

José Pedro Luz de Sousa Cruz

IREVIEW: AN INTELLIGENT TOOL FOR CODE REVIEW

QUALITY EVALUATION USING BIOFEEDBACK

Dissertation in the context of the Master in Informatics Engineering, specialization in
Software Engineering, advised by Eng. Haytham Hijazi and co-advidsed by Professor
Henrique Madeira and presented to the Department of Informatics Engineering of

the Faculty of Sciences and Technology of the
University of Coimbra.

September of 2022

UNIVERSITY OF COIMBRA

MASTER THESIS

iReview: an Intelligent Tool for Code
Review Quality Evaluation using

Biofeedback

Author:
José Cruz

Supervisor:
Haytham Hijazi

Co-advisor:
Prof. Henrique Madeira

A thesis submitted in fulfillment of the requirements
for the degree of Master in Software Engineering

Department of Informatics Engineering
CISUC - Centre for Informatics and Systems of the University of Coimbra

September 5, 2022

https://scholar.google.com/citations?user=B6pg9DUAAAAJ&hl
https://scholar.google.com/citations?hl=pt-PT&user=TttmiGUAAAAJ
https://scholar.google.com/citations?hl=pt-PT&user=TttmiGUAAAAJ

i

Declaration of Authorship
I, José Cruz, declare that this thesis titled, “iReview: an Intelligent Tool for Code
Review Quality Evaluation using Biofeedback” and the work presented in it are my
own. I confirm that:

• This work was done wholly or mainly while in candidature for a research de-
gree at this University.

• Where any part of this thesis has previously been submitted for a degree or
any other qualification at this University or any other institution, this has been
clearly stated.

• Where I have consulted the published work of others, this is always clearly
attributed.

• Where I have quoted from the work of others, the source is always given. With
the exception of such quotations, this thesis is entirely my own work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself jointly with others, I have
made clear exactly what was done by others and what I have contributed my-
self.

Signed:

Date:

ii

“We can only see a short distance ahead, but we can see plenty there that needs to be done.”

Alan Turing

iii

Abstract

Code Review is a powerful tool to ensure high software quality by detecting
bugs and providing feedback. Producing high-quality software requires productive
developers and attentive code reviewers to ensure the quality of their work. Studies
show that developers produce 70 bugs for every 1000 lines of code, and 75% of a
developer’s time is spent on debugging. Yet, how can we ensure a good code re-
view quality before the code is finally released? Modern code review became more
lightweight and individual reliant (does not need structured group meetings). Typ-
ically, one reviewer performs code reviews using platforms and tools like GitHub
and GitLab. However, these tools do not evaluate the code review quality based on
an individual’s attributes (e.g., cognitive state). Changes in the reviewer’s cognitive
state due to difficulties in understanding code under review or stress and distrac-
tion might affect the quality of the review. Therefore, this thesis introduces an in-
telligent tool that evaluates the code review quality by using non-intrusive biofeed-
back devices (i.e., smartwatches) that assess the code reviewer’s cognitive state (the
engagement level). The tool uses a desktop eye-tracker, compatible with the soft-
ware development environment, to identify regions where the code regions have
not been well-reviewed, thus advising a second review. Biometric features extracted
from smartwatches such as Heart Rate Variability (HRV) and Electrodermal Activity
(EDA) and other features such as complexity of the code under review, review time,
and the number of revisits to that region are the input of the Machine Learning (ML)
model. The ML model classifies each code region as either well or badly reviewed
with a pointer to the badly reviewed code regions. This tool is expected to help soft-
ware companies achieve better code review quality and train new code reviewers on
best code review practices.

iv

Resumo

A revisão de código é um processo muito importante na garantia de alta qual-
idade de um Software. Estudos indicam que em cada 1000 linhas de código es-
critas por desenvolvedores de software, existam 70 bugs e que em média 75% do
tempo investido em desenvolvimento é utilizado a realizar debugging de código.
Desenvolver um bom software requer uma boa equipa de desenvolvedores produ-
tivos e uma boa equipa de revisionadores para garantir a qualidade do software.
Ainda assim, como podemos garantir que os testes de qualidade de software são re-
alizados com qualidade antes do software ser lançado? Estudos anteriores mostram
várias ligações entre características biométricas e o estado emocional e cognitivo em
tempo real, que permite a recolha de informações acerca das diversas emoções e es-
tados cognitivos pelas quais o indivíduo em causa experiencia. Sendo as revisões
de código a última barreira anterior ao lançamento do produto, estes desempenham
um papel muito importante na prevenção de bugs do mesmo. Assim, o processo de
revisão de código essencial para a garantia de qualidade do software.

O processo de revisão consiste na análise individual do código desenvolvido.
Sendo a revisão em si tão dependente da pessoa que a está a rever, tornou-se as-
sim mais "leve" e dependente, no sentido em que o revisor que a faz pode fazê-lo
no seu tempo sem a necessidade de se reunir com outros revisores ou membros
da equipa. Como podemos assim, assegurar que o revisor está nas suas melhores
condições mentais e cognitivas para poder assegurar qualidade na sua revisão? Para
este propósito, introduzimos sensores não-intrusivos capazes de fornecer feedback
acerca das características biométricas identificadas no revisor durante a revisão, para
que seja possível medir a sua dedicação (a nível de atenção, distrações, dificuldades
etc) durante a tarefa. Nesta tese utilizamos um eye-tracker que permite obter a
região para onde o revisor está a olhar, associando assim determinadas caracterís-
ticas biométricas a diferentes regiões do código e um smartwatch, que nos permite
obter leituras de outras características biométricas.

Utilizando essas mesmas características biométricas (i.e. HRV, EDA e eye-tracking)
e não-biométricas (i.e. complexidade do código, nível de experiência, revisitas e
tempo de revisão), que contêm uma ligação ao estado cognitivo, já provado por es-
tudos anteriores, o nosso objetivo é apresentar uma solução não-invasiva de baixo
custo capaz de aceder à estado cognitivo do revisor, que vai permitir medir o nível
de dedicação do mesmo à revisão. Os dados obtidos através dos sensores vão per-
mitir que o revisor obtenha feedback sobre as regiões que já reviu, podendo assim
caso seja necessário voltar a rever certas regiões ou não.

Nesta tese apresentamos todo o processo de desenvolvimento da ferramenta
que nos permitiu fornecedor feedback ao revisor utilizado dados biométricos e não-
biométricos.

v

Acknowledgements
In first place, I would like to express my gratitude towards Professor Henrique

Madeira and Haytham Hijazi, for giving me the opportunity to start this work prior
to the start of the thesis, as an initialization research scholarship and also for being
an excellent co-advisor, always available, giving me encouragement, motivation and
help throughout the thesis. Thank you both for guiding me closely throughout the
thesis, but also for the excellent guidance and all the knowledge they taught me that
goes beyond the scope of the thesis. From their availability, motivation and helpful
discussions to the opportunity of addressing this work, my sincerest thanks.

I would also like to thank some fellow research workers that showed up to be
available for any doubt or question i had in the course of the development of the
work. A special thanks to Miguel Gomes for the cooperation on the thesis, which
helped me a lot with some content that was a little off my area.

Last but not least, i would like to thank my family and friends for all the support
given to me throughout my whole academic course. Without them, none of this
would be possible. Thank you for giving me motivation to continue and support
my journey so far.

vi

Contents

Declaration of Authorship i

Abstract iii

Resumo iv

Acknowledgements v

1 Introduction 1
1.1 Context . 1
1.2 Motivation . 2
1.3 Objectives . 3
1.4 Contribution . 3
1.5 General outline of the thesis . 4

2 Background and State-of-The-Art 5
2.1 Background . 5

2.1.1 Code Review . 5
2.1.2 Code Comprehension . 7
2.1.3 Cognitive Load . 8
2.1.4 Biometrics . 9

2.2 State of the Art . 11

3 Methods and study/experiment design issues 14
3.1 iReview - Preliminary version . 14

3.1.1 Functionalities . 18
3.2 Experimental design and Protocol . 20

3.2.1 Volunteer Recruiting . 21
3.2.2 Protocol Description . 22
3.2.3 Data Acquisition Setup . 23

4 Data Analysis 25
4.1 Feature Engineering . 25
4.2 Global Analysis . 26

5 Discussion and Future Directions 33

A Appendix A 35
A.1 Code Snippets . 35

A.1.1 Distance between primitive numbers 35
A.1.2 Quick Sort implementation . 35
A.1.3 Remove Duplicated values from an array 37

Bibliography 40

vii

List of Figures

3.1 iReview Physical Setup . 14
3.2 Schematic Diagram of the tool . 15
3.3 iReview Interface . 18
3.4 iReview buttons . 19
3.5 Annotator . 20
3.6 Calibration screen . 21
3.7 Example of calibration dot . 22
3.8 Example of calibration result after the calibration is performed 22
3.9 iReview setup . 24

4.1 Caption . 27
4.2 Values of LF/HF in region 1 (graph on the left) and region 2 (graph

on the right) in code 1 . 29
4.3 Values of LF/HF in region 1 (graph on the left) and region 2 (graph

on the right) in code 2 . 29
4.4 Values of LF/HF in region 1 (graph on the left) and region 2 (graph

on the right) in code 3 . 30
4.5 EDA over time of non-expert volunteer 31
4.6 EDA over time of the expert volunteer working on the field 31

A.1 Code 1 of the protocol . 35
A.2 Code 2 of the protocol . 36
A.3 Code 3 of the Protocol . 37
A.4 Gantt Chart on future works . 39

viii

List of Tables

3.1 Table of tasks in the protocol . 23

4.1 Performance with revisits of expert volunteers 27
4.2 Performance of the volunteers . 28
4.3 Table of means in the code snippets . 30
4.4 Table of classifier results using ANOVA Feature selection and Chi-

squared . 32

A.1 Planning of Thesis . 38

ix

List of Abbreviations

CNS Central Nervous System
ANS Autonomous Nervous System
SNS Sympathetic Nervous System
PNS Parasympathetic Nervous System
HR Heart Rate
ECG Eletrocardiogram
CISUC Centre for Informatics and Systems of the

University of Coimbra
BLEU Bilingual Evaluation Understudy
ROUGE Recall-Oriented Understudy for Gisting Evaluation
CLT Cognitive Load Theory
LTM Long-Term Memory
WM Working Memory
HRV Heart Rate Variability
ST Skin Temperature
OSS Open Source Security
FMRI Functional Magnetic Resonance Imaging
FNIRS Functional Near- Infrared Spectroscopy
RR Time elapsed between two successive R waves
GSA Glandular Sweat Activity
EEG Electroencephalography
RMSSD Root Mean Square of Successive Differences
NN50 The number of pairs of successive NN (R-R) intervals

that differ by more than 50 ms.
EDA Electro Dermal Activity
BVP Blood Volume Pressure
LF Low Frequency
HF High Frequency
ML Machine Learning Learning
AI Artificial Inteligence
k-NN k-Nearest Neighbors
PPG Photoplethysmogram
PSD Power Sctrum Density
NHS National Health System
GSR Galvanic Skin Response
IBI Inter-Beat Interval
SDSD Standard Deviation of the Successive Difference
PRV Pulse Rate Variability

x

I would like to dedicated this thesis to my whole family
To my parents, who are the reason why i am able to achieve
this level of education. Without them, none of this would be

possible.
To my brother and sister, for their support and encouragement

throughout this challenge of taking the master.
To my girlfriend, because she helped me keeping motivated

and engaged on the work, while being an unconditional
emotional support.

