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“If you can’t explain it simply,
you don’t understand it well enough.”

- Albert Einstein
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Abstract

The evolution of the technology increased exponentially the amount of available
data and the complexity of it, which brought some data quality problems that affect
negatively the performance of the data mining process. These data quality issues
can be divided into two main categories: distribution-based, which includes class
imbalance and small disjuncts, and feature-based, that includes missing data. These
problems often occur together in real-world datasets, therefore, it is important to
study how problems from one category affect issues from the other.

The interrelation among problems from the same category have already been studied
while the relation between distribution and feature-based have yet to be researched.
This thesis focus on this interrelation and how both problems affect the classification
performance.

In this work, it is presented a study on some datasets characteristics and the effect
they have on the imputation and classification performance. The considered char-
acteristics were the size and number of features in a dataset, the Imbalance Ratio
(IR), some complexity metrics and the distribution of the minority class. These
characteristics do not have a high impact on the imputation performance while the
IR and the distribution of the minority class highly affect the classification task.
The higher the IR and the percentage of unsafe samples, the lower the performance
will be. In conclusion, the classification will have worse results when a dataset has
a higher complexity.

Keywords – missing data, imbalanced data, small disjuncts, data analysis
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Resumo

A evolução da tecnologia aumentou exponencialmente a quantidade e complexidade
dos dados, o que levou ao aparecimento de problemas ao nível dos dados que afetam
negativamente o desempenho do processo de extração de conhecimento dos dados.
Estes problemas podem ser divididos em duas categorias: problemas de distribuição,
onde estão incluídos o não balanceamento dos dados e os small disjuncts, e de
variáveis, onde se encontra o problema dos dados em falta.

A relação entre dificuldades da primeira categoria foi já estudada por alguns autores.
No entanto, a relação entre problemas de cada uma das categorias ainda não foi
abordada na literatura. Por isso, o foco desta tese é a inter-relação entre problemas
de diferentes categorias e como é que esses problemas afetam o desempenho da
classificação.

Neste trabalho, é apresentado um estudo sobre como algumas características de
datasets afetam a imputação de dados em falta e a classificação dos dados. As car-
acterísticas consideradas foram o tamanho e número de features num dataset, o IR,
algumas métricas de complexidade e a distribuição da classe minoritária. Chegou-
se à conclusão que estas características não têm um grande impacto na imputação
mas, por outro lado, o IR e a distribuição da classe minoritária afetam bastante os
algoritmos de classificação. Quanto menos balanceado um dataset é e mais dados
unsafe tem, pior será o desempenho da classificação. Em conclusão, a classificação
irá ter pior resultados em datasets com uma complexidade mais alta.

Palavras-chave – dados em falta, dados não balanceados, small disjuncts, análise
de dados
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Chapter 1

Introduction

Over the years, the evolution of the technology increased exponentially the amount
and the complexity of the available data. Also, the growing use of Machine Learning
(ML), specially deep learning techniques demand more data to optimize their results
[1].

In the late 1980s, Piatetsky-Shapiro named a workshop held at the International
Joint Conference on Artificial Intelligence as Knowledge Discovery in Databases
(KDD) [2]. In 1990, Fayyad et al. [3] defined KDD as the “overall process of
discovering useful knowledge from data” [3]. This process consists of five steps
(Figure 1.1): Selection, Preprocessing, Transformation, Data Mining and Interpre-
tation/Evaluation.

Figure 1.1: Knowledge Discovery in Databases process. Adapted from Fayyad et.
al [3].

The first step includes understanding the problem at hand and its goal, collecting

1
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relevant prior knowledge and the necessary data. The next step is cleaning and
preprocessing the data, i.e., remove noise and outliers, deal with missing values,
among others. In the third step, it is performed dimensionality reduction or other
useful transformation techniques to represent the data. In the fourth step, a data
mining approach is selected to reach the goals defined in the first step. The last step
consists in analysing and validating the results obtained in the previous phase.

Many factors can affect the performance of a ML model based approach and the
quality of the data is first and foremost [4]. The increasing complexity brought
some data quality problems that lead to poor classification performance. Therefore,
the preprocessing phase will occupy an important role in the performance of such
models.

1.1 Context and Motivation

Data irregularities have a high impact on the performance of ML algorithms. Data
irregularities are essentially situations where the distribution of the data or the
features deviate from what could have been ideal, being biased, skewed or incomplete
[5].

Most of the traditional classifiers make a few assumptions about the data [5]. When
these assumptions are violated, some problems arise. These assumptions and re-
spective problems are described in Table 1.1.

The problems aforementioned can be divided in two categories: distribution-based
and feature-based, as shown in Figure 1.2.

Figure 1.2: Types of data irregularities. Adapted from Das et. al [5].

A large amount of research works have already studied these five problems separately

2
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Assumption Problem Problem Description

Data is equally distributed Class Imbalancement One or more classes are un-
derrepresented

Each class is equally dis-
tributed

Small Disjuncts Sub-concepts within classes
are underrepresented

All the classes have sim-
ilar class-conditional distri-
butions

Class distribution skew Different classes possess very
different class-conditional
distributions

Feature values are all defined Absent Features Some features are undefined
for some of the data points
due to its nature

Feature values are all known Missing features Corruption of feature values
due to noise, equipment mal-
function, etc

Table 1.1: Classifiers assumptions about the data and problems that arise when they
are violated. Examples of Class Imbalance, Small Disjuncts and Class distribution
skew are represented in Figure 1.3.

but the interrelations between them are an important matter to discuss, since more
than one assumption can be violated at the same time. In [6, 7], the authors studied
the connection between the class imbalance and small disjuncts problems. The
authors of the first article concluded that the prediction of small disjuncts of the
majority class is more accurate than the ones of the minority class with the same
size. In the second paper, the authors concluded that the small disjuncts problem
has a greater impact than the class imbalance on the decrease in accuracy.

Das et al. [5] concluded that there are none research works about the connection
between distribution-based and feature-based data irregularities. Missing values
and absent features are independent and intrinsic to the dataset. The interrelations
between distribution-based and feature-based irregularities have not been studied
yet. The surveys on this topic only propose new approaches to deal with these
problems individually, neglecting the effect irregularities from one category have on
the other. For example, class imbalance and missing data are two problems that,
most of the times, happen together in real datasets. In his work, Das et al. [5] left
some open issues about the connection between these two types of data irregularities:

• What is the effect of missingness on the performance of classifiers designed to
handle distribution-based irregularities and vice-versa?

• When does missingness arise distribution-based irregularities?

3
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(a) Class imbalance prob-
lem

(b) Small disjuncts prob-
lem.

(c) Skewed class distribu-
tion problem.

(d) Legends.

Figure 1.3: Examples of distribution-based irregularities [5]. The ideal decision
boundary represents the optimal limit between the two classes and the learned deci-
sion boundary corresponds to the one more likely to be learnt by a linear classifier.

1.2 Main Goals

Addressing the issue highlighted in the previous section, the main goal of this thesis
is analysing the interrelation between missing data and class imbalance
and their impact on the classification performance. To research it, some
hypothesis were formulated:

• What effect does the increasing of missingness has on the classification on
imbalanced scenarios?

• What impact the class imbalancement has on the missing imputation and on
the performance of the classification?

1.3 Document Structure

This thesis is structured as followed: in Chapter 2, important concepts to understand
the performed work are described and a literature review on the topics of class
imbalance and missing data is provided; in Chapter 3 it is analysed the experiments

4
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performed in this thesis and the results obtained; the main conclusions and future
work are presented in Chapter 4.

5
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Chapter 2

State of the Art

With the increasing importance and complexity of data pipelines, data quality be-
came one of the key challenges in modern software applications [8]. Data quality
has different definitions and interpretations. This concept is mainly researched in
two fields: databases, where it is studied from a technical point of view, and man-
agement, where other aspects about the data are concerned, such as dimensions,
accessibility, relevancy, interpretability, etc [9]. This thesis is focused on databases
data quality problems.

Poor data quality decreases significantly the performance of the ML algorithms. Two
of the most frequent real-world data quality problems are missing data (absence of
information) and class imbalance (at least one of the classes is underrepresented).
Statistical and machine learning models generally need complete data [10] and if a
dataset is imbalanced the prediction or classification model can be biased towards
the majority class [11].

In this chapter, the fundamental notions needed to understand the analysis per-
formed in this work are explained. In the last section, some literature about the
topic in hand is reviewed.

2.1 Missing Data

Missing data is the absence of information in a dataset and is a common problem in
real-world datasets. For example, in the UCI repository (which is one of the most
frequently open source used repositories) more than 45% of the datasets present
missing data [12]. It can occur due to erroneous inputting of data, incorrect mea-
surements, malfunctioning measuring equipment, non-response in surveys, among

7
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other reasons. For example, when a student is filling a psychology questionnaire, he
might not answer one question because he didn’t see it or because it doesn’t make
sense to him (for example, if the question is “How many kids do you have?” and he
doesn’t have one, the student pass this question).

2.1.1 Missing Data Mechanisms

The type of mechanism by which the data is missing affects certain assumptions
made when solving this problem. There are three types of missing data: Miss-
ing Completely At Random (MCAR), Missing At Random (MAR) and
Missing Not At Random (MNAR). To explain them, consider the dataset
X = {Xobs, Xmiss}, where Xobs and Xmiss are the observed and missing parts of
the data, respectively, and the missing matrix R where the location of the missing
values is indicated. The missing mechanism can be represented by the probability
of a sample being missing P (R) given the observed and missing samples defined in
Equation 2.1.

P (R|xobs, xmiss) (2.1)

The three mechanisms will be explained using the process of responding to a survey
as an example.

Missing data is considered MCAR when the probability of a value being miss-
ing does not depend on the value itself nor the observed values on the other vari-
ables. The probability of a value being missing only depends on itself, therefore,
P (R|xobs, xmiss) = P (R). Using the example of the survey, when someone skips a
question because he didn’t see it, the value is MCAR because it does not depend on
the answers to the other questions of the survey.

MAR occurs when the cause of the missing data is related to other variables of the
dataset but not with the values that would be in that missing data. The probability
that some data is missing can be defined as P (R|xobs, xmiss) = P (R|xobs) Considering
one of the questions of the survey is “How much do you weight?”, a woman might
not answer this question, not because of the actual answer, but because a person
of the female gender usually don’t feel comfortable to give this information. The
weight is missing depending on the variable “gender” but not because of the value
itself.

When the reason for missing data depends on missing and observed values, the
mechanism is MNAR. This mechanism cannot be determined since it depends on
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unobserved data. Considering the question “How many cigarettes do you smoke per
day?”, someone that answered “Yes” to the question “Do you smoke?” and smokes a
lot might not answer the first question because he wants to hide it. The missingness
of the data depends on another variable and on the value missing.

