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Abstract

Microservice architectures have been on the rise in recent years, as they favor
loosely coupled services with specialized goals. The use of microservices eases
development and maintainability, reducing overall development costs. To take
full advantage, each service is deployed in a container, as they are lightweight
and creation and destruction is cheap and efficient. This potentiates an elas-
tic behaviour that allows for on-demand adaptation. However, the transition
from monoliths to microservices presents security challenges. When systems
are split into multiple small components, the number of communication links
grows extensively, increasing the possibility of attacks. During development,
automated vulnerability assessment tools are used to find and correct software
weaknesses. Despite this process, software continues to have unknown vulner-
abilities that attackers can exploit, therefore it is indispensable to apply other
measures. Anomaly-based intrusion detection could be an effective approach,
but it needs to deal with large amounts of data and services, and adapt to the
dynamic number of service instances. Therefore, the available solutions must be-
come lightweight and scalable. Past work has demonstrated the usefulness of
data processing techniques to deal with scalability. A similar approach can be
useful for detecting attacks targeting multiple services. Techniques can also be
used to reduce the amount of data processed without compromising the effec-
tiveness of the solution.

In this work, we propose an approach for host based intrusion detection aimed
at microservices, and four different techniques based on a classifier fusion pro-
cedure. The approach as the goal of facilitating the detection of attacks target-
ing different microservices. We also analyse the removal of loops as a method to
reduce the data processed without affecting the classifiers. The techniques pro-
posed are evaluated using two representative microservice testbeds, Sockshop
and TeaStore, as they provide a wide range of technologies and services, allowing
10 different attack scenarios based on 12 different exploits. Not all attacks were
successful, and some were only done to gather information; therefore, evaluating
the effectiveness of techniques in intrusion attempts.

The results show that only one technique was capable of detecting attacks with-
out a high number of false positives, achieving an F-Measure of up to 0.673,
never lower than 0.521, and Precision as high as 0.782. Furthermore, the loop
removal algorithm managed to reduce the total size of the training datasets to 55%
of the original size. Both still have room for improvement; however, the results
are still satisfying and open new research paths.

Keywords

Microservices; intrusion detection, vulnerability assessment, attack injection, con-
tainers.
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Resumo

Arquiteturas de microsserviços têm crescido em popularidade nos últimos anos,
favorecendo serviços simples fracamente acoplados e com objetivos bem definidos.
Utilizar microsserviços facilita o desenvolvimento e manutenção, reduzindo cus-
tos gerais de desenvolvimento. Para tirar proveito destas vantagens, cada serviço
é colocado em “containers” dado que são leves e a criação e destruição é barata
e eficiente. Tal potencia um comportamento elástico, maximizando o uso dos re-
cursos, e permitindo uma adaptação com base na demanda. No entanto, a tran-
sição para estes ambientes cria alguns desafios. Quando os sistemas se dividem
em múltiplos pequenos componentes, o número de comunicações aumenta, agra-
vando a probabilidade de ataques. Durante o desenvolvimento, técnicas de avali-
ação de vulnerabilidades são usadas para detetar e corrigir fraquezas no software.
Mesmo assim, o software continua a ter vulnerabilidades desconhecidas que at-
acantes podem aproveitar, pelo que é indispensável utilizar medidas de deteção.
Deteção de intrusão com base em anomalias pode ser uma técnica eficaz, mas
tem de conseguir lidar com elevadas quantidades de informação e adaptar-se a
um número dinâmico de instâncias de serviços. Portanto, as soluções têm de
ser leves e escaláveis. Trabalho já realizado demonstra que técnicas de processa-
mento de informação são úteis para lidar com escalabilidade. Uma abordagem
semelhante ser útil para detetar ataques a vários serviços. Técnicas podem tam-
bém ser usadas para reduzir o tamanho dos “datasets" sem comprometer a eficá-
cia da solução.

Neste trabalho propomos uma abordagem para deteção de intrusão “host based"
com foco nos microserviços, e quatro técnicas baseadas numa abordagem de
fusão de classificadores. A abordagem tem o objetivo de facilitar a deteção de
ataques a diferentes microserviços. Também analizamos a remoção de repetições,
como método para reduzir o tamanho dos datasets sem afetar significativamente
os classificadores. As técnicas propostas são avaliadas usando duas testbeds rep-
resentativas, Sockshop e TeaStore, que utilizam um leque variado de tecnolo-
gias e serviços, permitindo 10 cenários de ataque, com base em 12 vulnerabili-
dades. Nem todos os ataques têm sucesso, e alguns só conseguem informação;
permitindo assim avaliar a eficácia das técnicas em tentativas de intrusão.

Os resultados mostram que só uma técnica é capaz de detetar ataques sem um
número elevado de falsos positivos, conseguindo uma F-Measure de até 0.673,
nunca inferior a 0.521 e uma Precision até 0.782. Além disso, o algoritmo de
remoção de repetições de system calls conseguiu reduzir o tamanho dos datasets
até 55% do tamanho original. Ambos têm espaço para melhoria, no entanto, os
resultados são satisfatórios, havendo espaço para pesquisa.

Palavras-Chave

Microsserviços; deteção de intrusão, avaliação de vulnerabilidades, injeção de
ataque, containers.
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Chapter 1

Introduction

A microservice is a simple singular service that has a specific goal, the ability to
scale and can be mostly tested independently of the system [Larrucea et al., 2018;
Newman, 2021; Thönes, 2015]. It is very specific to the task to which it is as-
signed and, therefore, has a clear definition. An architecture based around them
can be logically separated, resulting in a collection of different components or
services, allowing developers to split their responsibilities and develop without
interference from each other [Newman, 2021]. This saves time on many different
tasks, such as unit and non-functional testing, since the service can be tested in-
dependently, without worrying about integration, thus only doing the necessary
tests with the whole application, making integration with the whole application
faster [Newman, 2021].

Agile development methodologies take advantage of this architecture, given their
fundamentals around continuous development with many short increments [Abra-
hamsson et al., 2017; Cohen et al., 2003; Dyba and Dingsoyr, 2009]. DevOps, for
example, follows this development methodology, enabling continuous integra-
tion and delivery, based on short iterations [Ebert et al., 2016]. Since there are
many components which require continuous work, coordination inside the team
and high maintainability are crucial to reduce development costs to the maxi-
mum and take advantage of these methodologies. A solution is to work inde-
pendently, by splitting the software into smaller components, such as different
microservices.

In addition, to fully maximise the benefits of microservices, they are often de-
ployed in containers, which are small packed virtual environments that contain
only the libraries and files necessary to run the specified software. Deployments
become faster, as opposed to a deployment using a virtual machine; and their
elasticity allows for better resource management since it is easy to instantiate and
to destroy a container. Container engines manage these environments and en-
sure all virtualisation requirements, such as the isolation of the code running
on each virtual guest. Cloud users and providers capitalise on this combina-
tion of microservices and containers that reduces costs by using the available re-
sources more adequately [Pahl and Jamshidi, 2016; Zimmermann, 2017] When a
microservice in a container is busy, with almost all resources being used, a new
container can be instantiated, creating a replica. The opposite can also happen; if

1



Chapter 1

the microservice is idle, one of its replicas can be destroyed.

Although microservices have their potential, we should analyse the impact of
transitioning from a monolith to a system based around microservices. Many
works have been done on quality attributes such as scalability, monitorability,
and security [Li et al., 2021]. Some quality attributes, like scalability, are naturally
supported by the architecture itself. However, others, namely monitorability, al-
though supported, have some challenges. An example is the large number of
services and replicas that need to be monitored. Container orchestrators, such as
Kubernetes, ease this task by monitoring all container instances and being config-
urable to react faster and automatically to some events, such as a system failure.
They also support on-demand system management, allowing containers to scale
up or down according to current needs. [Al Jawarneh et al., 2019; Lee et al., 2020;
Rossi et al., 2020]. Security, on the other hand, needs to be addressed as many
more problems are raised.

Security is a timeless topic, that has been continuously researched, and lays on
three different fundamental properties: confidentiality, integrity, and availabil-
ity [Kumar et al., 2015; Vieira and Antunes, 2013]. Additionally, systems are not
perfect, and vulnerabilities are prone to being found and abused by attackers.
Software developers and researchers often face the task of finding vulnerabilities.
Penetration Testers are responsible for finding and sometimes actually perform-
ing an exploit on said vulnerabilities. Doing this assessment by hand takes valu-
able time, and finding or even creating a Proof Of Concept (POC) is not guaran-
teed to be easy [Wang et al., 2019]. Therefore, vulnerability assessment tools have
been developed that allow penetration testers to increase their productivity [Wal-
lis, 2022]. However, every software has vulnerabilities, making it practically im-
possible to evade this fact. In a microservice-based system, given the various
different services, possibly even built using different technologies, vulnerabili-
ties are prone to be found. Also, there is more room for error, since developers
need to be extra careful and implement secure communications between the dif-
ferent services. It is only a matter of time until an intrusion happens. Therefore,
it is absolutely necessary to have support systems in place that can detect, react,
and block these attacks.

Intrusion Detection has been used several times to provide part of this support. It
consists on the process of monitoring a system and automatically detecting signs
of intrusions when they happen [Bace and Mell, 2001]. An intrusion is an attack
with the goal of compromising the fundamentals of security, by trying to gain
control or disturb the system; and / or bypassing the security measures that were
implemented [Bace and Mell, 2001]. Intrusion Detection System (IDS) are sys-
tems that detect intrusions and report them to the administrator and / or another
system that will react. The whole system should detect intrusions in a timely
manner, without drastically affecting the performance and with a low number of
false positives. IDS are commonly divided into three different categories when
looking at what they are monitoring and the information they are gathering: net-
work, which consists of analysing network traffic; host, which analyses data that
are generated by the host of the application; and application, taking only into
account the data generated by the application [Bace and Mell, 2001].

2
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Regarding their analysis, they can be split into: signature-based, where the IDS
has a profile describing the known attacks, therefore considering an intrusion
if an event matches a known attack pattern; and anomaly-based, in which IDS
has a profile consisting of normal behaviour, and each event outside of that pro-
file is considered an intrusion [Bace and Mell, 2001]. In addition, some work
has been done in which signature-based and anomaly-based detections are used
at the same time, creating a hybrid [Depren et al., 2005; Hajisalem and Babaie,
2018]. An analysis of its history and the research being carried out was per-
formed, stating that interest in the evaluation of IDS started to increase only in
the late 1990s [McHugh, 2001]. IDS still require to advance as they tend to detect
only 3 out of 4 attacks and have high false positive rates [McHugh, 2001].

However, with respect to microservice architectures, because they usually have
hundreds or thousands of services, the data produced is quite large. IDS are
forced to be lightweight, so that they can be paired with microservices and the
performance of the system is not affected, while also presenting the challenge of
needing to be effective and having to provide a fast response. This obviously
creates a constraint on these systems that cannot be taken lightly, restricting the
mechanisms and algorithms that can be used. Another problem appears in or-
der to cope with the many different services, as a way to join multiple IDSs is
needed. Some studies have been conducted on classifier fusion techniques, which
unify different data sources, classifiers, or decisions, resulting in a single final out-
put [Guo et al., 2019a]. However, it was mostly done in other areas [Guo et al.,
2019a,b; Xu et al., 2020]. Regarding host-based intrusion detection systems in
microservice applications, most of the work done is related to Network-based
Intrusion Detection System (NIDS) [Cinque et al., 2019; Mateus-Coelho et al.,
2021]. Regarding Host-based Intrusion Detection System (HIDS), the work in
this field is more focused on general single containers. For example, Abed et al.
applied BOSC to detect intrusions on a Linux container [Abed et al., 2015a]. They
were able to detect all attacks, with a low False Positive Ratio (FPR). We also did
some work with respect to attack injection to evaluate IDSs [Flora et al., 2020] for
container-based systems. This work was based on previous solutions to IDSs to
then find the best configurations and present their effectiveness. However, work
on intrusions targeting multiple services is lacking.

This work presents an approach for host-based intrusion detection in microser-
vice architectures where multiple microservices can be target of an attack. The
approach can operate any combination of techniques proposed in this work,
that are based on a classifier fusion procedure. However, this work only evalu-
ates a single technique at a time. A technique to reduce data size for more efficient
processing is also presented. The effectiveness of the approach and techniques
is evaluated using representative testbeds, workloads, and attacks in an experi-
mental campaign. The proposed conceptual solution is able to collect data from
the different services and then make a final decision. It takes into account the
system limitations following a microservice architecture. Although a network in-
trusion detection system could be used, the focus of this work is on host-based
intrusion detection systems. For that reason, and due to previous work already
performed on the matter, we focused on intrusion detection mechanisms that use
system calls from containers and simple lightweight algorithms to detect intru-
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sions. Many attacks can be carried out in a distributed manner, that is, attacking
various services at the same time, and any one of them could be chosen to test
the solution. An analysis was done to find the best representative attacks that
can be performed. Unfortunately, not all attack scenarios were performed since
some problems appeared time was a constraint, we opted for a set of 10 scenar-
ios, using 13 different attacks. Some of these were successful, and others were
partly unsuccessful. They are related to denial of service, information gathering
and disclosure, remote code execution, brute force, and buffer overflow. These
attacks were executed in parallel to different services.

To evaluate the proposed approach, two representative microservice-based testbeds
were used; TeaStore [von Kistowski et al., 2018] and Sockshop [Sockshop, 2021].
These were chosen on the basis of previous work done, their size, and their repre-
sentativeness. 10 different representative attack loads were generated, based on
the 10 different scenarios depicted, four for TeaStore and six for Sockshop. These
were put together from simple adaptations of the representative workloads, with
the attack occurring during the middle of the experiments.

The results show that the only technique currently being able to be used in a real
scenario is the interleaving of system calls from different services; however, there
is still room for improvement. This technique managed to reach 0.707 F-measure
values, while not falling below 0.521 when considering the top 10 configurations
with the best results. Also, it is possible that other techniques get better results
if trained for longer periods, as it is possible that the classifiers were not fully
trained due to the lower number of system calls. The loop removal algorithm
also showed good results, being able to reduce the datasets used for training,
becoming only 55% of their original size.

1.1 Research Contributions

This work has five main contributions, three of which are the core of the thesis:

• Evaluation of state of the art techniques. Evaluation and comparison of
state-of-the-art intrusion detection techniques, typically used for single con-
tainers. An insight into the pros and cons of current techniques is provided,
as well as what we found to be the best configurations.

• Understand how these algorithms perform when considering microser-
vices scalability Microservice-based systems leverage horizontal scalability
having multiple instances of the same service. We explored data process-
ing techniques as a useful approach to provide the capacity of dealing with
higher amounts of data whilst maintaining high effectiveness.

• Evaluation of the impact on performance and effectiveness when remov-
ing loops of system calls. Datasets are considerably large, averaging more
than 100GB per training run, therefore, analysing various algorithms and
techniques becomes a time consuming task. The removal of system call
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loops shows promising results, greatly reducing the required disk memory,
while maintaining effective classifiers.

• An approach to detect multi-target attacks in a microservice architecture.
To detect attacks targeting multiple services in a microservice-based system,
novel techniques were considered and adapted to dynamic environments.
The given approach can be useful for testing other techniques or for imple-
menting these in a real system.

• Proposal and evaluation of four fusion techniques for intrusion detection
in representative microservice scenarios. This evaluation demonstrates the
effectiveness of the proposed techniques and allows an analysis of the ad-
vantages and drawbacks of each of them. It also allows us to validate the
proposed approach. Two different testbeds were used and 10 different at-
tack scenarios were performed.

1.2 Document Structure

The present document is structured as follows:

Chapter 2 presents the background and also the work that has been done on the
different topics. It gives the foundations necessary to understand the work.

Chapter 3 presents and discusses the work conducted in the study of intrusion
detection techniques for single services. We have evaluated state-of-the-art tech-
niques and proposed the use of data processing approaches to deal with scalabil-
ity while maintaining effectiveness.

Chapter 4 details our approach and the solution that we propose for detecting
attacks targeting multiple microservices. It describes the loop remover algorithm
and techniques to cope with multi-target attacks and presents the evaluation and
results.

Chapter 5 looks at the risks and all the planning that was done during the thesis.

Chapter 6 concludes the work with some final remarks.
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Chapter 2

Background and Related Work

In this chapter, we will give an overview of all the topics necessary to under-
stand this document, while also reviewing previous work related to the research
conducted. We start by presenting microservice concepts and its security chal-
lenges, with special attention to Intrusion Detection and Intrusion Detection Sys-
tem (IDS). Furthermore, we discuss attacks that can target a microservice system.

2.1 Microservices

Microservices are simple services that have the goal of performing a simple task,
being able to cooperate, forming a microservice-based system [Larrucea et al.,
2018; Newman, 2021; Thönes, 2015]. This type of system is built on very small in-
dependent components, each with a clear definition, allowing split development
and testing of their functions [Larrucea et al., 2018; Newman, 2021; Thönes, 2015].
Agile development methodologies, since they are based on continuous develop-
ment and increments, take advantage of these features to the fullest [Abrahams-
son et al., 2017; Cohen et al., 2003; Dyba and Dingsoyr, 2009]. DevOps is an exam-
ple of one of these methodologies, which focusses on continuous integration and
testing, which is facilitated by employing a microservice architecture [Larrucea
et al., 2018]. This synergy enables fast delivery cycles, with smoother develop-
ment [Larrucea et al., 2018].

Monolithic applications, on the other hand, are applications shipped in one big
software component. This means that its modules are coupled together, making
it impossible to separate them and deploy them on their own. Although for small
projects with a short lifespan, it is an acceptable solution, many issues appear for
long-term projects. For example, if a single component or module is the bottle-
neck of the system, it is necessary to scale the entire application to meet higher
demand [Dragoni et al., 2017]. Additionally, changes in the requirements that
affect the frameworks or technology being used may be unfeasible, as they may
require a change in most components, which would be expensive [Dragoni et al.,
2017]. Finally, a simple bug fix to a single component would require the entire ap-
plication to be restarted to update itself, instead of being only necessary to restart
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the service that was changed [Dragoni et al., 2017].

Given these benefits, the latest trends have shown that companies are migrating
from monolithic applications to these microservice architectures [Dragoni et al.,
2017; Eski and Buzluca, 2018]. This transition is possible by first identifying the
different modules and then turning each one into a different microservice, as we
can see in Figure 2.1. Following this trend, a tool was developed with the aim
of helping with this transition [Eski and Buzluca, 2018].It analyses Java source
code and repositories, different files, and applies a graph clustering technique
based on the changes made, the frequency, and the coupling between compo-
nents [Eski and Buzluca, 2018]. As a result, it is capable of suggesting candidate
microservices within the architecture so that developers can have an easier tran-
sition between architectures [Eski and Buzluca, 2018].

Figure 2.1: Transition from monoliths to microservices (from Yarygina [Yarygina,
2018]).

A website was created with all the standards and patterns of microservices, which
is constantly updated and consists of many resources such as presentations, step-
by-step guides, books, and articles [Richardson, 2022]. Due to the large amount
of content and in-depth analysis, this website should be viewed by anyone who
wants to know more about microservices.