1

Chapter 1

Introduction

According to the curricular plan of the Master in Informatics Engineering – Software
Engineering, students had various choices to get the degree of Master (Ex: intern-
ship, project etc). In my situation, I chose to enrol on a Research Project. The choice
made was focused on the Research Project since it helps juniors, like myself, to in-
tegrate and experiment the research path. This also allows to gain some knowledge
about new technologies and topics inside the area of Informatics Engineering.

1.1 Context

This thesis work aims to develop a new tool (iReview) that evaluates the code re-
view quality using biometric measures gathered from code reviewers (often called
Biofeedback). This is done through the use of non-intrusive devices. Biometric mea-
sures such as Heart Rate Variability (HRV) and Electrodermal Activity (EDA) are
used to assess the reviewer’s comprehension of the code under review and the eye-
tracker is used to indicate code regions that were not well reviewed. iReview evalu-
ates the quality of each review globally and indicates the code regions that have not
been well-reviewed, explaining why those code regions should be reviewed again.
The tool uses Artificial Intelligence techniques to classify the code regions into good
and bad reviews based on various biometric and non-biometric features.

As technology progress, automated and helpful software start to take place in
the society, in order to be able to give the best help possible to the user. The "Tesla
self-driving car" is an example of a software that uses a lot of technology in order to
automate the process of driving, giving the driver the option to not do it. But how
does Tesla car do that? The answer lies on the data that the software is constantly
receiving through sensors on Tesla car.

Sensors allow us to gather data about the environment around us, which can al-
low us to make decisions if certain circumstances are met. Analyzing and crossing
the data between various sensors allows us to make even more precise and com-
petent decisions. For example, if Tesla self-driving considers his speed sensor and
distance from the front car, he can decide when to break with more precision than
he could if he would only consider the distance from the front car.Likewise, in our
tool, integrating more than one sensor measures (i.e., HR and EDA) enables us to
optimize the decision about the code review quality.

Code reviews have huge impact on software development, so how can we make
sure that the reviews are the best they can be? What if reviewers can not make a good
review due to some interference while doing the task? How can we make sure that
the reviewer is giving the necessary attention to each piece of code, considering its
difficulty? This thesis attempts to provide a code review evaluation tool that could
answer the previous questions.

Chapter 1. Introduction 2

1.2 Motivation

Software products and platforms have become, today, omnipresent in every domain
and an important asset for every company. It is estimated at [17] that in the world
there are around 26.9 million software developers .

Software bugs are the monster under the bed for any tech-first business. Coders,
developers, designers and QA professionals are desperate to avoid them at any cost,
and when a product ships with critical bugs, it can be a hard pill to swallow. But
software bugs are not just an annoyance, as many of us know, they come at a cost to
fix too.

Here are statistics found in [15] and [33] that can give us a scope of how frequent
bugs can be:

• On average, a developer creates 70 bugs per 1000 lines of code. World wide,
(assuming every software developer makes at least 5000 lines of code per year,
based on the statistics from 2020 presented in [20]) would turn out to be 134,5
trillion bugs every year world wide;

• 15 bugs per 1,000 lines of code find their way to the customers, which would
make turn out to be 20,175 billion bugs reach out to the costumers world wide;

• Fixing a bug takes 30 times longer than writing a line of code;

• 75% of a developer’s time is spent on debugging (1500 hours a year);

• In the US alone, nearly 100 billion euro is spent annually on identifying and
fixing product defects.

But what is the real cost of software bugs? Is it really that high? Research by CISQ
found that, in 2018, poor quality software cost organizations 2.8 trillion dollars in the
US alone. But the expenses that software defects have, might not be only monetary.
One great example of this, is the NASA Mariner 1, referenced in [1]. Official reports,
issued by the Mariner 1 Post-Flight Review Board, concluded that a dropped hyphen
in coded computer instructions resulted in incorrect guidance signals being sent to
the spacecraft. Other sources refer to it as "overbar transcription error" and even to
a misplaced decimal point.

Thus, the need to guarantee code quality arises, as a simple bug can be harm-
less or can also be the origin of all chaos associated with the code. Several different
studies have shown the importance of code reviews and how they affect the work
environment. Code reviews are not only meant for bug-detecting but also to teach
and help programmers to avoid making the same bug again. And this does not have
to be associated to bugs only. Code reviews are also relevant to help a programmer
improve his programming skills. For example, a code reviewer might identify an
optimized way of performing the same action in a code. By transmitting this knowl-
edge to the programmer, the code reviewer is helping the programmer improve his
skills.

Sadowski et al. [28] has already shown that code reviews take a very important
role on code development, from detecting faults on the code, to educate and help
junior developers to improve their coding experience. A good code review can de-
tect faults and teach developers how to avoid making them again, as well as teach
good code practices. This is the last barrier before a change is commited to the main
code. Any defect that the new code has, will affect the main code if the defects are
not identified before the change.

Chapter 1. Introduction 3

Roberto et al. [22] has also shown that, on average, developers spend 70% of
their time performing program comprehension.

Therefore, to evaluate the code review quality, it is relevant to assess the compre-
hension level of code reviewers to estimate their engagement level while performing
the review task. With this tool, our aim is to evaluate reviewers engagement level,
and thus the quality of their work code review. While the biometric data (HRV and
EDA) provides a surrogate of the cognitive load of the reviewer, the desktop low-
cost eye-tracker provides a pointer to the code region with less engagement (i.e., low
quality review). To the best of our knowledge, there are no tools that evaluate the
quality of the code review based on personal attributes and cognitive load. Also,
one of the motivations is that established litterateur [5], demonstrated the viability
of using biometrics (non-intrusive biofeedback devices) to assess cognitive load, and
this is compatible with the software development environment (especially with the
desktop low cost eye-tracker).

1.3 Objectives

The main goal of this thesis is to develop a tool capable of evaluating code review
quality based on the reviewer’s cognitive load assessment. The tool shall indicate,
while performing a review using low cost and non-intrusive biometric sensors, the
regions that the reviewer did not review well so that he can give another chance for
a second review. For this goal, several objectives must be completed:

• Analyze the state-of-the-art in the field of code review practices and tools;

• Define the main tool components and architecture;

• Develop the main tool for experimental setups;

• Design an experimental protocol with realistic code review scenarios;

• Collect and analyze data from volunteers described in the protocol while the
reviewer performs code review tasks and equipped with non-intrusive biofeed-
back devices to assess their engagement level and cognitive load;

• Provide an evaluation report for the code review quality with indicators (point-
ers) to the code regions that were not well covered/reviewed/understood.

All the previous objectives will help us reach our goal, a tool that with data re-
trieved from non-intrusive sensors is able to give a report for the code review quality
addressing regions that are not well reviewed.

1.4 Contribution

As I am dealing with a project that will reuse some components already developed
in previous related works, this section will define what exactly is my contribution to
the tool.

In this thesis, I introduce the following contributions:

• A computational methodology to synchronize the input signals
Synchronization between input signals is necessary, so that we can understand
where exactly the reviewer had some type of behaviour based on his HR and

Chapter 1. Introduction 4

EDA data. This is achievable via common timestamp. On the eye-tracker side,
when a reading is performed by the eye-tracker, the timestamp of the reading
is extracted based on the local computer timestamp. Each reading has also as-
signed a region to identify the region where the reviewer was looking at. On
the HR/EDA sensor E41, we are given the initial timestamp of the recording,
and the sampling frequency. Using both of them, we can calculate each times-
tamp for each reading taken.

After having both signals assigned to the respective timestamps, a compari-
son is made. Since the eye-tracker sampling frequency is faster, we use it as
a reference. After comparing the eye-tracker timestamps with the wristband
timestamps, when there is a match, between them, the first and last timestamp
of the same consecutive region are taken. We then proceed to look for any HR
and EDA data that is contained within that interval.

The Synchronization between the signals so that each value of the sensors we
acquire match the timestamp between them in order to have a relation between
the information we can deduct from those signals.

• Development of a prototype of the tool Development of a realistic tool to eval-
uate code review quality which will be used on experimental setups, including
the design of the interface that will enable volunteers to test it.

• Protocol development
Development of protocols and test scenarios in order to successfully acquire
viable data to evaluate code review quality.

1.5 General outline of the thesis

This section describes the structure of this report. The remaining chapters of this
report are organized as follows:

• Chapter 2 - Background and Literature Review, where basic concepts are explained,
technical concepts will be discussed to allow a better understanding of the re-
port, related works is analyzed and compared to our current work. It’s also
where is noted why this work is relevant, and the several projects that the cur-
rent one can be related to and how;

• Chapter 3 - Methods and study/experimental design issues, where we show the
architecture of the tool, functionalities and also the protocol of our experiment

• Chapter 4 - Data Analysis, where we analyze the data gathered in our experi-
ment and go through feature engineering

• Chapter 5 - Conclusion and Future Work, where we take the broader conclusions
and analyze what future work could be done to improve the tool

1E4 refers to a version of Empatica smartwatches

5

Chapter 2

Background and State-of-The-Art

This chapter is divided into two sections:

• Background

In this section I give an introductory overview on the theoretical underpin-
nings of the tool components and the code review/comprehension.

• State of the Art

In this section I analyze and make reference to papers and research that is
related to our tool. I make a comparison and also possible relations between
the papers results and how our tool could benefit from said paper.

2.1 Background

This work is interdisciplinary and spans Software Engineering, Biometrics and AI.
Therefore, this section addresses the background of different topics.

2.1.1 Code Review

Code review is a software quality assurance process in which software’s source code
is analyzed manually by a team or by individuals using an automated code re-
view tool (e.g., Github). Not only for finding software defects, code reviews also
have other purposes, as shown in [4] and [31], code improvement, alternative so-
lutions, knowledge transfer, team awareness, improving development process and
some others.

Why is this important? Why should we spend time reviewing code that was al-
ready thought of by the code developer? When approached by a different person, a
code might seem different. How different? It depends on the person reviewing it. If
the reviewer is a more experienced programmer than the original developer, there
may be optimized solutions that the developer is unaware of. This opens an oppor-
tunity for not only code improvement, but also for teaching. The expert reviewer can
leave comments and help the developer to develop his own skills. It is also common
for programmers to be so focused on a piece of code, they lose perspective of the
remaining code and might not catch easy bugs, that a fresh pair of eyes can easily
detect. This are just some benefits that come from code reviewing.

But Code reviewing as a task itself, is no piece of cake. It is not as easy as reading
a simple text. It entails code comprehension, which by itself requires the ability to
understand the language used and the logical thinking behind the developed code.
So it is important to be highly engaged in the review while performing it. Thus, to

Chapter 2. Background and State-of-The-Art 6

produce a high quality code review it requires high attention to the task and a good
mental state (i.e. focused, stress-free).

Since the most used type of code review is tending to be Asynchronous Code
Review, it also means that the Code Reviews are heavily dependent on the reviewer
that is performing it. If the reviewer is not on his best mental condition (e.g. focused
on the task), it is possible that the code review is not as good as it could have been if
the best conditions of mental health of the reviewer would meet.

In Software Engineering has the software development industry began to rise, so
did the need to ensure quality of said software, as software defects could cause big
harm to the software projects and even the companies. But what damage can a bug
cause you ask?

A research done by the Consortium for Information and Software Quality (CISQ)
found that, in 2018, poor quality software cost organizations nearly 2.47 trillion euro
in the US alone. Not only can software defects cost money, they can also put people
in dangerous situations. It was stated that more than 10,000 patients in the UK were
at risk of being given the wrong medication after an National Health System (NHS)
glitch was discovered in 2018.

To overcome software defects, a lot of methodologies were created and through-
out time, adapted to the needs of the companies. Code reviews are one of the most
used and relied methodology used by big companies such as Google who also share
their practices on code review in various github repositories at [14].