2.1.2 Missing Data Imputation

There are several ways to handle missing data. Figure 2.1 resumes the different type
of approaches to deal with missing data. Imputation is the most commonly used
[12], therefore, this work will focus on this type of approaches.

Imputation methods try to replace a missing value by plausible ones and are mainly
divided into statistical-based or machine learning based [12, 13]. Statistical meth-
ods replace the missing values with the most similar ones without building a model
to find their similarity (e.g. Mean/Median imputation, Multiple Imputation by
Chained Equations (MICE)). Machine learning-based methods construct a predic-
tive model to estimate the missing values (e.g. k-Nearest Neighbours (k-NN) impu-
tation and Support Vector Machines (SVM) imputation).

Figure 2.1: Methods to handle the missing data. Adapted from García-Laencina et.
al [12].

Mean/Median imputation

Mean/Median imputation are the simplest statistical-based imputation methods and
they replace the missing values by the mean or median of the variable, respectively
[10]. Mean imputation is more robust in the presence of outliers. The disadvantages
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of using this approaches are that they doesn’t consider the correlation between
variables and can produce biased estimates.

Multiple Imputation by Chained Equations

MICE is a particular multiple imputation technique that can be explained in four
steps [14]:

1. Replace the missing values with a simple imputation method, such as mean
or median;

2. The imputations in Step 1 are set back to missing for one variable (var);

3. The observed values from var are regressed on the other variables, i.e., the
other variables are the independent variables in the regression models and var

is the dependent variable;

4. The missing values for var are replaced with predicted ones from the regression.

This iterative process through the missing features is repeated until the convergence
of the imputation parameters (e.g., coefficients of the regression model). In Step
3, the regression model can be a linear regression, Random Forest (RF) regression,
logistic regression, among others. At the end of the process, the missing values have
been replaced by values that reflect the relationships between the data.

k-Nearest Neighbours

k-NN is a popular classification method that can be used for imputation of missing
values. Given an incomplete instance, this method selects the k nearest complete
instances and estimates the missing values with the mean or weighted mean (for
continuous features) or mode (for categorical features) [15]. The weighted mean at-
tributes weights to the neighbours regarding their distance to the incomplete sample.

This method requires the selection of the optimal number of neighbours k and the
distance metric between the incomplete samples and their neighbours [16]. The dis-
tance metric should be chosen taking into account the variables nature (categorical
or numerical). The Euclidean distance is one of the most popular distance metric
for numerical features and is defined in Equation 2.2, where x are samples from the
datasets and n is the number of features.
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d(x, y) =

√√√√ n∑
i=1

(xi − yi)2 (2.2)

Random Forest

RF imputation is an iterative imputation method [17]. This approach has some
advantages when compared with other popular imputation methods. RF imputation
[18]:

• Is capable of handling different types of features;

• Addresses the nonlinearity of features;

• Scales to high dimensions while avoiding overfitting;

• Does feature selection.

Recently, an approach called missForest was proposed by Stekhoven et al. [17]. In
this method, the missing data problem is considered a prediction problem. Values
are imputed by regressing one feature at a time against the other features. Then,
the missing data in the dependent variable (feature being regressed) are imputed
using the fitted forest.

2.2 Distribution-based irregularities

Distribution-based irregularities englobe three main data problems: class imbalance,
small disjuncts and class distribution skew. This thesis is mainly focused on the first
two problems, therefore, they will be further explained in this section.

2.2.1 Class Imbalance

Imbalanced data occurs when there’s a significant imbalanced distribution between
classes of a dataset [19, 20, 21]. In a binary scenario, the dataset is imbalanced if
one of the classes (minority class) is underrepresented compared to the other class
(majority class). This problem can significantly compromise the performance of most
standard learning algorithms [19, 22]. Some fields where imbalanced data is present
are, for example, medical diagnosis prediction of rare diseases, fraud detection in
transactions, detection of network intrusions, among others [21].
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There are some metrics used to measure how imbalanced a dataset is. The Imbalance
Ratio (IR) is widely used to measure it. Considering nmaj and nmin the number
of samples in the majority and minority class, respectively, the IR is defined on
Equation 2.3. This value represents the number of majority samples in the dataset
per each minority sample, i.e., if IR = 10, for each minority sample exists 10 samples
from the majority class. A dataset is considered imbalanced if IR > 2 [23].

IR =
nmaj

nmin

(2.3)

Class imbalance has proven to be a challenging problem, but can be severally wors-
ened when combined with other data difficulty factors, such as [24]:

• Small Disjuncts: Small meaningful clusters of the minority class far from the
class’s centroid, i.e., the minority class is represented in smaller clusters (Fig-
ure 1.3b);

• Overlap: Majority and Minority samples are in the same feature space, i.e.,
have the same have very similar feature values while belonging to different
classes (Figure 2.2);

• Noisy Data: Presence of non-meaningful instances that degrade the perfor-
mance of the learning algorithms (Figure 2.2).

Figure 2.2: Examples of overlapping classes and noise.

The imbalancement can be handled following different approaches that can be cat-
egorized into two groups [20]:
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• Data-level, where the data is preprocessed and the data distribution is altered;

• Algorithmic-level, where the classifiers are modified to handle the imbalance.

Data-level approaches are the most common, as they have proven to be efficient,
simple to implement and do not depend on the classifier [20].This type of strate-
gies use two sampling techniques: undersampling, that removes samples from the
majority class, and oversampling, where the minority class is replicated.

Oversampling techniques generate synthetic data to increase the size of the minority
class. Synthetic Minority Oversampling Technique (SMOTE) is a commonly used
benchmark for oversampling technique [25].

Synthetic Minority Oversampling Technique

SMOTE creates artificial data taking into account the space similarities between
minority samples [19]. The minority class is oversampled by taking the k nearest
minority class neighbours of each minority sample xi and creating synthetic exam-
ples between xi and some of the random neighbours [26]. There some extensions of
this algorithm [27], like Borderline-SMOTE (only the borderline samples are con-
sidered for oversampling), Safe-Level-SMOTE (the opposite to Borderline-SMOTE,
i.e., only examples around safe regions are synthesized), among others.

For example, if each minority sample has to be oversampled four times, SMOTE
selects 4 random samples from the k nearest neighbours and generates a sample xnew

following Equation 2.4, where δ ∈ [0, 1] is a random number, xi is the sample to be
oversampled and xk, k ∈ [0, 1, 2, 3] are the chosen neighbours. Figure 2.3 illustrates
how synthetic data is generated using this approach.

xnew = xi + δ(xk − xi) (2.4)

Over time, researchers observed that SMOTE produces noise by choosing samples
randomly [25]. Therefore, they tried to create other oversampling techniques based
on SMOTE to decrease the generation of wrong artificial samples.

Batista et al. [28] proposed a method called SMOTE+ENN where first they over-
sample the minority class using SMOTE and then use Wilson’s Edited Nearest
Neighbor Rule (ENN) to remove samples from both classes that differ from the
neighbourhood. Any example whose class differs from at least two of its three
closest neighbours is removed from the training set. This approach provided good
results, specially for datasets with a high IR [25].
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Figure 2.3: Illustration of how to generate artificial data using SMOTE. Adapted
from Fernández et. al [27].

2.2.2 Small Disjuncts

A disjunct is a conjunctive definition of a subconcept of the original concept [29].
The size of each disjunct corresponds to the number of samples that are correctly
classified. Therefore, a small disjunct is simply a disjunct with a small coverage,
which is represented in Figure 2.4. In this figure, the minority class is divided in
two small disjuncts.

Small disjuncts often have rare examples, small number of training examples in
the feature space [30]. The difference between rare and noisy samples is that the
first type is a valid concept while the later do not have a physical meaning. Rare
examples form small disjuncts that are underrepresented subconcepts of the minority
class [29].

Since small disjuncts are less represented, their classification error will be higher
than the larger disjuncts. The set of assumptions made by the classifiers will not
take into account the disproportional class distributions.

When considering a binary problem, the minority class is more likely to create small
disjuncts since it has less examples [31]. When a classifier is generalizing, common
cases might impose over rare examples, favoring larger disjuncts.

Some authors have already studied some relationships between the small disjuntcs
problem and class imbalance. Jo et al. [32] showed that high imbalanced datasets
might have a higher number of small disjuncts. Quilan [33] proved that the small
disjuncts in the minority class generates a higher error than the ones in the majority
class.
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figures/small-disjuncts-example-2.jpg

Figure 2.4: Example of the small disjuncts problem within the minority class.

2.3 Performance Evaluation Metrics

In this section, several metrics to evaluate the performance of the algorithms are
described, focusing on metrics that are more suitable to evaluate missing imputation
and classification on imbalanced scenarios.

2.3.1 Imputation Quality

The performance of an imputation method can be measured through the Classifica-
tion Error (CE), i.e., the best method is the one that minimizes the classification
error, or comparing the original values and the imputed ones [12]. In the first
approach, the imputation that minimizes the CE can affect the data distribution,
specially if the same method is used in data with different distributions. Therefore,
the second method is more adequate to evaluate the imputation performance. Let’s
consider x the original values of a certain feature, x̂ the imputed values, xi the mean
of the original values, x̂ the mean of the imputed values and n the number of missing
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values in that feature.

Root Mean Squared Error (RMSE)

The Root Mean Squared Error (RMSE) (Equation 2.5) is a quadratic metric used to
measure the difference between two features. Although utilized in several studies in
several studies to compare imputation methods, this metric might not be appropriate
for large differences between the original and the imputed values.

RMSE =

√√√√ 1

n

n∑
i=1

(xi − x̂i)2 (2.5)

Mean Absolute Error (MAE)

The Mean Absolute Error (MAE) (Equation 2.6) is less afected by large errors and
is widely used to measure the imputation performance.

MAE =
1

n

n∑
i=1

|x− x̂| (2.6)

Pearon Correlation Coefficient (ρ) and Coefficient of Determination (R2)

The Coefficient of Determination (R2) is equivalent to the square of Pearson Cor-
relation Coefficient (ρ). This metric measures the correlation between two features
that, when considering the performance of the imputation, are the feature with the
original values and the feature with the imputed values. ρ and R2 are defined in
Equations 2.7 and 2.8, respectively, where X and Y are the variables to be com-
pared, µX and µY are the mean of X and Y , respectively, σX and σY are the standard
deviation of X and Y , respectively, and E is the expectation (mean). These two
measures are between 0 and 1.

ρX,Y =
E[(X − µX)(Y − µY )]

σXσY

(2.7)

R2 = ρ2 (2.8)

Tables 2.1 and 2.2 present a possible interpretation for the Correlation Coefficient
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values [34, 35].

Intervals of |ρ| Interpretation

[0.0, 0.1[ Negligible correlation
[0.1, 0.4[ Weak correlation
[0.4, 0.7[ Moderate correlation
[0.7, 0.9[ Strong correlation
[0.9, 1.0] Very strong correlation

Table 2.1: Example of a conventional approach to interpret the absolute value of
the Correlation Coefficient (|ρ|). Adapted from Schober et al. [35].