2.2 Containers

Most of the time, microservices are deployed inside containers, which are single
compact virtualisation environments that have only the necessary files and li-
braries to run the specified program [Bernstein, 2014; Dragoni et al., 2017; Merkel
et al., 2014]. Therefore, they have the bare minimum size and take advantage of
all the resources allocated, allowing for fast deployment and on-demand changes.
Container engines, such as LXC and Docker, are responsible for managing con-
tainers [Bernstein, 2014; Chen and Zhou, 2021; Merkel et al., 2014]. To instantiate
a container, an image must first be created, containing all the information needed
to run. These images can be stored locally or in a repository, but, in the latter
case, they still need to be downloaded before running the specified container.
Docker has a public repository called DockerHub where anyone can get their im-
ages [Merkel et al., 2014; Rad et al., 2017]. It has also been adopted as a standard
by the community and has received significant attention, and there is a wide va-
riety of work in various fields such as performance, scalability, and security [Bui,
2015; DataDog, 2018; Rad et al., 2017; Shanmugam, 2017].

However, managing every container is not easy, especially when the number of
services in a microservice architecture can vary from a few dozens to hundreds
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of different services [Xiang et al., 2021]. Thus, container orchestrators are used
to automate the management of groups of containers, which generally form a
microservice system, performing tasks such as taking care of communication be-
tween them and automatically restarting them when needed [Al Jawarneh et al.,
2019]. Kubernetes, the most popular container orchestrator, provides many fea-
tures by default, such as, for example, probing services and horizontal autoscal-
ing, which is automatic scale up and down according to demand [Burns et al.,
2018]. Still, the community also provides many frameworks, plugins, and add-
ons that can be used with Kubernetes, allowing, for example, easier network-
ing management [Kapočius, 2020]. One example is KubeEdge, a framework that
extends the use of Kubernetes to edge nodes in an edge architecture, which is
gaining popularity in recent years, as it allows faster response times in large dis-
tributed networks, by pushing computational work closer to user devices [Shi
and Dustdar, 2016; Xiong et al., 2018].

Many quality attributes such as performance, availability, and scalability have
been addressed with technologies such as container orchestrators [Al Jawarneh
et al., 2019; Burns et al., 2018]. Their configuration is utterly important to deal
with these requirements. However, some challenges are yet to be faced or must
be taken into consideration when developing new methodologies or when tran-
sitioning old methodologies to this new architecture.

2.3 Challenges of Microservice based Architectures

Although other quality attributes could be studied and developed further, secu-
rity is a really important topic, and considering the previous challenges and the
constant increase in popularity, security might become the top priority. Security
can be considered as the normal execution of software, even under a malicious
attack, including three fundamental concepts: confidentiality, integrity, availabil-
ity, and authenticity [Kumar et al., 2015; Vieira and Antunes, 2013]. Despite not
being enough, we already referred to some solutions to availability, such as the
use of container orchestrators, like Kubernetes. More mechanisms need to be
put in place to secure these fundamentals in microservices. Previously, for other
architectures, mechanisms have already been studied to deal with various prob-
lems; however, they need constant evolution to follow the development of attack-
ers [Ruefle et al., 2014]. When it comes to microservices, due to the architecture
fundamentals, new challenges appear, forcing these mechanisms to be adapted.

The decomposition into different services increases the number of communica-
tion links through APIs thus, creating new attack points [Yarygina and Bagge,
2018; Zimmermann, 2017].Therefore, the attack surface increases, forcing devel-
opers to check every service, to ensure that they are secure. This requires even
more time if we consider that the technologies being used on the different ser-
vices are not always the same [Yarygina and Bagge, 2018; Zimmermann, 2017].
Another factor that increases this attack surface comes from multitenancy. Within
cloud deployments, various tenants use these environments to deploy their mi-
croservice systems, creating an aggregation of services sharing the same infras-
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tructure, making them easier to access [Yarygina and Bagge, 2018; Zimmermann,
2017].

Given that the technology being used may be different between different services
the number of vulnerabilities scales with the number of services, therefore,
additional work is required to prevent attackers from abusing them [Yarygina
and Bagge, 2018; Zimmermann, 2017].

With the use of system discovery mechanisms and registries to connect the dif-
ferent services, it creates an opening for an attacker to infiltrate inside the system
by disguising himself as a service [Dragoni et al., 2017; Sun et al., 2015]. Fur-
thermore, by compromising one single service, they can gain access to the entire
system [Dragoni et al., 2017; Sun et al., 2015]. Therefore, it is absolutely impor-
tant to guarantee trust between the different services, to prevent attackers from
abusing it.

Additionally, due to decoupled services, network will be much more complex,
with a higher amount of traffic, since all services are communicating with each
other [Dragoni et al., 2017; Sun et al., 2015; Yarygina and Bagge, 2018], which
leads to attackers having multiple ways of accessing the system. Furthermore, by
decoupling, much more data will need to be analysed, making it harder to enforce
security mechanisms throughout the system [Dragoni et al., 2017]. These security
mechanisms can be, for example, secure communications or even monitorization.
Furthermore, data must be stored somewhere, either from a third party system,
a database or another service, which makes it important to always sanitise the
data [Laigner et al., 2021; Pautasso et al., 2017].

Since most microservice applications use containers and Virtual Machine (VM)s
for deployment, all issues raised from virtualisation must also be taken into ac-
count [Dragoni et al., 2017; Zimmermann, 2017]. This includes, but is not limited
to, container-to-container, container-to-host, and host-to-container attacks. Work
has been done with respect to container escape, such as gaining root privileges
outside the container, to prevent these attacks by inspecting the namespace status
of the process [Jian and Chen, 2017].

Faults in software engineering correspond to a software defect that may lead to
an error, which is an unstable or unknown state of the system. This error can
then manifest itself as a failure when the system deviates from the expected be-
haviour [Grottke and Trivedi, 2005; Munson et al., 2006]. Aging corresponds to
the accumulation of resources due to these software faults over long execution
times, caused by many factors such as memory leaks or unreleased locks [Grot-
tke et al., 2008a; Huang et al., 1995; Parnas, 1994]. Although aging has been ex-
tensively studied in software [Castelli et al., 2001; Garg et al., 1998; Grottke et al.,
2008a; Huang et al., 1995; Parnas, 1994], little work has been done on microservice
architectures [Flora et al., 2021; Yue et al., 2020a]. Kubernetes has been evaluated
to see how probes deal with aging, and has been shown to fail in identifying this
issue [Flora et al., 2021]. However, the same study shows that fault injection to
accelerate aging is a fair technique and gives developers and researchers a way
to evaluate their approaches to deal with aging [Flora et al., 2021]. Since many
cloud deployments with high availability are currently destined for long-term
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deployments, microservices are prone to displaying this issue. Therefore, it is
extremely important to analyse them in order to prevent complete service fail-
ures leading to availability problems [Papapanagiotou and Chella, 2018; Štefanko
et al., 2019; Wang et al., 2020].

As mentioned previously, one of the topics regarding security is availability; more
specifically, a system needs to be available and ready to be used by users. Avail-
ability can be affected by various issues, such as attacks and software faults.
Faults are software bugs that lead the system into an erroneous state, which may
lead to the occurrence of a failure. Some faults can cause increased resource use,
which, when accumulated, is referred to as aging [Parnas, 1994]. Since these
faults usually only result in a failure after long periods of time, they often go
undetected during testing and appear in production environments. Faults are
inevitable; therefore, building resilient software is a must, in order to prevent or
reduce damage. One way to tackle the aging process is by applying rejuvenation
techniques, which are techniques that mitigate or reduce the effects of aging. An
example of a software rejuvenation technique is simply restarting an application
and returning it to the initial state.

Software aging is a well researched topic with several papers on the matter [Grot-
tke et al., 2008b]. Some of the work performed was done on real case scenarios. A
model was proposed for continuous monitoring, detection of anomalies, and au-
tomatic application of measures that adapt the system to sudden changes [Mag-
ableh and Almiani, 2020]. The proposed model follows six steps that perform
data collection and model training, which is further applied to detect anomalies
that motivate the application of adaptations. These adaptations are selected in
the fourth phase of the process, are then executed, and finally verified. The re-
sults presented in the paper show a high success rate in enforcing vertical and
horizontal scaling of the infrastructure in varying contexts.

Monitoring models for detecting aging, such as analytical modelling and measurement-
based approaches, were also analysed and compared [Trivedi et al., 2000]. Al-
though the former performs better in the evaluation of the trade-off between
performance and availability, the latter detects aging with more effectiveness.
Other models were studied with Web Servers, some of them being performed
on Apache [Grottke et al., 2006; Li et al., 2002]. One of the main conclusions is
that overwhelming workloads cause Apache to have some traces of aging, but
also minor rejuvenation [Grottke et al., 2006].

Lately, there has been research focused on virtualisation platforms. Docker aging
effects were evaluated and it was possible to observe aging effects [Torquato and
Vieira, 2019]. Other work demonstrated problems not directly related to Docker,
but it would also affect the ability to create new containers [Oliveira et al., 2020].

In regards to microservices, research on the subject is lacking, with only a single
paper on the matter. It applies previous research on aging, but in a microservice
scenario, using a deep learning model, showing good results [Yue et al., 2020b].
However, rejuvenation was not treated as thoroughly and only some concepts
were analysed. It is a good starting point, but it shows how the literature is be-
hind in this specific field.
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Container orchestractors, such as Kubernetes, have been the target of various
studies, focussing mainly on scalability. Horizontal Pod Autoscaler (HPA) is a
feature that allows services to be automatically scaled according to demand, per-
forming a service scale-up after a certain amount of time receiving a continuous
stress workload, therefore, preventing unnecessary scale-ups during relatively
short peak intensity loads. The same applies to scale-downs. HPA has receiving
much attention and has been intensively and extensively researched, allowing
developers to achieve greater flexibility and effectiveness [Khaleq and Ra, 2019].
Probes are another feature of kubernetes that allows service monitoring, by per-
forming periodic health checks, being then able to execute predefined actions as
an answer to any unhealthy service detection [Kubernetes, 2020]. Lastly, it is also
worth noting that Kubernetes has some self-healing capabilities that have also
been a focus of research, where services were automatically redirected to healthy
pods by changing their labels [Abdollahi Vayghan et al., 2019].

2.4 Intrusion Detection Systems

Intrusion Detection is one of the mechanisms used to increase the security of a
system, with the goal of detecting intrusions in the system. Intrusions are at-
tackers who want to defy the fundamentals of security within the system, for
example, by abusing a vulnerability in the system and / or bypassing the secu-
rity measures that were implemented [Bace and Mell, 2001]. An IDS is a system
that is specialized in Intrusion Detection.

IDS can be divided into three different categories, considering the information
that is being monitored: network, where the system is focused only on network
traffic; host, in which the IDS looks at data generated by the application host; and
finally application, taking into consideration only the data that are being out-
putted by the application [Bace and Mell, 2001]. Then IDS also needs to analyse
the data and come up with a conclusion; to do that, it can look at a profile describ-
ing a list of possible attacks, and all events that match this profile are considered
intrusions. This is called signature or misuse based detection.

Snort is an open source network intrusion detection and prevention system that
can be deployed with three different uses: as a packet sniffer, a packet logger,
and finally as a network intrusion detection and, optionally, a prevention sys-
tem [Snort, 2022]. Kumar et al. applied it in a small application to test its effec-
tiveness [Kumar and Sangwan, 2012]. Overall, although they state that they were
able to detect intrusions in real time traffic, the results are not sufficient, as there
are no data related to the number of attacks that were performed, nor a statement
on the amount of false positives [Kumar and Sangwan, 2012]. In addition, a prob-
lem arises with the use of signature-based detection, that is, zero-day exploits or
abuse of permissions, as this type of detection cannot detect them [Benaicha et al.,
2014; Garg and Maheshwari, 2016; Jyothsna et al., 2011; Kumar and Sangwan,
2012]. On a more positive note, this detection, when the profile is clearly defined,
can be negligible False Positive Ratio (FPR) [Garg and Maheshwari, 2016; Kumar
and Sangwan, 2012].
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Alternatively, it can use an anomaly detection approach, where it uses a pro-
file created with benign information collected from the system during a training
phase and if the events do not match the profile, it is considered an intrusion [Bace
and Mell, 2001]. This category features a wide range of techniques constantly
evolving; therefore, it is difficult to create a taxonomy, varying with the opinion
of the authors [Axelsson, 2000; Garcia-Teodoro et al., 2009; Gyanchandani et al.,
2012; Jyothsna et al., 2011]. In general, it is agreed that there are three main types:
Statistical, Knowledge and Machine Learning. However, the Intrusion Detection
community does not accept anomaly-based solutions, preferring signature-based
approaches, due to their generally low number of false positives, making it easier
for administrators and users [Jyothsna et al., 2011].

However, work has been carried out that unifies both types of detection, having a
profile for misuse behaviour and another for benign behaviour, called hybrid de-
tection [Depren et al., 2005; Hajisalem and Babaie, 2018]. For example, Hajisalem
et al. take advantage of two algorithms, ABC and AFS, which are two swarm al-
gorithms, creating the hybrid ABC-AFS algorithm [Hajisalem and Babaie, 2018].
Based on the training dataset, they generate a set of rules for both anomaly and
benign activity and then apply the algorithm to obtain the final rules [Hajisalem
and Babaie, 2018]. These results are then applied to the training data set to ob-
tain the various metrics and then compared with the testing dataset. The results
show detection and accuracy rates higher than 0.986 and FPRs lower than 0.002
for the same configuration [Hajisalem and Babaie, 2018].

The history of IDS was analysed, with a description of the work already done [McHugh,
2001]. It is noted that after the late 1990s the evaluation of IDS started becom-
ing a matter of research, creating doubts on its effectiveness [McHugh, 2001]. It
showed that improvements are still to come, with some systems displaying re-
sults of only detecting 3 attacks out of 4, with a high false alarm rate [McHugh,
2001]. Nevertheless, IDS has been researched for several decades, with a large
amount of work done on the topic.

When it comes to microservice architectures, network-based intrusion detection
systems have received more attention [Li et al., 2018; Liang et al., 2021; Zhang
et al., 2017]. For example, one of the works tries to deal with two issues: the
effectiveness of Network-based Intrusion Detection System (NIDS); and the non-
monolithic provisioning, which causes many issues, such as the need for scalabil-
ity to deal with the higher amount of data [Li et al., 2018]. In the end, they were
able to get really good detection rates, with good improvements in packet pro-
cessing time and bandwidth usage, but they failed to provide in the results what
their FPR, or their precision [Li et al., 2018]. When it comes to Host-based Intru-
sion Detection System (HIDS), work on microservices is lacking. The work done
focusses only on containerised systems, such as MySQL and MariaDB [Abed
et al., 2015a,b; Flora et al., 2020; Röhling et al., 2019]. Bags Of System Calls (BOSC)
is used on an anomaly based IDS, to create a benign profile displaying more than
90% detection rates, and with a FPR of around 2% [Abed et al., 2015a]. BOSC is
an algorithm that passes through the system calls with a sliding window, record-
ing the frequency of each system call in the sliding window, and, when testing,
if a sliding window appears that is not represented in the database, it is consid-
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ered an intrusion [Abed et al., 2015a; Flora et al., 2020]. Sequence Time Delaying
Embedding (STIDE) is a very similar algorithm, but takes into account the se-
quence of system calls in each window, so it has a bigger profile [Abed et al.,
2015a; Flora et al., 2020]. Another algorithm also tested for containers is Hidden
Markov Model (HMM), a statistical model that also takes sequences of system
calls into account to build a model [Abed et al., 2015a; Flora et al., 2020; Wang
et al., 2004]. When testing, a probability threshold is defined; if the sequence falls
below that probability, it is deemed an intrusion [Wang et al., 2004]. These algo-
rithms were used to evaluate their effectiveness on a MariaDB containers, using
three different representative workloads based on the TPC-C benchmark [Flora
et al., 2020]. The results show that HMM shows poor performance compared to
both BOSC and STIDE, which were able to achieve, on Docker, 0.971 recall and
0.903 precision values [Flora et al., 2020].

To evaluate IDS, many metrics can be used, being the most common: recall 2.1
(also called detection rate), precision 2.2, f-measure 2.3 and FPR 2.4.

recall =
TP
P

=
TP

TP + FN
(2.1)

precision =
TP

TP + FP
(2.2)

F1 =
2× TP

2× TP + FN + FP
(2.3)

FPR =
FP

FP + TN
(2.4)

In general, research is lacking when it comes to microservices as a whole, with all
the work being applied in containers. Therefore, we will try to move away from
single attacks that target a specific service, and focus on multi-service attacks and
HIDS.

2.5 IDS Effectiveness Evaluation

To assert the effectiveness of these intrusion detection techniques, developers and
researchers must test the system under a representative scenario of real-world
attacks on vulnerable systems.

2.5.1 Vulnerability Discovery and Exploitation

To do that, vulnerabilities and their exploits must be found. Although vulnera-
bilities are common, Proof Of Concept (POC) exploits are hard to find, and even
harder to make. However, they allow developers and researchers to emulate a
real world attack, which can help developers to test the security mechanisms
they have in place, and researchers to evaluate the techniques they are propos-
ing. It is also important for developers to keep track of vulnerabilities, as they are
inevitable and expected to be part of any project of considerable size.
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Manually assessing the vulnerabilities inside a system can be time consuming
and is prone to errors. Vulnerability assessment tools allow for an automated
way to find vulnerabilities within a software. Due to the nature of microservices,
a considerable amount of services have to be looked at, with each service pos-
sibly having using different technologies or development languages. Therefore,
the amount of work scales astronomically, being unfeasible to be done manually,
raising the importance of such tools.

Also, simply exploiting random vulnerabilities, although representative of dif-
ferent attacks, may not be representative of a real attack. Typically, an attack to
a system has weeks, months, or even years of prior planning, with information
gathering and infiltration. Knowing the attack paths of the attackers gives a huge
advantage in regards to the defence mechanisms that are employed. There are
techniques that allow software engineers to understand the attackers and what
part of the system is more vulnerable.

Various tools and techniques were then evaluated to determine the best choice
for our study.

An Attack graph is a graph designed to trace different paths that an attacker
can take in order to breach the system. It is a technique that enables penetration
testers to gather more information and analyse the security of the network in or-
der to then take action accordingly. These used to be drawn by hand, but as it
became more critical and important, tools started appearing enabling the auto-
matic generation and also management of these graphs [Sheyner and Wing, 2004;
Swiler et al., 2001]. Previous work shows the use of model checking as a means
of generating attack graphs based on both intrusion and normal user behaviour.
The authors also show how their technique for minimising attack graph analysis
can be used to more precisely determine: which measures should be taken into
account in order to better secure the system, but also what needs to be done to
prevent a specific set of attacks [Jha et al., 2002a].

MulVAL is an example of an automated attack graph generator, available on their
website and on github [Romano, 2015; Xinming , Simon]. It was released more
than 10 years ago, with the last update being 7 years ago and, for the most part,
deprecated, since it no longer works with current applications and technologies.
MulVAL has been used to reach higher levels of scalability, while also clarifying
the user, displaying the system configuration responsible for a certain vulnerabil-
ity [Ou et al., 2005, 2006; Xinming , Simon]. It can be used to output both a text,
with all the vulnerabilities, and a visual representation of the graph. This tool
also supports the user with a script that provides a quantitative risk assessment
algorithm based on the severity of the vulnerabilities to better understand the
main issues of the network. Other tools have used MulVAL to try and perfect it,
building an abstration layer on top of it, however, these are also deprecated [cy-
berImperial, 2019].

However, all this work is focused on traditional systems and networks. Although
they can be applied, in theory, to microservice scenarios, some assumptions may
differ, such as the way the attacker enters the system. Therefore, attack graphs
generators for Microservices is a subject that lacks attention, with only one ex-
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ample found, which was untouched for a year and a half [Ibrahim et al., 2019b;
Khalifah, 2018].

