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”If it doesn’t come bursting out of you in spite of everything, don’t do it.

Unless it comes unasked out of your heart and your mind and your mouth and your gut,
don’t do it. [...]

Unless it comes out of your soul like a rocket, unless being still would drive you to
madness or suicide or murder, don’t do it.

Unless the sun inside you is burning your gut, don’t do it.

When it is truly time, and if you have been chosen, it will do it by itself and it will keep
on doing it until you die or it dies in you.

There is no other way. And there never was.”

[Bukowski, 2008]
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Abstract

Software without vulnerabilities is difficult to develop, even when the best pro-
gramming practices are followed. Information exfiltration is prevented with se-
curity scanners and vulnerability detection tools.

This brings up these questions: how effective are these tools? what is the impact
of undetected vulnerabilities?

Python is one of the most used programming languages in the world. There-
fore, we aimed to develop a vulnerability injection tool capable of generating and
injecting vulnerable code to: i) evaluate and compare the performance and ef-
fectiveness of security scanners and vulnerabilities detection tools, ii) assess the
impact of each vulnerability.

After analyzing a wide range of Python’s vulnerabilities (the vulnerable and
patched algorithms) we implemented a prototype that identifies and attacks code
injection points.

We propose a static code analysis method to obtain results from AI models (using
recurring neural networks based on Machine Learning).

Vulnerability injection is validated through a successful attack. Our technique
shortens the gap of deficiencies from the common search for vulnerabilities, which
is done using text and regular expressions (Regex).

By implementing the proposed technique in a multi-platform prototype called
VAITP (Vulnerability Attack and Injection Tool in Python) we allow the iden-
tification of vulnerabilities and injection points. This prototype can also attack
vulnerable code and generate a PDF report regarding information such as: i) in-
jection points, ii) vulnerabilities and iii) successful payloads and attacks.

The baseline for our study was the use of Regex implemented in VAITP. Nearly a
hundred and fifty Python files were used and divided into injectable, vulnerable
and non-injectable. Both techniques (with Regex and AI models) are able to inject
vulnerabilities into injectable files. However, artificial intelligence, detects more
injection points with a lower error rate.

Keywords

Vulnerability Injection, Static Code Analysis, Recurrent Neural Networks, Artifi-
cial Intelligence, Deep Learning, Python
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Resumo

É difícil desenvolver software sem vulnerabilidades mesmo quando são seguidas
as melhores práticas de programação. A prevenção da exfiltração de informação
é feita com scanners de segurança e ferramentas de detecção de vulnerabilidades.

Isto levanta as questões: quão eficazes são estas ferramentas? qual o impacto de
uma vulnerabilidade não detectada?

Python é uma das linguagens de programação mais usadas no mundo. Logo
visamos desenvolver uma ferramenta capaz de injetar vulnerabilidades e de criar
código vulnerável para: i) avaliar e comparar a performance e eficácia dos scan-
ners de segurança e de vulnerabilidades, ii) avaliar o impacto de cada vulnerabil-
idade.

Após analisar um vasto leque de vulnerabilidades Python (tanto em códigos vul-
neráveis como corrigidos) implementámos um protótipo que identifica e ataca
pontos de injeção.

Propomos um método de análise estática que obtém resultados de modelos de IA
(com redes neuronais recorrentes baseadas em Machine Learning).

A injeção de vulnerabilidades pode ser validada através de um ataque bem suce-
dido. A nossa técnica diminui as deficiências da procura comum de vulnerabili-
dades com base em texto e expressões regulares (Regex).

Ao implementar a técnica proposta num protótipo multi-plataforma denominado
VAITP (Vulnerability Attack and Injection Tools in Python) possibilitamos a iden-
tificação de vulnerabilidades e pontos de injeção. O protótipo consegue atacar
código vulnerável e cria ainda um relatório em PDF com informação tal como: i)
pontos de injeção, ii) vulnerabilidades e iii) ataques e payloads bem sucedidos.

Para servir de base ao nosso estudo implementamos Regex no VAITP. Cerca de
centena e meia de ficheiros Python foram utilizados como teste, divididos em
injetáveis, vulneráveis e não-injetáveis. Ambas as técnicas (com Regex e mode-
los de IA) foram bem sucedidas na injeção de vulnerabilidades em ficheiros in-
jetáveis. Todavia, a utilização de IA, demonstrou ser capaz de detetar mais pontos
de injeção com uma menor taxa de erros.

Palavras-Chave

Injeção de Vulnerabilidades, Análise Estática de Código, Redes Neurais Recor-
rentes, Inteligência Artificial, Deep Learning, Python
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Chapter 1

Introduction

It is common knowledge, even to common users, that computer programs have
flaws. Whether because of some famous hack broadcasted on the news (e.g.: the
Colonial Pipeline attack [where hackers manage to infiltrate the network of the
Colonial Pipeline, one of the main American oil and gas companies] or the Solar-
Winds breach of 2021 [where hackers believed to be Russian or Chinese compro-
mised software to infiltrate US corporate and federal networks]), or because they
have experienced freezing computer programs, crashes, the (now not so famous)
blue-screens of death or, in some situations, even the impact of a ransomware
attack. Most people realize that computer programs can be susceptible to attacks
and vulnerable to the actions of malicious hackers.

Python is an object-oriented and interpreted language that is now celebrating its
thirtieth birthday [Python, 2022a]. Along with its maturity, Python is one of the
most used programming languages due to its powerful libraries and easy syntax,
along with the fact that it is an interpreted language, thus no “compilation” is
necessary as a mandatory step for the user before being able to execute the pro-
gram, which makes it have a very smooth, beginner friendly, learning curve, that
also contributes to its popularity.

Python is one of the most used programming languages in the world. Accord-
ing to Stack-Overflow, it was the third most widely used programming language
in 2021 [Stackoverflow, 2021]. Only JavaScript and HTML/CSS ranked higher. It
ranked 1st in the “IEEE Spectrum annual interactive ranking of top programming
languages” for 2021 and is ranked 1st for June 2022 in the table of top program-
ming languages more used in the world [Tiobe, 2022].

The massive use of Python raises the probability that programmers write errors
or do not follow best coding practices (e.g.: missing input data sanitization or
relying on insecure third-party libraries) that can easily leave the door open for
intruders. For writing better code, developers rely on security and vulnerability
scanners (e.g.: Bandit or SonarLint) to scan and ensure that there are no holes
through which undesired information could somehow be manipulated or exfil-
trated.

Vulnerabilities usually arise from errors or bad coding practices written by pro-
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grammers [Shaw, 2021]. Many programmers fail to realize, even experienced
ones, that from the moment they choose a programming language, they are al-
ready increasing or decreasing their probability of including vulnerabilities. Choos-
ing to code in the C programming language, for example, significantly increases
the number of vulnerabilities that can be unintentionally coded into a program,
compared to other programming languages, like Python. 50% of all reported
vulnerabilities in the past 10 years are for the C programming language, as it
has been the most used programming language. Python accounts for only 6%
of the total of reported vulnerabilities, having JavaScript (11%), Java (12%), and
PHP (17%) above it in the ranking, only surpassed by the Ruby programming
language with only 5% of the total reported vulnerabilities [WhiteSource, 2021].

This low amount of reported vulnerabilities allied with the ease of writing, the
vast amount of libraries, and the cross-platform support, makes Python one of the
most interesting and used high-level programming languages actually available
[Tiobe, 2022]. This increases the importance of Python-focused security tools,
since more programmers than ever are now using Python, even in critical and
business environments, which rely on the security of their software to operate
properly.

Coding without vulnerabilities is a difficult task, and each vulnerability can have
a different impact, requiring different mitigation and fault-tolerance solutions.
Also, vulnerability detection tools can be essential in detecting vulnerabilities be-
fore the software is shipped. However, their performance and effectiveness are
questionable due to a high number of false alarms.

This work aims at building a tool that generates realistic vulnerable code through
vulnerability injection. The generated vulnerable code can be used for two pur-
poses:

1. Assess the effectiveness of vulnerability detection tools

The injection of known vulnerabilities that should be detected by exist-
ing defence solutions can provide a comparison level for existing tools.

2. Assess the impact of vulnerabilities

By simulating an attack, an estimate of the achievable impact with each
vulnerability is possible to be obtained.

The most direct approach to locate specific code in a file is to search for patterns,
this can be done by searching for text or using Regular Expressions (regex) [reg,
2018]. Knowing the limitations of such procedure, we want to propose a tech-
nique based on Artificial Intelligence models. To build such a tool, we need to:

1. Collect and classify a list of representative and real Python vulnerabilities
that also have available the code to fix them

2. Apply data augmentation techniques to the collected list in order to obtain
balanced and realistic AI models

2
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3. Train AI classification models using subsets of the dataset

4. Evaluate the classification models using the remaining subsets of the dataset

5. Select the most accurate AI classification models that can be used to iden-
tify possible vulnerability injection points

6. Train AI translation models using a subset of the dataset

7. Compare the results of the AI model with a technique using regex to locate
where to inject the vulnerabilities

8. Design and develop a tool that scans Python files with Regex and AI mod-
els, that can automate the process so it can be easily disseminated and used
by other researchers and security practitioners

There are several well-known open-source python vulnerability scanners, which
we’ll cover and compare in chapter 2.4, that have provided information about the
current state of the art of python vulnerabilities. Our vulnerability model is built
based on the data coming from this research, based on the individual databases
from these widely used tools and resources.

To build the dataset, we extracted diff commits for Python vulnerability fixes
from CVEFixes database, further detailed in chapter 3.1, and manually processed
each entry.

To train the classification models, we developed an algorithm that can train and
test models based on sets of parameters given as input.

To Evaluate the classification models, we developed an algorithm that can auto-
mate the parameters passed to train and test the model and aggregate results in
a sheet. This information is then filtered and sorted.

Finally, to implement the VAITP tool, we developed a C++ GUI that can analyse
a Python file statically and use the best trained AI models.

VAITP is able to detect injection points, inject vulnerabilities, attack and simulate
the result of a successful vulnerability attack for a given Python script.

It is able to statically scan a Python file, or all python files in a folder recursively,
and find known Python vulnerabilities, it lists them, provides descriptions about
each vulnerability, advising the user on alternative and more secure libraries and
coding practices. It can scan based on Regular expression patterns (Regex) that
are coded in its database and based on AI with the use of deep-learning neural
networks models.

Protected and well coded Python scripts may still be subjected to vulnerability
injections, which VAITP can handle and even chain (establish and follow a se-
quence of vulnerability injections which ultimately leave the script vulnerable to
a successful attack).

While it may seem obvious that vulnerabilities must be patched and that in-
stalling updates is one of the most important actions IT teams must promptly
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ensure, the impact of a successful attack, either due to the exploitation of a known
but unpatched vulnerability or by the injection and exploitation of targeted vul-
nerabilities for the available scripts, VAITP can help assess the risks and impacts
of a successful attack. This can allow security teams to enforce security measures
on the affected systems after the attack, whilst providing a way of repeating the
attack and checking the effectiveness of the correction measures that were imple-
mented.

To be able to simulate in a controlled environment how vulnerabilities in Python
scripts can be attacked to abuse the system can help blue teams ensure the re-
silience of the system and the correct operation in the presence of such vulner-
abilities. If used by the red team it can also be a powerful Swiss army knife for
Python attacks.

To be able to detect vulnerabilities in python scripts is one of the main goals of
VAITP. After all, only if we can detect vulnerabilities can we possibly try to inject
and further attack them, but more than that, VAITP can detect possible injection
points: specific parts of an algorithm that is well coded and that follows the best
practice guidelines for Python coding and is indeed secure, but that is susceptible
to be modified in such a way that functionally the execution of the Python pro-
gram works just like the original program intended for, but is now susceptible to
be attacked with a variety of carefully crafted payloads. VAITP can also create
injection chains that can be executed in a predetermined way in order to obtain a
successful attack.

Results show that we are able to use the coded Regex patterns and the trained
AI models to detect vulnerable and injectable Python codes, match or predict
possible injection points and provide them to the user.

This document is organized as follows:

• Chapter 1.1 - Internship Goals: What are our goals.

• Chapter 1.2 - Work Plan: How we achieved it.

• Chapter 2 - State of the Art: Currently known Python vulnerabilities over-
all analysis of risks and frequency. It covers top Python libraries, which lists
the most popular Python libraries giving descriptions about each one. This
helps understanding which types of libraries are available. It covers the
most common Python vulnerabilities, which lists the most common types
of vulnerabilities left by inexperienced programmers (or that blindly follow
what Stack-Overflow gives them without any security concerns). It cov-
ers Python open source security tools comparing the most relevant security
scanners for Python. It also covers the most dangerous Python functions
and libraries by providing examples of Python scripts that use insecure
functions and that are vulnerable to vulnerability injections and attacks.

• Chapter 3 - Detection of Vulnerability Injection Points - Used methodol-
ogy for both Regex and AI based approaches and how to use the developed
scripts.
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• Chapter 4 - VAITP GUI: How the tool is designed and what’s its work-
flow. How are vulnerable functions and libraries documented and detected
by VAITP and how the SQLite database is structured. How are Regex and
AI models used.

• Chapter 5 - Experiments and results: What were the experiments and the
obtained results.

• Chapter 6 - Conclusion and Future Work: Final conclusions about the
project. What is expected to be possible to do with our work after it is con-
cluded and further possibilities of research.

1.1 Internship Goals

This internship is granted by the University of Coimbra in the context of the dis-
sertation for the master of informatics engineering with specialization in cyberse-
curity, granted to Frédéric Bogaerts, an informatics engineer who graduated from
ESTGOH, the superior school of technology and economics from Coimbra’s poly-
technic, and advised by professor Naghmeh Ivaki and professor José Fonseca.

This internship provided the opportunity for research initiation in a field were
financial losses were over $13.3 Billion in 2020 according to the IC3, the Internet
Crime Complaint Center from the Federal Bureau of Investigation [IC3, 2021].
The need of new security tools is evident and the research in this field is crucial
to provide the next generation of security tools.

This proposal aims to develop a vulnerability injection tool in Python, namely
VAITP (Vulnerability and Attack Injection Tool in Python), to contribute to study-
ing the vulnerabilities and their impact and evaluating the performance and effec-
tiveness of security mechanisms and tools in place (e.g., vulnerability detection
tools). The main goals of this internship are:

1. Initiation to basic and applied research.

Initiation to research by analysing and documenting Python vulnerabilities
and how to patch them. The research of Python specific vulnerabilities pro-
vides the needed data to populate VAITP’s database. In our research we
have identified the most used open-source Python security scanners avail-
able. The analysis consists on manually reviewing each vulnerability of
each of the selected sources and documenting each accordingly to VAITP’s
requirements. For some of them we have also developed proof of con-
cept (PoC) vulnerable files. Every vulnerability is also analyzed for ways
to patch it. Some corrections patch vulnerabilities in ways where injection
is still possible. The research also documents possible injection points iden-
tified for each particular vulnerability. We have identified and categorized
108 vulnerabilities, out of 148 known vulnerabilities (listed in CVE Details).

2. Development of security scanning, injection techniques and algorithms
for Python scripts.
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As new vulnerabilities emerge, the urge to have quality tools that can as-
sist in ensuring that a defense-in-depth strategy, that can provide resilience
in the presence of a vulnerability, is increasing, as is the perception of the
crucial importance of security in modern IT infrastructures in the eyes, not
only of the IT team, but also of top executives and stakeholders. The devel-
opment of scanning, injection and attack techniques that compose the core
algorithm of VAITP provides a needed tool for the optimization of defense-
in-dept strategies in modern IT environments. As per the call document
for the research, the project can be divided in two components: the vulner-
ability injection component/module, which inserts known vulnerabilities
into Python scripts, and the attack component, which exploits vulnerabili-
ties. Intrinsic to the injection and attack we have also developed a detection
component. This component detects vulnerabilities and possible injection
points that are then injected by the injection module. Files that are detected
as having vulnerabilities or where a vulnerability has been injected can then
be exploited with the attack module. We also propose novel techniques
with the use of AI deep learning models for the detection and injection of
vulnerabilities in Python code blocks. The development of this first version
of VAITP proves that this approach works and that it can be fully imple-
mented with the obtained data [Bogaerts, 2022b]. Further development of
attack techniques are also possible based on our work.

3. Elaboration of a tool that brings value and technological development.

The development of VAITP will allow IT teams to be able to analyse the
reaction of their environment in the presence of certain vulnerabilities and
adjust it to be resilient to such events. To the best of our knowledge, at
this moment there is no other software that does what VAITP aims to do.
The lack of vulnerability injection tools prevents teams from being able to
test the reaction of their environment in the presence of such weaknesses.
If we look at how the industry has been testing a car’s safety for example,
we’ll observe that many of the tests consist of crashing the vehicle. From
the brakes to the air-bags, many instruments in a car can be subjected to
extreme conditions in order to help engineers understand how they can im-
prove them. Looking at the work of Nuno Laranjeiro, Henrique Marques
and Jorge Bernardino in Fit4Python [Marques et al., 2022], we can see that
the same concepts can also be applied to the software world. Their work
improves resilience against faults in Python scripts. VAITP will also pro-
vide another step towards a more complete defense-in-dept strategy. With
the development of VAITP we add value to the arsenal of IT teams, ulti-
mately enhancing the quality of their work. VAITP is a tool that can allow
defense teams to take another step in ensuring defense-in-depth is applied
throughout the several layers of the corporation’s security. At the moment
there is not any way for the defense teams to simulate what would happen
if a vulnerability was present in the source code of their Python scripts. The
lack of data in this type of events can prevent the team from taking security
steps that could otherwise prevent a successful attack from taking place.
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1.2 Work plan

The research for this project started around July 2021. In order to achieve the
main objectives of this internship, we have set several smaller steps that are listed
and described below. These break down the main goal of developing VAITP into
reachable goals and schedulable milestones. These are listed in the Gantt chart
with the expected beginning and end dates for each task.