There are different types of code reviews. Fagan’s methodology described at [8]
is the most popular when it comes to Formal Code Reviews (or Code Inspections
[7]) which consist on the following 6 steps: Planning, Overview, Preparation, In-
spection Meeting, Rework and Follow-up. This methodology would require various
members of the team/project to be present at a formal meeting to analyze code.

Today the software industry follows a lightweight version of the code review
which can be done in various ways:

• Instant Code Review

Instant code review happens during pair programming. While one developer
is creating code, the other developer is reviewing the same code simultane-
ously, paying attention to potential issues and giving ideas for code improve-
ment on the go.

• Synchronous Code Review

Here the coder produces the code and asks the reviewer for a review imme-
diately after the coding is done. The reviewer joins the coder at his desk and
they look at the same screen while reviewing, discussing and improving the
code together.

• Asynchronous Code Review

This one is not done together at the same time on the same screen, but asyn-
chronously. After the coder is finished with coding, he makes the code avail-
able for review and starts his next task. When the reviewer has time, he will
review the code by himself at his desk on his own schedule, without talking
to the coder in person, but writing down comments using some tools (e.g.
Github, Phabricator, Gitlab etc). After the reviewer is done, the tool will notify
the coder about the comments and necessary rework. The coder is going to
improve the code based on the comments, again on his own schedule.

Chapter 2. Background and State-of-The-Art 7

Modern Code Review is today used in various companies through asynchronous
Code Review. Big companies like Microsoft, Facebook and Google use tools to as-
sist in this way of code reviewing. Microsoft uses Github [13] and Visual Studio
Team Services, Facebook have their own reviewing tool called Phabricator [21] and
Google states they review each piece of code, any change to the code that is made.
For this, Google uses Critique. Code reviews are so important, that big companies
like the ones mentioned, even developed a tool to assist it. With tools like the ones
mentioned above, we can improve the process of code reviewing, highly increasing
the possibility of detecting software defects as well as maintaining the organization
and a history of the whole process of code reviewing. Although there are widely
available code review tools, there are no tools, up to our knowledge, that evaluate
the code review quality based on human factors, which we present in this thesis.

Code review is also a high mental effort task. Siegmund et al. [29] shows that for
comprehending source code, five different brain regions become activated, which
are associated with working memory, attention, and language processing — all fit
well to our understanding of program comprehension.

A pertinent question surges as code reviews are more and more relied on single
reviewers (and as consequence, dependent on their mental effort while performing
the task): How can we make sure the code review was done properly? How do we
know if the reviewer had the mental conditions to achieve a desired quality for the
code review? Did the reviewer fully comprehended the code he was reading?

Here is where our tool could provide a solution by using biofeedback proven to
capture the manifestation of the ANS induced by mental tasks like the code review.
Biofeedback is able to provide feedback about the engagement of the reviewer in
each region of the reviewed code. Taking also non-biometric features in considera-
tion, (i.e. code complexity, experience level, programming language, among others)
it can adapt to the reviewers experience and enhance his feedback in order to retrieve
the best outcome from the feedback provided for each region.

2.1.2 Code Comprehension

Code comprehension is a mandatory step in code review. Code comprehension
refers to the ability of understand code. Different activities stimulate different re-
gions of the brain. The act of code comprehension uses logical thinking, problem-
solving, and thinking outside of the box. It also includes natural language under-
standing, as it concerns the syntax of the used language.

This task can be very time consuming, as each programmer has its own way of
programming. Usually, and the most known practice to help code comprehension
be less time consuming, is to document the code for other programmers to read and
help to understand the code. Unfortunately the shortage of well documented code
requires the need of other solutions to overcome this issue. Thus, a lot of research
on understanding how can this process be optimized, exist.

The exercise of the respective responsible areas of the brain for the different types
of comprehension (logical, problem-solving, natural language and out of the box
thinking) provokes changes on the Autonomous Nervous System (ANS), that trigger
certain responses when faced with different scenarios. Said triggers can then be
read by the biometric devices, which are analyzed and can be interpreted. There
are several features and different evaluation mechanisms that allow to retrieve the
classification of code comprehension [11], [34],which also show us that lightweight
biometric sensors can be used to accurately recognize comprehension.

Chapter 2. Background and State-of-The-Art 8

The previous question still persists: How can we make sure that the code com-
prehension was done correctly? To answer this question, we must first understand
what Cognitive load is.

2.1.3 Cognitive Load

Code review and code comprehension and other mentally demanding tasks induce
higher cognitive load in humans. Cognitive Load is defined as the amount of infor-
mation that working memory can hold at one time. It is pretty much like RAM in
a computer, only for the human brain. When memory usage on your computer is
high, the system starts to have issues keeping up with everything that is going on.
The same principle applies when cognitive load is high, and this load is not properly
dedicated to the right activities. This could end up result in lower quality work.

Cognitive Load Theory (CLT) is an instructional theory that reflects the way we
process information [18]. It builds upon the widely accepted model of human infor-
mation processing [3]. It describes the process as having three main parts: sensory
memory, working memory and long-term memory. The end goal is to pass infor-
mation from the working memory to the long-term memory, so that the learner can
acquire the information and be able to remember it when he needs it. Not all infor-
mation is necessary, and the presence of distractions creates unwanted information,
which might makes the end goal harder to achieve.

The working memory is responsible for rapid perceptual and linguistic process-
ing. it works out what the new information is all about and whether to store it in
the long-term memory or discard it. Sweller et al. [32] stated that, since working
memory has a limited capacity, instructional methods should avoid overloading it
with additional activities that do not directly contribute to learning.

Cognitive load theory differentiates the types of cognitive load into 3 types

• Intrinsic load

Intrinsic cognitive load is the inherent difficulty of a topic. It can not be changed.
For example, understanding basic math operations (i.e. addition, subtraction)
is way easier than it is to understand algebra or calculus. There is no way the
difficult of the matter can be changed. What can be changed, is the way the
matter is taught, which might make a heaver intrinsic load activity, easier to
understand. Shifting to the context of our work, when a reviewer is faced with
a code, the difficulty of the code can not be changed. What can change, is the
reviewer experience on understanding the code. If the code has a good concise
documentation, it will make it easier to comprehend.

• Extraneous load

Extraneous cognitive load does not aid in the learning task. When facing a new
subject or topic, everything that is not helping in the learning process, is con-
sidered extraneous load. Distractions such as a noisy environment, contribute
towards extraneous cognitive load. In our case, anything that influences the
reviewer to get distracted or to reduce his attention towards the code he is
reviewing, can be considered extraneous load.

• Germane load

Germane cognitive load is the desired result of comprehension. It is the ca-
pacity of the working memory to link new ideas with information in the long-
term memory. It can be identified as the moment when someone understands

Chapter 2. Background and State-of-The-Art 9

the logic behind an idea. In our context, it can be described as the moment
a reviewer understands the logic behind a function, class or any component
related to the code he is reviewing.

In a tech oriented approach, broadly speaking, we want to minimize the Intrinsic
load (through training, pair programming, choosing good technologies), eliminate
Extraneous load (i.e. reduce superfluous tasks, improve workspace) so that we can
have more space for germane cognitive load, which is where we retain and under-
stand information (new technologies, concepts, code).

From a Software Engineering perspective, cognitive load is a measure of the
amount of effort being used in the working memory. Different tasks will affect re-
viewers differently showing different measures of cognitive load. Higher mental
demanding tasks, that involve different abilities, like reviewing a code which in-
volves logical thinking and language understanding for example, are way heavier
on the mental load then looking at a blank screen or reading a natural language text.
The latter would be expected to have lighter cognitive load and present less mental
stress.

Our goal with this tool is to assess and evaluate the engagement of a reviewer
during his review and alert the review for regions which might have been not prop-
erly reviewed. Implementing it in IDEs would make them cognitive-aware.

2.1.4 Biometrics

To understand how we can gather information about a reviewer’s cognitive state,
we must first understand the ANS, the system that makes the human being have
different reactions to different stimuli [2].

The autonomic nervous system is a component of the peripheral nervous system
that regulates involuntary physiologic processes including heart rate, blood pres-
sure, respiration, digestion, and sexual arousal. It contains three anatomically dis-
tinct divisions: sympathetic, parasympathetic, and enteric.

The Sympathetic Nervous System (SNS) and the Parasympathetic Nervous Sys-
tem (PNS) contain both afferent and efferent fibers that provide sensory input and
motor output, respectively, to the Central Nervous System (CNS).

Activation of the SNS leads to a state of overall elevated activity and attention:
the “fight or flight” response. In this process, blood pressure and heart rate increase,
glycogenolysis ensues, gastrointestinal peristalsis ceases, etc. The SNS innervates
nearly every living tissue in the body. The PNS promotes the “rest and digest” pro-
cesses; heart rate and blood pressure lower, gastrointestinal peristalsis/digestion
restarts, etc.

Sensors allow us to gather data while the reviewer is reacting to the stimuli. In
sum, it allows us to read the deviations that are made in the reviewers ANS . With
this, we are able to determine the cognitive state of the reviewer, which can allow
us to make decisions if certain circumstances are met. Analyzing and crossing the
data between various sensors allows us to make even more precise and competent
decisions regarding the necessary cognitive state that is considered to be needed to
perform certain tasks.

This then allows the extraction of signals such as Heart Rate (HR), Skin Tempera-
ture (ST), eye gaze, among others that, when crossed together, allow to make certain
conclusions. Previous research has already proven that certain features are related
to the mental state and can be related used to measure Cognitive Load [9]. Research

Chapter 2. Background and State-of-The-Art 10

as also showed that it is indeed possible to use biometrics to predict code quality
[23],[11].

As the reviewer is performing the review, he might experience different mental
states over the course of the review. These states will reflect in the signals gathered,
such as HRV and EDA and eye-gaze. Considering the eye-gaze for example, a re-
viewer that is not understanding well a method or function, will most likely re-read
the whole method from the start to try and pick up the logic of it. Thus, it is expected
in the eye-gazing data to see something like a "loop" in the eye-gazing coordinates
(x and y), as the reviewer keeps re-reading the code until he understands. If we
also consider HRV and EDA in this scenario, we would expect the user to feel some
discomfort. It is hard to tell exactly what would happen, as each individual reacts
differently to mentally challenging scenarios, but it would be expected for the user
to feel stressed, which can be identified by the LF/HF ratio feature extracted from
HRV. This feature shows the balance between the SNS and the PNS, which could
tell us how mentally challenged the reviewer might be feeling based on his LF/HF
ratio. A high LF/HF value would mean that the reviewer has encountered a difficult
topic and is mentally demanding.

As our tool aims to be non-intrusive and low cost, with the technology available
nowadays and the development of wearable devices industry, it is easy to find de-
vices that allow us to monitor heart rate variations but are still non-intrusive and
low cost. PPG is a technology that uses a light source and a photo-detector at the
surface of skin to measure the volumetric variations of blood circulation, which al-
lows for heart rate monitoring in the wrist, usually acquired through wearables such
as smartwatches and fitbit wristbands. Gil et al. [12] studies the correlation be-
tween PPG and HR, concluding that Pulse Rate Variability (PRV) (the estimation of
variation in heart rate from a Photoplethysmogram (PPG) signal) and HRV have no
meaningful differences that forbid the use of PRV as a surrogate of HRV. Pinheiro et
al. [25] also concludes in his study that most PRV indexes may be used as surrogates
to HRV.

Some of the wearables today also include EDA sensors at an affordable price.
Usually people already own this type of devices and are already used to wear them
on a day to day basis. Most fitbits and smartwatches have PPG readings with some
of them also having EDA. Some of them are used for exercising, others for a casual
day to day use, but these same devices could also be used on a development en-
vironment. We can surely find people already wearing their smartwatches or fitbit
while performing their work.