The theory work done in regards to the architecture and methodology used is re-
markable, with each phase being well detailed and explained. Unfortunately, the
attack graph generator has an enormous amount of bugs. Although some may
be related to some natural deprecation of unmaintained software, it is also easy
to spot that it was probably built under a time restriction and the developer also
lacked the ability to perfect and take care of the software [Ibrahim et al., 2019b;
Khalifah, 2018]. For example, Clairctl was one of the choices used for vulnerabil-
ity assessment. It is a command-line tool that enables the use of registries such as
Docker Hub with Clair, which is a vulnerability scanner specialised for contain-
ers. However, Clairctl has been untouched for almost 5 years, and currently, it is
unnecessary, since Clair basically implemented its features. Although some time
was invested to fix and upgrade the attack graph generator, we quickly felt like it
was too much work, requiring a whole masters thesis to completely remake the
software from scratch [Gonçalves, 2022].

descartesresearch_teastore-registry(ADMIN)

descartesresearch_teastore-persistence(ADMIN)

CVE-2005-2541

descartesresearch_teastore-recommender(ADMIN)
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DSA-4963-1 openssl
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CVE-2021-31879

outside(ADMIN)

descartesresearch_teastore-webui(ADMIN)
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Figure 2.2: Example of an attack graph by an attack graph generator for Microser-
vices [Gonçalves, 2022; Khalifah, 2018]

Bloodhound is a really good and well accepted tool, used by a considerable num-
ber of penetration testers [BloodHound, 2022b]. It is more focused on the autho-
risation part of an organisation; however, it still provides good information on
how an attacker can enter a system. An example of its power is the large amount
of queries it allows, even within large networks with many connections [Blood-
Hound, 2022a]. Bloodhound also comes with a very detailed and well built GUI,
that eases the various tasks a user can do, allowing for a faster identification of
privilege escalation issues that a network may have. As of now, the tool contin-
ues to receive regular updates [BloodHoundAD, 2022], with recently introduced
support for Microsoft Azure. Unfortunately, it does not quite help us exploit the
system, by not giving a complete vulnerability assessment but instead focussing
only on the different users and groups inside a network.

Snyk
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Snyk is a company that was created in late 2015 and has been gaining traction,
continuing to do so [Podjarny, 2021]. Snyk offers many different products, but
all are related to the security of container applications, either from the source
code, or even by looking at cloud configurations. It supports a wide range of
languages and deployments, being almost all the major, well known and used
systems covered. One of the products offered by Snyk comes within the docker
package, allowing the vulnerability assessment of any docker image. By speci-
fying an image to Snyk, it will look at the dependencies and packages installed,
compare it with a database full of vulnerability information, and then outputs
a list of vulnerabilities, sorted by severity, with detailed information regarding
each of them.

Due to the very consistent and large database, it is able to provide a complete
and detailed list that the developer can then take a look at and look for fixes.
Although it helps with the vulnerability assessment of various containers, being
also scalable for systems with a large number of microservices, it lacks the ease
in regards to exploitation, leading to a neverending report of vulnerabilities that
need to be checked one by one in order to find a working POC.

Metasploit

Metasploit allows researchers and pentesters to test various vulnerabilities in the
system, by giving them all the tools needed for that job. It is a very complete tool
that gives a reasonable set of exploits that can be used by anyone who downloads
the tools. Additionally, it offers a wide range of payloads while also allowing
custom made payloads that can be paired with the exploits. There are still many
other features, such as brute forcing well known passwords of common systems.
The approach here is a little bit different, focussing on finding a list of exploits
first and only then checking for vulnerabilities. This eases the problem, as the
number of exploits is quite small compared to the number of vulnerabilities.

2.5.2 Classical attacks and their applicability

Reviewing the challenges and literature, many classic attacks are relevant. In
this section, we review some of these attacks directed at software applications or
systems and their applicability in a microservice architecture.

A Denial of Service (DoS) attack, as the name suggests, is an attack that aims
to disrupt the availability of a service, preventing legitimate users from access-
ing the service [Mallikarjunan et al., 2016]. Often these attacks are exacerbated
by the use of many computers or devices, usually compromised by the attacks
and without the owners’ awareness, therefore being called Distributed Denial
of Service (DDoS) [Mallikarjunan et al., 2016]. The DoS of a critical system can
be extremely problematic, leaving many users hanging and leading to money
losses [Specht and Lee, 2003]. DoS can be done at a network level, potentially be-
ing amplify as a Distributed Reflection Denial of Service (DRDoS) attack, which
exploits other systems’ services in order to reflect the attack and amplify it [Ryba
et al., 2015; Specht and Lee, 2003]. However, these attacks are noisy, due to the
high amount of packets associated with them, and their distinctiveness from nor-
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mal usage [Mallikarjunan et al., 2016; Mantas et al., 2015]. The application layer
DoS on the other hand is much more stealthy for the most part, due to the fact
that it is disguised by normal behaviour [Mantas et al., 2015]. A taxonomy was
created to better understand and specify DoS attacks [Mantas et al., 2015]. For a
microservice based system, both network and application based DoS are applica-
ble, and a DoS to a single service can have many effects on the other services.

Asymmetric Workloads are a special type of application layer DoS that aims to
produce a large amount of work for the victim, with only a single request [Man-
tas et al., 2015]. This causes a significant reduction of the available resources,
with the use of a low attack traffic rate disguised as normal behaviour, making it
harder to detect [Mantas et al., 2015]. If an attacker knows the architecture and its
services, he will have an easier time generating an asymmetric workload capable
of slowing down the system.

Malware can be used to enforce a DoS, either by creating various botnets that
then execute a DDoS, or even by infecting machines with a worm, which will
then activate itself on the target system, causing a DoS [Antonakakis et al., 2017;
Baezner and Robin, 2017]. Malware is usually made up of two parts, a decryp-
tor and the encrypted body [Sharma and Sahay, 2014]. When malware infects
a computer, it uses the decryptor to obtain the decrypted body, and then exe-
cutes itself [Sharma and Sahay, 2014]. Antiviruses have a signature for the virus,
and when a file is searched, the antivirus checks if a certain file has that signa-
ture, if it has, it is considered a virus [Sharma and Sahay, 2014]. Another form
of malware, to disguise itself from antivirus, comes as oligomorphic, polymor-
phic, and metamorphic [Sharma and Sahay, 2014; You and Yim, 2010]. Oligomor-
phic has a various range of descriptors that it can choose when replicating itself,
however, they are only changed slightly and are limited to just a few hundred
descriptors [Sharma and Sahay, 2014; You and Yim, 2010]. Polymorphic tries to
fix these issues by having countless possible decriptors, by adding obfuscation
code [Li et al., 2011; Sharma and Sahay, 2014; You and Yim, 2010]. Antiviruses
then evolved to be able to decrypt the virus in a sandbox environment, where
no harm can be done, and apply their signature based detection on the now de-
crypted virus [Li et al., 2011; Sharma and Sahay, 2014; You and Yim, 2010]. So then
polymorphic evolved into metamorphic virus, which does not have a decryptor
and is constantly changing, applying obfuscation techniques to itself, changing
its body when replicating [Li et al., 2011; Sharma and Sahay, 2014; You and Yim,
2010]. In theory, it is possible to generate a metamorphic virus that enters a mi-
croservice and attacks all the other services, with different behaviours per service.

Side-Channel attacks have the goal of obtaining information via a method not in-
tended for that purpose, such as cache in a cache-based side-channel attack [God-
frey and Zulkernine, 2014]. It was even possible to break the Data Encryption
Standard (DES) algorithm, used for, as the name suggests, encryption [Tsunoo
et al., 2003]. This type of attack is even more important in cloud environments,
where tentants are sharing the same resources and, therefore, sharing, for exam-
ple, cache between different cores, such as LLC, thus giving attackers information
regarding their neighbors [AlJahdali et al., 2014; Godfrey and Zulkernine, 2014;
Liu et al., 2016]. A tenant can deploy a microservice based system, therefore being
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Figure 2.3: Oligomorphic, Polymorphic and Metamorphic malware

susceptible to these types of attack.

Current enterprises currently feature complex networks, with many systems that
integrate them, making it difficult for security experts to protect these systems [Chen
et al., 2007; Jha et al., 2002b]. Therefore, they often resort to techniques such as
vulnerability scanners, which allow the automatic identification of vulnerabili-
ties of the different systems, and attack graph generators, which generate a graph
where each edge is a possible security exploitation [Chen et al., 2007; Jha et al.,
2002b]. Security experts can then analyse the data more easily and draw many
conclusions, such as: what is the minimum number of steps required in order to
secure the system [Jha et al., 2002b]. Sequential attacks, attacks being performed
in quick secession, can then be extracted and performed through the analysis
of these attack graphs. The generation of attack graphs for a microservice based
system will be conceptually similar to what is being done on enterprises [Ibrahim
et al., 2019a].

Remote Code Execution (RCE) is an example of a classic vulnerability in which
the attacker can execute a piece of code on the target. This type of attack allows
for new targets, since the compromised target can be used as a vector for a new
attack on another one [Biswas et al., 2018]. Considering a microservice architec-
ture, given that most containers have good defined boundaries, with a very low
number of open connections possible, therefore making it hard to get into one.
Remote Code Execution then becomes a problem, as it is much more appealing
to attackers, simply due to the opening of many more possibilities.

Second order attacks are attacks used to pass through the initial security pro-
vided against first order attacks, requiring two steps, inserting the data, and acti-
vating the attack [Liu and Wang, 2018; Ping, 2017; Ray and Ligatti, 2012]. These
attacks mask the initial intent and are only visible after the attack has been per-
formed, making it difficult to analyse and detect [Liu and Wang, 2018; Ping, 2017].
Most of the work done is related to SQL injections; however, RCE and Cross-Site
Scripting (XSS) are also possible [Liu and Wang, 2018; Ray and Ligatti, 2012]. In
a microservice architecture, since components are separated, data processing is
also separated from sources, and by using message queues and third party APIs
the risk of these attacks is exacerbated [Laigner et al., 2021; Pautasso et al., 2017].

Another example of a classic vulnerability is Privilege escalation. It is a vulner-
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ability that enables an attacker to overcome a missing privilege necessary for an
action. One of the largest areas of research on privilege escalation is within the cell
phone environment, more specifically, Android phones [Bugiel et al., 2012; Davi
et al., 2010; Rangwala et al., 2014]. On the other hand, considering the miceroser-
vices scenario, containers may not have access to each other, being only able to
communicate through a single channel. Privilege escalation vulnerabilities en-
able an attacker to gain unauthorised access to another container, therefore being
able to crawl through the network and the system.

Information Disclosure is normally considered a more tolerant vulnerability,
usually showing low CVE scores in terms of severity. This type of vulnerabil-
ity allows attackers, as the name suggests, to gather information regarding their
target. It may not be a problem at first; however, it allows attackers to gather
many little details during an initial scouting phase, to then find vulnerabilities
and exploit them [Dibbets et al., 2021; Gionta et al., 2015]. It should be noted that
microservices are virtualised and, usually, like previously stated, tightly closed,
making it harder for attackers to find vulnerabilities. Therefore, these vulnerabil-
ities are expected to be exploited to obtain information about the system and then
plan the attack.

Finally, XML external entity injection (XXE) is a type of attack where the attacker
takes advantage of a poorly protected system that does not prevent external en-
tities at the time of parsing, therefore forcing the server to system them, opening
up doors for other issues such as information disclosure and RCE. These vulner-
abilities continue to appear, even the most popular XML parsers and open-source
software that use them [Jan et al., 2015].

To evaluate the proposed solutions, a system needs to be attacked and the traces
need to be collected. For the scenario to be representative of a real case, the chosen
system has to also be representative.

2.5.3 Representative Testbeds

Various testbeds were analysed to understand how fruitful they would be to our
work, analysing their representability, their complexity, and the feasibility of the
attacks.

TeaStore is a microservice based testbed that simulates an online tea store, and
it was one of the chosen. Although it has been more focused on benchmarking
and testing, some work has been done in regards to security. It was built in Java,
using Jakarta, and is composed of five services, a Registry, and a database. These
services are as follows: WebUI which is responsible for the front-end and com-
municates with all the other services; Image-Provider, taking care of rescaling
the images as requested by the WebUI; Auth, responsible for authenticating the
users and managing their sessions; Persistence, a middleware to the database,
being the only service that requests data directly to the database; and the Recom-
mender, which sends information to the WebUI regarding which teas to recom-
mend, based on past purchases and reviews. Every request is done using REST,
and all services are deployed on Apache Tomcat.
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Sockshop was the other testbed chosen. In this scenario, a sock shop is simulated.
It is slightly more complex than TeaStore, having eight different services, four
databases (three MongoDB and one MySQL), and a RabbitMQ message queue.
The first service is the FrontEnd, a NodeJS server, which then communicates with
five different services. Cart, responsible for dealing with the carts of the users;
Catalogue, which stores information regarding all the socks that can be bought
or viewed; User, taking care of the authentication of the users and their sessions;
Payment, a simple service that executes the payment; and, finally, Order, respon-
sible for ordering the products. While the Catalogue, User, and Payment services
use GO as the language of choice, Cart and Order both use Java, with Payment
also using .NET Core. The order service also communicates with another service,
Shipping, built in Java, that takes care of the shipping and sends the details to the
message queue, which will then be read by the Queue-Master, also built in Java.
We can see both architectures in Figures 2.4b and 2.4a.

(a) TeaStore Arquitecture [von
Kistowski et al., 2018]

(b) Sockshop Arquitecture [Sockshop, 2017]

PetClinic was considered, being a distributed version of the Spring PetClinic
Sample Application, using Spring Cloud. It has a total of four business services
and four infrastructure services, which includes a discovery server, a configura-
tion server, the spring boot admin panel server, and a tracing server. Since this
testbed was similar to the testbeds already chosen, we opted out due to lack of
experience. Figure 2.5 shows the architecture of the testbed.

Trainticket was also considered due to the large amount of services, 41, therefore
being more representative of a real scenario. However, the deployment, although
possible, required considerable amounts of resources, even without workloads
running. Although tests were not made to determine whether it was possible to
experiment using it, we considered that it would not be worth doing so, at least
for now. One of the reasons comes from the fact that a profile would have to be
built and then argued that it is representative. Trainticket architecture can be seen
in Figure 2.6.
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Figure 2.5: PetClinic arquitecture [PetClinic, 2022]

Figure 2.6: Train Ticket arquitecture [Train-Ticket, 2022]

2.6 Fusion Techniques

There is a set of techniques that are responsible for joining classifiers to give
one single output. These techniques appear in the literature with many differ-
ent names, from which we choose fusion techniques [Kuncheva et al., 2001; Po-
likar, 2006]. They have been used in various fields, such as medicine and even
industrial fault detection [Chan et al., 2018; Guo et al., 2019a,b; Xu et al., 2020].
For example, neural networks, more specifically CNNs, have been used as a way
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to fuse classifiers. Work has been carried out on a soft tissue sarcoma dataset,
showing better results than single model classifiers [Guo et al., 2019a].

Fusion techniques can be divided into 3 different categories, according to the
literature, based on the stage at which they are applied [Guo et al., 2019a]:

• Feature Level: The earliest possible stage, when all the features from differ-
ent sources or with different information are fused together to form a single
unique stream for the machine learning model;

• Classifier Level: This is a middle stage where some classifiers will be fused
together or some features are fused, with the goal of generating new fea-
tures, called single-modality features, that will then be used to train a new
classifier to provide a final result;

• Decision-Making Level: At this point, all classifiers have already made
their decision, so the technique will only be used to provide a final result
based on one or various decisions.

They can also be divided into two different types according to the order of the
fusion [Ruta and Gabrys, 2000; Uhl and Wild, 2009]:

• Iterative (also called Serial): when the classifiers are trained/used itera-
tively, one after the other, meaning that a change in the output of the first
classifier affects the input of the next classifier.

• Paralel: when the classifiers can be trained/used independently in parallel.

DIDS, Distributed Intrusion Detection System is a network based intrusion de-
tection system that monitors distributed machines, while also employing data
reduction and centralised data analysis. It uses a series of lan monitors and in-
dividual hosts to send information directly to the Expert System. This expert
system is then responsible for defining the security of each individual host and
aggregated the information accordingly. Then it infers, based on all the informa-
tion collected, the state of the whole system [Jones and Sielken, 2000; Snapp et al.,
1992].

NSTAT, Network State Transition Analysis Tool, is another tool that chronologi-
cally orders the information, giving it to USTAT. Hosts must have consistent sync
messages between themselves to ensure that the clocks are synchronised [Jones
and Sielken, 2000; Kemmerer, 1997].

EMERALD has various layers, going from services that do the same thing, mov-
ing up to domains that have similar purposes, and finally reaching the highest
level, the enterprise, where the whole system is analysed. Layers can communi-
cate with each other through a subscribe system between layers that is in place
that allows or disables the flow of information [Jones and Sielken, 2000].

A series of meta learners were proposed and tested, showing a fusion of many
classifiers and forming a single final meta-data answer.

23



Chapter 2

Bagging is a technique inspired by bootstrapping, where all learning sets, al-
though subsets of the initial dataset, are independent, as well as the techniques
used, resulting in different models. These models then vote to reach a final de-
cision. Boosting is based on the principle that weak learning algorithms will
tend to perform better, until they can learn everything, allowing the algorithm
to train a series of weak learners that can then vote and make the final decision.
Very similar to Boosting, we have Cascading, a technique that takes advantage
of the fact that models will have different certainties than others, so the models
are tested in sequence, and when one displays a high level of certainty, above
the pre-defined threshold, the answer is accepted. Cascading Generalisation tries
to improve the previous version by adding the detail that each iteration of the
model not only receives the initial dataset, but also any information the previous
classifiers added. It also differs from the previous one in the sense that there are
no longer thresholds and that all models have to be passed through. Delegating
is a mixture of both, but has a whole other idea in mind. It uses the principle of
divide-and-conquer, where each model will be trained for a specific part of the
problem. Then, just as earlier, based on their confidence levels, the first model in
the sequence to display a good certainty will be used for the answer.

Stacking instead uses the complete dataset, but different algorithms, forming
a new single meta-dataset, that will then be used to train a final classifier. An
adaptation can be made to also add the initial dataset, forming a larger and more
complete meta-dataset. This is called Stacking Generalisation.

Voting and Arbitrating are the last two schemes. The first one is simple; each
model is trained independently and votes. The difference from bagging comes
from the fact that bagging uses only a subset. Arbitrating, on the other hand, has
a new model, like, for example, a decision tree, that is called a referee. The ref-
eree is responsible for deciding which classifier fits the best and chooses it as the
final classifier answer. The idea is that it splits the data into a subset that allows
the chosen classifier to have a high certainty in the answer, while the remaining
subset is where the classifier shows less confidence.

Some basic techniques have been studied. There was a theoretical analysis of six
different simple classifier fusion techniques where the following were reviewed:
minimum, maximum, average, median, and majority vote. Each one has its ad-
vantages and disadvantages, for example, using the minimum guarantees that
when a positive answer is given, everyone agrees, while the maximum is the
opposite. Although the median and the average work in pretty similar ways,
there are cases, such as when one classifier might be shifting the results of the
rest, where differences might be viewed. The sum can also be used and is the
same as the average. This sum can then be linked to a decision model that uses a
threshold to define the result. However, a weighted sum is an alternative, where
each classifier can have a different weight. Finally, voting is a discrete and rough
method for selecting a result, since a classifier that is near the threshold has the
same weight for the output as a classifier with a more certain answer.