Intervals of |ρ| Interpretation

[0.0, 0.36[ Weak correlation
[0.36, 0.68[ Moderate correlation
[0.68, 0.9[ Strong correlation
[0.9, 1.0] Very strong correlation

Table 2.2: Other example of a conventional approach to interpret the absolute value
of the Correlation Coefficient (|ρ|) presented by Taylor et al. [34].

2.3.2 Imbalance Classification Quality

In a binary classification, consider the following notation for a classification output,
where the positive class is the minority class: True Positives (TP) (samples correctly
predicted as positive), False Positives (FP) (samples predicted as positive, but in
reality are negative), True Negatives (TN) (samples correctly predicted as negative)
and False Negatives (FN) (samples predicted as negative, but in reality are positive).
Table 2.3 represents a confusion matrix. This matrix summarises the type of errors
described before.

Positive Prediction Negative Prediction
Positive Class TP FN
Negative Class FP TP

Table 2.3: Confusion matrix. Adapted from Monard et al. [36].

In the following sections, some popular performance measures will be described. The
first one, the accuracy, is not suitable for imbalanced scenarios whereas precision,
recall, F1-score and Area Under the Receiver Operating Characteristic (ROC) Curve
(AUC) are popular metrics for classification problems with imbalanced data.
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Accuracy

The accuracy (Equation 2.9) of a model is one of the most popular metrics to
evaluate the performance of the classifier, but it is not suitable when the data is
imbalanced [37]. For example, consider a dataset with 1000 samples, where 980
are from the negative class and 20 from the positive one (IR = 49). A simple
classifier can classify all the examples as negative and have an accuracy of 98%,
when, in reality, this method cannot predict correctly the outcome of samples from
the minority class. Therefore, the accuracy is not a suitable metric for imbalanced
situations.

accuracy =
TP + TN

TP + FP + TN + FN
(2.9)

Precision, Recall and F1-score

The precision, also known as Positive Predictive Value (PPV), is the proportion
of samples correctly classified as positive among all samples that are predicted as
positive (Equation 2.10).

precision =
TP

TP + FP
(2.10)

On the other hand, the recall, also referred to as Sensitivity or True Positive Rate
(TPR), is the proportion of positive samples correctly predicted (Equation 2.11).
This metric is an indicator of the performance of classifying correctly the minority
class.

recall =
TP

TP + FN
(2.11)

In medical classification, the main goal is to improve the recall (not miss patients
with diseases) without compromising the recall (diagnose all the patients with a
disease). F-score is a metric that unifies the previous two and is represented in
Equation 2.12, where β ∈ [0, 1] is a weight that translates the importance assigned
to the recall.

Fβ =
(1 + β2)× precision× recall

β2 × precision+ recall
(2.12)

When β = 1, i.e., the recall is as important as the precision, this metric is called
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F1-score and Equation 2.12 is simplified to Equation 2.13.

F1 = 2× precision× recall

precision+ recall
(2.13)

G-Mean

Geometric Mean (G-Mean) is another metric that is independent of the classes dis-
tribution [38] and is defined in Equation 2.15, where the Specificity is the proportion
of negative instances correctly predicted (Equation 2.14) and the Sensitivity is the
recall. This measure tries to maximize the accuracy on each class while keeping
these accuracies balanced.

specificity =
TN

TN + FP
(2.14)

G-Mean =
√

sensitivity × specificity (2.15)

ROC and AUC

AUC makes use of the ROC curve to exhibit the trade-off between the TPR and the
False Positive Rate (FPR), i.e., (1− specificity) versus sensitivity. It is expected
that when the TPR increases, the FPR increases therefore the specificity decreases.

A satisfactory ROC curve is supposed to lie above the identity line, that represents
the scenario of randomly guessing the class. The ideal point on the ROC curve is
at the top left, where the TPR is 1 and the FPR is 0, in other words, the classifier
predicts correctly all the positive samples and no negative sample is misclassified as
positive [37]. In this case AUC = 1.

The AUC measures the ability of a classifier to separate the positive class from
the negative one and is used as a summary of the ROC curve. This scalar is the
integration of this curve and AUC ∈ [0, 1]. If 0.5 < AUC < 1, there is a high chance
the classifier will be able to distinguish the positive samples from the negative ones.

2.4 Datasets characteristics

The analysis of the datasets characteristics allows to understand in which scenarios
a ML algorithm might fail [39]. This analysis can focus on many aspects about
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a dataset, but this thesis will only focus on the complexity of a dataset and the
distribution of the minority class.

2.4.1 Meta-features

Lorena et al. [39] defined some metrics that measure how complex a dataset is. The
authors divided all measures into six categories: feature-based, linearity, neighbor-
hood, network, dimensionality and class imbalance.

In this section, the metrics used in this thesis will be described. These metrics were
chosen after analysing which ones made more sense for the problem and described
better the data. Some metrics were contradictory and were also not used in this
work. All measures are between 0 and 1 and the higher the values, the more complex
the data is. Table A.1 has a description of each individual metric.

Feature-based Measures

Feature-based measures evaluate the discriminating power of the features. If the
dataset has at least one highly discriminating feature, the problem is simpler. In
these work, five feature-based metrics were used: Maximum Fisher’s Discriminant
Ratio (f1), Directional-vector Maximum Fisher’s Discriminant Ratio (f1v), Volume
of overlapping (f2), Maximum Individual Efficiency (f3) and Collective Feature Ef-
ficiency (f4). These measures mainly study the amount of overlap between different
classes.

Measures of Linearity

This type of measures study to what extent the classes are linearly separable, i.e., if it
is possible to separate them with an hyperplane. A more linearly separable problem
is considered simpler. Three linearity measures were analysed in this thesis: Sum of
the Error Distance by Linear Programming (l1), Error of Linear Classifier (l2) and
Non-Linearity of a Linear Classifier (l3). These metrics measure the error of linear
and non-linear classifiers.

Neighbourhood Measures

These type of measures study the decision boundaries and characterize the class
overlap by analysing the local neighbourhood of each sample. Some measures also
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characterize the internal structure of each class. All metrics use a distance metric
calculated with a heterogeneous distance measure. The four metrics used in these
work are: Local Set Average Cardinality (lsc), Fraction of Borderline Points (n1),
Error Rate of the Nearest Neighbor Classifier (n3) and Non-Linearity of the Nearest
Neighbor Classifier (n4).

Network Measures

In these measures, the dataset is represented as a graph. These graph must maintain
the similarities and distances between samples to ensure the data relationships. Two
nodes are connected if the distance between them is lower than a certain threshold.
The two metrics used are: Average Density of the Network (density) and Clustering
Coefficient (clscoef).

2.4.2 Minority class distribution

Some authors have already shown that the class imbalance alone might be harmless
for the classification algorithms but, when combined with other data quality prob-
lems, such as small disjuncts, it might have a negative effect on the recognition of
the minority class [40]. Napierala et al. [41] proposed a way to distinguish different
types of minority samples. The authors defined four types of examples:

• Safe: Examples situated in the homogeneous regions populated by one class
only. These type of points are easier to classify;

• Borderline: Samples that are located in the regions around decision boundaries
between classes;

• Outlier: Rare but valid sub-concept that should not be mistaken as a noisy
sample;

• Rare: Pairs or triples of minority samples located in the majority class region.
They are far from the boundary region but also are not isolated, such as the
outliers.

Each sample is labelled following a neighbourhood-based approach because the mi-
nority class often has smaller concepts, therefore, a local analysis is better suited
than a global one. The number of neighbours from the same class is what defines
each type of sample. Consider the notation nkmin : nkmaj, being nkmin and nkmaj the
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number of minority and majority samples in the neighbourhood, respectively, and k

the size of the neighbourhood. Figure 2.5 represents a dataset with the four types
of minority samples defined before with k=5. In this example, if the proportion of
minority and majority samples are:

• 5 : 0 or 4 : 1, the sample is labelled safe;

• 3 : 2 or 2 : 3, the sample is labelled as borderline;

• 1 : 4, the sample is labelled as rare;

• 0 : 5, the sample is labelled as outlier.

figures/typology-example-2.jpg

Figure 2.5: Example of the four types of samples of the minority class with k = 5.

Saéz et al. [42] used this characterization to study if preprocessing only certain types
of minority samples improves the classification performance. They concluded that
this approach had a significantly improvement over standard preprocessing meth-
ods. Additionally, they showed that in most datasets, oversampling the borderline
examples improved the results and the rare samples should be oversampled if the
percentage of safe examples is low.
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2.5 Literature Review

In this section, approaches used to solve the problems of missing data and class im-
balance when they occur simultaneously are reviewed. This problem can be solved
following two different approaches: sequentially, described in Section 2.5.1, or simul-
taneously, overviewed in Section 2.5.2.

2.5.1 Sequential Approaches

The conventional approach to address missing data and class imbalance when they
occur simultaneously is solve each one of the problems individually. The missing
mechanism considered by the authors in this section was MCAR.

The main goal of Wang et al. [16] was to develop an algorithm with high precision
to classify Diabetes Mellitus on an imbalanced and incomplete dataset. The chosen
dataset was the Pima Indian Diabetes Database (PIDD), where only 392 of the 768
are completed and the IR = 1, 87. They first compensated the missing values with a
Naive Bayes (NB) approach and then oversampled the minority class with an Adap-
tive Synthetic Sampling Method (ADASYN). For the classifier, the authors decided
to use a RF. To evaluate their approach, they compared it to other benchmark ma-
chine learning algorithms as the classifiers (NB, SVM and Decision Tree (DT)) using
different metrics (accuracy, precision, recall, F1-score and AUC). The authors also
compared their approach to a selection of existing ones proposed by other authors
considering only the accuracy. The authors concluded that the proposed method
outperforms the compared algorithms, getting an accuracy of 87,10%, 2,39% higher
than the second best approach.

Liu et al. [43] proposed a method to help prevent cerebral strokes. To eliminate
dimension relationships, the data is normalized with Z-score. The authors used
a RF Regression (RFR) to perform the imputation if there is a high correlation
between features. Otherwise, the missing values are imputed using statistical meth-
ods, like mean. To predict if a patient will have a cerebral stroke, a Deep Neural
Network (DNN) based on Automated Hyperparameter Optimization (AutoHPO)
model is used. In this algorithm, the majority class is undersampled. A Principal
Component Analysis (PCA) is applied to remove irrelevant features and a K-means
is used to perform a preliminary classification for AutoHPO. The elbow method is
used to find the optimal k. The dataset has an IR ≈ 55.3 and missing rates of
0.3 and 0.03 for the smoking status and BMI, respectively. Accuracy, specificity,
sensitivity, G-Mean, False Negative Rate (FNR) and FPR are the metrics used to
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compare the proposed method with baseline ones. Since the smoking status as low
correlation with the other features and commonly used prediction methods have low
accuracy when predicting this variable, a statistical imputation is adopted for this
feature. BMI has a higher correlation with the other features, therefore, RFR is
used for the imputation and its hyperparameters are optimized through grid search.
The proposed method is compared with a DNN, Bagging, RF, Adaptive Boosting
(AdaBoost) and XGBoost. The method described in this paper obtained the lowest
FPR and higher G-Mean. The FPR is slightly higher, but it is in an acceptable
range. The authors concluded that their approach can improve the FNR without a
large cost of the accuracy (1.7% higher than the mean of the compared methods).
Future work can focus on feature analysis based on DNN, such as sensitivity analysis
and l1 regularization.

