, collected from the respiration

sensor in a sitting position with normal respiration rate.The X axis corresponds to the time

in hours at which the data was recorded, and the Y axis is the amplitude of the filtered

signal.

Figure 3.3: Normalized raw data collected, for a scale between 0 and 1, from the respiration

sensor in a sitting position with fast respiration rate. The X axis corresponds to the time in

hours at which the data was recorded, and the Y axis is the amplitude of the filtered signal.

7

However, some of the small peaks correspond to noise. Therefore, a low-pass filter of

2.5 Hz was used to ensure that most of the recorded data matched the actual respiratory

motion. This frequency was chosen because it gave the best result of all the frequencies
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tested. However, this low-pass filter was not sufficient to produce a sufficiently clean signal.

Therefore, to improve the signal while accounting for the higher frequencies of respiration,

a Savitzky-Golay filter is used. The Savitzky-Golay filter is often used to smooth digital

data because it monitors the signal without much delay and preserves the high-frequency

components by polynomially estimating a wave that retains most of the signal’s original

information. This is extremely useful for calculating a higher-frequency respiration rate

because noise generated by motion can be removed while preserving the overall structure

of the wave. Thus, after a series of systematic tests on the data, it was concluded that a

Savitzky-Golay filter with a window of 29 data points (about 30s) with an approximation

function of order 12 gave the best results and was therefore selected. These filters are then

applied to a buffer containing information about the last 30 seconds of data. The result is

a buffer of filtered data to which three fixed-size windows of 5, 8, and 15 seconds are then

applied. In this way, a more accurate respiration rate is calculated that quickly adjusts to

the respiration rate.

The reason for choosing this 3-window approach is that each respiratory rate tested has

a different number and shape of respiratory cycles, with these cycles corresponding to 2

maxima and 1 minimum (max-min-max). For example, at a faster respiratory rate, the

respiratory cycles would be smaller in amplitude and closer together. To account for these

differences, 3 different sized windows are implemented for a given respiratory rate, i.e., slow,

normal, or fast, each of which calculates a respiratory rate value that is selected based on a

set of rules to determine the most accurate respiratory rate in a given scenario. Therefore,

the respiratory rate is calculated in breaths per minute according to the following formula:

respiration_rate = 60 ∗ (number_of_respiration_cycles)/(second_of_window) (3.1)

Regarding which breathing rate is considered the most accurate in this 3-window ap-

proach, the following rules are applied: First, the 5-second window is applied, and if the

respiratory rate is greater than 25 bpm, it is selected as the most likely respiratory rate

because the peak values of the faster respiratory rates are close to each other. This is an

advantage for faster respiration rates that the 8-second window does not have, as it would

consider a larger portion of the data, resulting in a respiration rate that is not indicative of

the actual respiration rate. Therefore, after checking the values of the 5-second window and

if the respiration rate selection criterion is not met, the algorithm calculates the respiration

rate of the 8-second window. If the respiration rate of the 8-second window is higher than

10 bpm, the respiration is considered normal and this respiration rate is selected as the final

respiration rate of the system. However, if the respiration rate calculated for the 8-second
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window is less than 10 bpm, it means that the respiration is slower and the peaks are far

apart. Therefore, the 15-second window is used because the 8-second window is not able to

calculate this respiration rate correctly because most of the information is out of its range.

The entire procedure for calculating the respiration rate can be seen in the pseudocode in

Algorithm 1 and a visual representation of this algorithm can be found in Fig 3.4 .

It was visually confirmed on a graphical interface presenting the data received by the

sensors of the belt, that this approach is able to accurately switch to the smallest window

when the respiration rate is increased. This updates the respiration rate in a useful amount

of time and provides a more accurate respiration rate for higher frequencies. This is also

true for the larger 15-second window, as it can correctly calculate the lower respiration rate

with the largest amount of data than the 8-second window, as it would take incorrect values.

However, this approach is mostly limited to stable positions and pure breathing, because

when the patient is in motion, it becomes more difficult to eliminate the false peaks. To

combat these issues, methods capable of extracting a respiratory signal from the ECG to

provide a secondary data source are also being used.

Algorithm 1 Respiration rate calculation algorithm
loop

Get new data form sensors

Update buffer

Apply 2.5 Hz low-pass filter

Apply Savitzky-Golay filter

Run 5, 8 and 15 second windows on the filtered buffer

bpm_5s is the respiration rate in the 5-second window calculated in bpm

bpm_8s is the respiration rate in the 8-second window calculated in bpm

bpm_15s is the respiration rate in the 15-second window calculated in bpm

F_bpm is the chosen respiration rate

if bpm_5s > 25 bpm then

F_bpm← bpm_5s

else if bpm_8s < 10 bpm then

F_bpm← bpm_15s

else

F_bpm← bpm_8s

end if

Update the current respiration rate as F_bpm
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Figure 3.4: Visual representation of the respiration rate algorithm using a 3 window strategy.

3.2 Extracting EDR signals from an ECG

In this study, eigth techniques were implemented that correspond to the most common and

studied EDR techniques. They were also chosen because they best fit the project in which

this dissertation is embedded. In the remaining of this section we provide an explanation as

to which methods were implemented and how.

Fast Fourier Transform (FFT). The purpose of this method is to remove from the signal

all frequencies outside of the respiratory frequency, which in this study was between 0.05

Hz and 0.66 Hz. This range was chosen to account for a wider range of possible respiratory

frequencies. While it was found experimentally that narrowing this frequency band to a

frequency closer to the actual respiratory frequency of the signals improved performance.