The Bayesian combination rule is based on the Bayesian combination rule. It
starts with the assumption that the classifiers are independent, meaning that the
choice of a classifier is only related to its training and algorithm and does not
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Figure 2.7: Meta-Learning schemes (from [Zoppi et al., 2021])

take into account what other classifiers decided. The algorithm uses the Bayes
formula to determine a value that is related to the certainty of the result. This
value is then compared to an adjustable threshold that defines when the result
can be accepted. A genetic algorithm assigns a weight to the vote of each classifier
(also called an expert), and this weight would be applied to all patterns regardless
of the decision made by the expert.

The ER rule model uses a set of models that are fused together, taking into ac-
count their reliability and using adjustable weights. These weights can be ad-
justed using any algorithm, although a genetic one was used. Then it gives two
outputs, one for the probability of having a value and the other for having an-
other value. An example would be to get the probability of having an intrusion
and another of normal behaviour. The higher probability defines the output of
the device.

behaviour-Knowledge Space, or BKS for short, is a method that combines n
experts in an n-dimensional matrix. Each point in the matrix, called the focal
unit, is a combination of the answers of n experts. For example, a point (i,j), for a
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2-dimensional matrix, represents the focal unit for when e(1) = i (expert 1 says it
is i) and e(2) = j (expert 2 says it is j). A focal unit (i,j) holds 3 different values: the
total number of incoming samples where expert 1 gives the output i and expert
2 gives the output j; the best representative class; and finally, the total number
of samples from each class. To make a final decision, we first need at least one
sample (T > 0). Then, the algorithm looks at the best representative class (R),
and calculates the number of samples that represent the best representative class,
divided by the total number of samples. If the result is higher than or equal to
the threshold, then the class is accepted. If not, it is rejected.

The work carried out could not be directly applied to our scenarios. It focused on
testing classifiers that are doing exactly the same thing, which is not the same as
what we are doing here, since classifiers are totally different between services.
Also, the fusion of information is mainly targeted to heterogeneous systems,
which is also not our scenario. Therefore, these techniques were adapted to fit
our scenario. The next section goes in depth into the previous work conducted,
where the algorithms used are initially tested, and container scalability is dealt
with. Then in Section 4 we return to these techniques, showing our four adapta-
tions and how we evaluated them.
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Detecting Attacks in a Single
Microservice

This chapter will elaborate on the work performed regarding the detection of
attacks using an anomaly-based IDS, for single services in a microservice archi-
tecture. First, we present the work done regarding a simple system consisting of
a MariaDB container, in order to provide a view of attack injection with the goal
of evaluating container-based systems [Flora et al., 2020]. Then the work will
be related to the detection of attacks performed on a service of a representative
testbed, TeaStore [von Kistowski et al., 2018]. This work was presented in PRDC
2020 and submitted in IEEE S&P 2023, respectively.

My contribution for the first topic, with regard to attack injection for container-
based systems, was focused on the analysis of the results. It is worth noting that
the amount of data collected was considerably large, with more than 230 thou-
sand data points. For the second topic, regarding how to deal with the elastic-
ity of microservices, I helped during the preparation of the experiments and the
analysis of the results. The analysis was performed on over 1 million data points,
therefore requiring careful attention and discussion.

3.1 Attack injection for container based systems

Taking into account the approach to evaluate intrusion detection algorithms in
container-based systems, the development was made by Flora.

The goal of the experiments was to validate the approach in terms of its ability to
compare and facilitate the evaluation of different intrusion detection algorithms.
In addition, it allowed us to understand which algorithms and configuration per-
form better, showing that the approach allows us to compare and evaluate several
intrusion detection algorithms.

My contribution was in regards to the analysis of the results looking at the
different combinations and analysing how to present them. In total, more than
230 thousand rows of results were saved in a database. Each row relates to how
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a classifier, trained with a specific training scenario, performs in a certain test
scenario This enabled me to gain a feeling about the research being conducted,
with great emphasis on results analysis.

3.1.1 Experimental Methodology

The experimental methodology was conducted as a way to help administrators
who lack publicly available datasets or well-defined approaches that allow them
to measure effectiveness and compare different solutions [Abed et al., 2015a]. The
approach relies on a target system that is a representative service running on
containers, which is subject to realistic workloads, and innovates in a novel view
on false positive analysis, taking into account the characteristics of the containers.
Testing workloads are generated by performing an attack injection technique in
the middle of the experiment. Figure 3.1 depicts an overview of the proposed
approach consisting of four main phases: 1) generation of a training dataset,
using representative workloads; 2) generation of a testing dataset, by adding
attack injection to the workloads; 3) train classifiers, using training convergence
to decide the stopping point; 4) execute the testing phase to obtain results.

Figure 3.1: Overview of the proposed IDS evaluation approach.

In order for the classifiers to be complete, the workloads being used for training
must also be complete. It is utterly important to carefully select the workloads,
guaranteeing that realistic operations are being performed against the target sys-
tem, thus conserving the representativeness of the evaluation and the validity
and acceptance of the results. To select an appropriate stopping point for the
training procedure, a convergence approach was adopted based on the slope of
the growth curve of the profile database, proposed in [Milenkoski et al., 2015]. In
the end, for both STIDE and BOSC, the best training time was determined to be
around 24 hours when using docker.

In addition, the procedure for injecting an attack must be prepared taking into
account the selection of the target vulnerabilities and the corresponding attacks.
These must be realistic vulnerabilities that are representative of real-case scenar-
ios, prioritising known ones in older versions of the systems. Finally, the moment
the attack will be injected must also be selected.

The experimental campaign was depicted as follows: the collection of benign in-

28



Detecting Attacks in a Single Microservice

formation (up to 24H), and the testing which contained both benign and malicious
traces (over 30min), resulting from the attack injection procedure. The focus was
on algorithms that were lightweight and effective in detecting anomalies in se-
quences of events. Therefore, two sliding window algorithms, STIDE and BOSC,
were used, which group the system calls into a defined window size. In the first
case, it stores the sequence of calls and in the second case, it stores the frequency
of each call within a window. HMM, a stochastic-based algorithm that is based
on a sequence of system calls, was also used. Classifiers were generated, using
each algorithm with various configurations, on the basis of training datasets.

The state of the classifier was stored at each 6H of training for BOSC and STIDE,
and at 30min, 1H, and 2H for HMM. The classifiers were then used to evaluate
the test datasets to classify the events collected, giving measurements that will
then be used to calculate metric values. Each collection consisted on starting
the collection of data and the execution of a workload, and an injection attack
procedure noticeably at the middle (15min) of the collection period (30min). The
collection was then run through the algorithms that were trained using one of the
workloads.

Three diverse workloads, based on the TPC-C benchmark, were tested to repre-
sent different interactions with the system. They represent a steady, a variable,
and another variable workload with operator interaction. The experiments in-
cluded all combinations of workloads. This allowed us to analyse the impact that
the workload being trained has on the IDS in different scenarios.

The attackload consisted of a normal workload, but in the middle of the collection
period (15min) the attack to MariaDB is made. The reasoning behind the time
interval comes from the fact that it shows how the IDS performs before, during,
and after the attack. This guarantees that it is possible to get representative data
on how the IDS would behave if the attack were carried out on a real system. In
total, five different attacks were performed, as we can see in Table 3.1 These were
performed on MariaDB version 5.5.28.

Table 3.1: List of vulnerabilities used and respective CVE information.

CVE ID Access Vulnerability Type(s) CVSS
CVE-2012-5611 Remote Execute Code, Overflow 6.5
CVE-2012-5627 Remote Execute Code 4.0
CVE-2013-1861 Remote Denial Of Service, Overflow 5.0
CVE-2016-6662 Remote Execute Code, Bypass 10.0
CVE-2016-6663 Local Gain privileges 4.4

The other goal of this work was to compare intrusion detection techniques be-
tween three different deployments: Docker, LXC, and a traditional OS. These
deployments cover the most popular container platforms and also portray a rep-
resentative OS-based infrastructure; thus, all these environments represent real-
world scenarios. Docker and LXC have different characteristics, even if both are
container virtualisation software. Docker is designed to support only one appli-
cation per container, known as Application Containers. LXC is more similar to
VMs, although lighter and easier to create, known as OS of System Containers. To
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collect the system calls from each deployment, sysdig was used due to its native
support for containers. It also supports OS systems, allowing a correct compari-
son between environments. In containerised setups, we collected the system calls
issued from the container as a whole. For the OS deployment, we collected the
system calls issued by the MariaDB application: its root and child processes.

During the evaluation phase, every combination of the training workloads was
explored with the testing workloads; thus, resulting in fifteen different combi-
nations. In addition, many configurations of the algorithms were used. This
generated a large amount of data, with more than 230 thousand entries.

3.1.2 Overview of the Results

The experiments show that the approach can be generalised, as being applied to
three different scenarios (Docker, LXC, and OS), the results are still meaningful.
More specifically, it demonstrates the general higher recall values in container-
based deployments, regardless of the platform, compared to traditional deploy-
ments (OS).

The observation of the general results portrayed in Figure 3.2 allows us to un-
derstand some trends in our data. Namely, the improvement in precision values
with more training time, as well as with more complex and complete workloads.
This fact is mainly due to the greater amount and variety of data provided to
the classifiers. In turn, this contributes to more stable and complete profiles with
more capacity to distinguish malicious events from normal ones.
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Figure 3.2: Overview of the experimental campaign results, aggregated by train-
ing time, algorithm, and training workload for each platform.

In general, and as shown in Figure 3.2, the recall values are mainly high (hitting
low points only for HMM), remaining between 0.387 and 0.984 while the pre-
cision varies from 0.017 to 0.720 having at most a FPR of 0.281. The analysis
of the graph also allows us to understand the prevailing detection capacity of
STIDE and BOSC over HMM in both Docker and OS deployments. In fact, HMM
is responsible for producing the lowest results in both precision and recall.

Another interesting observation is that recall values are higher in container de-
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ployments, in general, and in Docker specifically, demonstrating the impact that
a well-defined monitoring surface has on the outcome obtained. Furthermore, the
differences between Docker and LXC demonstrate that even between container
solutions the numbers diverge. In this case, we believe that the main reason is the
amount of data produced by each target under monitoring. LXC datasets were
several times larger than Docker, on average [Flora and Antunes, 2019].

Despite the low precision values in some cases, we must note that these results
are aggregated and contain all the testing workloads and configurations; careful
tuning and configuration allows to obtain better outcomes. Then we analyse the
data in more detail by filtering the best results at each step and going deeper into
the configurations used to analyse their impact on the results and select the best
ones.

3.1.3 Training Analysis: Configuration tuning

In the overall analysis, we were already able to observe some tendencies with
regard to the impact of the amounts of time used during training. Now we will
consider the test slots where the training workload is the same as the one used
during the testing phase, in order to better understand the effects of the training
time. First, we have to highlight that due to computation resources, HMM classi-
fiers were only trained using 30min, 1H and 2H of the data, which is significantly
lower than BOSC or STIDE; hence, lower quality profiles and results.

However, classifiers whose training time was longer, and even in the case of
HMM, demonstrate, across all platforms and configurations, a higher capability
to detect malicious events, while also being more precise. Although the longer
time does not significantly impact detection rates, the impacts on precision and
FPR are visible. These observations are clear in Figure 3.3 where the increase in
precision is noticeable, especially in the OS case.

Figure 3.3: Impact of the training time in the classifiers effectiveness.

As we can see, Docker has the highest recall values for BOSC and STIDE, all close
to 1.000. For LXC, although worse, they still remain high (0.800). On the other
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hand, the OS is only possible to get below 0.800. For HMM the values drop
around 0.300 for both OS and Docker deployments.

These results demonstrate the ability of the approach to show the importance
of selecting an adequate training time. The information collected can be used to
make a cost-effective decision given the multiple training times applied, allowing
users to segment the training procedure and stop when the requirements are met.

Another important factor during training is the workload used. In this experi-
mental campaign, three training workloads were used for LXC and Docker, while
only two were used for the OS. The workloads are diverse, having different op-
eration profiles and tasks. Figure 3.4 depicts the impact of each workload on the
outcome of the classifiers evaluated for each platform.

The results show an increase in classification correctness when the most intense
and complex workload is used (wlOperator-1). This workload is based on wlVariable
and complemented with maintenance tasks conducted by an administrator. In
both Docker and LXC there is an increase in precision values for both BOSC and
STIDE. Again, HMM performs worse than the other techniques, showing slight
increases in precision at high cost for detection rates.

For both LXC and OS, false positives continue low for every workload used, but
for Docker, there is a clear decrease when more complex workloads are used.
Additionally, BOSC achieves better results than STIDE, which may indicate that
frequency-based techniques may be more applicable to this environment. It is
worth noting that sequence-based techniques (STIDE), due to the higher number
of possible combinations, are expected to take longer to learn.

Figure 3.4: Impact of the training workload in the classifiers effectiveness.

In short, the data show better results for Docker in terms of detection and demon-
strate the importance of considering several training times and workloads, both
characteristics that are covered by our approach. Classifiers trained for longer
periods of time and using more complex and diverse workloads show better re-
sults in terms of precision and FPR. The calculated values favour wlVariable and
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wlOperator-1 over the more simplistic wlSteady; nevertheless, the latter seems
to provide LXC classifiers with more clear information owing to the results ob-
tained, which in this case are better when this workload is used.

As mentioned above, our approach acknowledges that multiple workloads should
be used during training and testing procedures. The results show that consid-
ering only one workload would contribute to misleading information; having
workloads that contain representative operations and map with diverse opera-
tion profiles generates a more complete and fair comparison and evaluation of
the algorithms utilised.

The algorithms selected and the methodology have multiple parameters that can
influence the outcome. So, here, we analyse the impact of the window size, the
epoch size, and the detection threshold on the final results obtained. Figure 3.5
depicts the results of the classifiers for the three deployments.
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Figure 3.5: Impact of the window size parameter in the results.

We can observe a very low false positive rate across all classifiers, with the par-
ticular exception of HMM when the threshold used was 50. This noticeably indi-
cates that this decision threshold still remains within the normal behaviour range
of operations.

The general impact of the window size remains constant; that is, with the increase
of the window size, the level of recall increases (the algorithms find it easier to
detect malicious events) while reducing the precision with which those are de-
tected. The root cause for this observation lies in the stability and completeness
of the profiles created; higher values for the window size increase the combina-
tions of sequences a model can hold; thus, resulting in a more incomplete pro-
file that frequently raises alarms of malicious behaviour that often are incorrect,
hence precision goes down. In summary, to maximise both precision and recall,
a smaller window size must be selected; 3 or 4 seem to be the most correct values
in this case.
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Other factors that impact the results obtained are the epoch size and the detection
threshold. These parameters are applied in the final phase of the result analy-
sis and their outcome is used for metric calculation. To analyse their influence,
Recall-Precision curves were selected, so that it is possible to observe for multiple
values the evolution of the detection capabilities.

Figure 3.6 shows the evolution of recall and FPR values over different combi-
nations of epoch size and detection threshold for Docker and OS. The selected
values for the epoch size are 500 and 1000 whereas all the values used for the
detection threshold during the experiments are present in the graph.
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Figure 3.6: Docker and OS Recall-Precision curves for epoch size and detection
threshold impact analysis.

The analysis of Figure 3.6 makes clear that, regardless of the epoch size, the evolu-
tion of the Recall-Precision curves is similar, that is, higher detection rates result
in lower precision values. Here, a commitment has to be made when deciding
whether to enforce higher or lower values for the epoch size. Still, the analy-
sis of the epoch size shows a clear distinction since smaller values are able to
maximise both metrics easier. For both algorithms (BOSC and STIDE) and de-
ployments (Docker and OS) the smallest epoch size (500) produced a more fitting
recall-precision curve, which means that this value produces results closer to the
desirable, and hence can be considered better than the alternative. Additionally,
despite similar behaviour, there are small differences between BOSC and STIDE
in both deployments; BOSC performs slightly better than STIDE achieving values
of higher detection rates with higher precision for the same configurations.

The underlying reason why smaller epochs perform better is due to the granular-
ity level. As the number of events in an epoch is larger, there is a higher probabil-
ity of overcoming the detection threshold, resulting in higher false positive rates
for the same detection rate.

In summary, from the analysis of the outcome and the impacts of these three
parameters, we can conclude that, in general, window sizes of 3 or 4 and an
epoch size of 500 achieve higher detection rates. Hence, these are the prevailing
values for obtaining improved results in this context.
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3.1.4 Workload analysis

Subsequently, we conducted an analysis to verify the capacity of the classifiers to
generalise the application of the learnt knowledge. For this, we detail the results
of the classifiers trained with all three workloads and tested with all workloads
and commands combinations, aiming at understanding which workload gener-
ates a broader and more complete profile of the system. Figure 3.7 presents the
results, which are filtered by training time (24H) and by window size using win-
dow 3 and 4. Additionally, we only focus our attention on Docker and LXC and
to BOSC and STIDE, owing to their better performance.

Figure 3.7: Generalisation capacity of the classifiers. – The horizontal axis has on
the lower line the platforms, on the middle lines the algorithms and the training
workloads and on the highest line the testing workloads.

In general, the results are similar among classifiers for the same deployment,
demonstrating good generalisation capacity for the classifiers. There is, however,
a noticeable increase in precision in LXC when wlSteady is used during train-
ing. This fact contradicts what one might intuitively expect, since wlVariable
is composed of unstable customer behaviour and holds more connections; still,
LXC produces higher amounts of data [Flora and Antunes, 2019] and the utili-
sation of wlSteady could generate cleaner profiles. In general, Docker classifiers
prevail in terms of detection rate at the expense of producing a slightly higher
FPR. In this case, the differences between the two workloads used during training
are in the opposite direction, with classifiers trained with wlVariable generating
alerts with slightly higher precision but significantly lower FPR. Hence, the use
of wlVariable during training for Docker tends to ensure better overall results
with low cost for the detection rates, which remain significantly higher than for
LXC.

Regarding the utilisation of wlOperator-1 workload, it causes clear gains in terms
of precision for Docker and, in general, LXC as well. This workload can be de-
scribed as very complete and effective for use during training, it can not only
provide classifiers with the ability to generalise information with regard to com-
mands used (wlOperator-2 and wlOperator-3) but also contributes with the ca-
pacity to maintain high detection rate and precision values for wlSteady and
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wlVariable. This workload proves its generalisation capacity into other com-
mand sets as well.

In summary, we can observe that the results are satisfactory with both workloads;
however, in Docker wlVariable contributes with lower false positives and higher
precision, while in LXC using wlSteady increases the precision obtained. How-
ever, the most significant variations occur when wlOperator-1 is used to train
classifiers; it obtains a high detection rate and precision for every test workload.
This means that the classifiers are able to generalise the knowledge and the pro-
files learnt are more complete and effective, demonstrating the importance of
having quality in the workloads selected.

In addition to the classifiers from previous analyses, we also focus on additional
classifiers trained with wlVariable and data resulting from management com-
mands, which are benign operations that could be led by a system administra-
tor. For training purposes, only Commands Set 1 from Figure 3.8 was used; while
during the testing phase each test case was performed with the three patterns
present in the referred figure. This experiment aimed at understanding two main
points: i) are classifiers without prior knowledge of management commands ca-
pable of distinguishing these operations from malicious events; and ii) are classi-
fiers trained with some commands capable of generalising their knowledge and
distinguishing new commands from attacks.

Figure 3.8: wlOperator sets of command used in the experiments.