Chapter 2. Background and State-of-The-Art 11

2.2 State of the Art

As we know, code reviews are a great way to prevent bugs that were left behind by
a developer, to reach the deployment stage. Not only that, code reviews can also be
a way for junior developers to learn how to code better and recognize the mistakes
made so that they can improve their coding skills. Thus it is important to guarantee
that code reviews are well done.

Sadowski et al. [28] explain how Google perceive Code reviews, why do they
use it, methods that were/are used to follow such reviews, motivations and other
aspects of Google regarding code review. Google performs code reviews on every
piece of code they make! Their approach is mostly the asynchronous approach,
where the reviewer reviews the code that is sent to him, takes some comments and
gives some feedback regarding the same code. Google also uses GitHub in order to
maintain an organization or their development process, and Critique as a reviewing
tool. But how can Google ensure the reviewer is ready and able to perform the task
he is assigned to? What variables need Google to consider when giving a task like
this?

Here is where our tool shines and could come to improve the process of code re-
viewing. Our tool aims to ensure that the review was given with the right attention
and comprehension. This could improve code reviews, helping the reviewer to find
more bugs, improving not only the quality of the code, but also the quality of the
education of the developer, given that our tool provides a new way of feedback re-
ports on the code review quality based on biofeedback, which helps evaluating the
engagement and understanding of the code under review. He could then re-review
the regions he had a lesser engagement on and understand that region better, result-
ing on a better overall report on the quality of the code review. Understanding the
region itself will also enable to the reviewer to understand the logic behind it and
present alternative solutions or improvements. In case the region was not fully un-
derstood, the reviewer could not have the knowledge to suggest improvements.

Various studies have addressed biometrics in code comprehension and review as
a basic construct of measurement. Initial studies in the field started by analyzing the
impact of code review on the brain using Functional Magnetic Resonance Imaging
(FMRI). Results from those studies motivated researchers to look into less intrusive
alternatives, as the heavy sensors were unsustainable due to their cost and physical
dimensions.

Fucci et al. [11], based on a previous paper that used fRMI to understand the
weight of code reviewing on the brain activity, tries to understand if the use of
lightweight biometric sensors to measure human physiology is supported by the
results. The authors use two measuring devices - a health tracking wristband Em-
patica E4 and BrainLink EEG headset. The experiment consists on the comprehen-
sion of code and prose. A total of 28 volunteers participated (24 male and 4 female),
with different ranges of code expertise. During the experiment, the objective was
to be able to understand which task a participant is undertaking based on signals
collected from lightweight biometric sensors. Results show that HRV signals can be
used to distinguish what task the volunteer was performing with high accuracy.

This prove to us that it was possible to replicate a previous study that used heavy
sensors (e.g. FMRI) replacing them with lightweight sensors.

Chapter 2. Background and State-of-The-Art 12

As technology develops, there are now sensors able to collect biosignals at lower
prices. Not only that, some of the sensors are already familiar to the common user
(e.g. smartwatches and fitbits). Thus, researchers started to consider the possibility
of taking advantage of those sensors to gather biometrics in a software engineering
environment.

Couceiro et al. [6] present emergent experimental results showing that men-
tal effort of programmers in code understanding tasks can be monitored through
HRV (heart rate variability) using non-intrusive wearable devices. Their goal was to
investigate how mental effort in reading and understanding programs of different
complexity can be measured by a set of sensors placed in the programmers (volun-
teers) that participated in the experiment. The experiments in [27] consisted of the
analysis of3 code snippets in Java. In their experiments they used EEG, ECG, EDA
and eye-tracker sensors.

Important to note that the HRV was gathered from the ECG which is not the best
solution for a real environment. Instead, using wearables (such as smartwatches or
fitbits) to replace the ECG sensor would fit the real environment. The Pulse Rate
Variability (PPR) analysis would be used as a surrogate for HRV.

But would the PPR be suitable as a surrogate for HRV? Can they be reliable
enough to replace ECG sensors?

Pinheiro et al. [26] experiment and aim to use PPG as a surrogate toHRV. Because
HRV needs the ECG signal, the use of ECG sensors is needed. Nowadays, and with
the increasing improvement on technology, devices like smartwatches and fit bands
are quite common. These devices are able to give heart related feedback. Instead of
the HRV,the watches/fit-bits extract a PPG signal. The authors analyze PPG features
as surrogates for HRV indexes, in three different contexts: healthy subjects at rest,
healthy subjects after physical exercise and subjects with cardiovascular diseases
(CVD). Results confirm that the majority of PRV indexes may be used as surrogates
for ECG-based HRV in healthy subjects at rest.

This paper is really important, as it states that with the use of sensors that use
PPG, which are usually non-intrusive and affordable, (usually, people use wear them
on a daily basis) might be possible to extract biometric features capable of replacing
HRV. This study supports our tool, as our goal is to use non-intrusive low cost sen-
sors and smartwatches/fit-bracelets are one possible option.

For example, Fritz et al. [24] used biometrics, such as HRV and EDA, to auto-
matically identify code quality concerns while a developer is making a change to
the code. The aim is to prevent code defects online lowering the development cost.
The authors recruited 10 volunteers, working on the same project. Their focus was to
obtain biometric features (for all ten study participants, they collected skin tempera-
ture, HR, HRV, RR data and for some participants EDA as well) but also considering
other metrics such as code metrics, interaction metrics and change metrics. For the
classification they used Weka, a Java-based Machine Learning framework. For their
study they used two sensors, Empatica E4 wristband and SenseCore chest strap.
The results of their study suggested that developers biometrics can indeed be used
to determine the perceived difficulty of code elements and furthermore to identify
places in the code that end up with code quality concerns, such as bugs. Although
the SenseCore chest strap is not the ideal solution for a real work environment, the
E4 wristband used in the experiment would be a good choice as it is a non-intrusive
wearable, similar to a smartwatch/fitbit.

Chapter 2. Background and State-of-The-Art 13

Fritz et al. [10] demonstrate the potential that biometric data can have to accu-
rately and instantaneously measure perceived task difficulty, progress and incor-
ruptibility of a developer. Their results support the fact that biometric data has
the ability to reveal information regarding the developer’s cognitive and emotional
state. This offers much promise to provide better developer support and improve
individual productivity as well. At the same time there are still several challenges
to overcome for this to become a reality and widely accepted by developers, such as
privacy concerns or sensor limitations. The aforementioned paper agrees with our
assumption that biometrics, and particularly wearable devices can indeed capture
the cognitive and emotional states, which is what we are measuring through spe-
cific features to give feedback to the reviewer.

Hijazi et al. [16] made an early evaluation of our tool that evaluates the code re-
view quality using biometric measures gathered from code reviewers. A controlled
experiment was designed to examine the viability of the tool concept. In the experi-
ment, the volunteers were equipped with cardiac sensors to ensure reliable and pre-
cise measurement of the heart signal for the evaluation purposes .The participants
were given a set of programs to review while equipped with non-intrusive sensors
and an eye-tracker. The programs had injected bugs unknown to the participants so
that their behaviour whether by finding bug or missing it could be recorded, using
features such as the Low Frequency (LF) over High Frequency (HF), highly sensitive
to the sympathetic and para-sympathetic nervous system changes. They then clas-
sify each code region as either well or badly reviewed using AI mechanisms and ML.

Performing these kind of protocols, controlled experiments in controlled envi-
ronments in order to minimize the "noise" in the data, help us to better understand
the behaviour of programmers before a bug is detected or is missed. By recogniz-
ing such patterns we are able to identify and provide correct feedback when those
situations happen. Experiments like these, help our tool development, as we aim to
use similar protocols in order to achieve and give the correct feedback at the most
appropriate time window. Although several studies addressed code review, code
comprehension, and even assessing the quality concerns of code review using bio-
metric features, this thesis introduces a drastically new intelligent biofeedback tool
that evaluates the code review quality at granularity level of code region while indi-
cating the code regions that were not well reviewed. Using already known gathering
techniques of biometric features and signals, proven by research to have an impact
on the cognitive load of the reviewer, our tool uses such biometric features to be able
to provide feedback to the reviewer.

14

Chapter 3

Methods and study/experiment
design issues

This chapter covers the tool architecture, design and main functionalities that were
implemented in the tool. Then we go through the experimental design and protocol
of the data acquisition process to evaluate the tool.

3.1 iReview - Preliminary version

iReview aims at evaluating the quality of the code review using biometrics mea-
sures that assess the mental workload while doing the code review. In the current
implementation of the tool, the mental workload is assessed through HRV extracted
from the Blood Volume Pressure (BVP) signal and EDA gathered by E4 smartwatch.
There are currently many alternative non-intrusive devices to measure HRV such as
many smartwatches or wrist bracelet fitness devices equipped with HR and EDA
sensors. We chose Empatica since it showed higher precision and more praticality
in measuring EDA.

FIGURE 3.1: iReview Physical Setup

In Figure 3.1 we can visualize the physical setup required to use the tool. The
setup is composed by the following devices:

Chapter 3. Methods and study/experiment design issues 15

• Low-cost eye-tracker

The eye tracker used (Tobii 5L) was designed for the video game market and
because of that is quite affordable (it costs around 260 euro). It gathers pupil-
lometry information and gaze information. In our tool, we mainly use this de-
vice to track the gaze coordinates (x and y), which indicate where the reviewer
is looking.

• Non-intrusive wearable device

The wearable used in our tool is the Empatica E4 which contains HR and EDA
sensors capable of recording those signals. This wearable, like many other
smartwatches/fit bracelets, are non-intrusive, usually worn on the wrist and
are mainly the source of measuring the cognitive load of the code reviewers
while they are performing the review task.

One aspect that should be emphasized in Figure 3.1 is the fact that the sensors
used for the biofeedback are not intrusive at all. The Tobii eye-tracker is at the bot-
tom of the screen and the HRV can be measured through a smartwatch or an HRV
bracelet device.

To better understand how our tool will work, the following diagram shows the
main components of the tool.

FIGURE 3.2: Schematic Diagram of the tool

Figure 3.2 shows the tool schematic design and the expected outcome. These
were the first thoughts regarding the tool functionalities and expected results. To
better approach the diagram, we will split it into the following components:

• Eye-tracking information with timestamp

Using the eye-tracker Tobii 5L, we are able to access the data being recorded
from the eye-tracker while the review is being performed so that we can know
where the reviewer is looking. While the device is measuring, we also take a
local timestamp whenever a measure of the data is recorded. This way, each
measure will have an associated timestamp that can be used to perform the
synchronization between signals used.

• HR and EDA data acquisition with timestamp

Using E4 Empatica wristband, we are able to extract HR and EDA signals while
a review is being performed. This sensor already includes a starting timestamp

Chapter 3. Methods and study/experiment design issues 16

of the recording. It also gives the user the sampling frequency, so that it is pos-
sible to calculate each measure timestamp based on the starting timestamp of
the review. This timestamp and each timestamp calculation for each measure,
will be used to perform the synchronization between the signals of the Eye-
tracking and HR and EDA data.

• Synchronization

The synchronization between signals is done via common timestamp. Using
the fastest sensor as a reference (the eye-tracker), for each measure taken we
look for a correspondent measure taken from the HR and EDA sensors. This
way, we can associate HR and EDA data to a specific region registered from
the eye-tracker. We then split the regions into the respective regions so that we
can analyze the data on a code region granularity level. The synchronization is
performed in MATLAB due to the availability of several toolboxes, commonly
used in the development of signal processing algorithms, such as the Signal
Processing Toolbox and the Statistics and Machine Learning Toolbox.