Figure 1.1: Work plan Gantt chart part 1

Figure 1.1 shows the schedule from October 2021 to mid March and figure 1.2
shows the schedule from mid March to the end of June 2022.

Figure 1.2: Work plan Gantt chart part 2

Study, research and background work
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The first 6 months are focused on study, research and background work. During
this period the research and documentation of vulnerabilities models allowed
gathering the data needed to populate VAITP’s database. These were provided by
the databases of Bandit and Sonar-Source. Each vulnerability is manually revised,
tested and implemented as a proof of concept (PoC) if needed. Several vulnerable
and patched files can already be found in VAITP’s repository [Bogaerts, 2022b].

Vulnerability sheets data acquirement

The research data is documented in VAITP’s vulnerability sheets. These have
vulnerabilities from Bandit and Sonar-Source databases and these entries have
been added to VAITP’s database. Data for the AI deep learning models has been
extracted from CVEFixes, a vulnerability database gathered from vulnerability
patching commits from public code repositories, and manually reviewed.

Database and Data-sets

The development of the database model as well as the first version of the data-
set are already done and will be presented in the next chapters. These prove the
use of the acquired data for VAITP’s requirements and the achievement of the
proposed goals.

AI Models The development of AI models with deep learning can provide al-
gorithms capable of telling the probability of a Python script being vulnerable,
injectable or non-injectable. These can also translate patched secure code back to
vulnerable code in some situations.

VAITP GUI

The development of VAITP GUI allows the user to interact with, and obtain re-
sults from, both Regex rules and AI models.
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State of the Art

According to UK’s National Cyber Security Centre, a vulnerability is ”a weakness
in an IT system that can be exploited by an attacker to deliver a successful attack.
They can occur through flaws, features or user error, and attackers will look to
exploit any of them, often combining one or more, to achieve their end goal.”
[NCSC, 2022]. One single vulnerability can affect many packages and libraries
thus ultimately affecting all the programs that use them.

Vulnerabilities in Python packages and libraries are increasing over time and the
majority of them take more than 3 years to be discovered and are only eventually
fixed after public announcement, leaving plenty of time for attackers to exploit
them [Alfadel et al., 2021]. According to J. Ruohonen, in “An Empirical Anal-
ysis of Vulnerabilities in Python Packages for Web Applications”, many Python
CVE-referenced vulnerabilities have been found since 2008 [Alfadel et al., 2021],
visible in figure 2.1 and with this increasing amount of vulnerabilities, the rise of
awareness regarding the need of security tools and technologies.

Figure 2.1: Frequency of Python vulnerabilities found over the years

In 2019 and 2020 there were 24 reported vulnerabilities, in 2021 there were 27
and in 2022 there are already 5 reported vulnerabilities [cvedetails.com, 2022].
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With the increased amount of known vulnerabilities, security awareness regard-
ing Python starts rising and thus the need for the development of new tools that
allow for a more comprehensive and in-depth analysis of the code and its possi-
bilities when injected with known vulnerabilities and, of course, exploited.

The year of 2022 started with the Python Software Foundation releasing three
new versions of Python. With them the assumed goal of version 3.11 to be 2x
faster than its predecessor. These new versions include a patched memory leak
affecting Python 3.10 regarding a function call to "__Pyx_PyCFuntion_FastCall"
in "PyEval_EvalFrameEx" used by Cython, a Python extension that aims to pro-
vide C-like performance [Python, 2022b].

With many libraries providing users with web servers and other file/service shar-
ing, vulnerabilities and exploits for these have also gotten extended responsibili-
ties in the security of the system, as these can expose it to the outside world, and
thus to the sometimes maliciously formed payloads that are sent to the web app’s
inputs by attackers.

The analysis of software programs (for example, Python) can be done in one of
two ways: Statically or Dynamically [Gomes et al.].

• Static analysis

The source code of the program is analysed, line by line, and security
considerations are attended to on each line of the algorithm. This is also
known as white-box testing.

• Dynamic analysis

The computer program is loaded in memory and running in the host
where it can be analysed. This is known as black-box testing.

In dynamic analysis, a program is analysed for vulnerabilities while running.
When executing, a compiled version of the code is stored in the random access
memory, allowing the central processing unit to access it very fast, and it can
create several types of variables, constants, objects and other types of specific
data holders that can be used, as needed by the program, to read and write data.
The manipulation of this data in very specific ways can sometimes result in a
dynamic arrangement, one that is only possible because of the specific data in
the variables (or other data holding types, either from the program itself or even
sometimes from the operating system or hardware), which leads the program to
a very specific state, where a vulnerability is present and can be exploited.

Static analysis, on the other hand, doesn’t execute the computer program. The
code is read as a text file and for each line and each specific function call or in-
put from the user, security flaws and weaknesses must be considered. And for
each possible attack payload that could result in the execution of non-intended
actions, protections have to be implemented in order to ensure the correct (and
only) use of the algorithm. The source code can be analysed with techniques such
as Tainted analysis (this method ’taints’ the data in its sources and checks that the
’taint’ is still present in its final destination. If an injection vulnerability pattern is
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present in the source code, the ’un-tainted’ data can reveal which instructions are
to blame [Kurniawan et al., 2018].). Another technique is the Data Flow Analysis
that analyses the flow of data from the starting function of a program to the end
of its execution.

Static analysis has a finite amount of instructions in the algorithm to analyse and
generally yields more false positives [Reimer, 2022], but dynamic analysis can
have infinite amounts of possible execution paths. Although one would expect
these two techniques to have different performances, the detection rate difference
between white and black box testing is at most around 4% [Henard et al., 2016].

2.1 Vulnerability types according to OWASP

According to OWASP, the Open Web Application Security Project, an renown
online community that produces free security articles, methodologies, tools and
technologies, vulnerabilities can be classified in different subcategories [OWASP,
2021a]. OWASP defines a vulnerability as a hole or weakness in a program, like
a flaw or implementation bug, that lets an attacker inflict harm to stakeholders
of the application. Furthermore they exemplify vulnerabilities as the lack of in-
put validation on a user’s input, insufficient logging mechanisms, fail-open error
handling or not properly closing a database connection.

OWASP records general vulnerabilities that may occur in any computer language,
only some of these are also applicable to Python. OWASP first published "top
ten" in 2003. A standard awareness document for the developers community that
ranks the top types of vulnerabilities according to their risk to stakeholders in the
past year. Since then OWASP has been a reference for the security community.
OWASP also provides other security tools like OWASP ZAP, an open-source web
vulnerability scanner [OWASP, /21].

Vulnerabilities can fall into several categories. Some are very specific and can’t
apply to Python, e.g.: allowing a domain name to expire (which can allow an
attacker to re-purchase it and obtain access to sensitive information). Others are
more generic and also apply to Python, e.g.: a memory leak or missing validation
of XML parsing. Bad coding techniques and insecure practices can also result in
vulnerabilities that can lead to remote code execution, improper access, informa-
tion exposure, amongst many other treats.

With the rising importance of data, various threats and attacks emerge and against
them numerous tools have been developed to prevent successful attacks from tak-
ing place. Several commercial and open-source vulnerability scanners are avail-
able. There are network-based scanners, which identify possible network secu-
rity attacks and vulnerabilities in the connected systems, there are also host-based
scanners, tools that find vulnerabilities in workstations, servers or other devices,
there are also specific scanners for wireless access points, scanners for applica-
tions and for databases [Balbix, 2021]. Python represents only a fraction of the
entire environment, but nevertheless surely an important one.

11



Chapter 2

2.2 Top Python libraries

Knowledge and a basic understanding of most commonly used python libraries
is an important step in the research stage, as it allows the elaboration of an attack
plan that can be used to inject and exploit vulnerabilities based on the type of
input fields that we can locate in these libraries. Many libraries provide methods
or functions that may be vulnerable or that may allow for a vulnerability to be
injected and eventually exploited. Researching the most commonly used Python
libraries enables us to get a grip of their functionality and to understand possible
entry points for data to be injected. During our research we have implemented
small example projects using some of the libraries presented here. The focus was
on scripts that relied on user input, interacted with the user’s file system or pro-
vided some sort of network communication server or file sharing. This allowed
us to grasp a better understanding on the exploitation of real Python vulnerabili-
ties. These examples can be found in VAITP’s git repository [Bogaerts, 2022b].

There are many useful Python libraries. Some are very well known within the
Python’s programming community, like Tensorflow, a deep-learning library first
created for internal use by the Google Brain team, Keras, a very powerful neural
network API, OpenCV, an open source computer vision and machine learning
software library, Numpy, an essential library for math operations, or the Requests
library that handles GET and POST requests.

Other libraries are not so well-known, but they are fairly enough and can provide
very useful resources. Django and flask are web frameworks that developers can
use to rapidly create complex websites (and vulnerabilities in these have also
been found, as we will see in some examples in chapter 2). PyQt provides bind-
ings for Python in QT. Kite can help complete code in several IDE’s like Visual
Studio Code. Beautiful soup can extract data from XML and HTML files.

2.3 Most common Python vulnerabilities

As indicated by Mahmoud Alfadel, Diego Elias Costa and Emad Shihab in “Em-
pirical Analysis of Security Vulnerabilities in Python Packages” [Alfadel et al.,
2021], the most common types of vulnerabilities in Python are related to Cross-
site-Scripting. Although this is true, there are many more Arbitrary Code Execu-
tion vulnerabilities that are classified as having a high severity.

The common use of Python world-wide [Tiobe, 2022] has a special impact in
business-critical environments. The ability to inject vulnerabilities and attack
them under a controlled environment, either during software verification activi-
ties or routine inspection activities, can allow the creation of faulty versions of the
software used and hence assert the effective resilience of the system under test,
“allowing the test suite to be corrected or extended, thus fostering the system’s
dependability” [Fonseca et al., 2009].

From table 2.1 we can observe the most common types of vulnerabilities in Python
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Table 2.1: Most common Python vulnerabilities [Alfadel et al., 2021]

Rank Vulnerability Type (CVE) Frequency
1 Denial of Service (DoS) 36
2 Overflow 29
3 Gain information 11
4 Execute code 11
5 Bypass something 5
6 Cross-Site Scripting (XSS) 4
7 Memory corruption 4
8 Directory traversal 2

scripts. The Denial of service happens when an attacker is able to deny a third-
party service to another system by sending it more requests that the ones it can
handle [den, 2022]. Overflows happen then a buffer for data is filled and the
attacker is able to write/read outside of the intended memory scope [OWASP,
2021b]. Cross-site scripting is a vulnerability type that affects web applications.
Sometimes also referred to as XSS, it happens when an attacker is able to inject
client-side scripts into web pages that are executed by unaware users when they
visit the web page [Gomes et al.].

If the web server is Python based, then the vulnerability comes from this vul-
nerable Python code, as we will see further on in the vulnerable code examples
in chapter 2.4.2. Arbitrary Code Execution happens when an attacker manages
to run any command at will by exploiting vulnerabilities in the application [han,
2022]. Information Exposures are usually less critical vulnerabilities but they may
enhance the attacker’s information about his target [?]. Access Restriction Bypass
vulnerabilities happen when an attacker is able to bypass security restrictions and
access information and resources that shouldn’t be accessible for them [Academy
and control, 2022].

2.4 Python open source security tools

Every programmer has a certain degree of knowledge that is most of the time
complemented with online research. It is an important part of problem solving
and when we are programming, problem solving is a big part of the job. Many
online resources are available to programmers and most of them rely on resources
such as Stack Overflow.

Stack Overflow is an online resource quite often used by developers to search for
code examples in several programming languages. But many users blindly rely
on Stack Overflow without properly checking if security requirements are met
within the code that is being copied [Rahman et al., 2019].

Around 30% of software engineers use Stack Overflow every single day and 25%
visit the site several times a day. It is the world’s most popular collaboration
platform for developers and serves more than 100 million people a month [pit,
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2022].

Although a very used resource, it is also susceptible to insecure Python-related
practices, where reports show that 7.1% of 44.966 Python related answers con-
tained at least one insecure coding practice, with the most frequent error being
code injection related [cvedetails.com, 2022]. Stack Overflow has over 14 mil-
lion registered users, with over 31 million answers to over 21 million questions,
as of March 2021 [Wikipedia, 2021]. This resource really is a double-edge sword
as a study from Maryland University shows, with Android developers tending to
write less secure code when relying on Stack Overflow than when using Google’s
official documentation, but also tended to write more functional code [Acar et al.,
2016].

We have researched open source, python-specific, security tools to analyse their
workflow and the possibility to use information form these databases to extract
useful information for our database. The list 2.2 enumerates the most relevant
findings. From these, only Bandit stands out as the “De facto” vulnerability scan-
ner for Python scripts due to its very complete database and ease of use [Gu-
nasekaran, 2022].

14



State of the Art

Table 2.2: Open-source Python security tools

Name Description Ref.
Bandit Tool that can identify most common

security issues in Python code.
[Bandit, 2021]

Guardrails Tool that can help to consolidate
clean coding practices

[Rails, 2021]

Salus Repository audit tool that can auto-
matically launch vulnerability scan-
ners for the corresponding language
(it uses Bandit for Python)

[Salus, 2021]

Hubble Security and compliance audit-
ing framework in Python: Scan
and monitor a file system for file
changes.

[Hubble,
2021]

Safety Tool that checks the project’s depen-
dencies for vulnerabilities

[Safety, 2021]

Secure.py Tool that adds optional security
headers in Python web frameworks

[Secure.py,
2021]

PYT [Project no longer maintained] Tool
that can detect command injection,
XSS, SQL injection and directory
traversal attacks in Python web apps
(See Pyre-checkPysa)

[PYT, 2021]

Pyre-check A performant type checker for
Python compliant with PEP 484
developed by Facebook

[Meta, 2021]

Pysa Security-focused static code analysis
tool for Pyre-check.

[Meta, 2021]

RATS (Rough Au-
diting Tools for Se-
curity)

Code analysis (Python, PHP, Perl,
C++), finds common security re-
lated programming errors like
buffer overflows, TOCTOU (Time
Of Check, Time Of Use) and race
conditions

[CERN, 2021]

Sonar
Source/SonarLint

Static code analysis plugin for IDE’s
that checks for vulnerabilities and
for bad coding practices.

[SonarSource,
2021]

As we can observe from table 2.2 there are several Python-focused security tools.

Guardrails is a security tool that helps programmers in operations such as linting
(the process of automated checking of source code for stylistic and programmatic
errors), copy paste detection, dead code detection, unit tests coverage, cyclomatic
complexity calculation or mutation testing. It helps programmers avoid bad cod-
ing practices but doesn’t scan for vulnerabilities.

Salus is a test automation tool for several programming languages and relies on
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Bandit when scanning for vulnerabilities in Python scripts.

Safety is a vulnerability scanner that specifically scans dependencies. Since many
projects depend on other libraries, Safety has a database of vulnerable depen-
dency packages and can report them to the user if in use. Since its database
is dependency-focused as opposed to vulnerability-focused, many vulnerabili-
ties are repeated in different dependencies which exponentially augments the
amount of information in their database and thus make it impractical for our use
in VAITP.

Secure.py looks for optional security headers that were not set and reports them
to the user.

Facebook’s first attempt at creating a Python vulnerability scanner was PYT. It
has since been deprecated and the main development efforts are now focused
on Pysa, a static-analysis based vulnerability scanner for Python where program-
mers can define ”sources” and ”skinks” of tainted data. We will briefly cover
Pysa in chapter 2.4.2.

CERN also developed a vulnerability scanner that includes Python amongst other
programming languages, RATS, which is also a static analysis based tool.

SonarLint is a plugin that can be installed in many IDE’s and that uses Sonar-
Source’s vulnerabilities database to scan Python scripts.

VAITP’s database will also include all the entries present in SonarSource, Bandit,
RATS and CVEDetails, manually reviewed.

2.4.1 Bandit

Bandit is an open-source tool written in Python that can analyze Python code and
detect common security issues [Bandit, 2021]. From the entries in its database, it
can recognize insecure imports and function calls. VAITP’s database will support
and detect all vulnerabilities also detected by Bandit with the addition of also
being able to inject and exploit them. It will also have support for vulnerabilities
that are not in Bandit’s database, like some that are only present in CVE Details.

