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Abstract

Soccer is the most played sport in the world today. Due to its social impact and the
vast investments involved, a victory in a game represents much more than three points.
Therefore, any additional information provided to all the stakeholders (e.g., managers,
players, agents) can be crucially important in winning a match.

Over the years, several machine learning techniques have been employed in soccer data to
extract standard behaviours of players and teams, including Subgroup Discovery. Subgroup
Discovery techniques aim to find subsets in which the distribution of a property of interest
significantly differs from the whole population, i.e., extracting unusual patterns within
frequent actions. The vast majority of Subgroup Discovery applications employed in soccer
use tracking data and feature engineering. However, most works found in the literature
only consider binary targets within the soccer domain. To address this limitation, the main
goal of this work is to find subgroups (not only with binary targets) in the Spatio-temporal
space of soccer actions that lead to a goal and to understand the characteristics and impact
on the play assigned to each subgroup. To reach it, we proposed using two types of targets,
a binary and a numerical one. The binary target consists of whether a play ended up in a
goal or a miss, and the numerical target consists of the prediction of additional information
called Expected Goals (xG).

In this thesis, two experiments were performed, a preliminary one where we performed a
more technical subgroup discovery experiment (with different search strategies and quality
functions) with event-stream data from the English Premier League in the 2017/2018
season. Then the main experiment was carried out with both tracking and event-stream
data from seasons 2020/2021 and 2021/2022 of the Dutch Premier League Eredivisie.

In the main experiment, we tested multiple existing Subgroup Discovery approaches with
Spatio-Temporal characteristics from soccer data. The best subgroups found increased
the probability of scoring a goal from 11.5% to 20.0%. We also realised that there are
team-specific subgroups, which leads us to conclude that Subgroup Discovery can detect
different play styles from different teams.

Keywords

Subgroup Discovery, Soccer, Spatio-Temporal Data, Expected Goals, Data Mining, Data
Visualisation
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Resumo

Nos dias de hoje, o Futebol é o desporto mais praticado em todo o mundo. Devido ao
seu impacto social e aos investimentos avultados que têm sido feitos, a vitória num jogo
representa muito mais do que três pontos. Assim, qualquer informação adicional que se
possa transmitir aos jogadores pode constituir uma importância vital para a conquista
dessa vitoria.

Ao longo dos anos, várias técnicas de Machine Learning têm sido aplicadas a dados de fute-
bol com vista à extração de comportamentos padrão de jogadores e de equipas. Incluídas
neste conjunto encontram-se as técnicas de Subgroup Discovery que permitem encontrar
subconjuntos cuja distribuição de uma propriedade de interesse varie comparativamente
com a distribuição da população na integra, ou seja, extraindo assim padrões pouco co-
muns dentro de ações frequentes. Têm sido desenvolvidos vários trabalhos com técnicas de
Subgroup Discovery ao futebol, onde a grande maioria desses trabalhos utiliza fundamen-
talmente Tracking Data e Feature Engineering.

Os trabalhos de Subgroup Discovery dentro deste contexto focam-se essencialmente em
utilizar técnicas existentes com dados Espaciotemporais de Futebol com o objetivo de en-
contrar subconjuntos apenas utilizando targets binários, assim como jogadas que resultem
em ataques perigosos e golos. Para colmatar esta limitação, o principal objectivo deste
trabalho é encontrar subgrupos (não apenas com targets binários) nas dimensões espa-
ciotemporais das acções de futebol que conduzem a um golo. Assim como compreender as
características e o impacto no jogo atribuído a cada subgrupo. De modo a alcançar esse
objetivo, propusemos a utilização de dois tipos de targets, um binário e um numérico. O
target binário consiste em saber se uma jogada acabou num golo ou não, e o alvo numérico
consiste na previsão de informação adicional chamada Expected Goals (xG).

Neste estudo, foram realizadas duas experiências, uma preliminar onde realizámos uma
experimentação de Subgroup Discovery mais técnica (com diferentes Search Strategies e
Quality Function) com dados de eventos da Premier League Inglesa na época 2017/2018.
Finalmente, a experiência principal foi realizada com dados de Tracking e de eventos das
épocas de 2020/2021 e 2021/2022 da Premier League Holandesa (Eredivisie).

Na experiência principal, testamos múltiplas abordagens de Subgroup Discovery existentes
com características espaciotemporais a partir de dados de futebol. Os melhores subgrupos
encontrados aumentaram a probabilidade de marcar golo de 11,5% para 20,0%. Além
disso, também nos apercebemos de que existem subgrupos específicos para certas equipas,
o que nos leva a concluir que Subgroup Discovery consegue detectar diferentes estilos de
jogo de diferentes equipas.

Palavras-Chave

Subgroup Discovery, Futebol, Dados Espacio-Temporais, Expected Goals, Data Mining,
Visualização de Dados
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Chapter 1

Introduction

Soccer is a collective game where two teams of eleven players try to score at least one more
goal than their opponent over a 90-minute period. Being the most popular sport globally,
it is played by approximately 250 million players in over 200 countries [1] and due to its
popularity, soccer has been used in multiple scenarios such as serving as a motivation for
researchers to develop work in the field of artificial intelligence and robotics as is the case
of RoboCup [2, 3, 4, 5, 6]. In spite of the social and economic importance of the sport,
team management was until very recently not supported by analytic approaches.

Soccer Analysis initialized in 1950 with an English gentleman called Charles Reep who
started to record the ratio between attacks and goals in his notebook during a soccer
match [7]. His simple analysis escalated to the point where he would spend over 80 hours
analysing plays, such as counting the number of passes, distributing the pass sequence
among different categories, and reporting the number of goals in each category. When he
was working for the Brentford team, his analysis contributed to double the goals scored
and ended up winning 13 out of 14 games. This made him the first known soccer data
scientist.

The Soccer industry in Europe generated 25.2 billion euros of revenue only in the season of
2019/20 [8]. This business involves investments such as purchasing players, infrastructures
and/or technology, leading to high risk but high award profit. With the growth of soccer
popularity and technology combined, the analysis of tactics and plays on this subject got
much more complex. Nowadays, with the help of sensors and optical tracking camera
systems, it is possible to gather most of the information regarding a soccer match for
further analysis.

1.1 Context and Motivations

Soccer is a 50/50 game, where half of it is luck and the other half is skill. There is no
secret recipe for success locked in data, there is neither a secret formula nor a right answer
in soccer, but there is a way of making sure we are asking the right questions [9]. Thus,
one the main motivations for this thesis is to find the right questions to ask.

When it comes to analysing soccer data, the complexity becomes much higher due not
only to the size of the pitch (105 by 68 meters) but also to the number of players (twenty-
two) performing actions simultaneously, with or without the ball and interacting with each
other. As time and technology progressed, its complexity has increased also due to the
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increase of high quality of tracking data and post-game analysis. In addition, soccer in
the most competitive leagues (e.g., the English Premier League and the Spanish league La
Liga) is a sport where the number of goals is significantly low, which makes it harder to
analyse patterns of plays that lead to a goal.

There are two main basic movements in soccer, these being passing and receiving the ball.
The other actions, such as shooting and dribbling, derive from these two. Besides the
two main movements, there are five time phases in the match: defensive and offensive
organisations, the defense-attack and attack-defense transitions, and set-pieces.

To analyse these action and time movements, multiple companies such as Opta Sports [10],
Wyscout [11], StatsBomb [12] provide data in the format of event stream logs. Each event-
log has information about the action such as time elapsed since the game started, position
on the field where the action started and ended, type of action performed by the player
(pass, dribble, shot), and the outcome of the action. Nevertheless, handling with event-
stream data can be challenging because it contains both continuous (elapsed time, position)
and discrete information (action type, player name). However, using only event-stream
data may not be enough, since it only provide us the information from the player with the
ball’s point of view. Tracking data fills that gap because it contains information about the
position of every player and ball in the pitch during the whole game. This type of data is
also provided by multiple companies such as Tracab [13] and Metrica Sports [14].

In addition, due to the popularity of soccer, there is a lot of literature concerning the
analysis and methods to evaluate both teams/players and plays. These approaches range
from clustering and dynamic time warping techniques to find a similar sequence of actions
in a game and deep reinforcement learning to evaluate the goal impact in specific actions
and evaluate players according to the action performed by them [15]. However, an emergent
data mining technique called Subgroup Discovery can be employed in soccer data to extract
knowledge.

Subgroup Discovery is a supervised data mining technique that discovers subgroups from
data through a set of explainable rules (e.g., Body_Part = Right_Foot AND Distance_To_
The_Goal ≤ 10 m.). Therefore, the subgroups discovered should follow two conditions.
First of all, they must be interpretable by the user who is analysing the data. Finally,
they need to be interesting according to the criteria chosen by the user (defined by a
quality function). Its applications range from medical and marketing scenarios to finding
patterns from data collected from children in the school recess in order to find interesting
behaviour [16]. A surplus asset from this approach is that due to its explainability, it is
possible to understand which characteristics within the actions and time movements in
soccer have greater probability of leading to a goal from the attacking team.

Then, in order to employ Subgroup Discovery we need to define a target. We are using
two different types of targets: a binary one which indicates if a play ended in a goal or a
miss and a continuous one called Expected Goals.

Expected Goals (xG) is one of the most well-known metrics to evaluate the teams’ and
players’ performance in a soccer game (replacing the goal scoring). This metric estimates to
calculate a team’s chances to score goals according to the features chosen to fit the model.
The performance of this model varies not only with features available, but also with the
type of data (discrete or continuous) used to train the model. Even though this can be
seen as a regression problem, in this work a novelty approach has been proposed to adapt
a binary target to an approximation coming from a machine learning model presented in
Equation 1.1. We are using binary classifiers (where the classes are goal and miss), and
then we only take into consideration the probability from the goal class. This way, given
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a specific play, we can evaluate the probability of it resulting in a goal and it can be
represented as:

ẏ = model(train(x → y))(x) (1.1)

Where model(train(x → y)) represents a machine learning model trained with the features
x and the binary target y. The variable ẏ represents the continuous target generated. Its
values varies from 0 (no goal) to 1 (goal). However, a missed goal is usually worth more
than 0, and a goal scored is usually worth less than 1, depending on the model that is
used.

After researching the existing subgroup discovery applications in the domain of soccer, we
found that most studies implement subgroup discovery in binary targets, such as, goal/miss
or if an attack was successful or unsuccessful. In this thesis we decided not only to consider
binary targets as it has been done until now but also to experiment with numerical targets
using xG as a target.

1.2 Goals

Since the application of Subgroup Discovery techniques to Spatio-Temporal Soccer data is
at a rather preliminary stage, we consider it relevant to expand this field for the purpose
of finding reliable ways to extract knowledge that can be actionable by team coaches in
order to improve the team’s performance.

The main goal of this thesis is to find subgroups in the Spatio-temporal space of
soccer actions that lead to a goal and understand the characteristics and impact
on the play assigned to each subgroup. In order to reach this goal, four Research
Questions have been formulated:

1. Does the use of different search strategies and quality measures lead to subgroups
that represent substantially different knowledge?

2. Can we identify interesting subgroups combining information from different sources?

3. Is it possible to use a subgroup discovery approach to find knowledge that is specific
to a particular team or league?

4. Are the subgroups discovered related with the five time phases (defensive and offen-
sive organisations, the defense-attack and attack-defense transitions, and stop balls)
in the game or with the time where those occurred (first or second half)?

1.3 Research Contributions

The work developed during this thesis resulted in the following contributions:

• Miguel Marques, Pedro H. Abreu, Carlos Soares, Maurice Van Keulen, René Ho-
evenaar."A 2-steps Pipeline Approach to explain soccer performance using Expected
Goals". CIKM2022 - ACM International Conference on Information and Knowledge
Management (Submitted on the 19th May 2022).

• Miguel Marques, Pedro H. Abreu, Carlos Soares, Maurice Van Keulen, René Hoeve-
naar, "Subgroup Discovery in Soccer Data: A Systematic Review" (in preparation
to be submitted to European Journal of Sport Science).
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1.4 Document Structure

The remaining contents of this document are organised as follows: Chapter 2 overviews
the state of the art concerning Subgroup Discovery, Spatio-Temporal analysis in soccer
data, and the review of the literature concerning these two areas. Chapter 3 shows the
preliminary work done during the elaboration of the State of the Art. In Chapter 4
we present the experimental setup and its results are presented in Chapter 5. Finally,
Chapter 6 concludes the work done in this thesis and also provides some directions for
future work.
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State of the Art

This chapter provides an explanation about both Subgroup Discovery, and the analysis of
spatial-temporal data in Soccer.

The chapter is organised as follows. Starting with Subgroup Discovery, the definition and
its main components, such as search space and target concept will be presented in Section
2.1.1. Following this core concepts explanation, Section 2.1.3 overviews multiple quality
functions found in the literature to be used by the Subgroup Discovery Algorithm (Section
2.1.8). Section 2.2 presents Spatio-temporal data analysis in soccer and how different
approaches extract information from this type of data. Finally, the third Section of this
Chapter presents the related work found in the literature concerning the employment of
Subgroup Discovery techniques in soccer data.

2.1 Subgroup Discovery

The concept of Subgroup Discovery was initially formulated by Klösgen in EXPLORA [17]
and by Wrobel in MIDOS [18]. It consists in a supervised data mining technique that
aims at finding unusual statistical distributions in a user-defined target variable (or vari-
ables [19]) within a subset of data.

The goal of Subgroup Discovery is to find subsets of the population with a significantly
different distribution in the target feature. E.g., with a dataset with multiple weather
conditions where Going for a bike ride is the binary variable of interest, an hypothet-
ical subgroup could be represented by the following selectors: Weather = Clean AND
Wind_Speed <= 20 km/h.

However, Subgroup Discovery does not focus on predicting the dependent variable (which
we call target) based on the independent variables (also called selectors, once their purpose
to the task is to describe the Subgroup with conditions understandable to the human).
Instead, its main focus is to find subsets of the original dataset that satisfies the quality
functions (Section 2.1.3).

2.1.1 Subgroup Discovery Main Components

The of Subgroup Discovery tasks’ concept can be defined by the following four compo-
nents [20]:
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• The Dataset in which the variables can be numerical, categorical, or ordinal. Sub-
group Discovery is not limited to the data in the form of a single relational table,
Stefan Wrobel introduced this topic with the MIDOS approach in [18], proving that
is possible to employ Subgroup Discovery in multiple tables;

• The Search Space is set by the descriptions in the database, i.e, the enumeration
of the possible subsets within the dataset. The search space depends both on the
size of the dataset and its type of variables. The size of the search space can be
a bottleneck to the task of subgroup discovery since doing an exhaustive search in
all the possible combinations of the descriptors of the search is a NP-Problem [21].
The most common setting considers only conjunctive combinations of selectors since
it facilitates the user’s understanding. It is crucial to avoid redundancy between
selectors, e.i., in the scenario where a subgroup descriptor D can be defined by a set
of selectors S1, S2, .., Sn. If S1 is varA > x and S2 is varA > y, where x ̸= y, if
D = S1 ∧ S2, whatever the values of x and y are, one of the selectors will not bring
any relevant information to the subgroup;

• The Target concept specifies the property of interest in the discovery task, i.e, the
variable which depends on the remaining features. In most cases, the target is bi-
nary. However, it can be categorical, numerical, or complex in the cases where there
are more than one target, such as in Exceptional Model Mining [19]. Note that a
categorical target can be easily converted into a binary target in most cases;

• Quality measures define a set of selection criteria that depends on the target chosen
by the user. Given a subgroup, the quality function quantifies the deviation in the
subgroup’s property of interest in relation to the whole population. The quality
measure impacts directly the discovery of subgroups and must be chosen carefully.
The type of target (binary, numerical, complex) has a significant impact on the
quality measure, e.g., for binary targets, we can use Weighted Relative Accuracy
(WRAcc) [22], however, if we are dealing with numerical targets, it is necessary
to use Numeric weighted relative accuracy, an adaptation of WRAcc for numerical
targets.

2.1.2 Domain Knowledge Concept

Regardless of the results discovered, the final decision has to be made by the domain
specialist. Therefore, it is crucial to analyse the subgroups in order to understand if they
are interesting and useful to the domain. This way, integrating background knowledge
into the pipeline can improve the results. Within the pipeline, it can be applied in the
post-processing, but can also be directly used in the mining process. Using background
knowledge in the mining process has the advantage that it can reduce the complexity of the
search space by focusing the search on variables considered more relevant for the expert
and removing others that may be only adding noise to the solutions. There are three
distinct classes of knowledge [23]:

• Constraint Knowledge specifies the kind of patterns that are relevant to the user.
The given constraints defined by the user can be applied to the data in order to filter
information. For example, removing “outliers” by restricting the value range of an
independent variable in the search space or aggregating a variable in intervals that
makes sense to the user and does not result in information loss;
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• Ontological Knowledge specifies general properties of the object contained in the
domain, such as weights of attributes denoting their importance, information about
the relative similarity between attribute values, and abnormality/normality/ordi-
nality information about attributes. Is it commonly used for the development of
knowledge systems;

• Abstraction Knowledge is given by derived attributes that are inferred from basic
attributes or other derived attributes. For example, we can infer the derived attribute
mean speed of a player if we have the starting and ending position of a player in the
field and the time elapsed of that action. It aims to increase the quality of the input
data of the system.

