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Resumo

A diabetes mellitus tipo 2 é a forma mais comum dos três principais tipos de diabetes.

Caracteriza-se por ser uma doença crónica que afeta a capacidade do organismo con-

trolar os ńıveis de glicose no sangue com consequências significativas a curto e longo

prazo. Os recentes avanços tecnológicos na área da diabetes, tais como os sistemas

de monitorização cont́ınua da glicose, fornecem fontes fiáveis de dados. Este tipo

de dispositivos quando acoplados a aplicações smartphone que ajudam e encorajam

mudanças no estilo de vida dos pacientes permitem uma maior proximidade com a

doença e, consequentemente, melhoram o controlo glicémico, prevenindo potenciais

episódios perigosos para a saúde dos indiv́ıduos com esta patologia.

A presente tese faz parte do projeto financiado intitulado ”POWER - Empowering a

digital future”. Sendo que, de vários subprojetos integrados, esta insere-se no âmbito

da Assisted Living e e-Health. O objetivo é investigar metodologias de inteligência

artificial e desenvolver uma plataforma algoŕıtmica para a análise e previsão de

sinais fisiológicos, bem como a sua utilização na gestão da diabetes. Portanto, é

posśıvel dividir os objetivos desta tese em dois módulos. Um correspondente à

previsão dos ńıveis de glicose para pacientes com diabetes tipo 2, e o outro relativo

ao fornecimento de recomendações que incidam sobre os hábitos de vida dos mesmos,

utilizando as previsões feitas pelo modulo anterior como suporte.

Relativamente ao módulo da previsão, compararam-se diferentes modelos tais como

Autoregressive Integrated Moving Average (ARIMA), Case-based reasoning (CBR),

Recurrent Neural Network (RNN), Long Short-Term Memory (LSTM), Gated Re-

current Unit (GRU) e Jump Neural Network (JNN). Através de um compromisso

entre o desempenho do modelo e a complexidade computacional, o modelo RNN

foi escolhido como o modelo final. Verificou-se que esta implementação pode ser

utilizada para obter resultados satisfatórios no horizonte de previsão (PH) de 2h e

4h. Para a sua utilização num horizonte de 12h, deve observa-se que os resultados

não serão os mais adequados. As experiências foram realizadas utilizando os dados
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de 10 indiv́ıduos registados em condições de vida livre. Destes, utilizámos 3 pa-

cientes, escolhidos aleatoriamente, no conjunto de dados para testar os algoritmos

implementados. Os resultados globais para o modelo RNN foram: 34,82 mg/dL

para o erro quadrático médio (RMSE) e 18,33% para o erro percentual médio abso-

luto (MAPE) (PH=2h); 46,59 mg/dL para RMSE e 24,35% para MAPE (PH=4h);

50,19 mg/dL para RMSE e 27,74% para MAPE (PH=12h). Uma das etapas futuras

deste projeto consiste em validar os modelos implementados num conjunto de dados

recolhidos e fornecidos pelo Centro Hospitalar e Universitário de Coimbra (CHUC).

Com estes dados, pretende-se incorporar mais algumas caracteŕısticas para além do

registo dos valores de glicose, tais como a ingestão de hidratos de carbono e o ńıvel

de atividade f́ısica. Uma contribuição deste trabalho é o desenvolvimento de um

modelo de previsão para pacientes com diabetes tipo 2, cuja existência na literatura

é escassa. São necessários mais estudos nesta área para compreender e melhorar os

modelos para estes pacientes. Deverão ser feitos mais estudos para identificar quais

os horizontes de previsão mais úteis para os pacientes do tipo 2.

Já no módulo da recomendação, desenvolveu-se um sistema de recomendação baseado

em conhecimento, implementado através de regras extráıdas de diretrizes fornecidas

pelas principais associações internacionais de diabetes. Todas as regras desenvolvi-

das foram testadas através da criação de cenários hipotéticos, a fim de verificar que

eram sugeridas quando necessário e de forma correta. O trabalho futuro consiste

na validação e complementaridade destas regras por parte de uma equipa de en-

docrinologistas dos CHUC, principalmente no desenvolvimento de novas regras que

utilizem os valores obtidos pelo módulo de previsão como input, de modo a criar

regras mais personalizadas. A existência da previsão, além de alertar o paciente

para a existência de picos de glicose potencialmente perigosos, fornecerá esses val-

ores ao módulo de recomendação. Assim, com base nos futuros valores de glicose

previstos, poderão ser sugeridas modificações nas ações do quotidiano dos pacientes.

Estas, quando tomadas, devem evitar que os picos previstos sejam atingidos e, assim,

ajudar a gerir o valor da glicose na gama saudável.

As fases futuras deste projeto, que contarão com a parceria da Altice Labs e do

CHUC, serão cruciais para validar e melhorar os módulos desenvolvidos. Uma vez

conclúıdas, a API implementada na plataforma de gestão remota para pacientes

diabéticos SmartAL da Altice será atualizada.

Palavras-chave: Diabetes mellitus tipo 2, Previsão dos ńıveis de glicose, Sistema

de recomendação, Doenças crónicas, Telemonitorização.
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Abstract

Type 2 diabetes mellitus is the most common form of the three main types of di-

abetes. It is a chronic disease affecting the body’s ability to control blood glucose

levels with significant short and long-term consequences. Recent technological ad-

vances in the field of diabetes, such as Continuous Monitoring Devices (CGMs),

provide reliable sources of blood glucose data. These types of devices when coupled

with smartphone applications that help and encourage lifestyle changes in patients,

allow a greater proximity to the disease and consequently improve glycemic con-

trol, preventing potentially dangerous episodes to the health of individuals with this

pathology.

This thesis is part of the funded project entitled ”POWER - Empowering a digital

future”. Of several integrated subprojects, this one falls under the scope of Assisted

Living and e-Health. The goal is to investigate artificial intelligence methodologies

and develop an algorithmic platform for the analysis and prediction of physiological

signals, as well as its use in diabetes management. Therefore, it is possible to divide

the objectives of this thesis into two modules. One corresponding to the prediction of

glucose levels for patients with type 2 diabetes, and the other related to the provision

of recommendations that focus on their lifestyle habits, using the predictions made

by the previous module as support.

Regarding the forecasting module, different models such as ARIMA, CBR, RNN,

LSTM, GRU and JNN were compared. Through a trade-off between model per-

formance and computational complexity, the RNN model was chosen as the final

model. It was found that this implementation can be used to obtain satisfactory

results in the Prediction Horizon (PH) of 2h and 4h. For its use in 12h horizon, it

should be observed that the results will not be the most adequate. The experiments

were performed using data from 10 individuals recorded in free-living conditions.

Of these, we used 3 randomly chosen patients in the data set to test the imple-

mented algorithms. The overall results for the RNN model were: 34.82 mg/dL for
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Root Mean Square Error (RMSE) and 18.33% for Mean Absolute Percentage Error

(MAPE) (PH=2h); 46.59 mg/dL for RMSE and 24.35% for MAPE (PH=4h); 50.19

mg/dL for RMSE and 27.74% for MAPE (PH=12h). One of the future stages of

this project consists in validating the models implemented in a set of data collected

and provided by the Coimbra Hospital and University Centre (CHUC). With these

data, it is intended to incorporate some more features in addition to the recording

of glucose values, such as carbohydrate intake and level of physical activity. A con-

tribution of this work is the development of a prediction model for patients with

type 2 diabetes, whose existence in the literature is scarce. More studies are needed

in this area to understand and improve models for these patients. Further studies

should be conducted to identify which prediction horizons are most useful for type

2 patients.

As for the recommendation module, a knowledge-based recommendation system was

developed and implemented using rules extracted from guidelines provided by major

international diabetes associations. All developed rules were tested through the

creation of hypothetical scenarios, in order to verify that they were suggested when

necessary and correctly. Future work consists in the validation and complementarity

of these rules by a team of endocrinologists. Mainly, in the development of new

rules that use the values obtained by the prediction module as input, in order to

create more personalized rules. The existence of the prediction, besides alerting

the patient to potentially dangerous glucose peaks, will provide these values to

the recommendation module. Thus, based on the predicted future glucose values,

modifications to the patients’ everyday actions can be suggested. These, when taken,

should prevent the predicted peaks from being reached and thus help manage the

glucose value in the healthy range.

The future stages of this project, which will count on the partnership of Altice Labs

and CHUC, will be crucial in validating and improving the modules developed.

When completed, the API implemented in Altice’s SmartAL remote management

platform for diabetic patients will be updated.

Keywords: Type 2 diabetes mellitus, Glucose level prediction, Recommendation

system, Chronic diseases, Telemonitoring.

vii



Contents

List of Figures x

List of Tables xi

List of Abbreviations xiii

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Contextualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Background 5
2.1 Physiological background . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Diabetes Mellitus . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.2 Glucose regulation mechanisms . . . . . . . . . . . . . . . . . 6
2.1.3 Treatment and management of diabetes . . . . . . . . . . . . . 8

2.2 Technical background . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.1 Data-driven models . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.1.1 Autoregressive Integrated Moving Average . . . . . . 14
2.2.1.2 Case-Based Reasoning . . . . . . . . . . . . . . . . . 15
2.2.1.3 Artificial Neural Network . . . . . . . . . . . . . . . 16
2.2.1.4 Jump Neural Network . . . . . . . . . . . . . . . . . 18
2.2.1.5 Recurrent Neural Network . . . . . . . . . . . . . . . 19

2.2.2 Knowledge-driven models . . . . . . . . . . . . . . . . . . . . 22

3 State of the art 25
3.1 Telemonitoring and self-management of T2DM . . . . . . . . . . . . . 25

3.1.1 Blood glucose monitoring . . . . . . . . . . . . . . . . . . . . 25
3.1.2 Mobile applications . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2 Glucose level prediction . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.3 Recommendation systems . . . . . . . . . . . . . . . . . . . . . . . . 32
3.4 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4 Experimental Setup 38
4.1 Prediction module . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

viii



Contents

4.1.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.1.2 Data Acquisition . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.1.3 Pre-processing . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.1.4 Data framing . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.1.5 Model construction and optimization . . . . . . . . . . . . . . 43
4.1.6 Evaluation metrics . . . . . . . . . . . . . . . . . . . . . . . . 45

4.2 Recommendation module . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.2.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.2.2 Knowledge acquisition . . . . . . . . . . . . . . . . . . . . . . 47
4.2.3 Rule generation . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.3 Application programming interfaces . . . . . . . . . . . . . . . . . . . 48

5 Results and Discussion 49
5.1 Prediction module . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.1.1 Input data for data-driven models . . . . . . . . . . . . . . . . 49
5.1.2 Hyperparameters selection . . . . . . . . . . . . . . . . . . . . 50
5.1.3 Glucose prediction . . . . . . . . . . . . . . . . . . . . . . . . 54
5.1.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.2 Recommendation module . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.2.1 Rule generation . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.2.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.3 Application programming interfaces . . . . . . . . . . . . . . . . . . . 64

6 Conclusion and Future work 66

Bibliography 68

Appendices 79
A Guidelines from international diabetes-related associations . . . . . . 80
B Graphs for all predictions using the RNN model for patients 102 and

106 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
C List of all rules created for the recommendation module . . . . . . . . 84
D Interface definition of the glucose prediction and recommendation

module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

ix



List of Figures

2.1 Maintenance of blood glucose levels by glucagon and insulin. . . . . . 7
2.2 Overall description of how the data are framed to be fitted to the

data-driven models and become a supervised learning problem. . . . . 13
2.3 The R4 Cycle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4 Structure of Feed-Forward Neural Network (FFNN) model. . . . . . . 17
2.5 Schematic illustration of JNN. The input is directly connected to the

hidden neurons and to the output layer. . . . . . . . . . . . . . . . . 18
2.6 The indepenent cells of RNN, LSTM and GRU. . . . . . . . . . . . . 20

3.1 Invasive and non-invasive electrochemical glucose monitoring systems. 28

4.1 Steps integrating the prediction module. It should be noted that the
steps in this scheme can be redone and improved when necessary. . . 39

4.2 Clarke error grid analysis: Reference regions mapping. . . . . . . . . 46
4.3 Steps integrating the recommendation module. It should be noted

that the steps in this scheme can be redone and improved when nec-
essary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.1 Example of the transformation of the first trial (indicated by the last
1 in the patient code) of patient 116 data from the first approach to
the second approach. . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.2 All graphs with the comparison between the actual (blue line) and
predicted (yellow line) values for patient 116 when using the RNN
model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

B.1 All graphs with the comparison between the actual (blue line) and
predicted (yellow line) values for patient 102 when using the RNN
model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

B.2 All graphs with the comparison between the actual (blue line) and
predicted (yellow line) values for patient 106 when using the RNN
model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

x



List of Tables

2.1 Comparative analysis of RNN and its architectural variants. . . . . . 22

3.1 Summary of glucose prediction models found in the literature, where
N is the number of subjects used in each database. . . . . . . . . . . 33

3.2 Summary of recommendation systems created for diabetic patients
published since 2016. . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.1 Descriptive statistics of the dataset. . . . . . . . . . . . . . . . . . . . 40
4.2 Glucose profile statistics of the dataset per trial. . . . . . . . . . . . . 40
4.3 RNN, GRU and LSTM hyperparameters settings for grid search. . . . 45

5.1 Form of the input sample. Example where x is a CGM time series
with the values grouped by the average every 2h, where the lookback
corresponds to 12h and PH=4h. . . . . . . . . . . . . . . . . . . . . . 53

5.2 Grid search results for the K value of the CBR model. . . . . . . . . . 53
5.3 Grid search results for the RNN, GRU and LSTM hyperparameters. . 54
5.4 Comparison of the performance for PH=2h – RMSE. . . . . . . . . . 55
5.5 Comparison of the performance for PH=2h – MAPE. . . . . . . . . . 55
5.6 Comparison of the performance for PH=4h – RMSE. . . . . . . . . . 56
5.7 Comparison of the performance for PH=4h – MAPE. . . . . . . . . . 56
5.8 Comparison of the performance for PH=12h – RMSE. . . . . . . . . . 57
5.9 Comparison of the performance for PH=12h – MAPE. . . . . . . . . 57
5.10 Comparison of the performance for PH=2h – Grid error analysis,

zones A and B. For each patient in both trials, the percentages of
predictions falling into zones A and B, separated by a comma, are
shown. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.11 Comparison of the performance for PH=4h – Grid error analysis,
zones A and B. For each patient in both trials, the percentages of
predictions falling into zones A and B, separated by a comma, are
shown. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.12 Comparison of the performance for PH=12h – Grid error analysis,
zones A and B. For each patient in both trials, the percentages of
predictions falling into zones A and B, separated by a comma, are
shown. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.13 List of variables used in the developed recommendation system where
the domain of each one is described. . . . . . . . . . . . . . . . . . . . 62

xi



List of Tables

5.14 List of some rules created with their description and representation
in the language used (Python). . . . . . . . . . . . . . . . . . . . . . 64

A.1 List of guidelines extracted from public documents made available by
international diabetes-related associations that meet the requirements
of this project. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

C.1 List of all the rules created with their description and representation
in the language used (Python). . . . . . . . . . . . . . . . . . . . . . 85

xii



List of Abbreviations

AI Artificial Intelligence. 3, 15, 22, 34
ANN Artificial Neural Network. 16, 30, 31
APDP Associação Protetora dos Diabéticos de Portugal. 4, 39, 40, 54
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1

Introduction

1.1 Motivation

Diabetes Mellitus (DM) is a chronic disorder that affects the body’s ability to

control blood glucose levels with significant short and long-term consequences. It is

estimated that in 2018 the prevalence of diabetes in Portugal between the ages of

20 and 79 years was 13.6%. This means that more than 1 million Portuguese people

in this age group have diabetes, of which 56% live with the disease and 44% have

undiagnosed diabetes [1].

Patients with diabetes, to maintain their blood glucose level within healthy lim-

its, must follow a set of behavioral actions, such as following a food plan, practicing

sufficient physical activity, and taking medication [2, 3]. These lifestyle changes in

patients are essential to achieve therapeutic goals, especially for patients with Type

2 Diabetes Mellitus (T2DM). In fact, some studies show that these interventions

are more effective than pharmacological interventions and can even prevent cases of

T2DM [3, 4].

The current paradigm of health systems is mainly focused on the immediate

care of acute illnesses. With the high incidence of chronic diseases, it is essential

to shift this focus to prevention and management. Therefore, remote health is

employed to provide patients a closer follow-up with the necessary frequency [5]. In

addition, this has the potential to provide a reduction in costs and occupancy of

health establishments [5, 6].

Remote health includes several approaches (telehealth, remote monitoring, mo-

bile applications, etc.), all of which mean observing patients outside the clinic using

technologies [6]. For type 2 diabetes, there are several solutions on the market, such

as Continuous Monitoring Devices (CGMs) and mobile applications with several

functionalities, from analyzing CGM data, alerting of dangerous episodes, medica-

tion intake reminders, incentive changes in the patients’ lifestyle, among others [7].

Studies indicate that mobile health (mHealth) interventions show clinical effective-
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1. Introduction

ness in the prevention and management of T2DM [8, 9]. So, the development of an

algorithm that uses CGM data, predicts future glucose values, and, through them,

makes recommendations about the patients’ lifestyle (with a mHealth interface) will

help doctors and patients manage their disease and prevent dangerous episodes from

occurring in their lives.

1.2 Contextualization

Type 2 diabetes mellitus is the most common of the three main types of diabetes.

It results from deficient secretion, insulin resistance, or a combination of both and is

characterized by dysregulation of carbohydrate, lipid, and protein metabolism [4].

This pathology has raised globally in the last three decades, mainly in the most

industrialized countries. Subsequently to increasing urbanization, population aging,

obesity, unhealthy eating habits, and sedentary lifestyles [2, 4, 10, 11]. Affecting

all age groups, type 2 diabetes results in heightened mortality, morbidity, and a

significant reduction in the quality of life of individuals dealing with this disease.

Mainly increasing cardiovascular disease, end-stage renal disease, retinopathy, and

neuropathy [2, 4, 10, 11]. To avoid this situation and to achieve moderate blood

glucose levels, patients need to take pharmacological treatment and adjust their

lifestyle [2, 10]. These changes in the patients’ lifestyle are essential in managing

and preventing type 2 diabetes and constitute the first approach to their treatment

[4]. Some studies show that these adjustments if made persistently, become more

effective than taking medication [4].

Since this disease is highly influenced by the patient’s day-to-day behaviors, it

is extremely important that the patient can anticipate dangerous events to adapt

their actions. With the growing development of technologies and the increase in

internet access, the field of telemedicine is becoming more and more relevant in the

detection and management of T2DM [5].

As mentioned before, in patients with this pathology there is a critical need

for personal monitoring and control of the Blood Glucose (BG) levels [12], for

which there are sensors and devices capable of extracting and recording those values

through remote monitoring. Blood glucose monitoring has been revolutionized in

the last few decades by CGM sensors, which are temporary minimally invasive sen-

sors inserted in subcutaneous tissue (usually in the abdomen or in the arm). These

provide BG readings every 1 to 5 minutes, with a large range of functionalities, such

as alarms for imminent hyperglycemic or hypoglycemic episodes, arrows depicting

current glucose level change direction, remote monitoring and wireless communica-
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tion that allows data sharing with caregivers and real-time information visualization

via a portable receiver or a smartphone.

Currently, there are intelligent computational techniques, such as Machine

Learning (ML) and Artificial Intelligence (AI), that analyze and extract timely in-

formation for patients through the acquired data [13]. These algorithms are particu-

larly useful in diagnosing the pathology [13], predicting population risk stratification,

improving decision-making and [14] self-management. These algorithms are often

found in mobile apps, websites, etc. Some studies show that this combination of

technologies (monitoring devices with intelligent algorithms) can contribute to the

decrease in the value of Hemoglobin A1c (HbA1c) and improves glycemic control,

self-efficacy, and self-care activities [14–16].

1.3 Goals

The present thesis was part of the ongoing funded project entitled ”POWER

- Empowering a digital future”. This project aims to create an innovative port-

folio of products and services, mostly based on cloud and cognitive technologies.

Through a strong research and development effort aligned around five strategic tech-

nological transformation vectors: 5G networks, Edge/Cloud computing continuum,

data-driven technologies, business models, and AI.