Bandit is easy to install in any modern OS. Invoking it with the python script that
needs to be scanned as a parameter is enough to return a list of the vulnerabilities
that were found, as observable in figure 2.2.
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Figure 2.2: Executing Bandit to scan the file ‘vuln01_vuln.py’

As we can see from Bandit’s output, in figure 2.2, it correctly identified a High
severity vulnerability related to the use of the subprocess.call with the parameter
“shell=True”. We’ll cover this vulnerability in more detail in chapter 2.5. The use
of Bandit is pretty straightforward and the results are quite easy to interpret.

2.4.2 Pysa

Pysa is a security-focused static code analysis tool for Pyre-check (”Pyre is a per-
formant type checker for Python compliant with PEP 484” [Meta, 2021]). It works
by establishing a set of sources and sinks that are ”tainted”. This enables the pro-
grammer to follow vulnerable or tainted code from a source to a sink, this could
be for example a user supplied argument that may reach a code execution state
without being sanitized. It also allows the combination of sources and sinks and
for the definition of sanitizers which detaint the tainted code, thus allowing the
exclusion of falsepositives [Meta, 2021].

Pysa establishes the concept of sources and sinks of data that can be “tainted” and
traced. As an example the viewes.py file shown below represents a vulnerable
django app that eval’s a mathematical operation using the operator given through
a GET request from the user:

Listing 2.1: viewes.py: example of a vulnerable Django App source code

1 from django.http import HttpRequest, HttpResponse
2

3

4 def operate_on_twos(request: HttpRequest) -> HttpResponse:
5 operator = request.GET["operator"]
6

17



Chapter 2

7 result = eval(f"2 {operator} 2") # noqa: P204
8

9 return result

As we can see, the operator is not sanitized and can lead to a potential remote
code execution. In the sources_sinks.pysa file, Pysa takes a set of sources and
sinks that will act as data monitoring points that allow Pysa to ensure if the data
between a source and a sink has been properly sanitized or if the taint is still on
the code, thus proving the existence of a vulnerability.

Listing 2.2: sources_sinks.pysa: Pysa sources and sinks definition source code

1 django.http.request.HttpRequest.GET: TaintSource[CustomUserControlled] = ...
2

3 def eval(__source: TaintSink[CodeExecution], __globals, __locals): ...

In the example, that we can see in the image above, the
django.http.request.HttpRequest.GET is being set as a source tainting the data
that is passed by the user’s input (CustomUserControlled), on line 1. Then, on
line 3, there is the definition of the eval function as a sink. Note that the “...” is a
part of the Pysa sources and sinks language protocol.
Apart from other configuration files, the taint.config file is mostly relevant, as it
contains the specification of the rules that Pysa will apply when scanning.

Listing 2.3: sources_sinks.pysa: Pysa sources and sinks definition source code

1 {
2 "sources": [
3 {
4 "name": "CustomUserControlled",
5 "comment": "use to annotate user input"
6 }
7 ],
8

9 "sinks": [
10 {
11 "name": "CodeExecution",
12 "comment": "use to annotate execution of python code"
13 }
14 ],
15

16 "features": [],
17

18 "rules": [
19 {
20 "name": "Possible RCE:",
21 "code": 5001,
22 "sources": [ "CustomUserControlled" ],
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23 "sinks": [ "CodeExecution" ],
24 "message_format": "User specified data may reach a code execution sink"
25 }
26 ]
27 }

The Pysa configuration file seen above is a simple JSON file. In the above example
we can see the sources and sinks definition, with the sink being the input "Custo-
mUserControlled" and the sink being set to "CodeExecution" (which would allow
code to be executed from the given input), and what rules apply to this particular
vulnerability detection (in the example we’ve defined this to be a possible remote
code execution).
Running the following command, with the previously detailed configuration, de-
tects the presence of the vulnerability:
pyre analyze

Figure 2.3: Detecting a vulnerability with Pysa

As we can see, Pysa is very powerful but requires a customized set of pro-
grammed sources, sinks and rules in order to correctly test the desired vulner-
ability against a particular Python script.
From the analysis of these programs we can understand how many vulnerabil-
ities they are able to detect, the type of analysis performed and how easy it is
to use. Table 2.3 indicates Bandit and Sonar Source as the most interesting start-
ing points for VAITP, complemented with the information from the CVEDetails
database.
Note that CVEDetails is only a database and does not provide a scanner of itself.
All the mentioned tools perform static analysis of the code. This means that they
cannot account for configuration errors nor prove the exploitability of a vulnera-
bility, as opposed to dynamic scanners.
Although RATS has effectively the highest number of detected vulnerabilities, a
lot of RATS vulnerabilities are very arguable. For example, using the mkdir com-
mand could be susceptible to a race condition (a vulnerability that’s not spotted
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Table 2.3: Comparison of open-source Python vulnerabilities software and
databases

Bandit Pysa SonarLint RATS CVEDetails
Code Analysis Static Static Static Static N/A
Configuration
Complexity

Low High Low High N/A

Number of de-
tected vulnera-
bilities

39 N/A
(User
defined)

28 62 148

Ease of Use Easy Hard Easy Medium N/A

by any other scanner). The possibility may exist, but the probability that it ever
occurs is very small (after all, an attacker would have to be able to create two
directories at the same place, with the same exact name, at the exact same time,
in a very controlled manner, to be able to pull it off. Most of the time, if the at-
tacker can do this it is because he has already gotten a fully featured remote shell).
On the other hand, some of Sonar Source vulnerabilities would end up actually
providing two different vulnerabilities in VAITP (when, for example, a vulnera-
bility is in practice applied in different ways depending on the library used, then
each was accounted for separately since the source code actually differs from each
other and also corresponds to separate injection points).
According to CVEdetail [cvedetails.com, 2022] there are a total of 148 reported
CVE related python vulnerabilities. So all the analysed python vulnerability
scanners need improvements and leave some kind of vulnerability unaccounted
for. VAITP’s database is being populated with data coming from all of the men-
tioned resources, thus its relevance in the detection tools arsenal of the blue team
(the blue team defends against attacks and responds to incidents. The red team
attacks and tries to find vulnerabilities and break through cyber security defences.
[cou, 2022]).
The ability to be able to inject and attack vulnerabilities provides the blue team
with more means of testing, stressing and improving the defence of the sys-
tem, and with it more exhaustive and in-depth vulnerability resilience can be
achieved. It also provides a very useful tool for the red team arsenal, that is now
able to inject and attack python files that are already on the target machine, avoid-
ing the creation of otherwise suspicious new python scripts and leaving almost
untraced the attacked system.

2.4.3 Fit4Python

Fit4Python is a Fault Injection Tool for Python developed by Nuno Laranjeiro,
Henrique Marques and Jorge Bernardino. It can inject different types of Python
software faults into Python scripts. They provide a very comprehensive fault
model sheet that classifies and characterises software faults affecting Nova Com-
pute, the main stack component of OpenStack, an open source cloud computing
infrastructure software. Their research included the execution of more than 245
Million tests against 11.309 scripts with injected faults [Marques et al., 2022].
The main difference between Fit4Python and VAITP is that the former injects
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software faults, this is for example the removal of a certain line or chunks of the
algorithm, the removal of variable assignments or initialisation, wrong value as-
signment, extraneous conditional calls, amongst many other very specific faults
that may occur in Python scripts. In contrast, VAITP injects software vulnerabil-
ities, which are for example the manipulation of function calls input parameters,
the removal of sanitization calls, inclusion of system calls, amongst many others,
allowing the execution of an attack that exploits the injected vulnerability. Due to
the nature of Fit4Python concept, it has as expected result the rise of exceptions
that may halt the script from running entirely. VAITP’s injection won’t affect the
execution of the script, thus it will continue behaving as expected. This allows
for a very stealthy attack to occur.
Both tools are capable of performing static analysis. Fit4Python relies on an Ab-
stract Syntax Tree (AST) to analyse the code, while the injection fault places are
selected based on variable attribution or random line or line blocks. VAITP has a
Regex based approach and an AI based approach. In AI model training we used
AST versions of the code.

2.5 Insecure Python functions and libraries

Python is a very high level language. Its versatility give programmers a lot of
power in a very concentrated amount of lines of code and, when well indented,
allows very fast development of any type of algorithmic solution.
From a simple hello world to complex AI/ML based algorithms, Python has got
your back. May we recall that with great powers come great responsibilities. This
principle applies to Python like a glove. It trusts the developer and gives him a
lot of power. The front line of dangerous Python functions relies on the fact that,
by mistake or lack of experience, a developer passes the power of some function
directly to the hands of the final user, or such behavior can be injected, without
properly sanitising the user’s data. When this happens and a user is provided
trusted access to certain functions or function’s parameters, without properly
sanitising its inputs, a custom crafted payload may be injected into the script and
if piped into a shell, it can execute arbitrary commands injected in the payload.
Most GNU/Linux users understand the importance of having small programs
that perform a certain task, and perform it well. Many times when developing a
script we feel the need just to invoke one of these programs to perform a certain
operation, after all we shouldn’t have to reinvent the wheel, and if for instance
we just need to convert a video format there’s no need to code a conversion algo-
rithm all over again. We can just invoke in a sub process an instance of ffmpeg, a
very famous program that can do just about anything regarding video file types.
This operation usually involves, in some way, obtaining an input for the user that
is then used as an argument in the construction of the final command string that
will be invoked by the subprocess.call module.
The subprocess module has come as a substitute for the os.system() and
os.popen*() that have been deprecated since Python 2.6.
Taking the example of the video conversion script let’s consider the following
code. A simple interactive script that helps a user convert a video file from one
type of format to another:
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Listing 2.4: Vulnerable Python script that converts a video file between two for-
mats

1 import subprocess
2

3 file = input('Input video file:')
4 cmd = 'ffmpeg -i {source} out.mkv'.format(source=file)
5 subprocess.call(cmd,shell=True)

In the example above we can see a proof of concept Python script that is vulner-
able due to the subprocess.call parameter "source" being set to "true" (which is
also the default if the parameter is omitted).

The vulnerability of the code is evident due to the lack of any type of sani-
tisation of the input string and the fact that the shell parameter is set to True,
which tells the function that the inputted string can contain a pipe of commands.
Since the source variable is the one that is being controlled by the input, the user
only has to end the command (with ’;’), which will degenerate a dumb output
from ffmpeg but will allow, afterwards, to concatenate any kind of command
like cat’s output of the passwd file or an nc instance. A simple but full payload
could be written like this:

Listing 2.5: Simple payload that can be used to exploit the vulnerability

1 a; cat /etc/passwd

Invoking the python script and passing this payload as the supposed input video
file that we would like the script to convert will result in two things: first the
output error from the invalid input file ”a”, that ffmpeg can’t (obviously) find,
followed by the output of the cat command that prints us the content of the
/etc/passwd file.

Figure 2.4: Output of the presented payload passed as an argument to the input
parameter of the PoC script used to convert a video file.
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As we can observe the output of the cat command is shown after the default
output from the invalid ffmpeg command was executed (the same as it would
output with the –help flag argument).
Setting the shell parameter of the subprocess.call function to False is enough to
prevent the previous payload from working.

Figure 2.5: Avoiding the vulnerability with the parameter “shell=False” of the
subprocess.call function.

This information can be found under the I01 entry on the injection code points
table.

A variation of this code consists of having back slashes or quotes around
the source variable. This is actually the most common and best practice as it
allows the parameter in the ffmpeg command to contain spaces and special
characters in the path to the file. The payload should then be slightly modified to
account for this:

Listing 2.6: Payload variation 1

1 a"; cat /etc/passwd; "

Less usual (and not following PEP’s best practices) but still working so interesting
to account for also is the use of single quotes instead:

Listing 2.7: Payload variation 2

1 a'; cat /etc/passwd; '

According to Python’s documentation escaping input variables can be achieved
with the use of the quote() function. After importing the module and modifying
the code we can see that even with the shell=True parameter flag of the subpro-
cess.call function the vulnerability is not present.
The shell=TRUE parameter enables command piping and thus allows for more
than one command to be called. This information can be found under the I02 and
I03 entries on the injection code points table.
The subprocess.call function has a PoC file vuln01_vuln.py. Three differ-
ent patches were developed to prevent the vulnerability from being ex-
ploited, available under the filenames vuln01_correct.py, vuln01_correct2.py
and vuln01_correct3.py. The vulnerability injection files vuln01_inject1.py and
vuln01_inject2.py were also developed as a PoC of the injection technique. The
same applies to the other subprocess function calls that are listed in the VAITP
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Issues sheet, and which PoC files can be found under "python_exercises/vuln/"
in VAITP’s github repository [Bogaerts, 2022b].
Python allows developers to also extend the script at execution time with dif-
ferent inputs. This is usually achieved with the use of the exec() and the eval()
functions.
exec(object[,globals[,locals]]) supports the dynamic execution of custom Python
code inputted as a string or as an object.
eval(expression[, globals[, locals]]) is a Python function that parses and evalu-
ates a string as a Python expression (for example, assuming x = 1, the result of
eval(‘x+1’) would be 2).
In sum, both these functions can receive inputs at runtime and transform them
into executable code. While researching I came across a very dangerous payload
that should absolutely not even be tested: eval’ing the string “os.system(’rm -rf
/’)”.
Let’s exemplify the vulnerability by passing into eval the string “os.system(‘ls -la
/home’)”.
Assuming the code:

Listing 2.8: Python source code with vulnerable eval() function call

1 import os
2 instr = input("Input:")
3 eval(instr)

If we input:

Listing 2.9: Invoking a system call with a bash payload

1 os.system('ls -la /home')

The code will be executed with the privilege level of the user currently running
the script.

Figure 2.6: Executing a vulnerable call on the eval function

The os library doesn’t even need to be previously imported as we can dynami-
cally import it in run-time as per Listing 2.10.

Listing 2.10: Executing a vulnerable call on the eval function while dynamically
importing the ’os’ library

24



State of the Art

1 eval("__import__('os').system('ls -la /home')").

Eval accepts a second, optional, parameter that represents the values of the global
variables that the script can access. Evoking eval(“os.system(‘ls -la’)”,) will raise
an error stating that the os module name is not defined. In which case the follow-
ing payload still works.

Listing 2.11: More complex system call invocation with a bash payload

1 eval("__import__('os').system('ls -la')", {})

Both eval and exec have PoC files respectively named vuln02_vuln.py and
vuln03_vuln.py.
On the PoC file for vuln04 there are two variations of an eval payload that can
generate a segmentation fault.
Similarly to eval, the input function, in Python 2, suffers from the same prob-
lems due to the fact that in Python 2 the input function input(in) is converted to
eval(input(in)). A remainder task would be to check the processor steps/next EID
and the eventual exploitability of executed code after the buffer overflow occurs.
Another dangerous Python module is pickle. This module implements binary
protocols that allow for data serialization.
The pickle module does not implement any kind of security mechanisms and
ultimately the responsibility lies on the trust that the developer has regarding the
source of the data that is to be serialized (pickled) or de-serialize (unpickled).
In Python’s documentation on pickle we actually have a big warning about this:

Figure 2.7: Pickle library danger warning in Python’s documentation

Despite this, pickle is still the recommended module to be used. The flying pickle
attack consists of crafting a raw pickle file and getting it opened in the victim’s
machine. As a PoC I developed a simple Flask app, a python web framework,
where one of the routes corresponds to the de-serialization of a base64 encoded
pickle string: vuln05_app.py. The code of this vulnerable APP is listed in Listing
2.12.

Listing 2.12: Example of patched (but injectable) Pickle APP

1 import pickle
2 import base64
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3 from flask import Flask, request
4 from shlex import quote
5

6 app = Flask(__name__)
7

8

9 @app.route("/")
10 def hello_world():
11 return "<p>Hello, World!</p>"
12

13

14 @app.route("/vuln", methods=["POST"])
15 def vuln():
16 print(f"Got request: {request.form['pickled']}")
17 data = base64.urlsafe_b64decode(request.form['pickled'])
18 print()
19 print("-----")
20 print()
21 print(data)
22

23 #if re.match(r"^system$",data):
24 #print("vuln")
25

26 depickled = pickle.loads(quote(data))#fixed
27 print(f"Data was unpickled: {depickled}")
28

29 return '', 204
30

31

32 # Usage:
33 # cd /home/fred/msi/ano2/VAITP/python_exercises/vuln
34 # . vaitp_env/bin/activate
35 # export FLASK_APP=app
36 # mv vul05_vuln_app.py app.py
37 # flask run
38 #
39 ##exploit:
40 #python vuln05_exploit01.py 127.0.0.1

Note that adding the quote function in line 26 is the PEP recommendation to
protect the exploitation of the Pickle library. The presented code in Listing 2.12
follows best coding practices. Trying to exploit it like this would not allow
an attacker to obtain any kind of useful result. By using VAITP and passing
this script, the resulting script would be exactly the same with the exception of
line 26 where the function call "pickle.loads(quote(data))" would be converted to
"pickle.loads(data)", thus leaving the APP vulnerable.
As a PoC of the exploitability I developed a simple exploit that can return a re-
verse shell from the server running the Flask app: vuln05_exploit01.py. Note that
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this is based on a vulnerable/injected version of Listing 2.12.