There are multiple Data Mining pipelines found in the literature that integrate Subgroup
Discovery in its steps.

It is essential to understand that Subgroup Discovery should not be seen as an isolated
automatic mining task once its interestingness is heavily influenced by the end-user.

Taking this into account, a process model for Expert Guided Subgroup has proposed in [24]
with the following eight steps: (1) problem understanding, (2) data understanding and
preparation, (3) subgroup detection, (4) subgroup subset selection, (5) statistical charac-
terisation of subgroups, (6) subgroup visualisation, (7) subgroup interpretation, and (8)
subgroup evaluation (some steps might be performed multiple times in order to increase
the quality of the subgroups). Also, in this domain, a more straightforward approach with
only three steps was proposed in [23] that includes background knowledge: (1) Discover,
(2) Inspect, and (3) Refine. Background Knowledge is used in the third step (Refine) to
improve the performance of the next iteration.

2.1.3 Objective Measures

This section presents multiple objective approaches used to evaluate the subgroups discov-
ered. Objective Measures can be computed only using the raw data. These measures can
be used not only to gather information about the distribution of the property of interest
in each subgroups but also to rank the subgroups according to its returned value. The
measure used to rank the subgroups candidates is called Quality Function.

Due to Subgroup Discovery being a Data Mining approach, it is possible to use general
interesting measures within this subject, since these measures can be used for any scenario,
regardless of the kind of patterns being mined.

Sheikh L. et al in [25] proposed a total of eight different objective measures:

• Support

• Confidence

• Conviction

• Lift

• Leverage

• Coverage

• Correlation
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• Odds Ratio

Support

Support measures how frequently a given item appears. Therefore it can be used as a
measure of importance/significance.

Support(X) = P (X)

Support(X) values are in the range [0, 1]. If X does not appear in the data, the value is 0,
if is appears in all instances, the value is 1.

Confidence

Confidence measures the dependency between a given X and a given Y. It is important to
mention that Confidence(X → Y ) ̸= Confidence(Y → X)

Confidence(X → Y ) =
P (X ∩ Y )

P (X)

Confidence(X → Y ) values are in range [0, 1]. If X and Y are completely independent,
the value is 0, on the other hand, if X occurs every time Y occurs, the Confidence value is
1.

Conviction

Conviction compares the probability that X appears without Y if they were dependent on
the actual frequency of the appearance of X without Y.

Conviction(X → Y ) =
P (X)P (Y )

P (X ∩ Y )

Conviction(X → Y ) values are in range [0,+∞]. If X and Y are independent, the Con-
viction value is equal to 1. If X occurs every time Y occurs, the value is +∞.

Lift

Lift measures how more often X and Y occurs than expected (if they where statistically
independent).

Lift(X → Y ) =
P (X ∩ Y )

P (X)P (Y )

Lift(X → Y ) values are in range [0,+∞[.

If the Lift is lower than 1 means that the probability decreases when adding the rule.
Consequently, if the Lift is higher than 1 means the probability increases when adding the
rule. If X and Y are independent, the Lift is equal to 1.
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Leverage

Leverage measures the difference of X and Y appearing together in the dataset and what
would be expected if they were statistically dependent. Using a Leverage threshold is the
same as using a frequency threshold. It suffers from the same problem as the Support
metric, which may ignore rare items in the dataset.

Leverage(X → Y ) = P (X ∩ Y )− P (X)P (Y )

Leverage(X → Y ) values are in range [−1, 1]. The value is 0 if X and Y are independent.

Coverage

Coverage shows the percentage of values that are covered by a given rule.

Coverage(X → Y ) =
P (X ∩ Y )

P (Y )

Coverage(X → Y ) values are in range [0, 1]. The value is 0 if none of the values are
covered by the rule and 1 if all of them are covered.

Correlation

Correlation is a statistical technique also known as dependence that assesses whether and
how strongly pair of variables is related. Correlation is able to detect if the relationship
between two variables is positive, negative or if there is no relationship.

Correlation(X → Y ) =
P (X ∩ Y )− P (X)P (Y )√

P (X)P (Y )(1− P (X))(1− P (Y ))

Correlation(X → Y ) values are in range [−1, 1]. It is -1 if the relationship is perfect
negative linear and 1 if the relationship is perfect linear. The value 0 means that there are
no relationship between the variables.

Odds Ratio

An odds ratio is a statistic measure that quantifies the strength of the association between
two variables X and Y.

Odds(X → Y ) =
P (X ∩ Y )P (X ∩ Y )

P (X ∩ Y )P (X ∩ Y )

Odds(X → Y ) values are in range [0,+∞]. If X and Y are independent the Odds value is
equal to 0. Otherwise, for strong associations, the value is equal to +∞.

However, these genetic measures may not the best option to use as Quality Function, but
rather to analyse the subgroups discovered.

Stefan Wrobel in [18] provides the following note when dealing with Quality Functions:
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“If we want to find the k-best such subgroups, we need a way to measure the quality
of candidate groups. To find such evaluation functions, we can build on the evaluation
measures that have been defined for propositional algorithms.”

The Quality Function primary purpose is to rank the subgroups discovered in an efficient
and effective way. Subgroup size and the target’s statistical distribution are the main
factors that influence subgroup interestingness. It is used during the search strategy to rank
the discovered subgroups when processing the defined search space. Since the subgroups
are ranked according to their quality, subgroups with lower scores might not appear on the
top-k subgroups selected by the algorithm.

However, this task can be challenging because most of the quality functions aim to maximise
the coverage and unusualness (how different is the distribution from the subgroup’s target
and the original target) of the subgroup, and this two can be conflicting. As it is mentioned
in [26], when a subgroup has extensive coverage, in most cases hinders the finding of unusual
subgroups. On the other hand, when the coverage is small, it is easier to find more unusual
subgroups.

There are several different approaches in the literature, both taking the type of target and
problem domain into account. Our main focus is binary targets in the single-relational
case. However, we consider it relevant to enumerate the most used techniques in this
domain independently of the nature of the data.

Notations
Variables Meaning
P Relative frequency of the target variable in the total population
si Subgroup
pi Relative frequency of the target variable in the Subgroup
N Size of the total population
ni Size of Subgroup
pi Relative frequency of the target variable in the complementary Subgroup
ni Size of the complementary Subgroup

Table 2.1: Formula’s Notations

The notations in order to understand the formulas are found in the table 2.1. Notations
specific to a certain method will be explained in the method’s description.

Weighted Relative Accuracy

The Weighted Relative Accuracy (WRAcc) is by far the most used quality measure found
in the literature to evaluate the quality of binary targets. Introduced in the MIDOS [18]
approach by Stefan Wrobel and its main goal is to trade off the accuracy of a subgroup
against its generality. According to [27], this measure can calculate the Unusualness of a
rule.

qWRAcc(si) =
ni

N
(pi − P )
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Multi-class Weighted Relative Accuracy

Multi-class Weighted Relative Accuracy is an extension of the previous approach to deal
with categorical targets. As we can see from the formula, this method basically calculates
the mean value from the Weighted Relative Accuracy for each k target variable.

qMWRAcc(si) =
1

k

k∑
j=1

|qWRAccj(si)|

There are more variants described in [28, 29], such as (one-vs-rest) weighted multi-class
weighted relative accuracy and (one-vs-one) multi-class weighted relative accuracy.

Numeric Weighted Relative Accuracy

In [29] is presented another extension of the Weighted Relative Accuracy to deal with
numerical targets, in this approach they use the mean from target in the subgroup µ(si)
and from the entire population µ(Pop) in order to calculate this metric.

qNWRAcc(si) =
ni

N
(µ(si)− µ(Pop))

Another way to calculate this metric is through the probability distribution of the target,
presented in [26].

qNWRAcc(si) =
ni

N

∫
x
|f(x)− fsg(x)|

Where f(x) and fsg(x) correspond to the probability density function of a given real-value
x for the given dataset and subgroup respectively.

Gamberger and Lavrac Approach [24]

Gamberger and Lavrac maintain that subgroups should have a sufficient large coverage, a
positive bias towards the target class coverage and sufficient diverse for detecting most of
the target population. Therefore, they proposed the following quality function:

qTP (si) =
pi · ni

(1− pi) · ni + g

Where the g variable is a generalisation parameter defined by the user.

Squared Hellinger Distance

Nanlin Jin, et al proposed a new quality measures to deal with numerical target values
called Squared Hellinger in [26]. The subgroups’ unusualness is measured on the basis of
the probability distribution of its real-valued target. Let x be the real value target and
F (x) be the density function of x in the dataset. Therefore, Fsgi(x) is density function of
x in the subgroup i.

qSHD(si) =
ni

2N

∫
x
(
√

F (x)−
√

Fsgi(x))
2
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Chi-squared

The Chi-squared approach can be used both for binary target [17] and categorical (multi-
class) [29] targets. This approach relates the statistical significance according to the χ2

statistical test.

Chi-squared formula for binary targets:

qχ2(si) =
pi · ni

N − pi · ni
(pi − P )2

Here we introduce the notation pij and Pj that corresponds to the relative frequency of
the target variable in the subgroupi according to the class j and relative frequency of the
target variable class j in the total population. With the k variable being the number of
classes within the target selected.

Chi-squared formula for Multi-class targets according to [28]:

qMχ2(si) =

k∑
j=1

(ni ·N − ni ·N · Pj)
2

ni ·N · Pj · (N − ni)

Binomial test

The Binomial test is a quality measure for targets with binary values. Martin Atzmuller
in [30] explains this method as following: the gain in accuracy or unusualness is calculate
by the difference between target shares pi − P and the size, coverage or generality are
covered by the difference between subgroups size n and the size of the total population N .
These are the basic parameters that are most frequent used to compare subgroups.

The binomial test formula is given by:

qBT =
pi − P√
P (1− P )

√
ni

√
N

N − ni

Kolmogorov-Smirnov

The Kolmogorov-Smirnov significance test can be used as a quality metric for Subgroup
Discovery if the property of interest is numerical. This approach basically takes the tar-
get distribution tdist and its complement tdist in order to verify if they are distributed
significantly different. Note that according to Florian Lemmerich in [20], ∆tdist,tdist

is
supremum of the differences in the empirical distribution function between the subgroup
and its complement.

qks(si) =

√
tdist · tdist

N
∆tdist,tdist

Mutual Information

Mutual Information is an information-theoretic approach, it tells us how much knowledge
about one variable would be increased by knowing the value of the other. The higher the
mutual information, the more interesting the distribution of classes amongst the subgroup
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and its complement is [28]. This metric can be used both for numerical qNMI [26, 29] and
multi-class targets qMMI [28].

qMMI(si) =

k∑
j=1

pij · ni

N
log(

pij · n
N

) +
Pj ·N − pij · ni

N
log(

Pj ·N − pij · ni

N
)−

−
n∑

i=1

Pjlog(Pj)−
ni

N
log(

ni

N
)− N − ni

N
log(

N − ni

N
)

qNMI(si) =
ni

N

∫
x
fsg(x)log

fsg(x)

f(x)
dx

Mean/Variance/Median-based Quality Measures

This type of measure is used for scenarios where the target in question is numeric. We will
not look too much into these quality metrics as they are not part of our focus since we will
be dealing with binary target problems.

Mean Quality Measures, as the name implies, take into account the mean of the targets of
both the subgroup and the dataset as a whole. Among these we highlight the following:

• Mean Test - Proposed by Kloesgen in [17], this metric takes into account the cov-
erage/size of the subgroup ni and the average targets of both the subgroups µsi as
well as the total population µPop:

qMT (si) =
√
ni · (µsi − µPop)

• Impact - This metric is quite similar to the previous one, but it considers the size of
the subgroup instead of its square root.

qI(si) = ni · (µsi − µPop)

• Z-score - is a metric that takes into account not only the means mentioned above,
but also the standard deviation of the dataset target σPop. It is a metric widely used
in statistics, and can also be adjusted to the Subgroup Discovery topic.

qz(si) =

√
ni · (µsi − µPop)

σPop

Variance-based Quality Measures are metrics that take into account the spread of the
distribution, from which we highlight the T-Statistic.

• T-Statistic - proposed in [31] is a metric very similar to Z-score, however, takes into
account the standard deviation of the subgroup target distribution σsi. This makes
this metric sensitive to the variance of the subgroups. According to [31] this metric
should be applied to small subgroups.

qt(si) =

√
ni · (µsi − µPop)

σsi
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Following the same logic as the previous two approaches, Median-based Quality Measures
take into account the Median from the numerical target. Here we be will emphasise the
Median Statistic from [31], this approach uses the median of the dataset to calculate
the difference in distributions between the target from the subgroup and from the whole
dataset.

qmed(si) =
(pl − Pl)

2

Pl
+

(ps − Ps)
2

Ps

Where pl and ps are the frequencies of individuals in the subgroup that are larger than
median and equal or smaller than the median respectively. Therefore, Pl and Ps are the
frequencies of individuals in the dataset that are larger than median and equal or smaller
than the median respectively. The returned value from this quality function can range
between zero and +∞ and value is zero when individuals are distributed equally between
the median.

ROC AUC

This Rank-based measure can be used for ordinal targets. This metric is more communally
used to compare the performance of classifiers, however, Pieters B. et al proposed in [31]
an extension of this approach in order to be applied in the context of subgroup discovery.
Therefore , this measure is very useful to verify the sparseness of the subgroup individuals
in the dataset.

qroc =

∑k
j=1 tj −

ni·(ni−1)
2

ni · ni

Where ni and ni are the size of the subgroup and its complement respectively.
∑k

j=1 tj is
the sum of ranks in the subgroupi complement.

Finally, Geng L. et al. present two Objective Measures that do not take into account the
distribution of the target variable, but rather the rules and the type of data within the
subgroups candidates [32].

Peculiarity

Peculiarity claims that a pattern is possibly more interesting if it covers outliers in the
data. Peculiar patterns may be unknown to the user, therefore, interesting.

Conciseness

Conciseness takes into account the number of selectors in the rule. The overall result must
contain a limited amount of patterns in order to be concise.

2.1.4 Subjective Measures

According to Ken McGarry, data mining metrics can be either Objective or Subjective [33].
Objective Measures can be computed only using the raw data. Subject Measures like
novelty, usefulness, and surprisingness, involve knowledge from sources beyond the dataset
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like the user/expert knowledge. These measures are subjective because they are user-
driven and depend on the belief and analysis of the user, being more complex to calculate
compared to the Objective Measures.

Geng L. et al introduced two interesting Subjective Measures in [32]:

Surprisingness

A pattern is surprising (or unexpected) if it contradicts a person’s existing knowledge or
previously discovered findings. Surprising patterns can help find scenarios where previous
approaches failed to find patterns and then highlight the data subgroup that needs a more
detailed analysis.

Novelty

A pattern is novel if it is not covered by the users’ background knowledge and cannot be
derived from other patterns. The difference between surprisingness and novelty is that a
novel pattern is new and not contradicted by any pattern already known to the user. In
contrast, a surprising pattern contradicts the user’s previous knowledge or expectations.

Finally, Geng L. et al proposed another group of metric called Semantics-based Mea-
sures [32]. Semantics-based Measures take into account the knowledge extracted from
subgroup descriptors and how it can make an impact in the application domain. We
consider this group to be subjective as well since it varies according to the study domain.

The following two measure were proposed by Geng L. et al in [32].

Utility

The Utility of a pattern takes into account the contribution to a user’s goal. This kind of
interestingness is based on user-defined utility functions in addition to the raw data.

Actionability/Applicability

A pattern is actionable (or applicable) in some domains if it enables decision-making about
future actions in this domain. Thereby, a pattern should influence future decisions in the
application domain.

2.1.5 Data Structures

To iterate over the search space, it is required to store the results, such as selectors chosen
and quality score. This subsection presents the most used data structures to support the
efficient selection of subgroups.

Simple Tabular Form

This is the simplest data structure and is the default data structure used to store data in
relational databases. However, is not the most efficient practice in Subgroup Discovery [20].
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Since after evaluating certain subgroup it is always necessary to compare it to the original
dataset and this operations can be time consuming.