This project is divided into five subprojects, and this thesis is part of subpro-

ject 4: Future Services. Therefore, within this theme, Altice Labs and the Univer-

sity of Coimbra (Faculty of Sciences and Technology of the University of Coimbra

(FCTUC)/Department of Informatics Engineering (DEI)), together with the col-

laboration of the Coimbra Hospital and University Centre (CHUC), are working

on the scope of Assisted Living and e-Health. The purpose is to investigate AI

methodologies and develop an algorithmic platform for the analysis and prediction

of physiological signals, and their use in the management of diabetes. The devel-

opment of this thesis took place at the Center of Informatics and Systems of the

University of Coimbra (CISUC).

Therefore, we can divide the goals of this thesis into two modules. One corre-

sponding to the prediction of glucose values for patients with type 2 diabetes, and

the other to the provision of recommendations that focus on the patients’ lifestyle

habits:

1. Prediction module

2. Recommendation module

To achieve the first goal, algorithms will be implemented using only previous
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blood glucose values measured using a CGM device, which provides periodic BG

readings, as mentioned earlier. For this purpose, some secondary goals will be

established: find the model with the best results, comparing traditional methods and

ML methods; validate the performance of the model using real patient data from

a dataset provided by Associação Protetora dos Diabéticos de Portugal (APDP);

compare the results using different metrics.

For the second module, a recommendation model will be developed using a

Knowledge-Based Recommendation System (KBRS). Knowledge will be extracted

from guidelines developed by major international institutions related to the pathol-

ogy. These guidelines will be transformed into a set of rules which are then adopted

to create personalized recommendations for the users. This customization will be

achieved by using the prediction module to support the recommendations. The rules

developed will be validated and complemented by the clinical knowledge of a team

of endocrinologists. Thus, there will be a validation with confidence and clinical

relevance of the chosen recommendations.

1.4 Structure

In addition to this introduction, this document has five more chapters. In

Chapter 2, the physiological and technical background is presented, where the con-

cepts necessary for a better understanding of the work developed in this study are

exposed. Chapter 3 discusses the state of the art of both the models used to predict

glucose levels and the existing recommendation rule engines. Then, in Chapter 4,

the methodologies used to implement the models for both modules are represented.

For the prediction the dataset used and how the data from it was pre-processed

and framed for use in the models is described. How the models were optimized and

what evaluation metrics were used were also described. Regarding the recommen-

dation system, it is explained how the knowledge was obtained and what strategy

was adopted to generate the rules. Subsequently, Chapter 5 describes and discusses

the results of the experiments. Finally, Chapter 6 presents the main conclusions of

the work. The document also has a set of appendices that contain complementary

information to that written during the different chapters.
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Background

This chapter aims to explain the main concepts required to understand this

thesis and is organized in two sections: physiological and technical background.

Section 2.1 intends to clarify some concepts about the disease and expose the con-

sensus reached on the influence of lifestyles in the treatment of diabetes. Section 2.2

explains the main ideas and techniques that are used in the development of both

the prediction and recommendation modules.

2.1 Physiological background

2.1.1 Diabetes Mellitus

Diabetes mellitus is a group of metabolic diseases characterized by chronic hy-

perglycemia resulting from impaired insulin secretion, insulin resistance or a combi-

nation of both [17, 18]. Insulin is the main anabolic hormone of the body produced

by β-cells of the pancreatic islets. Metabolic abnormalities in carbohydrates, lipids,

and proteins are caused by inadequate insulin levels to produce an adequate response

and/or insulin resistance of target tissues, primarily skeletal muscles, adipose tissue,

and to a lesser extent, liver, at the level of insulin receptors, signal transduction

system, and/or effector enzymes or genes [17]. This pathology is mainly divided

into three types [18–21]:

1. Type 1 diabetes: autoimmune disease, also known as insulin-dependent di-

abetes, is brought on by the body attacking the pancreas. Absolute insulin,

including latent autoimmune diabetes in adulthood, results from the destruc-

tion of β-cells. It accounts for 5 to 10% of people with diabetes, with a higher

prevalence in kids and teens.

2. Type 2 diabetes: also known as non-insulin-dependent diabetes, accounts

for 90 to 95% of diabetes cases. Due to insulin resistance, reduced insulin

synthesis, and dysfunctional pancreatic β-cells, it is characterized by insulin

insensitivity. Having relatives with Type 2 Diabetes Mellitus (T2DM) (espe-
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cially those in the first degree) significantly raises one’s likelihood of acquiring

the disease, indicating that type 2 diabetes is strongly inherited genetically.

Aging, diets rich in fat, and a sedentary lifestyle are additional risk factors for

T2DM.

3. Gestational diabetes: pregnancy-related glucose intolerance condition that

is often identified in the second or third trimester. The risk of developing this

illness is increased by characteristics such advanced mother age, ethnicity, a

history of gestational diabetes, and a family history of T2DM.

Other specific types of diabetes include monogenic diabetes syndromes (like

neonatal diabetes and maturity-onset diabetes of the young [MODY]), exocrine

pancreas diseases (like cystic fibrosis), and drug- or chemical-induced diabetes (as

it occurs during treatment for HIV/AIDS or after organ transplantation)[19, 20].

Prediabetes is a condition when blood glucose levels are higher than usual but not

high enough to be diagnosed as diabetes. Patients who have this syndrome are more

likely to develop T2DM, but with the right lifestyle changes, the pathology can be

avoided or delayed [3, 18, 20].

Diabetes often remains undetected, sometimes due to a lack of knowledge about

the disease symptoms, to low health-seeking behavior, like lack of regular health

check-ups, or because patients are asymptomatic, especially those with type 2 dia-

betes during the first years of the disease. [18, 22]. Uncontrolled diabetes can cause

substantial long-term damage to many organs and bodily functions, such as the

kidneys, heart, nerves, blood vessels, and eyes. It can also cause stupor, coma, and,

if left untreated, death from ketoacidosis or a rare form of nonketotic hyperosmolar

syndrome [4, 11, 17]. Therefore, early illness identification enables people at risk to

take preventative measures to halt the disease’s course and enhance their quality of

life.

2.1.2 Glucose regulation mechanisms

In order to enhance current therapies and drugs and create novel strategies, it

is essential to fully comprehend the processes that control blood glucose levels. A

highly sophisticated network of hormones and neuropeptides, mostly secreted by the

brain, pancreas, liver, intestine, as well as adipose and muscle tissue, is responsible

for this glycemic regulation [23].

The pancreas, which releases many digestive enzymes and pancreatic hormones,

including insulin and glucagon, is the primary regulator of this system. These two

hormones work in opposition to one another to maintain a range of blood glucose
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levels between 4 and 6 mm (72 and 108 mg/dL) and achieve glycemic homeostasis

[23].

Figure 2.1: Maintenance of blood glucose levels by glucagon and insulin. From
[23].

On the one hand, glucagon is released into the bloodstream when blood glucose

levels are decreased, such as during sleep or in between meals. It encourages hepatic

glycogenolysis, a process in which the liver produces glucose by liberating it from

glycogen stores to power other organs like the brain, red blood cells, and muscles [24].

This procedure is especially important when there are protracted fasting intervals.

In order to raise endogenous blood glucose levels during extended fasting, glucagon

also encourages hepatic and renal gluconeogenesis [23, 24].

On the other hand, when blood glucose levels are elevated, as they are after

meals, insulin is produced. Through a receptor in adipose tissue, this hormone al-

lows for the uptake of glucose by these tissues, lowering its concentration in the

bloodstream. It also promotes lipogenesis (the synthesis of fatty acids and triglyc-

erides, which will later be stored in the liver and adipose tissue) and glycogenesis

(the addition of glucose molecules to the glycogen chain) [4, 23].
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Therefore it becomes evident that the pancreas, liver and kidneys play a crucial

role in regulating blood sugar levels. A problem between the functional iterations

of all relevant components can result in impairments in insulin secretion and/or

sensitivity, which can cause disorders like T2DM [18, 23].

2.1.3 Treatment and management of diabetes

As previously noted, if this disease is not controlled, it can lead to several health

issues. Patients must simultaneously change their lifestyle and undergo pharma-

ceutical therapy to avoid this condition and attain moderate blood glucose levels

[2, 10, 18].

Pharmacological agents

Since individuals with Type 1 Diabetes Mellitus (T1DM) are distinguished by

a lack of endogenous insulin production and autoimmune destruction of β-cells in

the pancreas, insulin injection is the cornerstone of treatment for these patients.

Invasive delivery methods, including diabetes syringes, glucose sensor insulin infu-

sion pumps, supersonic injectors, and pens, can be used to provide external insulin

[25, 26]. Similar to how endogenously released insulin travels via the liver first,

a fully physiological exogenous insulin treatment should be delivered in this way.

Since the pancreas continuously secretes a tiny quantity of insulin and produces

bigger amounts in reaction to a carbohydrate-rich meal, the present insulin deliv-

ery is made to more nearly resemble the physiological scenario seen in a healthy

individual [26].

However, the exclusive focus on exogenous insulin turns out to be insufficient

to address all the issues related to the illness, leaving patients vulnerable to severe

hypoglycemic episodes like, a lifetime need on exogenous insulin, insulin resistance,

mild obesity, and psychological issues [25]. The creation of a real artificial pancreas

has advanced thanks to technological advancements that enable the widespread

adoption of smaller, better insulin pumps and continuous glucose monitoring. Until

a biological medicine is established, the artificial pancreas is anticipated to enhance

care and lower consequences and comorbidities [26].

There are several oral and injectable treatments available to people with T2DM

to address the disease [10]. For the majority of patients, metformin is the first drug

of choice from a pharmacological standpoint [10, 27, 28], while the other alterna-

tive therapies must be researched and administered on an individual level, taking

into consideration the patient’s features and condition. It is important to empha-
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size that most type 2 diabetes guidelines recommend starting treatment based on

lifestyle changes, particularly nutritional changes and physical activity, before start-

ing pharmacotherapy [4, 29].

Non-pharmacological agents

It is vital to incorporate lifestyle modifications into the treatment/management

for both forms of diabetes, but particularly for those with T2DM [4, 30]. These ad-

justments include self-management education and support, medical nutrition ther-

apy, physical activity and psychosocial care [30].

Large-scale clinical studies have demonstrated that intensive lifestyle treatments

are more successful than pharmaceutical therapies in reducing the prevalence of Dia-

betes Mellitus (DM) by 58% when compared to control groups [4]. Other important

clinical studies, like the Diabetes Prevention Program in Multiethnic Americans,

the Finnish Diabetes Prevention Study, and the Da Qing IGT and Diabetes Study

in China, have shown that a significant number of T2DM cases can be avoided by

modifying their lifestyle, by developing a balanced eating plan and boosting physical

exercise [4].

These modifications, however, take time and can be challenging since people

need to learn about their condition and how they can promote health and avoid

consequences. These changes may also be hampered by other variables, such as

a lack of motivation (which may occasionally be brought on by symptoms of the

disease, such as fatigue) and the absence of social support. Therefore, it is crucial

for people with DM to have a strong support system and to be well-informed about

their illness [2].

• Nutrition therapy and weight control

The need to maintain weight, plan meals, and adhere to a chronic diet are some

of the most challenging aspects for DM patients [29, 30]. In obese persons with

diabetes, losing weight significantly improves blood pressure, lipid levels, and

glycemic control [29, 31]. Since this pathology covers a very diverse set of

individuals, due to personal preferences, culture, comorbidities, socioeconomic

settings, and other considerations, there is no model diet that is suitable for

everyone with this illness [29, 31].

Despite generating discord between scientists and health experts, some con-

sensus has already been made, such as the suggestion that health profession-

als who treat patients of this type should base their recommendations on diets

that encourage the consumption of nonstarchy vegetables, fruits, whole grains,
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vegetables, nuts, dairy products (such as yogurt, but with some caution), and

choosing whole foods over processed foods [29–31]. In addition, it is advised

to limit or avoid the consumption of processed red meats, refined carbohy-

drates, and sugars (particularly those found in sugar-sweetened beverages) for

the prevention and control of type 2 diabetes, but again with some cautions

[29–31].

Reducing carbohydrate intake for patients with this pathology has been shown

to be the greatest evidence for improving blood glucose, since these are the

only food constituents that directly increase blood glucose [31]. Therefore, a

low- or very low-carbohydrate diet is an option for people with T2DM who

are unable to achieve their glycemic objectives or who wish to cut back on

pharmaceutical therapy [29–31].

Even though there has already been considerable success in this area of nutri-

tional study and certain formulations of dietary recommendations have been

made, there are still a number of contentious and ambiguous problems that

require further research to be clarified. Nuts, fruits, seafood, vegetable oils,

low-fat vs high-fat dairy, and the quantity and quality of the diet are the main

factors. It is still necessary to comprehend the etiological elements that link

diet, diabetes, and associated consequences in various geographic and racial

contexts [29, 31].

• Physical activity and exercise

Exercise provides many general advantages for everyone, but especially for

those with diabetes. Numerous studies have shown that progressive aero-

bic and resistance training, when performed alone or in various combinations

(without dietary modification), has multiple positive effects on body compo-

sition (such as a reduction in total body fat and visceral adipose tissue), car-

diometabolic risk factors (such as an improved blood lipid profile and blood

pressure), and particularly on the mechanisms that control glucose homeostasis

(such as improved insulin sensitivity and decreased Hemoglobin A1c (HbA1c))

[3, 30, 32, 33]. The challenges of glycemic control via physical activity and

exercise planning, like those of nutrition, must be tailored to each person’s

unique requirements since they depend on the type of diabetes, the kind of

activity, and the existence of morbidities.

It is strongly advised that people with diabetes avoid being sedentary, or

engaging in activities with very little energy expenditure (such as watching

TV, sitting at the computer, etc.). This kind of extended behavior, which
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is reflected in poor glycemic control and pooled metabolic risk, is linked to

higher mortality and morbidity rates [3, 30, 34].

Through insulin-independent processes, aerobic exercise immediately boosts

muscle glucose absorption by a factor of up to five [3]. If exercise is prolonged,

it is associated with muscle glycogen repletion and glucose uptake after exercise

stays high through insulin-independent (∼ 2 h) and insulin-dependent (up to

48 h) mechanisms [3, 33].

Some consensuses were established for patients with T2DM regarding the dura-

tion and type of activity to be performed. In order to improve insulin action,

it is advised that individuals exercise regularly, or at the very least refrain

from going more than two days without exercising. For the best effects on glu-

cose control and overall health, patients should ideally combine aerobic and

resistance training. To prevent or postpone the onset of type 2 diabetes in

high-risk groups and those with prediabetes, structured lifestyle treatments

that involve at least 150 minutes per week of physical activity and dietary

adjustments that lead to a 5–7% weight reduction are advised. The same

physical activity targets set for young people in general should be advocated

for children and teenagers with T2DM [3, 30, 34, 35].

Patients with T1DM have extremely variable glycemic responses due to the

type and duration of exercise, and each requires different adjustments. It is

essential to adjust supplemental carbohydrate intake and/or insulin decrease

during and after exercise in order to maintain glycemic balance. Frequent

monitoring of glucose levels is necessary to make these modifications more

correctly [3, 30].

• Psychological background

Patients with chronic diseases typically experience increased levels of anxiety

and stress as a result of having to adapt to their condition and through a num-

ber of lifestyle modifications [36, 37]. For patients with DM, these emotions

include suffering related to self-care, adherence to the nutritional and physical

program, and adaptation to the comorbidities associated with the pathology,

since the treatment of this disease affects all aspects of the patient’s life, in-

cluding occupation, leisure and family, and social life [36, 37].

In addition to therapy and maintenance, there is a 25% chance of acquiring

depression after receiving a diabetes diagnosis [38]. These patients regularly

face anxiety and stress about experiencing episodes of hypoglycemia or hyper-

glycemia [38] and worry about keeping their blood glucose levels steady, both
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of which raise the risk of depression. These problems are reflected in medi-

cation non-adherence and self-care behavior neglect [36–38], which results in

poor glycemic control and high glucose levels.

Diabetes and stress are both causes and effects of one another. This is due to

the fact that stress raises blood sugar and HbA1c levels; yet, the management

and treatment of the illness itself can result in high levels of stress [36].

According to certain research, specific tactics including stress reduction meth-

ods [36–38], mindfulness practices [38], and other cognitive–behavioral ther-

apies [37] can reduce depression, general stress, anxiety, and diabetes-related

distress. The improvement in patient well-being is reflected in improved self-

care and commitment to their treatment, which also helps to prevent long-term

complications [36]. Therefore, further research is required to completely com-

prehend how treatments for high stress, depression and anxiety might impact

glycemic control [36–38].

2.2 Technical background

In this work, two different approaches are established to create the predic-

tion and recommendation modules. Data-driven models were used to create the

prediction model for glucose forecast based on the past glucose levels of patients.

Knowledge-driven models were used for the recommendation module to infer useful

recommendations from collected data and offer it to the user in a personalized way.

2.2.1 Data-driven models

As noted earlier, diabetes self-management relies on the blood glucose pre-

diction as it allows taking suitable actions to prevent hyperglycemic/hypoglycemic

episodes. Due to the fact that such measurements follow a chronological order, we

treat the challenge of estimating future blood glucose levels as a time series fore-

casting problem. Time series prediction aims to collect previous data, prepare it for

algorithms to use, and then predict future values based on patterns discovered from

the current and previous data. This problem may be generalized by Equation 2.1.

x̂t+PH = f(xt, xt−1, xt−2,..., xt−N+1) (2.1)

For an observed time series x with N points, t represents the glucose value at

the current time t. PH is the prediction horizon, i.e. the number of time steps

from the current point to the prediction point. Therefore, through a function f it
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is possible to estimate a future value at t+ PH. This function is a model that can

be used to get an estimated value to x̂t+PH .

Since only glucose values recorded through a Continuous Monitoring Device

(CGM) will be used as input to the prediction algorithm, it is an univariate time

series problem. The time series prediction can be framed as a supervised learning

problem. The machine learning task of supervised learning is to train a function that

translates input to an output using examples of input-output pairs. Each example

in supervised learning is a pair that includes an input item and the desired output

value. An inferred function is generated by a supervised learning algorithm from

the training data, which may then be used to map new samples. The algorithm will

be able to accurately determine the class labels for instances that are not yet visible

in an ideal environment.

Turning a time series dataset into a supervised learning problem can be done by

framing the data using the sliding window method. This re-framing of the time series

data allows access to the set of standard linear and non-linear data-driven models

on the problem. The figure 2.2 schematizes a general description of how the data are

framed to be used by the models. The input data is splited as long as the lookback

period (which indicates how many previous values should be used simultaneously by

the algorithm) and the set of times within the lookback is considered as a sample.

A sliding window with a step size of one generates each sample. The Prediction

Horizon (PH) or delay specifies the target value that the algorithm should predict.

Thus, a pair input-output is composed of a set of previous values within the lookback

period and a target value.

Figure 2.2: Overall description of how the data are framed to be fitted to the
data-driven models and become a supervised learning problem. From [39].

So, data from each subject is transformed into pairs (xn,yn), where the vector
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xn is a CGM time series segment of length equal to the size of lookback, i.e., from

n−L+1, where L corresponds to the lookback, to n which corresponds to the final

moment of the sequence of values to be used as input, xn = [xn−L+1, ..., xn−1, xn]

and yn is CGM time-series value at the time n+PH with respect to the prediction

horizon PH given in samples, yn = xn+PH .

Numerous investigations have been made to develop models to predict the blood

sugar level in order to give the subject advanced warning. In the next chapter, in

Section 3.2, the most successful models in the literature for predicting future glu-

cose values will be presented (Autoregressive Integrated Moving Average (ARIMA),

Case-based reasoning (CBR), Recurrent Neural Network (RNN), Long Short-Term

Memory (LSTM), Gated Recurrent Unit (GRU) and Jump Neural Network (JNN)).

For a better understanding of these, the next section will explain the key concepts

and how these data-driven models are used to forecast future values.