This was not done because it limited the range of the algorithm and required prior knowledge

of the breathing frequency, which defeated the purpose of EDR extraction. However, the

results obtained with this method were always above the 80% correlation threshold, so this

was not considered detrimental for practical applications. Where for the transformation of

the ECG data to the frequency domain the numpy.fft() function was used.

Discrete Wavelet Transform (DWT). In this method, the Python function pywt.dwt()

from [40] was used to calculate the decomposition coefficients of the input signal after a user-

defined function determined the number of decomposition stages. This was done due to the
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fact that the required decomposition levels change depending on the ECG sampling rate.

After selecting the correct decomposition coefficients that fall within the frequency range of

respiration, the inverse DWT was applied to them to generate the EDR signal. The wavelet

db2 was selected because it had the highest correlation values among the tested wavelets, as

it best matched a normal respiratory wave.

State-of-the-art NeuroKit2. This EDR extraction method is one of the methods in-

cluded in the Python package NeuroKit2 [46], which was used in this dissertation as a means

to compare the other methods with a tested EDR extraction method. This particular library

was chosen because it is capable of automatically extracting an EDR signal from an ECG

input signal and sampling frequency without requiring any knowledge of EDR extraction.

Another factor that led to the use of this particular Python package is that it also has a

built-in R-peak detection function that can be used individually and independently in the

code. This has proven useful as this R-peak detection function is a fast and accurate R-peak

detection algorithm, especially when compared to other tested R-peak detection algorithms

that have similar peak detection performance, but in most cases at the expense of computa-

tion time. The specific soni2019 EDR extraction method included in the Neurokit2 library

was selected because it performed best on the data tested. This method is based on an

algorithm capable of finding the frequency peaks of an input signal and after selecting the

frequency peaks that fall within the range of the breathing frequency, a bandpass filter is

applied with a cutoff frequency based on these peaks. Therefore, for the purposes of this

dissertation, this method will be referred to as NK2S19, as an abbreviation for NeuroKit2

soni2019 method.

Empirical Mode Decomposition (EMD). The extraction of an EDR signal using an

EMD method was performed using the Python EMD toolbox [52]. This toolbox is able to

extract the IMFs present in an input signal, in this case the filtered ECG, and returns them

in an array, where the first element corresponds to the IMF with the highest frequency.

After the IMFs were extracted, a Hilbert-Huang transform was used to determine their

individual frequency. After the frequency of the IMFs was correctly determined, the IMFs

whose frequency was within the breathing range (0.05 Hz and 0.66 Hz in this study) were

combined to obtain the extracted EDR wave.

QRS peaks amplitude based methods. As for the study of changes in the peaks of

the QRS complex derived by the respiration, the methods used in this dissertation are based

on changes in the amplitude of the R peaks due to lung movements. These methods were

chosen because they provide more robust and accurate results in experimental comparison
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with the interval-based methods. Therefore, two approaches to this method are implemented,

differing in that the Ramp method calculates the amplitudes of the peaks with respect to

a baseline of the signal, while the RSamp method calculates the amplitudes between the R

peak and the S peak, where the S peak is the minimum point immediately after the R peak.

PCA. The PCA algorithm used in this dissertation is based on the BioSigKit toolbox [64],

originally developed in Matlab and intended for biosignal analysis. In this toolbox, the EDR

is extracted by applying PCA to the data centered around the R peaks and using the first

eigenvector to construct the EDR wave. To use this method in Python, an adaptation of the

original PCA algorithm was made. In this method, multiple windows of data centered around

the detected R peaks in the input ECG are extracted and fed to the adapted PCA algorithm,

from which the first eigenvector is extracted using SVD and interpolated to generate the EDR

signal. However, it is worth noting that the PCA algorithm cannot be used properly if there

are less than 2 R peaks in a given ECG input signal, so the EDR signal is returned as a flat

line. For this method, 2 approaches have been implemented. In the first approach, the raw

ECG data are used to detect the R peaks and used as input to the PCA algorithm. This

approach is referred to as Adpated PCA or APCA for short. In the other approach, a 200ms

and 600ms median filter is applied to the ECG signal before the R-peaks are extracted, and

the filtered ECG is used as input to the PCA algorithm, which is why this approach is also

referred to as Adapted PCA filtered method or APCAF for short.

To test the EDR extraction methods, they are applied to a set of individuals from two

databases: the Fantasia database of Physionet [24], which contained both ECG and respi-

ratory signals, using the latter as ground truth. Data from this database were sampled at

a frequency of 250 Hz. The subject population was well represented in both younger and

older subjects and was evenly distributed with respect to sex. The other database used was

the Medical radar database [13], which also contains ECG and respiratory signals but at a

sampling rate of 1000 Hz. Its subject population focuses on younger adults aged 24-25 ±5

years (5 men and 4 women). This database was also chosen because it could be used to create

variation in the datasets tested and to determine if very high sampling rates would affect

performance, since the ECG is normally sampled at 200-250 Hz. The lower sampling rate

was investigated in the validation data from the WoW project belt. Another advantage in

selecting these databases was that they have both been used in articles on EDR extraction,

such as [13, 31, 73, 76], with the Fantasia database being used widely in the literature.