For this, we conducted the testing phase with three patterns executed before and
after the attack takes place. Furthermore, we tested existing classifiers (without
knowledge of any commands) and classifiers trained with Commands Set 1 and
wlVariable, whose results are presented in Figure 3.9.

The overall analysis of Figure 3.9 confirms initial expectations that classifiers
without prior knowledge of management commands struggle to distinguish non-
malicious maintenance operations from malicious events. Although, in the case
of Docker, the recall values are close to 100% every time, classifiers trained with
either wlSteady or wlVariable are unable to achieve precision values above 0.400
while, in some cases, generating FPR as high as 0.180. On the other hand, regard-
less of the presence of commands during training, LXC classifiers do not produce
precision values lower than 0.300; still, these results come at the expense of at-
tack detection rates, since the recall values do not exceed the threshold of 0.800,
which is significantly lower than in Docker.
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Figure 3.9: Performance of classifiers faced with management tasks and attacks.

Classifiers that were trained with datasets containing maintenance tasks demon-
strate higher precision but with similar recall values, demonstrating the impor-
tance of having knowledge of how maintenance tasks are regarded so that it is
possible to filter them and clearly differentiate them from attacks. Furthermore,
there was a noticeable capacity to generalise known management patterns, since
for Commands Set 2 and Commands Set 3 the results were similar, maintaining
high precision and low FPR while detecting the attacks.

In short, the classifiers without prior knowledge of management commands strug-
gle to differentiate non-malicious maintenance tasks from attacks, while classi-
fiers with task patterns understanding are able to generalise it to other previ-
ously unknown commands. The overall detection of attacks was high, but the
inclusion of management commands in training is of utmost importance to in-
crease the precision of alarms and reduce false positives in environments where
this behaviour is customary.

3.1.5 Most representative and promising configurations

In this analysis, we focus on configurations that perform better in the most rel-
evant scenarios with high detection rates and precision. The most diverse at-
tackloads are the most challenging in terms of detection (harder to avoid false
positives while reporting correctly the attacks). This means that testing datasets
based on the wlSteady and wlVariable were avoided. We performed the same
procedure for Docker and LXC and sorted the results in descending order using
the F-Measure value and selecting the top 10. These can be observed in Table 3.2
for Docker and in Table 3.3 for LXC.

From the analysis of the values present in Table 3.2 we can conclude that the top
10 classifiers have been trained with the workload wlOperator-1 and used e=500
with d=100; results in recall values ranging from 0.937 to 0.971 and precision
between 0.858 and 0.903 while not surpassing 0.002 of FPR. The classifiers pre-
sented achieve their full potential mainly when tested with wlOperator-2 work-
load, and with w=3. The BOSC algorithm has the top two positions and achieves
F-Measure values of 0.936 and 0.931.

These results clearly demonstrate that having richer and more complex training
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workloads indeed makes a significant difference, in both the representativeness
of the experiments and the quality of the results obtained.

Table 3.2: Most representative and promising results for Docker.

Algorithm Train Workload
Train 

Time
Test Workload

Window 

Size

Epoch 

Size

Detection 

Threshold
Recall Precision F-measure FPR

BoSC wlOperator-1 24 wlOperator-2 3 500 100 0.971 0.903 0.936 0.002
BoSC wlOperator-1 12 wlOperator-2 3 500 100 0.971 0.893 0.931 0.002
STIDE wlOperator-1 24 wlOperator-2 3 500 100 0.971 0.892 0.930 0.002
STIDE wlOperator-1 12 wlOperator-2 3 500 100 0.971 0.883 0.925 0.002
BoSC wlOperator-1 6 wlOperator-2 3 500 100 0.971 0.880 0.923 0.002
STIDE wlOperator-1 6 wlOperator-2 3 500 100 0.971 0.874 0.920 0.002
BoSC wlOperator-1 24 wlOperator-1 3 500 100 0.937 0.896 0.916 0.001
BoSC wlOperator-1 12 wlOperator-1 3 500 100 0.937 0.887 0.911 0.001
BoSC wlOperator-1 24 wlOperator-2 4 500 100 0.971 0.858 0.911 0.002
STIDE wlOperator-1 24 wlOperator-1 3 500 100 0.937 0.883 0.909 0.001

Of the ten classifiers present in Table 3.2, the majority (6) use BOSC as the algo-
rithm, whereas the remaining 4 use STIDE, showing a prevalence of frequency-
based techniques obtaining better results. In fact, the only classifier that uses w=4
utilises BOSC, which indicates that this method can achieve better results even
when using higher granularity. Still, the general preferred configurations reside
in the use of w=3, e=500, and d=100.

Regarding LXC, the analysis of Table 3.3 shows that recall values are in the range
of 0.806–0.895, precision between 0.877 and 0.980, with very low FPR. LXC
has some similarity to the results from Docker; however, the differences are very
interesting. For example, in LXC, all training workloads appear in the top 10
classifiers, although the majority result from the use of wlOperator-1. Although
the best performing classifier uses w=3, the majority of the best results emerge
from w=4 and despite the large number using d=100, the best results are with
d=20.

The reason why a larger window shows up more frequently in these results is
related to the larger amounts of data required to be processed in the LXC traces.
Despite LXC having on average more unique system calls, there is also a small
portion of them that are issued more frequently; thus, the diversity is dispersed
among the most frequent system calls, being required to have larger windows to
accommodate the repetitions.

Table 3.3: Most representative and promising results for LXC.

Algorithm Train Workload
Train 

Time
Test Workload

Window 

Size

Epoch 

Size

Detection 

Threshold
Recall Precision F-measure FPR

BoSC wlOperator-1 12 wlOperator-2 3 500 20 0.895 0.917 0.906 0.000
BoSC wlOperator-1 24 wlOperator-2 4 500 50 0.895 0.895 0.895 0.000
STIDE wlOperator-1 24 wlOperator-2 3 500 20 0.895 0.895 0.895 0.000
BoSC wlOperator-1 24 wlOperator-2 5 500 100 0.895 0.878 0.887 0.000
STIDE wlOperator-1 12 wlOperator-2 4 500 100 0.895 0.877 0.886 0.000
BoSC wlOperator-1 12 wlOperator-3 4 500 100 0.806 0.980 0.885 0.000
BoSC wlOperator-1 6 wlOperator-3 4 500 100 0.806 0.970 0.880 0.000
STIDE wlOperator-1 24 wlOperator-3 4 500 100 0.806 0.966 0.879 0.000
STIDE wlSteady 24 wlOperator-3 4 500 100 0.806 0.966 0.879 0.000
BoSC wlVariable 12 wlOperator-3 4 500 100 0.806 0.955 0.875 0.000

Other interesting insights from these results are that the best performance is achieved
with 12H of training, which contradicts the general observation in Section 3.1.3
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that 24H resulted in more effective classifiers; and in fact, the same configuration
with 24H of training does not show in the top 10 and resulted in recall=0.773
and precision=0.954. This demonstrates that despite achieving better precision,
the loss in detection rate is far greater.

In summary, classifiers achieve better results when trained with wlOperator-1,
demonstrating the impacts of representative and rich workloads on their perfor-
mance. Other important observation is that smaller epochs result better, meaning
that lower granularity is required for achieving better distinction between mali-
cious and normal events, in fact, the majority requires a high detection rate, assur-
ing that in lower granularity it is required a significant percentage of anomalous
events to produce satisfactory outcomes. For instance, when e=500 and d=100, it
means that at least 20% of the events within an epoch are considered anomalous.
Additionally, the utilisation of smaller windows seems to work correctly with
more diverse traces, while larger windows perform better with less diversity or
higher amounts of data. In connection with this, the use of smaller epochs with
the need of high percentage of anomalous events within it is appropriate in high
diversity datasets, whereas lower percentages, such as 4% with e=500 and d=20,
work better with lower diversity or larger amounts of data.

3.2 Dealing with the elasticity of the microservices

The application of classical behaviour-based intrusion detection requires a pro-
file for each service replica instantiated and results in a localised view, with focus
on the instance, completely disregarding the remaining service instances. As at-
tacker traffic can be routed across multiple replicas, a global view is required and
would potentially be more effective in deterring attacks. The continuous adap-
tations of service replica numbers, according to the demand, can lead to a large
number of instances, thus increasing resources necessary to maintain the secu-
rity protection mechanism. Therefore, intrusion detection approaches must be
lightweight and process information from the whole replica set, while also cop-
ing with scalability required to handle dynamic environments and operate with
diverse operational profiles of a continuously changing architecture.

In this work, we assumed that each service is deployed in its own container. It
is also assumed that each service may be part of a set of service replicas, which
may scale independently. The proposed approaches process independent data
streams, which originate in each of the monitored service replicas. It requires
time information, and the streams consisting of sequential and chronologically
ordered data from each unit monitored.

The development of data processing approaches together with lightweight al-
gorithms enables intrusion detection application to microservices. Developing
profiles of microservices that could be generalised and reused across modifica-
tions in active instances, through elastic behaviours, would extend the security
levels. These profiles must detect different types of attacks (external and internal)
and continuously operate despite the dynamicity of these scalable and elastic en-
vironments. The adaptations performed regarding the number of active service
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replicas cannot impair the monitoring mechanisms or the algorithms processing
the information, which in services with great demand and complexity, such as
microservice-based systems, can become a serious threat to the effectiveness of
the mechanism.

The evaluation of the proposed approaches intends to demonstrate their opera-
tion in multiple scenarios, which are detailed and analysed here. We discuss the
main perspectives on effectiveness in detecting intrusions. Initially, we address
the different configurations used and their tuning to maximise detection rates and
precision. Then we address multiple viewpoints related to the exploits, periods,
and scalability scenarios.

The main objective is to validate our approach ability to help intrusion detec-
tion approaches deal with multiple operational profiles of microservices that use
service replication. We train several behaviour profiles using well-established al-
gorithms with and without the data processing approaches proposed for multiple
system configurations.

My contribution was done with regard to the analysis of results, but also helped
with the setup, the discussion, and implementation of the data processing tech-
niques.

3.2.1 Data Processing Approaches considering Scalable Microser-
vices

As previously noted, current methodologies do not address security threats loom-
ing over a set of multiple replicas of a service. Instead, they addressed the issue by
focussing on each unit, thus requiring a higher number of active profiles. How-
ever, the direct application of state of the art intrusion detection algorithms to
a set or service replicas is not sufficient to ensure the generalisation of the ac-
quired profiles. There are limitations to the behaviour learnt from a single ser-
vice instance that impairs generalisation. To overcome this challenge, we pro-
posed three approaches to enable detection of intrusions in scalable and elastic
microservice-based systems.

Fig. 3.10 graphically represents the inner operation of each approach. The figure
uses a notation where er

t is an event of replica r with timestamp t and er
t − er

t+k
refers to events of replica r over an interval of k units of time.

The proposed data processing approaches provide algorithms with the ability
to generalise the behaviour profile obtained and operate effectively in different
scenarios of scalable microservices. In this way, algorithms can operate in multi-
ple scaling deployments and maximise the protection time of replicated services.
Detectors do not need to adapt to the current configuration of the system, ac-
companying scaling operations, performed with demand changes, and detecting
security intrusions regardless of scaling down or up.

Following, we detail the proposed approaches to process the system call infor-
mation that is collected from the target system. These approaches can work with
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Figure 3.10: Overview of the proposed approaches for data processing for mi-
croservices intrusion detection.

any algorithm for the detection of malicious behaviour after the construction of
benign behaviour profiles.

Independent Replica Aggregation (η)

The operation of this approach mainly affects the resulting profile during the
training phase. The algorithms with data processing store the information from
all the service active replicas, expanding the knowledge gathered, which results
in more complete behaviour profiles. Data from different replicas are combined
without being mixed, increasing the behaviour patterns used to classify events
during the detection phase.

In this way, all the patterns of behaviour collected from the replicas operating are
stored to enrich the profile used to detect anomalies during the detection phase.

In the remainder of the document, the algorithms with this approach will have as
a prefix the letter η (e.g., η-stide).

Trace Events in Total Order (τ)

This approach modifies the way patterns are built from the data traces of the
various replicas. That is, the trace fed to the algorithms results from the chrono-
logical order of all the entries across each active service replica. This approach
requires the data from each microservice to be collected with the corresponding
timestamp that is used to establish the chronological order. It also assumes that
the replicas have similar timestamps.

Algorithms with data processing combine events from all replicas into a chrono-
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logically ordered trace that is used to construct the profile. As depicted in Fig. 3.10,
this approach creates a connection between all information produced in a set of
service replicas. It corresponds to the incoming order of service requests, as they
are distributed across all replicas that are operating.

Algorithms that use this approach create profiles with a clearer idea of the inter-
actions between service replicas. In this way, it makes possible the identification
of more complex attacks as they try to compromise the service, and the load bal-
ancer directs different requests to different replicas.

Over the remainder of the document, algorithms with this approach will have as
prefix the letter τ (e.g., τ-stide).

Replica Periodic-Interleaving (θ)

This approach creates an event trace that results from sequential extraction inter-
vals, with t units of time, of data from alternating replicas. That is, from each
replica the events within the interval are appended to the trace.

This approach creates fewer breaks in the sequence of system call data. As the
system calls sequences are more relevant than an isolated call, this approach in-
tends to reduce possible sequence breaks caused by the aggregation performed.
It allows to retain the proximity of certain system calls that take place in the same
replica, while still leveraging the combination of events across replicas.

Over the remainder of the document, algorithms with this approach will have as
a prefix the letter θ (e.g., θ-STIDE).

Integration with Intrusion Detection

The approaches integrate with a typical anomaly-based intrusion detection method-
ology, as presented in Fig. 3.11, which works in two main phases: training phase,
where the operational profiles are learnt, and detection phase, where events are
analysed for intrusions. During the training phase, the classifiers use benign in-
formation from the system to create its benign behaviour profiles. These profiles
are used during the detection phase to identify deviations from the learnt normal
behaviour and raise alarms.

Data processing approaches operate on the collected data and feed it to intrusion
detection algorithms. Consequently, regardless of the number of active replicas,
the profiles can be used continuously to detect security intrusions with effective-
ness and ensure uninterrupted security of the service replicas set. This ability
removes the need for multiple training conditions to cover all the deployment
scenarios faced during the detection phase; thus, promoting the reusability of
profiles and generalisation of the acquired knowledge. Variations in load and
demand, and consequently autoscaling operations performed, do not affect the
capacity of profiles to detect malicious events.
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Figure 3.11: Integration of our approaches with an anomaly-based intrusion de-
tection methodology for microservice-based systems.

Training and Detection Phases

The training phase is crucial for capturing effective profiles. The efficacy of this
phase impacts the ability of classifiers to identify deviations from the normal be-
haviour of services. Thus, it intends to acquire the most complete snapshot of the
operational profile of the target service. This phase can be split into two main
goals: i) sending the information processed by the proposed approaches to the
algorithm; and ii) the definition of the normal service behaviour.

For the first objective, the approaches process the information collected from
the different replicas and produce the data set received by the algorithms. Re-
garding the second objective, the algorithm processes the data received from the
approaches to organise patterns (i.e., system calls sequences) into storable to-
kens, which constitute the operational profile of the replicas set. As with typical
behaviour-based intrusion detection techniques, the data used in this phase must
be exempt from malicious events, as this would poison the profile and potentially
leave space for attackers to mislead detectors.

The detection phase operates online in parallel with the services and raises alarms
for time intervals that contain multiple events classified by the detectors. When
attackers compromise a service and obtain unauthorised access to an application,
they can cause significant damage in a short period of time. Therefore, detec-
tion must remain lightweight and be able to raise alarms efficiently for security
operators, so that they have a rapid response.

The operation of data processing over information from multiple service replicas
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data streams allows fewer instances of classifiers. Additionally, since the opera-
tional profiles learnt can be used in different scenarios, the security monitoring
of the set of replicas is not lost or temporarily impaired when scaling occurs. Our
approach reduces adaptations to active detectors and generalises the process of
detecting intrusions in scalable and elastic microservices.

3.2.2 Reporting Mechanism

In this work, the anomaly-based intrusion detection methodology analyses the
alerts raised by the classifiers during the detection phase through the combina-
tion of two perspectives to provide useful and meaningful alarms. An epoch-
based analysis that divides results from the classifiers into sequential groups of
configurable length. When the number of alerts within an epoch is not less than
a detection threshold value, the epoch is classified as anomalous. This technique
intends to reduce false positives while ensuring that significant deviations are
still reported to system administrators.

After the epoch analysis, an interval-based normalisation aims to make resource
allocation more fruitful and propagate clear indications of malicious events. With
this technique, administrators are notified that a malicious event has occurred in
a given interval after an alarm is issued, as long as there is an anomalous epoch.
In this way, the proximity factor of attack-related events is leveraged and notifi-
cations do not overload the response mechanisms.

Reducing false positives allows better and more efficient use of resources when
trying to apply countermeasures against a security intrusion. It also retains the
temporal notion, crucial to having a better understanding of the damage caused
by the attack in the infrastructure and the depth of compromise.

3.2.3 Experimental Methodology

Based on previous work, the experimental methodology evolved to support the
use of a new representative microservice-based testbed, TeaStore [von Kistowski
et al., 2018], and the new techniques that were developed. TeaStore, a web-based
e-commerce system, was then subjected to representative and diverse workloads,
with one of its services being modified to contain known real-world vulnerabili-
ties, activated through an attack injection procedure; thus, increasing the validity
and representativeness of the experiments.

Fig. 3.12 provides an overview of the evolved experimental methodology, depict-
ing the multiple states of the system, and how the training and testing traces
interact with the algorithms and resulting classifiers.

Dataset Preparation

The application is exercised with benign-only workloads for the collection of
training traces. To evaluate the classifiers obtained, during the experiment, traces
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Figure 3.12: Methodology for the experimental validation.

were collected when the application was subjected to a mixed load, with benign
workloads and injection of an attack, from the set referred to in Table 3.4. This
process was repeated for five service deployments, with different numbers of ac-
tive replicas of the system attacked. With our approach, the classifiers must pro-
vide reliable results regardless of the number of active replicas during the training
or detection phases. Our methodology covers both scenarios. The results were
produced by feeding the testing traces to the classifiers.

Evaluation Workloads and Attacks. To produce the experimental data (traces of
system calls), four different workloads were used to exercise the system. These
resulted from the combination of two intensity profiles and two user behaviour
profiles. A stable intensity profile, with constant number of 1000 requests per
second and other varying between 200-1800. Two behaviour profiles, one con-
sisting of users browsing the store, adding and removing items from the cart, and
the other, which also accomplishes purchases. Thus, it modifies the state of the
database information and results in a richer workload from an operational point
of view. To attack the system at multiple levels, we selected known vulnerabil-
ities with publicly available exploits. The selected vulnerabilities are described
in more detail in Table 3.4, where for each vulnerability the corresponding CVE
ID is presented along with the component it affects, its class, type of exploita-
tion and consequences, and the CVSS score value (information extracted from
(cvedetails.com)). They were selected owing to their representativeness, being real
security risks that were already patched in newer versions of the affected services.

Data Collection Method. The data collection in our experiments was conducted
using sysdig [Sysdig, Inc, 2019], a tool that allows the collection of various types
of information from a target system. Sysdig was installed on the main machine
used in the experiments and collected system calls invoked by the container of
the microservices.

This data collection method ensures standardization of the process, as it elimi-
nates subjective consideration of the operator in the selection of processes to col-
lect system call data. The tool receives the id of the container and performs the
data collection automatically, thus increasing the reproducibility of the process.