2.2.1.1 Autoregressive Integrated Moving Average

ARIMA models are considered some of the most flexible and popular autore-

gressive techniques for continuous time series forecasting [40]. This models generally

use the historical values of a univariate time series to predict future time series val-

ues. In a ARIMA model, the future value of a variable is assumed to be a linear

function of several previous observations and random errors [41]. AR stands for ”au-

toregressive”, and is a stochastic process whose output values are linearly dependent

on the weighted sum of their prior values and a white noise error [41]. Integrated

means that the variance has been removed (if present) for differentiating the time

series [42]. MA stands for ”moving average”, and describes a stochastic process

whose output value is linearly dependent on the weighted sum of a white noise error

and the error term from previous periods [41]. One of the tasks for constructing the

ARIMA model is to determine the value of (p, d, q) [41]:

p: order of the autoregressive part (AR);

d : degree of first differencing involved;

q : order of the moving average part (MA).

The least-squares or maximum likelihood estimation methods are typically used

to estimate the parameters of ARIMA models [41].

When working with a data sequence x1, x2, ..., xt we can describe ARIMA as

[40, 41]:

x
′

t = c+ ϕ1x
′

t−1 + ...+ ϕpx
′

t−p + ϵt + θ1ϵt−1 + θqϵt−q (2.2)

where x
′
t denotes the differenced time-series, which has been differenced d times,
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c is a constant, ϕ is the AR(p) coefficient, θ is the MA(q) coefficient, and ϵ is the

lagged forecast errors.

2.2.1.2 Case-Based Reasoning

CBR is a methodology based on the intuition that similar problems often have

similar solutions [43]. It is described as a paradigm of thinking that combines mem-

ory processes with problem solving, knowledge, and learning. It entails modifying

earlier answers to satisfy new requirements, referencing earlier situations to ex-

plain or defend new solutions, and drawing inferences from the past to interpret the

present [44]. CBR provides an inherent model-specific approach to interpretability

[43].

A case is represented as the ordered pair (problem, solution) [43]. As mentioned

earlier, in this project the CGM data is organized as pairs (xn, yn). In this context,

xn corresponds to the problem and yn to the solution. Thus, a case base is created

with all cases from all training patients. Different global distance functions can be

used to find similar cases in the case base for each new query case such as Minkowski

distance, Cosine distance, Euclidean distance, City Block distance, Pearson’s corre-

lation coefficient distance, etc. This model reuses remembered experiences, where

the experience need not record how the solution was reached, simply that the solu-

tion was used for the problem [45]. The solution is learned from the set of existing

instances in the case base for each new instance of the problem [44].

In the context of prediction, the model is provided with a new instance, i.e., a

segment of CGM data, in order to predict a certain value in the future. This input

(the problem) will be compared with other cases present in the case base. This

is adapted for the forecasting horizon in question. This means that for a forecast

in a specific time horizon there must be a case base in which the pairs (problem,

solution) are also for that prediction horizon. The forecast is achieved by adopting

the value of the case solution that gets the smallest value assigned by the chosen

distance function.

The intuitive appeal of CBR comes from its similarity to human problem-solving

behavior. CBR can be based on surface-level knowledge and does not necessitate

as much knowledge engineering work as other Artificial Intelligence (AI) fields like

rule-based reasoning do. This is similar to how people use prior experience to solve

new problems, which frequently does not require in-depth analysis of the problem

domain [44].

There are several proposed models of CBR and the most used model is the R4

model [44]. The process involved in this model can be represented by a schematic
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cycle composed of the four R’s, as illustrated in Figure 2.3.

Figure 2.3: The R4 Cycle. From [45].

2.2.1.3 Artificial Neural Network

Artificial Neural Networks (ANNs) are a machine-learning method that imi-

tates the biological function of the human cerebral cortex. These are among the

most widely used techniques in medicine and many other areas and have excellent

effectiveness with both linear and non-linear data [46]. By linking layers of neurons,

as the name implies, they attempt to mimic the behavior of the brain’s network

of neurons, with each neuron having a unique weight, polarization, and activation

function. The activation function translates the inputs’ non-linear relationships into

a more usable output. ANNs are a great tool for the prediction task due to the many

associated advantages: robustness due to the use of weights even in noisy environ-

ments, low error rate, high degree of accuracy and performance improvement with

the ability to learn in the training phase [46].

Due to its effectiveness solving nonlinear issues, Feed-Forward Neural Networks

(FFNNs), also known as multilayer perceptrons, are the most used type of ANN.

Such neural networks typically consist of an input layer, at least one layer of neurons

that are hidden, and an output layer. The first hidden layer receives the initial

data transmission from the input layer. Every neuron in this sends signals to the
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neurons in the second hidden layer (again, modulated by weights). The data is

transformed as it passes through each hidden layer in an effort to identify, if possible,

the discriminative behavior that exists there. A certain classification is produced

upon reaching the output layer.

This network has the general structure shown in Figure 2.4 and is expressed as

Equation 2.4.

Figure 2.4: Structure of FFNN model. From [47].

nh
k =

∑R

j=1
wh

kj
pj + bk

h′ , k = 1 to S (2.3)

where R is the number of input variables and S is the number of hidden neurons.

Further, p is the input variable, bh is the bias of the hidden layer, and wh is the

weight. The calculated value is used as input for an activation function. The input

of the FFNN is processed to obtain the output by modifying the weight sum of

the values from the previous layer by using the activation function [47]. In this

prediction problem, the input variable corresponds to the past glucose values.
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2.2.1.4 Jump Neural Network

JNNs consists of a FFNN with the addition of direct connections from each

input to the output neuron [48]. This means that the inputs are connected not

only to the first hidden layer but also to the output layer [49]. Such a framework

is especially well suited for time series fitting and forecasting that include both

linear and non-linear dynamics found in the physiological data [48]. Hidden neurons,

with their non-linear activation functions, model the non-linear relationship between

inputs and targets, while output neurons, with their linear activation functions, learn

the linear relationship between inputs and targets [49]. The architecture of these

Neural Network (NN) is schematized in Figure 2.5.

Figure 2.5: Schematic illustration of JNN. The input is directly connected to the
hidden neurons and to the output layer. Where ỹ(t+ PH|t) corresponds to x̂t+PH .

From [50]

At each timestamp t, the Jump Neural Network predicts a signal that can be

expressed as [50]:

x̂t+PH = O · I(t)T + V · f(P · I(t)T ) (2.4)

where I(t) is a row vector with L elements corresponding to the x[t−L+ 1, t],

O is a row vector with L weight elements directly connecting every input to the

output neuron, V is a row vector of H weights connecting every hidden neuron to

the output neuron, P is a H × L matrix of weights connecting every input to every

18



2. Background

hidden neuron and f is the tangent-sigmoid activation function, computed element-

wise on the results of P ·I(t)T . The first term models the linear relationship between

the target and the inputs, whereas the second term models the nonlinear relationship

[50].

2.2.1.5 Recurrent Neural Network

A RNN is an extremely powerful model that can classify, cluster, and make

predictions about data, particularly time series [51]. By maintaining an internal

memory that enables them to develop sequential rules, RNNs use data from the

past or the future to learn about the current data. However, if the sequences are

quite long, the gradients (which are crucial for adjusting the weight and bias) are

computed during their training (backpropagation). They either vanish (multiplica-

tion of numerous small values less than 1) or explode (multiplication of many large

values greater than 1), causing the model to train very slowly [51]. As a result,

many RNN types have been created to address these issues.

LSTM is a modified RNN architecture that solves the aforementioned problems.

In LSTM, the leak or burst gradient problem is resolved by using a series of gates to

regulate when data enters memory [51]. Recurring connections provide the network

with additional state or memory, enabling it to learn and benefit from the ordered

pattern of observations in input sequences. Network outputs are dependent on

recent context in the input stream rather than what was just supplied as input to

the network due to internal memory [51].

The GRU is a type of RNN structure with fewer gates compared to LSTM. One

gate controls both the input and forget gates in the GRU cell unit. The GRU is

therefore simpler than the LSTM since the forget gate and input gate are integrated

into one gate.

Data from one time step has relevance over data from earlier time stages in a

sequential or temporal input. The forecast at any given time depends not just on the

current input but also on the prior experience. In other words, another dimension,

namely temporal ordering, is also taken care of in all RNN model calculations. This

philosophy is the backbone of the RNN computation [52]. The model is usually

trained using the backpropagation through time algorithm that incorporates the

notion of the time/sequence in the underlying gradient descent process [52].

The unit cells of each type of RNN are illustrated in figure 2.6. For each archi-

tecture, the equations necessary for their better understanding have been explained.

In the equations corresponding to the RNN, i.e. Equations 2.6 and 2.7, U , V , and

W are the shared weight matrices from input-to-hidden, hidden-to-output, and be-
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tween consecutive hidden nodes respectively at all time steps. bs and bo are the

biases for the hidden node and the output node, respectively. For the equations

corresponding to the LSTM and GRU, i.e., Equations 2.8 - 2.17, subscripts of the

weight matrices and biases indicate the initial of the gate.

Figure 2.6: The indepenent cells of RNN, LSTM and GRU. From [52].

The sigmoid and tanget activation functions are represented by the following

equations:

tanh(x) =
ex − e−x

ex + e−x
sigmoid(x) =

1

1 + e−x
(2.5)

The structure of the simple RNN cell consist of hidden state (ht) and output

(ot) - Equations 2.6 and 2.7.

ht = tanh(W × ht−1 + U × xt + bs) (2.6)

ot = σ(V × ht + bo) (2.7)

The information flow in the network is controlled by the internal gates of LSTM

and GRU cells. Important information is stored and transferred further in every cell

function, while unnecessary information is suppressed. During the model’s training

phase, the network learns which information is important and should be retained

or ignored. This is achieved by storing cell-state information that functions as a

conveyer belt, adding the essential information as needed and removing the unneeded

information. Here, sigmoid activation plays a crucial role in separating the relevant

information from the irrelevant data, as this function squishes between 0 and 1 [52].

The structure of the LSTM cell consists of hidden state (ht) and four gates, i.e.,

input gate it, forget gate ft, control gate Ct, and output gate ot. From Equation 2.8

to Equation 2.13 the gates mentioned are explained [53].

The input gate determines what data may be sent to the cell - Equation 2.8.
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it = σ(Wi × [ht−1, xt] + bi) (2.8)

The forgot gate decides which information from input should be neglected from

the previous memory - Equation 2.9.

ft = σ(Wf × [ht−1, xt] + bf ) (2.9)

The control gate controls the update of cell state from Ct−1 to Ct - Equations

2.10 and 2.11.

C̃t = tanh(Wc × [ht−1, xt] + bc) (2.10)

Ct = ft × Ct−1 + it × C̃t (2.11)

The output gate is responsible for generating the output and updating the

hidden vector ht−1 - Equations 2.12 and 2.13.

ot = σ(Wo × [ht−1, xt] + bo) (2.12)

ht = Ct × tanh(ot) (2.13)

Moreover, the cell equations for GRU consist of reset gate (rt), update gate (zt)

and hidden state (ht). The gates mentioned are described from Equation 2.14 to

Equation 2.17.

The reset gate determines how to combine the new input with the previous

memory to calculate the new state - Equation 2.14.

rt = σ(Wr × [ht−1, xt] + br) (2.14)

The update gate is responsible for the collective functioning of the forget and

input gate of a LSTM cell - Equation 2.15.

zt = σ(Wz × [ht−1, xt] + bz) (2.15)

h̃t = tanh(rt × [ht−1, xt] + bh) (2.16)
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ht = zt × h̃t + (1− zT )× ht−1 (2.17)

In Table 2.1, a comparison of these three RNNs in terms of model complexity,

key characteristics, and shortcomings are presented.

Table 2.1: Comparative analysis of RNN and its architectural variants [52].

Simple RNN LSTM GRU

Model
complexity

Low High Moderate

Key
characteristics

Easier to train
Less computational resources

Model long term dependency
Extraction of contextual information

Model long term dependency
Extraction of contextual information

Shortcomings Vanishing gradient problem High hidden layer complexity Higher complexity than simple RNN

2.2.2 Knowledge-driven models

Recommendation systems (RSs) consist of technologies that are efficient at

extracting valuable information and then using it effectively [54]. These are generally

motivated by the need to support user decision-making and provide an automated,

online, and generally personalized filtering mechanism that enables users to cope

with information overload [55]. The technical specifications and appropriate design

based on the system’s kinds and functions determine how capable these systems are.

There are four general categories of RSs: Collaborative Filtering (CF), Content-

Based (CB), Knowledge-Based (KB), and Hybrid Recommender systems (HRS)

[54, 55].

Systematic utilization of relevant and timely data, information, and knowl-

edge management is the goal of KB decision support systems, which are intended

to enable more accurate decision-making. These systems refer to decision-making

based on relevant knowledge, which relies on AI, and the application of information

and communication technologies [56]. These systems also provide decision-making

assistance using prediction and recommendation methods [56]. Three different cat-

egories of knowledge must be used by Knowledge-Based Recommendation Systems

(KBRSs): knowledge about the users, knowledge about the items, and knowledge

about the compatibility of the item with the user’s needs [57].

While all intelligent recommenders implement knowledge of some kind, KBRSs

focus on domain knowledge and constraints, or in other words, the knowledge that

is not yet exploited in content-based or collaborative techniques [55]. Since sugges-

tions are created without taking into account the user’s history and simply taking

into account the needs of the recommender session, KBRSs have one benefit over

the other two basic recommender techniques in that cold-start issues are avoided.

22



2. Background

However, KBRSs suffer from a difficulty of their own in the form of the knowledge-

acquisition bottleneck: requiring the transformation of domain expertise into formal

representations [55].

A way of implementing KBRS is using Rule-based systems (RBSs) - also known

as production or expert systems - which are the simplest form of artificial intelli-

gence [58]. A rule-based system uses predetermined rules to organize, store, and

process data. It imitates human intelligence in doing so. A rule-based system is a

way of encoding the knowledge of a human expert in a just and narrow area into

an automated system. This knowledge can be acquired in many ways, in the con-

text of diabetes, guidelines from studies and authoritative public documents from

internationally recognised associations can be analysed and guidance can be sought

from a health professional in the field to cover details that are not specified in the

guidelines.

A collection of assertions and a set of rules that describe how to respond to

the set of assertions may easily be combined to build a RBS [58]. The rules are

expressed as a set of if-then statements (called IF-THEN rules or production rules)

[58]:

IF P THEN Q, which is also equivalent to P ⇒ Q

According to the aforementioned formula, the output (effect, consequent, re-

sult) may be deduced if the input (cause, antecedent, condition) is provided [59].

This type of system consists of a set of IF-THEN rules, a set of facts, and some

interpreter who controls the application of the rules, given the facts. The expert

system should behave similarly to the expert when presented with the same data.

RBSs are incredibly flexible models that may be used to solve a variety of problems.

The requirement is that knowledge about the problem area can be expressed in the

form of IF-THEN rules. The area should also not be so large because a large number

of rules can make the problem solver (the expert system) inefficient [58].

Any RBS consists of a few basic and simple elements, as follows [58]:

1. A set of facts. These assertions are facts and must contain information about

the system’s starting condition.

2. A set of rules. This enumerates all the necessary steps to be followed in the

event of a problem and details how to respond to the collection of assertions.

A rule relates the facts in the IF part to some action in the THEN part. The

system should contain only relevant rules and avoid irrelevant ones because

the number of rules in the system will affect its performance.

3. A termination criterion. That’s the circumstance that establishes whether
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a solution has been found or whether there is none. This is required to stop

some rule-based systems from looping indefinitely.
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State of the art

This chapter reviews the state of the art related to the two modules of this

thesis. Section 3.1 starts by presenting some approaches regarding telemonitoring

and self-management of type 2 diabetes. Next, in Section 3.2, we present the most

successful data-driven models in the literature for the prediction of future glucose

values. In Section 3.3, we also present the international guidelines with some of the

consensus reached by scientists and health professionals mainly on diet and exercise,

as well as some examples of recommendation systems in this context. The chapter

ends with some pertinent conclusions in Section 3.4.

3.1 Telemonitoring and self-management of T2DM

In patients with Type 2 Diabetes Mellitus (T2DM), it is important to have

sufficient knowledge about the disease. Empowering the patients, which means in-

creasing their ability to determine their decisions and self-care activities for their

health, is amplified with the use of diabetes technologies [2]. Several studies have

shown that using these methods can reduce the level of Hemoglobin A1c (HbA1c),

endorse behavioral changes, improve psychological status, and increase health liter-

acy, self-care and control [2].

Changes in patients’ lifestyles, including weight loss, increased physical activity

and adoption of a healthy diet, are one of the first-line strategies for the management

of T2DM [60]. Devices that allow continuous monitoring of glucose values and

smartphone applications that help and encourage these changes allow for greater

proximity to the disease and consequently improve glycemic control, preventing

dangerous episodes for the health of patients.

3.1.1 Blood glucose monitoring

Several enzyme-based electrochemical glucose sensors have been developed for

blood glucose monitorization. These sensors use glucose oxidase (GOx), which oxi-
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dizes glucose and produces gluconic acid and hydrogen peroxide (H2O2) – Equation

3.1.

Glucose+H2O
GOx−−→ Gluconic acid+H2O2 (3.1)

The sensors monitor the fluctuations in O2 or H2O2 concentration, which gen-

erate a small electrical current, that is measured by electrodes and transformed

through calibration to display the glucose concentration value [61]. Even though

a few alternative methods for glucose level measuring have been developed, such

as electrocatalytic mediators and structurally modified enzymes, this method of

electrochemical byproduct detection remains the standard for glucose monitoring,

although it has the limitation of requiring the consumption of O2 in order to work.

This problem was resolved through the use of semipermeable membranes capable of

supplying the necessary O2, but the development of a oxygen free efficient glucose

detection sensor would still be preferable.

In order to perform Self-Monitoring of Blood Glucose (SMBG), tape-type glu-

cometers are still the most widely employed solution, although their use is being

replaced by technologies incorporating microneedles. Tape-type glucometers con-

sist of portable glucometers that have connected to them a disposable strip with

a multilayer capillary channel, that collects blood and analyzes it, displaying the

glucose concentration in the plasma [62]. These systems are widely used due to

the low cost, simple, easy and immediate nature of the measurement, but since it

usually is performed only 3-4 times a day, its’ sampling frequency makes it unable

of providing a fully continuous profile of glucose levels, neglecting hypoglycemia or

hyperglycemia episodes that might happen between measurements.

Blood glucose monitoring has been revolutionized in the last few decades by

Continuous Monitoring Device (CGM) sensors, which are temporary minimally in-

vasive sensors inserted in subcutaneous tissue with a glucose-oxidase doped platinum

electrode deposited on its needle [63]. These sensors can deliver an almost continu-

ous glucose trace, providing more complete and clinically relevant information than

SMBG systems. In the last decade, manufacturers have focused on increasing the

comfort levels of the patient, the features available and the accuracy of their devices,

measured by Mean Absolute Relative Difference (MARD) – Equation 3.2.

MARD =
1

N

∑N

i=1

∣∣∣∣BGi − Compi
Compi

∣∣∣∣ (3.2)

in which BGi is the i-th Blood Glucose (BG) or CGM result and Compi is

the corresponding comparison method’s result. Lower MARD values indicate a
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better analytical performance [64]. CGM sensors in the market already achieve a

9% MARD [65].

The uptake of CGM sensors has been rising slowly. Most reservations regarding

these systems are related to the high costs, with a traditional CGM sensor costing

3000$ to 5000$ per year [66], lack of insurance coverage, the dislike of having to wear

a device on your body, and the perceived low accuracy. These barriers, however,

have started to be lifted in the last few years, with manufacturers building better,

more comfortable, and less expensive devices, reaching 900$ to 1800$ per year, with

some studies claiming potential 685$ to 950$ savings per year in total healthcare

costs when using CGM systems [66].

Even though the beneficial effects of CGM have been more intensively stud-

ied in Type 1 Diabetes Mellitus (T1DM) and T2DM patients on intensive insulin

treatments, the Endocrine Society recommends intermittent use of personal CGM

devices for willing T2DM patients with poor glycemic control [65]. This device

carries several benefits such as greater HbA1c reductions when compared with

SMBG with standard education [67], and higher success in the prediction of hyper-

glycemic/hypoglycemic episodes as it continuously captures information that allows

knowledge of important metrics such as time in range, time in hypoglycemia, glucose

variability, and others [68]. One other advantage of CGM devices is the biofeedback

they can provide in real-time. Being able to continuously watch real-time data on

a connected device, including visible trends and trajectories, help patients under-

stand and learn about their bodies and glycemic responses (seeing, for example,

which foods and exercises affect them the most), which is very important since

diet, physical activity and behavioral therapy are the cornerstones of T2DM man-

agement. Studies suggest that short-term use of real-time CGM (RT-CGM) that

incorporates graph interpretation and hyperglycemic alarms without counseling can

increase physical activity levels and adherence to a physical activity routine, as well

as reductions in food portions and caloric intake [69].