To simulate real-time behavior, a sliding window of 30 seconds was applied over the

entire length of the signals, and the eigth EDR extraction algorithms were applied to the
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window every 2 seconds. This resembled a real-time system in which EDR wave extraction is

performed at a regular, fixed interval to reduce computational overhead. In each 30-second

window, both the respiratory signal and the corresponding ECG signal were filtered. In the

case of the respiratory signal, the DC component was removed by removing the average of

the original signal and normalizing it. This was followed by a 0.7 Hz low-pass filter and a

Savgol filter of order 6 and a sampling window of 19 data points. These values were chosen

because they provided the best results for the range of values reported in the literature that

were experimentally tested in this dissertation. Finally, a detrend function was applied to

facilitate comparison of the results.

The treatment of ECG signal data depended on whether or not the method used was

based on analysis of the QRS complex peaks of the ECG wave. This was because it was

empirically found that the QRS methods used performed better without most of the prepro-

cessing. Thus, for the QRS based methods, a 200ms and 600ms median filter was applied

to the signal to remove the P and T waves, respectively [73]. For all other methods, a notch

filter was applied to the 50 and 60 Hz frequencies to remove network noise and baseline

wander [51]. Then the DC component was removed by subtracting the mean of the signal,

followed by a median filter, detrend function, and normalization. For a diagram showing the

experiments performed in this dissertation, see Fig. 3.5.
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Figure 3.5: Diagram of the EDR extraction process, with a sliding window running through the data. Every 2 seconds, the data within the

window is filtered and used to extract an EDR wave using the method described in the figure.
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4 Experimental Validation

4.1 Peak detection algorithm with data treatment

To test this algorithm on the belt of the WoW project, a relevant dataset was collected from

it, in the configuration present in Fig. 4.1 where both used respiratory and ECG sensors

and their positions are labeled. For this dataset the subject wore the belt and breathed and

spoke in four different postures - sitting, standing, walking, and laying- with three different

breathing rates (normal, fast, slow) recorded in Table 4.1. This was done to ensure that

a wide range of meaningful data was collected so that the algorithm could be tested more

extensively under different circumstances and its response to each circumstance could be

analyzed more thoroughly.

Figure 4.1: WoW project belt for monitoring respiration. In the figure, the sensors relevant

to this dissertation are marked and labeled. Namely the respiratory and ECG sensors.

The results of implementing the respiratory rate classification algorithm described in 3.1

show that the calculates values match with the counted respiratory rate for each sector. This

is especially true for the more stable positions such as sitting and standing, except during a
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Position Breathing Method Start Time End time

Sitting Normal 14:28 14:31

Sitting Fast 14:31 14:32

Sitting Slow 14:32 14:34

Sitting Talking 14:34 14:37

Standing Normal 14:37 14:39

Standing Fast 14:39 14:40

Standing Slow 14:40 14:42

Standing Talking 14:42 14:44

Walking Normal 14:44 14:46

Walking Fast 14:46 14:47

Walking Slow 14:47 14:49

Walking Talking 14:49 14:51

Laying Down Normal 14:51 14:53

Laying Down Fast 14:53 14:54

Laying Down Slow 14:54 14:56

Laying Down Talking 14:56 14:57

Table 4.1: Breathing position and rates as measured by the belt, along with their respective

times.

conversation, as shown in Fig. 4.2. In these figures, it is easy to find the zones of fast and

low breathing rate in the data set corresponding to the same periods recorded in 4.1.

However, it should also be noted that it is very difficult to distinguish between the

different breathing rates between the times 14:44 and 14:51 corresponding to the walking

segment of the data. Here, although there is a relative difference between the normal fast

and slow breathing rates, it is not clear whether the higher values are a direct result of

the faster breathing caused by the increasing activity or whether they are the result of the

noise caused by walking. As in fig. 4.3, it is very difficult to distinguish between true peaks

corresponding to respiration and those generated by noise. In fact, most peaks that at first

glance one would think are noise correspond to true peaks.

This is problematic because the respiratory sensor can detect more subtle movements

caused by normal body movements, such as heartbeat, resulting in noise, especially at lower

respiration rates. However, some of the noise is also caused by the belt itself, for example

when the belt’s battery vibrates in thinner or asthmatic people because it does not rest

firmly on the chest, creating an artificial vibrating motion.

As for the shape of the filtered respiration waveform itself, one can see in Fig. 4.4 that

some of the noise and false peaks have been corrected compared to the low-pass filtered data

in Figure 4.3. This not only attenuated some of the noise, but also removed some of the

false peaks that can occur when a patient inhales twice.
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Figure 4.2: Calculated respiration rate every 30 seconds using the peak detection method.

The X-axis corresponds to the time in hours interval of the data and the Y-axis represent

the computed respiration rate.

Figure 4.3: Filtered data with a low pass filter of 2.5 Hz of the sitting position whit fast

breathing.The X-axis corresponds to the time in hours interval of the data and the Y-axis

represent the filtered signal.
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Figure 4.4: Filtered data with the Savitzky–Golay filter of the sitting position for fast breath-

ing. The X-axis corresponds to the time in hours interval of the data and the Y-axis represent

the computed respiration rate.

This algorithm was also tested in real-time where it has been visually confirmed that the

3-Window approach is able to accurately switch to the smallest window when the respiration

rate is increased. This updates the respiration rate in a useful amount of time and provides

a more accurate respiration rate for higher frequencies. This is also true for the larger

15 second window, as it can correctly calculate the lower respiration rate with the largest

amount of data than the 8 second window, as it would assume incorrect values.