Datasets. For the experiments considered, a total of 436 data traces were pro-
duced: of which 16 were used for training and 420 for the detection phase. Each
training trace is composed of 48H of system call data from the system when sub-
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Table 3.4: List of vulnerabilities used and respective CVE information.

Comp. CVE ID Vulnerability
Class Vulnerability Type(s) Score

Tomcat
2016-1240 Access-Control PE 7.2
2016-6816 High-level XSS, Gain Info. 6.8

2017-12617 Access-Control Exec Code 6.8
Docker 2019-5736 Access-Control Exec Code 9.3

Kernel

2014-3153 Access-Control PE 7.2
2014-4014 Bypass Bypass a restriction 6.2
2014-4699 Access-Control DoS, PE 6.9
2016-0728 Access-Control DoS, Overflow, PE 7.2
2016-5195 Access-Control PE 7.2
2016-9793 Corruption DoS, Overflow, MC 7.2

2017-1000112 Corruption MC 6.9
2017-16939 Access-Control DoS, PE 7.2
2017-16995 Corruption DoS, Overflow, MC 7.2
2017-7308 Access-Control DoS, Overflow, PE 7.2

Legend - DoS: Denial of Service; PE: Privilege Escalation;
MC: Memory Corruption; XSS: Cross Site Scripting

jected to benign workloads, and each detection trace results from a 10min period
of mixed data from the benign workload and the attack injected in the middle of
the experiment.

The 420 detection traces resulted from 3 repetitions of each combination of 5 con-
figurations of the target system with all 14 attacks and 2 request profiles with the
variable intensity profile (3× 5× 14× 2 = 420). The resulting dataset amounts
to a considerable size, with all training and detection traces using around 436GB
when zipped, with 402GB for training traces and 34GB for detection traces. Typ-
ically, the compression rate is about 90% so the unzipped size of the dataset is
around 4360GB ≈ 4.36TB. This portrays a more representative dataset than al-
ready available data in the state of the art.

Sensitivity to Attacks and Alert Frequency

The proposed approach targets systems supported by software containers, which
are lightweight and composed only by the required components for the service to
work. In this way, these are sensible systems that can have its operation change
significantly with some type of attacks that target them. To assure that the oc-
currence of intrusions is picked up by detectors the algorithms need to capture a
stable and complete behaviour profile.

As some attacks can cause deviations in the operation of services, as the system
moves to an unseen or corrupted state, to perform a correct evaluation of the
classifiers, we divided the slots into three phases: pre-attack, attack, and post-
attack phase, as depicted in Fig. 3.13.

These phases are defined around the injection of the attack and have the objec-
tive of establishing three perspectives of analysis. During the pre-attack phase
there is no justification to the occurrence of alarms, expect incomplete profiles of
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Figure 3.13: Experimental slots phases.

behaviour; during the attack phase, the duration of the attack injected, failing to
raise alarms means false negatives; while the alarms raised during the post-attack
phase can be justified by effects resulting from the attack conducted, which means
that an alarm raised can be caused by lasting effects of the attack and incomplete
profiles as well.

In connection with this point, we also analyse the frequency of alerts raised by
time interval. It mainly contributes to clarify the quality of the profiles captured,
and whether they portray the correct behaviour of the service replicas monitored.
Alerts should be more frequent during the attack phase, and some are under-
standable during a period after the end of the attack.

Scalability and Data Processing Approaches

Replication of services to scale and adapt systems to changes in user demand is
common in microservices. To analyse the ability of data processing algorithms
to cope with changes in active service replicas, we create multiple scenarios for
training and detection. For training, we consider 1, 2, 3, and 5 replicas used
during deployment. For detection, we consider 1, 2, 3, 5, and 7 replicas. These
deployments are crossed, resulting in 20 evaluation scenarios, presented in Ta-
ble 3.5.

Table 3.5: Deployment scenarios used for training and detection phases.

#Training
Replicas

#Replicas in Detection
1 2 3 5 7

1 X X X X X
2 X X X X X
3 X X X X X
5 X X X X X

In this way, we can compare the different processing approaches, between each
other and with the simple state of the art algorithms. This comparison permits
to observe whether the algorithms with processing approaches increase detection
rates while having low false positives. This analysis also compares stable scenar-
ios, with the same number of replicas in both cases, and scalable scenarios where
different numbers of replicas are active in training and detection time.
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Configuration Tuning

The intrusion detection methodology used has multiple configuration parame-
ters, which have an impact on the results obtained. The algorithms are based on
a sliding window with configurable size, for the evaluation, we selected length 3
and 4, based on other works [Flora et al., 2020]. Further, the methodology consid-
ers more configuration, namely the analysis of classification results. The epochs
used along with a detection threshold to reduce false positives are also config-
urable values. For this work, we considered 500, 1000, and 5000 for the sizes of
the epochs, and 5, 10, 20, 50, and 100 for the detection threshold, as presented in
Table 3.6. Finally, the time interval used for the reporting mechanism can also be
configured, in this work, we used an interval of 5 seconds.

Table 3.6: Combination of epoch and detection threshold values used.

Epoch
Size

Detection Threshold
5 10 20 50 100

500 X X X X X
1000 X X X X X
5000 X X X X X

The execution of the evaluation with the referred configurations allows a broader
notion of the impacts of such parameters in the effectiveness of the classifiers
produced and, on the results, obtained from their analysis. Also, by allowing
several configurations, the methodology used has the potential to be applied to
different scenarios and context, operating in less and more critical microservice-
based systems.

3.2.4 Results Overview
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Figure 3.14: Relative results for algorithms with and without proposed data pro-
cessing approaches, based on pre-attack phase F-Measure values. On the left,
STIDE as baseline compared to versions of STIDE with data processing. On the
right, BOSC as baseline compared to versions of BOSC with data processing.

The impact of the approaches proposed in the results obtained are presented in
Fig. 3.14. It depicts the variation in F-Measure when compared to the simple
use of the algorithms, considering the averages of all configurations. The value
obtained from the use of STIDE and BOSC represents the baseline (i.e., 0%) while
for the remaining cases the percentage of variation compared to STIDE or BOSC.
Although, for one replica active during detection, algorithms with and without
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processing approaches produce similar results, the lowest performance increase
still represents an increase of 6% for η-stide-2. However, when the number of
active replicas increases, the algorithms with data processing clearly outperform
simple STIDE and BOSC. For three replicas during detection time, increases reach
as high as 48% for τ-stide-3 and 40% for τ-bosc-3. For seven active replicas, the
gains reach 80% for θ-stide-3 and 62% for θ-bosc-3. The general observation seems
to show a tendency for replica periodic interleaving (θ) to produce better results
with a higher number of replicas.

The variation trend presented demonstrates clearly depicts a consistent and con-
tinuous increase for higher number of active replicas, which indicates that algo-
rithms with data processing are able, without compromising the base case, to
detect intrusions more effectively than simple algorithms.

Further, we dive into the details behind the methodology used and how the re-
sults are achieved, focussing on configuration tuning, attack alert frequency, and
dealing with scalability of services.

3.2.5 Configuration Tuning

The tuning of the configurations used in the algorithms and the alert mechanism
is crucial to obtain the best results for the case under monitoring. Algorithms
can have their window size configured, which is the length of the patterns that
make up the normal behaviour profile. For the reporting mechanism, the user
can configure the epoch size, that is, the number of patterns within an epoch, and
the detection threshold, which corresponds to the required number of anomalous
windows to classify an epoch as anomalous. Another parameter in the method-
ology is the time interval used to raise alarms to the operator. However, in our
analysis, we fixed this value at 5s, based on the average duration of the attacks,
and did not modify it during the experimentation. Still, changing the interval
span can have an impact on the results produced: the shorter span increases the
number of observations that can be passed to the administrator, while the larger
span reduces them. It also impacts the delay for notification of attacks; shorter
spans mean faster notification, while larger spans increase the delay.

To evaluate the configurations that produce better results, we selected the top
10 results according to F-Measure, and computed the frequency of each config-
uration. Thus, this shows the configurations that produce better results more
frequently. The selection of the top 10 entries resulted in a sample size of 336,000
data points. Results for the combination of the three parameters are presented in
Fig. 3.15.

The majority of entries result from algorithms using a window of size 3, with
82% of the most effective configurations resulting from this. Of the three con-
figurations, window_size has the greatest impact on the results. Analysing both
parameters in an isolated manner: for the epoch size, the value 500 is present in
43% of the cases, while 1000 represents 39% and 5000 represents 19% of the total
sample size; for the detection threshold, the percentages range from 14% to 29% of
the total sample size, with 50 being the most frequent.
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Figure 3.15: Distribution of the top 10 results according to F-Measure for param-
eter configuration analysis. w: window size; e: epoch size; d: detection threshold

The analysis allows us to understand that the most frequent combination of all
parameters resides with a window size of 3, an epoch size of 500, and a detection
threshold of 20. This configuration represents 27% of the entries resulting from the
combination of this window and epoch size, as shown in Figs. 3.15, and 9% of the
total sample size. In fact, the combination of the size of the presented window and
the detection threshold values is the most frequent, representing 35% of the total
entries analyzed. Thus, the capacity to produce better results is strengthened.

In a particular observation (cf Fig. 3.16), detecting the exploitation of the vulnera-
bility CVE-2017-1000112 raises a number of false positive alerts in the initial steps
of the detection phase, when using θ-bosc-2 with a window of size 3 and an epoch
size of 500 and detection threshold of 10. However, when configurations are care-
fully tuned, increasing the detection threshold to 50, false positives are removed,
and the attack is still detected successfully.

3.2.6 Alert Frequency

To understand whether the algorithms were capable of effectively distinguishing
between normal and malicious behaviour, we analysed the frequency of alerts
per time interval. In this work, an alert is when an epoch is considered malicious
(cf. Section 3.2.2). If there is at least one alert in an interval of time, we consider
that interval anomalous and raise an alarm.

In our experiments, we observed two relevant aspects: the classifiers with highest
performance rates clearly have high-quality profiles of the replicas set; and there
are attacks in our experiments that cause significant modifications in the system
when used.

Fig. 3.17 shows the percentage of alarms raised in each phase (pre-attack, attack,
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Figure 3.16: Comparison of alert frequency with modification in the detection
threshold.

post-attack) by the classifiers used, which were trained with three replicas and
are detecting intrusions in a set of three replicas.
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Figure 3.17: Percentage of alarms raised per CVE over all phases of the detection
phase in a deployment with three replicas.

The figure confirms a good capture of the behaviour profile of the replica set.
During the pre-attack phase, the highest percentage of reports amounts to 1.9%
and an average of 0.4%. During the attack, the algorithms are generally able to
detect all attacks, raising alarms in at least 12.5% of the cases, with an average of
71.8%. Finally, after the attack has ended, there are exploits that cause the system
to become unstable, such as for CVE-2014-3153 and CVE-2016-1240. These attacks
cause lasting effects on the system and increase the general percentage of alarms
in the post-attack phase, where the alarms amount to a maximum percentage of
93.5%, but on average they are at most 10.1%. There are also two attacks that
target vulnerabilities CVE-2016-6816 and CVE-2017-12617, which classifiers find
difficult to detect. These vulnerabilities are both in the Tomcat webserver that
supports the infrastructure. CVE-2016-6816 is a high-level vulnerability, targeted
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with a XSS attack and is therefore hard to reflect in the traces used. Regarding the
vulnerability CVE-2017-12617, it corresponds to an attack of code execution that
can be detected in some way with some specific configuration.

The observation of a specific case shows this clearly. Fig. 3.18 presents two dif-
ferent vulnerabilities, CVE-2017-1000112 and CVE-2016-1240, with the frequency
of alerts per time interval over the detection period. The examples presented are
from the results of θ-bosc-2, window size 3, algorithm analysing a replica set of 3
units. The results were selected according to the best values for F-Measure in the
pre-attack phase with the intention of demonstrating the two reported aspects.

Figure 3.18: Comparison of alert frequency in attacks with and without lasting
effects.

As in the initial phase of the experiment, the system is not affected by any kind
of anomalous interaction, profiles are, in both cases, able to analyse the events
and report no perturbation, while detecting both attacks. However, in the case
of CVE-2016-1240, the attack creates a significant and lasting modification in the
systems operation behaviour. For this reason, the classifiers continuously report
anomalous activity throughout the remainder of the experimental slot.

This finding justifies the utilisation of pre-attack values to evaluate the classifiers,
as the occurrence of false positives in the post-attack phase can be caused by
lasting effects of the attacks. Also, the existence of lasting effects in some, but
not all attacks removes the possibility of having issues in the process of attack
injection conducted in this experimental evaluation.

3.2.7 Vulnerability Class Reporting

During our evaluation, various vulnerabilities and exploits are considered. This
diversity allows us to make different observations and analyse the detection ca-
pacity in terms of weaknesses class. Table 3.4 presents details about the vul-
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nerabilities used in the practical experiments. Four classes of vulnerabilities are
presented, covering access control, bypass, corruption, and high-level real-world
problems that were identified and corrected in the past.

Considering a stable deployment with three active replicas during detection and
training of the algorithms with data processing, we analyse the effectiveness of
the classifiers using F-Measure. For each class of vulnerabilities, Fig. 3.19 presents
how the classifiers perform in their detection. In general, all classifiers perform
very well across three of the four vulnerability classes. With the exception of high-
level vulnerabilities, which perform between 0.075 and 0.130, the remaining vul-
nerabilities are detected with high effectiveness (>=0.632). The better results are
obtained in the detection of Corruption vulnerabilities where F-Measure peaks
at 0.822, averaging at 0.792 among all algorithms. The performance of simple
algorithms is worse than algorithms with data processing, with STIDE and BOSC
performing in the range of 0.632-0.764, whereas the best performance with τ-
bosc-3 in the range 0.738-0.822, if high-level vulnerabilities are excluded.

The high-level vulnerability is a XSS attack, so, it becomes difficult to detect this
exploit at the system call level; hence, the algorithms struggle to identify the ma-
licious behaviour even with data processing approaches.
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Figure 3.19: Performance of classifiers in the detection of diverse class of vulner-
abilities attacked.

3.2.8 Detection in stable scenarios

The stable scenarios are considered direct applications of our approach. These
scenarios refer to the application of the classifiers to the same configuration de-
ployment at detection time as the one in which they were trained. That is, these
are the scenarios where the number of replicas of a service is the same in the
training and detection phases. In theory, these should be easier for the classi-
fiers to deal with as they are a direct application of the learnt profile in the same
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configuration.

In our experimental evaluation, three stable scenarios were considered. For one,
three, and five active replicas of a service, profiles were trained and applied in
the detection phase.

Fig. 3.20 presents the results of the classifiers used in this evaluation context. Clas-
sifiers can obtain very good results with two and three replicas at training and
detection time (>=0.683). Generally, data processing algorithms achieve better
performance than STIDE or BOSC. The case of five replicas also presents better
results for algorithms with data processing (0.495-0.575) than for STIDE and
BOSC (0.430-0.469).

Figure 3.20: Performance of the top 10 configurations for stable scenarios.

The use of algorithms with data processing shows higher effectiveness compared
to simple algorithms (STIDE, BOSC). Although there is still room for improve-
ment in the capacity of the approaches proposed to increase detection abilities,
they are already higher than previous techniques, showing usefulness in the tech-
nique.

3.2.9 Detection in scalable scenarios

Scalable scenarios consist of a very challenging application of our approach. These
mean to attain a generalisation of knowledge acquired during training so that
classifiers can operate effectively with a different configuration in detection time.
These scenarios present interesting challenges to the classifiers, as they learn the
behaviour profile of an architecture and apply it to a different one.

In our evaluation, four scalable scenarios are considered. For three and five ac-
tive replicas of a service, profiles were trained. These classifiers were applied, at
detection time, in systems with one, three, five, and seven active replicas; thus,
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resulting in four scenarios of analysis.

Fig. 3.21 presents the F-Measure results of the classifiers used in this evalua-
tion perspective. Classifiers perform extremely well with the more basic sce-
nario, one replica at detection time (>=0.899), with all algorithms with data pro-
cessing outperforming STIDE and BOSC. For the remaining scenarios, there is
a decrease in F-Measure values for simple algorithms (>=0.404) and for algo-
rithms with data processing as well (>=0.479). The analysis shows that algo-
rithms with data processing perform better in scale-down scenarios, that is, the
detection time has fewer replicas than used during training (3vs1: >=0.906;
5vs3: >=0.628); while in scale-up scenarios, there is a slight decrease in effec-
tiveness (3vs5: >=0.520; 5vs7: >=0.479).

Figure 3.21: Performance of the top 10 configurations for scalable scenarios.

Although the technique proves to be able to achieve generalisation of acquired
knowledge, there is still room for improvement towards higher effectiveness.
Nevertheless, it is still satisfactory and decreases the time-to-protection, as it re-
moves the need to adapt the profile according to the autoscaling modifications.

3.2.10 Discussion

The evaluation of the approaches demonstrate the applicability and increase in
effectiveness when compared to simple application of intrusion detection algo-
rithms. The approach can operate in diverse configurations regardless of the
learning environment, generalising the acquired knowledge, and effectively de-
tecting most of the attacks in both scaling scenarios. In fact, algorithms with data
processing increase the effectiveness of detection in 80% in the best cases, which
correspond to the most complex scenarios of seven replicas during detection.
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Configuration Tuning

The methodology also allows for extensive configuration so that users can best
tune it to their use case to ensure the best results possible. In our experiments, the
careful configuration proved worthy as our results improved significantly with
the use of smaller window and epoch sizes. However, this may trend differently
depending on the target system and its nature. Therefore, a careful testing and
evaluation is recommended for each system. All these factors contribute to be-
haviour profiles that demonstrate being effective at generalised application with
different number of replicas in the set profiled.

In fact, behaviour profiles achieve a clear distinguishability between normal and
malicious events. This is demonstrated through the very low frequency of alarms
raised before systems are attacked. During the pre-attack phase, the services are
operating without any kind of disturbance being conducted; thus, any raised
alarm is clearly a false positive. On the other hand, alarms raised in the post-
attack phase (after the attack) are not so clearly defined. As the system was
subjected to malicious events, it is possible that its internal state was disturbed
or contaminated. As a result, there are some cases where the alarm frequency
spikes, achieving levels similar to those registered during the attack phase. These
modifications are easy to spot and reinforce the quality of the behaviour profiles.

Intrusion Detection in Scalable Microservices

Our evaluation considers four types of workloads resulting from the combina-
tion of intensity loads and user profiles, which are increments from the simple
ones. This can be viewed as a threat to the diversity of the systems’ behaviour
produced. Still, the modifications are significant, as, for instance, one of the user
profiles creates modifications in the state of the systems data and the intensity
loads have different nature, being one more stable and the other having oscil-
lations in the number of requests executed. Thus, the result consists of signif-
icant modifications in the pressure over the target system, which influences its
behaviour.

Regarding the attacks executed to produce malicious events, these are mainly fo-
cused on the kernel supporting the system, despite three of them targeting the
Tomcat server and one being directed at Docker, which creates and manages the
containers supporting the services. To compensate for this imbalance, all the at-
tacks used target real-world vulnerabilities with CVE ids being made available.
In fact, the categorisation of the vulnerabilities allows to understand the effec-
tiveness of the detectors when facing their different kinds. The algorithms with
data processing can clearly detect 3 out of the 4 vulnerability classes presented in
this work. With High-Level vulnerabilities attacks being harder to distinguish, as
they are hardly reflected in the system call data. In this concrete case, the attack
is an XSS attack that does not modify the system at the system call level, which in
fact reinforces that the algorithms with data processing are indeed detecting the
attacks and not raising alarms by chance.