In development are also noninvasive and patient-friendly monitoring systems of

BG. With physical pain, discomfort and inconvenience still constituting a limita-

tion even in minimally invasive devices, a few alternatives have been studied using

different biofluids, such as contact-lenses sensors using tears, mouthguards sensors

that use saliva, microneedles using interstitial fluid, and wearable wristbands that

use sweat, just to name a few [12]. Once more studies are made and these products

are commercialized, CGM adhesion by T2DM is predicted to rise.

27



3. State of the art

Figure 3.1: Invasive and non-invasive electrochemical glucose monitoring
systems. In the figure, on the invasive methods side, the upper method depicts

tape-type glucometers and the lower one the CGM device. From [12].

3.1.2 Mobile applications

With the evolution of mobile technology, there are currently a large number of

applications aimed at increasing patient self-management skills, facilitating commu-

nication between the patient and healthcare providers and also increasing patient

adherence to treatment [70].

Veazie et al. [71] analyzed six studies evaluating five commercially mobile appli-

cations for T2DM (BlueStar Diabetes, WellTang, NextJ Connected Wellness Plat-

form Health Coach +, Gather Health, and mDiab). In general, apps track BG,

exercise, HbA1c, prescriptions/medication, and weight providing feedback like med-

ication reminders, BG level alerts, BG measurement reminders, diabetes education,

and HbA1c calculation. The authors concluded that despite some limitations, there

is evidence that the use of apps with the additional support of a healthcare pro-

fessional can be useful, especially in improving the HbA1c value, compared with

controls in randomized controlled trials. Even with a stricter criterion for clinical

improvement in HbA1c (reduction of 0.5% or more), 3 of the apps were associated

with improvements. However, the evidence does not indicate that using apps im-

proves other important outcomes, such as quality of life, blood pressure, weight, or

Body Mass Index (BMI).

Bellei et al. [7] analyzed 39 studies on mHealth in diabetes to perform a sys-

tematic review of features and fundamentals. The selected articles were published

between 2009 and 2017. All technologies present in the studies fall into the mHealth

category, and 11 studies also have a web page where patients and health profession-

als have access to treatment information. The authors aimed to map a panorama

of solutions presented in the literature and those available to the public at the same

time. In this research process, they found that few initiatives aim to make solutions
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developed in scientific research available to end-users. Among the inclusion criteria

selected by the authors, the following commercial applications were found: Bant,

myFitness Companion, Diabetes Notepad, TreC Lab, Diabetes 101, and IDM. All

apps had at least two features. 89.7% (35 apps) have a record of all essential tasks

for the treatment of Diabetes Mellitus (DM), such as blood glucose, food intake,

medication, and physical activity. The remaining apps focus only on diet or exer-

cise. All mobile applications have the manual input of glucose values, 12 of which

allowing connection with electronic devices to automate data collection. In addition

to operating as logbooks, 11 of these apps perform tasks such as counting carbohy-

drates ingested or calculating insulin dosage. Nearly 50% of applications (18) use

the recorded data to create personalized recommendations for patients. Most appli-

cations are based on guidelines and recommendations from healthcare organizations,

perform clinical trials, and use evaluations from health professionals and patients to

validate the technology. However, some limitations were pointed out in the study.

The functionalities of some applications did not adequately address the handling

tasks, partially recording the data or not displaying reports on the recorded data.

Some failures were pointed out in the mention of important comorbidities in this

pathology such as foot care and sensitivity of body members to prevent peripheral

neuropathy and issues such as water intake, urinary frequency, and association with

glycemic control to prevent nephropathy. In addition, the specific use of typical

drugs for T2DM, such as metformin and sulfonylureas, was not addressed in any of

the apps.

To verify how effective these apps are and what impact they have on patient

education and behavioral interventions, Wu et al. [15] performed a meta-analysis

of randomized controlled trials comparing smartphone technologies with usual di-

abetes care among T2DM patients. 17 studies (2225 participants) were included

from Asia, North America, Europe and Africa, conducted between 2008 and 2016.

mHealth interventions significantly reduced HbA1c (pooled weighted mean differ-

ence of 0.51%). For patients with this pathology for less than 8.5 years, this im-

provement was even higher, reaching a pooled weighted mean difference of 0.83%.

The rest of the patientes had an average difference of 0.22%. Regarding the control

groups, the authors concluded that patients who used mHealth improved glycemic

control, especially those who are in the early stages of the disease (diagnosis du-

ration <8.5 years), thus being, these technologies can be an adjunct or alternative

to patient education and behavioral interventions. It was further mentioned that

no subgroup differences were found between different durations of follow-up, study

sites, age of patients, length of contract with the healthcare professional, baseline
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BMI and baseline HbA1c.

3.2 Glucose level prediction

In the last decades, due to the development of more powerful and accurate data

logging devices and more sophisticated machine learning models, glucose prediction

in the context of diabetes has been studied by researchers in many disciplines [72, 73].

Numerous approaches to predict glucose levels, based on physical models or data-

driven empirical models, were developed [43, 72].

These models estimate future blood glucose levels over various prediction hori-

zons in an effort to identify and stop harmful outcomes [48]. Most models focus

only on T1DM, while literature regarding predictions in T2DM is scarce [48]. This

is mainly due to the fact that the goal of modern science in diabetes therapy is to

develop a closed-loop system to control blood glucose (”artificial pancreas”) [74].

Accurate short-term predictions (with a prediction horizon of 30 to 60 min) are the

basis for the implementation of the artificial pancreas that makes the life for T1DM

patients easier and more convenient [75].

Numerous methods for short-term glucose prediction have been presented in the

literature since the development of CGM, and these may be roughly divided into two

groups: i) approaches based on a priori physiological models, which aim to replicate a

patient’s metabolic response using equations that quantitatively characterize glucose

kinetics; ii) data-driven approaches, which extrapolate future glucose concentration

levels using models trained on real glucose data [73]. Since our study belongs to the

second category, we only focus on the recent developments in data-driven models.

As mentioned before, in the literature, various approaches have been proposed

to predict blood glucose levels. Sparacino et al. [76] compared the predictive per-

formance of a first-order polynomial model with a first-order Autoregressive (AR)

model, both with time-varying parameters determined by weighted least squares.

Using 28 participants with T1DM, they collected glucose for 48 hours while moni-

toring it every three minutes using a CGM device. For Prediction Horizons (PHs)

of 30 and 45 minutes, the Root Mean Square Error (RMSE) values are 18.78 and

34.64 mg/dL. They demonstrated that glucose may be forecasted in advance even

utilizing this straightforward approach.

Regarding machine learning techniques used for estimate upcoming values of

BG levels, Pérez-Gandia et al. [77] used a Feed-Forward Neural Network (FFNN)

composed of 3 layers. Data were collected from 15 patients with CGM devices, and

sampling frequencies ranged from 5 to 15 min. The inputs of the Artificial Neural
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Network (ANN) were the values provided by the CGM sensor during the preceding 20

min, while the output was the prediction of glucose concentration at the chosen PH

time. The results were evaluated as an RMSE of the difference between the predicted

blood value and the unused data during the ANN training set. The RMSE were 9.7

mg/dL, 17.5 mg/dL, and 27.1 mg/dL for PHs 15, 30, and 45 min, respectively. A

few years go by, Ali et al. [78] proposed an improved method based on ANN using

only CGM data as inputs, validated on real CGM data of 13 patients. The obtained

averages of RMSE were 6.43 mg/dL, 7.45 mg/dL, 8.13 mg/dL and 9.03 mg/dL

for PHs respectively 15 min, 30 min, 45 min and 60 min. An strategy to forecast

blood glucose levels for diabetic patients using deep learning techniques was reported

in the research work in Martinsson et al [79]. The authors used the Ohio T1DM

Dataset for Blood Glucose Level Prediction to validate an Long Short-Term Memory

(LSTM) model. They obtained RMSE values of 18.87 mg/dL for a 30 min prediction

horizon and 31.40 mg/dL for a 60 min prediction horizon. This study pointed out

that larger data sets and standards are needed. A patient-specific prediction model

based on LSTM was also trained and validated using the OhioT1DM dataset by

Aliberti et al. [80]. The patient with the best predicted outcome out of the six

patients had RMSE values of 11.55 mg/dL, 19.86 mg/dL, 25 mg/dL, and 30.95

mg/dL for 30, 45, 60, and 90 min. A similar study can be found in Sun et al. [53].

The authors used an LSTM model and an Bidirectional Long Short-Term Memory

(BiLSTM) based on the BG signal to predict upcoming values for BG levels and

compared results with Autoregressive Integrated Moving Average (ARIMA) and

Support Vector Regression (SVR) models. The LSTM results outperformed the

previous methods, achieving RMSE values of 11.6 mg/dL, 21.7 mg/dL, 30.2 mg/dL

and 36.9 mg/dL for prediction horizons of 15, 30, 45 and 60 min, respectively.

In 2012, Zecchin et al. [81] proposed a predictor that combines a Neural Network

(NN) model and a first-order polynomial extrapolation algorithm used in parallel

to describe, respectively, the nonlinear and linear components of glucose dynamics.

This model exploited the CGM data and ingested carbohydrate information for a 30

min PH. To assess the solution, 9 daily profiles were used and the average results of

RMSE were 14 mg/dL. The research demonstrated that incorporating information

about carbohydrate consumption increases the precision of short-term predictions

of glucose concentration. Then the same authors did another study [49] where they

simplified the structure of the network and called it a Jump Neural Network (JNN).

The NN was tuned on data from 10 T1DM and then evaluated in 10 different

subjects. In this time, the average results of RMSE were 16.6 mg/dL, for the same

PH. Although the second study had a simpler network, the two studies showed no
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statistically different differences.

Regarding the prediction of glucose values for patients with type 2 diabetes,

one study was found for hospitalized patients with this disease. Kim et al. [39]

collected data from 20 patients for one week on a CGM device. The model used the

last 35 minutes to predict blood sugar for the next 30 minutes. Three prediction

models were compared, simple Recurrent Neural Network (RNN), LSTM and Gated

Recurrent Unit (GRU) where the latter showed the best performance. As a result,

a RMSE of 21.5 mg/dL and a Mean Absolute Percentage Error (MAPE) of 11.1%

were obtained. The writers concluded that it is possible to forecast the blood glucose

level of these patients due to the low prediction error of the proposed method. They

stated that the model may be improved by assessing patient variables besides blood

glucose and by increasing the test database.

Table 3.1 summarizes the performance and information of the models mentioned

above.

Thus, it becomes evident that deep learning based black-box models constitute

the majority of the state of the art in glucose prediction. However, these approaches

carry significant limitations in interpretability, which becomes critical in algorithms

that directly affect patient care. In order to overcome this difficulty, Zulj et al. [43]

implemented case-based reasoning for glucose prediction using CGM data. This ap-

proach, which was based on the idea that the solution to a new problem can be given

by adapting solutions from similar known cases, allowing greater interpretability of

the model to be achieved. The study was conducted using data from 20 subjects

recorded under free-living conditions. The best models developed by the authors

achieved a Mean Absolute Error (MAE) of 13.35 mg/dL for PH = 30 min and 30.23

mg/dL for PH = 60 min.

3.3 Recommendation systems

A Recommendation system (RS) on self-management for diabetic patients must

rely on a knowledge base of diabetes treatment and management. In order to ex-

plore guidelines based on general diabetes management, nutrition, diet and exercise,

guidelines were collected from studies and authoritative public documents from in-

ternationally recognized associations in the context of diabetes. The emphasis in

these guidelines is to provide information on the current state of the art on how to

prevent and manage type 2 diabetes, with the goal of reducing complications and

maintaining quality of life. This thesis focuses mainly on new information that has

become available over the past 5-6 years.
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Table 3.1: Summary of glucose prediction models found in the literature, where N
is the number of subjects used in each database.

Study Method Database
PH

(min)

RMSE

(mg/dL)

Sparacino et al. [76] (2007) AR N=28, T1DM
30

45

18.78

34.64

Pérez-Gandia et al. [77] (2010) FFNN N=6, T1DM

15

30

45

9.7

17.5

27.1

Zecchin et al. [81] (2012)
FFNN and

first-order polynomial model
N=9, T1DM 30 14

Zecchin et al. [49] (2014) JNN N=10, T1DM 30 16.6

Ali et al. [78] (2018) FFNN N=13, T1DM

15

30

45

60

6.43

7.45

8.13

9.03

Martinsson et al [79] (2018) RNN-LSTM
N=6, T1DM

(OhioT1DM Dataset)

30

60

18.87

31.40

Sun et al. [53] (2018)
RNN-LSTM

RNN-BiLSTM
N=20, T1DM

15

30

45

60

11.6

21.7

30.2

36.9

Aliberti et al. [80] (2020) RNN-LSTM
N=6, T1DM

(OhioT1DM Dataset)

30

45

60

90

11.55

19.86

25

30.95

Kim et al. [39] (2020) RNN-GRU N=20, T2DM 30 21.5

The general diabetes recommendations were drawn from multiple resources,

such as the American Diabetes Association (ADA) through ”Lifestyle Management:

Standards of Medical Care in Diabetes 2019” [30] and ”Standards of Medical Care

in Diabetes-2022 Abridged for Primary Care Providers” [82], and lastly the ”2019

ESC Guidelines on diabetes, pre-diabetes, and cardiovascular diseases developed in

collaboration with the EASD” [35] was also reviewed. With more focus on recom-

mendations regarding physical activity for these patients, the document ”Physical

Activity/Exercise and Diabetes: A Position Statement of the American Diabetes

Association” [3] was analyzed. For instance, [3] makes the following suggestion re-

garding the kind of exercise that individuals with T2DM should engage in: ”Adults

with type 2 diabetes should ideally perform both aerobic and resistance exercise
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training for optimal glycemic and health outcomes.”

Currently, many RS seem to provide users with useful wellness suggestions to

engage in a certain activity that would improve their health, depending on their

health status and body, knowledge derived from the users’ past and other users sim-

ilar to them. The systems found in the literature are mostly related to encouraging

healthy eating, medication dosage, and promoting other wellness habits such as ex-

ercise. In this section we will cover some of the recommendation systems created

for diabetic patients published since 2016.

In order to personalize the treatment of people with type 2 diabetes mellitus,

Mahmoud et al. [83] created a recommender system, specific for medication. The

approach incorporates rule-based decision-making, ontologies, and semantic web

technologies while taking into account particular patient data, such as the individual

HbA1c goal. A general guideline for choosing medications can be described as

follows:

“IF a patient is under 60 years old, suffering a liver problem, and

used Sulfonzlureas (Glipizide), THEN starting dose should be 2.5mg

daily.”

Regarding dietary recommendations for diabetic patients, a system called DI-

ETOS was created by Agapito et al. [84] and can offer dietary guidance to both

healthy people and individuals who suffer from conditions such kidney failure, hy-

pertension, and diabetes. The health profile was based on user responses to real-time

dynamic medical questionnaires. By using this method, it is feasible to identify a

user’s health profile as monitored by a doctor and to give recommendations that

are most appropriate for each user’s health situation. In addition to recommend-

ing typical regional meals based on the user’s health profile, DIETOS also displays

nutritional information about each item recorded in the database, as well as its ad-

vantages and disadvantages with regard to particular pathologies and medical con-

ditions. Still within the scope of diet management for diabetic patients, a mobile

application was proposed by Norouzi et al. [85]. To aid with glycemic management

and prevent hypoglycemic episodes, this application suggests snacks depending on

the patient’s preferences and current diabetes status. This application combines

Artificial Intelligence (AI) techniques with a knowledge base constructed from the

guidelines of the American Diabetes Association. One of the most important as-

pects taken into account when creating and modeling the application was patients’

physical activity. In order to suggest the ideal snacks for users depending on their

calorie needs, the authors used the Harries Benedict equation to quantify users’ en-

ergy expenditure based on their degree of physical activity. Unfortunately, rather
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than addressing the patients’ conditions, this system was created with an emphasis

on the patient’s desires and BMI. The small sample size in the evaluation phase and

omission of main meals are two additional drawbacks of the research. However, the

quality of the recommendations can be improved with more accurate algorithms.

Additionally, more complex systems were found that give patients advice on

multiple topics. A personalized recommendation system was given by Alian et al.

[86] to assist American Indians in treating their diabetes. The recommender is based

on the biocultural ontology of an American Indian user to enable personalization.

The ontology served as the recommender’s knowledge base, and general clinical

diabetic recommendations and guidelines were transformed into rule-based logic.

The proposed system was implemented as a prototype system and evaluated by

use cases and expert verification. The device does not, however, track a diabetic

patient’s activities and does not have an interactive visual interface. In order to

recommend the users with their diet, medication, and exercise, Bankhele et al.

[87] suggested a recommendation strategy based on the CF technique. The system

requires a patient to register before allowing them to provide a predetermined set

of data, such as age, insulin, glucose, BMI, blood pressure, and triceps thickness.

This information is compared to a database that has information on the history

of people who have been diagnosed and treated, including the medications, food

regimens, and exercise regimens that were employed. Once the parameters are

matched and the closest user is found (using Pearson Correlation Score) the diet,

medication, and exercise of the matched patient are retrieved from the database

and are recommended to the user. Ali et al. [88] developed a hybrid framework

that also provides physical activity, dietary and educational recommendations to a

selected target user group. This is achieved using context- and knowledge-based

recommendations. The proposed model is based on IF-THEN rules, which are then

adopted to create recommendations. For example:

“IF a patient is pregnant and facing the gestational diabetes mellitus,

THEN she should do a 20-30 minute moderate-intensity exercise on

almost every day of the week.” [3]

There are two parts to the recommendation process. In Phase 1, the system

determines the user’s calorie burn, dietary goals, and a general list of suggested

physical activities. To further deduce the most pertinent rules from the knowledge

base, a case-based reasoning method is used. Phase 2 involves a tailored refinement

of the recommendations made in phase 1. To suggest activities suitable for the

user at a specific time, a contextual matrix is constructed. This matrix is created

based on the results of the user’s survey in order to suggest the appropriate physical
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activity in various situations. For example, “since the user is now staying at home,

stretching seems to be more appropriate for him than running”.

The table 3.2 summarizes the above mentioned recommendation systems. The

system in question is described and the platform it is on. The type of recommen-

dation system used and the technologies used are listed, as well as the type of

recommendations it provides.

Table 3.2: Summary of recommendation systems created for diabetic patients
published since 2016.

Study
Name of the system

(System Platform)
Type of RS

Type of AI techniques

applied in RS
Functionalities

Mahmoud et al. [83] (2016)
IRS-T2D

(Unspecified)

Knowledge-based

recommender systems

Domain Ontology,

Semantic Web Rule

Language (SWRL)

Medicine recommendations

Agapito et al. [84] (2018)
DIETOS

(Web Application)

Knowledge-based

recommender systems
– Food recommendations

Norouzi et al. [85] (2018)

Iranian Snack

Recommender System

(Mobile Application)

Knowledge-based

recommender systems
Rule base Food recommendations

Alian et al. [86] (2018)
–

(Mobile Application)

Knowledge-based

recommender systems

Domain Ontology,

Semantic Web Rule

Language (SWRL)

Physical activity recommendations

Diet recommendations

Bankhele et al. [87] (2017)
–

(Mobile Application)

Collaborative filtering

recommender systems
Rule base

Physical activity recommendations

Diet recommendations

Medicine recommendations

Ali et al. [88] (2018)
–

(Unspecified)

Hybrid

recommender systems
Rule base

Physical activity recommendations

Diet recommendations

Educational recommendations

3.4 Concluding remarks

There is already a big market of mobile applications oriented towards the self-

management of T2DM. These offer a variety of features, being able to connect to

wearable devices to record and track BG levels, physical activity, caloric intake,

and HbA1c (among others) to offer feedback, recommendations and reminders that

have been proven to have positive results in the life of patients. However, further

research is needed to assess what the long-term benefits of mobile application-based

interventions, while continued efforts must be made to develop increasingly person-

alized mobile applications. Since diabetes can have a negative psychological impact

on patients, it is also important to analyze how these technologies can improve this

aspect. It is still necessary to bridge the gap between the scientific literature and

the applications actually developed and launched on the market. More research is

critical in developing the next generation of mobile health systems that will enable
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the wider use and clinical acceptability of these innovations in the future of digital

diabetes management and treatment systems.