4.2 EDR extraction from ECG signals

To evaluate the performance of the implemented EDR extraction algorithms, two evaluation

criteria were implemented. This was done on a dedicated computer that applied the methods

explained in the previous section to the integrity of the databases. The first evaluation

criterion implemented was the cross-correlation function between the respiratory signal,

which serves as ground truth, and the extracted EDR signals. This was done because the

cross-correlation function, when normalized, indicates the similarity between two signals

even if there is a temporal shift. For this purpose, we use a cross-correlation function based

on the following formula:

R̂xy,coeff (m) =
R̂xy(m)√

R̂xx(0)R̂yy(0)
(4.1)

Where Rxy corresponds to the values of the cross-correlation between the extracted EDR
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and the original respiratory signal, Rxx(0) is the maximum value of the autocorrelation

function of the respiratory signal, and Ryy(0) is the maximum value of the autocorrelation

function of the EDR signal. This particular function was selected as the first evaluation

criterion based on two points. First, this function is able to return the cross-correlation in

normalized and non-normalized form. The reason for this is that this function is often used

to detect signals that are sent over long distances and may have amplitude and phase shifts.

In this type of application, it is sufficient to find the timestamp in the received signal that

has a higher value of autocorrelation to detect the original signal.

However, there are cases, such as the one in this dissertation, where it is not enough to

assess the temporal difference, but it is also important to determine how well they match.

To this end, the chosen function can adjust its formula to match the formula shown in 4.1

by specifying it with the flag ’normalized’. This function then returns a percentage in the

interval between 0 and 1, indicating the extent to which our extracted EDR signals resemble

the original respiratory wave.

Another aspect that has contributed to the use of the cross-correlation function is its

ability to accurately compare two signals even if they have a phase shift. This is important

because some methods can easily shift the waveform during the extraction of the EDR signals,

such as the FFT method. For this purpose, we compute the value of the cross-correlation

between the ground truth and the time-shifted EDR signal for all possible positions and

returns a vector with the cross-correlation values for all these positions. Finding the highest

value in this vector determines the true value of the cross-correlation.

The second implemented evaluation metric refers to the computation time of the meth-

ods measured in seconds. This information is crucial as it can show us whether a method is

suitable for use in real-time applications or not, given the fact that in this sorts of applica-

tions, where multiple algorithms are executed in parallel, the computation time has a major

impact on the performance of the system.. To this end, two time evaluations were performed

when applying the EDR algorithms to the databases. The first refers to the time it took the

computer to filter and extract an EDR wave from a 30-second window, as this would reflect

the performance of the algorithm in a real-time system. To this end, a timer was set to the

moment the algorithm extracted the ECG signal and stopped only when the EDR wave was

fully extracted. The second time reference examined refers to the time it took each method

to fully analyze a subject’s data. To this end, a timer was set when the data was loaded from

the subject and stopped only when the program ended. For this purpose, all algorithms were

tested on a computer whose hardwere specifications are: Asus PRIME Z590-P motherboard

with an Intel i9 11900KF 3.5Ghz 8-core, 64GB RAM (DDR4) and Nvidia RTX 3080 Ti.

For a more detailed discussion of the EDR extraction algorithm results for each evaluation
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criterion, see 4.2.1 for the cross-correlation metric results and 4.2.2 for the computation time

results.

4.2.1 EDR extraction performance results

To implement cross-correlation evaluation metric, EDR signals and corresponding respiratory

signals are stored considering the method, patient, and database. We then compute the

cross-correlation between all EDR and respiratory signals from each patient to acquire the

average for each method. This average then represents the overall performance of a particular

method for the entirety of a patient’s data. This procedure was performed for all subjects

in each of databases in which the final mean cross-validation of each method was stored.

This information is shown for the Fantasia and Medical Radar databases in Fig. 4.5 and

Fig. 4.6, respectively, these images represent a boxplot of the collected data, where the data

is divided by their 4 quartiles. Here the interquartile range is represented by the colored areas

and divided by the median of the data. The first quartile represents the data distribution

below the interquartile range and the fourth quartile represents the data above it, while

the outliers are represented as parallelograms. In Table. 4.2 for the Fantasia database and

in Table. 4.3 for the Medical Radar database, the mean, median, standard deviation, and

other descriptive elements of the cross-correlation of each method are shown. From this, we

can see that all methods perform satisfactorily overall, with a mean cross-correlation above

the 70% mark in both databases and most methods achieving a cross-correlation in the 80%

range or even above.
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Figure 4.5: Cross-correlation for each EDR extraction method for each patient in the Fantasia

database.The X-axis corresponds to methods of EDR extraction of the data and the Y-

axis represent their cross-correlation score.Here the interquartile range is represented by the

colored areas and divided by the median of the data. The first quartile represents the data

distribution below the interquartile range and the fourth quartile represents the data above

it, while the outliers are represented as parallelograms.

FFT DWT NK2S19 EMD Ramp RSamp APCA APCAF

Number of subjects 29.0 29.0 29.0 29.0 29.0 29.0 29.0 29.0

mean 0.837 0.815 0.822 0.812 0.837 0.775 0.802 0.809

std 0.034 0.027 0.036 0.023 0.034 0.032 0.031 0.037

min 0.773 0.751 0.754 0.751 0.781 0.705 0.732 0.736

25% 0.814 0.801 0.794 0.801 0.814 0.754 0.778 0.784

50% 0.844 0.819 0.818 0.819 0.840 0.786 0.806 0.804

75% 0.857 0.832 0.840 0.825 0.857 0.798 0.820 0.827

max 0.907 0.862 0.887 0.852 0.900 0.828 0.847 0.908

Table 4.2: Description of the normalized cross-correlation for each EDR extraction method

in the Fantasia database.
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Figure 4.6: Cross-correlation for each EDR extraction method for each patient in the Medical

Radar database. The X-axis corresponds to methods of EDR extraction of the data and the

Y-axis represent their cross-correlation score.