Bitsets

This vertical data structure have been used in [17, 34]. In this data representation the
instances covered by a subgroup are represented by a binary array. So, each bitset corre-
sponds to a selector. To create conjunctive patters, it is needed to perform AND operations
in the multiple candidate bitsets. Therefore, when a rule covers all the bits or none of them
(bitsets with all values set to 0 ou 1), this denotes that the rule does not provide any rel-
evant information.

FP-tree Structures

This Divide-and-Conquer approach is a very efficient data structure in particular to deal
with large datasets. As it as mentioned in [20], FP-trees can be employed to the classical
subgroup discovery setting. This can be accomplished in a FP-tree by storing the value of
the quality function in the tree nodes. FP-trees are used in well-known algorithms such as
FP-Growth, COFI-Tree, and CT-PRO [35] but can also be adapted to be used in Subgroup
Discovery.

2.1.6 Search/Enumeration Strategies

Finding the most interesting subgroups requires to enumerate all the possible subgroups
candidates to further iterate over them to find the best subgroups according to the quality
measure selected. This step can be a bottleneck since the time complexity of the search
space is exponential with the number of attributes and their domains. Therefore, multiple
approaches are found in the literature to search for subgroup candidates. The most used
ones are Exhaustive Search, Beam Search, and Genetic Models.

Exhaustive Search

In Exhaustive Search it is ensured that the best subgroup among the candidates is found.
This is accomplished by traversing through the complete search space with only safe prun-
ing techniques [20], i.e., pruning only those candidates which are guaranteed not to be
within the best subgroups found. In order to perform this Exhaustive Search, multiple
techniques can be used to iterate over the search space, such as Depth-First Search (DFS),
Breadth-First Search (BFS) and Best-first-search. Notice that there are multiple variants
in each one of the three approaches mentioned before, Florian Lemmerich provides a more
detailed explanation of each one of them in [20].

Beam Search

Unlike exhaustive search tecniques, Beam Search uses a Greedy approach to find good
subgroups. Therefore, it does not guarantee to find the global best subgroup, instead it
tries to iterate over the most promising to groups. This way, makes it possible to apply
Subgroup Discovery in scenarios with huge search spaces that would not me possible with
exhaustive search.
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Genetic Algorithm

This tecnique is well-known in Evolutionary Computing. Evolutionary computing uses
Darwin principles to solve complex problems. The main idea behind this technique is that
given a population of individuals where natural selection is made from one generation to
the next one, thus increasing the population’s fitness [34].

Berlanga and del Jesus proposed an extension of this technique [36] in order to be applied in
Subgroup Discovery. This approach uses bit strings to define the subgroup descriptor where
each binary bit corresponds to a selector. Then it is considered a conjunction between the
selectors set to true by the genetic approach. It is relevant to mention that this bit strings
has no relation with the Bitset data structure.

2.1.7 Pruning Strategies

As it was mentioned before, the size of the search space can be a bottleneck regarding time
efficiency mainly because applying exhaustive search to large search spaces is not doable.
Therefore, in order to improve efficiency in Exhaustive Searches, it is needed to employ
pruning strategies. It is relevant to distinguish between safe pruning and heuristic pruning.
Safe Pruning, only excludes parts of the search space that are guaranteed not to impact
the solution. On the other hand, heuristic pruning is a more efficient approach but may
ignore interesting parts of the search space due to its greediness.

Optimistic Estimate

In order to prune certain areas within the search space, interesting measures and quality
functions can be used to establish the optimistic estimate bounds. However, most measures
do not follow the anti-monotone property, i.e., if a set is infrequent, then its specialisations
will also be infrequent. Thus it is crucial to take into account the metric used to prune the
search space since the target distribution of a certain subgroup specialisation may change
arbitrarily.

Florian Lemmerich in [20] outlines that popular anti-monotone constrains may include:

• Maximum number of selectors in a subgroup description

• Minimum subgroup size (coverage)

• Minimum number of positive target values

However, certain quality measures can be used to prune the search space, Martin Atzmüller
suggests for example using the binomial test in [30]. If the goal is to find subgroups above a
certain threshold from a quality function, every subgroup below that threshold be pruned.
This threshold does not needs to be fix, it is possible to employ a dynamic approach where
the goal is to find the best− n subgroups, in this scenario, the n− th increases every time
a new subgroup is added to the best-n. This dynamic approach has the downside of being
dependent on the order in which the search space enumeration is done.
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Suppression Heuristics

Klösgen proposed in [17] two types of redundancy filters: Logical and Heuristic. These
filters can be used to suppress the search space and can be extremely useful for Exhaustive
Searches. This approach can also be called subgroup suppression. According to [37] the
algorithm suppresses subgroups that are worse than, but not too different from another
subgroup. To evaluate similarity between subgroups the balancing overlap degree and
significance difference are calculated. This technique not only prunes the search space but
also avoids redundancy in the solution.

Background Knowledge

As it was mentioned in 2.1.2, it is possible to employ specialist’ background knowledge not
only in the post-processing step, but also integrating it in the subgroup discovery pipeline
since the subgroup’s interestingness is heavily influenced by the end user.

According to Martin Atzmüller [30], there are several ways to employ background knowl-
edge in this stage such as applying constraint and ontological knowledge in the approach’s
configuration to remove data elements from the search space dynamically as well as using
attribute exclusion constrains.

2.1.8 Algorithms

In the previous sections, we discussed multiple concepts around the four main Subgroup
Discovery components: Dataset, Search Space, Target concept and Selection Criteria. The
algorithms proposed in the literature take into account most of the components mentioned
above and several of them include also the data structure and pruning strategies used.
When describing the following algorithms, the main focus is to perceive how each approach
employs the multiple Subgroup Discovery components and understand the scenarios where
they were applied.

We decided to split the algorithms into three different groups according to the approach
used to enumerate the search space (Exhaustive Search, Beam-Search and Genetic Search)
shown in the tables 2.2 and 2.3.

EXPLORA

The Explora approach proposed by Willi Klösgen in 1996 [17] was the pioneer in subgroup
discovery. It applies exhaustive searches on the search space with Depth-First Search,
Breadth-First Search, and Best-First search with suppression heuristics as pruning strategy.
It also uses bitsets as data structures and deals with both binary and numeric targets.
Explora used generality and redundancy as selection criteria when ranking the subgroups.

MIDOS

MIDOS was the first subgroup strategy to deal with multi-relational databases. Proposed
by Stefan Wrobel [18] in 1997, employs exhaustive search in the search space (Depth-First
Search, Breadth-First Search and Best-First search) as in the Explora approach proposed
one year before. In order to improve the search performance, it applies optimistic estimate
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pruning using WRAcc as an interesting measure. There is little to none information as
far as the data structure is concerned, but the authors lead us to believe that it is a tree
structure.

CN2-SD

Lavrac et al. [22] proposed an extension of the CN2 classical learning rule for classification
problems to cope with the challenge of subgroup discovery. It employs a Beam Search with
WRAcc to rank subgroups. Since it uses a greedy search over the search space, no pruning
techniques are used in this approach. Contrarily to the vanilla version of CN2, in CN2-SD,
when a rule is created, the instances covered by it are not deleted.

SD-MAP

SD-MAP [38] is an exhaustive subgroup discovery algorithm that performs a Depth-First
search over the subgroup candidates with a minimum support threshold to prune the search
space i.e. only constrains the subgroup size and number of positive targets. It also employs
the FP-tree data structure. Binomial test and unusualness are used as quality functions
to rank the subgroups.

SDIGA

SDIGA [27] is a genetic algorithm approach for subgroup discovery proposed by Del Jesus
et al. in 2007. The description of subgroups is represented in DNF (Disjunctive Normal
Form). These fuzzy rules ease the use of numerical variables. Confidence and Support
are the quality measures used to select the subgroup candidates. Since this is a genetic
approach, there is no need for pruning strategies.

SubgroupMiner

SubgroupMiner proposed by [39] implements the binomial test as a quality measure and
uses Beam Search to enumerate the subgroup candidates. It is also able to deal with multi-
relational datasets and can handle binary, categorical, and numerical targets (for numeric
targets, an on-the-fly discretisation is performed).

DSSD

DSSD [29] is a subgroup discovery approach that considers sets of subgroups instead of
individual subgroups. Can deal with any target variables such as binary, categorical, nu-
merical, and complex (multiple targets). Employs a Beam Search to enumerate the search
space. Regarding criteria selection, DSSD uses a top-k approach with three additional se-
lection strategies (Description-based subgroup selection, Cover-based subgroup selection,
and Compression-based beam selection). In [29] these selection strategies are described in
greater detail. Finally, no data structure is described.

19



Chapter 2

SD

The SD algorithm [40] employs a Beam Search strategy and deals only with binary targets.
However, it is always possible to convert categorical variables into binary variables after
defining the target, as it is done in [40]. As quality measures, it employs the metric defined
by Gamberger and Lavrac covered in 2.1.3 and unusualness. Simple support pruning is
used to prune the search space.

Apriori-SD

Nada Lavrač and Dragan Gamberger defined this approach as an extension of the Apriori-C
algorithm [41]. It performs a levelwise exhaustive search with optimistic estimate pruning
to improve the search performance and uses the WRAcc metric as quality function to select
the subgroup candidates.

RSD

As in the MIDOS approach, RSD [42] extracts subgroups from a relational database.
It performs an exhaustive search in the search space with a Depth-First Search, and to
improve the search performance, it employs constraint-based pruning with user-specified
constraints. Regarding the data structure used, the authors seem to use a tree structure
but do not specify if it is a FP-tree or not. To evaluate the subgroup’s quality, the metric
WRAcc is used.

Cascaded SD or DpSubgroup

DpSubgroup [43], presented by Henrik Grosskreutz, is a subgroup discovery approach that
deals with numeric targets. Thus implements mean-based interesting measures to rank
the subgroups. TP-tree is the data structure used by this approach, and to enumerate
the search space an exhaustive Depth-first Strategy with Optimistic Estimate pruning was
employed.

Exceptional Model Mining

Exceptional Model Mining (EMM) [44] is an innovative subgroup discovery framework that
allows finding interesting subgroups with multiple targets. This is done by fitting models
(both classification and regression) to subgroups targets that may be somehow exceptional.
In order to enumerate the subgroup candidates, this approach uses the heuristic method
Beam Search. Regarding the selection criteria, it varies according to the model chosen.

SD-MAP*

Martin Atzmueller and Florian Lemmerich presented the SD-Map* [45] algorithm enabling
fast subgroup discovery for continuous target concepts. It performs an exhaustive search
to cover the search space with a Depth-first Strategy with an Optimistic Estimate to prune
the search space. As selection criteria, it implements a top-k approach with mean-based
as interesting measure. The FP-tree is the data structure used.
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NumBSD

The NumBSD approach [46] is very similar to the SD-MAP* algorithm. Both are used
to deal with numeric targets, and both implement a top-k approach with mean-based as
interesting measure. However, the data structure used differs once this approach uses a
vertical data structure called bitsets (like EXPLORA). In order to enumerate the search
space, this implementation employs a Depth-first Search with a look-ahead and optimistic
estimate to prune the search space.

MESDIF

The MESDIF is a multi-objective genetic algorithm for inducing fuzzy rules in the Subgroup
Discovery Task [36]. To enumerate the multiple subgroup candidates it employs an elitist
approach called SPEA2 [47]. Regarding interesting measures it can use support, confidence,
and unusualness (WRAcc).

NMEEF-SD

This Non-Dominated Multi-objective genetic algorithm is based on the well-known Non-
dominated Sorting Genetic Algorithm II (NSGA-II) model but is oriented toward the
subgroup-discovery [48]. Is able to deal deal both binary and categorical targets and
employs unusualness, support and confidence as quality measures to rank subgroups.

GAR-SD

GAR-SD a new evolutionary multi-objective algorithm for Subgroup Discovery tasks [49].
This approach can deal with both discrete and continuous variables with the need of a pre
processing step. The interesting measures applied are significance, support and confidence
but it also considers the number of rules and number of variables.
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Subgroup Algorithm Dataset Search Space Pruning Strategy
Exhaustive Search Subgroup Algorithms

EXPLORA [17] Single-relational dataset Exhaustive Search
(DFS,BFS, Best-First) Suppression Heuristics

MIDOS [18] Multi-relational database Exhaustive Search
(BFS, Best-First) Optimistic Estimate

SD-MAP [38] Single-relational dataset Exhaustive Search
(DFS) Minimum Support Threshold

APRIORI-SD [41] Single-relational dataset Exhaustive Search
(Levelwise) Optimistic Estimate

RSD [42] Multi-relational database Exhaustive Search
(DFS)

Constraint-based Pruning with
user-specified constrains

DpSubgroup [43] Single-relational dataset Exhaustive Search
(DFS) Optimistic Estimate

SD-MAP* [45] Single-relational dataset Exhaustive Search
(DFS) Optimistic Estimate

NumBS [46] Single-relational dataset Exhaustive Search
(DFS with look-ahead) Optimistic Estimate

Beam Search Subgroup Algorithms
CN2-SD [22] Single-relational dataset Beam-Search –
SubgroupMiner [39] Multi-relational dataset Beam-Search –
DSSD [29] Single-relational dataset Beam-Search –
SD [40] Single-relational dataset Beam-Search Simple support pruning
EMM [44] Single-relational dataset Beam-Search –

Genetic Search Subgroup Algorithms
SDIGA [27] Single-relational dataset Genetic No pruning
MESDIF [36] Single-relational dataset Multi-objective genetic algorithm No pruning
NMEEF-SD [48] Single-relational dataset Non-Dominated Multi-objective genetic algorithm No pruning
GAR-SD [49] Single-relational dataset Multi-objective genetic algorithm No pruning

Table 2.2: Subgroup Discovery Algorithms
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Subgroup Algorithm Selection Criteria Target concept Data Structure
Exhaustive Search Subgroup Algorithms

EXPLORA [17] Generality, Redundancy, Simplicity Binary and Numerical Bitsets

MIDOS [18] Novelty, Distributional Unusualness Binary Tree Structure, does not
specify if it a FP-tree or not

SD-MAP [38] Binomial test, Unusualness Binary FP-trees

APRIORI-SD [41] WRAcc Binary, Categorical
(Transforms categorical in binary) –

RSD [42] WRAcc Binary, Categorical Tree Structure, does not
specify if it a FP-tree or not

DpSubgroup [43] Mean-based interesting measure Numerical FP-trees

SD-MAP* [45] Top-k approach with
Mean-based interesting measure Numerical FP-trees

NumBS [46] Top-k approach with
Mean-based interesting measure Numerical Bitset

Beam Search Subgroup Algorithms
CN2-SD [22] Modified WRAcc Binary, Categorical –
SubgroupMiner [39] Binomial-test Binary, Categorical and Numerical –

DSSD [29]
Description-based subgroup selection,
Cover-based subgroup selection,
Compression-based beam selection

Binary, Categorical, Numerical and Complex –

SD [40] Unusualness,
Gamberger and Lavrac Approach Binary (converted from Categorical) –

EMM [44] Depends on the classes of models chosen Complex/ Multiple targets –
Genetic Search Subgroup Algorithms

SDIGA [27] Confidence, Support Binary, Categorical –
MESDIF [36] Support, Confidence, Unusualness Binary, Categorical –
NMEEF-SD [48] Unusualness, Support, Confidence Binary, Categorical –
GAR-SD [49] Significance, Support, Confidence Binary, Categorical –

Table 2.3: Subgroup Discovery Algorithms
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2.1.9 Environments/Frameworks

To apply the algorithms and quality measures mentioned previously in 2.1.8, multiple
open-source environments allow an easy and yet effective usage of those approaches.

pysubgroup

Florian Lemmerich and Martin Becker implemented a Python package for subgroup dis-
covery called pysubgroup [50]. This implementation allows the user to choose from a wide
range of quality functions such as WRAcc and Chi-squared. Can handle binary, categori-
cal, and numeric targets and has visualisation tools integrated to ease the analysis of the
subgroups discovered.

VIKAMINE

The VIKAMINE system comes with a variety of established and state-of-the-art algorithms
for automatic subgroup discovery [51]. Can deal with binary, categorical and numeric
targets due to its large variety of interesting measures. Finally, it also includes an interface
with visualisation tools.

rsubgroup

Released in 2021 by Martin Atzmueller, rsubgroup [52] is one of the newest packages to
deal with the task of subgroup discovery. This R package contains a collection of efficient
and effective tools and algorithms for subgroup discovery and analytics. It is able to deal
with both numerical and binary targets and incorporates algorithms such as SD-MAP and
BSD. It also integrates an R interface to the VIKAMINE system.