• Mapping code regions

Mapping the code regions of the code under review to the HRV and EDA data
and eye-tracking through the common timestamp. The tool previously per-
forms the division of the code under review into code regions. The goal is to
perform the biofeedback analysis of the reviewer’s performance focusing on
smaller portions of code. These code regions consist of non-overlapping code
chunks that represent a coherent sequence of code lines, following as much as
possible the natural way the reviewer reads the code. For example, a sequence
of assignments and computations is a region, a repetition structure containing
a cycle (maybe with other cycles inside the cycle) is another region, and so on.

• Machine Learning pipeline to Classify code regions

This component will fetch the output from the synchronization, and evaluate
all the data at a code region granularity. It will then provide a report on the
interface it is implemented in with the a classification of the review (i.e. good
or bad), an explanation for the classification and a link to the code regions that
were considered in the evaluation.

The machine learning pipeline consists of features extraction, feature selection,
fitting, and prediction, hyperparameter tuning, cross-validation, and testing.
In the feature extraction module, the main objective is to pre-process the col-
lected HR signal and segment it so that the extract RR intervals are fed into
the algorithms that will extract the variability of the heart rate (HRV) indexes
(in time and frequency domain HRV features). After the features are extracted,
the best (and least redundant) features are selected. These will represent the
inputs for the classification model and are used, not only to train and validate
the proposed model but also to tune its parameters.

The model for the classification of the quality of the code review in each code
region uses an interpretable machine learning technique such as K-nearest
Neighbors, Decision Trees, and other classifiers to make it possible to explain

Chapter 3. Methods and study/experiment design issues 17

the reasons why code regions have been classified as being bad reviewed.

In short, the information used by the classifier to classify the quality of the review
at the code region level, as well as to interpret/explain the reasons why a code region
is classified as “bad” review, includes the following elements:

• Reviewer’s cognitive load provided by HRV and EDA;

• Reading time of the code region;

• Complexity of the code region provided by Vg;

• The number of revisits to the code region;

• Experience of the reviewer.

Currently, iReview assumes a simple classification of reviewers’ expertise in two
levels: non-expert and expert.

Finally, the validation of the proposed tool is performed using a cross-validation
scheme to avoid biased results and over-fitting.

Chapter 3. Methods and study/experiment design issues 18

3.1.1 Functionalities

For the first interface design, in order to be able to perform test scenarios and test
the tool, we proceeded with a basic interface of the tool, that would be simple and
intuitive, avoiding causing the volunteers any stress from not knowing the interface
or it being too complex.

FIGURE 3.3: iReview Interface

Figure 3.3 shows iReview Interface that can be split into 3 simple areas:

• The button area where the reviewer can interact with the review:

– Start
This button will begin the review if a code to be reviewed is already se-
lected. By pressing start, the sensors will start the recording of data;

– Pause
This button pauses the review and the recording of data;

– Resume
This button will resume the review and the sensors will start to record the
data again;

– Stop
This button will finish the review and the sensors will stop the recording,
storing the data in txt files;

– Select a file
This button lets the user choose a code that will be reviewed. The code
will be presented in the area beneath the button taskbar (in white back-
ground).

• The text area where the selected file to be reviewed will be shown to the user
when the review starts;

• The annotator is a software plug-in that enables the code reviewer leave com-
ments for each code region/line. These comments are typical and essential in
code reviews.

Chapter 3. Methods and study/experiment design issues 19

The code review evaluation starts when the reviewer selects the codes he wants
to review and clicks the Start button. If there is no code selected, the tool will not
allow the start of the review. The code can be selected through the "Click to choose
a txt file" button that only accepts txt based formats. As you press start, the interface
requires confirmation that the wearable device (Empatica E4) is recording. This is
achieved by making one press of approximately 3 seconds on the wearable device
button. After this the device starts the acquisition of HR and EDA data. After con-
firmation, the eye-tracker start recording eye movements. The review can be paused
and resumed explicitly in the corresponding buttons of the interface. By clicking the
Pause button, the eye-tracker ceases recording pausing the review. The reviewer can
then resume the review by clicking the Resume button which will start the eye move-
ments recording again. Finally, the review can stop the review using the button End
which will stop the recording of eye movements. The wearable device also needs
to be stopped after the End button is pressed, repeating the same press previously
done. After concluding the review, 1 file is generated containing the eye movements
recorded. The HR and EDA data are available to download at the Empatica website.

FIGURE 3.4: iReview buttons

Figure 3.4 shows the buttons available in the interface.

After setting up the main button interface, I implemented an open-source Anno-
tation System. This open-source Annotation System will allow the reviewer to make
comments or highlight code. This is an important aspect of the tool as it aims to
recreate the realistic way code reviews are performed. They are important since it is
through them that reviewers can highlight mistakes or comment on code that can be
improved or they have doubts about. It is an essential functionality to a reviewing
tool. Thus the necessity of including an Annotation System.

Chapter 3. Methods and study/experiment design issues 20

FIGURE 3.5: Annotator

Figure 3.5 shows a closer look on the Annotation System.

This Annotator was chosen because it is user based. A user can create a group
and all the invited members to the group will have access to the notes or highlights
that the reviewer did. This is useful for our experiment, providing us access to the
volunteers comments and highlights.

After the review is concluded and the data gathered, we extract the real per-
formance of the volunteers (Bugs found, bugs not found and non-bugs found) and
proceed with the synchronization of the eye movements and HR and EDA data.
From the synchronized data we then extract HRV and EDA features. Along with
the real performance of the volunteers, we use the features in our Machine Learning
pipeline which will provide the following:

• Global evaluation of the code review as well or badly reviewed.

• Identification of the code regions that have not been well-reviewed and might
need a second look from the reviewer.

• Explanation of the Machine Learning outcomes through implementing explain-
able models such as K-NN which is intrinsically explainable.

3.2 Experimental design and Protocol

This section tackles the necessary steps needed to perform an experiment aiming to
evaluate the tool

Chapter 3. Methods and study/experiment design issues 21

3.2.1 Volunteer Recruiting

Firstly the group of volunteers were introduced a data gathering consent which all
approved and agreed with. After the consent, the group of volunteers were evalu-
ated through a screening test. This evaluation consisted on understanding the ex-
pertise of the volunteers in C programming language, so that they could later be cat-
egorized into two levels of expertise: Expert and Non-expert. For our experiment, 5
volunteers were selected. The 5 volunteers are all male and consisted mainly in fel-
low researchers from CISUC. Through the screening test, the volunteers were asked
how many lines of code had they program in C in previous years, experience in the
language and how many code reviews did they perform in the language. To be ex-
pert, the volunteers need to have over 5 years of experience. over 1000 lines of code
written in C and performed over 10 code reviews.

Before the start of the experiment, one of the mandatory steps is to perform the
calibration of the eye-tracker. Each volunteer was asked to do this before he begin-
ning of the experiment

FIGURE 3.6: Calibration screen

In Figure 3.6 we can see the calibration window. The calibration screen has the
positioning area and the calibration process. The positioning screen shows how the
head of the volunteer is positioned from the point of view of the the eye-tracker.
The volunteer should position himself so that his head stays inside the oval area
suggested by the calibration software. The background will turn green when the
head is in a suitable position.

On the right side of the positioning screen we have the calibration area. The
calibration area allows to choose how many points will be used for the calibration. In
order to achieve the best accuracy, we choose 8 dots. The dots are located in specific
spots as shown in the figure. Each of the dot has x and y coordinates (defining their
position on the screen). After setting up the positioning and calibration options,
you proceed to the calibration itself. The configuration software will then show one
white dot on a black screen.

Figure 3.7 shows the example of 1 dot being shown in a black screen. By looking
at the dot accurately, it will explode and another white dot will appear until the
number of selected dots are exploded successfully.

Chapter 3. Methods and study/experiment design issues 22

FIGURE 3.7: Example of calibration dot

At the end, it will be shown how accurately the eyes were looking at the dots.

FIGURE 3.8: Example of calibration result after the calibration is per-
formed

Figure 3.8 shows the outcome of the calibration after all the dots are successfully
exploded. If satisfied with the outcome, the volunteer may proceed to start review-
ing. If not, the volunteer may retake the calibration test. If the volunteer chooses to
proceed, the performed calibration will be used in the eye tracker.

3.2.2 Protocol Description

During the experiment, volunteers had several tasks to perform before and after
code reviewing. Table 3.1 shows a brief description of every task performed and
how much time it took for volunteers to perform it. The tasks are displayed by the
order they were taken during the experiment.

Volunteers were provided with three different code snippets in C presented in
a random order to avoid biased data. Each snippet had different complexity levels.

Chapter 3. Methods and study/experiment design issues 23

TABLE 3.1: Table of tasks in the protocol

Description Time Spent
Consent Reading the data gathering consent 2 to 3 minutes

Screening
Evaluation of the volunteers through
a screening test to understand the
expertise of the volunteers in C

5 to 10 minutes

Calibration Calibration of the eye-tracker 1 to 2 minutes

Code review
Code review of the C code snippet
(This step is repeated 3 times)

1 to 9 minutes

Questionnaire
NASA-TLX Questionnaire after the code
review (This step is repeated 3 times)

2 to 3 minutes

They are categorized into three levels: simple, medium, hard. Before each code
snippet, a grey screen with a black cross on the center of the screen was presented to
the volunteers. The volunteers were advised to think of nothing and try to abstain
from any distraction, in order to achieve a rested mental state, to later be used as a
baseline for the data analysis. The grey screen was present to the volunteers during
30 seconds. The participants were also asked previously, to highlight code bugs
during the code review.

After each trial the volunteers were asked to fill a survey based on NASA-TLX
(Task-Load Index). The NASA-TLX is a tool for measuring and conducting a subjec-
tive mental workload assessment. This allows you to determine the mental work-
load of a participant while they are performing a task. Our survey consisted on 5
questions ranging from 1 to 6 in order to assess the volunteer mental demand, tem-
poral demand, performance, effort and frustration.

3.2.3 Data Acquisition Setup

For data acquisition, the experimental setup comprised two sensors. One wristband
capable of reading Heart Rate (HR) and Electro Dermal Activity (EDA) signals and
an Eye-tracker capable of reading eye movements. We used HR and EDA because
they showed high capacity of indexing cognitive state (mental and other emotion
states) while performing intellectual tasks. The HR signals were acquired using the
E4 wristband, from Empatica with a default sampling frequency of 1Hz. The EDA
signals were acquired using also the E4 wristband, from Empatica with a default
sampling rate of 4Hz. The Eye-tracking device used was the 5L from Tobii with a
default sampling rate of 33Hz.

In Figure 3.9 we can see the Empatica E4 wristband sensor worn on the wrist. We
can also notice the Eye-tracker (with infrared sensors) connected via USB to a USB
Hub that has also connected to itself, a USB Dongle.

HR and EDA signals can be recorded in 3 different ways:

• link via bluetooth to a smartphone, enabling you to get a live feedback of the
recorded data;

• pushing the button for approximately 3 seconds;

• connected to a streaming server provided by the manufacture to continuously
have direct access to the sensors data. This setup also requires a specific USB
Dongle compatible with the streaming server software.

Chapter 3. Methods and study/experiment design issues 24

FIGURE 3.9: iReview setup

We chose to record the data by connecting the smartphone via bluetooth to the E4
smartwatch, to ensure the data gathering was performing correctly by monitoring
the the live feedback in the smartphone.

To record the Eye-tracking signals, in the data acquisition setup designed, the 5L
is connected directly to the computer via USB.

25

Chapter 4

Data Analysis

In this section we will start with feature engineering and end with a global analysis.