FFT DWT NK2S19 EMD Ramp RSamp APCA APCAF

Number of subjects 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0

mean 0.848 0.848 0.889 0.847 0.874 0.818 0.862 0.857

std 0.022 0.021 0.030 0.021 0.026 0.022 0.036 0.024

min 0.808 0.818 0.844 0.818 0.820 0.780 0.818 0.822

25% 0.843 0.836 0.872 0.834 0.878 0.810 0.835 0.830

50% 0.848 0.851 0.879 0.855 0.879 0.826 0.861 0.870

75% 0.856 0.856 0.917 0.866 0.879 0.831 0.872 0.872

max 0.885 0.886 0.941 0.872 0.911 0.848 0.931 0.879

Table 4.3: Description of the normalized cross-correlation for each EDR extraction method

in the Medical radar database.

Analyzing the result, we can also see that the FFT method is consistently close to the

mean cross-correlation mark of 85% with narrower variance windows compared to other

methods in both databases. As we can see in both Figures 4.2 and 4.3, this method tends

to have most values in the upper part of its distribution. Although this algorithm is not

the best performing algorithm in the Medical Radar database, it is still among the methods

with the lowest variance of all methods tested in this database with performance above the
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80 percent mark. This shows that the FFT method is an effective and overall robust method

that can perform well in a variety of scenarios.

It can also be seen that the PCA methods are on par with the other methods with

mean values around 80-81% in the Fantasia database and around 86% in the Medical Radar

database. However, the performance of PCA methods compared to the other methods varies

from database to database. In the Fantasia database, it is in the lower half of the tested

methods, while in the Medical Radar database it is in the upper half. This difference in

performance could be due to the incorrect detection of the R peaks, since the PCA algorithm

is applied to the area around these peaks and therefore their correct detection can affect the

PCA performance.

As for the performance differences between the results of the APCA and APCAF meth-

ods it can be neglected, since they perform very similarly in both databases. Nevertheless,

the APCA method is preferable because it involves fewer steps and is therefore less compu-

tationally intensive. Overall, it can be concluded that the PCA methods can perform better

than the reaming methods in certain scenarios.

The incorrect detection of R-peaks did not affect the R-peak methods as much, given

that their overall performance when compared to the other methods did not change as much.

Given that the Ramp method on the Medical Radar database with its high corss-correlation

scored and very low variance could arguable be classified among the top three methods

applied to that database, while still being in the second half of best performing methods for

the Fantasia database. This could be due to the nature of the implemented R-peaks models,

as they extract an EDR wave based on the relative amplitude distance between a reference

point, the baseline in the ramp, and the R and S peaks in the RSamp. This means that the

shape of the EDR signal is not greatly affected if the detected R-peaks differ slightly from

the true ones, since these misdetections usually account for only a few points and thus the

overall shape of the wave is preserved.

This is evident when analyzing the results of the Ramp, which reached a cross-correlation

of about 83% in the Fantasia database and 87% in the Medical Radar database. In compar-

ison, the mean cross-correlation of the RSamp method was 0.775% in the Fantasia database

and 0.818% in the Medical Radar database. This shows not only that these methods are ca-

pable of achieving high values for cross-correlation, but also that the occasional misdetection

of the QRS peaks, while not having a strong negative impact, can still reduce the perfor-

mance of the methods. This reduction in performance is evident in the lower performance

of the RSamp method compared to the Ramp method. This is most likely due to the fact

that the RSamp method must accurately detect two peaks, and misdetection of even one of

these peaks can negatively affect the EDR waveform and thus reduce performance. Which
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resulted in the RSamp method being consistently the worst performing method.

The DWT approach behaved very similarly to the FFT method, achieving an average

cross-correlation of 81 % in the Fantasia database and 84 % in the Medical Radar database.

With the second lowest variance of all methods in the Medical Radar database. Where this

difference in performance between the databases could be due to the fact that the selected

parent wavelet was more similar to the breathing waves in the Medical Radar database than

in the Fantasia database. This supports the idea that the correct choice of wavelet can

significantly affect the results of the DWT.

The NK2S19s approach, originally used for comparison with other methods, proved to

be one of the superior methods, especially in the Medical Radar database, where it achieved

the highest score of all methods with a mean cross-correlation of 88%. As for the Fantasia

database, although it was not the best method, it still achieved a cross-correlation of about

82%. This method also has the added advantage of being integrated into a Python library,

requiring no prior knowledge of an EDR extraction algorithm or strategy, and providing

the R-peak detection algorithm implemented in this study. Overall, this not only proves

that this particular method can produce EDR signals that are very similar to the original

respiratory signal, but also that with the exception of the RSamp method, the implemented

algorithms perform similarly well, if not better, with this state-of-the-art approach.

As for the EMD method, it proved to be a very solid approach, as it was neither the best

nor the worst under the circumstances tested. It is a robust method that has one of the lowest

variances of all methods in all databases, with mean cross-correlation consistently above

80%. This makes it a stable algorithm that is perfectly suited for real-world applications

and guarantees relatively high performance in a consistent manner. Thus, it is a method

that can be used in any system as a fallback solution in case the other, better performing

algorithms either fail or are not suitable for a particular scenario.

4.2.2 EDR extraction: time performance

The second evaluation metric implemented was the computation time for each method.