Figure 2.8: PoC exploitation of a vulnerable Flask App form submission

vuln06_vuln.py is a windows and posix only variation of vuln01_vuln.py where
subprocess.getoutput can also represent a vulnerability if not properly sanityzed.

Another common mistake is the lack of sanitisation of XML files while us-
ing the lxml python library. This can lead to an XML External Entity Injection
(XXE) attack.

The following file is an example of a crafted XML that has a payload that
allows an attacker to dump the content of the /etc/passwd file:

Listing 2.13: Example of a maliciously crafted XML file ’vuln07_payload.xml’

1 <?xml version="1.0" encoding="utf-8"?>
2 <!DOCTYPE person [
3 <!ENTITY file SYSTEM "file:///etc/passwd">
4 ]>
5

6 <person>
7 <name>&file;</name>
8 <age>35</age>
9 </person>

The code in Listing 2.13 shows a forged XML file to be inputted to the vulnerable
APP. In line 3 the "file" entity gets the content of the "/etc/passwd/" file that is
then called to be printed in line 7 with "&file;" in the <name> tag.
The processing script illustrates a simple program that prints the elements of the
supplied XML file without properly sanitising the file:

Listing 2.14: Vulnerable parser used in Python source code
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1 from lxml import etree
2

3 #parser = etree.XMLParser() //default, but same as next line
4 parser = etree.XMLParser(resolve_entities=True) # Noncompliant
5 tree = etree.parse('vuln07_payload.xml',parser)
6 root = tree.getroot()
7 print(etree.tostring(root, pretty_print=True))

In Listing 2.14 line 3 is the standard way of invoking the function call
etree.XMLParser, without any input parameter. Line 4 illustrates the use of call
passing as an input parameter "resolve_entities=True", which is the same as in-
voking without any parameters, since it’s the default value. Only explicitly set-
ting the "resolve_entities" to "False" can prevent this vulnerability from being ex-
posed. Even if correctly patched it is still susceptible to injection.
Running the PoC script (vuln07_vuln.py) while inputting the forged XML file,
launches the attack and proves the effectiveness of this exploit:

Figure 2.9: PoC exploitation of the pickle vulnerability with a maliciously crafted
XML file

Setting resolve_entities parameter to False, which is not the default if not explic-
itly set, is very important to ensure that the XML parser is not vulnerable to in-
jection.
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Two libraries that should be avoided at all cost are the telnetlib library and the
ftplib library. These do not implement any type of security checks and thus the
information that is transmitted by these libraries are visible to anyone sniffing the
network. Alternatively the SSH, SFTP, SCP libraries should be used.
vuln_08_vuln_app.py demonstrates dynamic code execution that is vulnerable to
injection attacks. It’s based on a Flask web app that loads a module using the exec
function call. As we already saw, the exec function call can be very dangerous.
The sample code is present in 2.15.

Listing 2.15: Vulnerable Flask Python source code

1 from flask import Flask, request
2

3 app = Flask(__name__)
4

5 @app.route('/')
6 def index():
7 module = request.args.get("module")
8 exec("import urllib%s as urllib" % module) # Noncompliant

Again, since it’s a Flask-based web app, and after being on the correct path, ac-
tivating the python environment that had been setup as for the other Flask ex-
amples and running it, a client can then be launched with the correct payload to
exploit the exec import module. As an example I used another terminal with the
curl command as per Figure 2.10.

Figure 2.10: PoC exploitation of the exec module

As we can observe in these examples, most vulnerabilities are due to some kind
of missing sanitization on input parameters, or the use of unsafe libraries. Since
many of these mistakes can be found as answers on resources like Source Over-
flow, which most programmers rely on when developing a project. It’s unfortu-
nately not uncommon to find vulnerable applications on the web, even known
and important projects patch vulnerabilities on their commits, which shows us
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that even very good and experienced programmers code something less secure
from time to time. All these examples can help us understand how Python vul-
nerabilities happen, how an application can be vulnerable, how it can be secured
and how this information can be used in VAITP to create injection points which
can be used to inject vulnerabilities into secure Python apps. In chapter 4 we will
cover in more detail how vulnerabilities are detected, injected and exploited.

2.6 Introduction to AI

Artificial Intelligence has come a long way since the contributions of John Mc-
Carthy. Widely seen as the father of AI. J. McCarthy coined the term "Artificial
Intelligence" in 1956 [Wikipedia, 2022b]. Quite ahead of its time since AI has only
seen its computation power needs fulfilled in the last decades.
It was only 20 years ago that the first commercially successful robotic vacuum
cleaner with AI was created, but we have come a long way: in 2020 AI helped
medical and scientific medical teams developing a vaccine for the SARS-CoV-2
(Covid-19) pandemic, predicting RNA sequences of the virus in only 27 seconds
[Kelley, 2022].

There are several types of Artificial Intelligence algorithms [Agnihotri]:

A Purely Reactive AI algorithm is a type of AI that does not have memory or
data to work with. Taking the chess game as an example, the algorithm analyses
the state of the chess board and makes the best possible decision to win based on
the current position of each piece.

A Limited Memory AI algorithm is a type of AI collects data and keeps it in
memory. It can learn from this data and provide outputs based on it. It is this
type of AI algorithm that we are using in VAITP.

A Theory of Mind AI algorithm is a type of AI that can understand emotions
and thoughts, as well as handle social interactions. This type of AI is yet to be
developed.

A Self-Aware AI algorithm is a type of AI that is sentient, conscious and intel-
ligent. These are seen as the future generations of self-aware machines that also
yet to be developed.

Implementing AI algorithms to discover patterns and generate insights from the
fitted data is known as Machine Learning (ML). Deep Learning is a subcategory
of ML and its function is analogous to the function of some parts of the human
brain. This is represented in figure 2.12.

Machine Learning algorithms can be categorized into several sub-category: Su-
pervised Learning, when the machine learns a task by mapping an input to an
output based on input/output examples. Unsupervised Learning, when the ma-
chine learns patterns from untagged data. Semi-Supervised Learning, when the
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Figure 2.11: AI classification types [Wikipedia, 2022a]

machine combines small amounts of labeled data with big amounts of untagged
data, and Reinforcement Learning, when the machine learns based on rewards or
desired behavior.

Deep Learning is a type of Supervised Learning and has several architectures.
Based on colleagues literature and papers, presented in Chapter 2.7, we’ve se-
lected Recurrent Neural Networks (RNN) and Convolutional Neural Networks
(CNN) as the most suited architectures for VAITP’s application’s field. In RNN’s
connections between nodes form graphs along a temporal sequence. They are
derived from Feed-Forward Neural Networks, an artificial neural network where
node connections do not form a cycle [Zell, 1994], and can use an internal mem-
ory state to process variable length sequences of input. CNN’s are based on a
shared-weight architecture of the convolution kernels and filters that slide along
the input features providing an equivariant map for the extracted features. All
VAITP AI models are either CNN or RNN based, both being deep learning
model types, as per Figure 2.12.

2.6.1 Neural Network (NN)

A Neural Network is a model that, similarly to the human brain, is composed
of layers, consisting of simple connected units, nodes or neurons (calculates the
output value based on a specific function and inputs), followed by nonlinearities
(changes in the output are not proportional to changes in the input).
Figure 2.13 illustrates a neural network with a set of inputs fed to the input layer,
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Figure 2.12: Classification of AI techniques [Moubayed et al., 2018]

that is fully connected to each node of each of the subsequent hidden layers. The
loss value will be calculated at the end of each iteration and is used to adjust
the values of the weights by means of back-propagation. Some of the nodes in
Layer 5 of Figure 2.13 are white and do not have connecting nodes, representing
dropout. Intentionally dropping some of the computed values in order to avoid
over-fitting the model.
A perceptron, as illustrated in Figure 2.14, is a Neural Network (NN) unit that
performs certain computations on the inputted data [Hange, 2021].
Each perceptron, or node, sums the values that it gets from its inputs, multiplies
it by its bias, which determines the importance that each value has at that partic-
ular iteration. Finally it uses an activation function to output its computed value
accordingly.

2.6.2 Recurrent Neural Network (RNN)

A RNN is a NN that is executed recurrently and where parts of each execution
are fed into the next iteration (the output of hidden layers from execution n are
fed as inputs to execution n+1).
RNN’s are used in VUDEC, presented in Chapter 2.7 and are also used in VAITP.
These have proven to be effective in evaluating sequences [TensorFlow, 2022b].
Figure 2.15 illustrates a RNN. The main difference from the NN is that the output
of the further layers is used as input of the previous layers nodes in next epoch
run. RNN networks also have memory. This allows them to store computation
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Figure 2.13: Illustration of a neural network (NN)

Figure 2.14: Illustration of a single perceptron

results and exhibit dynamic temporal behavior [DiPietro and Hager, 2020].
RNN’a are applicable to analysis of data in time series domains, where data is
related in context and order. Recurrence of connections can also feed to the same
neuron [Mueller et al., 2022].
From the illustration in figure 2.16 we can observe that the output of each hidden
layer is inputted to the same hidden layer in the next iteration. This allows the
model to gradually train and predict the meaning of the full sentence rather than
the meaning of individual words.
It is observable, from figure e 2.16, that the input layer receives the words ’we’,
’will’, ’rock’, ’you’. Since the output of the first node in the first hidden layer of
run 1, fed with the word ’we’ as input, is sent to the input of the first node of
the first hidden layer of run 2, fed with the word ’will’ as input, both in vector
form, this allows the algorithm to learn the semantics of the sentence and gain
the ability to know that the sentence "We will rock you" may mean that the user
probably wants the Queen song, but that the sentence "You rock we will" does
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Figure 2.15: Illustration of a recurrent neural network (RNN)

not have the same meaning.

2.6.3 Convolutional Neural Network (CNN)

A Convolutional Neural Network is a type of artificial neural network. It is
mainly used in image and natural language processing. It is patented after the
operation of the human brain. The arrangement of the nodes or neurons are ar-
ranged like the ones in the frontal lobe, responsible for processing visual stimuli
in animals.

Convolution

Convolution is a structured procedure where two sources of information are in-
tertwined. It is a mathematical operation on two functions (f and g) that produces
a third function that expresses how the shape of one is modified by the other.

Pooling

A pooling layer is another building block of a CNN. Pooling. Its function is to
progressively reduce the spatial size of the representation to reduce the amount
of parameters and computation in the network

1-Dimensional Convolutional Neural Networks (Conv1D)

Conv is calculated in just one direction (the time-axis) and outputs a single di-
mensional array. These are mostly used for text and natural language processing.

2-Dimensional Convolutional Neural Networks

Conv is calculated in two directions and outputs a three dimensional array. These
are mostly used for image processing.
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Figure 2.16: Illustration of an RNN executed 4 times [GoogleInc., 2021]

3-Dimensional Convolutional Neural Networks

Conv is calculated in three directions and outputs a four dimensional array. These
are mostly used for 3D image processing.

Bag of words

A Bag of words model represents a universe of words that compose a classifica-
tion, disregarding grammar and word order, but keeping multiplicity (the num-
ber of times a word occurs in a text). It is commonly used in text classification but
has also been successfully applied to computer vision [Wikipedia, 2022c].
Here we present an example of a Vector space model (algebraic model for text
representation as vectors):

(1) Lua likes to watch movies. Luccas likes movies too.

(2) Luccas also likes to watch cat clips.

From each sentence the following list of words can be constructed:

"Lua","likes","to","watch","movies","Luccas","likes","movies","too"

"Lua","also","likes","to","watch","cat","clips"

Representing each bag-of-words as a JSON object, and attributing to the respec-
tive JavaScript variable:
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Figure 2.17: Illustration of a CNN [NetworkCultures, 2021]

Figure 2.18: Convolution formula with interpretation [BetterExplained, 2020]

BoW1 = {"Lua":1,"likes":2,"to":1,"watch":1,"movies":2,"Luccas":1,"too":1};

BoW2 = {"Luccas":1,"also":1,"likes":1,"to":1,"watch":1,"cat":1,"clips":1};

Figure 2.19 illustrates a Bag of Words model with all words converted to vectors.

N-gram model

An n-gram model stores spatial information and can provide the bag of words
model with sequence “awareness”. Here, we present an example:

A bigram model (n=2) would store the frequency of each word and the one be-
fore:
[

"Lua likes",
"likes to",
"to watch",
"watch movies",
"Luccas likes",
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Figure 2.19: Illustration of a bag of words [Joshi, 2021]

"likes movies",
"movies too",

]

Long Short-Term Memory (LSTM)

A Long Short-term memory (LSTM) is an RNN that can process sequences of
data. Its unit is composed of a Cell, an Input Gate, an Output-Gate and a Forget-
Gate. The cell stores values over arbitrary time intervals and the gates regulate
the flow of information from and to the cell. Figure 2.20 illustrates the Long Shot
Term Memory (LSTM) cell. It combines the input value with the value of the pre-
vious hidden layer, calculates and stores the new cell state based on these com-
bined values plus the value of the previous cell state and outputs the calculated
value to the next cell in the network.

Figure 2.20: Illustration of a Long Short Term Memory network (LSTM) cell

Attending to figure 2.20 we can observe that the input vector is fed to the LSMT
cell and stored in Xt. The previous cells output and cell memory are accessible to
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the cell at Ht-1 and Ct-1 respectively. The cells current output and memory are
computed and stored in Ct and Ht respectively. Each LSTM cell outputs its value
to the next cell, as illustrated in figure 2.21 [Olah, 2016].

Figure 2.21: Illustration of Long Short Term Memory network (LSTM) cells con-
nections

Loss

Loss is the penalty for a bad prediction. It takes into account the probability or
uncertainty that a prediction varies from its true value. Figure 2.22 illustrates the
loss calculation ’yˆ ’ for a weight ’a’. Loss is propagated to nodes in the hidden
layers as illustrated in figure 2.23.

Accuracy

The fraction of predictions that a classification model got right as presented be-
low:

Accuracy = CorrectPredictions/TotalNumbero f Examples (2.1)

Regularization

Regularization is a process that reduces overfitting by adding a penalty to the loss
function so that the trained model does not learn interdependent sets of feature
weights.

Activation function

The function defines how the weighted sum of the inputs are converted into an
output value from a perceptron in an NN layer.
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Figure 2.22: Propagation of the loss function in a single layer perceptron

Strides

Stride is a parameter of NN’s filters that modifies the amount of movement over
the input [Deshpande, 2019]

Padding

Padding refers to the amount of pixels added to an input that is being processed
by the kernel (for images and videos)

Filters / Units

The filter parameter determines the number of kernels to convolve with the input.

Kernel Size

The kernel size is a tuple of 2 integers that specify the height and width of 2D
convolution windows.

Dimensionality

The dimensionality parameter represents the amount of input variables that rep-
resent features of a data-set.

Dropout

Dropout refers to ignoring the output of certain neurons at random within a cer-
tain limit. Dropout is used to prevent the model from overfitting by reducing
predictive performance.. Dropout is illustrated in figure 2.24.
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Figure 2.23: Propagation of the loss function in a multi-layer perceptron

2.6.4 Natural Language Processing (NLP)

Natural Language Processing is the ability of an algorithm to generate and pre-
dict sequences of data with languages. Whilst originally developed for natural
languages it has been proven to be successfully applied to software code: “(...)
humans tend to prefer conventional, familiar and typical code where patterns
and typical structures inevitably emerge (...) NLP-inspired models have been ap-
plied successfully to software code.” [Wartschinski et al., 2022].

Bag of Words

A Bag of Words is a representation of the input data as numerical vectors in a way
that disregards grammatical structure and the order of words whilst maintaining
multiplicity (the number of times a word occurs). Here is an example:

“(...) if (a > b or b > c): would be represented with {’a’: 1, ’b’:2, ’c’: 1, ’if’: 1, ’or’: 1,
’>’: 2, ’:’:1, ’(’: 1, ’)’: 1}.”

N-gram

An N-gram model processes sequences of n items from a given input. It is able
to identify sequential patterns in code but has a very low performance in high
dimensionality. Here is an example:

“(...) the last n tokens are taken into account and collected as an element
(...) for n=2 => {’(a’, ’a >’, ’> b’, ’b or’, ’or b’, ...}”
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Figure 2.24: Illustration of dropout application [Srivastava et al., 2014]

Embed in a numeral vector

Samples always have to be converted into numerical values.

One-hot embedding

Vectors of dimension n are used for each token (n = total unique tokens). In these
vectors a 1 represents that dimension is set and 0 one that it is not set. Here is an
example: Setting Monday to Sunday could be encoded as:

‘a’ = {1,0,0,0,0,0,0}

‘b’ = {0,1,0,0,0,0,0} (... etc)

Word2Vec embedding

Words are converted to tokens represented by a vector with dimensionality n=11.
Works as a 2 layer network. Words can be converted to vectors that can take
semantics into account.

Figure 2.25: Illustration of word2vec embedding

Note that there are several different techniques and libraries to vectorize data.
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Code2Vec represents snippets of code as continuous distributed vectors [Alon
et al., 2019]. Doc2vec is an NLP tool for representing documents as a vector and is
a generalizing of the word2vec method [Li, 2018]. Figure 2.26 illustrates different
methods that can be used to develop AI models for the detection of vulnerabili-
ties.