SDEFSR2

SDEFSR2 is a R package with all evolutionary fuzzy systems for subgroup discovery pre-
sented throughout the literature [53]. It includes three algorithms: SDIGA [27], MES-
DIF and NMEEF-SD. Can read data with multiple formats (ARFF, KEEL, CSV and
data.frame). Integrates a wide variety of quality functions to choose from. However, the
target variable must be categorical. It also includes an interface with visualisation tools.

Cortana

Developed by Marvin Meeng and Arno Knobbe, the Cortana framework simplifies and
unifies the procedure of enriching a list, or ranking, of biological entities with background
knowledge [54]. Deals with multiple data types, including nominal, numeric, ordinal and
binary. The user is able to define everything in terms of search conditions and strategy in
its user interface. The scope of this framework is the bioinformatics branch.
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2.1.10 Applications

Subgroup Discovery has been applied in real-world situations in various fields. The Sub-
group Discovery task is not dependent on a certain context. However, as it was mentioned
previously, the validation of an expert in the given domain is crucial in the Subgroup Dis-
covery pipeline. This subsection will present different applications of Subgroup Discovery
found in the literature.

Medical Domain

Medical data is always a considerable target concerning data mining applications, and
subgroup discovery was not an exception.

In [24] subgroup discovery was used to detect patient groups with a high risk of atheroscle-
rotic heart disease where the target population consists of true positive cases of the disease
and non-target class examples corresponding to the healthy population.

Another case shown in [23] uses cases from the SONOCONSULT system (a medical doc-
umentation and consultation system for sonography) that consists of detailed descriptions
of examinations together with the diagnosis (binary attributes). They performed subgroup
discovery only using essential attributes and general background knowledge.

Marketing

Subgroup Discovery has also been used in multiple real-life problems concerning marketing.
The first-ever subgroup discovery approach EXPLORA used the data from financial data.

In [55] two marketing studies were performed with the help of Subgroup Discovery, the
first was Decision support in a direct mailing campaign, and the second was Decision
support in a public advertising campaign. The key question in these studies was how to
help marketing analysts decide which client groups are the most suitable regarding the
expected results.

In [27] the SDIGA algorithm was applied to the area of marketing concerning the planning
of trade fairs in order to find relationship between the trade fair planning variables and
the success of the stand.

Spatio-temporal Data Analysis

Subgroup discovery was also used in Station-temporal Data Analysis. Here we will present
two articles found in the literature that we consider relevant for this thesis.

“Want to play with me?” by [16] had the objective of finding interesting behaviour from
data collected from children in the school, where kids would wear sensors to track their
movement in the school recess. Using subgroup discovery, they were able to find interesting
patterns in children according to their gender, social skill, age, and others.

In [56] Subgroup Discovery is applied to tactics from spatio-temporal data in soccer to
compare successful and unsuccessful attacks from two different teams.
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2.2 Spatio-Temporal analysis in Soccer

In this section, a brief overview of the techniques used to analyse soccer data and how to
extract relevant information from it is presented. According to Fédération Internationale
de Football Association (FIFA) recommendations, the field dimension should be 105 meters
in length and 68 meters in width. Another characteristic that hinders the analysis of soccer
games is the number of players in-game. A soccer game started with 22 players, which is
twice as much compared to other sports like Basketball or Futsal.

2.2.1 Data Format

Concerning the data format, it can be divided into three types that differ both in availability
and granularity [57] as shown in Figure 2.1.

Figure 2.1: Match Sheet Data, Event Stream Data and Tracking Data [58]

• Match Sheet Data - Match Sheet Data is the most available type of data once
it only gathers all the statistics concerning the soccer match, such as the number
of passes per team, cards, shots, goals, line-ups, and substitutions. It is also the
data type with less granularity once it only provides high-level summaries about the
match. This data is freely available for all professional matches;

• Tracking Data - Unlike Match Sheet Data, Tacking Data gives the exact movements
of all players and the ball, which is the highest level of detail possible. With tracking
data, it is possible not only to analyse the player’s formation on the field during
the whole game but also to analyse the impact in the game of the players that do
not have the ball. However, this data is the most difficult to obtain, since it is only
available for a single team or teams within the same league;

• Event Stream Data - Event Stream Data is a balance between the previous two
data types concerning availability and granularity. It is not as high-level as the Match
Sheet Data and, at the same time, does not have the level of detail of Tracking Data.
Event Stream Data has Tracking Data only for the player with the ball point of
view, performing a certain action such as passing, dribbling, and shooting. Each
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event contains a large amount of information, including the Spatio-Temporal data
from the action.

To get a complete analysis of a sequence of events, it would be useful to have both the
Tracking and Event Stream Data. Thus it would be possible to consider the pressure made
by the defending team and analyse possible passing lines to teammates. Using only the
Event Stream Data has the constrain that it ignores everything except the on-ball actions.

Soccer Player Action Description Language

One problem found when collecting data from multiple sources is that each companies
has its own format to present the data. To bypass this problem, Tom Decroos proposed
Soccer Player Action Description Language (SPADL) [59], a new language to describe
individual players actions (Event Stream data) from multiple vendors. SPADL brings a
unified strategy to load data from multiple sources (Opta, Wyscout, and StatsBomb) in
the same format. Each action has a total of nine attributes:

• StartTime - Start time of the action in seconds;

• EndTime - End time of the action in seconds;

• StartLoc - Position where the action started;

• EndLoc - Position where the action ended;

• ActionType - Type of action performed (e.g., shot, pass), there are a total of twenty
one different action types;

• BodyPart - Body part used in the action (e.g., foot, head);

• Player - Name of the player who performed the action;

• Team - Player’s team name;

• Resul - Result of the action, (e.g., success, fail).

There is also an extension of this framework called Atomic-SPADL, this extension brings
more detail information to the vanilla version of SPADL, e.g., if a pass is not successful.
With Atomic-SPADL it is possible to understand if the cause was the player performing
the pass ou the player receiving it.

2.2.2 Machine Learning and Data Mining Techniques

This subsection presents multiple approaches found in the literature with the purpose of ex-
tracting knowledge from soccer data. These techniques can be supervised or unsupervised
and their aims can range from evaluating players, teams, players and actions.
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Clustering

Clustering in an unsupervised machine learning approach that groups elements from a
certain population with similar characteristics. Since in most scenarios there is no ground
truth in soccer data, using clustering approaches can help gather information from un-
labelled data such as similar plays. S. Hirano et. al. presented a method [60] with the
purpose of grouping pass patterns with a clustering technique. This way they were able to
find interesting pattern e.g., side-attack after complex pass transactions and zig-zag pass
transactions.

Deep Reinforcement Learning

G. Liu et. al. proposed a new approach to evaluate all kinds of soccer actions from event
stream data with Deep Reinforcement Learning model [15]. Their neural architecture
approach fits continuous game context signals and sequential features within a play with
one LSTM (Long Short Term Memory) tower to each team separately. This approach
presents two new metric to evaluate actions called Goal Impact Metric (GIM) and Q-
value-above-average-replacement (QAAR) that take into account the Q-function from the
Deep Reinforcement Learning model.

Binary Probabilistic Classification

A Binary Probabilistic classifier is able to predict a binary output (1 if it is a positive
example and 0 if it is a negative example) from a given input. In most approaches the
models provide weights to the given features from the input to estimate the most likely
output according the input values and its weights. The most common approaches in this
field are logistic regression, decision trees and neural networks. This can be used in the
context of soccer analytics to predict if a given play (a set of actions) can result in a goal
or not.

Neural Network Emsemble Methods

T. Mendes-Neves et. al. presented three ensemble algorithms (Bagging, Simple Average
Dropout Networks and Negative Correlation Learning) in [61] with the purpose of predict-
ing the result of soccer games. It was concluded that using ensemble approaches proves
to be a reliable way to reduce variance in the context of neural network. However, these
approaches might not be optimal in computation time, therefore, its usage is still may
depend on the situation being studied.

Non-Negative Matrix Factorization

Non-Negative Matrix Factorization is used to extract significant features from a set of
non-negative data vectors. Its advantages compared to other factorisation techniques like
Principal Components Analysis (PCA) is that its components are often more human-
interpretable. It can be used in soccer analysis to decompose heatmaps of players like it
has been done in [62] with the purpose of identifying the player based on his playing style
in the previous season.
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Mixture Models

Mixture models calculate the probability of a given x thought multiple probabilistic models
fitted to the data. Mixture models can also be seen as a soft clustering variant of k-
means according to [62]. The most commonly used distribution in mixture models is the
Gaussian distribution, but it is possible to used any kind of distribution. This models are
implemented in soccer data in order to model the location and direction of action as it has
been done in [63].

2.2.3 Soccer Approaches

There are multiple approaches found in the literature concerning extracting valuable knowl-
edge from soccer data. Different approaches are distinguished mainly by the types of data
used and the purpose of the study (target). The three main data format considered are
Match Sheet Data, Tracking Data and Event Stream Data, mentioned in 2.2.1.

Approach Target Data Type
ELO Rating System [64] Rating Teams Match Sheet Data
Pi-rating [65] Rating Teams Match Sheet Data
Sciskill index [66] Rating Players Match Sheet Data
Plus-minus rating [67] Rating Players Match Sheet Data
Player Rank Framework [68] Rating Players Event Stream Data
EA Sports Player
Performance Indicator [69] Rating Players Event Stream Data

Data Envelopment Analysis [70] Rating Players Event Stream Data
POGBA [71] Predict Highlights Event Stream Data
Soccer Mix [63] Rating Players & Teams Event Stream Data
STARSS [72] Rating Actions and Plays Event Stream Data
VAEP [73] Rating Actions Event Stream Data
Expected Goals (xG) [62] Predict Goals Event Stream Data
GIM [15] Rating Players Event Stream Data
OBSO [74] Predict Goals Tracking Data
Expected Goals (xG) [62] Predict Goals Tracking Data

Table 2.4: Soccer Analysis approaches found in the literature

In Table 2.4 we present multiple approaches to extract knowledge from soccer data. As
we can see, most approaches use event-stream data, probably because the type of data is
mostly available, and at the same time, it also provides a good level of detail.

Approaches on Match Sheet Data

Regarding Match Sheet Data, to rate teams, approaches such as, the ELO Rating System
and the Pi-rating can be used. The ELO Rating Systems is a well-known strategy to rank
chess players and in [64] Hvattun and Arntzen present how it can be used to predict game
results. The Pi-rating approach, according to [65] outperforms the ELO Rating strategy
and can be used in other more sophisticated models. Both approaches aim to compare
teams to further predict game results.

To rate players using Match Sheet Data, Sciskill [66] can be used. This approach only uses
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the following features to rate players: Line-up (including position), Substitutions, Type of
match (e.g. league, cup, international), Competition strength, Goals scored and Minutes
played. Other way to rate players is using the Plus-minus rating system, this metric is
well-known in other sports such as basketball, however, it as only been introduced to soccer
in 2015 in [67], this metric compares the team performance with and without a certain
player.

Approaches on Event Stream Data

We outline the following methods for extracting knowledge from Event Stream Data.

Player Rank Framework presented by Luca Pappalardo et. al. in [68] is a algorithm for
performance evaluation based on the action performed by the players and it consists of
three steps (Rating Phase, Raking Phase and Learning Phase).

The EA Sports Player Performance Indicator [69] is a novel metric that attempts to rate all
players using a single score. It is based on the player contribution to winning performances,
regardless of the playing position. The final index metric is calculated by a weighted sum
of multiple points achieved in the multiple sub-indexes. This metric was used in the top
two tiers of soccer in England (the Premier League and the Championship) as an official
metric to rank players.

Also in the context of ranking players with Event Stream Data, A. Charnes et. al. proposed
Data Development Analysis in [70]. This metric is used to compute players’ efficiency
from their playing time, goals, assists, tackle win ratio, and pass completion ratio as it is
described in [62].

Expected Goals (Expected Goals (xG)), is a very well-known metric in sports in general to
measure the probability of a given game state leading to a goal. This metric uses Binary
Probabilistic Classifiers and can applied to Event Stream Data.

Also in Event Stream Soccer Data, we highlight the multiple contributions from Tom
Decroos, such as Spatio-Temporal Action Rating System for Soccer (STARSS), POGBA
approach, Valuing Actions by Estimating Probabilities (VAEP) and Soccer Mix.

The STARSS presented in [72] aims to automatically rate the actions performed by soccer
players by leveraging the outcome of a certain play based on past action with similar spatio-
temporal characteristics. This approach splits the matches into phases (set of plays) based
on a time window defined by the user or whenever the ball possession changes. Then
proceeds to identify similar phases using Dynamic Time Warping to further rate them.

The POGBA (Prediction of Goals by Assessing Phases) approach [71] is an algorithm to
predict soccer highlights. Given an event at a certain time, with a time window defined
by the user, this algorithm predicts the probability of occurring an highlight/critical event
within the time window defined. This approach considers the full spatio-temporal data
and performs the indirect probability estimation.

In [73], Tom Decroos et. al. present a framework for valuing actions called VAEP, this
framework estimates the probability of a given action leading to a goal. However, this
approach enable the conversion of a set of action values to a player rating based on both
the offensive and defensive contribution to the team. It is relevant to mention that this
approach extracts extra information from the event stream data, such as game context
features (number of goals scored by both teams at the time when the action occurred)
and complex features (distance and angle to the goal in the beginning and the end of the
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action).

The Soccer Mix approach [63], also by Tom Decroos, aims to capture the playing style
of both players and teams using multiple probability models. This approach aims at
finding groups of similar actions of a certain type, locations and direction to further use
the probabilistic models to encode each action as a probability distribution in a weighted
vector. Then, it is possible to build a style vector for a certain player or team by summing
the weighted vector of all actions performed by that player or team.

Finally, Guiliang Liu et. al. proposed in their deep reinforcement learning approach [15]
a new metric to evaluate players, the Goal Impact Metric (GIM) which ranks a player
by aggregating the impacts of all his actions. The impact of an action is the change of
consecutive Q values due to this action, based on the learned Q-function from the deep
reinforcement learning approach).

Approaches on Tracking Data

Regarding Tracking Data we highlight two metrics to predict goals, OBSO and xG. In [74],
it is presented a probabilistic model to compute the probability of a player that does not
have the ball in his possession to score a goal, this is called Off-ball Scoring Opportunity
(OBSO). The xG metric can be also applied to Tracking Data since it can provide more
detail compared to Event Stream Soccer Data, such as open passing lines and pressure by
the defences, and those features may add reliability to this metric.
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2.3 Related Work

In the previous section, we enumerated several techniques to extract knowledge from soc-
cer data in multiple formats (Match Sheet Data, Tracking Data, and Event Stream Data).
Therefore the main focus of this section is to analyse only the Subgroup Discovery ap-
proaches in the domain of Soccer. For each work, a detailed analysis has been performed
attending to a set of criteria such as the type of data in use, the subgroup group quality
measures, and the search strategy. Finally, we present the results provided by each paper.

Google Scholar was the main search engine used for the research of these academic articles,
where keywords such as “Subgroup Discovery”,“Soccer” and “Football” were used. We
concluded that applying subgroup discovery in soccer is a fairly recent area since we did
not use any filter in the article’s dates, and every single one range from 2015 to 2019. The
various works studied are presented in Table 2.5.

Meerhoff, L.A. et al. proposed in [56] a data-driven approach that uses Subgroup Discovery
strategies to describe tactics from multiple game events aggregations according to their
spatio-temporal properties, with varying time windows of interest (5, 10, 15, 20, 25 and 30
seconds).

José Carlos Coutinho et al. proposed in [75] a framework called UnFOOT that measures
the performance of both player and teams from position data. That framework includes
pre-processing, feature extraction and visualisation tools. Finally, it also employs subgroup
discovery to look for frequent distributions in the data.

Meerhoff, L.A. et al. proposed in [76] an automatized methodological approach to identify
the key events from the spatio-temporal soccer data to further build explainable spatial
relations between the players and define the success of a set of events. To employ Subgroup
Discovery to find out explainable and actionable patterns that might be useful to the team’s
coach.

Jan Van Haaren et al. proposed in [77] an approach that aims at discovering patterns in
attacking strategies in professional soccer matches, taking into account interactions among
players (passes) in the multiple areas of the field. To do this, they discretised the continuous
spatial dimension in the multiple field areas.

Lars Tijssen proposed in [78] an approach, using Subgroup Discovery, to identify if the
Link’s dangerousity has any impact on the outcome of an attack.

Concerning the type of data, four out of the five articles ([56, 75, 76, 78]) use Tracking
data, to know the position of the players throughout the game. In [56] the tracking data is
from 100 Dutch premier league games, in [75] due to privacy issues, they do not specify the
teams of the league in which is played, they only say the data is from 6 games. In [76] it
is used tracking data from 48 Dutch premier league games and in [78] the tracking data is
from from 31 matches of the Dutch national soccer team. Finally, [77] uses Event Stream
data from a Belgian team during 70 soccer matches.