4.1 Feature Engineering

After gathering the data from the reviews, the next step is to extract relevant features
concerning the signals gathered and also complexity metrics from software testing.
We cast features from the domain knowledge and new features correlated with cog-
nitive load.

• HR and EDA sensor

From the gathered signals through the HR and EDA sensor we can extract
relevant features from the domain knowledge, such as Low Frequency over
the High Frequency, which is a feature extracted from the HR signals that
shows the behaviour of the sympathetic and parasympathetic nervous sys-
tems. These two nervous systems work together to keep a balance. By mea-
suring fluctuations of those systems, we can acquire information about the
cognitive state of a reviewer. Low Frequency over High Frequency is able to
show the behaviour of both systems and how is the balance between them.
Any triggers on both nervous systems can be seen by analyzing this feature.

We also extract features out of the domain knowledge correlated with Cogni-
tive Load. Root Mean Square of Successive Differences (RMSSD) is calculated
by taking the square root of the mean of the sum of the squares of differences
between adjacent NN intervals. This feature is measured in milliseconds and
the higher the mental load during the task, the shorter the interval is. Similarly,
Standard Deviation of all NN intervals (SDNN) that is measured by taking the
standard deviation of all NN intervals, Standard Deviation of the Successive
Difference (SDSD) measured by taking the standard deviations between suc-
cessive differences and S1/S2 which are usually shown in a Pointcaré plot (that
shows the correlation between two sets of data) all have present shorter inter-
vals when the reviewers exhibit higher mental load.

The EDA also provide us with meaningful features since the EDA reflects the
activity of the sympathetic nerve on sweat glands. By extracting the peaks of
EDA, we could identify a moment of stress since the EDA is related with the
sympathetic system, that responds under stressful situations. This would help
to identify and confirm with other features which code region was more stress-
ful. EDA also provide other features that result from sympathetic neuronal
activity. It includes both tonic Skin Conductance Level (SCL) that generates
a constantly moving baseline (which relates to the slower acting components

Chapter 4. Data Analysis 26

and background characteristics of the signal the overall level, slow climbing,
slow declinations over time) and phasic components that are thought to reflect
general changes in autonomic arousalSkin Conductance Responses (SCR).

• Eye-tracker

From the eye-tracker, in order to keep track of where the reviewer is looking at,
we extract the gaze position, specifically the X and Y gaze coordinates. By hav-
ing the gaze coordinates of the eye-tracker, we can know where the reviewer
was looking at a given time. Each measure of the eye-tracker has a timestamp
associated to it.

By analyzing the gaze coordinates or eye movements, we can understand the
path the reviewer took while reviewing the code. The behaviour of the eye
movement can give us important information about how he is perceiving a
piece of code.

• Cyclomatic Complexity

Cyclomatic Complexity in Software Testing is a testing metric used for mea-
suring the complexity of a software program. It is a quantitative measure
of independent paths in the source code of a software program. Cyclomatic
complexity can be calculated by using control flow graphs or with respect to
functions, modules, methods or classes within a software program. For the
calculation of these metrics we use CCCC metrics - C and C++ Code Counter.

• Reviewer behaviour features

Aside from biometric features, we also consider non-biometric features such
as time spent on a code region and revisits. These two features are important
as they help to understand the behaviour of the volunteer during the review.
The number of revisits are extracted by the eye-tracker when a volunteer looks
to a new region for more than 1 second. We choose 1 second, since this was the
minimum time for the smartwatch to generate both EDA and HR readings.

4.2 Global Analysis

In our experiment, we have gathered several features from both EDA and HR sig-
nals. EDA has a feature that represents the moment when the reviewer is experienc-
ing stress. SCR shows the peaks of EDA, which is triggered when the reviewer feels
stressed. Unfortunately, due to the few number of volunteers, I could not receive
significant amount of pure signals of the SCR.

Spending time in the code region might be a good indicator of the review quality.
For example, as we can see in Figure 4.1 one of the non-expert volunteers, had the
most time spent reviewing the codes. When compared to the other volunteers, one
interesting fact is that, he performed as well as the expert volunteers.

The mean of the review time (i.e., spent time in a code region) is 30% higher in
non-expert compared to expert reviewers. However, we have a case of non-expert
reviewer who performed very well in detecting the bugs while spending the longest
time in all codes. This means that for beginner reviewers, spending more time in a
given code might give a good quality indicator.

Chapter 4. Data Analysis 27

FIGURE 4.1: Caption

However, spending too much time on a region might indicate the opposite. Vol-
unteer 1, non-expert, spent two times more than the average on a region of code 1.
He highlight 4 pieces of code as bugs on a region that contained zero bugs (False
Positives). This might indicate that he did not understood the code correctly or the
logic behind the region we spent most time on. This might also cause the individual
to have a over stress which can lower the quality of the review.

Thus, spending time in the code region might be a good indicator of the review
quality, not only for a well done review, but also for a badly done review. This might
also help to assess the mental state of the reviewer on a region. For example, we
could expect a reviewer that had spent too much time in a complex region to be
mentally exhausted, which might influence the remaining review. Or the other way
around, where a reviewer that spent less time on a complex review might indicate
he did not give the necessary atention to the region. Nonetheless, this would require
external information as there are some factors (i.e. expertise on the language) that
are relevant to correctly assess the review.

Revisits might be a good indicator of expertise. Both expert volunteers had sim-
ilar overall performance with one of them being able to indentify 1 more bug as
shown in Table 4.1.

TABLE 4.1: Performance with revisits of expert volunteers

TP FN FP Revisits
Expert Volunteer 3 10 3 291
Expert Volunteer

Working on the field
2 11 3 135

From analyzing Table 4.1 we can see the expert volunteer was able to find 1 more
bug then the expert volunteer who works on the field. However, the latter had less
then the average number of revisits in each code. For each region the expert vol-
unteer working on the field would have 30% to 60% less reviews then the average.

Chapter 4. Data Analysis 28

When comparing both expert volunteers revisits, we can see that the expert volun-
teer working on the field had less 63% revisits. This might indicate that the expert
volunteer with less revisits, has more experience.

Concerning the biometric features, and relying on our domain knowledge from
the following papers [[30],[19]], it was shown that ratio between the low frequency
and the high frequency of the heart rate is a good surrogate of the cognitive load.
This feature was a good indicator of the cognitive load during a task. This feature
was accurate on assessing the cognitive load of the regions from each code as it
also matched the code complexity classification of the regions. Across all codes, the
region with highest complexity was region 2 of the quickSortIterative code. This
region had the most time spent on and also the highest LF/HF mean. Other HR
features like RMSSD, SDNN also support this as they show the smallest mean value
for the same region.

Following in Table 4.2 we can see the real performance of the volunteers. In the
table the "True Positives" are the real bugs that were identified has bugs (the wanted
outcome), the "False Negatives" are existing bugs that were not identified by the
volunteers and the "False Positives" are pieces of code identified by the volunteers
as bugs that were not actually bugs.

TABLE 4.2: Performance of the volunteers

Expertise True Positives False Negatives False Positives
Volunteer 1 Non-expert 3 10 14
Volunteer 2 Non-expert 3 10 5
Volunteer 3 Expert 3 10 3
Volunteer 4 Expert 2 11 3
Volunteer 5 Non-expert 2 11 6

From Table 4.2 we can see that the expert volunteers had less false positives when
compared to the non-experts. We can also see that volunteer 2, which was the vol-
unteer who spent most time reviewing, was able to get a close performance to the
expert volunteers.

Following the complexity of each code, Code 2 (iterative) would be the hardest
code, followed by code 3 and code 1. It would be expected to have features like
RMSSD (lower when the cognitive load is higher), to have smaller values in Code
2. We will firstly start by analyzing each code and comparing the 2 regions of that
code.

In the following figure we can see both region 1 and region 2 from code 1. We
split the data in regions in order to also compare the regions between themselves.

Figure 4.2 show the LF/HF Values. In the graphs we can see that different vol-
unteers have different sample values. Sample values are higher the more time was
spent in the region. When comparing code 1 and code 2, we can see that the sample
values range is wider (more than two times bigger) meaning that the time spent in
region 2 was bigger than region 1. Another aspect we can see when analyzing both
graphs is that the LF/HF values scale is higher in region 2. Not only that, while
in region 1 the max LF/HF in region 1 is around 350, in region 2 the LF/HF max
is around 1400. In region 2 we can also see that several times volunteers present
LF/HF peaks near 500. This suggests that region 2 was more mentally demanding
then region 1 in code 1.

Chapter 4. Data Analysis 29

FIGURE 4.2: Values of LF/HF in region 1 (graph on the left) and re-
gion 2 (graph on the right) in code 1

In region 2 we can see that volunteer 2 (non-expert) had the highest peak and
more number of samples which also means he spent the most time on this region.
This is alarming, we would consider the volunteer to probably not have a good re-
view. However, the volunteer was able to find one bug which matches the experts
score. So we think that this volunteer needed more time to comprehend the code but
still managed to review it.

In the following figure we can see both region 1 and region 2 from code 2.

FIGURE 4.3: Values of LF/HF in region 1 (graph on the left) and re-
gion 2 (graph on the right) in code 2

Figure 4.3 show that in region 1 we can see a clear peak which might indicate that
in this region there was some code the volunteer was struggling with. The LF/HF
values were mostly under 200 which indicate a lower mental challenge when com-
pared to region 2. We can also see that the sample width is quite small when com-
pared to region 2 (nearly a quarter of region 2). In region 2 we have another huge
peak reaching an LF/HF value of nearly 2500. This peak belongs to volunteer 2
again which is also the volunteer who takes the most time to do the review. Once
again, this volunteer was able to find one bug which matches the experts score. This
strengthens the idea that the volunteer needs more time to comprehend the code but
still manages to review it.

In the following figure we can see both region 1 and region 2 from code 3.
Figure 4.4 shows that code 3 seems to be different than the remaining codes, as

both of the regions seem to have closer scales when compared to the two previous

Chapter 4. Data Analysis 30

FIGURE 4.4: Values of LF/HF in region 1 (graph on the left) and re-
gion 2 (graph on the right) in code 3

codes. This suggests that region 1 of code 3 was harder then the previous regions 1
from code 1 and code 2. In fact, region 1 of code 3 is the only region 1 with at least
1 bug. Both regions also have similar number of samples, which indicate that the
volunteers took similar amounts of time in both regions.

From a broader scope we could conclude that the data reflected the difficulty
of the codes, as higher values of LF/HF were shown on the regions deemed more
difficult.

As it was discussed previously on the Feature Engineering section, some features
(e.g., RMSSD, SDSD, SDNN, S1S2) have similar behaviours when the reviewer is
under a mentally demanding task. They tend to get smaller as the intervals between
N-N beats get shorter. In Table 4.3 we show the mean values for relevant HR and
EDA features to compare with the previous analysis using the LF/HF ratio.

TABLE 4.3: Table of means in the code snippets

HR LF/HF RMSSD SDSD SDNN S1S2 EDA SCL
Code 1 73,7302 53,07235767 0,000444 0,000377 0,011399 0,004654 7,39454 5,177361
Code 2 74,49466 67,48448656 0,000299 0,000255 0,0076 0,003103 11,5046 8,927945
Code 3 73,90403 48,29276057 0,00041 0,000356 0,01013 0,004136 11,5176 8,801614

From analyzing Table 4.3, we can see that the HR and LF/HF have their high-
est values in code 2, which shows code 2 to be the most mentally demanding task.
The remaining HR features (e.g., RMSSD,SDSD,SDNN and S1S2) also confirm the
previous has they have the lowest values in code 2.

Analyzing EDA features we can see that the EDA mean and the skin-conductance
level (SCL) are higher in code 2 and code 3, showing a different pattern then the HR
features did.