Figure 2.26: Different approaches for AI based vulnerability detection

2.7 AI-based Python vulnerability detection tools

Not many tools are available that use AI models specifically for Python code.
Moreover, many existing approaches rely on very coarse granularity that clas-
sifies programs, files, components, or functions, making it impossible to know
exactly where the vulnerability or possible injection point is. Here, we review
some of them and then focus on VUDENC, which is more related to our work.

Morrison et al. [Morrison et al., 2015] examine security vulnerabilities in Win-
dows 7 and Windows 8 with various machine learning techniques, including lo-
gistic regression, naive Bayes, support vector machines, and random forest clas-
sifiers, with relatively disappointing results, achieving very low precision and
recall values.

Several works have proved that it is possible to leverage deep learning models for
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fault prediction. RNN and convolutional neural networks used by Russel et al.,
based on a large C Github dataset, showed good performance and fine-tuning,
capable of highlighting suspicious parts in the code [Wartschinski et al., 2022].

Liu et al. used unsupervised learning to extract code features with a focus on
patches. Code patterns are encoded with word2vec. They show that for 90% of
the analyzed vulnerabilities, relevant context can be obtained from less than 10
lines of code [Liu et al., 2019].

LSTM networks are also proven to be suitable for modeling source code and fix-
ing errors in C code [Gupta et al., 2017]. Gupta et al. and Dam et al. use LSTM
networks and use 18 publicly available datasets from Java applications. They ex-
tract all methods with Abstract Syntax Tree (AST) and replace some tokens with
generic versions. They then use LSTM models to train features (syntactic and
semantic) and a random forest classifier (91% precision for within project predic-
tions and 80% for 4 of the other 17 projects)

Among all related works, VUDENC is more similar to what aim to do. It is a
Vulnerability Detection Tool that used RNN’s and is based on deep learning on a
natural codebase. It uses Long-Short-Term-Memory, an artificial recurrent neural
network (RNN) architecture for deep learning and used word2vec to represent
code as numerical vectors.
The authors of VUDENC try to answer the following question: ”What does vul-
nerable code typically look like?”. And attempt to answer the question with the
following approaches: i ) vulnerable code pattern analysis, and ii) Similarity anal-
ysis. They collect a large Python dataset from Github, filters and pre-processes
the data labeling according to commit info. We did not use this dataset in our
work as the data-set was found to be quite particular( huge text files with vulner-
able code).

VUENC uses an LSTM network that gets as input pure Python code that is con-
verted into vectors with Word2Vec as illustrated in figure 2.27.

1. Code is divided in samples of overlapping code snippets to capture context

2. Samples are converted to numerical vectors using word2vec (directly as
text; no AST nor tokenization is used)

3. A LSTM network is trained to extract features and applied to classify new
code

43



Chapter 2

Figure 2.27: Illustration of VUDENC architecture

VUENC experiments show that ”trying to use a model trained on one project
to find vulnerabilities in a different project (cross-project prediction) resulted in
a sharp decrease in precision and recall. (...), the best results were achieved
when working on a (partially) synthetic data set, as opposed to code from ’real’
projects.”. Our results demonstrate that a mixture between partially synthetic
data and code from ’real’ projects is actually able to obtain more accurate results.

They chose their vulnerabilities taking into consideration CVE lists and OWASP
top 10 and the most frequently fixed vulnerabilities. Labeling is done according
to commit context and stresses out the low manual review of vulnerable and non
vulnerable code. For VUDENC context the ’not-vulnerable’ label is also supposed
to be interpreted as ”at least not proven to be vulnerable”.

VUDENC paper considers the use of AST but opts not to use it: ” (...) code is
sequential data similar to natural text, and long short term memory networks are
designed precisely for the task of modeling such types of data, with outstand-
ing results (...) VUDENC is designed to work directly on source code as text”.
In VATIP we also compared AST with non-AST results and concluded quite op-
posed results to VUDENC, further detailed in Chapter 5.

VUENC has a quite rough granularity, with several lines of code being flagged
as the vulnerable part. To inject vulnerabilities we need even finer granularity at
the level of function calls. VUDENC only strips out Python comments. There is
no generalization of strings and tokens and no variables or literals are replaced
by generic names for data augmentation.

VUDENC uses Word2Vec for word to vector embedding as ilustrated in figure
2.28
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Figure 2.28: Illustration of diff usage for snippets that are converted to vectors

VUDEC makes use of the Adam Optimizer (Adaptative Moment Estimation) to
adjust learning rates dynamically and evaluation is done with true positives, true
negatives, false positives and false negatives.

The following metrics are used by VUDENC:

• Precision: rate of true positives within all positives

• Recall: rate of true positives over the total of positive and negative vulnera-
bilities

• Accuracy: rate of correct predictions compared to all predictions

• F1 score: balanced score between precision and recall

VUNENC filters repositories that may match security events (like CTFs) or real
exploits filtering out repositories with specific keywords.

Diffs are the changes made in a commit to a file. VUDENC obtains diffs and saves
them as text files obtained from HTTP requests. According to VUDENC results
using only diffs yield many false positives when applied to real code, although
real code has a low rate of vulnerabilities were as diffs have around 50%.

To create VUDENC data-set commits were checked for selected keywords, fil-
tered by Python code with a maximum of 30000 characters and duplicate entries
were removed.

VUDENC states that diffs with only new lines are not good for learning and also
discarded ( but further on the paper they state: “ many vulnerabilities are basi-
cally defined by the absence of certain protection mechanisms, like xsrf tokens, or
nonces / counters (...)” where only lines are added. “Commits relating to replay
attacks (...) had to be excluded ” ) [for injection this may be interesting as there
are injection points where only parts of the code need to be removed as to inject
a vulnerability].
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Useful conclusions in VUDENC that were used as base values for VAITP:

• A dimensionality below 30 will not be able to capture semantics in Python
resulting in poor model performance

• 50 iterations yield about the same results as 100 (we concluded that the
highest slope variation occurs actually in this range for us, see Chapter 5)

• Using one-hot embedding revealed to be infeasible due to computation ex-
penses

• Uses Keras to create a sequential model

• There is no need for separate dropout layers in LSTM’s since LSTM covers
this in hyper-parameters

• LSTM layer outputs to a Sigmoid activation function for binary prediction

• Higher dimensionality of the output space means a more complex structure
can be learned but more time is required for training

• Typical batch size values: 32, 64, 128

• Typical dropout values: 10% 50%

• Typical epochs values: 10 1000

• Even with ‘fine’ resolution the vulnerability is not fine enough for injections
with VAITP

• Number of neurons: 100

• Batch size: 128

• Dropout: 20%

• Optimizer: Adam

VUDENC pros and cons

Pros:

• Use of LSTM network seams best fitted for vulnerability detection

• They report a very high F1 score (89% ( 97.2 accuracy ; 92.9 precision ; 85.4
recall )

Cons:

• Since they scrap for attack types and exclude some of them there will always
be vulnerabilities unaccounted for
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• Detection is not fine grained enough for injection as illustrated in figure 2.29

Figure 2.29: Illustration of VUDENC granularity
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Detection of Vulnerability Injection
Points

3.1 Approach and methodology

Vulnerability detection and injection is one of the main functions of VAITP. This is
achieved in several ways: by static analysis of the source code of a Python file and
direct comparison with entries based on regular expressions from a local VAITP
database, or by using AI. Based on the projects analysed in chapter 2.7, we pro-
posed the development of a RNN AI model, using the TensorFlow framework,
that is able to classify new Python code, passed as input, as being "vulnerable",
"injectable" or "non-injectable". Furthermore, if the input is considered to be "in-
jectable" the most probable code blocks that caused the high probability should
be outputted.

For this goal to be achievable a big data-set has to be created.

3.1.1 Collect and classify Python vulnerabilities and patches

Researching possible solutions showed CVEfixes as a potentially interesting
project. It clones repositories, from github, bitbucket, and other public reposito-
ries, adds CVE/CWE information from Common Vulnerabilities and Exposures
(CVE) records in the public National Vulnerability Database (NVD) and saves its
output as a SQLite database.

From CVEFixes database we extracted all commit diffs that were Python-related
(filtering out huge diffs), classifying deleted lines (or modified before modifica-
tion) as being "vulnerable", new added lines (or modified after modification) as
being "injectable" and random code blocks from the whole python code as being
"non-injectable".

3.1.2 Data augmentation for balanced and realistic AI models

We manually reviewed all extracted files, and augmented the dataset, balancing
the number of files to have an equal amount in each category.
For this we manually created variations of each vulnerable, injectable and non-
injectable files, changing variables names, conditional logic and overall algorithm

49



Chapter 3

code organization (always within valid Python boundaries).

3.1.3 Train AI classification models using subsets of the dataset

Taking this data-set as inputs we converted all Python codes into their abstract
syntax tree (AST) format. (see ” convert_dir_to_AST.py ”)

Selected subsets of these AST files were then used as inputs to fit the AI RNN
Classificator model. Further node meanings can be extracted from the AST in
future work.

We proposed and developed an AI model that tells us if a given script is in-
jectable and where. The AI RNN Classificator Fit Model script developed takes
many parameters as input arguments, further detailed in chapter 3.2.2, and can
be used to specify the values of each hyper-parameter. These vary from the type
of model to be created (supporting BoW, C1D and LSTM), number of density lay-
ers, number of fitting epochs, amongst many others. Once the model has been
fitted (trained and tested), the model is exported and saved. This allows for new
prediction on new inputs without having to fit the model all over again. (see ”
VAITP_AI_RNN_Classificator_FitModel.py ” )

Researching state of the art AI techniques based on the heuristic investigation
of the work of fellow researchers, presented in chapter 2.7, made it possible to
identify which algorithms would have the best probability of obtaining desirable
results, with recurrent neural networks (RNN), specifically those based on Bag
of Words (BoW), Convolutional 1 dimension (Conv1D) and those based on Long
Short Term Memory (LSTM) being selected as most promising.

3.1.4 Evaluate the classification models

Remainder files from the dataset (in a 75-25 proportion) were used to test the
models. All trained models results are presented in chapter 5.

3.1.5 Select the most accurate AI classification models

To select the most accurate models we developed the model collector, an algo-
rithm that loops through predetermined values and gathers the obtained values
in a sheet that is then manually reviewed.

To use the AI RNN Classificator model that was exported, we’ve developed
a script that loads the exported model, selected by argument parameters, fur-
ther described in chapter 4.4.3, along with the path to the file to be clas-
sified. This outputs the predicted label along with the most probable in-
jectable code blocks if predicted as "injectable" and if the ’-o’ flag is set. (see ”
VAITP_AI_RNN_Classificator_RunModel.py ”)

Since an RNN can have many different hyper-parameters that can be tuned, we
also developed the Classificator Model Collector. It allows the automation of
value ranges to be looped, fitting many models with different values. The results
of these fitted models along with the values of the hyper-parameters used in that
fitting execution are saved in a CVS file for ease of data gathering and interpreta-
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tion. Furthermore the AI RNN Classificator Collector also plots graphs from the
obtained data. (see ” VAITP_AI_RNN_Classificator_Collector.py ”)

The environment architecture for VAITP AI RNN Classificator is shown in Figure
3.1. Vulnerabilities are obtained from CVEFixes, extracted, classified and man-
ually reviewed. The Classificator model is fitted and exports the Classificator
model (FitModel) that can then be loaded from the Classificator Run model script
(RunModel). The Classificator Run Model Collector (ModelCollector) fits several
models, testing many hyper-parameters and collects the used values along with
the results obtained from each fitted model.

Figure 3.1: VAITP AI RNN Classificator environment architecture

Outputs from each script are further described in Chapters 4.4.x.

3.1.6 Train AI translation models

We proposed and developed an AI model that can be used to generate possible
vulnerable code from inputted patched code. A Sequence2Sequence model, sim-
ilar to Google Translator, is fitted to convert Python code between lines that are
injectable and their respective vulnerable versions. To create the AI translation
model we manually selected and reviewed parts of the dataset in the required
format and trained the models. Due to the limited amount of the data subset,
this model works as a proof of concept only. The amount of hyper-parameters to
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tune were also very limited, thus no collector was developed for the translation
(Sequence2Sequence) models.

From the AI RNN Classificator model, when a code is predicted as being ”in-
jectable”, the most probable injection points are outputted. From this output we
need a way to convert that injectable code into vulnerable code. For this task we
selected a Sequence2Sequence model.

The Seq2Seq algorithm was developed by Google for use in machine translation
and relies on the TensorFlow framework. The Seq2Seq algorithm converts a se-
quence of characters into another sequence of characters using a sequence trans-
formation. For this task a different data-set format is needed.

This data-set was also first created by extracting single line commit diffs that were
Python-related from CVEFixes database, again classifying deleted lines (or mod-
ified before modification) as being "vulnerable", new added lines (or modified
after modification) as being "injectable" and random code blocks from the whole
Python code as being "non-injectable", followed by manual review, code augmen-
tation and obfuscation.

This data-set is then used to fit the Seq2Seq model that is exported after fitting.
(see ” VAITP_AI_S2S_FitModel.py ”)

To use the exported AI Seq2Seq model, we developed another script that
loads the model. It accepts a string as an argument parameter and outputs
the "translated" injectable Python code into vulnerable Python code. (see ”
VAITP_AI_S2S_RunModel.py ”)

3.1.7 Regex-based approach

Regex expressions are manually created according to each vulnerability or injec-
tion requirement and stored in a database.

Example of Regex patterns
In chapter 2 we demonstrated the use of the ”quote” function as input sanitiza-
tion. Its entry in the database is split in three parts:

1. ”quote(\r\n|\r|\n|\t| )*\((\r\n|\r|\n|\t| )*”

This Regex will match the ”quote” string followed by either none or one
of the following characters: new lines (in multiple operating systems), tabs
or spaces (all of these are allowed in Python) and the ”(” character. Figure
3.2 shows the highlight of the expression evaluation.

2. ”\\w+(|\.|\-|\_|\"|\’|\[|\]|\(|\)|:|\w+)*”

This Regex will match any string that is inside the ”quote” function. It
can be any alphanumeric character followed by any of the following char-
acters: dots, dashes , underscores, quotes, spaces, "’\or other alphanumeric
characters. Figure 3.3 shows the highlight of the expression evaluation.
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Figure 3.2: Regex matching ”quote” function

Figure 3.3: Regex matching the content of the declared ”quote” function

3. ”\)(\r\n|\r|\n|\t| )*$”

This Regex will match the end of the ”quote” function. It covers new
lines, spaces and tabs that can be added before the closing parenthesis of
the function. Figure 3.4 shows the highlight of the expression evaluation.
Note that these expressions are combined in the algorithm and the Regex
match in Figure 3.4 will not match any other function closing parenthesis.

Figure 3.4: Regex matching the end of the ”quote” function

Regex expressions can be quite complex and require time to properly craft. But
once they are coded they match the required patterns with ease.

53



Chapter 3

When a file is scanned with Regex, each line of the file is processed and checked
against the Regex pattern. All vulnerabilities that are in VAITP’s database are
checked for the current line being processed as well as all possible injection
points.
Regex is also part of the VAITP GUI algorithm. Used as filter expressions in
processing of different parts of the GUI explained in Chapter 4, as exemplified in
3.1.

Listing 3.1: Regex for comment filtering

1 QString REGEX_PYTHON_SINGLELINE_COMMENT = "#(.)*"; // #
2

3 QString REGEX_PYTHON_MULTILINE_COMMENT =
4 "((''')|(\"\"\"))((.)|\n|\r)*((''')|(\"\"\"))"; // ''' or """

In 3.1 line 1 will match single line comments with a hashtag ’#’. Line 3/4 will
match multi-line comments with three single quotes or three double quotes.
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3.2 AI Classificator models

AI Classificator models are Recurrent Neural Network algorithms, based on Ten-
sorFlow. they take a Python file as input and output the most probable corre-
sponding label ("vulnerable", "injectable" or "noninjectable").

Classificator architecture overview

The script accepts several argument parameters that allow the manipulation of
the different hyper-parameters used in model fitting.

Figure 3.5: AI RNN Classificator model architecture
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3.2.1 Dataset
Our data-set comes from the extraction of commit diffs for Python code, filtered
and manually reviewed, from CVEfixes database [Bhandari et al., 2021]. CVE-
fixes records automatically collected from Common Vulnerabilities and Expo-
sures (CVE) records in the public National Vulnerability Database (NVD).
The used database version covers all published CVE records up to 9 June 2021. It
covers 5495 vulnerability fixing commits in 1754 open source projects for a total
of 5365 CVEs in 180 different Common Weakness Enumeration (CWE) types.
The data-set includes the source code before and after fixing of 18249 files, and
50322 functions from several programming languages.
We extracted only Python commits diffs, from CVEfixes, where less than 10000
characters were changed, saving only these lines into before (labeled as “vulner-
able”) and after (labeled as “injectable”) patching as text files.
In total this provided us with 955 labeled files.
We removed duplicates, manually reviewed and selected files as belonging to
one of the three mentioned categories (not all files were reviewed due to time
constrains).
Manual review of the remainder extracted files along with data augmentation, a
process needed to guarantee the best accuracy possible whilst maintaining a non-
over-fitted model, yielded a total data-set size of 528 training files (163 vulnerable,
157 non-injectable and 208 injectable) and 160 testing files (54 vulnerable, 46 non-
injectable and 60 injectable).
The big amount of high quality Python code, along with the optimized hyper-
parameters obtained from the Classificator Collector, allowed us to deploy final
models of all the presented types with very high accuracy (above 95% in many
models).
The Classificator Fit Model takes abstract syntax tree (AST) versions of the python
codes in the data-set. For this we’ve coded a script that converts all the selected
files into AST (see ” convert_dir_to_AST.py ”).