Regarding the environment used, the papers [56, 77] do not specify any environment,
the [75] used pysubgroup and [76, 78] used Cortana.

Also on the subject of subgroup discovery, the Quality Function WRAcc was employed
in [76, 77, 78] and in [56, 75] the quality measure to select the subgroup candidates is not
specified. Concerning the Search Strategy to enumerate the search space, the Beam Search
approach was used in [76, 78] and in the [56, 75, 77], the Search Strategy is not specified.
Which leads us to conclude that regarding the Quality Function and the Search Strategy, if
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we only consider the articles that provided us that information, only the Quality Function
WRAcc and the Search Strategy Beam Search were used.

In [56], during the experimentation, they compared successful with unsuccessful attacks
between the two Dutch teams. An attack was considered successful when a turnover (lost
of ball possession) occurred in the inside the opponents penalty box. They concluded that
if the team’s length was large, the success rate of attacks would increase. Also, one of the
teams had more successful attacks with a low number of passes in a time window of 25
seconds, and the other team was more successful at defending attacks with a high number
of passes. Still, there are no information concerning the quality function used and the
search strategy.

In [75], they found two interesting subgroups, the first one indicates that players playing in
attacking positions tend to have higher agility score, the other states that player having low
or high stamina (non-intermediate) are likely to a have a high speed score. Also, besides
subgroup discovery, the UnFOOT tool also includes pre-processing and visualisation tools
to deal with soccer data.

In [76], with the data provided, 72 features were created using distance-based metrics, Po-
tential Danger indicators and temporal aggregations (with windows of 5 seconds). Finnaly,
they found 24 significant (p-value lower than 0.05) subgroups were found with an ROC
AUC of 0.627.

In [77], during experimentation, they split the game into phases (set of actions), and
considered positive examples phases that ended in a shot. They ended up up 3803 phases
having 13.8% of positive examples. Finally, they were able to find interesting patterns
within the soccer data, both on passes between certain players, but also passes along
certain areas in the field.

In [78], they only considered the attacking plays, where the attack could have three out-
comes: no shot, shot off target, shot on target, goal scored. The employing subgroup
discovery, they converted the multiple targets into binary targets, where each one of them
had different thresholds for the subgroup candidates. They applied subgroup discovery
with 1 and 2 descriptors (according to them, more than two descriptors are too difficult to
interpret). Subgroups with two descriptors showed better results according to the WRAcc
and ROC AUC metric.
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Article’s Title Data Type Environment Quality
function

Search
Strategy

Mining Soccer
Data: Subgroup

discovery of tactics
from

spatio-temporal
data [56]

Tracking data from
100 Dutch premier

league games
- - -

UnFOOT:
Unsupervised

Football Analytics
Tool [75]

Tracking data from
6 soccer games pysubgroup - -

Exploring
Successful

Team Tactics
in Soccer

Tracking Data [76]

Tracking data from
48 Dutch premier

league games
Cortana Wracc Beam

Search

Automatically
Discovering
Offensive

Patterns in
Soccer

Match Data [77]

Event-stream data
from a Belgian
team during

70 soccer matches

- Wracc -

Analyzing
Offensive

Player and Team
Performance in
Soccer Using

Position Data [78]

Tracking data from
31 matches of the Dutch

national soccer team
Cortana Wracc Beam

Search

Table 2.5: Summary of reviewed works
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Preliminary Work

In this chapter, we present the preliminary work done concerning the implementation of
soccer analysis approaches, visualisation tools and feature extraction to further employ
Subgroup Discovery on the pre-processed data. The Figure 3.1 presents the workflow of
this preliminary work.

Figure 3.1: Workflow

At the beginning of the work, we started to analyse the raw data from the Wyscout vendor
[11], more specifically the English Premier League from the 2018/2019 season. Each event
have the following format:

event = {
’ eventId ’ : 8 ,
’ subEventName ’ : ’ Simple pass ’ ,
’ tags ’ : [ { ’ id ’ : 1801} ] ,
’ p layer Id ’ : 9637 ,
’ p o s i t i on s ’ : [ { ’ y ’ : 50 , ’ x ’ : 50} , { ’y ’ : 45 , ’ x ’ : 40} ] ,
’ matchId ’ : 2500089 ,
’ eventName ’ : ’ Pass ’ ,
’ teamId ’ : 1659 ,
’ matchPeriod ’ : ’1H’ ,
’ eventSec ’ : 2 .7635970000000043 ,
’ subEventId ’ : 85 ,
’ id ’ : 251700146

}
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However, we changed our approach after coming across the Soccer Player Action Descrip-
tion Language (SPADL) API from Tom Decroos [59]. This API already pre-processed the
data shown above and merged the event’s information with the dataset from events, teams
and players (this way, there is no need to deal with IDs) and it already includes some
helpful visualisation tools.

3.1 Exploratory Data Analysis

First started our analysis by understanding the distribution of the multiple events. Each
game has an average of 1284.2 events, the maximum number of events in a game is 1654
and the minimum is 926. In total we have 481 574 events from 375 Premier League games.

By analysing Figure 3.2, it is clear that the passing event is by far the most common one.
Moreover, we proceed to analyse the success rate of the pass, dribble, and shot events
presented in the Table 3.1.

Figure 3.2: Events Distribution

Action Success Outcome Percentage
Pass 83.0%
Dribble 99.2%
Shot 10.8%

Table 3.1: Success Rate of passing, dribbling and shooting

It is relevant to mention that the dataset’s size is 8406 and the number of positives (shots
ending in a goal) in the whole dataset is 908, i.e. 10.8% of the shots resulted in a goal.
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3.2 Spatial Analysis

To analyse the event-stream data provived by the Italian sports analytics company Wyscout,
we started by the development of a visualisation tool from scratch with the Python library
Ploty [79] to analyse consecutive events. Our first visual analysis is presented in Fig-
ure 3.3. However, when we change our approach from dealing with the raw data from
Wyscout to the SPADL API from Tom Decroos, we also came across the socceraction
package [80]. Socceraction is a Python package that uses the SPADL action type con-
version with visualisation tools (shown in Figure 3.4), integrates the Valuing Actions by
Estimating Probabilities (VAEP) framework mentioned in 2.2.3 and the xT framework to
value ball-progressing actions using a possession-based Markov model.

We decided to use the socceraction’s visualisation tool to analyse plays, since we consider
their approach more clear and intuitive.

Figure 3.3: Visual Analysis

Figure 3.4: Visual Analysis by SoccerAction package
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3.3 Feature Engineering

Event Stream Data contains both discrete and continuous data in each event. Regarding
discrete data, the event has information about the type of action, which can be one of those
shown in Figure 3.2 and it also contains the outcome of the event, which can be success,
failure, among others. Finally, it also contains the name of the player who performed the
action and the team he plays for. Regarding continuous information, it contains informa-
tion regarding the game-time when the event occurred (in seconds) and the position on
the field where the action started and ended (2 dimensions).

However, using the data in its raw format can compromise the data mining algorithms’
performance, so we decided to apply Abstraction Knowledge mentioned in section 2.1.2
on the data and extract spatial features, temporal features and spatio-temporal features.
Besides the event data we also decided to add Fédération Internationale de Football As-
sociation (FIFA) data (regarding players’ rating) to put some weight on the type of player
that did a given action.

Finally, we also extracted three extra features, namely the distance from the shot to the
goal, the angle from the shot to the goal (in degrees) and the count of unique players that
participated in the play.

3.3.1 Spatial Data

When extracting the following features we took into account only the spatial data of the
events, i.e., the beginning and end position of each events. It is relevant to note that the
distances in question are an approximation, since the events only indicate the beginning
and end of the action, they do not take into account the trajectories of the plays. Thus,
we calculated the Euclidean distance between the beginning and the end position of each
action. The events have the coordinates x and y, where x varies between 0 and 105 meters
and y varies between 0 and 68 meters.

Before calculating these features a pre-processing step was done so that all the plays are
played from the left to the right of the field.

• play_distance (m) - Distance covered in the play (sum of the distance travelled in
each action);

• play_distance_towards_goal (m) - Distance covered in the play towards the adver-
sary goal, to calculate this feature we only took into account the x variable from the
events. This feature can range from -105 to 105;

• play_mean_distance_to_the_goal (m) - Mean distance of each action to the ad-
versary goal, this feature is calculated by dividing the play_distance_towards_goal
with the number of actions in the play. With this feature it is possible to understand
the mean distance progression toward the opponent’s goal;

• play_std_distance_to_the_goal (m) - Standard Deviation from the distance of each
action to the adversary goal;

• ratio_distance (m/m) - Ratio between the features play_distance and play_distance
_towards_goal, with this feature is possible to analyse direct attacks. If every action
is towards the opponent’s goal in a straight horizontal line, the ratio_distance is equal
to 1. This feature can range between -1 and 1;
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• attacking_action_count - Number of actions towards the adversary’s goal. It is
considered that the action was towards the goal of the opposing team if the difference
between the variable x at the beginning of the action and at the end of the action is
negative;

• defending_action_count - Number of actions towards the team’s goal. It is consid-
ered that the action was towards the goal of the defending team if the difference
between the variable x at the beginning of the action and at the end of the action is
positive.

3.3.2 Temporal Data

When extracting these features we took into account only the temporal characteristics of
the events.

• total_time (s) - Time elapsed during the play. It is calculated by subtracting the
timestamp when the first action of the play started to the timestamp when the shot
occurred;

• total_time_per_play (s) - Mean time by action in the play. This feature is calculated
by diving the total_time feature by the number of action in the play.

3.3.3 Spatio-temporal Data

In order to calculate these spatio-temporal features, we used the time and spatial features
calculated above.

• play_speed (m/s) - Ratio between play_distance and total_time;

• play_speed_towards_goal (m/s) - Ratio between play_distance_towards_goal and
total_time.

3.3.4 FIFA Data

The Fédération Internationale de Football Association (FIFA) is the highest governing
entity of association football. Therefore, every year they release data concerning the eval-
uation of all players worldwide playing in high level leagues. We decided to use the open-
source data provided by the FIFA relatively to the year of 2018 (since it is the year of our
data) in order to measure abilities from the players such as overall score, passing score and
shooting score.

We also decided to normalise this feature with the z-score technique:

xnormalized =
x− µfeature

σfeature

From the FIFA data, so far we are just using two features, the average overall score from
all the players who took part in the play and the shooting score from the player performing
the final shooting action in each play.
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3.4 Subgroup Discovery

During this first stage, we tested three different approaches (three different datasets), all
of them with Beam Search with a depth of 10 as search strategy and Weighted Relative
Accuracy (WRAcc) as quality measure.

Concerning the implementation of Subgroup Discovery, we used the Python Package py-
subgroup [50] since it provided a lot of freedom when it came to choose the quality function
and search strategy.

Concerning the target, we considered the shot resulting in a goal or not, thus our target
in binary.

In the first two approaches we considered a window of 20 consecutive events ending in a
shot. This set of events includes events from both the attacking and defending team. In
the first approach we ignored the temporal component since we only did a count of the
events, where all the features are labelled with the event type name and the team that
executed it (all features are numerical) as shown in Table 3.2. In the second approach
we labelled the features from event_1 to event_20 and each instance have the type of
event performed and the team that executed it (all features are categorical) as shown in
Table 3.3. Finally, in both approaches we included the features related to the distance
from the shot to the goal and the angle from the shot to the goal. In the third and final
approach of this preliminary stage, we decided to employ all the features mentioned in
section 3.3 to the sets of actions that started when the attacking team gain possession of
the ball and ended in a shot at the opponent’s goal (which can be either a goal or not) as
shown in Table 3.4.

Pass
[Attacking Team] ... Shot

[Attacking Team] Goal

3 ... 1 1
... ... ... ...
0 ... 2 0

Table 3.2: First Approach Dataset

Event 1 ... Event 20 Goal
Pass

[Attacking Team] ... Shot
[Attacking Team] 0

... ... ... ...
Dribble

[Attacking Team] ... Shot
[Attacking Team] 1

Table 3.3: Second Approach Dataset

play_distance ... ratio_distance Goal
30.7 ... -0.3 0
... ... ... ...

19.1 ... 0.47 1

Table 3.4: Third Approach Dataset
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3.5 Preliminary Results

In the first two approaches, we did not consider the subgroups found to have any relevant
information since the subgroup found were as defendingTeam_offsides = 0 and event_16
= pass. The exception was the subgroup distance_to_goal < 9.63, which reveals that
shots made from close distance to the goal have a higher probability of resulting in a goal.

However, in the third approach, with the features shown in the section 3.3, we considered
to have found some interesting subgroups. The subgroups are shown in Table 3.5, where
we show the value provided by the quality function WRAcc to rank the subgroups. Also
the descriptors which enable us to interpret the subgroups space, the size of the subgroup,
the number of positive instances in the subgroup and finally the percentage of target share
in the subgroup, which must not be lower than 10.8%.

Quality Subgroup Descriptors Subgroup’s
Size

Positives
in Subgroup

Subgroup
Target Share

0.014920 play_mean_distance_to
_the_goal (m)<21.38 1681.0 307.0 0.182629

0.013778
defending_play: [0:1[ AND
play_mean_distance_to
_the_goal (m) <21.38

1233.0 249.0 0.201946

0.010863 ratio_distance (m/m)>=0.74 1682.0 273.0 0.162307

0.010489 defending_play: [0:1[ AND
ratio_distance (m/m) >=0.74 1563.0 257.0 0.164427

0.010246 Shooting Score>=1.83 1767.0 277.0 0.156763

Table 3.5: Subgroup Discovery Results

To analyze the subgroups found, we decided to visualize the plays pertaining to each
subgroup. To do that, we analyzed the position where the shot was made (Figure 3.5) and
the trajectory of the play from the moment the team gained the possession until executing
the shot (Figure 3.6).

Here we decided to analyse only the play_mean_distance_to_the_goal (m)<9.31 and
ratio_distance (m/m)>=0.74 subgroups since they are the only subgroups that are entirely
unrelated to each other. In spite of that, these two subgroups present a similar shot
position, since most shots are made inside the penalty area.

Figure 3.5: Shot Location Comparison
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Figure 3.6: Play Trajectory Comparison

Finally, we decided to analyse how the search strategy and the quality function impact
the subgroups discovered. To test this hypothesis, we used the features from the third
approach mentioned in section 3.3.

To determine the search strategy’s impact on the subgroups discovered, we fixed the
WRAcc as quality measure and experimented with the following search strategies: Beam
Search, Depth-First-Search with Optimistic Estimate as Pruning Strategy and Best-First-
Search with Optimistic Estimate as Pruning Strategy.

After analysing the results from each search strategy we concluded that all of them pro-
vided the same top-5 subgroups, however, the elapsed time for each approach to discover
the subgroups is rather different. While the Depth-First-Search and Best-First-Search ap-
proaches took 7.55 seconds and 4.32 seconds respectively, the Beam Search approach took
68.2 milliseconds. This experiment leaded us to conclude that the Beam Search is the best
approach to deal with this dataset, since it discovered the same subgroups as the other
approaches in a shorter execution time.

To verify the quality function’s impact on the subgroups discovered, we decided to fix
the Beam Search as search strategy and test the following quality functions: WRAcc,
Chi-Squared, Coverage and Binomial test.

Unlike what happened when testing with the multiple search strategies, the top-5 subgroups
found with the multiple quality function are all distinct from each other, which makes
sense since the function that evaluates and ranks the subgroups is different. Regarding the
execution time, all approaches took about the same time (average of 101 milliseconds) to
find the best 5 subgroups.

These experiments lead us to conclude that with our dataset, the quality functions have
an huge impact on the subgroups discovered while the search strategies only impacts the
execution time.
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Experimental Setup

In this chapter, a description of the experimental setup is provided. First, we describe
the data used in Section 4.1 followed by its preprocessing stage in Section 4.2. Then, we
explain the features extracted from the Event-Stream and Tracking Data in Section 4.4.
The analysis regarding both the plays and the features are presented in Sections 4.3 and 4.5.
Finally, we go through the experiments done concerning Expected Goals and Subgroup
Discovery (Sections 4.6 and 4.7).

4.1 Dataset

The data was provided by two companies, Opta [81] and Tracab [13]. Opta provided the
event-stream data, and Tracab provided the metadata and the tracking data. All this
data was gathered by SciSports [82]. The metadata file contains information about the
players in the game, such as name, team, and frame when they entered and left the game.
The event file has all the events (such as pass, dribble and shot) that happened in the
game with also the spatial (start and end position where the event occurred) and temporal
(event’s timestamp) information from the event. Finally, the tracking data file has the
position (x and y) of every player and referees on the pitch with a frequency of 25 Hz. To
extract the information, we are using four files, the F7 and F24 files from Opta and the
TracabMetadata and TrababDat from Tracab. Both F7 and TracabMetadata files contain
the metadata information about the game, while the F24 and TrababDat contain the event
and tracking data from the game, respectively. In this work, we are using the data from
Eredivisie, the Dutch Premier League, from the 2020/2021 and 2021/2022 seasons, which
gives us a total of 503 games (265 from the 2020/2021 season and 238 from the 2021/2022
season).