These results can be seen in Figures 4.7 and 4.9 and in Figures 4.8 and 4.10. Starting with

figures 4.7 and 4.9, they represent the average computation time that each method took to

filter and extract an EDR in a single 30-second window, whose data analysis can be seen in

Tables. 4.4 and 4.6. The figures 4.8 and 4.10 represent the average time required for a given

method to analyze a patient’s data from start to finish, whose data analysis can be seen in

Tables. 4.5 and 4.7.
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Figure 4.7: Computation time of each 30s window for each EDR extraction method in the

Fantasia database. The X-axis corresponds to methods of EDR extraction of the data and

the Y-axis represent their execution time in seconds.

FFT DWT NK2S19 EMD Ramp RSamp APCA APPCAF

Number of subjects 106136.0 106136.0 106136.0 106136.0 106136.0 106136.0 106136.0 106136.0

mean 0.262 0.260 0.268 0.353 0.523 1.141 0.311 0.566

std 0.005 0.004 0.005 0.009 0.010 0.348 0.007 0.009

min 0.243 0.244 0.250 0.324 0.492 0.686 0.289 0.530

25% 0.260 0.257 0.265 0.347 0.516 0.852 0.307 0.560

50% 0.262 0.260 0.268 0.351 0.523 1.034 0.312 0.567

75% 0.266 0.263 0.272 0.359 0.531 1.305 0.316 0.572

max 0.331 0.290 0.364 1.840 0.586 2.426 0.354 0.634

Table 4.4: Description of the computation time for individual 30s windows for each method

on the Fantasia database.
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Figure 4.8: Computation time for each EDR extraction method in the Fantasia database.

The X-axis corresponds to methods of EDR extraction of the data and the Y-axis represent

their execution time in seconds.

FFT DWT NK2S19 EMD Ramp RSamp APCA APCAF

Number of subjects 29.0 29.0 29.0 29.0 29.0 29.0 29.0 29.0

mean 1041.740 1037.836 1066.937 1367.061 1969.201 4099.882 1219.589 2121.473

std 39.639 39.261 40.653 53.762 76.117 1067.469 45.486 78.773

min 924.208 923.526 948.998 1224.420 1760.237 2711.368 1081.368 1880.022

25% 1021.500 1020.422 1046.862 1337.405 1919.976 3152.753 1208.586 2100.402

50% 1048.168 1045.771 1075.432 1362.528 1994.830 4041.264 1230.618 2129.160

75% 1071.503 1066.738 1095.830 1402.997 2021.520 4560.077 1253.447 2178.169

max 1085.855 1081.794 1110.890 1454.781 2081.575 6670.235 1271.413 2216.770

Table 4.5: Description of the computation time for each method on the Fantasia database.
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Figure 4.9: Computation time of each 30s window for each EDR extraction method in the

Medical radar database. The X-axis corresponds to methods of EDR extraction of the data

and the Y-axis represent their execution time in seconds.

FFT DWT NK2S19 EMD Ramp RSamp APCA APCAF

Number of subjects 1213.0 1213.0 1213.0 1213.0 1213.0 1213.0 1213.0 1213.0

mean 1.486 1.487 1.506 1.720 3.010 3.469 1.707 3.213

std 0.045 0.040 0.040 0.052 0.078 0.291 0.023 0.054

min 1.400 1.384 1.422 1.604 2.836 3.077 1.628 3.018

25% 1.449 1.453 1.472 1.675 2.960 3.309 1.697 3.191

50% 1.482 1.494 1.510 1.722 3.009 3.382 1.708 3.212

75% 1.521 1.521 1.534 1.754 3.047 3.501 1.721 3.235

max 1.677 1.639 1.648 1.905 3.250 4.264 1.902 3.436

Table 4.6: Description of the computation time for each method on the Medical Radar

database.
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Figure 4.10: Description of the computation time for individual 30s windows for each method

on the Medical radar database. The X-axis corresponds to methods of EDR extraction of

the data and the Y-axis represent their execution time in seconds.

FFT DWT NK2S19 EMD Ramp RSamp APCA APCAF

Number of subjects 9 9 9 9 9 9 9 9

mean 255.926 282.172 286.313 316.531 510.563 571.120 315.400 536.635

std 5.518 5.980 5.873 7.786 13.750 48.899 3.648 10.982

min 248.294 273.850 278.695 305.903 486.907 526.574 310.106 516.293

25% 251.313 277.0215 280.965 309.807 505.0211 544.001 313.830 534.427

50% 256.065 282.466 286.674 317.364 511.896 560.164 315.791 538.333

75% 259.710 286.562 290.415 320.618 516.399 572.531 317.138 540.731

max 264.105 291.177 295.479 328.994 532.167 684.187 320.364 553.321

Table 4.7: Description of the computation time for each method on the Medical Radar

database.

From these figures we can see that the methods based on the extraction of R peaks,

including the methods where the extraction of these peaks is only the first step, namely the

PCA methods, tend to take more time. This is especially true for the RSamp method, since

it not only requires interpolation to generate an EDR wave, but also needs to detect two

peaks in all QRS complexes present in a given time window. Therefore, the RSamp method

is not only slower than the Ramp method, but also the slowest overall. As for the PCA

approaches, the use of median filters in APCAF proved to be a disadvantage, as APCAF
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was not only slower than APCA in every scenario, but also among the slowest methods with

Ramp and RSamp. It is also worth noting that while the time difference between APCA

and the FFT, DWT, NK2S19 and EMD methods is not very large, the remaining methods

are significantly slower.