Ozan et al. [44] proposed a solution for the machine learning problem challenge in
IDA 2016, where they had to solve a binary classification problem on an incomplete
and imbalanced dataset. The authors proposed a k-NN based approach, where first
they estimated the missing values with the mean of the k closest samples that have
the attribute complete, and then, they classified all the samples with a weighted k-
NN, where they calculated the probability that a sample belongs to each class. The
neighbours weights are attributed linearly between [0, 1]. In order to compensate
the class imbalance, rather than perform undersampling or oversampling, examples
from the minority class are given a higher weight. The best parameters are found
using the stochastic gradient descent approach. The k-NN distance metric used was
a slightly modified version of the Heterogeneous Euclidean Overlap Metric (HEOM).
The dataset has numerical attributes and histograms, the IR = 59 and the missing
rate is not specified. The performance of this method was compared with other
baseline approaches, such as SVM, RF and AdaBoost, using a cost function defined
by IDA 2016 that penalizes more a missed positive (FN). The authors performed 5
different tests with 5-fold cross-validation and concluded that the proposed method
outperformed the baselines ones.

Puri et al. [45] analysed 84 different models in noisy incomplete and imbalanced
datasets. Their study was divided in three parts: imputation of incomplete and im-
balanced datasets, resampling techniques for noisy and imbalanced datasets, com-
bination of the previous two. The authors considered 29 binary completed datasets
with IR between [1.82, 58.40]. Feature noise is first introduced by corrupting the
data by randomly assigning a value between the minimum and maximum of a
particular feature. The noise level tested was 0%, 10% and 20%. Then, missing
values are generated MCAR and the missing rate considered was 0%, 5%, 10%,
15% and 20%. The missing data imputation techniques chosen were Expectation-
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Maximization (EM), MICE, k-NN, mean and median. To deal with class imbal-
ance, 13 types of SMOTE were used: SMOTE, SMOTE-PSO, SMOTE-IPF, SOI-
CJ, SMOTE-ENN, DBSMOTE, SMOTE-TomekLink, SMOTE-OUT, GASMOTE,
NRAS-SMOTE, AND-SMOTE, NRSBoundary-SMOTE and VIS_RST. By com-
bining all the previous methods, the authors formulated 84 different combinations.
Classification and Regression Tree (CART) was considered for comparative analy-
sis. For training and testing, 5 stratified cross-validation was used. The classifica-
tion performance was evaluated with AUC, G-Mean and F1-score. The Friedman
test with Holm’s post hoc test was used to compare different methods over dif-
ferent datasets. The results have shown that for missing data imputation with
noisy imbalanced datasets, mice and k-NN performed better when the missing rate
was increased. SMOTE-ENN performs similarly to SMOTE-TomekLink, SOI-CJ
and SMOTE-IP in almost all noise percentage and is similar to VIS_RST with
an increase in noise level. In case of incomplete and noisy imbalanced datasets,
SMOTE-ENN performed well too with an increase in attribute noise percentage.
The combination of MICE with SMOTE-ENN performs well when compared with
other techniques.

2.5.2 Interrelation between missing and imbalanced data

This type of approaches deal with missingness and imbalancement at the same time,
i.e., the same algorithm imputes missing values and deals with imbalancement, either
balancing the data or giving more importance to the minority class.

Liu et al. [46] proposed a Fuzzy-Based Information Decomposition (FID) method
that addresses missing and imbalanced data simultaneously. The authors divided
their work in two parts: weighting, where they determine the contribution of all
observed data to estimate the missing values, and recovery, where the missing val-
ues are estimated taking into account the contribution of each observed instance.
They evaluated the performance of their approach using 27 complete public datasets
with a variety of characteristics. The IR varies from 1.05 to 42.22, the size of the
datasets goes from 62 instances to 17186 and the number of features ranges from
3 to 2000. The missing values are created randomly and the missing rates they
experimented are 5%, 10% and 20%. They applied 5-fold cross validation and the
metrics used to measure the performance were Geometric Mean (GM), AUC and
Matthews Correlation Coefficient (MCC). The authors compared the performance of
the FID with other 29 approaches that combined missing values recovery methods
(Mixture Kernel-Based (Mix) imputation, k-NN imputation and Self-Organizing
Maps for Imputation (SOMI)) with imbalanced data learning methods (Random
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Undersampling (RUS), Random Oversampling (ROS), SMOTE, Cluster Based Un-
dersampling (CBUS), Cluster Based Oversampling (CBOS) and Majority Weighed
Minority (MWM)). The classifier used to compare these approaches is the C4.5 DT.
The authors concluded that the proposed method outperforms not only methods
that focus only on one of the problems but also methods that solve the problems
sequentially.

Shin et al. [11] proposed a method called Multiple Imputation-Based Minority Over-
sampling Technique (MI-MOTE), where the missing data in the majority class is
imputed once with a multiple imputer and the minority class is replicated, to balance
the dataset, and then the missing values are imputed with the multiple imputer used
in the majority class. Because of stochasticity, the multiple imputer will impute dif-
ferent values in each duplicate. MI-MOTE can be applied before any classification
algorithm. The authors used MICE as the imputer and set the maximum number of
iterations to 10. 27 complete and imbalanced datasets with IR between [8.6, 129.5]

and number of instances between [336, 145751] were used in the experiments, with
10%, 20%, 30%, 40% and 50% of missing rate created by randomly removing val-
ues. MI-MOTE was compared with five sequential approaches: no oversampling,
random oversampling, SMOTE, B-SMOTE and ADASYN. The imputation is al-
ways performed with MICE. Each approach were evaluated using three classifiers:
RF, Logistic Regression (LR) and Neural Network (NN). The performance of each
method was measured using 5-fold cross-validation with the metrics F1-score and
AUC. The results showed that MI-MOTE outperformed the baseline approaches,
being more effective when the missing rate is higher. However, this method has
some limitations. MI-MOTE is computationally expensive because of the multiple
imputer, it would not work well when the missing rate is low because it would simply
replicate minority samples and cause overfitting.

Saqib et al. [1] proposed a Conditional Generative Adversarial Imputation Network
(CGAIN), which aims to impute missing values conditional to their class, taking
into account their class characteristics. The generator produces faking data using
the original data with missing values, class labels and random data. Then, the
discriminator receives the generated data and predicts which ones were missing in
the original dataset. Lastly, the generator receives the prediction performance of
the discriminator and adapts his weights. Both the generator and the discriminator
are fully connected NN with two hidden layers. The number of neurons in each
layer are three times the number of features of the dataset. The authors used
four binary and one multi-class complete datasets only with numerical features to
evaluate the performance of the CGAIN. The missing data is created MCAR with
percentages of missing from 5% to 20%. They compared their approach with a
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Generative Adversarial Imputation Network (GAIN), only using MICE, RF and
matrix completion, using the RMSE as metric. The IR of the datasets is between
1,14 and 3,52. To evaluate the performance of the CGAIN on imbalanced datasets,
the authors deleted rows of one of class to create the desired imbalance. The tested
IR was {9, 3, 1.5, 1}. The proposed CGAIN outperformed in every test the other
approaches with the original datasets and the datasets with specific imbalance. The
RMSE varies between 0,0601 and 0,2329.

2.5.3 Summary

In this section, a literature review on the topic of class imbalance and missing data
was performed. There are only a few researches that deal with class imbalance
and missing data simultaneously. In every work, the missing data was considered
MCAR, since it is easier to deal with. The missing values was created artificially
or the datasets already had already missing values. The missing rate was, in most
papers, between 5% and 20%. The IR of the used datasets has a wide range. k-
NN and MICE obtained better results when performing missing imputation, while
SMOTE is more common to oversample the minority class. Table 2.4 summarizes
the papers reviewed in the previous sections.

There are only a few authors that proposed approaches that deal with class imbal-
ance and missing data simultaneously. It is important to study the interrelation
between these two problems in order to understand them better and propose a clas-
sification or preprocessing algorithm that deal with both problems considering the
other and not only solve them individually.
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hapter
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Algorithms Datasets

Paper Imputation Class Imbal-
ance

Classification IR Missing
Rate

Metrics Compared
methods

Conclusions

[16] NB ADASYN RF 1,87 NS NB NB, SVM, DT The proposed approach out-
performed the other ones,
with an accuracy of 87,10%

[43] RFR or
statistical
methods

Undersampling DNN based
on AutoHPO

55,3 2 fea-
tures
with
0,3 and
0,03

Accuracy,
specificity,
sensitivity, G-
Mean, FNR and
FPR

DNN, Bagging, RF,
AdaBoost and XG-
Boost

Their approach can improve
the FNR
Mean 1,7% higher than
the mean of the compared
methods

[44] k-NN Higher weight Weighted k-
NN

59 NS 5-fold cross-
validation
Cost function
defined by IDA

SVM, RF and glsad-
aboost

The proposed method out-
performed the compared
methods

[45] EM, MICE,
k-NN, mean
and median

13 types of
SMOTE

CART [1.82, 58.40] 0%, 5%,
10%,
15%
and
20%

5 stratified
cross-validation
AUC, G-Mean
and F1-score

NA MICE and k-NN obtained
better results; SMOTE-
ENN performs similarly to
SMOTE-TomekLink,
SOI-CJ and SMOTE-IP;
MICE with SMOTE-ENN
obtained the better results

[46] FID C4.5 DT [1.05, 42.22] 5%,
10%
and
20%

5-fold cross val-
idation
GM, AUC and
MCC

29 combined ap-
proaches

The approach outperforms
all the other approaches, not
only the ones that focus on
one method, but sequential
approaches

[11] MI-MOTE RF, LR and
NN

[8.6, 129.5] 10%,
20%,
30%,
40%
and
50%

5-fold cross
validation
F1-score and
AUC

MICE followed by:
no oversampling,
random oversam-
pling, SMOTE,
B-SMOTE and
ADASYN

MI-MOTE has some limita-
tions; this approach outper-
forms the others, specially
when the missing rate is high

[1] CGAIN NA [1.14; 3.52]
9, 3, 1.5, 1

5% to
20%

RMSE GAIN, MICE, RF
and matrix comple-
tion

CGAIN outperformed in ev-
ery test

Table 2.4: Summary of the literature review
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Chapter 3

Experiments

In Section 2.5, it can be concluded that the interrelation between missing data and
distribution based irregularities has yet to be studied. These data quality problems
are common in real world datasets and there relation might be important to im-
prove the classification performance. For this reason, this thesis will focus on the
interrelation between these irregularities instead of considering the two problems
individually. In a preliminary stage, the main focus was to study the impact distri-
bution based problems have on missing data imputation. This phase can be divided
in two steps:

1. Class imbalance VS missing data imputation

2. Distribution based VS missing data imputation

After analysing the results obtained in the preliminary work, an approach referred in
Section 2.5 was modified in order to study the effect distribution based irregularities
have on classification problems when the data has missing values. In order to do so,
an approach described in Section 2.5 will be modified to consider the distribution
of the minority class.