4.2 Preprocessing

After gathering the data, a conversion process was conduced since both the metadata and
event data were in .xml format, while the tracking data was in .dat format. In Table 4.1
we present the major transformations performed on the data.
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X-Axis Range Y-Axis Range Playing Direction
Tracking Data -5500 to 5500 -3400 to 3400 Both Direction
Event Stream Data 0 to 100 0 to 100 Left to Right
Preprocessed Data 0 to 105 0 to 68 Left to Right

Table 4.1: Data Preprocessing

From the TracabMetadata file, we extracted the following features: PlayerID, First Name,
Last Name, Full Name, StartFrame, EndFrame, and Jersey No. We used the F7 file
from Opta only to get the player’s positions (Goal Keepers, Defender, Midfielder, and
Striker). Then, we merged these two to get the following table containing all the metadata
information we considered relevant to our study, as it is shown in Figure 4.1.

Figure 4.1: Metadata preprocessed

It is important to mention that the variables StartFrame, and EndFrame refer to the
moment when a certain player entered and left the game, respectively. Also, we extracted
the moment when the first and second halves started and ended from the metadata files.

Concerning the event’s file (F24), we converted it from the .xml format into the same
format as the metadata, shown in Figure 4.2. Opta provided a wide range of 79 different
event types. However, after analyzing the event types, we noticed that not all of them are
relevant to our study. Thus we ended up only using 24 events out of the 79. The events
within a soccer game are aperiodic. Therefore, each event contains the timestamp from
the moment that event occurred (minutes and seconds).

For each event, we also have the start and end locations from the event. Those tracking
locations from the events range from 0 to 100 both for the x-axis and y-axis. Also, all plays
are played from left to right according to the team which has the ball possession. So, to
match the tracking data, we needed to change the scale to 0 to 105 meters on the x-axis
and 0 to 68 meters on the y-axis.

Besides the Spatio-temporal information, each event also has the player’s and team’s iden-
tifier from who performed the event. So, we merged it with the metadata table to get the
player’s and team’s names and also the player’s position.

Finally, regarding the tracking data, the TracabDat file provided the players’ and ball’s
position for every frame in the game with a frame rate of 25Hz, this way, we know their
exact position every 0.04 seconds. Since we considered having all the player’s tracking
information in the same file to be unclear, we decided to create a table for each player and
the ball. The tracking position data was provided in centimeters, and the values ranged
from -5500 to 5500 on the x-axis and from -3400 to 3400 on the y-axis. Therefore, we
rearranged it to be in meters and range from 0 to 105 on the x-axis and from 0 to 68
on the y-axis. Thus, the positioning information from both event data from Opta and
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Figure 4.2: Event-Stream Data preprocessed

the tracking data from Tracab would match. This file also provides the speed from the
multiple entities within the pitch in meters per second, the moments when the ball is dead
or alive, and finally, which team has the ball possession in each frame. Also, since the
event’s positioning data is always playing left to right, we found it relevant to detect when
each team was playing left to right and right to left. To detect that, we analyzed the
goalkeepers’ average position for each team and each half. This way, we know which side
the teams are attacking. So, we added the X and Y position as if they were playing left to
right. The final result is shown in Figure 4.3.

Figure 4.3: Tracking Data preprocessed

4.3 Analysing Plays

In this work, a play is a sequence of events that starts when a certain team gains ball
possession and ends when that same team shots the ball into the opponent’s goal. That
shot can result in a goal or a miss (which can also be a save from the goalkeeper). Therefore,
the length of the plays varies, and within each play, we know that the ball possession is
always on the same team, which would not happen if we consider a fixed-size time window
for each play.

After gathering every play that ended in a shot for each game, the next step is to merge
it with the tracking data. Since the event and tracking data providers are different, we
cannot use identifiers to merge the data because they do not match. Thus, the only way
to merge the different data sources is to use the timestamp. However, since the sample
rate from the tracking file is 25 Hz, the granularity is higher than the event’s file because
there, we only have limited information up to the seconds. Thus, in scenarios where we
want to analyze precise moments in the game, e.g., the moment a certain shot was taken,
we calculated the average position of the players and ball in that second.

To validate the analyses, we decided to use and develop visualization tools to see the
events and tracking data within a play. Concerning the event data, we used Soccerac-
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tion [80], a Python package that includes visualizations using event stream data, as we see
in Figure 4.4. Regarding the tracking data visualizations, we decided to create our own
visualizations. This way, we have more control over our analysis, as well as visualizing the
flow of the game in a certain time window and forcing the play to be left to right based on
the team that is attacking. Besides the player’s positions, we also added their speed and
direction, as we can see in Figure 4.5.

From the whole dataset, we were able to extract a total of 11375 plays that ended in a
shot. Within these plays, only 1311 resulted in a goal, leading us to conclude that the
probability of scoring a goal in our dataset is 11.5%.

Figure 4.4: Event-Stream Data visualization

Figure 4.5: Tracking Data visualization

4.4 Feature Extraction

Up to now, the raw data is only being used in the visualization tools because, to extract
some knowledge from the plays, we need to extract features from both the event stream
and tracking data. It is relevant to mention that all plays were preprocessed in order to
be played left to right from the attacking team’s perspective and right to left from the
defending team’s perspective. This way, it is easier to calculate some features such as
distance and angle from the shooter to the goal, and when analyzing the plays, there is
no need to guess the side that is being attacked. We have extracted 38 features, 11 from
the event stream data and 27 from the tracking data presented in Table 4.2. First, we will
present the features extracted from the event data and then from the tracking data.
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Feature Data Source Data type Units
ShotDistanceFromTheGoal Event Data Continous (float) Metres
ShotAngleFromTheGoal Event Data Continous (float) Degrees
PlayDuration Event Data Discrete (int) Seconds
NumberEvents Event Data Discrete (int) Count
NumberPasses Event Data Discrete (int) Count
NumberDribbles Event Data Discrete (int) Count
HorizontalStartPos Event Data Categorical (string) -
VerticalStartPos Event Data Categorical (string) -
TimeBin15min Event Data Discrete (int) -
TimeBin5min Event Data Discrete (int) -
ExtraTime Event Data Binary (bool) -
StrikerSpeed Tracking Data Continous (float) Km/h
BallSpeed Tracking Data Continous (float) Km/h
BallStrikerSpeedRatio Tracking Data Continous (float) -
DefendersAt3MetersRadius Tracking Data Discrete (int) Count
DefendersAt7MetersRadius Tracking Data Discrete (int) Count
AttackingConvexHullArea Tracking Data Continous (float) M2

DefendingConvexHullArea Tracking Data Continous (float) M2

HeightAttacking Tracking Data Continous (float) Metres
WidthDefending Tracking Data Continous (float) Metres
AttackingTeamSpread Tracking Data Continous (float) Metres
DefendingTeamSpread Tracking Data Continous (float) Metres
AttackingCentroidDistanceToGoal Tracking Data Continous (float) Metres
DefendingCentroidDistanceToGoal Tracking Data Continous (float) Metres
AttackingCentroidAngleToGoal Tracking Data Continous (float) Degrees
DefendingCentroidAngleToGoal Tracking Data Continous (float) Degrees
DistanceBetweenCentroids Tracking Data Continous (float) Metres
GoalKeeperDistanceFromTheGoal Tracking Data Continous (float) Metres
GoalKeeperAngleFromTheGoal Tracking Data Continous (float) Degrees
PitchControlAttacking Tracking Data Continous (float) Percentage
MaxPitchControl Tracking Data Continous (float) Percentage
MoreLikelyPitchControl Tracking Data Continous (float) Percentage
ShooterMeanSpeed Tracking Data Continous (float) Km/h
ShooterStdSpeed Tracking Data Continous (float) Km/h
CounterAttack Tracking Data Continous (float) -
BallTravelDistance Tracking Data Continous (float) Metres

Table 4.2: Feature Engineering
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4.4.1 Features extracted from Event Stream Data

We started by calculating the spatial features: distance and angle from the shot’s position
to the goal. Since every attacking team is playing left to right (following the strategy
provided by Opta), the goal is in the fixed point (105, 34). Then we calculate the Euclidean
distance in meters and the angle in degrees. We also considered the position when the play
started. Instead of using the exact position, we decided to split the soccer pitch into
vertical and horizontal regions, as it is shown in Figure 4.6.

Figure 4.6: Pitch split into vertical and horizontal regions

Then we calculated the following temporal features: timestamp when the event occurred
and the duration of the play, both in seconds. Instead of using the precise timestamp
when the play happened, we split the game time into 5 and 15 minutes intervals. Lastly,
we calculated a binary feature that indicates if the shot was taken in overtime or not.

Finally, we counted the number of events in the play and the number of passes and dribbles
within those events.

4.4.2 Features extracted from Tracking Data

Concerning the features extracted from the tracking data, we split them into the fol-
lowing multiple groups: Speed/Distance Features, Defenders Features, Teams Features,
GoalKeeper Features and Pitch Control Features.

Speed/Distance Features

The following features only take into account the speed from the ball and from the player
who performed the shot during the play:

• StrikerSpeed - Speed from the player who executed the shot at the moment when the
shot was taken;

• BallSpeed - Ball’s speed at the moment when the shot was taken;

• BallStrikerSpeedRatio - This feature can also be called Control according to [76].
Here, we divided the ball’s speed by the striker’s speed. If the value is 1, both the
striker and the ball were at the same speed when the show was taken. This can be
interpreted as the striker having maximum control over the ball;
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• ShooterMeanSpeed - Average speed from the player who executed the shot along with
the play;

• ShooterStdSpeed - Speed’s standard deviation from the player who executed the shot
during the play;

• BallTravelDistance - Distance covered by the ball along with the play;

• CounterAttack - In this feature, we first calculated the distance between the position
where the ball was at the beginning of the play and the end but only on the x-
axis (Xend − Xbegin), and then we divided it by the BallTravelDistance feature.
This way, we can understand the ratio between the distance traveled towards the
opponent’s goal and the whole distance covered during the play by the ball. If the
value is, e.g., 0.75, it means that for every 10 meters covered, 7.5 meters were towards
the opponent’s goal.

Defenders Features

In the following features, we calculated the Euclidean distance between the defenders and
the player who performed the shot (shown in Figure 4.7):

• DefendersAt3MetersRadius - Count the number of players from the defending team
in a radius of 3 meters from the player who performed the shot when the shot was
taken;

• DefendersAt7MetersRadius - Count the number of players from the defending team
in a radius of 7 meters from the player who performed the shot when the shot was
taken.

Figure 4.7: Example of a play where we analyze the number of players from the opposing
team within a radius of three and seven meters from the player who performed the shot.

Team Features

The following features take the position of all players from both teams into account. Most
of these features were inspired by [76]. To better understand these features we show in
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Figure 4.8 the Convex Hull from a randomly selected play, in Figure 4.9 the Height and
Width from both the attacking and defending team and finally in Figure 4.10 we show the
centroids from both teams in the same play.

• AttackingConvexHullArea - Convex Hull area around the attacking team (without
the goalkeeper);

• DefendingConvexHullArea - Convex Hull area around the defending team (without
the goalkeeper);

• HeightAttacking - Distance between the player who is closer to the opposing team’s
goal and the player closer to his own goal, only considering the x-axis and without
the goalkeeper (from the attacking team’s point of view);

• WidthAttacking - Distance between the left and rightmost player in the pitch only
considering the y-axis (from the attacking team’s point of view);

• HeightDefending - Distance between the player who is closer to the opposing team’s
goal and the player closer to his own goal, only considering the x-axis and without
the goalkeeper (from the defending team’s point of view);

• WidthDefending - Distance between the left and rightmost player in the pitch only
considering the y-axis (from the defending team’s point of view);

• AttackingTeamSpread - Standard deviation from the distance between every player
from the attacking team (without the goalkeeper) and the team’s centroid. This
feature is used to evaluate how dispersed the players are from the centroid;

• DefendingTeamSpread - Standard deviation from the distance between every player
from the defending team (without the goalkeeper) and the team’s centroid. This
feature is used to evaluate how dispersed the players are from the centroid;

• AttackingCentroidDistanceToGoal - Euclidean distance between the attacking team’s
centroid and the opponent’s goal;

• AttackingCentroidAngleToGoal - Angle between the attacking team’s centroid and
the opponent’s goal;

• DefendingCentroidDistanceToGoal - Euclidean distance between the defending team’s
centroid and their own goal;

• DefendingCentroidAngleToGoal - Angle between the defending team’s centroid and
their own goal;

• DistanceBetweenCentroids - Distance between each team’s centroid.

GoalKeeper Features

We only took into account the goalkeeper from the defending team:

• GoalKeeperDistanceFromTheGoal - Euclidean distance between the defending team’s
goalkeeper and defending team’s goal;

• GoalKeeperAngleFromTheGoal - Angle between the defending team’s goalkeeper and
defending team’s goal.
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Figure 4.8: Example of play where we analyse the Convex Hull area from both teams
(excluding the Goalkeepers).

Figure 4.9: Example of play where we analyse the Height and Width from both teams
(excluding the Goalkeepers).

Figure 4.10: Example of play where we analyse the centroid’s positions from both teams
(excluding the Goalkeepers).

Pitch Control Features

The concept of pitch control was introduced by William Pearsman [83], and it is defined
by the probability of a certain player getting the control of the ball, assuming it was in
a certain location of the pitch. In order to calculate this model, we need to take into
consideration the position, speed, and direction of every player on the pitch and the ball.
In our work, we are only taking into account the attacking and pre attacking regions of
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the pitch (explained in Section 4.4.1) at the moment when the shot was taken.

Figure 4.11: Examples of how the pitch control is distributed around the pitch.

We transformed the attacking half of the pitch into a grid of (25x30) squares to further
calculate the pitch control in each grid cell. The values range from 0 (maximum pitch
control for the defending team) to 1 (maximum pitch control for the attacking team) in
each cell. In Figure 4.11 we show two moments when we calculated the pitch control, where
the color red in the regions where the attacking team has a higher chance of gaining ball
possession. The color blue in the regions where the defending team has a higher chance
of gaining ball possession. Finally, the color white in the regions where the probability of
both teams gaining ball possession in that region is more or less the same. With this in
mind, we extracted the following features:

• PitchControlAttacking - Average pitch control. It ranges between 0 and 1 since it is
an average of probabilities;

• MaxPitchControl - Count the number of cells with maximum pitch control for the
attacking team;

• MoreLikelyPitchControl - Count the number of cells with pitch control above 0.51
for the attacking team.

4.5 Analysing Features

In this section, we analysed the relationship between the target value and the remaining
features extracted. First, we analysed the distribution of the some features that we ex-
tracted (Figure 4.12). In Figure 4.12a we can notice an interesting pattern in shots at a
distance of more or less 26 meters, and in Figure 4.12b we can conclude that there is a
peak of shots made at zero degrees from the goal.

Then, we analysed how the features’ distribution varies when we consider only plays that
end in a goal compared to plays that end in a miss (Figure 4.13). This way, it is possible
for us to determine which features have more impact on a play resulting in a goal. For
instance, we can observe a notorious difference in the distributions in Figure 4.13a, which
leads us to conclude that there are many more goals when the distance of the shot to the
goal is shorter. Also, the Figure 4.13d leads us to conclude that there are no goals when
the average pitch control is below 37%.

In addition, we also analysed how the values of the feature variables impact the probability
of a goal. In Figure 4.14, we can analyse how the goal probability changes according to the
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values of two distinct features. This analysis lead us to conclude that the goal’s probability
decrease when the shot distance and angle to the goal (absolute value) increase.

(a) Distance between the striker and
the goal distribution

(b) Angle between the striker and the
goal distribution

(c) Attacking team height distribution (d) Average pitch control distribution

Figure 4.12: Example of some features’ distribution

(a) Distance between the striker and
the goal distribution

(b) Angle between the striker and the
goal distribution

(c) Attacking team height distribution (d) Average pitch control distribution

Figure 4.13: Example of some features’ distribution when a play ends in a goal or a miss
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(a) Distance between the striker and the goal
probability

(b) Angle between the striker and the goal prob-
ability

Figure 4.14: Relation between the features’s values and the goal’s probability to score

4.6 Expected Goals’ Experimentation

During the Expected Goals’ experiments, we tested this approach with multiple classifica-
tion models and multiple sets of features.