By analyzing HR and LF/HF in code 1 and code 3 we can see that the values
are quite close. Analyzing the remaining HR features confirms this assumption, as
every HR feature has closer values when compared to code 3. This might indicate
that code 1 and code 3 are similar in complexity, having being reviewed with similar
mental effort. The calculated vg of code 1 is 6 and code 3 is 8, which also puts both
code 1 and code 3 close in complexity.

Looking to the EDA feature, it might be a good indicator of stress. In our group
of volunteers, one of the expert works in a related field. His EDA signals were lower
from the remaining volunteers. The other expert volunteer also has a different EDA
behaviour then the non-expert volunteers.

Chapter 4. Data Analysis 31

FIGURE 4.5: EDA over time of non-expert volunteer

Figure 4.5 shows an example of the EDA values (Y axis) of a non-expert volun-
teer. This range is also similar in the remaining volunteers. While reviewing the first
code, which corresponds roughly to the first 10 minutes in Figure 4.5, this volunteer
identified 10 bugs that were not bugs. In the two remaining codes the volunteer did
also identified bugs there were non-bugs.

FIGURE 4.6: EDA over time of the expert volunteer working on the
field

Figure 4.6 shows the EDA values over time of the expert volunteer that works
in related field. Note that the EDA values (Y axis) goes up to 1.5, throughout the
experiment.

The comparison between both EDA values might indicate a difference in stress
while performing the review. As the expert reviewer that is already familiar with
the process, he will be more comfortable resulting in lesser stress while performing
the task, even though he finds bugs or not.

Chapter 4. Data Analysis 32

After applying an ML pipeline that consisted of feature selection, cross-validation,
prediction, and performance metrics calculation, we were able to obtain good results
by far. However, there were some limitations due to the relatively low number of
samples. We could not use the Leave-One-Out cross-validation again due to preci-
sion dropping. Thus, for this reason, we used the K-Fold with K=5 cross-validation.
In Table 4.4 are the results with two feature selection methods, the ANOVA variance,
and the Chi-squared.

TABLE 4.4: Table of classifier results using ANOVA Feature selection
and Chi-squared

Feature Selection Method Classifier Accuracy Precision Recall
ANOVA Feature Selection Logistic Regression 68.7% ± 0.26 0.56 0.70

Linear Discriminant Analysis 81.33% ± 0.219 0.73 0.70
K-nearest neighbor k=5 78.6% ± 0.14 0.76 0.83
Classification and Regression Trees (CART) 62.0% ± 0.12 0.56 0.51
Naive Bayes 82.0% ± 0.13 0.83 0.83
Support Vector Machine - Linear 72.0% ± 0.09 0.60 0.83

Chi-2 Logistic Regression 81.10% ± 0.18 0.73 0.70
Linear Discriminant Analysis 72.00% ± 0.16 0.60 0.69
K-nearest neighbor k=5 72.00% ± 0.17 0.63 0.80
Classification and Regression Trees (CART) 71.00% ± 1.23 0.80 0.50
Naive Bayes 81.00% ± 0.22 0.76 0.90
Support Vector Machine - Linear 62.00% ± 0.11 0.9 0.91

In Table 4.4 the best result is obtained in both Feature Selection Methods used
(ANOVA Feature selection and Chi-squared) with the Naive Bayes classifier. With
the ANOVA Feature Selection using the Naive Bayes Classifier the accuracy achieved
was 82% with a precision of 0.83 and a recall of 0.83.

With the Chi-squared using the Naive Bayes Classifier the accuracy achieved was
81% with a precision of 0.76 and a recall of 0.90.

33

Chapter 5

Discussion and Future Directions

This thesis introduced the iReview tool concept, design, and preliminary architec-
ture. The iReview tool is expected to help achieve better code review quality by
evaluating its quality from the individual’s standpoint. iReview evaluates the code
review quality by assessing the code reviewer’s cognitive load, representing the en-
gagement level and code comprehension level while doing the review using non-
intrusive biofeedback devices (e.g., smartwatches and bracelets).

The tool also uses a low-cost eye-tracker compatible with software development
and code review settings. The eye-tracker provides pointers to the code regions that
were not well-reviewed. By this evaluation and localization of the code regions, the
tool advises the code reviewer or the code author to do a second review pass for the
code regions that were not well covered.

This tool uses Artificial Intelligence to fuse biometric features (i.e., HRV and
EDA) and non-biometric features, namely code complexity, review time, the number
of revisits to the code region, and experience in one feature space. The features are
fed into classifiers to classify each code region as either well or badly reviewed.

iReview makes use of widely available and commercial wearables to allow soft-
ware companies to use the tool without burdening extra loads on the reviewers
while doing the task.

In this thesis we assessed cognitive load during code comprehension tasks us-
ing HR and EDA. We also considered standard features (i.e. code complexity met-
rics, expertise) and used the NASA-TLX questionnaire which is used to perceive the
workload in order to assess a task.

The results obtained suggest that it is possible to assess cognitive load using
lightweight non-intrusive and low-cost sensors. We think that the tool presented
in this thesis was a big first step in the field that might give the opportunity for
researchers to continue the work. Not only that, it also opens doors for tools of the
same kind but analyzing different content. For example, a similar tool could be used
to assess the cognitive load while reading a medical report. The applications that a
tool of this kind could are vast.

As future work for this tool, I consider that would be valuable to:

• Increase the number of volunteers
This would allow for a deeper data analysis including the SCR feature. Specif-
ically, the increase of expert volunteers with various levels of expertise would
be interesting to analyze as we could see how different levels of expertise react
during code review;

• Prepare and experiment in a real life scenario
Experiment the tool in a real scenario would give rich data to analyze and also

Chapter 5. Discussion and Future Directions 34

feedback of how a day-to-day code reviewer would feel while working under
the spotlight of the tool. This is very important has it is feedback from one of
the main users of the tool;

• Implementation of the tool in version control tools
As code reviews today in companies usually are done through the use of ver-
sion control tools (e.g., Git, Mercurial), usually using platforms that manage
these kind of tools (e.g., Github, GitLab, Bitbucket) it would be interesting to
import the tool in order to make it available in platforms that are already being
used by companies like GitHub, GitLab or so many others.

35

Appendix A

Appendix A

A.1 Code Snippets

A.1.1 Distance between primitive numbers

FIGURE A.1: Code 1 of the protocol

A.1.2 Quick Sort implementation

Appendix A. Appendix A 36

FIGURE A.2: Code 2 of the protocol

Appendix A. Appendix A 37

A.1.3 Remove Duplicated values from an array

FIGURE A.3: Code 3 of the Protocol

Appendix A. Appendix A 38

Goal Activity Due date Deliverables Milestones

Review the literature
systematically
for current
state-of-the-art code
reviews tools and
techniques and
data-driven approaches
for assessing code
comprehension/review.

a. Select 15-20 relevant
recent papers, possibly
with the following
keywords (code review tools,
code review cognitive load,
code review quality,
data-driven code comprehension
assessment. . . etc.).
b. Summarize the overall idea,
the methodology, the results,
and the drawbacks.
c. Identify biometric features
in other studies and
compare them with
your research.
d. Establish your benchmarking
criteria to compare with other
possibly similar studies/tools.
e. Report the literature review
with comprehensive
analysis and reflections.

15-11-2021

Introduction Chapter

Literature Review
Chapter including the
previously established
biometric features
and their correlation
with the cognitive load
and attention, also
to the review quality

M1

Design 3-4 code
reviews protocols

a. Describe the tool
functionalities, use-cases, and
moods of operation.
b. Select realistic 10-15 code
snippets with various complexities.
c. Recruit 10-15 subjects/volunteers
knowing programming and code
reviewing.
d. Schedule the experiments
with the volunteers.
e. Approve the protocol with the team.
f. Perform the data acquisition using
the sensors and the wearables
(e.g., Fitbit watches).
g. Establish biometric baselines
for each reviewer.
h. Include subjective questionnaires
(e.g., NASA-TLX or others).
i. Report and visualize the readings

1-10-2021
To
1-02-2022

3-4 protocols with realistic
cases (you are recommended
to consult SW companies)

A brief report showing the
results (part of Chapter 3).

1-2 presentations at least.

M2

Analyze Data

a. Pre-process data (e.g., cleaning,
missing data imputation, normalization).
b. Select best features that have good
correlations with the CL (based on
literature and/or data-driven
feature selection).
c. Report the features, their importance,
correlation with CL, and code
review quality.
d. Select the features time window to
capture the CL (based on established
literature and experimental data).
e. Prepare the training data and label
them (we may use different ways
of labeling).
f. Apply Quality Rules (refer to the
TSE paper).
g. Train 3-4 classifiers (e.g., Decision
Tree, KNN, Random Forest).

1-2-2022
To
1-4-2022

A clean dataset

3 presentations on the
progress (monthly)

1 progress report

Last Part of Chapter 3

First part of Chapter 4
(Analysis)

M3, M5

Design and deploy
the prototype of
the tool

a. Investigate various code portioning
tools based on complexity,
non-overlapping constructs. . . etc.
b. Adapt an automated code complexity
calculator.
c. Design the review interface, which
introduces the main functionalities
(e.g., start recording data and baseline,
start the review, pause review,
highlight bugs, add comments,
pause review, discard review,
save the review, generate the
quality report.
d. Design the quality report interface,
which includes:
a. Overall quality evaluation (Good/Bad).
b. Indication of code regions that are (Bad).
e. Design and implement the interfacing
with GitHub, including:
a. Sync the eye-tracker and the
wearable data in an interface.
b. Integrate the interface in (a)
with the GitHub platform.

25-3-2022
To
1 week prior
to the
Submission
date

Automatic code portioning
methodology

Tool Interface

Report Interface.

Integrated tool

Chapter 5
(Results and Discussion)

M4, M5

TABLE A.1: Planning of Thesis

Appendix A. Appendix A 39

FI
G

U
R

E
A

.4
:G

an
tt

C
ha

rt
on

fu
tu

re
w

or
ks

40

Bibliography

[1] Anupama Aggarwal. July 22, 1962: Mariner 1 Done In by a Typo. https://www.
wired.com/2009/07/dayintech-0722/. 2009. (accessed: 22:13 16/11/2021).

[2] Autonomic Nervous System Anatomy. Anatomy, Autonomic Nervous System.
https://www.ncbi.nlm.nih.gov/books/NBK539845/. [Online; accessed 16-
January-2022].

[3] R.C. Atkinson and R.M. Shiffrin. “Human Memory: A Proposed System and
its Control Processes”. In: ed. by Kenneth W. Spence and Janet Taylor Spence.
Vol. 2. Psychology of Learning and Motivation. Academic Press, 1968, pp. 89–
195. DOI: https://doi.org/10.1016/S0079-7421(08)60422-3. URL: https:
//www.sciencedirect.com/science/article/pii/S0079742108604223.

[4] Alberto Bacchelli and Christian Bird. “Expectations, outcomes, and challenges
of modern code review”. In: 2013 35th International Conference on Software En-
gineering (ICSE). 2013, pp. 712–721. DOI: 10.1109/ICSE.2013.6606617.

[5] Ricardo Couceiro et al. “Biofeedback Augmented Software Engineering: Mon-
itoring of Programmers’ Mental Effort”. In: 2019 IEEE/ACM 41st International
Conference on Software Engineering: New Ideas and Emerging Results (ICSE-NIER).
2019, pp. 37–40. DOI: 10.1109/ICSE-NIER.2019.00018.

[6] Ricardo Couceiro et al. “Biofeedback Augmented Software Engineering: Mon-
itoring of Programmers’ Mental Effort”. In: 2019 IEEE/ACM 41st International
Conference on Software Engineering: New Ideas and Emerging Results (ICSE-NIER).
2019, pp. 37–40. DOI: 10.1109/ICSE-NIER.2019.00018.