In recent decades, several technological developments have been incorporated

into blood sugar level prediction. Several algorithms such as autoregressive time

series models and Machine Learning (ML) have already proven to achieve good

accuracy values in short-term prediction of diabetes. Nevertheless, more studies are

needed in long-term prediction focused on patients with type 2 diabetes.

Regarding recommender systems, the majority of the studies that were discov-

ered were focused on enhancing users’ wellbeing by suggesting diets and exercise

regimens. However, a significant number of writers have put work into creating sys-

tems that can assist doctors in the process of diagnosing, treating, and prescribing

drugs. Despite all the work that has been done in recent years, this field of study

is still in its early stages, necessitating more extensive investigation. Health-related

issues are complicated, and today’s health recommendation systems don’t have a

single solution for all of their challenges. We may infer from the research articles

examined and our perspective that we still have a long way to go before we have a

trustworthy and fully operational health recommendation system. Moreover, efforts

should be made to address the ambiguity that comes with health-related decision-

making and define more suitable testing procedures that allow the accuracy and

effectiveness of implementations to be adequately assessed.

Therefore, taking as a starting point the studies discussed in this chapter, this

thesis will develop two modules that will be incorporated into the POWER project

(whose objectives were described earlier). Besides solving a problem for our main

partner (Altice Labs) we intend to contribute with innovative models in comparison

with past literature. With the development of the prediction module, we aim to

deepen the literature concerning the prediction of future glucose values for patients

with type 2 diabetes. In addition, we focus on long-term predictions that mirror the

consequences of patient actions, which to our knowledge have not been explored so

far. Regarding the recommendation module, in addition to recommendations based

on general guidelines, it will contain a personalized component for each patient.

The existence of the prediction, besides alerting the patient of the existence of

possible dangerous glucose peaks, will provide those values to the recommendation

module. Then, based on the predicted future glucose values, it can suggest lifestyle

modifications for the patients. These when taken should prevent the predicted peaks

from being reached and thus help in managing the glucose value in the healthy

range.
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This chapter aims to describe the methodologies used to implement the models

for both modules. The Section 4.1 starts by describing the database used to validate

the implemented models. Next, its pre-processing and framing are detailed to pre-

pare the input data for the data-driven models. The construction and optimization

of the implemented models are also explained. The section ends with an indication

of the evaluation metrics used to compare the models. In Section 4.2, it is pre-

sented how the knowledge was acquired for the Knowledge-Based Recommendation

System (KBRS) and how the rules for its implementation were generated. Section

4.3, which ends this chapter, indicates the need for the creation of an Application

Programming Interface (API) with the final models of each module as one of the

requirements of this project.

4.1 Prediction module

In this section, we go through how the prediction model was created to forecast

future glucose levels over various Prediction Horizons (PHs). Such a model can

prevent patients from developing abnormal glucose levels since it allows us to notify

patients before their blood sugar levels overcome specific thresholds, allowing them

to take preventative actions to avoid potentially dangerous situations.

4.1.1 Methodology

In order to create a model that is able to predict the glucose level in advance,

there are certain steps that need to be followed, which are schematically shown in

Figure 4.1. The process begins with the data collecting phase, where access to the

problem-related data is mandatory. Pre-processing the information is the next stage

since the model might not be able to manage any irregularities it contains. In the

data framing stage, the data is adequately framed to fit into the models. The chosen

algorithms are implemented in the following phase. Several tests should be run at
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this point to evaluate the model’s quality. Eventually, it could be required to adjust

the model’s parameters, test those modifications, and assess how well they work.

The final model is adopted when there are no more improvements that can be made

and/or the outcomes are satisfactory.

Figure 4.1: Steps integrating the prediction module. It should be noted that the
steps in this scheme can be redone and improved when necessary.

4.1.2 Data Acquisition

To achieve the goals set earlier, we need a dataset to validate the model devel-

oped. However, because this is a time series problem, the dataset employed here

has a special property: the records have a temporal link between them.

In the present work a dataset provided by Associação Protetora dos Diabéticos

de Portugal (APDP), with real patient data, was used to validate the models im-

plemented. Blood sugar levels were recorded in free-living conditions using the

Medtronic iPro2 CGMs with a 5-minute sampling period. The records (i.e., Con-

tinuous Monitoring Device (CGM) time-series) containing the blood glucose con-

centration levels were collected as part of an observational research that included

adult participants with type 1 diabetes mellitus and adult participants with type

2 diabetes who were receiving hemodialysis. The duration of the CGM time-series

ranged from 2 days to 8 days, had cutoffs for values below 40 mg/dL and above 400

mg/dL, which corresponds to the sensor range, and may include several periods of

missing data. Numbers below 70 mg/dL are established as hypoglycemia and above

180 mg/dL as hyperglycemia.

For the experiments, anonymized data from 10 subjects were selected from the

larger dataset based on the following criteria: 1) Have type 2 diabetes mellitus, 2)
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Participate in two experiments. Following the selection criteria, we derived the new

dataset that includes 10 Type 2 Diabetes Mellitus (T2DM) subjects, each repre-

sented by variable sizes of the CGM time series (later undergoing preprocessing).

Descriptive statistics for the selected subjects are presented in Table 4.1, and an

overview of the CGM profiles is presented in Table 4.2.

Table 4.1: Descriptive statistics of the dataset.

Characteristic Mean ± SD

Gender 5F / 5M

Age (years) 73.7 ± 7.4

Diabetes duration (years) 16.7 ± 8.2

Body Mass Index (BMI) (kg/m2) 31.8 ± 2.8

Fat mass (%) 44.0 ± 5.1

Hemoglobin A1c (HbA1c) (%) 7.4 ± 1.8

Table 4.2: Glucose profile statistics of the dataset per trial.

Trial No.1 Trial No.2 Total

Average glucose concentration (mg/dL) 175.8 ± 58.3 163.8 ± 40.7 169.8 ± 49.5
Minimal glucose concentration (mg/dL) 63.9 ± 19.1 52.4 ± 17.2 58.1 ± 18.1
Maximal glucose concentration (mg/dL) 310.7 ± 99.1 322.4 ± 70.1 316.5 ± 84.6
% hypoglycemic values (≤70 mg/dL) 2.7 ± 5.2 3.1 ± 2.4 2.9 ± 3.8
% values in healthy range 55.9 ± 32.7 62.3 ± 24.6 59.1 ± 28.7
% hyperglycemic values (≥180 mg/dL) 41.4 ± 34.5 34.5 ± 25.6 38.0 ± 30.0

4.1.3 Pre-processing

A dataset is a collection of observed variable values that were either manually or

automatically gathered. As a result, there may be noise and/or missing information,

making pre-processing an essential step to address this issue. In this stage, records

that have missing values are fixed or removed, new features are calculated since

certain algorithms do not accept them, the data is normalized, etc.

Missing values

After examining the APDP dataset, we verified that it was not complete, that

is, that there were gaps (missing values). There are at least two options to solve this

problem, which are the following: i) data deletion or ii) imputation. However, it is

not advisable to rely on the first alternative because health information is extremely

difficult to find and databases often include a small number of entries. Additionally,

since those records could be different from the remaining ones without the removed

instances, the model’s capacity to generalize is likely compromised.
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The second alternative seeks to substitute missing data with an estimate of their

values. Such a replacement can be done, for instance, using one of the following

approaches: Random value, Average of the k-nearest neighbours, Feature’s class

median or Feature’s class mean.

We analyzed all data and verified that excluding the beginning and the end of

the measurements (which had lack of measurements for a period), no more than one

value was missing consecutively. We also found that besides the feature correspond-

ing to the registration of glucose values measured by the CGM device there was

another feature corresponding to manual measurements. In multiple cases when a

value was missing in the column corresponding to the automatic measurement there

was a measurement performed manually. Therefore, three strategies were used to

deal with the missing values in this dataset:

1. The initial and final segments that corresponded only to several missing values

were eliminated;

2. When there were manual measurements (originating a missing value in the

records mesured by the CGM sensor), their value was placed in the corre-

sponding position of the automatic measurement;

3. The remaining missing values were calculated through imputation of the av-

erage of the previous and next value (since they were single values and the

previous and next value are only 5 min apart from the missing value).

Normalization

Normalization of the original data can improve the distribution of the data and

speed up the learning of the model to a certain extent. The two commonly used

standardization methods are min-max standardization and Z-score standardization.

The first method guarantees that all features will have the same scale, but does not

handle outliers well. Z-score normalization, on the other hand, deals with outliers

but does not produce normalized data with the same scale.

The goal of this step was to scale the values within a predefined limit, namely [-

1,1], without losing the inherent information. For this purpose, we used data scaling

based on min-max normalization - see Equation 4.1, where X denotes the original

value of the feature of interest, Xmin corresponds to the minimum value of the

feature, Xmax denotes maximum value of the feature, and R the desired range of the

scaled features [89]. In this case, it is possible to use this method, since the glucose

level can range from 40 to 600 mg/dL (exposure above this value in a prolonged

manner can lead to hyperosmolar hyperglycemic syndrome [90]). Nevertheless, to

ensure that no new values appear, this range was extended by setting the minimum
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possible at 20 and the highest at 800 mg/dL.

−
X =

(X −Xmin)

(Xmax −Xmin)
Xscaled =

−
X(Rmax −Rmin) +Rmax (4.1)

4.1.4 Data framing

After pre-processing the data, for its use in the algorithms, there is a need

to organize the information in the appropriate format. In order to predict future

glucose values taking into account only the patient’s CGM history, we started from

the ideal scenario to a possible one, which led us to create two approaches.

The first approach, and ideal, consists in using all the continuous CGM values

to perform a prediction in the different PHs. However, as we will see below, this

approach becomes difficult to implement for the chosen time horizons. Therefore, a

second approach was used, where instead of looking at continuous values, the data

is transformed so that its trends can be identified. This is accomplished by grouping

the patient’s CGM information into blocks every 2h, i.e., since the CGM records

the values every 5 minutes, it is made an averaged every 24 values (corresponding

to 2h). Other values were considered for the size of the blocks that are grouped by

averages, however, in discussion with the project partners, it was concluded that 2h

would be the most suitable.

As mentioned in Section 2.2.1, the input to the prediction models (regardless of

which approach is used) is framed as a supervised learning problem using the sliding

window method. For this, some parameters have to be stipulated, like the PH and

lookback values. The windowing step remains one sample, as stated before.

Since this thesis is part of a funded project, there are some requirements dis-

cussed in collaboration with the partners involved. The different values of the pre-

diction horizon were one of the parameters under discussion. As the purpose of

the algorithm is to predict glucose values for T2DM patients, longer values of PHs

such as 2h, 4h, 12h, and 24h were defined. These reflect the consequences of pa-

tients’ actions, like eating a meal or doing physical activity, to create conditions for

developing recommendations that have an impact on users’ lives.

Another requirement of this research, to make this module more flexible, was

that there should be several versions of the final model, prepared to be able to per-

form predictions even with insufficient data. Therefore, there are several lookbacks

per PH, and one of them is indicated as the optimal one, which achieves the most

satisfactory values by the chosen evaluation metric. Other lookbacks guarantee an
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acceptable prediction, but with inferior results. This means that the model is previ-

ously trained for several scenarios (for different lookbacks). So, even if the optimal

lookback is not guaranteed as input by the end user, the final model is prepared to

receive less data and still perform the predictions. However, a minimum amount of

data is required, otherwise the model does not perform the prediction and alerts the

user with an specific error code (these details are explained in the API developed

for this module which will be explained later).

The lookback value then became a hyperparameter of the models. A grid search

was conducted to identify which lookback is optimal for each PH. The grid search is

a tuning method that seeks to determine the optimal hyperparameter values. It is

an exhaustive search that is performed on the specific parameter values of a model.

When an evaluation of all possibilities is made, it offers the combination that creates

the highest value of the scoring metric that was previously specified when iterating

through every parameter option and storing a model for each one.

4.1.5 Model construction and optimization

The prediction module was built with the high-level neural networks API Keras

version 2.7.0 in the Python 3.9.7 environment. Six prediction models were im-

plemented to determine the best one for the task of blood sugar level prediction.

The selected algorithms were Autoregressive Integrated Moving Average (ARIMA),

Case-based reasoning (CBR) and four neural networks: Recurrent Neural Network

(RNN), Gated Recurrent Unit (GRU), Long Short-TermMemory (LSTM) and Jump

Neural Network (JNN), since they stood out in the literature review for better per-

formance compared to other models.

All implementations were based on parameters and model specifications de-

scribed in the models found in the literature. Actually, we present the identified

and reimplemented state-of-the-art models, a CBR [43] and JNN [49], respectively,

as reported by the authors. The remaining models, meanwhile, were subject of brief

grid searches in order to optimize some hyperparameters.

Hyperparameter optimization is the process of choosing a set of optimal hyper-

parameters that maximize the performance of the model. For this purpose, a brief

tuning of the predictive models was performed to obtain the appropriate hyperpa-

rameters for the input data and the purposes of the model application.

Regarding the ARIMA model, the literature has traditionally used the auto-

correlation and partial autocorrelation function plots to estimate the p and q pa-

rameters’ respective ranges. A grid search approach may then be used to determine
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the exact values of the p and q parameters using this range. However, since this

procedure may be extensive and time-consuming, AutoARIMA is able to automate

it. Different tests (i.e., Kwiatkowski–Phillips–Schmidt–Shin, Augmented Dickey-

Fuller or Phillips–Perron) are run to determine d, and the optimal model is chosen

based on having the lowest Akaike Information Criterion (AIC) fitting several mod-

els within a given range for p and q. In practice, AutoARIMA is implemented by

the pdmarima Python module and models are fitted using Newton’s method [40].

The proposed CBR model described in [43] was implemented. All the steps de-

scribed in the proposed method were followed, so we suggest the reader to analyse

the point regarding Methods from the original article for a better understanding. As

in [43], we omitted revision and retaining steps to remove the complication of the in-

put subject’s own data during the training and prediction task, for a fair comparison

with the other models. The original paper used time horizons equal to 30 min and

60 min while in this thesis, as mentioned earlier, longer time horizons were chosen.

The distance function, the number of similar cases used (K) and the adaptation

function were considered as the hyperparameters of the CBR model. Zulj et al. [43]

stated that for the chosen configuration, the considered choices of the hyperparam-

eters did not contribute substantially to the improvement of the prediction. Thus,

and since the goal of this work is not to find the optimal parameters for glucose

prediction using the CBR model, we used the hyperparameters that gave the best

results in the study, except for the selected number of cases K (since our study had

fewer cases than the original). So, we used the ’cosine’ distance function, the Linear

Regression (LR) adaptation function, and for the value of K a brief search was made

to identify the best value. In order to reduce the possibilities that could be tested

for this parameter, we evaluated the values of K equal to 50, 100, 150 and 200, for

the three time horizons.

Relatively to the neural network models, the JNN proposed in [49] was im-

plemented. Four neurons were used in the hidden layer and as input only the

blood glucose concentration values were considered, disregarding the input absorp-

tion model. The implementation with this limitation on input was performed by

the same author in [91]. Thus, for a detailed description of the network architec-

ture, we would like to refer the reader to the appendix found in the original paper

[91]. For the remaining neural networks, all implementations consisted of a single

hidden layer. In [39], RNN, GRU and LSTM networks were also implemented on

T2DM patients and the results showed that as layers increased the performance of

the models decreased. In each network 50 units were used in the hidden layers. A

dense layer of one unit was also used to produce the final predicted blood glucose
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value. The rest of the network parameters were selected from a grid search. Table

4.3 describes the settings of the RNN, GRU and LSTM to be optimized: number of

epochs, batch size, optimization function, loss function and learning rate.

Table 4.3: RNN, GRU and LSTM hyperparameters settings for grid search.

Hyperparameter Settings

Number of epochs 100, 200, 300, 400, 500
Batch size 8, 12, 16, 20, 24, 28, 32

Optimization function ReLu, Tanh, Sigmoid
Loss function RRMSE, MSE
Learning rate 0.1, 0.01, 3e− 3, 3e− 4, 3e− 5, 3e− 6

4.1.6 Evaluation metrics

To help us compare the results of a model against another one some metrics

were calculated. The evaluation metrics used in the context of glucose prediction,

for empirical accuracy, are usually: Root Mean Square Error (RMSE) (Equation

4.2), which is the standard deviation of the residuals (a measure of how far the data

points are from the regression line) and Mean Absolute Percentage Error (MAPE)

(Equation 4.3), which is one of the most common measures used to predict error,

probably because the variable’s units are scaled to percentage units, which makes it

easier to understand.

RMSE =

√
1

N

∑N

i=1

(
ŷi − yi

)2

(4.2)

MAPE =
1

N

∑N

i=1

|ŷi − yi|
yi

∗ 100% (4.3)

where ŷ is the predicted time-series, y the target time-series and N is the length

of the time series. So ŷi (mentioned before as x̂n+PH) and yi are the predicted and

actual blood glucose values respectively.

To measure the clinical accuracy of the models’ predictions the Clarke Error

Grid (CEGA) is used. Errors are divided into zones in this grid system, and each

zone is made up of a range of reference and forecast values. On the error grid, the

correspondence between real and predicted blood glucose levels is displayed. Each

of these pairs falls into one of the error grid zones. Each zone represents the degree

of risk of a result resulting from the difference in error between predicted and actual

values. CEGA is accepted as one of the ”gold standards” for assessing the accuracy

of blood glucose meters [78].
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The CEGA provides a clinical interpretation of the mapping between predicted

and measured blood glucose levels, that can be represented in a scatterplot with five

main regions [73] (see Figure 4.2).

Figure 4.2: Clarke error grid analysis: Reference regions mapping. From [73].

Its five zones are described bellow [73, 78]:

Zone A: characterizes the predicted blood glucose levels that are deviated from

the actual blood glucose levels by no more than 20% of the reference sensor;

Zone B: characterizes the predicted blood glucose levels that are outside of

20% of the reference sensor but would not lead to inappropriate treatment;

Zone C: values leading to inappropriate treatment, but without dangerous

consequences for the patient;

Zone D: characterizes dangerous cases to identify and to assess significant

clinical mistakes and errors;

Zone E: values leading to treat hypoglycaemia instead of hyperglycaemia and

vice-versa (wrong medication adjustment).

The model’s performance may be better evaluated by having more pairs of

predicted and actual points appearing in Zone A [92]. In terms of clinical usage, a

higher percentage of results falling within zones A and B denotes a more accurate

result.
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4.2 Recommendation module

In this section, it is seen how the KBRS was created and implemented through

a Rule-based system (RBS). The success of diabetes control is greatly influenced

by self-care techniques and behaviors since daily diabetes care is predominantly

managed by patients and their families. Therefore, this module allows patients to

obtain recommendations on their lifestyle habits that can guide them towards a

healthier life and greater control over their disease.

4.2.1 Methodology

In order to create a recommendation system, it is essential to gather knowledge

about the problem at hand from reliable sources. After the intensive search for

diabetes guidelines and their selection according to the project requirements, it is

then necessary to translate this information into rules that can be used by the model

to deliver the recommendations to the patients. After all the rules are defined, they

are implemented and the model is built. Figure 4.3 depicts the steps needed to

create this system.

Figure 4.3: Steps integrating the recommendation module. It should be noted
that the steps in this scheme can be redone and improved when necessary.

4.2.2 Knowledge acquisition

As mentioned in Section 3.3, guidelines based on general type 2 diabetes man-

agement, diet and nutrition, and physical training were systematically explored. At

this stage of the project, the only source of knowledge resulted from authorized

public documents made available by international diabetes-related associations. In

a future step, a team of endocrinologists will verify this knowledge and complement

it by creating guidelines using the values obtained from the prediction module to

provide a personalized recommendation system.
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From all the available guidelines in the documents referred to in Section 3.3,

those that, after discussion with the project partners, fulfilled the following criteria

were selected: 1) Fall within guidelines on general management, diet and nutrition or

physical exercise of type 2 diabetes; 2) Use variables that are possible to be entered

by patients; 3) Present measurable variables. The chosen guidelines can be found

in Appendix A.