With regard to the models, we experimented not only with models we found in the literature
(such as XGBoost and LogisticRegression) but also with classification models provided by
the package Scikit-Learn [84]:

• XGBoost Classifier

• Logistic Regression Classifier

• Support Vector Machine Classifier

• K-Neighbors Classifier

• Decision Tree Classifier

• Voting Classifier with all the models from above

Concerning the features, instead of only using all 38 features extracted, we decided to
experiment with the multiple following sets of features. Firstly, we evaluated the models
using only the distance and angle to the goal, since they are the most used features to
predict Expected Goals found in the literature. Then, we proceeded to calculate the im-
portance of the features with the support of Logistics Regression [84]. To get the feature’s
importance from the Logistics Regression model, we started by fitting the whole dataset
into the model to further extract the coefficient’s values from each feature (shown in Fig-
ure 4.3). The idea behind this approach is the larger the coefficient (in both positive and
negative values), the greater the impact it has on a prediction. Finally, we experimented
using only a few of the most relevant features to train our Expected Goals model:

• Distance and Angle

• Most relevant Feature
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• Top 3 relevants Features

• Top 5 relevants Features

• Top 10 relevants Features

• All 38 Features

Feature Importance
1 ShotDistanceFromTheGoal 0.126
2 HeightAttacking 0.071
3 StrikerSpeed 0.049
4 WidthAttacking 0.030
5 MoreLikelyPitchControl 0.016
6 DefendersAt7MetersRadius 0.015
7 AttackingCentroidAngleToGoal 0.014
8 DefendingCentroidDistanceToGoal 0.014
9 AttackingCentroidDistanceToGoal 0.014
10 DefendingCentroidAngleToGoal 0.014

Table 4.3: Top 10 most relevant features according to Logistics Regression

Then, we also employed thresholds in the values provided by the Expected Goals (xG)
models, i.e., if the value is higher than the threshold (which can be related to a dangerous
play or a near-miss) , we consider it to be a goal. We tested with thresholds of 0.2, 0.3,
0.5 and without threshold.

In order to evaluate the results we used multiple metrics. Some of them are well-known
metrics used to rank models in the domain of Machine Learning, such as, ROC AUC, R2

and Brier Score. Then, we also proposed a domain specific metric to evaluate xG models.
This metrics aims to evaluate the separation between goals and misses taking into account
the xG’s average in plays that end in a goal, and subtract it to the xG’s average in plays
that end in a miss:

Diff = AV G(xGGoal)−AV G(xGMiss)

Finally, we employed a grid search with all the models, features, and thresholds in order
to select the best model that fits our data.

4.7 Subgroup Discovery’s Experimentation

Our main objective during experiment concerning Subgroup Discovery is to extract rele-
vant knowledge from soccer data with Subgroup Discovery techniques and address which
features are used to constrain the subgroups’ space. Also, we want to verify if the subgroups
change when analyze each team separately. Finally, we will analyze how the subgroups
change when we use the binary (Goal/Miss) and numerical (xG) as target and their inter-
estingness within the context of soccer.

For the binary target, we used WRAcc as quality function and Beam Search as search
strategy. For the numeric target, we used the Z-Score as quality function and Beam
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Search as search strategy as well. Concerning the continuous features, we defined ten bins
for each variable.

During all experiments regarding Subgroup Discovery, we set the depth to two, since we
consider that increasing the depth of the Subgroup Discovery task will not only increase
the time it take to execute but also makes it harder to interpret the outcome.

Finally, we employed Subgroup Discovery’s techniques into our data we used two different
packages: Pysubgroup [85] and Cortana [86].

56



Chapter 5

Results

This chapter will present the results of the experiments done on modeling Expected Goals
and Subgroup Discovery.

5.1 Expected Goals’ Results

After testing all the models enumerated in Section 4.6, we concluded that most models had
the best performances using all 38 features available. In the end, we concluded that the
best model that fitted our data is the one produced by the XGBClassifier as it is shown in
Table 5.1.

First, we want to highlight the comparison between our best model with the Logistics
Regressor since it is one of the most used models when it comes to predicting xG. When
comparing Figures 5.1a and 5.1b, with the blue line representing a 1st order equation
(y = αx+β) fitted into the data with a 95% confidence interval, we can see that the R2 is
much higher for the XGBClassifier approach (0.9895) compared to the Logistics Regressor
(0.8827). According to [87], we can evaluate the xG’s model with the R2 metric. R2

measures the percentage of the response variable variation that a linear model explains.
Therefore, an R2 of zero means the model does not explain any of the variations in the
response, and an R2 of one represents a model that perfectly describes the data. In our
approach using the XGBClassifier, the R2 is 0.9895, which leads us to conclude that the
model fits the model almost perfectly.

We concluded that approaches that use Decision Trees (DecisionTreeClassifier and XGB-
Classifier) gave us the best results according to the R2 metric. However, when comparing
the ROC AUC plots and score from both approaches (Figures 5.2a and 5.2b), the XGB-
Classifier got much better results with an ROC AUC of 0.80.

Concerning the xG Diff score, it takes into account how well separated the goals and
misses are according to the xG model. To present the results concerning this metric, we
also created visualizations where we can see how the xG’s distribution varies when we take
the whole dataset into account, only the plays that end in a goal and only the plays that
end in a miss (as it is shown in Figure 5.3). The highest xG Diff score found was 0.85 from
the XGBClassifier model, using all features with a threshold of 0.2.

We also evaluated the models according to the Brier Score. The Brier Score was proposed
by Glenn W. Brier in [88], and it aims to measure the accuracy of predictions’ probability.
In our scenario, since it is a unidimensional prediction, this metric is equivalent to the
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(a) Logistics Regression (b) XGBClassifier

Figure 5.1: Comparison between Logistics Regression and XGBClassifier (xG vs Actual
Goals)

(a) XGBClassifier ROC AUC (b) Decision Tree ROC AUC

Figure 5.2: Comparison between XGBClassifier and Decision Tree Classifier (ROC AUC)

mean squared error between the probabilities and the binary target Goal/Miss. Therefore,
the lower the Brier Score, the better the predictions. According to the Brier Score, the
best model is the XGBClassifier, using all 38 features and a threshold of 0.5, resulting in
a score of 0.02.

However, if we took the thresholds into account, the results become slightly better. The
XGBClassifier is still the model which provides the best results according to all the metrics,
yet the best threshold changes from one metric to another. According to the ROC AUC
metric, the highest area under the curve is reached when we do not use any threshold, but
according to Brier Score, we get the best score when we use a threshold of 0.5. Thus, we
can not conclude anything about the threshold. It relies on the metrics we use to evaluate
the models, as it is shown in Table 5.1.

During the previous experiments, we used 80% of the dataset to train the model, and then
we used the whole dataset to test it. However, our main goal is to overfit the model into the
data. In order to do that, we proceeded to train and test the best model (XGBClassifier)
with the whole dataset. This resulted in a model with a ROC AUC of 1.0 and an R2 of
1.0. This led us to conclude that the model overfitted the data perfectly and is ready to
be used in the Subgroup Discovery task. For a more detailed analysis upon the xG results
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Figure 5.3: XGBClassifier xG’s distributions

Metric Best model Best features’ set Best Threshold Metric’s Value
ROC AUC XGBClassifier All Features 1.0 0.80

R2 XGBClassifier All Features 0.3 0.99
Brier Score XGBClassifier All Features 0.5 0.02

xG Diff Score XGBClassifier All Features 0.2 0.85

Table 5.1: Best result per metric

check the appendix A.

5.1.1 Unexpected Goals

After analysing the results from xG, we came across many models that fitted the data
reasonably, but they had wrong predictions when it came to goals scored with a low xG,
as we can see in Figure 5.3. That led us to think about those "Unexpected Goals".

We concluded that most misses were well predicted, i.e., all missed shots had a really low
xG score. However, the problem was mainly in the shots that ended in a goal since there
are multiple shots with rather low xG that resulted in a goal. A real example of this
scenario is Wayne Rooney’s goal on the 29th of November 2017 against West Ham United,
where he scored 54 meters away from the opponent’s goal.

So, if we subtract the binary target Goal/Miss by the value of xG:

Surprisingness = goal?− xG

Where goal? can be either 0 or 1, and xG can range between 0 and 1. This formula results
in a continuous spectrum between -1 and 1, which we call Surprisingness. Values near zero
represent shots whose xG is according to reality, misses that have low xG, and goals that
have high xG. Values close to 1 represent the Unexpected Goals, and values close to -1
represent the Unexpected Misses.

Therefore, since our overfitted model does the separation of Goals and Misses perfectly, it
is not possible to analyze Unexpected Goals/Misses. For this reason, we will use the best
model from the experiments (XGBoost) but trained with only 80% of the population using
all 38 features of the dataset. Its results are in the Figures 5.1b and 5.2a. As we can see
in the second histogram in Figure 5.3, the xG values near zero represent our Unexpected
Goals, and from the third histogram, since there are almost no values near one, we can
conclude that Unexpected Misses are much scarcer.
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Figure 5.4: Unexpected Goals

In order to facilitate the analysis of these Unexpected Goals/Misses, Figure 5.4 illustrates
how the data is distributed. We use a threshold of -0.5 and 0.5 to define the Unexpected
shots. That is, values between -0.5 and 0.5 are considered Expected, and values outside
that range are considered Unexpected.

Finally, we decided to implement Subgroup Discovery only in the Unexpected Goals (red
dots on the left in the Figure 5.4). To do so, we used the CORTANA software with the
following parameters:

• Quality Function - Z-score

• Search Strategy - Beam Search

• Depth - 2

• Target average - 0.87

• Population - 316

This experiment aims to analyze what values the features take that increase the surpris-
ingness of unexpected goals. After analyzing the best subgroups found, we concluded that
the surprisingness increased when the distance of the shot to the goal increased and when
the height of the team decreased, reaching a target average of 0.97 with a coverage of 75
elements (23%).

Then, we also found other subgroups which increased the target average from 0.87 to 0.93
with a coverage of 25%. These subgroups are defined as having the attacking team’s height
lower than 42 meters and the actions that happened in the first half of the match.

These analyses let us know the dataset’s characteristics where the model makes most of the
wrong predictions. By the subgroups analysis, we can conclude that long shots (superior
to 16 meters), when the height of the team is inferior to 42 meters (for example, in corners
or free kicks) and also adding the factor that these shots are in the first half, leads us
to conclude that the model has more difficulty in making correct predictions within this
search space.
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It should be noted that all this analysis was done in the soccer context, but we consider
that this can be done in multiple other domains in order to understand what aspects lead
a model to make wrong predictions.

5.2 Subgroup Discovery’s Results

Concerning the results gathered by the Subgroup Discovery’s techniques, we first had to
define some preliminary parameters such as the number of bins for the numerical features,
the refinement’s depth, and the number of subgroups to be extracted:

• Number of bins per numerical variable: 10

• Refinement’s Depth: 2

• Number of best subgroups to be extracted: 100

5.2.1 Cortana vs PySubgroup

Firstly, Subgroup Discovery was employed in both Pysubgroup and Cortana packages to
verify if the quality and subgroup descriptions changed from one package to another. The
whole dataset with 11375 plays was used in both approaches considering only the binary
target (Goal/Miss). It is relevant to mention that both approaches are defined with the
same parameters mentioned above and with WRAcc and Beam Search as Quality Function
and Search Strategy, respectively.

In order to compare both methods, we used the ROC AUC metric from the subgroups and
the descriptors from the best subgroups found.

The ROC AUC score was 0.711 and 0.712 for the Pysubgroup and Cortana implementa-
tions, respectively, which leads us to conclude that the subgroup’s quality is the same for
both approaches. Also, the descriptors from the best subgroup are basically the same for
both approaches, as it is shown in Table 5.2.

Albeit, we decided to use Cortana’s approach for the rest of the experiments since we
consider it to be a more robust and better-documented library than Pysubgroup.

Framework Description WRAcc
Score Coverage Target

Share

Cortana StrikerSpeed >= 5.42 AND
ShotDistanceFromTheGoal <=16.91 0.035 4546 0.20

PySubgroup StrikerSpeed >= 5.42 AND
ShotDistanceFromTheGoal <=16.50 0.035 4366 0.21

Table 5.2: Comparison between the best subgroup found by each package

5.2.2 Binary vs Numerical target

Then, we employed Subgroup Discovery but with a numerical target (xG) instead of the
binary target (Goal/Miss) to verify how the results changed from one approach to another
(with Cortana).
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After analyzing the results, we noticed that the descriptors from the top-5 best subgroups
change from one approach to another. Regarding the experiment with the binary target,
all subgroups from the top-5 contain the same features in the descriptors (distance between
the striker and the opponent’s goal and the striker’s speed, both at the moment when the
shot was taken). While the subgroups’ descriptors from the numerical target approach
include the same features in the descriptors as the binary approach plus another feature
(number of opponents in a radius of three meters). This leads us to conclude that it
is possible to extract more knowledge from the dataset when considering different target
types.

We also decided to intercept the subgroups from both approaches to see how many sub-
groups they have in common and check if the subgroup’s rank matched from one approach
to another. Five subgroups were found by both approaches, as it is shown in Table 5.3.
Besides one of the subgroups, they all match more or less the same rank. It is relevant
to mention that we are only evaluating the top-100 subgroups by each approach. If we
increase the number of subgroups found, the number of subgroups in common would also
increase.

Subgroup’s Description Binary
Rank

Numerical
Rank

ShotDistanceFromTheGoal <= 12.39 AND
DefendersAt7MetersRadius <= 4.0 53 58

ShotDistanceFromTheGoal <= 12.39 AND
DefendingCentroidDistanceToGoal <= 11.67 89 94

ShotDistanceFromTheGoal <= 12.39 AND
StrikerSpeed <= 4.71 7 86

ShotDistanceFromTheGoal <= 12.39 AND
StrikerSpeed <= 6.37 30 37

StrikerSpeed <= 4.71 AND
ShotDistanceFromTheGoal <= 12.39 43 43

Table 5.3: Rank comparison between Subgroups

Regarding the results from the best subgroups (from the binary and numerical target) in
the Cortana’s approach, the goal’s probability went from 11.5% to 20.0% with a coverage
of 4546 plays and xG’s mean when from 0.12 to 0.38 with a coverage of 913 plays.

5.2.3 Whole dataset vs One team dataset

Finally, we analyzed if there are subgroups specifics for some teams. In order to accomplish
that, we extracted three subsets from the whole dataset, each one of them containing only
plays from a certain team.

Concerning the three teams, which we called TeamA, TeamB, and TeamC (to preserve the
anonymity of the data), where each one of them has a different playing style. TeamA is
one of the top-table teams, TeamB is one of the middle-table teams, and finally, TeamC is
one of the bottom-table teams.
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Dataset Positives/Size Best Subgroup Description WRAcc Score Coverage Target Share

All Plays 1307/11349
(11.5%)

ShotDistanceFromTheGoal <=16.91 AND
StrikerSpeed >= 5.42 0.035 40% 20%

TeamA’s Plays 147/1052
(14.0%)

ShotDistanceFromTheGoal <=12.18 AND
DefendingCentroidDistanceToGoal >= 10.59 0.050 32% 30%

TeamB’s Plays 81/613
(13.1%)

ShotDistanceFromTheGoal <=21.88 AND
DefendersAt7MetersRadius <= 2 0.044 29% 29%

TeamC’s Plays 47/619
(7.6%)

ShotDistanceFromTheGoal <= 16.19 AND
BallSpeed >= 21.99 0.031 32% 17%

Table 5.4: Comparison between the whole dataset and the plays from three different teams

Since our dataset is unbalanced, each subset is also expected to be unbalanced. After
analysing the subsets’ targets, we concluded that there is a certain positive correlation
between the target’s balance and the team’s performance. This is logical since the target’s
unbalance is caused due to the lack of goals scored compared to the total attempts, so if a
team performs better, it will score more goals resulting in a less unbalanced dataset. This
can be verified in our scenario (shown in the second column in Table 5.4) if we take a look
at the goal frequency between TeamA (14.0%) and TeamC (7.6%).

Regarding the Subgroup Discovery results presented in Table 5.4, we concluded that there
is a positive correlation between the team’s performance and the value from the Subgroup
Discovery’s quality function. The WRAcc score increases when the team’s performance
increases. The best subgroup for TeamA, TeamB, and TeamC has a WRAcc score of 0.050,
0.044, and 0.031, respectively.