[7] M. E. Fagan. “Design and code inspections to reduce errors in program devel-
opment”. In: IBM Systems Journal 38.2.3 (1999), pp. 258–287. DOI: 10.1147/sj.
382.0258.

[8] Michael E. Fagan. “Advances in Software Inspections”. In: Pioneers and Their
Contributions to Software Engineering: sd&m Conference on Software Pioneers, Bonn,
June 28/29, 2001, Original Historic Contributions. Ed. by Manfred Broy and Ernst
Denert. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001, pp. 335–360. ISBN:
978-3-642-48354-7. DOI: 10.1007/978-3-642-48354-7_14. URL: https://doi.
org/10.1007/978-3-642-48354-7_14.

[9] Benjamin Floyd, Tyler Santander, and Westley Weimer. “Decoding the Repre-
sentation of Code in the Brain: An fMRI Study of Code Review and Expertise”.
In: 2017 IEEE/ACM 39th International Conference on Software Engineering (ICSE).
2017, pp. 175–186. DOI: 10.1109/ICSE.2017.24.

[10] Thomas Fritz and Sebastian C. Müller. “Leveraging Biometric Data to Boost
Software Developer Productivity”. In: 2016 IEEE 23rd International Conference
on Software Analysis, Evolution, and Reengineering (SANER). Vol. 5. 2016, pp. 66–
77. DOI: 10.1109/SANER.2016.107.

https://www.wired.com/2009/07/dayintech-0722/
https://www.wired.com/2009/07/dayintech-0722/
https://www.ncbi.nlm.nih.gov/books/NBK539845/
https://doi.org/https://doi.org/10.1016/S0079-7421(08)60422-3
https://www.sciencedirect.com/science/article/pii/S0079742108604223
https://www.sciencedirect.com/science/article/pii/S0079742108604223
https://doi.org/10.1109/ICSE.2013.6606617
https://doi.org/10.1109/ICSE-NIER.2019.00018
https://doi.org/10.1109/ICSE-NIER.2019.00018
https://doi.org/10.1147/sj.382.0258
https://doi.org/10.1147/sj.382.0258
https://doi.org/10.1007/978-3-642-48354-7_14
https://doi.org/10.1007/978-3-642-48354-7_14
https://doi.org/10.1007/978-3-642-48354-7_14
https://doi.org/10.1109/ICSE.2017.24
https://doi.org/10.1109/SANER.2016.107

Bibliography 41

[11] Davide Fucci et al. “A Replication Study on Code Comprehension and Ex-
pertise Using Lightweight Biometric Sensors”. In: Proceedings of the 27th In-
ternational Conference on Program Comprehension. ICPC ’19. Montreal, Quebec,
Canada: IEEE Press, 2019, 311–322. DOI: 10.1109/ICPC.2019.00050. URL:
https://doi.org/10.1109/ICPC.2019.00050.

[12] Eduardo Gil et al. “Photoplethysmography pulse rate variability as a surrogate
measurement of heart rate variability during non-stationary conditions”. In:
Physiological measurement 31 (Sept. 2010), pp. 1271–90. DOI: 10.1088/0967-
3334/31/9/015.

[13] Github and code-review. https://github.com/features/code-review.

[14] Google. Google Engineering Practices Documentation. https://google.github.
io/eng-practices/. (accessed: 11:07 18/11/2021).

[15] Google. The Battle of the Bugs. https://www.openrefactory.com/intelligent-
code-repair-icr/. (accessed: 18:14 18/11/2021).

[16] Haytham Hijazi et al. “iReview: an Intelligent Code Review Evaluation Tool
using BiofeedbacN”. In: ().

[17] How Many Software Developers Are There in the World? URL: https : / / www .
bairesdev.com/blog/how- many- software- developers- in- the- world/.
(visited 09/11/2021).

[18] Becton Loveless. Cognitive load theory - the definitive guide. 2022. URL: https:
//www.educationcorner.com/cognitive-load-theory/.

[19] M. Malik et al. “Heart rate variability. Standards of measurement, physiolog-
ical interpretation, and clinical use”. English. In: European Heart Journal 17.3
(1996), pp. 354–381. ISSN: 0195-668X.

[20] Sage McEnery. How much computer code has been written? https://medium.com/
modern-stack/how-much-computer-code-has-been-written-c8c03100f459.
(accessed: 18:31 18/11/2021).

[21] Meet Phabricator, The Witty Code Review Tool Built Inside Facebook. https://
techcrunch.com/2011/08/07/oh-what-noble-scribe-hath-penned-these-
words/.

[22] Roberto Minelli, Andrea Mocci, and Michele Lanza. “I Know What You Did
Last Summer - An Investigation of How Developers Spend Their Time”. In:
Proceedings of the 2015 IEEE 23rd International Conference on Program Comprehen-
sion. ICPC ’15. USA: IEEE Computer Society, 2015, 25–35. ISBN: 9781467381598.
DOI: 10.1109/ICPC.2015.12. URL: https://doi.org/10.1109/ICPC.2015.12.

[23] Sebastian C. Müller and Thomas Fritz. “Using (Bio)Metrics to Predict Code
Quality Online”. In: 2016 IEEE/ACM 38th International Conference on Software
Engineering (ICSE). 2016, pp. 452–463. DOI: 10.1145/2884781.2884803.

[24] Sebastian C. Müller and Thomas Fritz. “Using (Bio)Metrics to Predict Code
Quality Online”. In: 2016 IEEE/ACM 38th International Conference on Software
Engineering (ICSE). 2016, pp. 452–463. DOI: 10.1145/2884781.2884803.

[25] N. Pinheiro et al. “Can PPG be used for HRV analysis?” In: vol. 2016. Aug.
2016, pp. 2945–2949. DOI: 10.1109/EMBC.2016.7591347.

[26] N. Pinheiro et al. “Can PPG be used for HRV analysis?” In: vol. 2016. Aug.
2016, pp. 2945–2949. DOI: 10.1109/EMBC.2016.7591347.

https://doi.org/10.1109/ICPC.2019.00050
https://doi.org/10.1109/ICPC.2019.00050
https://doi.org/10.1088/0967-3334/31/9/015
https://doi.org/10.1088/0967-3334/31/9/015
https://github.com/features/code-review
https://google.github.io/eng-practices/
https://google.github.io/eng-practices/
https://www.openrefactory.com/intelligent-code-repair-icr/
https://www.openrefactory.com/intelligent-code-repair-icr/
https://www.bairesdev.com/blog/how-many-software-developers-in-the-world/
https://www.bairesdev.com/blog/how-many-software-developers-in-the-world/
https://www.educationcorner.com/cognitive-load-theory/
https://www.educationcorner.com/cognitive-load-theory/
https://medium.com/modern-stack/how-much-computer-code-has-been-written-c8c03100f459
https://medium.com/modern-stack/how-much-computer-code-has-been-written-c8c03100f459
https://techcrunch.com/2011/08/07/oh-what-noble-scribe-hath-penned-these-words/
https://techcrunch.com/2011/08/07/oh-what-noble-scribe-hath-penned-these-words/
https://techcrunch.com/2011/08/07/oh-what-noble-scribe-hath-penned-these-words/
https://doi.org/10.1109/ICPC.2015.12
https://doi.org/10.1109/ICPC.2015.12
https://doi.org/10.1145/2884781.2884803
https://doi.org/10.1145/2884781.2884803
https://doi.org/10.1109/EMBC.2016.7591347
https://doi.org/10.1109/EMBC.2016.7591347

Bibliography 42

[27] Review Board. URL: https://www.reviewboard.org/integrations/. (visited
12/02/2021).

[28] Caitlin Sadowski et al. “Modern Code Review: A Case Study at Google”. In:
Proceedings of the 40th International Conference on Software Engineering: Software
Engineering in Practice. ICSE-SEIP ’18. Gothenburg, Sweden: Association for
Computing Machinery, 2018, 181–190. ISBN: 9781450356596. DOI: 10.1145/
3183519.3183525. URL: https://doi.org/10.1145/3183519.3183525.

[29] Janet Siegmund et al. “Understanding Understanding Source Code with Func-
tional Magnetic Resonance Imaging”. In: Proceedings of the 36th International
Conference on Software Engineering. ICSE 2014. Hyderabad, India: Association
for Computing Machinery, 2014, 378–389. ISBN: 9781450327565. DOI: 10.1145/
2568225.2568252. URL: https://doi.org/10.1145/2568225.2568252.

[30] Soroosh Solhjoo et al. “Heart Rate and Heart Rate Variability Correlate with
Clinical Reasoning Performance and Self-Reported Measures of Cognitive Load”.
In: Scientific Reports 9 (Oct. 2019), pp. 1–9. DOI: 10.1038/s41598-019-50280-3.

[31] Davide Spadini et al. “When Testing Meets Code Review: Why and How
Developers Review Tests”. In: 2018 IEEE/ACM 40th International Conference
on Software Engineering (ICSE). 2018, pp. 677–687. DOI: 10 . 1145 / 3180155 .
3180192.

[32] John Sweller. “Cognitive load during problem solving: Effects on learning”. In:
Cognitive Science 12.2 (1988), pp. 257–285. ISSN: 0364-0213. DOI: https://doi.
org/10.1016/0364-0213(88)90023-7. URL: https://www.sciencedirect.
com/science/article/pii/0364021388900237.

[33] The battle of the bugs. URL: https://www.openrefactory.com/intelligent-
code-repair-icr/.

[34] Héctor Adrián Valdecantos et al. “An Empirical Study on Code Comprehen-
sion: Data Context Interaction Compared to Classical Object Oriented”. In:
2017 IEEE/ACM 25th International Conference on Program Comprehension (ICPC).
2017, pp. 275–285. DOI: 10.1109/ICPC.2017.23.

https://www.reviewboard.org/integrations/
https://doi.org/10.1145/3183519.3183525
https://doi.org/10.1145/3183519.3183525
https://doi.org/10.1145/3183519.3183525
https://doi.org/10.1145/2568225.2568252
https://doi.org/10.1145/2568225.2568252
https://doi.org/10.1145/2568225.2568252
https://doi.org/10.1038/s41598-019-50280-3
https://doi.org/10.1145/3180155.3180192
https://doi.org/10.1145/3180155.3180192
https://doi.org/https://doi.org/10.1016/0364-0213(88)90023-7
https://doi.org/https://doi.org/10.1016/0364-0213(88)90023-7
https://www.sciencedirect.com/science/article/pii/0364021388900237
https://www.sciencedirect.com/science/article/pii/0364021388900237
https://www.openrefactory.com/intelligent-code-repair-icr/
https://www.openrefactory.com/intelligent-code-repair-icr/
https://doi.org/10.1109/ICPC.2017.23

	c331b842-bf48-4c77-8147-0e7cc0a31b92.pdf
	Declaration of Authorship
	Abstract
	Resumo
	Acknowledgements
	Introduction
	Context
	Motivation
	Objectives
	Contribution
	General outline of the thesis

	Background and State-of-The-Art
	Background
	Code Review
	Code Comprehension
	Cognitive Load
	Biometrics

	State of the Art

	Methods and study/experiment design issues
	iReview - Preliminary version
	Functionalities

	Experimental design and Protocol
	Volunteer Recruiting
	Protocol Description
	Data Acquisition Setup

	Data Analysis
	Feature Engineering
	Global Analysis

	Discussion and Future Directions
	Appendix A
	Code Snippets
	Distance between primitive numbers
	Quick Sort implementation
	Remove Duplicated values from an array

	Bibliography