The operation of our approaches intends to tackle the existence of multiple repli-

56



Detecting Attacks in a Single Microservice

cas of a service, by considering all replicas as a set and obtaining a profile of it.
The main goal is achieved, as the approach effectively detects malicious events
in direct applications of the profile and in scale-down and scale-up scenarios.
Our evaluation shows that knowledge is generalised effectively and applicable
to diverse scenarios, which reduces the need for multiple profiles of the various
configurations that a system may have during its adaptive operation.
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Detecting Attacks in Multiple
Microservices

This section is split as follows: we will now present the approach and going over
our experimental methodology explaining the dataset collection and the algo-
rithms; then we will analyse the fusion techniques employed in Subsection 4.2;
in Subsection 4.3.2 the attacks scenarios performed, going over the testbeds used;
and finally an analysis of the results in Subsection 4.4.

Our focus is on detecting intrusions targeting multiple services in a microservice-
based system, however, it provides more than that, with the proposal and valida-
tion of an approach to deal with it. We also propose a set of four fusion techniques
which allow the fusion of data from multiple sources, and evaluate them.

4.1 Host-Based Intrusion Detection Approach

The approach was devised to support training dataset size reduction and fu-
sion techniques.It improves by adding two different new phases that allow re-
searchers and architectural designers to explore a new variety of scenarios. Fig-
ure 4.1 shows the approach.
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Figure 4.1: Intrusion Detection Approach

The goal of this approach is to support adaptation according to the user needs.
The techniques displayed in blue are optional, meaning that if one of those tech-
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niques is not being studied or needed, then that component is not necessary. This
allows a wide range of combinations to be studied.

The host collects the system calls, originating a trace file per component being
monitored. These trace files can then be subjected to a dataset reduction, fol-
lowing a technique, resulting in a smaller set that can then be used to apply the
fusion techniques. Then, with the help of the algorithms and the profiles previ-
ously constructed, we get the results that can, in the end, suffer another fusion.
Although intermediate files can be created, such as the smaller traces represented
in the figure, everything also works in a stream, making it possible to implement
in a run-time environment.

4.1.1 Experimental Methodology

A new experimental methodology was depicted based on the approach previ-
ously presented, supporting a loop removal algorithm to reduce dataset size and
fusion techniques. This experimental methodology has both the purpose of val-
idating the approach and of evaluating the effectiveness of the techniques pro-
posed. Like in previous work, we use system calls, obtained through sysdig [Sys-
dig, Inc, 2019], to feed information to our HIDS and generate traces. We will
only study the use of feature-based fusion techniques independently of decision-
making fusion techniques, which means that when one is being used, the other
component is not. The resulting diagram can be seen in Figure 4.2.
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Attack
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Figure 4.2: Methodology for the experimental campaign to detect attacks in mi-
croservice systems

During the training phase, the system received two different intensity workloads.
One is stable throughout the experiment, while the other is variable, having peaks
that represent periods when the number of users is higher. The intensity was
adjusted to the system, so to allow a low value of failed requests (<1%) during
the peak times. Two different profiles were also used, one in which the user
is only browsing the web service and another in which the user interacts with it,
performing some purchases. The testing phase has the same workloads; however,
attacks are performed on the system. We then get, for each run, one trace file per
service.

Although training traces will first go through a loop removal algorithm, testing
traces will not suffer any modification. It will remove loops of 2, 3, 4 and 5 system
calls, saving them for later enhancement of the classifiers. After the loops are
removed, the dataset is ready for training.
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Although it is possible that an experiment can be conducted using both Fusion
Techniques (1) and (2), in our experiments, these are mutually exclusive, when
(1) is applied, (2) is not, and vice versa. One of the two types of fusion tech-
niques being evaluated, feature level, may modify the dataset before being fed
into the algorithms, as represented in the figure, by the Fusion Techniques (1).
Then, either we train the classifiers, if we are in the training phase, or we evalu-
ate them and get the measurements when testing. In the scenario where Fusion
Techniques (2) are applied, these fuse the classifiers together, through the use of
a decision-making technique. The results from the techniques allow us to obtain
the measurements. We used two different algorithms to generate the classifiers,
BoSC and STIDE.

Taking into account a dataset per service and considering that two workload pro-
files and two different intensities were used, a total of 92 datasets were collected
for training. For testing, for each exploit, three different runs were made, which
in total made for 1464 datasets. Each dataset for training comprehends a total of
24 hours of system call collection, while the testing traces only have 30 minutes.
It is worth noting that, in total, before removing the system calls, the training
traces are over 1.6 Terabytes of data, while the testing traces are of around 450
Gigabytes.

4.1.2 Loop Removal Algorithm

One of the problems we try to deal with is the large size of the datasets. Currently
we are storing more than 5 TB of data, mostly compressed and even with some
classifiers missing, since they sometimes need to be removed during the experi-
ments in order to prevent running out of space. Also, since the files are so large,
it becomes a tedious and time-consuming task to train many different classifiers
with different algorithms and configurations. The main goal of the loop removal
algorithm is to tackle this issue by removing redundant information from the
datasets, therefore, allowing for a larger range of algorithms and techniques to
be tested in a shorter period of time; but also without significantly interfering
with the effectiveness of the classifiers. This algorithm is based on previous work
done, that uses system call loops to reduce the amount of system calls in mal-
ware scenarios [Alaeiyan and Parsa, 2015]. The core of the algorithm can be seen
in Figure 4.3.

This algorithm runs through the file, and whenever a loop of size equal to the
step is found, a merge happens, saving the loop. A sliding window, declared as
system_call_sequence was used to go through the file, and is of size equal or lower
than step times two. In the end, a new file is generated without the loops found.
We look for loops with sizes 2, 3, 4, and 5, therefore, we have to go through a file
4 times in total, iteratively, one per loop. There is room for improvement to make
it look for all the loops in one go; however, the complexity of the algorithm gets
much bigger.

It is worth noting that for our research we only consider the system call, and
not any of the parameters being used; however, considering a loop simply by
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Figure 4.3: Core of the Loop Removal Algorithm for a certain step

the system call would be misleading since one can have different parameters.
Therefore, we also look at the parameters that are used when calling the system
call. This part of the detection can be seen in Figure 4.4.

Figure 4.4: Detection of a loop

One of the problems with removing loops comes from the fact that the classifiers
may become incomplete, since some windows were lost in the process. Although
this may be true for more complex algorithms, for the standard BOSC and STIDE,
not much is lost in the process, depending on the size of the windows. If the size
of the window is smaller than the size of the loop plus one, then we can get all
the combinations; therefore, the classifiers are not incomplete. We will now prove
that, by looking at Figure 4.5 which shows an arbitrary sequence of system calls
with loops.

First of all, we should know that by saving the loops, we are able to reconstruct
the sequences as further as necessary. Now, considering a window with size equal
or lower to the loop, it is trivial to know that nothing is lost since the only combi-
nations removed are inside the loop, which can then be recovered by duplicating
the saved loop and then obtaining the combinations. When the size of the win-
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Figure 4.5: Example of removing system call loops. A, B, C and D are different
system calls.

dow is one unit larger than the loop, although harder to see, it is still recoverable
in the same manner. For example, let us focus on the first step, for a loop size of 2.
If the window size is 3, then we can get BAD, AD and ADC, and by reconstruct-
ing the windows, we also get DA, getting all the combinations. The problem
appears when the size of the window is enough to go all the way from the first
system call to the left of the loop, up to the first system call to the right of the
loop. When this happens, such as with a window of size 4 with a loop of size 2,
memory would be needed of the windows to the left and to the right of the loop
in order to then reconstruct as needed. In our example, for a window of size 4, the
sequences BADA and DADC are lost. It is also worth noting that a new system
call sequence is generated, BADC.

As we can see, it is factual that some sequences are lost; however, we believe
this to be negligible as it is a very small part of the whole classifiers. Various
different algorithms could be upgraded to fix this issue, such as duplicating the
loop, guaranteeing that the problem would appear only for window sizes of 6 or
more.

Results

Regarding the size of the files, overall, we were able to reduce the size of the
datasets to 55.01%, more specifically, the files related to sockshop were reduced
to 53.97% and, for teastore, to 55.43%. Figure 4.6 shows the same metric, how-
ever, more detailed, going in depth to the different services and workloads, while
Figure 4.7 displays the size of the files in GB.

As we can see, the effectiveness of the loop removal algorithm is not directly
related to the size of the files; however, some services do display changes when
different profiles are used. That can be explained by the fact that the Buy profile
exposes the system to new interactions; therefore, if these new interactions are
inherently more prone to loops, the reduction will be higher, as we can see in the
webui service; but if they are less prone to loops, then the reduction will be lower,
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Figure 4.6: % occupied by the files, of the services, according to the training work-
loads, after removing the loops.
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Figure 4.7: Size of the files, of the services, according to the training workloads,
before removing the loops.

like in the db service. Other services, since their behaviour is independent of the
profile, differences are insignificant.

4.1.3 Anomaly Host Based Intrusion Detection Algorithms

Our solution uses an Anomaly host based IDS, focussing on the use of algorithms
that gather patterns from system calls. These are BOSC and STIDE, which focus,
respectively, on the frequency of system calls and the sequence of system calls.
With BOSC, the focus is on the frequency of system calls; when training, it records
all unique windows. With STIDE, on the other hand, it takes into account the
sequence of these system calls, also recording the unique windows, which results
in larger profiles. Figure 4.8 shows an example of a training period with BOSC
and STIDE.

The test data will then be passed through one of these algorithms, and all win-
dows that deviate from the benign window patterns will be considered prelimi-
nary anomalous behaviour. Due to the large number of system calls and the wide
variety of them, it is expected that some windows are not recorded in the clas-
sifiers; therefore, simply using a window to determine if an intrusion occurred
would result in a very large number of false positives and alerts. Therefore, we
join the windows together into epochs. The epochs will then be analysed, one at a
time, and if the number of anomalous windows, which are windows not present
in the classifiers, exceeds the detection threshold, then the epoch is considered

64



Detecting Attacks in Multiple Microservices
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Figure 4.8: Training with BOSC and STIDE algorithms. e stands for event (system
call), and the number following it represents its uniqueness

anomalous, indicating that an intrusion happened. The size of the epochs and
the detection threshold are parameters that can be configured. These parameters
were previously analysed in Section 3.2.3. Figure 4.9 shows an example of an
epoch analysis for two epochs.

N A A A N N NN N NEpoch Size: 5
Threshold:   2

Epoch 1: Normal
Epoch 2: Anomalous

Figure 4.9: Epoch analysis

Epochs can group together, giving a lot of alerts, especially after an attack hap-
pened. For this reason, to facilitate the administrator, presenting more clear alerts,
we group epochs inside a time interval, for example 5 seconds, and if at least one
epoch is classified as anomalous, the whole set is considered an attack period, and
an alert is raised. This replicates a real system where the administrator will only
receive an alert for that interval, instead of being bombarded by numerous alerts;
it also enables a normalisation of the data, making it simpler to analyse the ab-
solute values of the different metrics for the different scenarios, since some runs
may generate more system calls than others. An example is shown in Figure 4.10.

… …NA NAN N N N N A A A A A N N N

Interval n

Interval: 5 sec

Interval n + 1 Interval n + 2

One alert! One alert! No alert

Figure 4.10: Time interval analysis
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4.2 Solution based on Fusion Techniques

When looking at feature-based techniques, data has to be transformed or manip-
ulated before being fed to the algorithms, creating a single profile. With decision
making techniques, data are fed to the algorithms, generating one profile per ser-
vice, this will then be used in the detection phase to obtain the results, which will
then be merged by the techniques. Figure 4.11 shows an example, with the left
side being for feature-based techniques and the right side for decision making.
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Detection PhaseTraining Phase
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Profile #3

Algorithms
Profile #1

Anomaly
Detection

Profile #2

Anomaly
Detection

Profile #3

Anomaly
Detection

Data Processing
Alarms

Figure 4.11: Fusion techniques approach

In order to cope with the variable number of services and to have a generalised
view of the system, four different fusion techniques were evaluated. Two of them
are based on a fusion at the feature level, while the other two focus on the decision
making level. We will now go in depth on each technique.

4.2.1 Feature Level Fusion Techniques

Feature Level Fusion is based on the principle of fusing all the traces from the
different services. It allows for a more centralised IDS system, while also having
more possibilities since the raw traces are used. Previous techniques used to deal
with multiple replicas fall into this category.

Service Interleaving

The first technique uses chronological sorting, splitting service data into chunks
based on a time interval, and then interleaving them. This allows the system calls
to maintain their cohesion within the same services, while also enabling some
relationship between services. Figure 4.12 displays the different steps.

Sn and em is the representation of the system call (event) m from service n, with ∆t
as the time interval of the interleaving process, and T an arbitrary timestamp of
a system call. Traces are grouped according to their services and timestamps.
These groups are then interleaved with each other, one service at a time, fol-
lowing a predefined arbitrary order. So, for example, for service #1, the sys-
tem calls 1 to 4 are chronologically ordered, and their timestamps are between
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Figure 4.12: Service Interleaving technique

1658318693195924968 and 1658318693195924968 + ∆t. We only guarantee that
system calls of the same service are chronologically ordered and, inside the same
interval, traces are grouped by service. A system call can therefore have a higher
timestamp than the following if they are from different services and within the
same interval.

The idea of this technique comes from other tools and systems that use chrono-
logical order to group data and from our previous studies [Jones and Sielken,
2000; Kemmerer, 1997]. Its foundations lays on the fact that system calls have a
relationship between them, so, simply ordering chronologically would break that
relationship inside the same service. We considered a ∆t equal to 5 seconds, but
other intervals can be used and tested following the same methodology.

BoSC and STIDE Matrix

This technique is an extension of the BoSC and STIDE algorithms, where multiple
windows are taken into account, building a matrix, enabling the use of a single
profile for the whole system. The training and the detection phases start when
at least one window per service is read, which means that each service has a
minimum of n system calls, with n being the size of a window. Considering the
amount of system calls recorded, this is not a problem.

As stated previously, BoSC and STIDE are algorithms that use a sliding window
in order to build the classifiers, during the training phase, and to detect intrusions
in the detection phase. A window is classified as anomalous, meaning that the
algorithm considers an attack to be occurring if the window was not recorded
during the training phase. With this technique, instead of simply looking at the
windows of each service, the combination of windows is taken into account. An
example is shown in Figure 4.13.

For Service #1, each window will have a list of windows possible by service #2,
which in turn will do the same for #3 and so on until the last service, which in
this case is #4. In the end, we get a matrix that is filled in with the accepted states
of the system; anything that is not saved in the matrix is considered anomalous
behaviour. It is expected that profiles are much more complex, occupying, and
requiring much more memory, scaling with the number of services. This obvi-
ously will not be scalable; however, it would allow us to test if it is possible and
effective in smaller microservice systems, which in turn would allow for new re-
search in, for example, joining services that are similar and then applying another
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Figure 4.13: BoSC and STIDE Matrix example

technique on top.

After the first few tests, it seemed impossible to create profiles due to the fact that
there was no convergence and the system memory was not sufficient. We there-
fore adjusted and tried running the algorithm on after the services were inter-
leaved, since we were likely to get fewer new profiles. Although we managed to
train the profiles in the harder scenarios, we did not get a good growth curve. Fig-
ure 4.14 shows three examples of classifier growth curves, one showing growth
following the original approach, and then two with the interleaved approach, one
for TeaStore and one for Sockshop. Keep in mind that x is the time in minutes of
the traces read and y the memory used in GB.
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Figure 4.14: STIDE with Window of size 4, classifier growth curve, considering
the original and the interleaved matrix approaches, for the variable workload
with Buy profile, for Sockshop and TeaStore.

As we can see, neither of them converges, therefore bigger training times were
probably needed to get good results. Sockshop has double the amount of services
TeaStore has, 14 to 7, and the size of the classifiers is 148% bigger, 4.23 to 2.86
Gigabytes, allowing us to conclude for certain that the algorithm as it is, is not
scalable.

4.2.2 Decision Level Fusion Techniques

For decision-level fusion techniques, only the decisions of the different classifiers
are merged, based on a model or technique. These techniques tend to be more
lightweight and simple since only the decisions need to be merged; however,

68



Detecting Attacks in Multiple Microservices

they are also less powerful since the raw data cannot be used. For each service,
or group of services, a classifier has be be running, feeding the information to a
system that then makes the final decision. Grouping services, before the decision
level technique, is not taken into consideration as it would be impossible due to
time constraints Figure 4.15 shows a generalised view of how the process works
for the techniques we used.

Result from
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Result from
service #3

Result from
service #2 Processing

If >= 
threshold

…

…

…

…

…

…

Anomaly ……

Normal ……

>= threshold

< threshold

Figure 4.15: Decision making processing

Voting technique

In this technique, all the services vote in order to determine whether an intru-
sion affects the whole system, is or not happening. The results of each service
are grouped in epochs, just as before, outputting a single binary result based on
a detection threshold parameter. These results are then aggregated, and if the
number of services being classified as anomalous is higher than or equal to the
threshold, then it is considered an alarm. The final results obtained are only re-
lated to epochs and time, as the model aggregates the results of the epoch anal-
ysis. In theory, we could apply the voting threshold to the windows, and only
after proceed with the epoch analysis, however, a single anomalous window in a
service that is more passive would have much more impact on the result.

Decision Model

Similarly to the voting technique, a decision model can be used in which, instead
of having each service give a simple binary decision, a percentage is given, which
indicates the certainty of each technique. In our case, this percentage is the frac-
tion of windows anomalous inside an epoch. We would then apply a global de-
tection threshold to evaluate the system as a whole, thus enabling the detection
of intrusions that may affect various services, but are much more subtle. This
model, as expected, does not allow for an analysis of the windows.

4.3 Validation and Evaluation

To validate our approach, we evaluated the effectiveness of our solution in rep-
resentative scenarios and confirmed that it allows us to perform a variety of sce-
narios, working for both the training and detection phases. For evaluation, var-
ious testbeds were analysed and tested, such as TrainTicket [Zhou et al., 2018],
to determine which are the most representative of real-life scenarios. For each
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experiment, a Virtual Machine was created and started, and then the system was
deployed. The Virtual Machine had 25GB of memory. The host machine has an
Intel Core i5 clocked at 2.80GHz CPU and 32GB of RAM. The client, on the other
hand, had a load generator running and the machine had an Intel Core i3 clocked
at 3.50GHz CPU and 16GB of RAM.

4.3.1 Testbeds & Workloads

In the end, two mostly out of the box representative testbeds were chosen to carry
out the experimental campaign. These are:

• TeaStore [von Kistowski et al., 2018]

• Sockshop [Sockshop, 2021].

As previously stated, TeaStore is an e-Commerce application that contains five
different services, a registry, and a database. Every service is written in Java
and running on a Tomcat server, with the exception of the Database, which is
running a MariaDB server. WebUI is normally the most stressed service, followed
by Persistence.

Sockshop has many more services than TeaStore, 12 in total, if we count the four
databases and one message queue. It has the front-end built in NodeJS that then
contacts 5 other services: Cart, which is built in Java and has access to a MongoDB
Database, it takes care of the carts of the clients; Catalogue, which uses GO and a
MySQL database, being responsible for showing the catalogue to the user; User,
written in GO and with a MongoDB Database, it responds to requests related to
the user such as login; Payment, built with GO, it takes care of the payments; and
finally Order, written in both Java and .NET Core, it has access to a MongoDB
Database, taking care of the orders of the users. The Order service then commu-
nicates with the Shipping service, which then inserts a message to a RabbitMQ
queue, that will then be read by the Queue-Master, built in Java, that will then
take care of the shipping process.