Also, we concluded that the subgroups found reflect each team’s playing style. As we
can see in Table 5.4, all the teams increase the goal’s probability to score when the dis-
tance from the shot to the goal decreases (which is obvious), but then each team has a
different descriptor that defines its playing style. Concerning TeamA, the goal’s proba-
bility increases when the opposing team is further away from the goal, according to the
feature DefendingCentroidDistanceToGoal (e.g. counter-attacks or isolated plays). The
goal’s probability increases for TeamB if there are less than two players from the opposing
team in a radius of seven meters from the striker at the moment when the shot was made.
Which leads us to conclude that TeamB scores much more goals when the striker is isolated
from the opposing team. Finally, TeamC has a higher chance of scoring if the ball speed
is higher than 22.99 km/h when the shot was made (e.g. corners).

Since all subgroups included the feature ShotDistanceToTheGoal, we decided to do the
same experiments but without that feature. The results are presented in appendix B.
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Conclusion

Subgroup Discovery has proven to be an effective and robust data mining approach to deal
with soccer data. Its explainability is a huge advantage comparing to other Data Mining
techniques in terms of actionability, i.e., it eases decision-making about future actions in
the domain.

Overall, the best-scored subgroups from the two targets (goal/miss and xG) present the
same features in the subgroup’s descriptors. However, the granularity of the continuous
target variable (versus the binary target) allow us to extract more knowledge from the
same dataset. Also, there are subgroups that are specific for certain teams, which leads us
to conclude that the team’s playing style impacts the subgroups found.

Regarding the Expected Goals’ prediction, we consider gradient boosted trees (XGBoost)
to be the model that best fitted our data. We also consider that this approximation made
by the model enables us to extract more information from a binary target, so within the
positive set of the target we can perceive which samples are "more positive" than others.

We conducted two experiments designed to answer the four research questions proposed.

1. Does the use of different search strategies and quality measures lead to subgroups
that represent substantially different knowledge?

2. Can we identify interesting subgroups combining information from different sources?

3. Is it possible to use a Subgroup Discovery approach to find knowledge that is specific
to a particular team or league

4. Are the subgroups discovered related with the five time phases (defensive and offen-
sive organisations, the defense-attack and attack-defense transitions, and stop balls)
in the game or with the time when those occurred (first or second half)?

According to the results obtained from the preliminary results and main experiment, we
drawn the following conclusion for each one of the questions:

1. In the preliminary experiments, we analysed the subgroups discovered by four differ-
ent quality measures in the same dataset, and each quality function gathered different
subgroups from each other. This led us to conclude that the subgroups found are
highly dependent to the quality function, which make sense since each quality func-
tion has its own parameters and weights. Concerning the Search Strategy, we tested
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with three different approaches (two exhaustive and a greedy one). They all pro-
vided the same subgroups found. The only thing that varied was the execution time
required to discover the subgroups candidates. The greedy Search Strategy (Beam
Search) took less time to compute the subgroups found;

2. In both experimentations conducted during this study we combined information from
different sources. In the preliminary experiment, we combined Wyscout’s event-
stream data and data from FIFA. In the main experiment, we combined information
from Tracab’s tracking data and Opta’s event-stream data. After analyzing the
subgroups found by each experiment, we concluded that it is possible to identify
subgroups whose descriptors contain information from the multiple sources;

3. In the experiment performed in Section 5.2.3 we concluded that there are subgroups
specific to certain teams since the subgroups varied from one team no another. This
concludes that Subgroup Discovery is able to catch different playing styles from
different teams.

4. Since most features calculated take into account the time phases mentioned, it is
logical that most subgroups found are related to the five-time phases. Also, during
the Unexpected Goals, one of the most relevant subgroups found is defined by shots
made in the first half, concluding that there are subgroups related to the time when
the plays occurred.

6.1 Lessons Learned

In this section we highlight some of the lessons learned during this study.

• More interesting knowledge can be obtained with Abstraction knowledge
- As we concluded when analysing the preliminary results from the three approaches
tested, the approach which provided the best results was the one where we employed
Abstraction Knowledge (feature engineering).

• Visualisation tool supports the interpretation of the subgroups discovered
- After discovering the most interesting subgroups according to the metrics used, we
only could understand the subgroup’s nature after visualising the plays within the
subgroups discovered.

• Beam Search is a reliable and optimised approach to iterate over the search
space - After comparing the subgroups found with multiple search strategies, we
concluded that the Beam Search provided the same results as the exhaustive searches
in a significantly shorter execution time.

• Increasing data granularity improves the results - After comparing the results
from the preliminary work (where we only used event-stream data) and the main
experiment (where we used both event-stream and tracking data), we can conclude
that this statement is true since the results got much better when we added tracking
data into the experiment. In the experiment where we only used event-stream data,
the best subgroup reached a WRAcc score of 0.015, while in the experiment where
we increased data granularity (by adding tracking data), the best subgroup reached
a WRAcc score of 0.035.
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Conclusion

• Soccer experts must evaluate the subgroup discovery results’ actionability
- After gathering the results discovered, the specialist on soccer’s domain must verify
if it is possible to take advantage of the subgroups found and how they may impact
the game flow.

• Increasing the target’s granularity may allow to gather even more informa-
tion - During the main experiment we converted the binary target into a continuous
one by overfitting a machine learning model into the data and then extracted the
goal’s probability according to the model (xG). Then, we proceeded to employ Sub-
group Discovery using both targets separately and we concluded that the approach
which had a continuous target was able to find subgroups with a high quality function
value that were not found by the approach which used a binary target.

6.2 Future work

Concerning future work, we consider that there is a lot to be done in this domain.

About the features extracted, we consider that there is always more to be done. We were
able to extract 38 features in our main experiment, however we did not considered any
features that took the player’s individual performance into account. We believe that it
would be interesting to include data from external sources in order to fill that gap.

Regarding Subgroup Discovery, we consider that it would be interesting the possibility to
develop a quality function that is specific to soccer, where we can extract knowledge from
its values instead of using the most used quality functions such as WRAcc and T-Score.
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Appendix A

xG Models Results

Features Model Threshold ROC AUC R2 xG Avg xG Goal Avg xG Miss Avg xG Diff Brier Score
0 All Features XGBClassifier 1.0 0.802 0.99 0.106 0.739 0.024 0.715 0.022
1 All Features XGBClassifier 0.5 0.801 0.989 0.12 0.852 0.025 0.827 0.02
2 All Features XGBClassifier 0.3 0.799 0.991 0.125 0.867 0.028 0.839 0.023
3 All Features XGBClassifier 0.2 0.797 0.99 0.13 0.883 0.032 0.851 0.026
4 All Features LogisticRegression 0.5 0.796 0.882 0.116 0.258 0.098 0.16 0.086

Table A.1: Top-5 models according to ROC AUC metric

Features Model Threshold ROC AUC R2 xG Avg xG Goal Avg xG Miss Avg xG Diff Brier Score
0 All Features XGBClassifier 0.3 0.799 0.991 0.125 0.867 0.028 0.839 0.023
1 All Features XGBClassifier 1.0 0.802 0.99 0.106 0.739 0.024 0.715 0.022
2 All Features XGBClassifier 0.2 0.797 0.99 0.13 0.883 0.032 0.851 0.026
3 All Features XGBClassifier 0.5 0.801 0.989 0.12 0.852 0.025 0.827 0.02
4 Top 5 relevants Feature DecisionTreeClassifier 0.5 0.603 0.986 0.114 0.847 0.019 0.828 0.034

Table A.2: Top-5 models according to R2 metric

Features Model Threshold ROC AUC R2 xG Avg xG Goal Avg xG Miss Avg xG Diff Brier Score
0 All Features XGBClassifier 0.5 0.801 0.989 0.12 0.852 0.025 0.827 0.02
1 All Features XGBClassifier 1.0 0.802 0.99 0.106 0.739 0.024 0.715 0.022
2 All Features XGBClassifier 0.3 0.799 0.991 0.125 0.867 0.028 0.839 0.023
3 All Features XGBClassifier 0.2 0.797 0.99 0.13 0.883 0.032 0.851 0.026
4 Top 10 relevants Feature XGBClassifier 0.5 0.786 0.973 0.129 0.76 0.047 0.713 0.03

Table A.3: Top-5 models according to Brier Score metric

Features Model Threshold ROC AUC R2 xG Avg xG Goal Avg xG Miss Avg xG Diff Brier Score
0 All Features XGBClassifier 0.2 0.797 0.99 0.13 0.883 0.032 0.851 0.026
1 All Features XGBClassifier 0.3 0.799 0.991 0.125 0.867 0.028 0.839 0.023
2 All Features DecisionTreeClassifier 1.0 0.616 0.984 0.119 0.857 0.023 0.834 0.036
3 All Features DecisionTreeClassifier 0.5 0.616 0.984 0.119 0.857 0.023 0.834 0.036
4 All Features DecisionTreeClassifier 0.3 0.616 0.984 0.119 0.857 0.023 0.834 0.036

Table A.4: Top-5 models according to xG Diff metric
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Appendix B

Subgroup Discovery Results

Nr. Depth Coverage Quality Probability Positives Conditions
1 2 324 0.036 0.26 83 HeightAttacking >= 40.16 AND DefendersAt3MetersRadius <= 1.0
2 2 327 0.035 0.25 83 DefendersAt3MetersRadius <= 1.0 AND HeightAttacking >= 40.06
3 2 379 0.034 0.23 89 HeightAttacking >= 40.16 AND StrikerSpeed >= 3.52
4 2 408 0.034 0.23 93 HeightAttacking >= 40.16 AND DefendersAt3MetersRadius <= 2.0
5 2 376 0.034 0.23 88 HeightAttacking >= 40.16 AND DefendersAt7MetersRadius <= 4.0
6 2 369 0.034 0.24 87 HeightAttacking >= 32.94 AND HeightAttacking >= 41.52
7 2 369 0.034 0.24 87 HeightAttacking >= 40.16 AND NumberDribbles <= 0.0
8 2 398 0.034 0.23 91 HeightAttacking >= 40.16 AND Corner = ’0’
9 2 406 0.034 0.23 92 HeightAttacking >= 40.16 AND DefendersAt7MetersRadius <= 5.0
10 1 421 0.033 0.22 94 HeightAttacking >= 40.16
11 2 421 0.033 0.22 94 HeightAttacking >= 29.97 AND HeightAttacking >= 40.16
12 2 371 0.033 0.23 87 HeightAttacking >= 37.49 AND HeightAttacking >= 41.48
13 2 407 0.033 0.23 92 HeightAttacking >= 37.49 AND DefendersAt3MetersRadius <= 1.0
14 2 379 0.033 0.23 88 HeightAttacking >= 40.16 AND ShotAngleFromTheGoal <= 39.56
15 2 379 0.033 0.23 88 HeightAttacking >= 40.16 AND ShotAngleFromTheGoal >= -44.97
16 2 379 0.033 0.23 88 HeightAttacking >= 40.16 AND AttackingTeamSpread >= 5.4
17 2 379 0.033 0.23 88 HeightAttacking >= 40.16 AND MoreLikelyPitchControl <= 92.67
18 2 379 0.033 0.23 88 HeightAttacking >= 40.16 AND CounterAttack >= 0.116
19 2 337 0.033 0.24 82 HeightAttacking >= 40.16 AND ShotAngleFromTheGoal >= -30.99
20 2 337 0.033 0.24 82 HeightAttacking >= 40.16 AND StrikerSpeed >= 5.3

Table B.1: Top-20 subgroups from TeamA without the ShotDistanceToGoal feature (with
a total of 1052 plays)

Nr. Depth Coverage Quality Probability Positives Conditions
1 2 245 0.036 0.22 54 PitchControlAttacking <= 76.35 AND DefendersAt7MetersRadius <= 2.0
2 2 266 0.035 0.21 56 DefendersAt7MetersRadius <= 2.0 AND PitchControlAttacking <= 78.74
3 2 214 0.034 0.22 49 DistanceBetweenCentroids <= 5.51 AND DefendersAt7MetersRadius <= 2.0
4 2 208 0.034 0.23 48 DefendersAt7MetersRadius <= 2.0 AND DistanceBetweenCentroids <= 5.35
5 2 155 0.034 0.26 41 WidthAttacking <= 33.17 AND DefendersAt7MetersRadius <= 2.0
6 2 178 0.034 0.25 44 DefendersAt7MetersRadius <= 2.0 AND WidthAttacking <= 34.79
7 2 180 0.033 0.24 44 WidthAttacking <= 34.83 AND DefendersAt7MetersRadius <= 2.0
8 2 266 0.033 0.21 55 DefendersAt7MetersRadius <= 2.0 AND StrikerSpeed >= 3.9
9 2 251 0.033 0.21 53 MoreLikelyPitchControl <= 91.8 AND DefendersAt7MetersRadius <= 2.0
10 2 237 0.033 0.22 51 DefendersAt7MetersRadius <= 2.0 AND MoreLikelyPitchControl <= 90.87
11 2 270 0.032 0.20 55 DefendersAt7MetersRadius <= 2.0 AND NumberPasses <= 8.0
12 2 148 0.032 0.26 39 DefendersAt7MetersRadius <= 2.0 AND WidthAttacking <= 32.79
13 2 210 0.032 0.22 47 WidthAttacking <= 36.58 AND DefendersAt7MetersRadius <= 2.0
14 2 266 0.031 0.20 54 DefendersAt7MetersRadius <= 2.0 AND WidthAttacking <= 42.26
15 2 266 0.031 0.20 54 DefendersAt7MetersRadius <= 2.0 AND MoreLikelyPitchControl <= 93.33
16 2 190 0.031 0.23 44 NumberEvents <= 6.0 AND WidthAttacking <= 31.87
17 2 236 0.031 0.21 50 DefendersAt7MetersRadius <= 2.0 AND CounterAttack >= 0.191
18 2 207 0.031 0.22 46 DefendersAt7MetersRadius <= 2.0 AND WidthAttacking <= 36.36
19 2 131 0.031 0.27 36 DefendersAt7MetersRadius <= 1.0 AND PitchControlAttacking <= 78.74
20 2 246 0.031 0.21 51 WidthAttacking <= 33.17 AND MoreLikelyPitchControl <= 91.47

Table B.2: Top-20 subgroups from TeamB without the ShotDistanceToGoal feature (with
a total of 613 plays)
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Nr. Depth Coverage Quality Probability Positives Conditions
1 2 169 0.025 0.17 28.0 ShotAngleFromTheGoal >= -41.59 AND HeightAttacking >= 44.16
2 2 131 0.023 0.18 24.0 GoalKeeperDistanceFromTheGoal >= 2.27 AND HeightAttacking >= 45.7
3 2 149 0.022 0.17 25.0 ShotAngleFromTheGoal >= -28.66 AND HeightAttacking >= 44.17
4 2 149 0.022 0.17 25.0 BallSpeed >= 21.99 AND HeightAttacking >= 44.13
5 2 189 0.022 0.15 28.0 HeightAttacking >= 38.62 AND AttackingTeamSpread >= 6.76
6 2 112 0.022 0.20 22.0 ShotAngleFromTheGoal >= -41.59 AND HeightAttacking >= 47.17
7 2 112 0.022 0.20 22.0 ShotAngleFromTheGoal >= -10.33 AND HeightAttacking >= 44.32
8 2 112 0.022 0.20 22.0 StrikerSpeed >= 8.45 AND HeightAttacking >= 44.3
9 2 100 0.022 0.21 21.0 BallSpeed >= 21.99 AND HeightAttacking >= 46.81
10 2 156 0.021 0.16 25.0 AttackingTeamSpread >= 6.5 AND HeightAttacking >= 43.85
11 2 131 0.021 0.18 23.0 StrikerSpeed >= 6.65 AND HeightAttacking >= 44.13
12 2 131 0.021 0.18 23.0 BallSpeed >= 35.38 AND HeightAttacking >= 44.13
13 2 131 0.021 0.18 23.0 BallSpeed >= 35.38 AND HeightDefending >= 40.1
14 2 224 0.021 0.13 30.0 HeightAttacking >= 38.62 AND AttackingTeamSpread >= 6.51
15 2 132 0.021 0.17 23.0 ShotAngleFromTheGoal >= -20.31 AND HeightAttacking >= 44.17
16 2 93 0.021 0.22 20.0 HeightAttacking >= 44.6 AND BallSpeed >= 89.19
17 2 199 0.021 0.14 28.0 MaxPitchControl <= 4.13 AND HeightAttacking >= 44.17
18 2 199 0.021 0.14 28.0 CounterAttack >= 0.175 AND HeightAttacking >= 43.55
19 2 199 0.021 0.14 28.0 PlayDuration <= 28.96 AND PitchControlAttacking <= 66.84
20 2 186 0.021 0.15 27.0 AttackingTeamSpread >= 6.19 AND HeightAttacking >= 43.38

Table B.3: Top-20 subgroups from TeamC without the ShotDistanceToGoal feature (with
a total of 619 plays)
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