As for the FFT, the DWT, NK2S19 , and EMD methods all proved to be equally fast,

with the FFT being in the same range in terms of computation time. These methods had an

average execution time in each 30-second window of less than half a second in the Fantasia

database and proved to be the most suitable methods for use in a real-time scenario, since

the sampling frequency of about 250 Hz or below is the most common frequency when this

type of ECG is used.

As for the reliability of the methods for analyzing the QRS complex for a real-time system.

One can conclude that they are not suitable for this type of implementation. This is because,

although they are still faster than one second in the Fantasia database, they have a longer

execution time compared to the other methods. This can lead to a non-negligible delay in a

program that has to juggle multiple algorithms simultaneously in a real-time environment.

Thus, these results show that the FFT, DWT, NK2S19 , and EMD methods are inter-

changeable in terms of computation time and are best suited for real-time systems, although

the FFT method is faster.

Finally, a comment on the times for the Medical Radar database: the average time for the

30-second window was significantly slower than for the Fantasia database for all methods, as

was to be expected with such a data dense database. All of this is then reflected in the total

time it took each method, on average, to fully analyze each patient. However, the results

show that while the time required to analyze each 30-second window for a given method in

the Fantasia database was much faster than the data in the Medical Radar database, the

number of samples and the length of the Fantasia database meant that the latter required

the longest analysis time.

In summary, given the overall results of the tested methods in terms of cross-correlation

values and computation time, the FFT, DWT, NK2S19 and EMD are the best performing

methods. Where the methods based on the analysis of the QRS complex were not only

found to be less consistent, but were also generally much slower. With the best algorithm

for analyzing the QRS complex being the APCA method, as it not only performed the best

in cross-correlation, but also had the fastest times among them.

The reason why the FFT, DWT, NK2S19 and EMD algorithms are considered the best

algorithms is because they achieve some of the highest values for cross-correlation or their

value is very close to the values that are in the upper half. This means that even when

other methods were occasionally able to take one of the top spots, the selected algorithms
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were still above the threshold of 80% cross-correlation and thus provided consistently high

scores. They were also among the most stable methods with some of the lowest variances

of all methods tested, especially the EMD method. In addition, they all required virtually

the same processing time, which was always less than half a second for a real-time system.

This means that they are the fastest, most stable, and highest scoring methods in this

study. However, since these methods have similar performance in both cross-correlation and

computation time, and given their individual advantages in relation to each other, makes

these methods, in the author opinion, interchangeable. This opinion is based on the fact

that, given their similar performance, one method may be preferred over the other depending

on which aspect is most important in a particular implementation. For a faster method, the

FFT is the best option; the DWT is very similar to the FFT, but may be superior to it

depending on the data and the mother wavelet. However, if the most important aspect is

robustness, EMD is the best method.

This, and the fact that they outperformed or showed similar performance to a tested state-

of-the-art method included in the NeuroKit2 Python library, proves that these methods can

be used in real systems with relative robustness and performance. Thus, it was shown that

the implemented methods can extract a respiratory signal from the ECG with considerable

accuracy and therefore can be used in combination with other respiratory signals, allowing

continuous monitoring of respiration even if one of the methods fails.

4.2.3 EDR extraction validation on the WoW project belt data

To further validate the EDR extraction algorithms implemented in this study, a subject was

asked to wear the WoW project belt (see Fig. 4.1) to extract both ECG and respiratory data

from the latest and most stable version of the belt to date. A dataset was created to employ

the same methodology as with the databases. This was done not only to verify that the

implemented EDR methods were robust enough to be used in the project, but also to test

them in the same way as the databases and compare their results in more detail. Therefore,

the same procedure as in section 4.2 was used in this section. However, it is worth noting

that the ECG sensor (128 Hz) and the respiration sensor (10 Hz) had different sampling

frequencies. Therefore, the respiration data was interpolated with cubic spline to treat them

as if they were acquired at the same sampling frequency as the ECG.

As we can see in Fig. 4.11, the results are similar to those in 4.2. Although sony2019

showed lower performance than usual, both the FFT, DWT and EMD methods achieved

high cross-correlation rates and were among the best evaluated methods. The APCA and

APCAF methods, as mentioned earlier, performed very high scores of cross-correlation, and

in this particular case even outperformed most of the methods by being about on par with
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the second best method. Once again, the use of a median filter in APCAF proved to have no

major impact in its of cross-correlation performance when compared to the APCA. Both the

Ramp and RSamp algorithms performed similarly to the databases. Whereby the RSamp

method performed inferiorly to Ramp in terms of cross-correlation.

These results also prove that the algorithms implemented in this study are general and

robust enough to handle data from the WoW project belt and can be used in future research

on a real-time system. This could be done by using these methods as a secondary signal to

improve the quality of respiration monitoring or even as the main source of information for

a respiration signal.

However, it should be noted that these values were measured in a very controlled manner

when the project’s belt was in a very stable configuration and fully operational, and the

subject was in stable positions, such as standing, sitting, andlayingdown. Therefore, further

studies should be conducted to improve the general conditions of the belt to be able to deal

with more unstable positions.
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Figure 4.11: Mean cross-correlation values for the validation data of the WoW project belt.

The X-axis corresponds to methods of EDR extraction of the data and the Y-axis represent

their cross-correlation score.
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5 Conclusion

This dissertation focuses on the application of automated algorithms to extract respira-

tory rate and EDR signals for continuous monitoring of patient breathing. We provide an

overview of the current state of the art on the use of multiple sensors for healthcare. In doing

so, we identified which signals currently being monitored in healthcare are central to moni-

toring a patient’s well-being. Therefore, it was decided to prioritize respiratory monitoring,

whereupon a respiratory rate extraction study was conducted. This study led to a better

understanding of how the use of multiple sensors can benefit knowledge discovery algorithms.