Table 3.1: Training dataset summary

Vulnerable files Injectable files Non-injectable
files

Total

163 208 157 528

Table 3.2: Testing dataset summary

Vulnerable files Injectable files Non-injectable
files

Total

54 60 46 160

3.2.2 Fit model

VAITP AI Classificator Fit Model script can be used to train and test (fit) and save
models. It accepts (and even requires) several argument parameters to be passed
as inputs.
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Available parameters for VAITP AI Classificator Fit Model

Running the script with the -h or –help flag will output the available parameter
options and a description of each.

Figure 3.6: VAITP AI Classificator Fit Model help output

Fitting a BoW model

To create a BoW model the following parameters are mandatory (followed by an
example value):

• -t bow

The -t (or –model_type=) parameter is needed to indicate that the model
should be a Bag of Words.

• -e 1000

The -e (or –epochs=) parameter is needed to set the number of epochs
the model should be fitted for. In our example it would be fitted for 1000
epochs.
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• -l 7

The -l (or –layer_density=) parameter is needed to set the number of
density layers (with a minimum value of 3).

• -d 0.2

The -d (or –dropout=) parameter is needed to set the dropout value (the
penalty for a bad prediction).

• -b 3

The -b (or –activation_model_sequencing=) parameter is needed to set
the model sequencing activation function to SoftMax.

• -v 5000

The -v (or –vocab_size=) parameter is needed to set the maximum size
of the learned vocabulary.

• -m 450

The -m (of –max_sequence_length=) parameter is needed to set the max-
imum length value of any learned string.

The final command to train a Bag of Words model for 1000 epochs, with 7 density
layers, 2% of dropout, using SoftMax as the sequencing function, a maximum
vocabulary size of 5000 and a maximum string length of 450 characters is:

python VAITP_AI_RNN_Classificator_FitModel.py -t bow -e 1000 -l 7 -d 0.2 -b
3 -v 5000 -m 450

Figure 3.7: VAITP AI Classificator Fit Model - Fitting of a BoW model
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The BoW model is the fastest to fit with the presented settings being able to create
a high accuracy model in less than two minutes.

Figure 3.8: VAITP AI Classificator Fit Model - Final output of fitting of a BoW
model

The output of VAITP Classificator Fit Model algorithm contains information
about how many files were found in the data-set paths for training (528) and
testing (160), how many correct predictions from the test data-set were correctly
predicted by the model (151 out of 160), indicating the ones that were not cor-
rectly predicted, the final model’s accuracy (93.12%), loss values (0.20) and total
fitting time (0:01:35).

Fitting a Conv1D model

To create a Conv1D model the following parameters are mandatory:

• -t c1d

The -t (or –model_type=) parameter is needed to indicate that the model
should be a Bag of Words.

• -e 1000

The -e (or –epochs=) parameter is needed to set the number of epochs
the model should be fitted for. In our example it would be fitted for 1000
epochs.

• -l 3

The -l (or –layer_density=) parameter is needed to set the number of
density layers (with a minimum value of 3).

• -d 0.2

The -d (or –dropout=) parameter is needed to set the dropout value (the
penalty for a bad prediction).

• -a 1

The -a (or –activation_model_creation=) parameter is needed to set the
activation function for binary models (Conv1D and LSTM)
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• -b 3

The -b (or –activation_model_sequencing=) parameter is needed to set
the model sequencing activation function to SoftMax.

• -k 5

The -k (or –conv1d_kernel_size=) parameter is needed to set the kernel
size.

• -f 128

The -f (or –conv1d_filters=) parameter is needed to set the length of the
convolution window.

• -o 64

The -o (or –output_dimensionality=) parameter is needed to set the size
of the output dimensionality.

• -v 5000

The -v (or –vocab_size=) parameter is needed to set the maximum size
of the learned vocabulary.

• -m 450

The -m (of –max_sequence_length=) parameter is needed to set the max-
imum length value of any learned string.

The final command to train a Conv1D model for 1000 epochs, with 3 density lay-
ers, 2% of dropout, using Sigmoid as the model creation activation function and
SoftMax as the sequencing function, a kernel window size of 5, with 128 filters, 64
output dimensions, a maximum vocabulary size of 5000 and a maximum string
length of 450 characters is:

python VAITP_AI_RNN_Classificator_FitModel.py -t c1d -e 1000 -l 3 -d
0.2 -a 1 -b 3 -k 5 -f 128 -o 64 -v 5000 -m 450

Figure 3.9: VAITP AI Classificator Fit Model - Final output of fitting of a Conv1D
model

The output of VAITP Classificator Fit Model contains the same information as
presented for the BoW model (Figure 3.8). Note that the time taken to fit the
Conv1D model was around 18 minutes (compared to less than 2 with a BoW).
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Fitting a LSTM model

To create a LSTM model the following parameters are mandatory:

• -t c1d

The -t (or –model_type=) parameter is needed to indicate that the model
should be a Bag of Words.

• -e 74

The -e (or –epochs=) parameter is needed to set the number of epochs
the model should be fitted for. In our example it would be fitted for 74
epochs.

• -l 3

The -l (or –layer_density=) parameter is needed to set the number of
density layers (with a minimum value of 3).

• -d 0.2

The -d (or –dropout=) parameter is needed to set the dropout value (the
penalty for a bad prediction).

• -a 1

The -a (or –activation_model_creation=) parameter is needed to set the
activation function for binary models (Conv1D and LSTM)

• -b 3

The -b (or –activation_model_sequencing=) parameter is needed to set
the model sequencing activation function to SoftMax.

• -u 128

The -u (or –lstm_units=) parameter is needed to set the units size of the
LSTM hidden states.

• -o 64

The -o (or –output_dimensionality=) parameter is needed to set the size
of the output dimensionality.

• -v 5000

The -v (or –vocab_size=) parameter is needed to set the maximum size
of the learned vocabulary.

• -m 450

The -m (of –max_sequence_length=) parameter is needed to set the max-
imum length value of any learned string.
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The final command to train a LSTM model for 74 epochs, with 3 density lay-
ers, 0% of dropout, using Sigmoid as the model creation activation function and
SoftMax as the sequencing function, with 128 units, 64 output dimensions, a max-
imum vocabulary size of 5000 and a maximum string length of 450 characters is:

python VAITP_AI_RNN_Classificator_FitModel.py -t lstm -e 74 -l 3 -d 0
-a 1 -b 3 -u 128 -o 64 -v 5000 -m 450

Figure 3.10: VAITP AI Classificator Fit Model - Final output of fitting of a LSTM
model

The output from VAITP Classificator Fit Model has the same information as pre-
sented for the BoW model (Figure 3.8). Note that the time taken to fit the LSTM
model was around 22 minutes for 74 epochs (compared to less than 2 minutes for
1000 epochs with a BoW).

The presented examples create different AI models that can be used to predict if
a given input is "injectable", "vulnerable" or "noninjectable".

Once a model has been fitted it is saved to:

"/VAITP GUI/vaitp/exported_ai_models/"

3.2.3 Run model

VAITP AI Classificator Run Model script accepts (and even requires) some argu-
ment parameters to be passed as inputs.

Available parameters for VAITP AI Classificator Run Model

Running the script with the -h or –help flag will output the available parameter
options and a description of each as shown in figure 3.11
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Figure 3.11: VAITP AI Classificator Run Model help output

The following parameters are available:

• -h, –help

Show the help message and exits

• -i INPUT_FILE, –input_file=INPUT_FILE

Set the input Python file to be scanned

• -o, –optimize_granularity

Try to optimize granularity of inputs predicted as ”injectable” (outputs
the most probable injection points (optional))

• -m, –use_model=MODEL_PATH

Set the path to the exported model that should be loaded

An example of the final command to run VAITP Classificator with a new input
file to be analysed is:

python VAITP_AI_RNN_Classificator_RunModel.py -i
”/home/fred/vaitp/VAITP GUI/vaitp/vaitp_dataset/test/vulnerable
/whilelist_url_14.py” -m ”/home/fred/msi/ano2/VAITP/VAITP
GUI/vaitp/exported_ai_models
/vaitp_classificator_model_0.98_C1D_190_3_2022_06_08_09_37.tfv”

The ’-i’ flag is used to set the input file that should be scanned to:
”/home/fred/vaitp/VAITP GUI/vaitp/vaitp_dataset/test/vulnerable/whilelist_url_14.py”

The ’-m’ flag is used to set the AI model path that should be loaded to:
”/home/fred/msi/ano2/VAITP/VAITP GUI/vaitp/exported_ai_models
/vaitp_classificator_model_0.98_C1D_190_3_2022_06_08_09_37.tfv”

From the model name, dynamically generated by VAITP Classificator Fit Model,
we can see that it’s a model with 98% accuracy, based on Conv1D, that was fitted
for 190 epochs, 3 density layers and was created on 2022-06-08 at 09:37.

If a Python file is classified as being ”injectable” and the -o parameter is set, the
script will also output the most probable code blocks found to be "injectable".
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Figure 3.12: VAITP AI Classificator Run Model output of a vulnerable file scan

Figure 3.12 shows the output from VAITP Classificator Run Model algorithm, fed
with a vulnerable file. The ’predicted label’ line indicates b’vulnerable’ which as
the label implies indicates a vulnerable file.

Figure 3.13: VAITP AI Classificator Run Model output of an injectable file scan

Figure 3.13 shows the output from VAITP Classificator Run Model algorithm, fed
with an injectable file. The ’predicted label’ line indicates b’injectable’ which as
the label indicates, is an injectable file. Note that the command has the ’-o’ flog
parameter set, which enables granularity optimization of found to be injectable
scripts, providing the extra output lines:

Detected an injectable code. Trying to optimize granularity...

[0] Injectable AST node python code: exec_var =
urllib.parse.quote(sys.argv[0])

[0] Injectable AST node python code: urllib.parse.quote(sys.argv[0])

[0] Injectable AST node python code: urllib.parse.quote

From the outputted lines we can observe that the injectable code blocks identified
by the algorithm relate to a protection of the scanned script with the use of the
”quote” function to sanitize an input parameter.

Figure 3.14: VAITP AI Classificator Run Model output of an non-injectable file
scan
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Scanning a non-injectable file from the test data-set, see Figure 3.14, shows the
predicted label as being b’noninjectable’ which, as the name implies, indicates a
non-injectable prediction for the input file.

3.2.4 Model Collector
VAITP model collector does not have input parameters. Instead, the collector
code has to be edited. All hyper-parameters are looped as per the specified val-
ues.

Taking fitting epochs as example, there are 3 variables that control how many
epochs should each model be fitted for: ”fitting_epochs” which specifies how
many epochs the first created model will have, ”total_fitting_epochs” which spec-
ifies how many epochs the last created model will have and ”fitting_step” which
specifies the increment of epochs that the created models should have.

In order to configure the Collector to fit 10 models, starting with 10 epochs up to
100, the variables would be configured as:

• fitting_epochs=10

• total_fitting_epochs=100

• fitting_step=10

The same logic applies to the other hyper-parameters: The total amount of den-
sity layers, the dropout values, the types of models, the sequencing and model
creation activation functions, the filters, kernel sizes, output dimensions, vocabu-
lary size, maximum sequence length and the total amount of run that each com-
bination of hyper-parameters should be tested for (this allowed the calculation
of the mean of the three runs for each combination, to provide more accurate
results).

All the presented variables represent the final value that will be passed to the
Classificator Run Model script. Having ”fittin_epochs=10” will set the amount of
fitting epochs to 10. With the exception of the model type variable. To select the
model type, only two control variables exist: ”model_start” and ”model_total”.
They map their values to an array of strings that has the three available model
types supported by the Classificator Run Model script. Setting ”model_start” to
0 and ”model_total” to 0 will create only BoW models. Setting them both to 1
creates only Conv1D models. Setting them both to 2 creates only LSTM models.
Setting ”model_start” to 0 and ”model_total” to 2 creates all three model types.

Results and outputs from the Model Collector

All fitted models are exported and can be loaded by VAITP Classificator Run
Model script. The collector saves the values of the hyper-parameters and the
results of the model fitted in a CSV file: ”vaitp_trainmodel_output.temp”. This
file, seen in Figure 3.15, has the following information sequentially:

1. Number of files in the training data-set
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2. Number of files in the testing data-set

3. Optimizer

4. Model type

5. Number of fitting epochs

6. Number of density layers

7. Dropout value

8. Activation function to use upon model creation (for C1D and LSTM only)

9. Activation function to use upon model sequencing

10. Number of Strides (for C1D only)

11. Padding value (for C1D only)

12. Output dimensionality (for C1D and LSTM only)

13. Number of Filters/Units (depending on model type) (for C1D and LSTM
only)

14. Size of the kernel (for C1D and LSTM only)

15. Vocabulary size

16. Maximum sequence size

17. Execution number

18. Final model accuracy

19. Final model loss

Figure 3.15: VAITP AI Classificator Model Collector CSV output

The Collector is able to produce different graphs with the plotted data. It has
different parameter combinations that can be programmed at will. By default it
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plots graphs for the fitting epochs vs the final accuracy and the fitting epochs vs
the final loss. Examples of both these graphs can be seen in Figure 3.16.

Figure 3.16: VAITP AI Classificator Model Collector plotted output (accuracy and
loss vs fitting epochs)

3.2.5 Model testing and optimization

We tested the created models from a small data-set size and progressively in-
creased and balanced the data-set size.

To optimize the model we fitted a total of 13079 models.

On every set of tests we tuned a particular hyper-parameter leaving the others
fixed. Every hyper-parameter presented in list 3.2.4 has been tuned in different
test batches, with the exception of the optimizer which has been set to ’Adam’,
based on research results presented in Chapter 2.7.

The results and conclusions regarding the best models and hyper-parameters
combinations for our application are presented in Chapter 5.

We used TensorBoard to look at fitting data generated by fitting callbacks setup
in the Fitting Model algorithm. Figure 3.17 illustrates the graphs obtained in
TensorBoard.

Figure 3.17: Illustration of the graphs generated by TensorBoard
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The full data sheet with all the tests values can be seen in attached file
”Sumario_de_dados_final.csv

3.3 AI Sequence 2 Sequence models

Sequence 2 Sequence models are AI deep learning models [TensorFlow, 2022a].
They have shown to be successful in machine translation, text summarizing and
image captioning and have been used in Google Translate since the end of 2016
[Dugar, 2019].

Seq2Seq models take sequences of characters and outputs another sequence of
characters. In VAITP we use this model type to ”translate” injectable Python
code into vulnerable Python code.

It is based on a Neural Machine translation with attention, initially proposed by
[Minh-Thang Luong, 2015]. It selectively focuses on parts of the source sentence
to improve neural machine translations (NMT).

Figure 3.18: VAITP AI Seq2Seq injectable to vulnerable translation example

Figure 3.18 demonstrates (in red) an example of how a line of Python code that
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uses the subprocess.call method, sanitized by the use of the quote function and
with the ”shell” parameter set to ”false” can be ”translated” into the same but un-
sanitized version of the input, with the ”shell” parameter set to ”true”. The orig-
inal figure, adapted from TensorFlow’s documentation and presented in black
text, demonstrates the Seq2Seq applicability to the translation of English to Span-
ish sentences.

Model architecture:

Figure 3.19: VAITP AI Seq2Seq architecture

The Seq2Seq model is created by ”VAITP_AI_S2S_FitModel.py”. As we can see
in Figure 3.19, the script loads the data-set, explodes and cleans parts of the in-
putted strings, labels and converts them to vectors before feeding this data into
the encoder/decoder.
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The encoder obtains the input sequence with attention to its context in the form of
a hidden state vector and transmits it to the decoder which produces the output
sequence. As demonstrated by Figure 3.20.

Figure 3.20: Encoder/decoder architecture

Since the output sequence relies on the context it makes it challenging to deal
with long sentences. That is why ”Attention” is introduced [Minh-Thang Luong,
2015] and allows the model to focus on certain parts of the inputs sequence at
every stage of the decoder. This allows the context to be preserved from the
beginning to the end of the processed sequence.

Figure 3.21: Encoder context hidden states [Dugar, 2019]

Hidden states are added to the end of the encoder according to the number of
instances in the input sequence. In figure 3.21 we can see these hidden states
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represented.They allow context from the whole sentence to be taken into consid-
eration.

The decoder’s hidden states (HS4 and HS5 in Figure 3.21) are replaced by the
context vector (that is the result of the sum of the hidden state vectors of the
encoder) concatenated with the decoder’s original hidden states.