4.2.3 Rule generation

After knowledge acquisition, through the guidelines, it was necessary to convert

it into rules that can be handled by a computer. The recommendation module was

built with in the Python 3.9.7 environment. Firstly, it was required to decide on

the input and output variables of the system as well as their respective domains.

After that, we opted for the most popular “premise→conclusion” logic form to

create the rules. In this format, these can be understood as IF-THEN clauses,

explained earlier in section 2.2.2. The premise of this logical form can be defined

by the logical conjunction of a set of logical expressions. Each logical expression

is constructed based on logical operators to link variables representing the real-

time disease context of users (such as current glucose value, predicted value in a

specific PH, the tendency of glucose levels, etc) and users personal data (such as

sex, age, comorbidities, etc). A user when making a record, by assigning values

to the different input variables, allows the evaluation of the conditions expressed

within these logical expressions. The possible conclusion may be the indication of

decreasing, maintaining or increasing an action as a recommendation, for example,

it may be indicated to increase the number of minutes per week of exercise.

4.3 Application programming interfaces

As this thesis is integrated in a project in which the purpose is to develop and

deliver to our partner the produced modules that will be integrated in the respective

platform, it is necessary to develop an API for each module. These interfaces contain

the final models of the prediction and recommendation system, as well as a module

for processing the acquired data. In practice, the acquired data will come directly

from sensory devices, e.g. CGM and mobile phone, and will therefore require format

validation and consequent pre-processing.
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Results and Discussion

This chapter presents the main results of this research. The Section 5.1, con-

cerning the prediction module, reports the results of the grid search for the best

hyperparameters and presents the forecasting results, for the established prediction

horizons, on the test set for each implemented model. In addition, the mean values

and standard deviations of the evaluation metrics are tabulated and discussed. Re-

garding the recommendation module, the results are described in the Section 5.2.

First, the input and output variables chosen for creating the Rule-based system

(RBS) are specified. Then, the rules created to offer recommendations to users are

described. The chapter ends with Section 5.3 where the developed functions used in

the Application Programming Interface (API) created for the project are specified,

based on the results obtained.

5.1 Prediction module

5.1.1 Input data for data-driven models

To deal with the problem of predicting future glucose values only Continuous

Monitoring Device (CGM) data was used as input. These are recorded by the

CGM device every 5min. When establishing long prediction horizons such as 2h,

4h and 12h it becomes decisive to use as input data, sequences at least equal to

or longer than the prediction horizons. When performing the tests for tuning the

hyperparameters (described in the next section) some difficulties arose in the task.

Using all measurements continuously to determine only one exact value after a few

hours becomes very demanding for the model. As mentioned before, the dynamics of

glucose are complex and depend on several factors such as diet, exercise, hormonal

values, psychological stress, etc. In the literature, as described in Chapter 3, we

found several studies that can make this prediction quite accurately for Type 1

Diabetes Mellitus (T1DM) patients, despite only existing researches for short time

horizons (rarely exceeding 1h). However, for longer horizons where, with the passage
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of time, the intervention of the factors mentioned above settles down and it becomes

difficult to achieve satisfactory results. Therefore, since the goal of this study is to

predict and then make inferences about the lifestyle habits of Type 2 Diabetes

Mellitus (T2DM) patients, a second approach can be created to input the data into

the models. This one aims to prioritize glucose trends rather than its exact value,

which is the most important for the recommendation module. Here, the crucial

point is not to tell the patient the exact glucose value within 4h, but to be able to

predict whether the blood sugar value will tend to rise or fall to dangerous values

so that recommendations can be made when taken by the patient will prevent this

outcome.

To illustrate and better understand the second approach, the Figure 5.1 contains

two plots for the same patient and the corresponding CGM record. The upper figure

shows the continuous register and the lower figure shows the transformed one by the

second approach method. In this, the points of the CGM record were grouped by the

average every 24 points, corresponding to every 2h. By analyzing both figures it is

possible to see that the trends of increasing/decreasing glucose values are preserved.

It is emphasized that since the aim is to infer about the lifestyle habits of T2DM

patients and not of T1DM patients (who due to their dependence on insulin and

medication need continuous and rigorous predictions) this approach is feasible.

It should be noted that, in what remains of this chapter, all the results presented

are relative to the implementation of this second approach.

5.1.2 Hyperparameters selection

To create more reliable and effective models when applied to our dataset, we

tried to optimize the developed models by tuning some hyperparameters. The look-

back value assigned to each forecast horizon was one of the hyperparameters chosen

to be tuned. Moreover, some specific parameters of the models were subject to grid

searches.

Naturally, different hyperparameter choices were made for the different training

sets and different models. However, to establish a final design for each model,

the most appropriate choices correspond to the most frequently determined values.

To facilitate comparison between the developed models and to reduce the amount

of testing in tuning the hyperparameters, the choices that were most frequently

connoted as the best for the lookback value of each Prediction Horizon (PH) were

used in all models.

In order to proceed with the hyperparameter optimization the leave one out
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Figure 5.1: Example of the transformation of the first trial (indicated by the last
1 in the patient code) of patient 116 data from the first approach to the second
approach. In the upper graph is the CGM record without change. The lower graph
shows the data grouped by the average every two hours.
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cross validation method was used, i.e., the learning algorithm is applied once for

each patient, using all the other patients as a training set and using the selected

patient as an individual test set.

Selection of ideal lookback per PH

A grid search was carried out in order to obtain which lookback is ideal per

PH, i.e., the one that, using the selected evaluation criteria, produces values that are

the most satisfactory. For PH=2h, lookbacks equal to 2h, 4h, 6h, 8h and 12h were

tested, and the one that achieved the best results was 12h. For the remaining PHs

were tested lookbacks equal to the PH, twice the PH, and three times the PH. For

4h and 12h, the top performing lookbacks were 12h and 24h, respectively. It should

be noted that lookbacks longer than 36h were not considered, since the longer the

lookback, the fewer points would be used in the prediction, which would falsely lead

to lower error values.

When conducting this search, we realized that the 24h time horizon is not

feasible. Firstly, in a 24-hour interval, the patient can perform numerous actions

that affect glucose values. During this period several meals are eaten and more than

one training session can be performed (considering that, for example, a patient can

train one day in the evening and the next day in the morning). Furthermore, it

is difficult for models to find similar patterns over such a long horizon due to the

heterogeneity associated with the patient’s day-to-day routine, i.e., a day at work

is different from a day off or a more stressed day at work. These factors make the

forecast for this PH very unreliable. Additionally, more input days would be needed

to try to improve the performance of the models in this horizon, however, and as

already mentioned, since the dataset is not very extensive using long periods as

input leads to falsely positive results.

So, table 5.1 illustrates a example of how the data is framed for the forecast.

For a forecasting horizon of 4h, i.e., to forecast the 48th value after the last input

value, to achieve the result with the highest degree of confidence, 12h of input (144

values) are needed. Using the remaining lookbacks (4h and 8h) will, most likely,

generate least accurate results. For the implemented approach, explained above, the

same logic is used. To predict the average of two 2h block after the last input value,

the averages of 6 previous 2h blocks (12h) are needed as inputs.
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Table 5.1: Form of the input sample. Example where x is a CGM time series with
the values grouped by the average every 2h, where the lookback corresponds to 12h
and PH=4h.

Input values PH Target value

x1 x2 x3 ... x6 ... x8

x2 x3 x4 ... x7 ... x9

x3 x4 x5 ... x8 ... x10

...

Models Settings

When implementing the Case-based reasoning (CBR) model described in [43],

we realized that we only had 1178 cases available, while the original model had

25,590 cases. The definition of a case is described above in Section 2.2.1.2. So it

was not possible to use the same range of values for K (number of similar cases used

for prediction) as the authors. We preformed a little research on what value to use

for our dataset. The results of this grid search are shown in Table 5.2. The other

two parameters, as mentioned earlier, corresponded to the cosine distance function

and the Linear Regression (LR) as adaptation function.

Table 5.2: Grid search results for the K value of the CBR model.

PH K RMSE (mg/dL)

2h

50
100
150
200

37.39
36.11
35.94
35.64

4h

50
100
150
200

50.17
48.43
48.43
47.95

12h

50
100
150
200

55.90
53.79
53.37
51.83

Therefore, as in the original paper, it is found that the performance improves

as the value of K increases. The hyperparametric choices for the model are given

as a triple (adaptation function, distance function, K). Since K=200 was the one

that obtained the best results for all three time horizons, we can represent the final

model as CBR(LR, cosine, 200).

Another grid search was used, in this case to identify the optimal Recurrent
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Neural Network (RNN), Gated Recurrent Unit (GRU) and Long Short-Term Mem-

ory (LSTM) hyperparameters. Although it was not the goal of the study, we could

have looked at the best model parameters in more detail. Only a little fine tuning

was done to ensure that the parameters were selected with a minimum of confidence

and were not chosen at random. Table 5.3 shows the results of the grid search

performed for the three neural networks. This shows the most common parameter

choices among the different training sets used.

Table 5.3: Grid search results for the RNN, GRU and LSTM hyperparameters.

Hyperparameter Most common option

Number of epochs 300
Batch size 8

Optimization function ReLu
Loss function MSE
Learning rate 3e− 5

Future research should focus on the issue of picking the best hyperparameters

model and determining how much historical data on glucose levels should be used

to estimate future values.

5.1.3 Glucose prediction

The Autoregressive Integrated Moving Average (ARIMA), CBR, RNN, GRU,

LSTM and Jump Neural Network (JNN) methods were used to predict the next

blood glucose levels for prediction horizons of 2h, 4h and 12h, using the ideal look-

backs already stipulated. The presentation and discussion of the results was divided

into two points to promote an evaluation of the applied methods as complete as

possible. i) Analytical evaluation: where results are presented for a set of statistical

indices widely used in the literature to validate the predictions from the point of

view of regression analysis; ii) Clinical evaluation: the results of metrics specifi-

cally designed to validate the clinical outcome of blood glucose measurements are

presented to validate the predictions from a clinical point of view.

Analytical evaluation

Root Mean Square Error (RMSE) and Mean Absolute Percentage Error (MAPE)

were used to quantify the similarities between the predicted and observed time se-

ries. The subjects in the Associação Protetora dos Diabéticos de Portugal (APDP)

dataset were randomly divided into two subsets: a training set consisted of the data

from 7 subjects (14 trials), and a testing set with the data from the remaining 3

subjects (6 trials). We show results individually for both trials, per patient (marked
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with an identification code 102, 106 and 116) and averages in predicting glucose

levels.

Tables 5.4 and 5.5 report the experimental results obtained by running the

final models for PH=2h, using 12h as lookback, evaluated by RMSE and MAPE,

respectively.

Table 5.4: Comparison of the performance for PH=2h – RMSE.

RMSE (mg/dL) - PH=2h

Subject ID Trial No. ARIMA CBR RNN GRU LSTM JNN

102 1 26.81 22.89 22.74 23.75 23.71 24.67

102 2 45.28 40.19 41.64 41.02 41.09 43.36

106 1 50.11 36.85 34.43 35.42 35.68 37.04

106 2 44.63 31.87 30.68 30.71 30.84 33.20

116 1 46.84 33.46 32.76 32.54 32.58 32.37

116 2 66.01 48.75 46.68 47.74 47.87 51.91

Mean 46.61 35.67 34.82 35.20 35.29 37.09

SD 11.45 7.91 7.69 7.63 7.67 8.67

Table 5.5: Comparison of the performance for PH=2h – MAPE.

MAPE (%) - PH=2h

Subject ID Trial No. ARIMA CBR RNN GRU LSTM JNN

102 1 18.01 17.30 16.03 16.38 16.41 16.97

102 2 28.08 25.88 27.49 26.50 26.31 27.01

106 1 24.32 17.71 17.03 17.42 17.56 18.20

106 2 20.31 16.27 16.02 15.99 15.20 16.66

116 1 19.60 12.98 13.47 13.06 12.87 12.96

116 2 29.14 19.40 19.92 19.77 19.90 21.38

Mean 23.24 18.26 18.33 18.19 18.04 18.86

SD 4.26 3.92 4.51 4.21 4.27 4.41

Tables 5.6 and 5.7 report the experimental results obtained by running the

final models for PH=4h, using 12h as lookback, evaluated by RMSE and MAPE,

respectively.

Tables 5.8 and 5.9 report the experimental results obtained by running the

final models for PH=12h, using 24h as lookback, evaluated by RMSE and MAPE,

respectively.

The ARIMA model was implemented as a baseline. It was noted, at all time

horizons, that the machine learning models outperformed the traditional model.
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Table 5.6: Comparison of the performance for PH=4h – RMSE.

RMSE (mg/dL) - PH=4h
Subject ID Trial No. ARIMA CBR RNN GRU LSTM JNN

102 1 26.75 27.89 27.15 25.84 25.36 27.63
102 2 49.99 50.40 49.20 48.85 48.04 48.49
106 1 56.87 48.91 47.13 47.55 47.16 49.35
106 2 54.79 44.11 41.75 42.02 44.78 47.64
116 1 56.08 47.27 47.73 46.90 48.46 47.16
116 2 76.15 69.97 66.59 67.73 69.28 70.43

Mean 53.44 47.97 46.59 46.48 47.18 48.45
SD 14.50 12.09 11.62 12.27 12.73 12.38

Table 5.7: Comparison of the performance for PH=4h – MAPE.

MAPE (%) - PH=4h
Subject ID Trial No. ARIMA CBR RNN GRU LSTM JNN

102 1 17.87 20.88 19.12 18.62 17.91 19.36
102 2 31.71 32.27 31.66 31.06 30.61 29.03
106 1 29.51 24.21 24.09 24.46 24.33 25.33
106 2 27.78 23.06 22.35 22.14 23.49 23.75
116 1 24.05 17.96 19.51 19.40 19.59 19.06
116 2 34.80 30.14 29.37 31.19 32.23 31.70

Mean 27.62 24.76 24.35 24.48 24.69 24.70
SD 5.47 5.00 4.71 5.06 5.25 4.64

Analyzing the results, it can be seen that the CBR and JNN shown overall

better results than the ARIMA model, but not as satisfactory as the other three

neural networks. The RNN, GRU and LSTM models presented very close results

at all horizons. For PH=2h the RNN model presented the lowest RMSE value, for

PH=4h it was the GRU architecture and lastly, both the RNN and LSTM networks

presented the same RMSE value for PH=12h.

Of the three models with the best results, the RNN is simpler and faster to

train. For this reason, it was considered pertinent to present the plots of the pa-

tients for a better visualization of the results. The predictions for patient 116 are

shown in Figure 5.2, while the plots for the remaining two patients are in Appendix

B. Through these plots we realize that the model can satisfactorily predict future

glucose values for 2h and 4h prediction intervals. The rise and fall of glucose can be

anticipated, corresponding to our goal. Note that the initial portion of the graph

that does not contain the yellow line corresponds to the lookback used as input.

Regarding the results for the 12h prediction we can state that through the tables

they seem satisfactory, but when analyzing the graphs we see that they are not so

acceptable. These differences may be due to the fact that using a larger lookback

than the two other PHs, uses fewer points to calculate the evaluation metrics in-
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Table 5.8: Comparison of the performance for PH=12h – RMSE.

RMSE (mg/dL) - PH=12h
Subject ID Trial No. ARIMA CBR RNN GRU LSTM JNN

102 1 28.19 25.65 25.42 25.45 25.27 26.64
102 2 38.30 39.65 37.84 39.49 40.18 41.54
106 1 55.13 42.05 46.66 46.41 47.75 47.79
106 2 56.73 50.55 47.80 48.05 47.32 52.15
116 1 54.16 61.15 55.84 57.24 60.00 54.75
116 2 84.69 92.54 87.57 87.56 84.61 85.44

Mean 52.87 51.88 50.19 50.70 50.19 51.39
SD 17.59 21.18 19.21 19.10 18.05 17.77

Table 5.9: Comparison of the performance for PH=12h – MAPE.

MAPE (%) - PH=12h
Subject ID Trial No. ARIMA CBR RNN GRU LSTM JNN

102 1 18.98 18.06 16.91 16.67 16.63 16.99
102 2 25.87 27.63 27.30 28.64 29.38 28.48
106 1 30.62 22.35 26.01 25.32 26.63 25.61
106 2 28.87 25.99 26.47 26.16 25.40 26.11
116 1 22.25 25.59 22.93 23.70 23.00 22.19
116 2 42.92 47.30 46.80 46.13 44.99 43.04

Mean 28.24 27.82 27.74 27.77 27.67 27.07
SD 7.62 9.24 9.21 9.00 8.69 8.01

ducing erroneously satisfactory values in the tables. Thus, the model should only

be used for PH=12h with the knowledge that the results will not be as clinically

relevant.

The results of this study are presented using two trials for each of the three test

subjects. This allows us to gain insight into inter- and intra-subject variations. By

analyzing the MAPE values we can get a better idea of these variations. Patient 102

shows the largest differences between trials for the 2h and 4h prediction horizons.

There is an increase in the error by ∼10% and ∼23% from the first to the second

trial, respectively. For the 12h prediction, patient 116 had a ∼22% higher average

error in the second trial than in the first trial.

Clinical evaluation

Despite the fact that the metrics mentioned above are crucial for comprehend-

ing the performance and prediction accuracy of different models from a regression

analysis point of view, they are unable to identify the most significant outliers and

do not offer any details about the clinical impact of prediction errors and their effects

on medical treatment decisions. Therefore, we combined our assessment with Clarke

Error Grid (CEGA) analysis to present a more full view of the models’ performance.
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 5.2: All graphs with the comparison between the actual (blue line) and
predicted (yellow line) values for patient 116 when using the RNN model. a), b)
and c) correspond to the prediction for the values of the first trial. d), e) and f)
correspond to the prediction for the values of the second trial.
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One of the most extensively used metrics for evaluating the clinical validity of

blood glucose estimations is the CEGA. In actuality, it offers a clinical interpretation

of the mapping between anticipated and actual blood glucose levels, which may be

shown as a scatter plot with five distinct zones. Zones A and B are completely

appropriate in terms of the therapeutic setting. D and E refer to the zones where

prediction errors are most dangerous.

The comparison results for PH = 2h, 4h, and 12h for a percentage of predictions

falling into zones A and B of the error grid analysis are in Tables 5.10, 5.11, and

5.12, respectively.

Table 5.10: Comparison of the performance for PH=2h – Grid error analysis, zones
A and B. For each patient in both trials, the percentages of predictions falling into
zones A and B, separated by a comma, are shown.

Zone A, zone B (%) - PH=2h
Subject ID Trial No. ARIMA CBR RNN GRU LSTM JNN

102 1
67.90,
30.86

61.73,
37.04

69.14,
29.63

66.67,
32.10

66.67,
32.10

64.20,
34.57

102 2
42.50,
55.00

46.25,
52.50

42.50,
56.25

42.50,
56.25

38.75,
60.00

45.00,
53.75

106 1
52.5,
45.00

71.25,
28.75

68.75,
31.25

66.25,
33.75

68.75,
31.25

67.50,
32.50

106 2
53.16,
43.04

64,56,
34,18

68.35,
30.38

68.35,
30.38

67.09,
31.65

68.35,
30.38

116 1
60.34,
37.93

84,48,
15,52

82.76,
17.24

84.48,
15.52

86.21,
13.79

82.76,
32.91

116 2
44.30,
44.30

68,35,
26,58

68.35,
26.58

68.35,
26.58

68.35,
26.58

62.02,
32.91

Mean
53.45,
42.69

66,10,
32,43

66.64,
31.89

66.10,
32.43

65.97,
32.56

64.97,
32.91

SD
8.76,
7.33

11,44,
11,26

11.97,
11.86

12.28,
12.20

13.94,
13.81

11.12,
10.70

All models tested performed satisfactorily. More than 96% of the data in the 2h

prediction horizon fall into zones A and B. It is noteworthy that the best results in

this interval corresponded to the first trial of patient 106 which obtained an average

of 84% of the values predicted by the models (except for ARIMA) in the zone with

the best clinical outcome. For the 4h prediction horizon, the percentage of values

in the clinically acceptable zones decreases to 95%. When considering a longer

prediction horizon of 12h, about 94% of the predictions fall within the boundaries of

zones A and B. Consistently with analytical assessment, the performance got worse

when increasing further the prediction horizon. The ARIMAmodel presented, again,

the worst results. For a prediction interval of 2h and 4h, the CBR model presented

some of the best results together with the neural networks. For the 12h interval,

RNN, LSTM, and JNN presented the best results.
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Table 5.11: Comparison of the performance for PH=4h – Grid error analysis, zones
A and B. For each patient in both trials, the percentages of predictions falling into
zones A and B, separated by a comma, are shown.