This includes increasing the robustness of the extracted data as well as the ability to extract

the same data from different sensors. This is important because it demonstrates the ability

to extract a repiration wave from the ECG signal. For this reason, a review of EDR extrac-

tion techniques was also conducted. From this, a selection was made of the best tested and

best performing methods that were most suitable for the real-time applications and limited

resources of this dissertation. In addition, a state-of-the-art method from the NeuroKit2

library was included to allow a more direct comparison of the implemented models with the

current state of the art in EDR extraction.

To determine the respiration rate from a respiration wave, an algorithm was implemented

that focused on detecting individual respiration cycles, i.e., each set of one minimum and two

maxima present in a respiration wave. This particular algorithm proved capable of running

in real time.

The algorithm implemented a 3-window strategy of 5, 8, and 15 seconds each, running

continuously on a 30-second buffer of filtered data. This was done to have specific windows

for more accurate classification of breathing depending on whether a patient was breathing

rapidly, normally, or slowly. This approach proved efficient, as counting of respiration rate

showed that the system could accurately classify the current respiration rate in most cases

However, due to the physical structure of the belt, the respiratory sensor, and the algo-

rithm, performance was lower when the subject was in an unstable position, such as walking

or running. To combat these issues and provide an auxiliary system to monitor a patient’s

breathing, several approaches were implemented that focused on using the ECG sensor to
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extract a respiratory wave, i.e., EDR. This was done not only to have a second source of

respiratory monitoring, but also to test whether these approaches were robust enough to

replace the respiratory sensor.

The original plan was to also test these approaches with the belt’s data in real time, but

unfortunately this was not possible during this transition phase because the project belt’s

hardware suffered from instability. It was not uncommon for the belt to fail during use,

making it almost impossible to re-establish the connection within a short period of time. In

addition, there were also problems with the physical structure of the sensors. These problems

often led to a physical interruption of the connection between the sensors or to electrical

disturbances that distorted the signal to such an extent that it was sometimes impossible to

recognize the measured phenomenon in the recorded signals. This led to numerous changes

in the hardware and firmware of the various components that made up the belt, as well

as some changes in the materials of the sensors themselves to increase their durability and

overall precision.

Nevertheless, it was possible to perform a very controlled test with the latest and most

robust version of the project belt, where the tested EDR extraction algorithms were able to

achieve a high degree of cross-correlation between the extracted EDR signals and the res-

piratory signal. However, the obtained results suggest that EDR methods could potentially

replace the respiratory sensor. However, since they are sometimes unable to detect more

unusual waveforms, they should rather be used as a secondary source for monitoring respi-

ration. Namely, as a confirmatory source that is either merged with the original respiratory

signal, or as a secondary signal to which the respiratory rate calculation is also applied and

used for comparison with that calculated from the respiratory wave, or as a source when the

respiratory sensor is not available.

Unfortunately, these methods have not yet been tested in a real-time scenario in a less

controlled environment, since the performance of the belt, while improved, is not yet sufficient

for a real-time test. This is because the data collected during validation requires that the

belt be held in place by an external force to prevent it from moving or stretching, limiting the

activities that a subject can perform. Therefor it is not possible to conclude the impact that

more unstable positions such as walking can have in the performance of the EDR extraction

algorithms, for which further studies must be conducted..

Given these circumstances, it was decided to test the EDR extraction techniques on

separate, commonly available databases. This was done not only to further the development

of the EDR algorithms, but also to compare the tested algorithms with other techniques.

However it is important to highlight that there was no positional information associated with

the databases chosen therefor it is was not possible to verfy the EDR algorithms robustness
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for any given posture or activity.

The result of the tests performed with the EDR algorithms in the databases shows that

these methods are not only comparable to the current state of the art, but even surpass it

in some scenarios. This proves that the currently implemented methods are able to perform

satisfactorily with respect to the current paradigm of EDR extraction, while being robust

enough to perform adequately in different scenarios in widely used databases. Their final

results are also very similar to the results observed for the belt data.

Another open issue is that no comparison of the performance of the respiratory rate

algorithm proposed in this dissertation between the extracted EDR waves and the original

respiratory rate waves has been performed, nor the percentage error between the calculated

respiratory rate and the respiratory rate manually counted by a professional, which could be

investigated in a future study. Another possible study could examine the fusion of EDR and

respiratory wave to see if this fusion eliminates some of the noise. Where, the respiratory

rate algorithm could also be implemented for both the original respiratory rate, the EDR

waves, and the wave resulting from the fusion.

It is also worth noting that another approach, in which the patient’s respiratory rate is

derived directly from the ECG rather than the respiratory wave, using ML algorithms, par-

ticularly deep neural networks, has also been tested. In this approach, a variety of methods

were tested, from Resnets, CNN-LSTM, LSTM, pure deep neural networks, autoencoders,

as well as a number of combinations of these techniques, hyperparameters, and input signals.

However, the best model tested to date, CNN-LSTM, suffered from overfitting, as its

validation and test accuracy was around 60-65%, but never above 70%. It was not considered

competitive with the other implemented methods and thus was not mentioned as it remains

open for future research.

Although there are still unresolved issues, this study demonstrated the potential of using

multiple sensors for knowledge extraction, especially with respect to respiratory signals. It

paved the way for implementing the present algorithms on a real-time system for future

research. In which other algorithms that could use the implemented methods as a basis or

as a secondary or primary source for increased robustness of measurements and knowledge

extraction.
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