Figure 3.22: Encoder/decoder encoder attention sums [Dugar, 2019]

As Figure 3.22 represents, attention scores are calculated by the use of the align-
ment model, that scores how well an input matches with the previous output,
and uses a SoftMax function to calculate each resulting value.

Figure 3.23: Seq2Seq neural machine translation with attention [Dugar, 2019]

The final Seq2Seq neural machine translation with attention, based on an en-
coder/decoder architecture, is represented in Figure 3.23.
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3.3.1 Data-set

The Seq2Seq model requires a very different data-set format than the one pre-
sented for the Classificator. Since context is taken into account, possible injectable
strings must be as concise as possible whilst maintaining as large vocabulary size
as possible.

Our Seq2Seq model works as a proof of concept and has a big window of op-
portunity for further development and data-set augmentation. As of now it
mainly proves that an "injectable" Python code can be converted into a "vulnera-
ble" Python code with the use of this technique.

S2S data-set augmentation

The initial version of the data-set was written manually. The data-set for the Se-
quence 2 Sequence model was augmented by adding all one-line vulnerabilities
and patches from CVEFixes, cleaned and manually reviewed.

Finally the data-set was augmented manually, by changing variables names,
adding possible variations and combinations of input possibilities and known
vulnerabilities and injections. This ensures that the model gets enough entropy
to not become over-fitted and to better produce final output sequences.

The final Seq2Seq data-set is composed of 102 entries.

3.3.2 Fit model

The final best performing Seq2Seq model, based on TensorFlow documentation
[TensorFlow, 2022a], was fitted for 70 epochs, with a maximum vocabulary size
of 50000 words, 1024 embedding dimensions and 1024 units. These values were
tuned manually, due to their limited number, and no Collector was developed for
this type of model. The fitting script also requires no arguments to be run:

python VAITP_AI_S2S_FitModel.py

Figure 3.24: Output of Seq2Seq Fit Model script
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Figure 3.24 shows the output of the Seq2Seq Fit Model script where the predicted
translation for the sample vulnerability based on subprocess.call is outputted for
3 input strings:

’subprocess.call(argv[1], shell=False)’
’subprocess.call(value, shell=False)’
’subprocess.call(filename, shell=False)

The output of the Seq2Seq model were the strings:

’subprocess.call(value,shell=True)’
’subprocess.call(value,shell=True)’
’subprocess.call(outrovalor,shell=True)

Based on the output of figure 3.24 it is observable that the Seq2Seq model was
able to successfully translate all occurrences of the value ”false” set to the ”shell”
parameter and has set the parameter to ”true” instead. It is also noticeable that
the model was not able to correctly translate some of the variable names (that
should actually keep their name). This also proves the improvement window
that can still be made.

Once the model is fitted it is exported to:

VAITP GUI/vaitp/exported_ai_models/

3.3.3 Run model

Running the Seq2Seq Run Model script with the ’-h’ parameter set, as per Figure
3.25, will output the help menu with all the possible parameters:

Figure 3.25: Seq2Seq Run Model script help menu

The following parameters are available:

• -h, –help

Show the help message and exits
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• -i INPUT_STRING, –input_string=INPUT_STRING

Set the input string to be translated

The following command exemplified the execution of the Seq2Seq Run Model
against a given input:

python VAITP_AI_S2S_RunModel.py -i "subprocess.call(value,
shell=False)"

From the script’s output we obtain the vulnerable Python code:

python VAITP_AI_S2S_RunModel.py -i "subprocess.call(value,
shell=True)"

Figure 3.26 demonstrates the output of the Seq2Seq Run Model script.

Figure 3.26: Seq2Seq Run Model script output

As observable from figure 3.26, the Seq2Seq model is able to translate injectable
Python code into vulnerable Python code. In order to teach the model with words
that it needs to be able to translate (even if it is to the exact same character se-
quence) has to be fed to the model. For this we added ”common.txt”. A base file
of strings that the model should be able to translate. Due to computing power
and time restrictions, the common words file is short and works as a proof of
concept. Further data-set augmentation is needed for the model to be reliably
deployed in production scenarios.
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VAITP - Vulnerability Attack and
Injection Tool in Python

VAITP has a GUI that allows teams to follow the intended workflow for a vulner-
ability to be detected, injected and exploited. Since there are vulnerabilities that
depend on several injections to take place, VAITP also supports chained vulner-
ability injection. We’ll cover all these in detail in this chapter. The core and GUI
of VAITP is written in C++ and Python. All source code is open sourced and can
be found in VAITP’s git repository [Bogaerts, 2022b].
Many high level features of VAITP are available. It’s capable of analysing and
detecting Python vulnerabilities in a given script. This is based on the vulnerabil-
ities that were identified during research and populated into VAITP’s database.
There are many limits to the detectable and injectable vulnerabilities in the cur-
rent development version, due to the small size of the database population, but
are enough to prove that the features work. Further work has to be done to in-
crease the dataset and database sizes.
VAITP scans a give python file with Regex and deep learning AI models. It lists
the scanned files, detected vulnerabilities and once a given vulnerability is se-
lected it gives a small description on it. It lists the possible function calls that are
vulnerable, along with a small description of the calls. It then lists the possible in-
jection points, allows the creation of injection chains and lists injected files. Once
an injected or vulnerable file has been set as target, VAITP can launch attacks
based on specific payloads targeted for the detected vulnerabilities. In the GUI
we’ve also included a fuzzer, that allows the creation of dynamic payloads based
on given characters. This part of the algorithm is still not complete due to time
constrains. VAITP also lists and keeps track of the injected vulnerabilities and
vulnerable files. Users can import custom payloads to the database and VAITP
can also generate a PDF report of all its findings.

4.1 Researched Python vulnerabilities

VAITP can detect vulnerabilities present in its Regex patterns in its database or
learned by the deep learning AI models from the data-set. The database structure
is detailed in section 4.4.
At the current update VAITP is able to:
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• Detect 108 vulnerabilities

• Inject 8 types of sanitization removal / vulnerability injection

• Attack with 455 payloads (and supports custom payload imports from the
user in the GUI)

• Deobfuscate 2 types of obfuscated vulnerabilities (PoC)

Each individual vulnerability is caused by specific function calls. These include
an entry per vulnerability, e.g.: AL_MFRMUF describes an Algorithm (AL) that
is Missing (M) in a Flask (F) script a url_for (UF) function call. The issues table
[Bogaerts, 2022a] also classifies vulnerabilities in Generic (G) to the Python lan-
guage or Specific (S) to a particular library. The table also lists the treats presented
from the exploitation of a particular vulnerability.

Each vulnerability has one or more function calls. These are functions where a
vulnerability can be exploited if not properly sanitized.

4.2 Vulnerable functions

Functions, also called as methods, sub-routines or procedures depending on the
programming language, are blocks of organized and reusable code that is used to
perform a single related action.

Each vulnerability has at least one function call. In many cases a single vulner-
ability can be exploited from several function calls. These are documented from
the already mentioned sources, Bandit, SonarSource, RATS and CVEDetails.

E.g.: the AL_DUPL call reflects an Algorithmic (AL) Dangerous (D) Use (U) of the
Pickle (PL) vulnerability. This same Pickle vulnerability can be exploited from
the following function calls: "pickle.load", "pickle.loads", "pickle.Unpickler",
"cPickle.load", "cPickle.loads", "cPickle.Unpickler", "dill.load", "dill.loads",
"dill.Unpickler", "shelve.open" and "shelve.DbfilenameShelf".

4.3 VAITP architecture

VAITP algorithm is developed using C++ and Python. It’s divided in the sev-
eral components/modules. Each module adds functionality to the program. It is
divided in four main components:

1. SQLite Database

Data storage for all vulnerabilities, vulnerable function calls and injec-
tions.
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2. AI deep learning models

AI algorithms that can predict if a script is vulnerable, injectable or non-
injectable

3. Core engine

Vulnerability detection, injection and attack modules

4. GUI

Graphical user interface that allows the user to control the tool, modules
and models.

Figure 4.1: ER diagram of VAITP

Figure 4.1 illustrates the different modules of VAITP. Each part of VAITP fulfils a
specific goal that ultimately provides the user with the ability to detect and inject
vulnerabilities and exploit them.

Figure 4.2: VAITP workflow diagram

Figure 4.2 shows a work diagram of VAITP’s modules.
Each module is described below:
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• Detection module

Using VAITP hackers can load a Python script that will be scanned by
the detection module. This module will determine whether there are vul-
nerabilities present in the code though static analysis and if any vulnerabil-
ity can possibly be injected.

• AI module

Deep learning AI models are interfaced with the GUI to allow users to
use these models directly from VAITP’s GUI. These classify Python scripts
and generate injection points.

• Injection module

Once a possible injection is identified the injection module displays pos-
sible injections and allows either for the direct injection or for the construc-
tion of injection chains. These are sequences of injections that are executed
one after the other (some vulnerabilities depend on chained injections in
order to be exploitable).

• Attack module

After injecting or detecting the presence of a vulnerability the attack
module can exploit it, either using the built-in payloads present in VAITP’s
database or dynamically composing them using fuzzing techniques with
characters passed by the user (to be developed). Each vulnerability is ex-
ploited with each of the payload entries. Payloads are incorporated from the
research and from PayLoadAllTheThings repository [Swissky, 2022]. Every
exploitation attempts to be as automated as possible and the attack module
will report any working attacks back to the user.

For Regex based scans, a vulnerability is manually reviewed from one of the
sources (Bandit, SonarSource, RATS and CVEDetails) and its data is documented.
This vulnerability is then added to VAITP’s Database.
For AI based scans, a data-set of vulnerabilities extracted from CVEFixes and
manually reviewed, is used to train deep learning AI models.
When a user submits a file VAITP first launches the detection module to scan
the file and tries to identify if that file is vulnerable, if there is the possibility to
inject it or if it is non-injectable. Once Regex has been used, VAITP runs the AI
models to obtain possible injection points. These usually result from the removal
of sanitization calls or manipulation of the function call parameters.

E.g.:
sanitising a user inputted string with the quote function can be injected by re-
moving the invocation of this call. Vulnerabilities present in the Python script
can immediately be exploited by the attack module. Possible vulnerability injec-
tion points can be injected and then attacked by the attack module.
In Figure 4.3 a detailed use case is presented with a user supplying a script with
a patched call to subprocess.call. The script is analysed by the detection module
which loads all vulnerabilities data from the database, these may be plain text or
Regex. It then scans the file for all known vulnerabilities and if one is found it
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adds it to the vulnerabilities list. It then proceeds by checking for any patches.
Patches are composed of three Regex-capable fields fully explained in section 4.4.
If a patch to a otherwise vulnerable call is present the possibility of injection will
be added to the injections list.
The script is then analysed by the AI models. VAITP AI Classificator model is first
used to classify the script as vulnerable, injectable or non-injectable. If a script is
found to be injectable the most probable injectable codes are outputted and can be
passed into the VAITP AI S2S model. This model attempts to convert injectable
Python code into vulnerable Python code with a Sequence to Sequence model (it’s
like a Google Translator of injectable to vulnerable Python code). These ”trans-
lated” new strings can then be used in the composition of new injection points in
VAITP.
The injection module can be used to inject detected vulnerabilities back into the
Python script. The vulnerable file (either due to injection or to the fact that it
was already vulnerable) can then be set as the target. Multiple injections may
be required to achieve a successful attack. For this injections can be chained by
the injection module and once injected into a script it can be set as target for
the attack module. The attack module then uses the file that was set as target
along with the list of payloads loaded from the database to execute the exploit. It
reports working vulnerabilities based on the expected output analysis from the
scripts exploitation and provides the user with that output.

4.4 VAITP database

VAITP’s database is SQLite based. This allows the database to be portable and
does not require an SQL engine to be set up in the environment under test. The
database architecture is very simple and easy to maintain.
The ”payloads” table stores possible payloads that can be used in the exploitation
of any vulnerability. The automation of the attack process from the tool only
requires a list of payloads. None is particular to a specific vulnerability so no
foreign keys are needed. The ”Vulnerabilities” table has the "id" field, which
uniquely identifies each vulnerability in the database. It has the ”vulnerability”
field, which identifies a vulnerability by its internal name, the "type" field which
separates local from remote vulnerabilities and the ”description” field which is
used to present the user with a detailed description of each selected vulnerability.
The ”injections” table stores the data needed by VAITP to create the correct Regex
patterns when injecting vulnerabilities. It has an ”id” field to uniquely identify
each injection. A patched vulnerability is usually a complex instruction or set
of instructions. To account for this complexity VAITP’s injections table has the
fields "patch_start", "patch" and "patch_end": these compose different parts of
Regex expressions that are recognized by VAITP’s injection module.
E.g.:
patch_start:
”quote(\r\n|\r|\n|\t| )*\((\r\n|\r|\n|\t| )*”

patch:
”\\w+(|\.|\-|\_|\"|\’|\[|\]|\w+)*”
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Patch end:
”\)(\r\n|\r|\n|\t| )*$”

The last field is the "injection" field which stores the correct injec-
tion Regex pattern for each patched vulnerability (e.g.: ”\\w+(|\.|\-
|\_|\"|\’|\[|\]|\w+)*” ). In cases where justified fields can also be NULL
(e.g.: patching "shell=False" to "shell=True" only requires the patch and the injec-
tion fields, having patch_start and patch_end fields with NULL values).
The ”deobfuscation” table assists the detection modules to find obfuscated vul-
nerabilities.
Figure 4.5 illustrates how the obfuscation architecture is incorporated in VAITP.
A obfuscated script attempts to change the algorithm in such a way that it can
avoid detection but still work as intended.
E.g.:

Listing 4.1: Obfuscated Python script 1

1 import subprocess
2

3 file = input('Input video file:')
4 cmd = 'ffmpeg -i {source} out.mkv'.format(source=file)
5 value = False
6 subprocess.call(cmd,shell=value)

Taking into account the code presented above we can observe that the obfuscation
is achieved by setting a variable named ”value” to False and setting it as the value
of the ”shell” parameter passed to the subprocess.call function.
The ”deobfuscation” table has two entries, working as a proof of concept and
applies the following logic: If "injectionConstrain" has this "startingConstrain"
replace any "InjectionObfuscationValue" with "injectedValue". In the presented
example it would replace the variable name ”value” with the value ”True”.

4.5 VAITP core

VAITP’s core is written in C++ and Python. It uses Regular Expressions (Regex)
internally to detect and inject vulnerabilities. Regex is not only a part of VAITP’s
core algorithm but is also present in VAITP’s database, where Regex can be used
to define injection points that VAITP interprets.
Writing Regular Expressions is one of the most challenging parts of VAITP’s core
development, but also allows for a very powerful control over matching patterns
and for algorithmic flexibility.
Upon scanning a file, VAITP statically analyses each non-empty line and com-
pares it with every vulnerability present in its database. If there is a match
within the line and the vulnerability field it will add the corresponding vul-
nerability to the vulnerability list and load all vulnerable calls associated with
the detected vulnerability. Simultaneously, for every non-empty input line, it
will scan for patched vulnerabilities. These are simple instructions, e.g. look-
ing if there is a parameter "shell=False" that could be changed to "shell=True",
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or Regex instructions, e.g. looking if the line is sanitized with a "quote" function
by matching it against the Regex ”quote(\r\n|\r|\n|\t| )*\((\r\n|\r|\n|\t|
)* \\w+(|\.|\-|\_|\"|\’|\[|\]|\w+)* \)(\r\n|\r|\n|\t| )*$” , in this situa-
tion VAITP is able to remove the sanitization function whilst maintaining all the
text and style within the function (”\\w+(|\.|\-|\_|\"|\’|\[|\]|\w+)*”).
Once a patched vulnerability is found, VAITP is able to inject the needed
changes in the code in order to make it vulnerable again. It currently saves this
new vulnerable file as "original_file_name_injected_current_date.ext" (or "origi-
nal_file_name_injectedChain_current_date.ext" if it’s chaining injections).
Injected or originally vulnerable scripts can be selected as "targets" and an attack
can be launched directly from the GUI.

4.6 VAITP GUI

VAITP’s GUI allows users to easily scan Python scripts, understand which
vulnerabilities are present or patched but prune to injection, inject and exploit
them. This ease of vulnerability injection and exploitation allows IT teams to
understand the impacts of such vulnerabilities and to create defence-in-depth
measures to protect in such attack scenarios.

Upon launching the program, VAITP’s main window is presented to the
user, as seen in figure 4.7. The first input field is the path to the Python script the
users want to scan. Using the "[...]" button on the right of the input field the user
can browse its local file-system and select the appropriate Python script. The
"Scan file" button can then be pressed to execute the scan on the selected file.

Figure 4.7: VAITP main window (Scanned files tab)

Similarly, if a user selects a folder to be scanned, all Python (*.py) files inside that
directory will be scanned one by one.

VAITP will also scan folders recursively if that option is set in the ”settings” tab.
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Detected vulnerabilities (either patched or unpatched) are then presented to the
user in the "Vulnerabilities list", as illustrated in figure 4.8.

Selecting a vulnerability will populate the "Description" text area with a proper
description for the selected vulnerability.