Zone A, zone B (%) - PH=4h
Subject ID Trial No. ARIMA CBR RNN GRU LSTM JNN

102 1
67.50,
32.50

57.50,
42.50

62.50,
37.50

60.00,
40.00

65.00,
35.00

65.00,
35.00

102 2
43.04,
54.43

39.24,
58.23

37.97,
59.49

45.57,
51.90

41.77,
55.70

45.57,
51.90

106 1
46.83,
48.10

54.43,
41.77

58.23,
40.51

54.43,
44.30

51.90,
46.83

51.28,
42.31

106 2
48.72,
43.59

57.69,
38.46

57.69,
39.74

57.69,
38.46

61.54,
32.05

61.40,
36.84

116 1
49.12,
47.37

63.16,
33.33

57.89,
42.10

56.14,
38.46

59.65,
40.35

42.31,
50.00

116 2
34.61,
48.72

47.44,
43.59

42.31,
50.00

42.31,
50.00

41.03,
51.28

52.07,
44.45

Mean
48.30,
45.78

53.24,
42.98

52.77,
44.89

52.69,
43.86

53.48,
43.53

52.07,
44.45

SD
9.89,
6.74

7.82,
7.62

9.16,
7.61

6.48,
4.86

9.40,
8.50

8.37,
6.78

5.1.4 Discussion

By taking into consideration the balance between performance and time cost for

pre-train, the RNN model is chosen as the final model for this module. An associated

complexity, and consequent computational burden, of the GRU and LSTM models

do not contribute significantly to the improvement of the results.

Having two trials per patient allowed us to understand not only inter-subject

differences but also intra-subject discrepancies. On the one hand, there are large

differences in prediction between subjects (inter-subject variability), which suggests

that personalized models, i.e., using the patient’s own historical glucose data, would

be able to achieve better results. On the other hand, since there was also large

variability between trials for each patient (intra-subject variability), it could suggest

the need for the algorithms to relearn the parameters as time progresses to overcome

dynamic changes in the subject’s glucose. Using only past and present glucose values

as input data do not portray the complexity of Blood Glucose (BG) dynamics.

Adding data from other sources and viable sensors that measure variables affecting

the metabolic process could lead to optimized results. These information could be

about food intake, insulin injections, exercise, and mental health-related parameters

such as stress levels.

These experiments have a number of notable drawbacks. First, we are con-

scious of the big bias presented by the fact that the dataset size of 10 participants

is regarded as small. Second, the dataset was not evaluated in any way as a rep-
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Table 5.12: Comparison of the performance for PH=12h – Grid error analysis,
zones A and B. For each patient in both trials, the percentages of predictions falling
into zones A and B, separated by a comma, are shown.

Zone A, zone B (%) - PH=12h
Subject ID Trial No. ARIMA CBR RNN GRU LSTM JNN

102 1
61.43,
38.57

61.43,
38.57

65.71,
34.29

65.71,
34.23

67.14,
32.86

60.00,
40.00

102 2
50.72,
47.83

44.93,
52.17

53.62,
44.93

52.17,
46.38

49.27,
49.27

43.48,
55.07

106 1
39.13,
56.52

57.97,
42.03

53.62,
46.38

55.07,
44.93

50.72,
46.38

50.72,
46.38

106 2
52.94,
42.65

64.71,
30.88

55.88,
38.23

61.76,
32.35

61.76,
32.35

58.82,
35.29

116 1
55.32,
42.55

44.68,
51.06

63.83,
31.91

57.48,
38.29

63.83,
34.04

53.19,
46.81

116 2
30.88,
54.41

29.41,
48.53

27.94,
57.35

26.47,
55.88

32.35,
52.94

27.94,
52.94

Mean
48.40,
47.09

50.52,
43.87

53.43,
42.18

53.11,
42.02

54.18,
41.31

49.02,
46.08

SD
10.30,
6.53

12.16,
7.56

12.35,
8.55

12.69,
8.03

11.77,
8.45

10.89,
6.85

resentation of the dynamics of the general population, i.e., the recordings made by

the subset of individuals under free-living settings might not be a good indicator of

the dynamics of the total T2DM population. The process for expanding the dataset

with new participants should be investigated in greater detail in order to enhance

the model.

The lack of studies in the literature on the prediction of glucose values for type 2

patients does not allow us to make comparisons with other researchers. Furthermore,

as far as we know, no study on blood glucose prediction has been conducted for time

horizons as long as the ones used. Kim et al. [39] constituted the only study we

found on T2DM patients, which only uses historical glucose as input, and uses a

PH=30min. With the increasing adoption of CGM devices by T2DM patients, more

and more data will be collected, and future research could study glucose prediction

for these patients.

5.2 Recommendation module

5.2.1 Rule generation

The Knowledge-Based Recommendation System (KBRS) built through an IF-

THEN rule model was implemented by extracting knowledge from the guidelines

in Appendix A. The collected guidelines were analysed and it was studied how to

61



5. Results and Discussion

incorporate the prediction module, considering the system goals and the project re-

quirements, to define the input and output variables of the recommendation system.

Several input variables were stipulated. In Table 5.13 these are listed with

their respective domains. The demographic variables of the patients are composed

of sex and age. The patient’s health status is mirrored through the Body Mass

Index (BMI) value and the presence or absence of comorbidities (we consider only

the most common ones in diabetic patients - Obesity, Hypertension and Dyslipi-

demia). Each measurement input is associated to a date and time. For glucose

data, the current glucose value (glucoseCur), the predicted value for a given PH

(glucosePred), obtained from the prediction module, and whether the future trend

of the glucose value (glucoseTendency) is increasing or decreasing are used as in-

puts. About the patient’s diet, the quantities of the following parameters ingested

daily are taken into account: calories (caloriesDaily), carbohydrates (carbsDaily)

and alcohol (alcoholDaily). The following convention was adopted to classify alco-

holic drink consumption - 1 drink = 355 ml of beer, 148 ml of wine, or 44 ml of

distilled spirits. Finally, the exercise-related variables consist of 3 vectors of size

7, where each position corresponds to one of the last 7 days. In each position the

patient discriminates how many minutes of exercise were performed (exerciseWeek-

lyDuration), what type of exercise (exerciseWeeklyType) and with what intensity it

was executed (exerciseWeeklyIntensity). It should be noted that for patients aged

under 18 and over 65, only the minutes of physical activity performed per day in

the last week are taken into account.

Table 5.13: List of variables used in the developed recommendation system where
the domain of each one is described.

Input variable Domain Input variable Domain

sex ’F’, ’M’ glucoseTendency
1 - increase
2 - decrease

age ≥ 0 carbsDaily ≥ 0
BMI ≥ 0 caloriesDaily [1000, 3000]kcal

comorbidities
’Obesity’
’Hypertension’
’Dyslipidemia’

alchoolDaily ≥ 0

dateTime ’dd/mm/yyyy HH:MM’ exerciseWeeklyDuration ≥ 0

glucoseCur [20, 800]mg/dL exerciseWeeklyIntensity
0 - No activity
1 - Moderate intensity
2 - High intensity

glucosePred [20, 800]mg/dL exerciseWeeklyType
0 - No activity
1 - Aerobic training
2 - Resistance training

For the output variables, at this point, we can only make inferences about some
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variables where the possible recommendation is to indicate to decrease, maintain or

increase the action in question. Recommendations can be about: the daily amount of

carbohydrate intake, exercise weekly duration (in minutes), exercise daily duration

(in minutes), exercise weekly frequency (in days), aerobic exercise weekly frequency

(in days), resistance exercise weekly frequency (in days), daily amount of calories

ingested and daily alcohol intake (carbsDaily, exerciseWeeklyDuration, exerciseDai-

lyDuration, exerciseWeeklyFreq, exerciseAerobicFreq, exerciseResistanceFreq, calo-

riesDaily, alcoholDaily).

After having defined all input and output variables and their respective do-

mains, the rules were formulated. Thirteen rules were created based on the guide-

lines presented in Appendix A. Each rule uses one or more input variables connected

by the logical operator and and produces a recommendation on one of the output

variables. This one, as previously indicated, can only correspond to decrease, main-

tain or increase the action present in the recommendation. The option to maintain is

always initialized for all recommendations. By analyzing the input data and whether

or not the rules are verified the recommendation can remain unchanged or can be

assigned the value of increase or decrease as a recommendation.

In the implementation of the rules, in addition to the logical operator and, the

following Python’s built-in functions were used:

• count() returns the number of times an object appears in a list;

• sum() returns a number, the sum of all items in an iterable;

• any() returns True if any item in an iterable are true, otherwise it returns

False;

• all() returns True if all items in an iterable are true, otherwise it returns False.

For rule R13 a specific function was created, called check exercise pause days(),

that returns True if there were two or more consecutive days in which no exercise

was recorded, otherwise it returns False.

All the rules created for the recommendation module are described and repre-

sented in the implemented language in the table in Appendix C. Table 5.14 presents

some of these rules as examples.

5.2.2 Discussion

These are the results obtained so far. However, the project is not yet finished

and there are still some steps to be developed. In a future phase, a team of endocri-

nologists from Coimbra Hospital and University Centre (CHUC) will verify and

complement these rules, especially with rules that use the values obtained by the
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Table 5.14: List of some rules created with their description and representation in
the language used (Python).

Rule ID Rule description (Representation)

R01
IF an adult female patient drinks more than 1 drink a day THEN it is recommended to decrease
daily alcohol intake
(IF sex == ’F’ and age > 18 and alcoholDaily > 1 THEN decrease alcoholDaily)

R02
IF an adult male patient drinks more than 2 drinks a day THEN it is recommended to decrease
the daily alcohol intake
(IF sex == ’M’ and age > 18 and alcoholDaily > 2 THEN decrease alcoholDaily)

R03
IF an female patient with BMI greater than 25 kg/m2 consumes more than 1500 calories in a
day THEN it is recommended to decrease the daily calories intake
(IF sex == ’F’ and BMI > 25 and caloriesDaily > 1500 THEN decrease caloriesDaily)

R04
IF an male patient with BMI greater than 25 kg/m2 consumes more than 1800 calories in a
day THEN it is recommended to decrease the daily calories intake
(IF sex == ’M’ and BMI > 25 and caloriesDaily > 1800 THEN decrease caloriesDaily)

prediction module as input to create more personalized rules. This is the point of

differentiation from existing recommendation models. Therefore, these corrections

and new rules will be added to the existing rule set. It should be noted that the

input variables that have not been used yet, correspond to some variables that will

be in the rules developed by the endocrinologists. Therefore the model is already

prepared to implement the rules that will be created.

Furthermore, this human expert evaluation by the healthcare professional will

consist of a more complete and reliable evaluation of the developed recommendation

system. So far, the system has been evaluated by creating hypothetical scenarios

(creating a possible patient with the corresponding set of input data). The scenarios

are designed to cover different situations for all aspects of our recommendations. In

this way, it is verified that the rules are well evaluated and that recommendations

are provided when needed. Several tests were performed in order to test all possible

scenarios for the 13 rules already implemented.

5.3 Application programming interfaces

Based on these results, the best model developed for the prediction module and

the rules designed for the recommendation module were incorporated to create the

interface to be integrated into the project. This consists of a telemonitoring platform

called SmartAL by Altice Labs. In Appendix D the interface is documented and all

the functions created are described. The forecasting module has two functions, one

to validate the inputs and another which, in the presence of valid inputs, runs the

forecast at the discriminated PH (using the best model developed and previously

trained). The recommendation module has three functions, one to validate the

inputs, another, which receives these validated inputs, analyses them in order to
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verify which of these do not comply with the stipulated rules and thus determines

which recommendations to provide to the user. Finally, a function which helps

define rule 13, verifying if there are more than two consecutive days in which the

user has not exercised.
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Conclusion and Future work

In this work two modules were developed within the POWER project (grant

number POCI-01-0247-FEDER-070365). As in the rest of the document we will

divide the conclusions by module.

In the prediction module, we addressed the problem of glucose level forecasting,

using only Continuous Monitoring Device (CGM) data as input, for Type 2 Diabetes

Mellitus (T2DM) patients. Our specific goal was to use a multi-patient training set

to create a generalizable model for glucose level prediction that may be used to fore-

cast future glucose levels for a new patient. This makes it possible to increase the

models’ usefulness even when they are just based on prior patient records. Another

goal of the project was to integrate the values of these predictions into the recom-

mendation module; to do this, long prediction horizons were established. Initially,

horizons such as 2h, 4h, 12h, and 24h were chosen. However, it was found that due

to the complexity of glucose dynamics (dependent on several factors and not only

on the patient’s CGM data history) this last option becomes unfeasible.

Through the results obtained, the three types of Recurrent Neural Networks

(RNNs) obtained the most satisfactory results. Through a compromise between

model performance and computational complexity, the RNN model was chosen as

the final model. It is concluded that this implementation can be used achieving

satisfactory results for the 2h and 4h forecast horizon. For its use in a 12h forecast

horizon it should be known in advance that the results will not be the most favor-

able. Furthermore, we also concluded that the deep learning model algorithms got

the highest results, which is agreement with the state of the art results. We used 3

random patients from the 10 available in the dataset to test the implemented algo-

rithms. The global results of the 3 patients for the RNN model were: 34.82 mg/dL

for Root Mean Square Error (RMSE) and 18.33% for Mean Absolute Percentage

Error (MAPE) (PH=2h); 46.59 mg/dL for RMSE and 24.35% for MAPE (PH=4h);

50.19 mg/dL for RMSE and 27.74% for MAPE (PH=12h).

A contribution of this work is that we developed a prediction model for patients
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with type 2 diabetes, whose existence in the literature is scarce. More studies are

needed in this area to understand and improve models for these patients. Further

research should be done in order to identify which prediction horizons are most

useful for type 2 patients.

As future work, since machine learning models improve their classification with

more data, it is important to increase the size of the dataset with more patients

and preferably with records over a long period. One of the future steps of this

project is to validate the implemented models on a dataset collected and provided

by Coimbra Hospital and University Centre (CHUC). With this data, it is intended

to incorporate some more features besides recording glucose values, such as carbo-

hydrate intake and activity level. It is also important to make a better grid search

on the implemented models and explore more deeply how much historical data on

glucose levels should be used to estimate future values, to verify if it is possible

to get better performances. In addition to this, the proposed method could also be

tested on patients who are supervised for different periods to explore the consistency

of the results and what the influences of physiological changes are.

Regarding the recommendation module, not all goals have been achieved yet,

since the project is still under development. The model created so far uses rules

extracted from guidelines provided by major international diabetes associations.

All the rules developed were tested by creating hypothetical scenarios in order to

understand if they were suggested when necessary and correctly. As mentioned

before, in a future phase, a team of endocrinologists from the CHUC will verify and

complement these rules. These health profissionals will have the important task of

developing new rules that use the values obtained by the prediction module as input

to create more personalized rules. So, a personalized model will be created, using

the patient’s own predicted values as the basis for the recommendations, with a high

degree of confidence due to the validation made by the endocrinologist.

The future stages of this project, which will count on the partnership of Altice

Labs and CHUC, will be crucial in validating and improving the modules developed.

When completed, the Application Programming Interface (API) implemented in Al-

tice’s SmartAL remote management platform for diabetic patients will be updated.
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A

Guidelines from international

diabetes-related associations

Table A.1: List of guidelines extracted from public documents made available
by international diabetes-related associations that meet the requirements of this
project.

Guideline Sources

Physical Activity
Children and adolescents with type 1 or type 2 diabetes or prediabetes should
engage in 60 min/day vigorous-intensity aerobic activity, with vigorous muscle-
strengthening and bone-strengthening activities at least 3 days/week.

[30, 82]

Most adults with type 1 and type 2 diabetes should engage in 150 min or more
of moderate-to-vigorous intensity aerobic activity per week, spread over at least 3
days/week, with no more than 2 consecutive days without activity. Shorter durations
(minimum 75 min/week) of vigorous-intensity or interval training may be sufficient
for younger and more physically fit individuals.

[3, 30, 35, 82]

Adults with type 1 and type 2 diabetes should engage in 2–3 sessions/week of resis-
tance exercise on nonconsecutive days.

[3, 30, 35, 82]

Flexibility training and balance training are recommended 2–3 times/week for older
adults with diabetes. Yoga and tai chi may be included based on individual prefer-
ences to increase flexibility, muscular strength, and balance.

[30, 82]

Diet and Nutrition
Weight loss can be attained with lifestyle programs that achieve a 500–750 kcal/day
energy deficit or provide 1,200–1,500 kcal/day for women and 1,500–1,800 kcal/day
for men, adjusted for the individual’s baseline body weight.

[30]

For women, no more than one drink per day, and for men, no more than two drinks
per day is recommended (one drink is equal to a 12-oz beer, a 5-oz glass of wine, or
1.5 oz of distilled spirits).

[30]
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B. Graphs for all predictions using the RNN model for patients 102 and 106

(a)

(b)

(c)

(d)

(e)

(f)

Figure B.1: All graphs with the comparison between the actual (blue line) and
predicted (yellow line) values for patient 102 when using the RNN model. a), b)
and c) correspond to the prediction for the values of the first trial. d), e) and f)
correspond to the prediction for the values of the second trial.
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B. Graphs for all predictions using the RNN model for patients 102 and 106

(a)

(b)

(c)

(d)

(e)

(f)

Figure B.2: All graphs with the comparison between the actual (blue line) and
predicted (yellow line) values for patient 106 when using the RNN model. a), b)
and c) correspond to the prediction for the values of the first trial. d), e) and f)
correspond to the prediction for the values of the second trial.
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C. List of all rules created for the recommendation module

Table C.1: List of all the rules created with their description and representation
in the language used (Python).