In this section, the performed experiments will be described and their results will
be discussed. The datasets used for the experiments are described in Section 3.1.

3.1 Datasets

Two types of datasets were collected: 150 real binary datasets from UCI [47], Kag-
gle [48] and OpenML [49] and artificial ones generated with a tool developed by
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Wojciechowski et al. [50] to create multidimensional and multi-layer datasets. In
this work, this tool will be referred as datagenerator. Since the latest datasets were
created in a controlled environment, they were used in a preliminary stage to val-
idate the initial assumptions and serve as base to the rest of the work, but it is
important to study the problem in an uncontrolled scenario and confirm if the ten-
dencies observed with the artificial datasets remain, that is why most of the analysis
performed in this thesis uses real world datasets.

The artificial datasets were generated with 1400 examples, 3 features (x, y and z) and
IR ∈ {2, 4, 6, 10, 20, 50}. The reason why the number of samples is 1400 is because
in [50], the authors generated two datasets with 1200 and 1500 samples and 1400 is
between these two values. The chosen IR values represent highly imbalanced and less
imbalanced datasets. The datasets are tridimensional to allow a visualization of the
original data and the imputed data. Figures 3.1-3.6 show examples of the generated
datasets projected on axis xz with IR = 2. The second and fourth datasets are
versions of the first and third ones, respectively, with the small disjuncts problem.
All datasets have a certain amount of overlap between classes.

The real datasets only have numerical features and all of them are normalized.
Their characteristics are described in Table 3.1 (more detailed description of their
properties is in Table B.1). Some of the datasets are balanced (IR = 1) to be used
as a comparison to imbalanced datasets.

Characteristic Range
IR [1, 29.5]

no. of features [2, 310]
no. of samples [100, 20000]

Table 3.1: Real datasets characteristics

The next section addresses the distribution of the minority class of real datasets
referred in Section 2.4.2.

Distribution of Minority Samples

Each minority sample of real datasets is labelled using the method described in Sec-
tion 2.4.2. The neighbourhood of each point is defined using the k-Nearest Neigh-
bours (k-NN) with k = 5. Lower values of k would not distinguish well points of
different types, while higher values would not follow the assumption of the locality
of the method. In this thesis, the size of the neighbourhood is the same for all
datasets. Since all the features are numerical, the distance metric chosen was the
Euclidean Distance.
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Figure 3.1: flower Figure 3.2: flower-min-imbalanced

Figure 3.3: two-circle-
integumental

Figure 3.4: two-circle-
integumental-min-imbalanced

Figure 3.5: paw3 Figure 3.6: subclus5
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After labelling all samples from the minority class, there will be a percentage of
points safe, borderline, rare and outlier for each dataset. The distribution of each
type of point is represented in Figure 3.7. It can be concluded that most of the
datasets have a higher number of safe points and a lower percentage of outliers and
rare samples.

Figure 3.7: Distribution of each type of sample in real world datasets.

3.2 Preliminary Work and Assumptions

In a preliminary stage, the main goal was to find out if the IR alone had a critical
role on the imputation error. According to Puri et al. [45], MICE and k-NN perform
better than other baseline imputation algorithms when the classes are imbalanced.
Therefore, these are the two methods used to perform the imputation of the missing
values. The estimator used in MICE is a linear regression and the maximum number
of iterations is 10. In k-NN, the number of neighbours k is 5. The missing mechanism
considered is the MCAR since these missing values values are easier to handle. In
future work, it might be interesting to consider other missing mechanisms.

The experiments for each dataset followed 3 steps:

1. Create an incomplete dataset MCAR (all the missing values will be randomly
deleted). The missing values are distributed equally among all features and
following the original IR. E.g., consider a binary dataset with 100 samples and
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4 features (100 × 4 = 400 values) with IR = 4 (the minority class represents
20% of the samples). If the desired Missing Rate (MR) is 25%, the dataset
will have 0.25× 400 = 100 missing values. Each feature will have 100/4 = 25

missing values and, to maintain the IR, the minority and majority class will
have 0.2× 100 = 20 and 0.8× 100 = 80, respectively;

2. Impute the missing values created before;

3. Calculate the error of the imputation.

For each dataset, the previous steps are performed 10 times. The mean of the errors
for each dataset is calculated and used for the analysis. The pseudocode for this
approach is in Algorithm 1, where I is MICE and k-NN and the Missing Rate (MR)
is {5%, 10%, 20%, 40%}. Since the results for the MR 5%, 10% and 40% are similar
to 20%, they are presented in Appendice D.

Algorithm 1 Imputation
Input: dataset D, missing rate mr, imputer I
Output: imputation error finalerror

1: procedure
2: finalerror ← 0
3: for i=0:10 do
4: Dmiss ← dataset with mr of missing values created MCAR
5: I ← imputer fitted on Dmiss

6: D′ ← original samples with with missing values
7: D′

miss ← samples with missing values
8: D′

imp ← D′
miss with missing values imputed using I

9: error ← imputation error between D′ and D′
imp

10: finalerror ← finalerror + error
11: end for
12: finalerror ← finalerror

10

13: end procedure

Two metrics were used to measure the imputation error: RMSE and MAE. RMSE
is a widely used metric to compare imputation methods [51, 52] but might not be
appropriate when the difference between the original and imputed values are high.
MAE is also calculated because it is less affected by larger errors [52]. The Pearson
Correlation Coefficient was also calculated but, since the results were similar, they
will not be showed.

The next two sections will show the imputation results and discuss them relating
the error with other types of data irregularities.
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3.2.1 Missing Features and Class Imbalance

figures/types-data-irregularities-miss-ci.jpg

Figure 3.8: Types of data irregularities. Adapted from Das et al. [5]

This section will focus on the effect the class imbalance has on the imputation error.
It is expected that when the IR increases, the imputation error will also increase,
since the minority class is less represented and the missing values on minority sam-
ples will have less examples to perform the imputation.

Initially, the previous approach was used in the artificial datasets. Figures 3.9 and
3.10 presents the results obtained using k-NN and MICE, respectively, with 20% of
missing values. The results obtained for the other percentages of missing are shown
in Appendice C. Since the results are similar with 20% os missing values, only this
percentage will be evaluated in this section. It can be concluded that with the in-
creasing of the IR, the imputation error will also increase. This increasing follows
something similar to a logarithmic function. For IR higher than 10, the imputation
error increases slowly. MICE obtained lower errors than k-NN, but the increasing
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Figure 3.9: Imputation error of the artificial datasets using k-NN with 20% of missing
values.

Figure 3.10: Imputation error of the artificial datasets using MICE (with Linear
Regression as estimator) with 20% of missing values.

is similar on both approaches. The two datasets with the small disjuncts prob-
lem (flower-min-imbalanced and two-circle-integumental-min-imbalanced) obtained
similar results as their version without the imbalancement in the minority class.

Since these results are obtained in a controlled scenario, where the data follows a
normal distribution, the missing imputation errors are the expected ones. Most real
world datasets almost never follow a normal distribution, therefore, it is important
to perform this analysis on these type of data to validate the results obtained on
artificial datasets.

Figures 3.11 and 3.12 show the RMSE and MAE of the imputation using k-NN
and MICE, respectively. It can be observed that datasets highly imbalanced have
a high imputation error, therefore, the initial assumption, where it is expected that
the error will increase with the IR, is verified, but some datasets more balanced
(lower IR) also have a high imputation error, which is not in agreement with the
assumption.

In order to try to explain better the imputation error, the analysis will focus on the
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Figure 3.11: Imputation error using k-NN of datasets with different IR and 20% of
missing values.

Figure 3.12: Imputation error using MICE (with Linear Regression as estimator) of
datasets with different IR and 20% of missing values.

the relation between it and some of the most simple characteristics of the datasets.
These characteristics are the number of samples in the dataset (size), the number
of features (n_features) and the IR. The ρ (Section 2.3.1) is good to measure the
association between two variables [34]. Positive values of ρ indicate that when one
of the two variables increases, the other also increases. If ρ is negative, when one of
the variables increases, the other decreases. The higher the values of |ρ|, the more
correlated the variables are.

The results of this analysis are shown in Figure 3.13. Higher values of |ρ|, i.e.,
more positive or more negative, correspond to darker blue and darker red cells,
respectively, which means a higher correlation. The IR is the characteristic with a
higher correlation to the imputation error, especially to the RMSE when the imputer
is MICE, althought it is not very high. For this experimental setup, the size of a
dataset did not present as a critical feature for the imputation. The number of
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Figure 3.13: Pearson Correlation Coefficient between the imputation error and some
datasets’ characteristics.

features has a low positive correlation with the error, which means that when the
number of features is higher, the imputation error will slightly increase.

In this section, it can be concluded that:

• The results for the artificial datasets confirm the original assumption that the
increasing of the IR affects negatively the imputation of the missing values;

• The imputation error is high for real world datasets with high IR;

• Balanced real world datasets have both high and low imputation error, which
does not agree with the initial assumption.

The unexpected results for balanced datasets with a high imputation error led to
the next sections, where other characteristics of the datasets will be studied. From
now on, the analysis of the imputation error will only focus on real datasets since
for the artificial ones obtained the intended results.

3.2.2 Missing Features and Complexity Metrics

The results for highly imbalanced datasets obtained in the previous section were
expected but, for datasets with a low IR, the imputation error should be also low,
since both classes are similarly represented. In an effort to explain the unexpected
errors, it was tried to find a relation between the complexity of a dataset and the
imputation error. It is expected that the more complex a dataset is, i.e., the higher
the metrics’ values described in Section 2.4.1, the higher the imputation. These
metrics were calculated using the pymfe [53] package from Python. This package
computes all measures defined by Lorena et al. [39].

In Figure 3.14, it can be seen the correlation between the complexity metrics and
the imputation error using each approach. In this case, the two features in the ρ

are one of the complexity metrics and the imputation error metric using one of the
approaches. All metrics are divided in four main groups: network, feature-based,
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Figure 3.14: Pearson Correlation Coefficient between the imputation error and the
complexity metrics.

linearity and neighbourhood. In general, the correlation values are low and negative
(less complex dataset, higher imputation error), which was not expected. The results
claim that the more complex a dataset is, the higher the imputation error will be.
The only two metrics that obtained the opposite were f1 and f2.