Figure 4.8: VAITP main window (Vulnerabilities tab)

Selecting a vulnerability will populate the "Description" text area with informa-
tion about that specific vulnerability, warning the user about the dangers of us-
ing this library/function calls as well as providing the user either with alternative
functions/libraries that are not vulnerable or indicating possible patching mecha-
nisms (like sanitising the input passed to the function, in which case the corrected
Python script is still susceptible to injection).

In these examples, the ”etree.XMLParser” vulnerability was detected both by
Regex and AI.

Possible injections are listed in the "Injections" tab as illustrated in figure 4.9.

After selecting an injection point one of two actions are possible:

I) Clicking the ”Inject single vulnerability” button will inject in the selected
injection point the corresponding vulnerability.

II) Clicking the ”Add to injection chain” button will insert an injection
intent into the ”Chain of injection points”. This enables the ”Execute injection
chain” button which, as the name implies, injects all the vulnerabilities listed in
the injection chain into one single vulnerable file.

In the ”Injected files” list users can select one of the injected files which enables
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the "Set as target" button.

Figure 4.9: VAITP main window (Injections tab)

After setting a file as ”target” the ”Attacks” tab can be used to launch attacks.

The user is presented with a list of possible attack payloads that can be either in-
dividually selected and used for a single attack, using the ”Single attack” button,
or the ”Auto Daisy Chain Attack” can be launched, in which case every single at-
tack payload will be executed against the target file. Working attacks will always
be listed in the ”Working attacks” list.

In the ”Output” area the user can see the result of the exploited vulnerability
attack. Most payloads use as a PoC the cat command to read the content of the
”/etc/passwd” file. Figure 4.10 shows this output after a successful attack on my
own system.

The concept of the attack fuzzer is also already present in the GUI, although none
of its functionality is actually coded yet. The idea is that the user can input a set
of characters in the "Prep chars" input field, these will be used by the fuzzer to
compose the start of the dynamically created payload that will be generated from
the given characters, the "Main chars" which will be used to dynamically generate
the main part of the payload and the "End chars", which will be used to generate
the ending characters of the payload. Lastly the user inputs the "Expected out-
put", a sequence of characters that detects when an attack is successful. Upon
adding the fuzzer VAITP will not only be able of statically analysing a Python
script for vulnerabilities but will also be capable of performing dynamic analysis
and potentially even detect unreported 0-day vulnerabilities (theoretically under
unlimited computer processing power and time).
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Figure 4.10: VAITP main window (Attack tab)

Having completed the work-flow of VAITP for a successful attack, a report can
be generated to document findings using the "Export Report" menu entry as il-
lustrated in figure 4.11.

Figure 4.11: VAITP main window (VAITP main menu)

The exported PDF report has the information about what files were scanned,
which vulnerabilities were found, which injections points were identified, both
by Regex and AI, injection chains, working attacks, the main used settings and
the full raw output as illustrated in figures 4.12, 4.13 and 4.14.
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Figure 4.12: VAITP main window (VAITP PDF report page 1)
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Figure 4.13: VAITP main window (VAITP PDF report page 2)
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Figure 4.14: VAITP main window (VAITP PDF report page 3)
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Besides the ”Export PDF report” described and illustrated above, VAITP’s main
menu also allow the user to:

• ”Quit”

Exits the program

• ”Import payloads”

Allows the user to add new payloads to VAITP’s database

• ”Clear outputs and lists”

Clears the labels, lists, counters and other variables from the GUI

The ”help” menu has the ”about” option. This will bring the about dialog that has
some information about the humans that created this as well as the last update
date and current version number.

Figure 4.15: VAITP main window (VAITP About dialog)
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Figure 4.16: VAITP main window (Settings tab)

The ”settings” tab, illustrated in figure 4.16, allows the user to set the following
options:

• VAITP Log output path

This sets the path for the log path folder. This is where VAITP will save
the exported PDF report.

• Change to target script directory when attacking

This checkbox will ensure that the working directory of the script being
attacked matches the directory of the script itself. This is required for some
scripts and not others so users can manually set it for the desired behaviour.

• Scan subdirectories when scanning folders

This checkbox allows the user to scan all files in all the folder and sub-
folders of the selected path recursively.

• VAITP AI models path

This allows the user to set the path to the folder where exported AI
models should be loaded from (if this is changed VAITP has to be restarted
for the changes to take effect).

• VAITP AI Classificator model to use

This drop-down list is populated dynamically with the available AI
models that are available in the VAITP AI models path.

• Use VAITP AI Classificator model for Python code classification prediction

If this option is set VAITP will use the AI model selected in the drop-
down list to predict if a given scanned script is ”injectable”, ”vulnerable” or
”non-injectable”.
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• Add probable injection points from AI Classificator model to injection list
(allow partially generated injection points)

If this option is checked, the output of VAITP AI Classificator model
will be used to generate an incomplete injection point. Future versions will
allow editing of the injection points prior to execution. This will allow the
user to manually edit and complete injection points.

• Use VATIP AI Sequence2Sequence model to predict possible injections

This checkbox allows the user to enable or disable the S2S model. The
output of the Classificator model is used as input in the S2S model which
generates a vulnerable version of the injectable/patched Python code and
creates valid injection points.

• Limit S2S translations

This input allows the user to set the maximum number of strings that
are fed from the Classificator model to the S2S model. This limits the num-
ber of injections points but is faster.

90



VAITP - Vulnerability Attack and Injection Tool in Python

Figure 4.3: Use case diagram of VAITP
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Figure 4.4: VAITP database entity relationship diagram

Figure 4.5: Illustration of the ”deobfuscation’ architecture

Figure 4.6: Illustration of the deobfuscation table data

92



Chapter 5

Experimental results

This chapter presents the results obtained from our experiments. For each model
type we present the parameters used for fitting the model that yield the best ac-
curacy mean. We then present the results of the comparison between Regex and
AI.

5.1 Parameters settings

From the testing and optimization of the classification model, we fine-tuned the
different hyper-parameters. For each changed value in the hyper-parameters set-
tings, each model was fitted 3 times and the mean accuracy and loss for each was
calculated. From these results we selected the best fitted models to integrate the
final version of VAITP’s GitHub repository.

Tested parameters and ranges

Table 5.1 shows the different model types that we tested.

Table 5.1: Model fitting values: Model types

BoW Conv1D LSTM

Table 5.2 shows the different Activation and Sequencing functions that we tested.

Table 5.2: Model fitting values: Activation and Sequencing functions

TANH SOFTPLUS SOFTMAX SIGMOID SELU RELU

For conv1D models there are three types of padding that can be applied. Table
5.3 show these padding types.

Table 5.3: Conv1D Model fitting values: Padding

VALID SAME CAUSAL
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The range values for the density layers, the output dimensionality, the kernel
size, the dropout, filters, strides and fitting epochs, are presented in table 5.4.
Note that different steps were used, according to the obtained results so far, and
not all values in the ranges have been tested.

Table 5.4: Model fitting values: Density layers, Output dimensionality, kernel
size, dropout, filters, strides and fitting epochs

Hyper-parameter Range values
Density layers 3 - 1370
Output Density 4 - 128
Kernel Size 1 - 64
Dropout 0 - 0.9
Filters 4-256
Strides 1 - 5
Fitting Epochs 10 - 10000

The execution of the AI RNN Classificator Collector, which automatically loops
though several of the explored hyper-parameters for the AI RNN Fit Model, fit-
ting all the models according to the Collector’s parameters and collecting data
for each, allowed the selection of the best performing model types and hyper-
parameters for this application.
Based on 357 models fitted on my computer and 12714 models fitted (up to
time of writing) on the university’s VM, we concluded that the following hyper-
parameters performed best within their model type:
Conv1D:
Conv1D models systematically yield high accuracy values with low loss rates.
Fitting time for the presented optimum values is around 10 minutes.

Table 5.5: Best performing VAITP Conv1D AI Classificator model

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13
C1D 1000 3 0.2 ReLu SoftMax 128 5 64 valid 1 94.8 0.17

C1 - Layer type
C2 - Fitting epochs
C3 - Density layers
C4 - Dropout
C5 - Activation function
C6 - Sequencing function
C7 - Filters
C8 - Kernel size
C9 - Output dimensionality
C10 - Padding
C11 - Strides
C12 - Accuracy mean
C13 - Loss mean

With one of the models fitted the great value of 100 was achieved. It was achieved
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with a training data-set composed of 228 training files and 84 testing files. This
proved the over-fitting of the model with the input data-set. Further tests with
this model type and hyper-parameters, with a training data-set of 335 files and a
testing data-set of 144 files, proved an accuracy of up to 93.96 with a loss of 0.14.
Bag of Words:
The BoW model revealed to yield good results but demanded more fitting epochs
to achieve high accuracy values. Although more epochs were necessary, the time
each took was significantly lower than any other model types, which made the
model fitting take around 2 minutes.

Table 5.6: Best performing VAITP BoW AI Classificator model

Model
Type

Fitting
epochs

Density
Layers

Dropout Sequencing
function

Accuracy
Mean

Loss
Mean

BoW 1000 7 0.2 Sigmoid 95.04 0.15

LSTM (single direction):
LSTM with only one direction revealed to be slow (around 10 minutes for the
presented values) and to yield low accuracy results.

Table 5.7: Best performing VAITP LSTM (Single direction) AI Classificator model

Model
Type

Fitting
epochs

Density
Layers

Dropout Activation
function

Sequencing
function

Output
dimen-
sional-
ity

Accuracy
Mean

Loss
Mean

LSTM 69 3 0.2 ReLu SoftMax 128 59.73 0.75

LSTM (Bidirectional): Bidirectional LSTM-based models yield good results, but
not the best mean accuracy and loss values, whilst being quite slow (around 20
minutes).

Table 5.8: Best performing VAITP LSTM (Bidirectional) AI Classificator model

Model
Type

Fitting
epochs

Density
Layers

Dropout Activation
function

Sequencing
function

Output
dimen-
sional-
ity

Accuracy
Mean

Loss
Mean

LSTM 74 3 0 ReLu SoftMax 128 90.55 0.42

5.2 Comparison between Regex and AI Model

Using VAITP GUI we compared how many correct and incorrect classifications
both Regex and AI-based solutions were able to be obtained. We split our data
into groups of four. Tree groups were used as training and validation and the
forth group as test data, performing a 4-fold external cross validation allowed
us to test the accuracy of our models as much as possible. The AI model used
is based on Conv1D with 96% accuracy, fitted with the parameters settings pre-
sented in table 5.5.
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Table 5.10: Results based on 55 files, all of them vulnerable

Number of
files predicted
as injectable

Number of
files predicted
as vulnerable

Number of files
predicted as
non-injectable

Accuracy(%)

Regex 0 47 8 85.45
AI 1 52 2 94.54

As shown in table 5.5, from a total of 61 injectable files we obtained the results
presented in table 5.9. Regex correctly predicted 31 files and AI 57. Regex had 27
false-positives predicted as vulnerable and 3 predicted as non-injectable, while AI
had 2 false-positives predicted as vulnerable and 2 as non-injectable. Higher ac-
curacy is observable for injectable files predictions with AI models, which proves
the effectiveness of the proposed techniques.

Table 5.9: Results based on 61 files, all of them injectable

Number of
files predicted
as injectable

Number of
files predicted
as vulnerable

Number of files
predicted as
non-injectable

Accuracy(%)

Regex 31 27 3 50.8
AI 57 2 2 93.4

From a total of 55 vulnerable files we obtained the results presented in table 5.10.
Regex correctly predicted 47 files and AI 52. Regex had 8 false-positives predicted
as non-injectable. AI had 1 false-positives predicted as injectable and 2 as non-
injectable. Higher accuracy is observable for vulnerable files predictions with AI
models which further proves the effectiveness of the proposed techniques.
From a total of 51 non-injectable files we obtained the results presented in table
5.11. Regex correctly predicted 46 files and AI 49. Regex had 5 false-positives pre-
dicted as vulnerable. AI had 2 false-positives predicted as vulnerable. Higher ac-
curacy is once again observable for non-injectable files predictions with AI mod-
els which demonstrates the effectiveness of the proposed techniques.

Table 5.11: Results based on 51 files, all of them non-injectable

Number of
files predicted
as injectable

Number of
files predicted
as vulnerable

Number of files
predicted as
non-injectable

Accuracy(%)

Regex 0 5 46 90.19
AI 0 2 49 96.07

The results presented in table 5.11 show a higher accuracy obtained by the AI
models. This shows that the data-set, obtained from extracted CVEFixes database
records, not only matches a big part of the vulnerabilities that were hard-coded
with regular expressions in VAITP’s database, but also that it has detected some
that are yet to be coded.
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Figure 5.1: Graph of the accuracy values obtained

Figure 5.1 shows a comparison graph of the obtained accuracy in detection be-
tween our most accurate AI model (a Conv1D with 96% accuracy) and Regex for
the expected labels (injectable, vulnerable and non-injectable).
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Conclusion and future work

A novel technique, that combines the use of Regex and deep learning AI models
results, for the analysis of vulnerabilities and possible injection points in Python
scripts, is proposed in this paper. We developed a proof of concept software
prototype allowing users to select and scan files or folders, for vulnerabilities
and injection points using these techniques.

Scripts were classified as ”vulnerable”, ”injectable” or ”non-injectable”: match-
ing Regular expressions in Python code with known vulnerabilities and possible
injection points (e.g.: removing a function that sanitizes an input from the user
upon execution of the script), and using Recurrent Neural Networks to classify
blocks of Python code (in its Abstract Syntax Tree form).

With proven high accuracy, from ”injectable” scripts we obtained the most prob-
able strings considered to be injectable. These were then used as input for a Se-
quence2Sequence model that ”translates” this patched line versions into vulner-
able code. The output from the Sequence2Sequence model can be used to create
an injection point. Injected and vulnerable Python scripts can be attacked with a
set of payloads.

A PDF report with all scanned files, vulnerabilities, injection points, working at-
tacks, settings and logs can be exported.

Our software prototype brings value to the arsenal of tools that IT teams have at
their disposal. It brings advancements in the defence of one of the most important
resources available now-a-days: data. Python’s mainstream adoption [Stackover-
flow, 2021] increases the value of data handled and stored in systems that use this
programming language.

With increasing global security concerns [IC3, 2021], cyber-security professionals
are in need of reliable penetration testing tools, that can adapt to the reality of
an enterprise. Although the increasing number of Python specific vulnerabilities
is still quite lower than most other languages [WhiteSource, 2021], the value that
each of these vulnerabilities can possibly unlock if exploited, increases temptation
for malicious hackers.

As presented in this report, there are several security related tools for Python
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and others that include Python’s support (e.g.: Bandit, SonarLint, Pysa or RATS),
but none of them detect 100% of CVE reported vulnerabilities. This proves that
there is still room for improvement in currently available solutions, and that the
development of VAITP is an important step towards a more secure environment.

VUDENC (described in chapter 2.7) is the only AI based Python-specific solution
we know of, able to detect vulnerable Python code blocks. VAITP is also capable
of generating, injecting and attacking vulnerabilities in Python scripts.

So far, in our research, we identified, categorized and documented 108 vulnerabil-
ities out of 148 known vulnerabilities listed in CVE Details. 8 out of 20 identified
injection points have pattern matching Regex in VAITP’s database. These can be
used to inject a particular vulnerability into secure and well coded Python scripts.

To demonstrate the applicability of the gathered data, we compared the results of
the most accurate AI models (based on BoW, Conv1D and LSTM).
The obtained results allowed us to conclude that both techniques have good per-
formance. AI is able to systematically obtain a higher number of true positives,
and a lower number of false negatives comparing to Regex. In chapter 5, these
results are presented along with the hyper-parameters values of the AI models.

The different impacts of a vulnerability depend on its exploitability and on the
environment it was exploited in. VAITP’s execution allows IT teams to analyse
the reaction of their systems in the presence of each vulnerability. This allows the
development of protective measures adapted to the network’s environment.

IT teams can also be tested to search for injected vulnerabilities with their existing
security scanning solutions.

As presented in chapter 3.1, VAITP incorporates vulnerability information from
security tools and databases. Vulnerability tracking is a work in progress and
new vulnerabilities have to be added as they are discovered and corrected. We
demonstrated some use case scenarios where the tool is applicable. For this we
covered the research of existing libraries (their uses and applications), known
vulnerabilities (and how to avoid them by following the best coding practices
advised for Python) and how to inject vulnerable code into secure scripts.

Research and comparison of open-source python-specific vulnerabilities scanners
allowed the development of a list of Python issues, along with a list of vulnera-
bilities and injection points. The main vulnerability scanners databases used so
far rely on Bandit [Bandit, 2021], Sonar Source [Sonarsource, 2021] and CVEFixes
[Bhandari et al., 2021]. This research data is used to populate VAITP’s database
and to create the datasets to fit the AI models. Using both Regex and the AI mod-
els directly from the GUI, the user can interact with the software prototype and to
execute the necessary steps to analyse, inject and attack python scripts. To ensure
the maintenance of the accuracy and detection rates, in Regex rules and in the AI
datasets, it is necessary further research and vulnerability inclusion.
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