Rule ID Rule description (Representation)

R01
IF an adult female patient drinks more than 1 drink a day THEN it is recommended to decrease
daily alcohol intake
(IF sex == ’F’ and age > 18 and alcoholDaily > 1 THEN decrease alcoholDaily)

R02
IF an adult male patient drinks more than 2 drinks a day THEN it is recommended to decrease
the daily alcohol intake
(IF sex == ’M’ and age > 18 and alcoholDaily > 2 THEN decrease alcoholDaily)

R03
IF an female patient with Body Mass Index (BMI) greater than 25 kg/m2 consumes more than
1500 calories in a day THEN it is recommended to decrease the daily calories intake
(IF sex == ’F’ and BMI > 25 and caloriesDaily > 1500 THEN decrease caloriesDaily)

R04
IF an male patient with BMI greater than 25 kg/m2 consumes more than 1800 calories in a
day THEN it is recommended to decrease the daily calories intake
(IF sex == ’M’ and BMI > 25 and caloriesDaily > 1800 THEN decrease caloriesDaily)

R05
IF an older patient does not perform at least two days of exercise per week THEN it is recom-
mended to increase the amount of weekly exercise
(IF age ≥ 65 and exerciseWeeklyDuration.count(0) > 5 THEN increase exerciseWeeklyFreq)

R06
IF an younger patient does not perform at least three days of exercise per week THEN it is
recommended to increase the amount of weekly exercise
(IF age ≤ 18 and exerciseWeeklyDuration.count(0) > 4 THEN increase exerciseWeeklyFreq)

R07

IF a younger patient performs physical activity lasting less than 60 min THEN it is recom-
mended to increase the amount of daily exercise
(IF age ≤ 18 and any((x ! = 0 and x < 60) or all(x == 0 for x in exerciseWeeklyDuration))
THEN increase exerciseDailyDuration)

R08

IF an adult patient performs moderate intensity physical activity without reaching 150 min per
week THEN it is recommended to increase the amount of weekly exercise
(IF 18 < age ≤ 65 and sum(exerciseWeeklyDuration) < 150 and exerciseWeeklyInten-
sity.count(1) > exerciseWeeklyIntensity.count(2) THEN increase exerciseWeeklyDuration)

R09

IF an adult patient performs high intensity physical activity without reaching 75 min per week
THEN it is recommended to increase the amount of weekly exercise
(IF 18 < age ≤ 65 and sum(exerciseWeeklyDuration) < 75 and exerciseWeeklyInten-
sity.count(1) < exerciseWeeklyIntensity.count(2) THEN increase exerciseWeeklyDuration)

R10

IF an adult patient in a week performs the same number of moderate and high intensity
workouts without reaching 150 min per week THEN it is recommended to increase the amount
of weekly exercise
(IF 18 < age ≤ 65 and sum(exerciseWeeklyDuration) < 150 and exerciseWeeklyInten-
sity.count(1) = exerciseWeeklyIntensity.count(2) THEN increase exerciseWeeklyDuration)

R11
IF an adult patient in a week does not perform at least three aerobic workouts THEN it is
recommended to increase the frequency of aerobic exercise
(IF 18 < age ≤ 65 and exerciseWeeklyType.count(1) < 3 THEN increase exerciseAerobicFreq)

R12
IF an adult patient in a week does not perform at least two resistance workouts THEN it is
recommended to increase the frequency of resistance exercise
(IF 18< age ≤ 65 and exerciseWeeklyType.count(2)< 2 THEN increase exerciseResistanceFreq)

R13

IF an adult patient does not exercise for more than two consecutive days THEN it is recom-
mended to increase the weekly exercise frequency
(IF 18 < age ≤ 65 and check exercise pause days(exerciseWeeklyDuration) == True THEN
increase exerciseWeeklyFreq)
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INTERFACE DEFINITION OF THE 
GLUCOSE PREDICTION AND 

RECOMMENDATION MODULES 
  



 
 

Methods Listing 
 

 
• predict_glucose 
• validate_glucose_prediction_data 
• recommendations_glucose 
• validate_glucose_recommendation_data 
• check_exercise_pause_days 

 
  



 
 

predict_glucose 
predict_glucose(patient_input, pred_horizon) 

Returns an array of size 3, corresponding to the forecast at horizons 2h, 4h 
or 12h, respectively. When the parameters are invalid the array assigns all 
values -1. When the parameters are valid the array is represented in the first 
position by the forecast value corresponding to 2h after the last input value, 
in the second position by the forecast value corresponding to 4h after the last 
input value and in the last position by the forecast value corresponding to 12h 
after the last input value. 
 
Parameters 
 

patient_input : array_like 
Array with input data. It is assumed that glucose values are 
acquired at a frequency of 5min (i.e., 1h of measurements 
corresponds to 12 glucose values). 

 
pred_horizon: None or int 

The prediction horizon argument can be empty (None) or can 
be an integer: 2, 4 or 12 (corresponding to 2h, 4h or 12h). 
 

 
Returns 
 

predictions: array_like  
Array of size 3, corresponding to the forecast at horizons 2h, 4h 
or 12h, respectively. 
 
 

error_code : int 
Integer indicating the validity of the inputs (see table in 
validate_glucose_prediction_data function). 

Notes 

Tables 1 and 2 show the possible inputs that can be introduced 
depending on the desired forecasting horizon. There are inputs that 
allow the desired forecast with a lower confidence level in relation to 
the ideal input (which reaches the best results). When a specific 
prediction horizon is not introduced (None), the prediction is made 
taking into account the patient_data length. 

 
 
 
 
 
 
 
 



 
 

For pred_horizon = 2, 4 or 12 (corresponding to 2h, 4h or 12h): 

 
 

 

 

 

 

If pred_horizon = None: 

 

 

There is no issue with being sent a patient_data that is larger than the 
ideal input size. 

Examples: 

Invalid data entered (checked using the 
validate_glucose_prediction_data function): predictions = [-1, -1, -1]. 

Valid input data: regardless of the size of the input array, predictions is 
an array of size 3. This is represented in the first position by the 
forecast value corresponding to 2h after the last input value, in the 
second position by the forecast value corresponding to 4h after the last 
input value and in the last position by the forecast value corresponding 
to 12h after the last input value. 

 

 

 

Desired 
prediction 

Possible inputs with rising 
confidence level 

Ideal input (highest 
confidence level) 

2h 
2h (24 values) 
4h (48 values) 
6h (72 values) 
8h (96 values) 

12h (144 values) 

4h 4h (48 values) 
8h (96 values) 12h (144 values) 

12h 12h (144 values) 24h (288 values) 

Input sent Output achieved 
2h (24 values) <= len(patient_data) < 4h 

(48 values) 
2h prediction 

4h (48 values) <= len( patient_data) <  
12h (144 values)  

2h and 4h prediction 

len( patient_data) >= 12h (144 values) 2h, 4h and 12h prediction 

Table 1 - Possible inputs for the forecast horizons 2h, 4h and 12h. 

Table 2 - Possible inputs for when no specific forecast horizon is introduced (None). 



 
 

 

>>> predictions, error_code =  
predict_glucose(patient_input, None) 
[208.0, 169.0, 173.0], 0 
>>> predictions, error_code = 
predict_glucose([170, 95, '55'], None) 
[-1, -1, -1], 202 
>>> predictions, error_code = 
predict_glucose(patient_input, 4) 
[0, 124.0, 0], 0 

 

In the first valid example it is assumed that len(patient_input) >= 24.  
In the second valid example it is assumed that len(patient_input) >= 

48. 

 

 

 

 

 

 

 

 

 

 



 
 

validate_glucose_prediction_data 
validate_glucose_prediction_data(patient_input, pred_horizon)  

Assesses the validity of the predict_glucose function inputs, both the data 
array and the forecast horizon indication are evaluated. Values outside the 
allowable range are flagged and missing values are resolved where possible. 
In cases of too many missing values, invalid prediction horizons, or other 
errors described in Table 3, the function returns the value of error_code 
according to the error code that discriminates the situation. 
 
Parameters 
 

patient_input : array_like 
Array with input data. It is assumed that glucose values are 
acquired at a frequency of 5min (i.e., 1h of measurements 
corresponds to 12 glucose values). 

 
pred_horizon: None or int 

The prediction horizon argument can be empty (None) or can 
be an integer: 2, 4 or 12 (corresponding to 2h, 4h or 12h). 

    
Returns 
 

error_code : int 
Integer indicator of the validity of inputs (see Table 3). 
 

patient_input : array_like 
Input array with the changes made (if applicable). 

Notes 

The input is valid if it meets all the following conditions present in 
Table 3. 

Parameter error_code Meaning 
- 0 All data entered is valid. 

pred_horizon 101 pred_horizon does not match one of the valid 
options (None, 2, 4 or 12). 

patient_input 

201 The input data contains NaN. 

202 Invalid value types in the input data (valid: int 
and float). 

203 
For empty forecast horizon argument (None) or a 

2h forecast, the entry must contain at least 24 
values (2 hours). 



 
 

204 For a 4h forecast, the entry must contain at least 
48 values (4 hours). 

205  For a 12h forecast, the entry must contain at 
least 144 values (12 hours). 

 

Examples 

>>> error_code, patient_data =  
validate_glucose_prediction_data([170, 95, 
'55'], None) 
202, [170, 95, '55'] 
>>> error_code, patient_data = 
validate_glucose_prediction_data(patient_input
, None) 
0, patient_input 

 
In the valid example it is assumed that len(patient_input) >= 144. 

 
 
 
 
 
 
 

 
 
 

Table 3 - Error codes and their meanings. 



 
 

recommendations_glucose 
recommendations_glucose (sex, age, BMI, dateTime, comorbidities, 

glucoseCur, glucosePred_12h, glucoseTendency, carbsDaily, 
exerciseWeeklyDuration, exerciseWeeklyIntensity, 
exerciseWeeklyType, caloriesDaily, alcoholDaily) 

Returns an array of size 8. When the parameters are invalid, the array assigns 
all values -1. When the parameters are valid, the array is represented by the 
values 1, 2 and 3 (corresponding to decrease, maintain and increase a given 
action, respectively) in all positions. Each position corresponds to the 
recommendation resulting from the evaluation of the input parameters. The 
recommendations correspond to, in order: carbohydrate intake, weekly 
duration in minutes of exercise, daily duration in minutes of exercise, weekly 
frequency in exercise days, weekly frequency in aerobic exercise days, 
weekly frequency in resistance exercise days, daily calorie intake and daily 
alcohol intake (carbsDaily, exerciseWeeklyDuration, exerciseDailyDuration, 
exerciseWeeklyFreq, exerciseAerobicFreq, exerciseResistanceFreq, 
caloriesDaily, alcoholDaily). 

 
Parameters 
 

sex: string 
 String referring to the user's sex. Should be inserted 'M' for male 
and 'F' for female. 

 
age: int 

Positive integer greater than zero referring to the age of the 
user. 

 
BMI: float 

Float greater than zero referring to the user's body mass index, 
expressed in kg/m2. 

 
dateTime: string 

String with information about the date and time of the 
measurements input. It must be in the format "dd-mm-yyyy 
HH:MM". 

 
comorbidities: string ou None 

String referring to the patient's comorbidities (the following 
pathologies can be entered: Obesity, Hypertension, 
Dyslipidemia). If there is more than one, separate with a 
comma. If it does not apply, it can be empty (None). 

 
glucose_Cur: float ou int 

Float or integer indicating the current glucose value in mg/dL. 
 
glucosePred_12h: float ou int 

Float or integer indicating the glucose value in mg/dL expected 
in a time frame = 12h. 



 
 

 
glucoseTendency: int 

Integer indicating the trend of glucose values. Must be entered 
1 for an increasing trend and 2 for a decreasing trend. 
 

carbsDaily: int 
Integer indicating the amount of carbohydrates ingested on the 
current day, in grams. 

 
exerciseWeeklyDuration: array_like 

Array composed of 7 integers greater than or equal to zero, 
where each position corresponds to the duration (min) of 
physical exercise performed each day, for the last 7 days. 

 
exerciseWeeklyIntensity: array_like 

Array made up of 7 integers, where each position corresponds 
to the intensity of physical exercise performed each day, for the 
last 7 days. The integers that make up the array can take three 
values: 1 - moderate intensity; 2 - high intensity; or 0 - no 
physical exercise was performed. 

 
exerciseWeeklyType: array_like 

Array made up of 7 integers, where each position corresponds 
to the type of physical exercise performed each day, for the last 
7 days. The integers that make up the array can take two 
values: 1 - performed aerobic exercise; 2 - performed 
resistance exercise; or 0 - no exercise was performed. In case 
the patient performs a training with both components on the 
same day, only one (the most predominant) should be 
registered. 
 

caloriesDaily: int 
Integer indicating the amount of calories ingested on the 
present day, in kcal. 

 
alcoholDaily: int 

Integer indicating the amount of alcoholic beverages drunk on 
this day (1 drink = 355 ml of beer, 148 ml of wine or 44 ml of 
distilled spirits). 

 
 

Returns 
 

recommendations: array_like  
Array composed of 8 integers, where each position corresponds 
to the recommendation resulting from the evaluation of the input 
parameters. The recommendations correspond to, in order: 
carbohydrate intake, weekly duration in minutes of exercise, 
daily duration in minutes of exercise, weekly frequency in 
exercise days, weekly frequency in aerobic exercise days, 
weekly frequency in resistance exercise days, daily calorie 
intake and daily alcohol intake (carbsDaily, 



 
 

exerciseWeeklyDuration,exerciseDailyDuration, 
exerciseWeeklyFreq, 
exerciseAerobicFreq,exerciseResistanceFreq,caloriesDaily, 
alcoholDaily). 

 
error_code : int 

Integer indicating the validity of the inputs (see table of the 
function validate_glucose_recommendation_data). 

Notes: 

The parameters exerciseWeeklyIntensity and exerciseWeeklyType 
only apply to patients aged 18 to 65.  

The input parameter conditions for each rule (R01 - R13) are shown in 
Table 4. Some input parameters are not presented in the tables 
because they do not currently condition any rule. Table 5 presents the 
results of the recommendations for each output parameter according 
to the input parameter conditions for each rule (R01 - R13). 

Examples:  

Invalid input data (checked using the 
validate_glucose_recommendation_data function): recommendations 
= [-1, -1, -1, -1, -1, -1, -1]. 

Valid input data: regardless of the input data, recommendations is an 
array of size 8. When the parameters are valid, the array is 
represented by the values 1, 2 and 3 (corresponding to decrease, 
maintain and increase a given action, respectively). 

 

 

 

 

 

 

 

 

 



 
 

 
>>> recommendations, error_code = 
recommendations_glucose(‘F’, 50, 29.9, ‘16-08-
2022 17:42’, None, 130, 120, 1, 44, [0, 65, 0, 
77, 0, 25, 0], [0, 1, 0, 1, 0, 2, 0], [0, 1, 
0, 2, 0, 1, 0], 33, 3) 
[2, 2, 2, 2, 3, 3, 2, 1], 0 
 
>>> recommendations, error_code = 
recommendations_glucose(‘F’, 50, 29.9, ‘16-08-
2022 17:42’, None, 130, 120, 1, 44, [0, 0, 0, 
77, 0, 25, 0], [0, 1, 0, 1, 0, 2, 0], [0, 1, 
0, 2, 0, 1, 0], 33, 3) 
[-1, -1, -1, -1, -1, -1, -1, -1], 103 
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validate_glucose_recommendation_data 
validate_glucose_recommendation_data (sex, age, BMI, dateTime, 

comorbidities, glucoseCur, glucosePred_12h, glucoseTendency, 
carbsDaily, exerciseWeeklyDuration, exerciseWeeklyIntensity, 
exerciseWeeklyType, caloriesDaily, alcoholDaily) 

Evaluates the validity of the recommendations_glucose function inputs. In 
cases of invalid inputs or other errors described in the Table 6, the function 
returns the value of error_code according to the error code that discriminates 
the situation. 
 
Parameters 
 

sex: string 
 String referring to the user's sex. Should be inserted 'M' for male 
and 'F' for female. 

 
age: int 

Positive integer greater than zero referring to the age of the 
user. 

 
BMI: float 

Float referring to the user's body mass index, expressed in 
kg/m2. 

 
dateTime: string 

String with information about the date and time of the 
measurements input. It must be in the format "dd-mm-yyyy 
HH:MM". 

 
comorbidities: string ou None 

String referring to the patient's comorbidities (the following 
pathologies can be entered: Obesity, Hypertension, 
Dyslipidemia). If there is more than one, separate with a 
comma. If it does not apply, it can be empty (None). 

 
glucose_Cur: float ou int 

Float or integer indicating the current glucose value in mg/dL. 
 
glucosePred_12h: float ou int 

Float or integer indicating the glucose value in mg/dL expected 
in a time frame = 12h. 

 
glucoseTendency: int 

Integer indicating the trend of glucose values. Must be entered 
1 for an increasing trend and 2 for a decreasing trend. 
 

carbsDaily: int 
Integer indicating the amount of carbohydrates ingested on the 
current day, in grams. 

 



 
 

exerciseWeeklyDuration: array_like 
Array composed of 7 integers greater than or equal to zero, 
where each position corresponds to the duration (min) of 
physical exercise performed each day, for the last 7 days. 

 
exerciseWeeklyIntensity: array_like 

Array made up of 7 integers, where each position corresponds 
to the intensity of physical exercise performed each day, for the 
last 7 days. The integers that make up the array can take three 
values: 1 - moderate intensity; 2 - high intensity; or 0 - no 
physical exercise was performed. 

 
exerciseWeeklyType: array_like 

Array made up of 7 integers, where each position corresponds 
to the type of physical exercise performed each day, for the last 
7 days. The integers that make up the array can take two 
values: 1 - performed aerobic exercise; 2 - performed 
resistance exercise; or 0 - no exercise was performed. In case 
the patient performs a training with both components on the 
same day, only one (the most predominant) should be 
registered. 
 

caloriesDaily: int 
Integer indicating the amount of calories ingested on the 
present day, in kcal. 

 
alcoholDaily: int 

Integer indicating the amount of alcoholic beverages drunk on 
this day (1 drink = 355 ml of beer, 148 ml of wine or 44 ml of 
distilled spirits). 

 
    

Returns 
 

error_code : int 
Integer indicator of the validity of inputs (see Table 6). 

 
dateTime: timestamp 

Timestamp referring to the date and time of the user's 
information entry, checked from the input string dateTime. 

Notes 

The input is valid if it meets all the conditions described in 
Table 6. 

Parameter error_code Meaning 
- 0 All data entered is valid. 

sex 10 Does not match a valid string (valid: 'F' 
and 'M'). 



 
 

age 20 It does not correspond to a positive 
integer. 

BMI 30 It does not correspond to a positive float. 

dateTime 40 
Does not match a string indicating date 

and time of measurement in 'dd/mm/yyyy 
HH:MM' format. 

comorbidities 

50 Invalid value types (valid: None and 
string). 

51 
The string entered does not correspond 

to the possible options: Obesity, 
Hypertension, Dyslipidaemia. 

glucoseCur 60 Does not match an integer or float >= 20. 

glucosePred_12h 70 Does not match an integer or float >= 20. 

glucoseTendency 80 Does not correspond to one of the valid 
options (valid: 1 and 2). 

carbsDaily 90 Does not correspond to an integer >= 0. 

exerciseWeeklyDuration 

100 Value assigned None or the array is not 
of size 7. 

101 Incorrect value type in some position of 
the array (valid: int). 

102 Some position in the array does not 
correspond to positive values. 

103 

For patients with 18 <= age < 65: when 
there is a position !=0 in the array 

exerciseWeeklyDuration there must be 
in the same position a value 1 or 2 in the 

arrays exerciseWeeklyIntensity and 
exerciseWeeklyType. When there is a 0 
in the array exerciseWeeklyDuration, all 
3 arrays must have a zero in the same 

position. 

exerciseWeeklyIntensity 

110 Value assigned None or the array is not 
of size 7. 

111 Incorrect value type in some position of 
the array (valid: int). 



 
 

112 
Some position of the array does not 

correspond to a possible value (valid: 0,1 
and 2). 

exerciseWeeklyType 

120 Value assigned None or the array is not 
of size 7. 

121 Incorrect value type in some position of 
the array (valid: int). 

122 
Some position of the array does not 

correspond to a possible value (valid: 0,1 
and 2). 

caloriesDaily 130 It does not correspond to a positive 
integer. 

alcoholDaily 140 Does not correspond to an integer >= 0. 

 

 

Examples 

>>> dateTime, error_code =  
validate_glucose_recommendation_data(‘F’, 50, 
29.9, ‘16-08-2022 17:42’, None, 130, 120, 1, 
44, [0, 65, 0, 77, 0, 25, 0], [0, 1, 0, 1, 0, 
2, 0], [0, 1, 0, 2, 0, 1, 0], 33, 3) 
datetime.datetime(2022, 8, 16, 17, 42), 0 
 
>>> dateTime, error_code = 
validate_glucose_recommendation_data(‘F’, 50, 
29.9, ‘16-08-2022 17:42’, None, 130, 120, 1, 
44, [0, 0, 0, 77, 0, 25, 0], [0, 1, 0, 1, 0, 
2, 0], [0, 0, 0, 2, 0, 1, 0], 33, 3) 
datetime.datetime(2022, 8, 16, 17, 42), 103 

 
 

 
 
 

Table 6 - Error codes and their meanings. 



 
 

check_exercise_pause_days 
 
check_exercise_pause_days (exerciseWeeklyDuration) 

Checks if there were two or more consecutive days of no exercise. Used in 
R13 of the recomendations_glucose function. 
 
Parameters 

 
exerciseWeeklyDuration: array_like 

Array composed of 7 integers greater than or equal to zero, 
where each position corresponds to the duration (min) of 
physical exercise performed each day, for the last 7 days. 

    
 

Returns 
 

check : boolean 
Boolean indicator if there were two or more consecutive days 
when there was no physical exercise (True - if there were; False 
- if there were not). 

Examples 

>>> check_exercise_pause_days([0, 65, 0, 77,  
0, 25, 0]) 
False 
 
>>> check_exercise_pause_days([0, 0, 0, 77, 0, 
25, 0]) 
True 
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