In order to explain unexpected results, the datasets that obtained a higher MAE
than the Third Quartile (3Q), i.e., the 25% of datasets with a higher imputation
error, were analysed. The mean size of the dataset was the only characteristic
that deviated from the original set of datasets. The mean size of all datasets was
1557 while the datasets with a error higher than 3Q had a mean size of 420. The
standard deviation was 3118 and 232, respectively. It means that datasets with a
higher number of samples have a lower error imputation.

The correlation absolute values are small, which means that there is almost no
correlation between the imputation errors and the complexity metrics.
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3.2.3 Missing Features and Distribution Based

figures/types-data-irregularities-miss-ci-dist.jpg

Figure 3.15: Types of data irregularities. Adapted from Das et al. [5]

The conclusions of the correlation between the complexity metrics and the imputa-
tion error were not the expected ones. For that reason, other characteristics of the
datasets were analysed to explain the imputation error obtained: the distribution
of the minority class. The percentage of each type of sample (safe, borderline, rare
and outlier) is calculated using the approach described in Section 3.1.

The analysis performed in this section is similar to the previous one with the com-
plexity metrics. It is expected that datasets with a higher percentage of safe points,
i.e., with a higher number of samples with a similar neighbourhood, will have a
lower imputation error because each sample will have more similar examples closer
to them to predict the missing values. Datasets with a higher number of unsafe
samples, specially rare and outliers, will have a higher error.

40



Experiments

Figure 3.16: Pearson Correlation Coefficient between the imputation error and the
distribution of the minority class.

Figure 3.16 represents the correlation between the percentage of each type of point
and the imputation error using k-NN and MICE. As expected, the higher the per-
centage of safe examples, the lower the imputation error (low and negative corre-
lation values). The higher the percentage of rare and outliers, the higher the error
(high and positive correlation). Borderline samples do not have a high impact on
the imputation, since they are examples that can have more samples of the same or
the opposite class in the neighbourhood.

3.2.4 Main conclusions

After the performed analysis in this section, it can be concluded that:

• The IR and number of features have some impact on the imputation error: the
higher the imbalancement and the number of features, the higher the error;

• Complexity metrics have a low impact on the imputation (low correlation
values). The results were not the anticipated ones, since it was expected that
more complex datasets (higher metrics values) would have a higher imputation
error;

• The distribution of the minority class have a slightly high impact on the impu-
tation: datasets with a higher percentage of safe examples and lower of unsafe
samples will have a lower imputation error.

The analysis performed until now only considered the imputation error but, once the
missing data is imputed, it is important to evaluate the performance of the classifi-
cation [54]. A dataset with a high imputation error might have a high classification
performance because a sample can have missing values that are predicted wrong
but closer to values from samples from the same class, therefore, its label will be
predicted correctly.

For this reason, the analysis will now focus on the classification performance on an
imbalanced scenario with missing values.
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3.3 Data irregularities and classification task

In Section 2.5, some approaches that deal with missing data and class imbalance
simultaneously were reviewed. FID presented some limitations when trying to con-
sider only some types of minority samples when oversampling the minority class and
CGAIN revealed some problems when used on the collected datasets. Therefore, MI-
MOTE was chosen to be modified to take into consideration the distribution of the
minority class.

Shin et al. proposed MI-MOTE [11] as a preprocessing algorithm to impute missing
data and, at the same time, oversample the minority class to solve the imbalance
problem. Its pseudocode is in Algorithm 2, where xi = (xi1, ..., xid) ∈ Rd is an input
vector, yi is the corresponding class label for the i -th instance, D = (xi, yi)

N
i=1 is

a training dataset and M is a multiple imputer fitted with the original training
dataset. Missing values in majority samples are simply imputed usingM while the
minority class is oversampled first and then imputed withM. Minority samples that
have missing values are replicated λ times (if λ = 5, there will be 6 replicas for each
oversampled example) and then all the minority class is imputed usingM. Because
of stochasticity, replicas will be imputed with different values. In the experiments, λ
is calculated previously so that the IR is approximately 1, i.e., so both classes have
the same number of samples. E.g., if the majority and minority classes have 300
and 200 examples, respectively, and the minority class has 20 samples with at least
one missing value, λ will be 5 (the minority class will now have 200 + 5× 20 = 300

samples).

This approach only takes into account the IR, ignoring other data distribution based
irregularities. The main goal in this section is to inquire if the distribution of the
minority class has an impact not only on the missing data imputation but also on
the classification task, since, in most cases, this is the end goal. In order to do so,
MI-MOTE was modified to consider the minority class distribution.

Consider ti the type of the i-th instance of D, where ti ∈ {m, s, b, r, o} and m corre-
sponds to the majority samples, s, b and r are safe, borderline and rare examples,
respectively, and o are the outliers. In this improved method, when performing the
oversampling, only minority examples from specific types will be replicated. Algo-
rithm 3 shows the changes made to the original approach.

The main problem at this point was to select the types of points to oversample.
Sáez et al. [42] studied the effect different types of minority samples have on the
classification process, so their work will be used as a starting point to decrease the
amount of experiments in this section. The authors concluded that oversampling
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Algorithm 2 MI-MOTE
Input: training dataset D = (xi, yi)

N
i=1, oversampling ratio λ

Output: multiple imputerM, classifier f

1: procedure
2: M← multiple imputer fitted on D
3: ▷ majority instances
4: D0 ← {(xi, yi)| ∈ D and yi = 0}
5: x̂i ←M(xi) for ∀(xi, yi) ∈ D0

6: D′
0 ← {(x̂i, yi)|(xi, yi) ∈ D0}

7: ▷ minority instances
8: D0 ← {(xi, yi)| ∈ D and yi = 1}
9: x

(0)
i , ..., x

(λ)
i ← copies of xi for ∀(xi, yi) ∈ D1

10: x̂
(l)
i ←M(x̂

(l)
i ) for ∀(xi, yi) ∈ D1 and l = 0, ..., λ

11: D′
1 ← {(x̂

(l)
i , yi)|(xi, yi) ∈ D1 and l = 0, ..., λ}

12: ▷ refined training dataset
13: D′ ← D′

0 ∪D′
1

14: Train a classifier f with D′

15: end procedure

Algorithm 3 Modified MI-MOTE
Input: training dataset D = (xi, yi)

N
i=1, oversampling ratio λ, types of training

samples t = (ti)
N
i=1, types to replicate r

Output: multiple imputerM, classifier f

1: procedure
2: M← multiple imputer fitted on D
3: ▷ majority instances
4: D0 ← {(xi, yi)| ∈ D and yi = 0}
5: x̂i ←M(xi) for ∀(xi, yi) ∈ D0

6: D′
0 ← {(x̂i, yi)|(xi, yi) ∈ D0}

7: ▷ minority instances
8: D1 ← {(xi, yi)| ∈ D and yi = 1}
9: x

(0)
i , ..., x

(λ)
i ← replicated copies of xi for ∀(xi, yi) ∈ D1 and ti ∈ r

10: x̂
(l)
i ←M(x̂

(l)
i ) for ∀(xi, yi) ∈ D1 and l = 0, ..., λ

11: D′
1 ← {(x̂

(l)
i , yi)|(xi, yi) ∈ D1 and l = 0, ..., λ}

12: ▷ refined training dataset
13: D′ ← D′

0 ∪D′
1

14: Train a classifier f with D′

15: end procedure
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certain types of examples can increase the classification performance. They tested all
possible combinations of types and the results showed that the best configuration for
each dataset usually preprocessed borderline samples, for this reason, this type will
be replicated in every experiment on this theses (r = {b}). In addition, the authors
concluded that outliers should be oversampled if the percentage of safe samples is
low. Therefore, these two types are combined with borderline ones (r = {b, s},
t = {b, o}, r = {b, s, o}). The last combination has a particularity, r will be {b, s} if
the percentage of safe examples is higher than outliers and r is {b, o} if the dataset
has more minority samples outliers than safe. That means that r will depend on
the percentage of safe and outliers of each dataset.

The results are compared with the original MI-MOTE, when all types are prepro-
cessed, and a baseline approach, where the missing data is first imputed using k-NN
and then the minority class of the trainset is oversampled using SMOTE-ENN (these
choices were based on the results obtained by Puri et al. [45] referred in Section
2.5). The comparison is performed using a RF f implemented using the scikit-learn
package with the default parameters. The performance of the classifier was evalu-
ated through stratified cross-validation and the metric used was the F1-score. For
each complete dataset, the missing data was first created MCAR the same way ex-
plained in Section 3.2. In most works mentioned in Section 2.5, the missing rate
is between 5% and 50%. In this experiments, only 20% of MR will be discussed,
because MI-MOTE performs better when the missing rate is high but the baseline
approach is better for lower percentages of missingness. The results for the remain
percentage of missingness are in Appendice D. They are similar to the 20% of miss-
ingness, therefore, it is not necessary to study them separately. In both approaches,
each dataset was divided into 5 folds where each fold was used once as the testset
and the others as the trainset.

In the baseline approach, the missing values are first imputed and then the minority
class is oversampled. After training the RF with each oversampled trainset, the
labels of the corresponding testset are predicted and the F1-score is calculated.
This process is repeated 10 times and the mean of the F1-scores is stored.

On the experiments using MI-MOTE, the algorithm is used in the preprocessing
phase instead of imputing and then oversampling. This process is also repeated 10
times and the mean of the F1-scores is stored.

In the end, there will be six F1-scores for each dataset: baseline, MI-MOTE, MI-
MOTE b, MI-MOTE b+s, MI-MOTE b+o, MI-MOTE b+s/o. If it is not possible to
oversample the desired types of samples, the F1-score for this dataset will be Nan,
e.g., if a dataset does not have borderline samples, MI-MOTE b will be Nan. For

44



Experiments

this reason, the total number of datasets for each approach will be different. Table
3.2 presents the mean of the F1-scores obtained for all datasets (first row) and a
comparison between all approaches. The main goal is to prove that the approaches
in each column improve the classification performance compared to the baseline and
the original MI-MOTE. It is pointless to compare baseline with MI-MOTE twice,
therefore, the baseline column only has the mean row filled in. Consider base the
row approach and compare the column one.

For each comparison, it is shown the number and the percentage of datasets (#
and %, respectively) that obtained a higher F1-score using compare. Additionally,
the mean difference between the results of compare and base (diff) is also shown.
Higher values of diff implies that compare further improves the classification per-
formance. For example, reading the comparison between MI-MOTE and the baseline
approach, 119 datasets out of 150 had a higher F1-score when using MI-MOTE to
process the data than using baseline. It corresponds to 79.33% of the datasets. On
average, the F1-score using MI-MOTE is 0.0443 higher.

Baseline MI-MOTE
Modified MI-MOTE

b b + s b + o b + s/o

mean 0.713 0.757 0.745 0.770 0.746 0.788

ba
se

lin
e # - 119 (150) 118 (141) 135 (150) 119 (142) 136 (150)

% - 79.33% 83.69% 90.0% 83.8% 90.67%

diff - 0.0443 0.0428 0.0568 0.0464 0.0756

M
I-

M
O

T
E # - - 86 (141) 118 (150) 87 (142) 125 (150)

% - - 60.99% 78.67% 61.27% 83.33%

diff - - 0.0006 0.0125 0.0014 0.0313

Table 3.2: F1-score results of baseline, MI-MOTE and modified MI-MOTE. The
best and second best results are in bold and underlined, respectively.

Looking into Table 3.2, as concluded by Shin et al. [11], MI-MOTE improves other
baseline methods. Additionally, it can be concluded that MI-MOTE b+s/o got the
better results, with a mean F1-score of 0.788. MI-MOTE b+s is a close second
with a mean F1-score of 0.770. The results show that considering the minority
class distribution can improve the classification performance when certain types
of samples are chosen. Oversample only borderline examples (MI-MOTE b) or
borderline and outliers (MI-MOTE b+o) did not show much improvement over the
original approach.

Figure 3.17 shows the correlation between some characteristics of the datasets (rows)
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Figure 3.17: Pearson Correlation Coefficient between the F1-score and the datasets
characteristics.

and the F1-score obtained for each dataset with all approaches (columns). Inter-
preting the first two rows, the number of samples and features do not have a high
impact on the performance of the classification, since the correlation is considerably
low. The IR (third row) has a higher impact, particularly on the baseline approach.
The negative values mean that when the IR increases, the performance of the classi-
fication decreases, which is expected since the minority class is less represented and
will be more difficult to recognize by the RF.

Since the results cannot be explained only using simpler datasets characteristics,
other analysis will be performed. It is expected that the performance of the al-
gorithms will decrease with the increasing of the complexity of a dataset, i.e., the
higher the values of the complexity metrics, the lower the F1-score. It means that
the correlation between the metrics and the F1-score using each approach will be
lower. Figure 3.18 shows the correlation between each complexity metric and the
F1-score using each approach. In general, the results are not that significant. The
correlation is, in fact, negative (more complex datasets have a lower F1-score) but
the absolute value is not high enough to be significative, except the metrics that be-
long to the network category (that are positive but almost zero) and the f1 and f1v
metrics. When these last two metrics have a lower value, the dataset has a higher
separation between classes. When two classes are more distant, there is a higher
probability that the samples will be correctly classified, therefore, the F1-score will
be higher. This explains the negative correlation (low f1v → high separation →
high F1-score). The remain metrics have a low implication on the performance of
the RF

When considering the distribution of the minority class, it is expected that the F1-
score has a high dependency on the distribution of the minority class. A dataset with
a higher percentage of safe points will have a higher classification performance since
the neighbourhood of each point is similar to the point itself. Rare examples and
outliers are mainly surrounded by samples from the other class, therefore, there’s a
high probability that these examples will be misclassified.

Figure 3.19 presents the correlation between the performance of each approach and
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Figure 3.18: Pearson Correlation Coefficient between the F1-score and the complex-
ity metrics.

Figure 3.19: Pearson Correlation Coefficient between the F1-score and the distribu-
tion of the minority class.

the percentage of each type of minority samples. As expected, the typology of the
minority class has a high impact on the F1-score. Datasets with a high percentage of
safe examples (first row) are better classified than the ones with a higher percentage
of unsafe examples (borderline, rare and outliers). The amount of borderline samples
does not have such a high impact on the classification since the neighbourhood of
a borderline sample has a mixture of samples from the same class and from the
other, therefore, it can be either correctly classified or misclassified. The higher
the percentage of outliers or rare samples, the lower the F1-score. It can then be
concluded that the distribution (typology) of the minority class has a high impact
on the classification problem. Datasets with a higher amount of safe samples are
better classified than the ones with more unsafe examples.

The selection of which types of examples to oversample in MI-MOTE is important.
Table 3.2 only shows the results when the configuration of the parameter r is the
same for all datasets, but each dataset has different characteristics that will de-
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termine the best configuration for r. Considering the best configuration for each
dataset (highest F1-score of the modified MI-MOTE approaches) instead oversam-
ple the same types in all datasets, 146 out of 150 datasets obtained a better result
than the baseline approach (97.33%) and 145 out of 150 datasets obtained higher
results when compared with the original MI-MOTE (96.67%).

In conclusion, the complexity metrics do not have a high impact on the classification
performance, while the distribution of the minority class is an important analysis to
explain the obtained results. That being said, in the next topic only the IR and the
percentage of each type of sample will be considered. Also, the parametrization of
r is important and should be chosen differently for each dataset.

As said before, MI-MOTE b+s/o and MI-MOTE b+s are a good replacement for
the original MI-MOTE and the baseline approach, but in which cases are these
configurations better suited? Consider diff the difference between the improved
method and the simpler one. This value can be negative or positive, when the
first approach obtained a worst or better result than the second, respectively. The
higher the difference, the better the first approach. Figure 3.20 shows the correlation
between diff and some datasets characteristics: the IR and the percentage of each
type of minority sample. It is shown the results for five diff’s : diff(MI-MOTE,
baseline), diff(MI-MOTE b+s, baseline), diff(MI-MOTE b+s/o, baseline), diff(MI-
MOTE b+s, MI-MOTE), diff(MI-MOTE b+s/o). The other two settings (b and
b+o) are not presented because the results were considerably worse. It is expected
that the modified MI-MOTE will improve the baseline and the original MI-MOTE
when the datasets are more complex, i.e., when the dataset has a higher percentage
of unsafe samples, particularly rare and outliers. The higher the correlation, the
higher the improvement. When the safe samples are considered, the correlation
should be the opposite: the modification of the MI-MOTE should improve the
original approach for lower percentages of safe samples, therefore, the correlation is
negative.

In Figure 3.20, it can be seen that MI-MOTE improved baseline for higher IR and
percentage of outliers. MI-MOTE b+s mainly increased the F1-score for higher
IR when comparing the results with baseline and MI-MOTE. In fact, for higher
percentages of unsafe samples, the last two approaches performed better. MI-MOTE
b+s improved these approaches when the percentage of safe samples is high. MI-
MOTE b+s/o produced the better results, improving baseline and MI-MOTE when
both the IR and percentage of unsafe examples are high, which was the main goal.

After the classification results obtained, some main conclusions were drawn:
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figures/results-corr-diff.jpg

Figure 3.20: Correlation between diff and some datasets characteristics.

• Using MI-MOTE b+s/o in the preprocessing phase improved significantly the
classification performance and obtained the better results;

• The more separate the classes are, the more accurate the classification will be
(f1 and f1v);

• The percentage of each type of minority sample has a high impact on the classi-
fication: the higher the percentage of unsafe points, the worse the classification
will be;

• MI-MOTE b+s/o improved the classification performance when both the IR
and the percentage of unsafe samples are high, which was the main goal since
baseline and MI-MOTE already deal well with balanced datasets and high
percentages of safe examples.
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Figure 3.21: Sum of squared distances from each point to its assigned center for
k ∈ [2, 10].

3.4 Final conclusions

The previous sections performed two separate analysis: missing data imputation er-
ror and classification performance, both on imbalanced scenarios. It was concluded
that the imputation error has a low correlation with the studied datasets char-
acteristics while the classification performance has a higher correlation with said
characteristics, specially with the distribution of the minority class.

While it is important to study these two topics separately, is there any connection
between them? Does a dataset with a high imputation error have a low F1-score
value?

In order to answer these questions, the datasets were clustered taking into account
their complexity metrics. The chosen clustering algorithm was K-means because
it is one of the most powerful and popular data mining algorithms [55]. The k

value was chosen using two methods: elbow and silhouette methods. The first
one corresponds to the sum of the squared distances from each point to its assigned
center. The second method measures the quality of a clustering, i.e., determines how
well each object lies within its cluster. A high average silhouette width indicates a
good clustering.

Figure 3.21 shows the value of each metric for k between 2 and 10, inclusive. the
results show that 4 is the best value for k. In the silhouette metric, k = 2 obtained
the higher value but, when analysing the two clusters, the size of one of the clusters
was 32 while the other was 118. Therefore, the chosen k was 4 and the sizes of the
clusters are: 36, 39, 27 and 48.

Tables 3.3-3.6 show the mean values of the datasets characteristics, complexity met-
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rics, distribution of the minority class and performance of the imputation and clas-
sification. In the first three tables, the cluster with the lower complexity in each
column is highlighted in green while the one with the more complex datasets is
highlighted in dark orange.

Table 3.4 presents the mean of each group of complexity metrics. These values are
calculated using the Euclidean distance. For each dataset, it is calculated how com-
plex the dataset is when comparing with the simplest hypothetical dataset, i.e., the
lower possible value of complexity for a dataset is 0, therefore, the distance between
this hypothetical dataset’s metrics (which are all 0) and the dataset in question’s
metrics is calculated using the Euclidean distance. In the column Complexity, all
metrics are considered instead of dividing in groups of metrics. The higher these
values are, the more complex the datasets in the concerned cluster are.

Cluster 2 is the one with the higher complexity in most columns, except in the IR,
number of features and percentage of outliers. The mean imputation error in this
cluster is the lowest in both approaches but, on the other hand, the performance of
the classification is the lowest in two of the approaches and a close second lowest
on the other two. That being said, it can be concluded that when the imputation
error is low, it doesn’t necessarily mean that the classification performance will be
good. The complexity of the dataset, specially the percentage of each type of point,
is important to consider when studying the classification performance. Cluster 0
obtained the lowest values in almost all columns and its classification performance
is the better of all four clusters.

Some main conclusions can be drawn from the work performed on this thesis:

• While the imputation error does not have a high correlation with the studied
datasets’ characteristics, the classification performance does. It means that a
certain missing value might be predicted far from the original one but near
other samples from the same class;

• Less complex datasets have a higher classification performance (Tables 3.3-
3.6);

• The imbalance ratio alone is not critical for the classification but when com-
bined with other data quality problems is. The cluster with the more balanced
datasets (cluster 2 in Table 3.3) have the highest complexity (Tables 3.4 and
3.5) and the lowest F1-score (Table 3.6).
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cluster cluster size n_features size IR

0 36 11.889 643.417 5.987
1 39 50.795 1024.949 10.087
2 27 22.519 2881.148 1.798
3 48 15.229 1928.271 8.487

Table 3.3: Mean values of the datasets characteristics for each cluster.

cluster Network Feature Linearity Neighbourhood Complexity

0 1.217 0.951 0.086 0.792 1.750
1 1.200 1.520 0.212 1.004 2.200
2 1.291 1.845 0.459 1.202 2.598
3 1.226 1.486 0.125 0.865 2.125

Table 3.4: Mean values of the complexity metrics for each cluster.

cluster % safe % borderline % rare % outlier

0 75.670 15.622 4.651 4.057
1 46.932 24.767 13.873 14.428
2 42.327 36.015 14.158 7.499
3 61.877 21.153 7.139 9.831

Table 3.5: Mean values of the percentage of each type of point for each cluster.
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cluster KNN MICE Baseline MI-MOTE b+s b+s/o

0 0.210 0.209 0.826 0.862 0.883 0.896
1 0.263 0.264 0.644 0.684 0.676 0.714
2 0.206 0.205 0.649 0.682 0.697 0.702
3 0.209 0.213 0.720 0.780 0.801 0.816

Table 3.6: Mean imputation error and F1-score for each approach and cluster.
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Conclusion and Future Work

The Preprocessing phase is the one that takes more time in most data mining pro-
cesses. Data quality problems (that are solved in this phase) affect negatively the
classification performance. These data quality issues can be divided in two groups:
distribution-based, where class imbalance and small disjuncts are included, and
feature-based, where missing data belongs. These three problems often occur to-
gether in a large number of datasets. Sometimes, each problem alone are not critical
for the classification task but, when combined with the others, can decrease signifi-
cantly its performance.

While the interrelation among distribution-based problems have already been stud-
ied, the connection between the two types of problems have yet to be analysed.
Since this topic have yet to be approached, this thesis is a study on how these two
types of problems affect each other and the overall classification task.

In a preliminary stage, the imputation performance is explained using some datasets’
characteristics, such as the size of the dataset, number of features and IR. It is
expected that the imbalanced a dataset is, the higher the imputation error will be.
It is confirmed for highly imbalanced datasets but some balanced datasets also have
a high imputation error. These unexpected results led to the study of the complexity
of the datasets and the distribution of the minority class. The results showed that
the imputation error does not have a high correlation with the considered datasets’
characteristics. In this analysis, only the imputation error was considered but a high
imputation error does not mean a low classification performance.

After studying the imputation performance, this work focused on the classification
to confirm if the conclusions were the same. It was expected that more complex
datasets would obtain a higher classification performance, in this case, a higher
F1-score. An approach proposed by Shin et al. [11], that preprocesses the data
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considering simultaneously missing values and class imbalance, was used in this
stage. The algorithm was also modified to consider only certain types of minority
samples to infer if different types of points have different impact on the classification.
The results were expected and different from the preliminary ones. The classification
performance has a high correlation to the IR and the minority class distribution, the
higher the IR and the percentage of unsafe samples, the lower the performance will
be. In general, the less complex a dataset is, the higher the classification performance
will be.

A possible future direction is to study different datasets’ characteristics, like over-
lapping metrics. A possible way to improve the results is to tune the parameters
differently for each dataset taking into account its complexity. With the obtained re-
sults, it might be interesting to develop an algorithm that performs the classification
considering the relation between distribution and feature-based problems.
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Appendix A

Complexity Metrics Description
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Complexity Metrics Description

Metric Group Description

f1 Feature-based Maximum Fisher’s discriminant ratio.
f1v Feature-based Directional-vector maximum Fisher’s discriminant ratio.
f2 Feature-based Volume of the overlapping region.
f3 Feature-based Compute feature maximum individual efficiency.
f4 Feature-based Compute the collective feature efficiency.
l1 Linearity Sum of error distance by linear programming.
l2 Linearity Compute the OVO subsets error rate of linear classifier.
l3 Linearity Non-Linearity of a linear classifier.
lsc Neighbourhood Local set average cardinality.
n1 Neighbourhood Compute the fraction of borderline points.
n3 Neighbourhood Error rate of the nearest neighbor classifier.
n4 Neighbourhood Compute the non-linearity of the k-NN Classifier.
density Network Average density of the network.
cls_coef Network Clustering coefficient.

Table A.1: Complexity metrics description. Adapted from pymfe [53].
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Datasets Description

Dataset Size IR Dataset Size IR

appendicitis 106 4,048 newthyroid2 215 5,143
audit 775 1,682 page_blocks0 5472 8,789
banana 5300 1,231 page_blocks_1_3_vs_4 472 15,86
bands 365 1,704 pageblocks_1_2vs_3_4_5 5473 22,69
banknote-authentication 1372 1,249 pageblocks_1vs3_4_5 5144 21,27
banknote 1372 1,249 pageblocks_1vs4_5 5116 24,2
bc-coimbra 116 1,231 parkinson 195 3,062
biomed 194 1,896 phoneme 5404 2,407
breast-adi 106 3,818 pima 768 1,866
breast-car 106 4,048 poker_9_vs_7 244 29,5
breast-fad 106 6,067 prnn_synth 250 1
breast-gla 106 5,625 real-estate 414 1,07
breast-mas 106 4,889 redwine-2c 1599 1,149
cleveland_0_vs_4 173 12,31 relax 182 2,5
ctg-nvssp 2126 3,514 ring 7400 1,02
ctg-pathologic 2126 11,08 segment0 2308 6,015
ctg10 2126 9,792 shuttle_6_vs_2_3 230 22
ctg2 2126 2,672 somerville 143 1,167
ctg5 2126 28,53 sonar 208 1,144
ctg6 2126 5,404 spambase 4601 1,538
ctg7 2126 7,437 spectf 267 3,855
dermatology-3vs1 182 1,563 sports 1000 1,74
dermatology1 358 2,225 steel-plates-faults 1941 1,884
dermatology2 358 4,967 thyroid_3_vs_2 703 18
dermatology3 358 4,042 toy 1250 1
dermatology4 358 6,458 transfusion 748 3,202
dermatology5 358 6,458 twonorm 7400 1,002
dermatology6 358 16,9 urban-asphalt 675 10,44
ecoli1 336 3,364 urban-building 675 4,533
ecoli2 336 5,462 urban-car 675 17,75
ecoli3 336 8,6 urban-concrete 675 4,819
ecoli4 336 15,8 urban-grass 675 5,027
ecoli_0_1_4_6_vs_5 280 13 urban-pool 675 22,28
ecoli_0_1_4_7_vs_2_3_5_6 336 10,59 urban-shadow 675 10,07
ecoli_0_1_4_7_vs_5_6 332 12,28 urban-soil 675 18,85
ecoli_0_1_vs_2_3_5 244 9,167 urban-tree 675 5,368
ecoli_0_1_vs_5 240 11 user-know-h 403 2,951
ecoli_0_2_3_4_vs_5 202 9,1 user-know-vl 403 7,06
ecoli_0_2_6_7_vs_3_5 224 9,182 user-know-vllvshm 403 1,251
ecoli_0_3_4_7_vs_5_6 257 9,28 vehicle0 846 3,251
ecoli_0_3_4_vs_5 200 9 vehicle1 846 2,899
ecoli_0_4_6_vs_5 203 9,15 vehicle3 846 2,991
ecoli_0_6_7_vs_3_5 222 9,091 vertebral-h 310 4,167
ecoli_0_6_7_vs_5 220 10 vertebral-n 310 2,1
electrical-stability 10000 1,762 vertebral-s 310 1,067
forest-d 523 2,289 vowel0 988 9,978
forest-h 523 5,081 waveform-v1-0vs2 3353 1,024
forest-o 523 5,301 waveform-v1-1vs0 3304 1,006
forest-s 523 1,682 waveform-v1-1vs2 3343 1,03
glass0 214 2,057 waveform-v2-1vs0 3345 1,024
glass1 214 1,816 waveform-v2-1vs2 3308 1,001
glass2 214 11,59 waveform-v2-2vs0 3347 1,022
glass4 214 15,46 wdbc 569 1,684
glass5 214 22,78 whitewine-2c 4898 1,987
glass_0_1_2_3_vs_4_5_6 214 3,196 wifi1 2000 3
glass_0_1_4_6_vs_2 205 11,06 wifi2 2000 3
glass_0_1_5_vs_2 172 9,118 wifi3 2000 3
glass_0_1_6_vs_2 192 10,29 wifi4 2000 3
glass_0_1_6_vs_5 184 19,44 wine-1vs2 130 1,203
haberman 306 2,778 wine-3vs1 107 1,229
har-user4 7918 2,64 wine-3vs2 119 1,479
hepato-phvsald 294 1,534 winequality_red_4 1599 29,17
hepato-phvslc 302 1,435 wisconsin 683 1,858
hillvalley 1212 1,02 wpbc 198 3,213
ionosphere 351 1,786 yeast1 1484 2,459
iris0 150 2 yeast3 1484 8,104
letter_u 20000 23,6 yeast4 1484 28,1
letter_z 20000 26,25 yeast_0_2_5_6_vs_3_7_8_9 1004 9,141
leukemia 100 1,041 yeast_0_2_5_7_9_vs_3_6_8 1004 9,141
liver-disorders 345 1,379 yeast_0_3_5_9_vs_7_8 506 9,12
lsvt-voice 126 2 yeast_0_5_6_7_9_vs_4 528 9,353
magic 19020 1,844 yeast_1_4_5_8_vs_7 693 22,1
new-thyroid-n-vs-hh 215 2,308 yeast_1_vs_7 459 14,3
newthyroid-v1 185 4,286 yeast_2_vs_4 514 9,078
newthyroid-v3 180 5 yeast_2_vs_8 482 23,1

Table B.1: Properties of the datasets used in the experiments.
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Artificial Datasets Results
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Artificial Datasets Results

Figure C.1: Imputation error of the artificial datasets using k-NN with 5% of missing
values.

Figure C.2: Imputation error of the artificial datasets using MICE (with Linear
Regression as estimator) with 5% of missing values.

Figure C.3: Imputation error of the artificial datasets using k-NN with 10% of
missing values.
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Figure C.4: Imputation error of the artificial datasets using MICE (with Linear
Regression as estimator) with 10% of missing values.

Figure C.5: Imputation error of the artificial datasets using k-NN with 40% of
missing values.

Figure C.6: Imputation error of the artificial datasets using MICE (with Linear
Regression as estimator) with 40% of missing values.
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Appendix D

Correlation for the Imputation
Results
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Figure D.1: Pearson Correlation Coefficient between the imputation error and all
datasets’s characteristics with 5% missing.
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Correlation for the Imputation Results

Figure D.2: Pearson Correlation Coefficient between the imputation error and all
datasets’s characteristics with 10% missing.
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Figure D.3: Pearson Correlation Coefficient between the imputation error and all
datasets’s characteristics with 40% missing.
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Appendix E

Correlation for the Classification
Results
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Figure E.1: Pearson Correlation Coefficient between the F1-score and all datasets’s
characteristics with 5% missing.
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Correlation for the Classification Results

Figure E.2: Pearson Correlation Coefficient between the F1-score and all datasets’s
characteristics with 10% missing.
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Figure E.3: Pearson Correlation Coefficient between the F1-score and all datasets’s
characteristics with 40% missing.
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