Table 4.1: Technologies used by the services.

Testbed Technology Service

TeaStore Tomcat WebUI, Image, Recommender,
Registry, Persistence and Auth

Sockshop SpringBoot Order, Cart, Shipping, Queue-Master
MongoDB Order-DB, User-DB, Cart-DB

MySQL Catalogue-DB
NodeJS Front-End

4.3.2 Attack planning

The attacks were performed considering a multi-tenant scenario where the at-
tacker takes advantage of the fact that the cloud provider shares the same in-
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frastructure for their clients. Therefore, all attacks are remote. We also assume
that the frontend service has at least one point of entry, as usual in this kind of
system; and that every service has root access inside their container. Finally, the
same network is shared between all services.

Figure 4.16 shows how the experiments were carried out.

PC1

Workload

Host Operating System Sysdig

Virtualization System

Malicious
Service

Monitored
Service

Attack

Captures 
System Calls

PC2
Load

Generator

Figure 4.16: Conceptual Solution

These experiments were carried out in 50 minute slots: 15 warm-ups, 30 work-
loads, and 5 cooldowns. The attack was performed at the 30 minute mark, during
the middle of the workload with the help of the Metasploit framework. The col-
lection of system calls occurred during the workload. The timeframe is shown in
Figure 4.17.

AttackPre-attack 
– 15 min

Pos-attack 
– 15 min

Warm-up 
– 10 min

Cooldown 
– 5 min

Monitoring

Figure 4.17: Attack injection experiments timeframe

In terms of exploits, 12 were used, targeting a total of 5 different services, these
being: Apache Tomcat, Spring Boot, MongoDB, MySQL and Nodejs. First, we
present the exploits related to the TeaStore testbed, with unsuccessful attacks
marked as such. These exploits can be found in all the TeaStore services, except
the database, meaning that in total 7 services are attacked.

We used Metasploit to help us attack the system and these were the types of
exploits we used:

• DoS;

• RCE;

• XXE;

• Bruteforce;

• Configuration exploit;

• Buffer Overflow;
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• Information Gathering.

Exploit 1 - CVE-2020-1938.

Apache JServ Protocol (AJP) has a trust issue that allows an attacker who commu-
nicates through AJP to have higher privileges than when communicating through
http, enabling privelage escalation scenarios. In our case, the attacker uses this
to gather information about the web server; more specifically, he obtains the
web.xml file from the target [nvd, 2020].

Exploit 2 - CVE-2010-2227.

An attacker can take advantage of a Tomcat vulnerability that allows him to cause
a denial of service, through a crafted Transfer Encoding header, interfering with
"recycling of a buffer" [nvd, 2010].

Exploit 3 - Missconfigured Tomcat Manager [Unsucessfull].

Here, the attacker tries to upload a WAR archive that contains a jsp application
that, in reality, is the payload that forces a POST request to the endpoint /man-
ager/html/upload component. It takes advantage of many vulnerabilities re-
lated to a missconfigured tomcat deployment [rangercha, 2021].

Exploit 4 - Bruteforce Tomcat Manager [Unsucessfull].

The attacker goes through a list of known user-password combinations and tries
to login to the Tomcat Application Manager [MC, 2021].

Now, we will go through the exploits for the Sockshop testbed. Unsucessful at-
tacks are also marked.

Exploit 5 - Jolokia XXE.

This exploit targets JAVA application servers that use Spring Boot and have a bad
configured Jolokia, allowing an attacker to perform a XXE. It forces the server
inside the container to execute a GET request for a file to a malicious server that
will then redirect to another malicious server that has the entity to inject. In our
case, this XXE allows the attacker to get the list of users and passwords of the
container [mpgn, 2018; Stepankin, 2019]. In total, four different services were
targeted.

Exploit 6 - Jolokia RCE.

The logic is pretty similar to the past exploit, with all the same configurations in
the target server, however, even more ingenious. Instead of the second malicious
server being an http server, it is now an RMI server. The first malicious server
will then execute a call to the RMI server, but instead of simply giving an entity,
it forces the victim to open a reverse shell by communicating with a third ma-
licious server that has a netcat open port. Therefore, through this third server,
the attacker has an open shell directly connected to the victim, allowing him to
do whatever he wants [mpgn, 2018; Stepankin, 2019]. Just like in the last exploit,
four different services have this vulnerability.

Exploit 7 - Bruteforce MongoDB.

72



Detecting Attacks in Multiple Microservices

Just like exploit 4, the attacker here tries to brute-force a set of passwords for
MongoDB [Man, 2019]. This is done in three different services.

Exploit 8 - CVE-2013-1892.

MongoDB has a JavaScript engine with spiderMonkey, which in turn has a feature
called nativeHelper that can be exploited. An attacker can take advantage and,
by calling it with crafted arguments, use a RCE. [agix, 2020; nvd, 2013b]. Simillar
to exploit 7, three different services are exploited.

Exploit 9 - MySQL Server Version Enumeration.

Here is a classic example of information gathering. The attacker executes a simple
attack that gives him information about the MySQL server, which in turn can be
used for other attacks [kris katterjohn, 2017]. For this exploit and the following 3,
only one service is targeted.

Exploit 10 - CVE-2012-2122 [Unsucessfull].

This exploit takes advantage of a bug in the memcpm function that allows, under
certain conditions, for a return value to be handled as true when it should not.
An attacker can abuse this vulnerability by repeatedly trying to authenticate with
the same password until it is accepted [nvd, 2012]. In our case, the attacker then
tries to extract the usernames and encrypted password hashes from the MySQL
server, which can be cracked later [theLightCosine, 2021].

Exploit 11 - CVE-2008-0226 [Unsucessfull].

There are multiple buffer overflows in yaSSL 1.7.5 and earlier, and MySQL uses
this library. Attackers can perform a RCE by abusing a buffer overflow in the
ProcessOldClientHello function, for example [nvd, 2008]. In our scenario, the
attacker can abuse it by sending a specially designed Hello packet [MC, 2020].

Exploit 12 - CVE-2013-4450.

An attacker can send, to a Node.js server, a large number of pipelined requests, in-
side a single connection, without reading the responses. This will cause the server
to allocate unbounded memory, leading to a remote DoS [Marek Majkowski,
2020; nvd, 2013a].

Based on these exploits, 10 different attack scenarios were constructed. Table 4.2
presents these and provides more details.

4.3.3 Configurations

Unfortunately, not all classifiers were able to be tested; however, we consider that
those were not as important, based on the results that we were getting. Even then,
most of the configurations were tested.

Considering the single classifiers, for each service, we did not manage to evaluate
TeaStore with the stable workload. Therefore, we also did not test the decision-
making techniques with that workload. For the matrix technique, we tested the
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Table 4.2: List of Attack scenarios.

Testbed Scenario and
Exploit # Targeted Services Vulnerability

Type(s) Successful

TeaStore

1 - Exploit 1

Tomcat

Information Gathering
Privelege Escalation X

2 - Exploit 2 DoS X
3 - Exploit 3 Configuration Abuse x
4 - Exploit 4 Bruteforce x

Sockshop

5 - Exploit 5 SpringBoot XXE X
6 - Exploit 6 XXE, RCE X
7 - Exploits 7 and 8 MongoDB Bruteforce, RCE X
8 - Exploit 9

MySQL
Information Gathering X

9 - Exploit 10 and 11 Privilege escalation,
Buffer Overflow, RCE x

10 - Exploit 12 NodeJS DoS, Overflow X

variable workload with the buy profile, as it is the most intensive for the tech-
nique. Table 4.3 shows the different classifiers tested.

Table 4.3: Classifiers tested

Classifiers
Workload Training

TeaStore Sockshop
Stable Variable Stable Variable

Browse Buy Browse Buy Browse Buy Browse Buy
Individual x x X X X X X X

Matrix x x x X x x x X
Round
Robin X X X X X X X X

Voting x x X X X X X X
Decision x x X X X X X X

Regarding the configurations tested, both BOSC and STIDE were used, with both
window sizes of 3 and 4. When it comes to the epoch sizes, 500, 1000 and 5000
were tested, in combination with the detection thresholds 5, 10, 20, 50 and 100.

4.4 Results

In this section, we will present the results of the experiments, starting from the
individual classifiers and noting some important observations. Then we analyse
the effectiveness of the fusion techniques with each exploit. On the basis of pre-
vious work, we focused our analysis on the pre-attack and attack phases, since
containers can become unstable after being attacked.
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4.4.1 Training Workload and classifier effectiveness

We will now look in depth at the classifiers of the different services and how
well they performed individually, without any techniques, against their respec-
tive testing traces. First, we will focus our attention on the general results for
Sockshop and TeaStore, which are represented in Figures 4.18 and 4.19, with the
data grouped considering the training workloads used.
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Figure 4.18: General Results Sockshop with different training workloads
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Figure 4.19: General Results TeaStore with different training workloads

Overall, the results are disappointing, with only some of the services detecting
the attacks and with many false positives. It should be noted that not all ser-
vices were targeted; therefore, it is not expected that classifiers for a service that
was not attacked will still be able to detect attacks. Even then, some classifiers
were detecting all attacks, but with very low precision, indicating that they were
classifying almost everything as an attack.

We can see some differences in the results when different workloads were used,
as expected. To get a clear view, Figures 4.20 and 4.21 show the improvements in
the metrics. On the left, we can see the percentage difference when using the buy
profile instead of browse, and on the right, the difference when using the variable
intensity instead of stable. Keep in mind that we only analysed the difference
between browse and buy in teastore, since we did not get the data for variable vs
stable; and also, in sockshop, we focused only on the services that were targeted
by the attacks.

For the most part, using the buy workload indeed gives better results than using
the browse workload, which was already expected due to our previous work.
This can be justified by the fact that the profiles are more complex and have more
data, making the classifiers more complete. When looking at the intensity, we
had to remove the shipping service from the comparison between the variable
and the stable intensities because it would not allow us to see the other services,
as the difference was substantially greater, at 10090%. The variable intensity, due
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Figure 4.20: Sockshop, percentage difference between workloads, on the left be-
tween the buy and the browse profile, and on the right between the variable and
the stable intensities.
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Figure 4.21: Teastore, percentage difference between the buy and the browse
workloads

to having a higher number of requests, results in larger datasets; which in turn
result in more complete classifiers.

4.4.2 Window Size and algorithms

We will now analyse the impact of the different algorithms and window sizes
Figures 4.22and 4.23 shows the metrics for this analysis.
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Figure 4.22: Algorithm and window size impact with Sockshop

All classifiers have the same differences, although some are more intense than
others; when the window size is four, the recall values are higher, while the preci-
sion is lower. Although removal of the loops can be partly responsible, we cannot
argue that they make the sole difference, as it is expected that, for the same time
period, the classifiers made of windows of size four are less complete than with a
size of three. Meanwhile, between algorithms, the changes are not significant.
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Figure 4.23: Algorithm and window size impact with Teastore

4.4.3 Individual service classifier effectiveness

From now on, we will focus simply on the top 10 best configurations. Figures 4.24
and 4.25 show the results per scenario.
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Figure 4.24: Effectiveness of the Sockshop service classifiers per scenario
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Figure 4.25: Effectiveness of the Teastore service classifiers per scenario

Even after considering the top 10 configurations, the classifiers are still unusable.
The only service that can get an F-Measure above 0.450 across all exploits is the
webui. However, if we consider only successful attacks, then the F-Measure is
greater than 0.600 for the same classifiers of this service. This can be justified
by the fact that it is the service with the most data, and, therefore, classifiers are
more complete. Sockshop, on the other hand, the higher it can be is 0.019, which
is possible with the classifiers of the orders service.

4.4.4 Decision Making Level Techniques effectiveness

Focusing on decision-making techniques, the thresholds tested were 0.1 for the
decision model and 20% for voting. This means that for the voting technique to de-
clare an intrusion, two services have to say that an intrusion is happening, at the
same time, for the Teastore testbed; and three services, for the Sockshop testbed.
And, considering the decision model, the threshold means that the sum of the ra-
tios between the anomalous windows and the epoch size of the services is higher
than 0.1. The results based on the attack scenarios can be seen in Figure 4.26
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Figure 4.26: Effectiveness of the decision making techniques per exploit

Based on these results, even when only considering the top 10 results, the voting
technique is not feasible. The only way we would get a higher recall would be
to lower the percentage, but lowering it would mean that the voting technique
would become similar to using the classifiers alone. F-Measure is below 0.031 for
all exploits, and, even with a high Recall of 1.000 for three exploits, the amount
of false positives is too high, bringing the results down.

4.4.5 Feature Level Techniques effectiveness

As noted previously, the matrix technique becomes unfeasible due to scalability
issues; however, we still trained some classifiers for the variable workload with
the buy profile, using the interleaved dataset. Figure 4.27 shows the results with
those classifiers, per attack scenario.
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Figure 4.27: Effectiveness of the matrix technique per exploit

Unfortunately, the results are still unsatisfactory, with high recall and low preci-
sion, indicating that many alerts are being made.

Finally, we have the interleaving technique in Figure 4.28.

Here, the results are totally different. Considering how the classifiers performed
when alone, these results are quite impressive, reaching F-Measure values over
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Figure 4.28: Effectiveness of the interleaving technique per exploit

0.500 even for scenarios where the attacks were unsucessfull. Recall values are,
on average, 0.606 for TeaStore, while for Sockshop they drop down to 0.440.
However, Precision values are way higher, between 0.628 and 0.782, which
means a much lower false alarm ratio, with an average of 70% of the alarms being
True Positives. Overall, we can say that this technique outperforms all previous
analyses, with very good results, being suitable for further studies and enhance-
ments.

4.4.6 Discussion

Based on the results presented, we can safely argue that the loop removal algo-
rithm should be further and improved. Performing the removal of all loops in
a single pass through the file and the inclusion of a memory system to allow for
a complete construction for classifiers are both improvements that can bring the
algorithm to a new level. Even then, it still performs quite well, for the most part
not damaging the classifiers and reducing the traces to almost 50%.

Regarding the classifiers, it is possible that more training time would enhance
them, especially when working alone or with the decision techniques. For 24
hours of training, the classifiers are, for their majority, useless, with the exception
of webui. However, decision techniques could be further researched, possibly
with other algorithms, as they allow distributed intrusion detection.

When it comes to feature-level techniques, the matrix is unfeasible. In order for it
to be used, improvements must be made, or limit, for example, to a 2-dimensional
matrix, and then use a different technique to merge the classifiers.

Finally, the interleaving technique shows promising results. It is the only tech-
nique that manages to drastically reduce the amount of false positives, which is
really important in an intrusion detection scenario to ensure that the administra-
tor does not waste too much time with false alarms. However, we would like
the recall values to be higher because, with the current results, around half of the
attacks are not being detected.
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Planning

For the work developed during this thesis we used an incremental model, with
each delivery being related to a major milestone of the thesis: technique research
and implementation; finding vulnerabilities and respective POCs; development
of the loop removal technique; and, finally, orchestration of the experiments.
These milestones were mostly decided at the end of the first semester, with the ex-
ception of the loop removal algorithm which was an opportunity that appeared
in the second semester. However, due to the nature of the thesis, it is hard to
follow the project management model exactly, since some steps are unfeaseable.
Therefore, some changes to the model were made, in order to better adjust our
work.

One of the changes was related to the requirements, where, we decided on a list
of research goals and what we needed for a representative scenario. We came
together into the following:

• We needed representative attacks, which can happen in the real world, con-
sidering a microservice enviornment;

• These attacks had to have some variety, fitting in at least three different
categories;

• We should have at least three attack scenarios per testbed;

• We should be using two different testbeds or more;

• The techniques have to be lightweight;

• We need at least three different techniques;

Initially, planning was done considering a delivery in the end of june. Figure 5.1
shows the gantt designed with that goal in mind.

However, some problems appeared, and the opportunity of working on the loop
removal algorithm, which made us change our initial plan. We can see the result
of the changes on Figure 5.2.
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Figure 5.1: Initial Gantt
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Figure 5.2: Final Gantt

Each milestone is represented as a task in the gantt diagram, being an iteration of
the incremental model. Of course, tasks such as the State of the Art and Writing
do not have all the steps since they are mostly just a single on-going task, without
any validation or testing. In yellow, a continuation of the testbeds and exploits
task appears, which was done in order to complement the exploits already gath-
ered, creating more representable experiments.

Now we will go through the risks, the analysis performed along the time, and
after we will go through what challenges we faced and how we dealt with them,
while also explaining the delays.

5.1 Risk Analysis

Before we start the risk analysis, we need to define the different levels for Impact,
Probability and Timeframe. These are as follows:

• Impact

– High - Results or the Thesis are compromised even with delays;
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– Medium - The Results or the Thesis may present some flaws such as:
missing experiments or missing representability. And/or delays are
necessary;

– Low - The Thesis may suffer minor changes.

• Probability

– High - Higher than 70% chance of happening;

– Medium - Between 70% and 40% chance of happening;

– Low - Lower than 40% chance of happening.

• Timeframe

– Long - higher than 4 months;

– Medium - 2 to 4 months;

– Short - 0 to 2 months.

Up to the end of the first semester, we analyzed the top 3 risks that could affect
the thesis. The following table is the result of that analysis:

Figure 5.3: Risks identified #1 - 15th December 2021.

Then, risks were being reviewed bi-weekly, and the following three tables sum-
marize the evolution. In the last table, only two relevant risks were identified.

Figure 5.4: Risks identified #2 - 1st February 2022.

As we can see during the beginning of the second semester risks got worse, with
more aggravated parameters overall. This was the most challenging time of the
thesis as delays were starting to appear. These will be analysed in depth in the
next section. After this period, the severity of the risks started dropping up until
the end of the thesis.

83



Chapter 5

Figure 5.5: Risks identified #3 - 1st April 2022.

Figure 5.6: Risks identified #4 - 15h June 2022.

5.2 Challenges

We faced various challenges along the development of the thesis, we will now go
in depth into each one, and analyse what was the problem and how it was dealt
with.

Challenge #1

When we were first analyzing the attacks that we would be performing, we fo-
cused on attacks based on the data flows in the system, as well as the communi-
cations between the services, and targeted multiple services. So we decided on
three different attacks:

• Sequential attacks on the system, applied with the help of attack graph
generators;

• Second order attacks, by adding faulty information to a database that then
causes the attack itself;

• Asymmetrical Workload attacks, with a set of requests that require large
processing power on various services.

However, these attacks appeared to have problems with regard to how they
would be implemented and detected. The first issue came in regards to the at-
tack graph generators being outdated for the most part or not being helpful in
our scenario. Even then, they allowed us to get a list of vulnerabilities to explore,
which was extended using snyk. But then exploiting was a problem, since not
many POC were able to be found, and those that were did not work.

So we looked at second-order attacks, as these are meaningful and perfectly capa-
ble of happening in the real world. We were able to prove the concept on TeaStore,
Sockshop and even TrainTicket. However, the focus of the attack was on the user
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interface, which is something we are not trying to detect, thus leaving the focus
of our work.

Finally, asymmetrical workloads is something that is not much work on, and
since it would simply be a generic DoS with a normal workload, it would also
be hard to detect with our approach, since these would, in the end, probably
resort to just a network congestion.

Therefore, we resorted to focusing on remote attacks against different services,
all performed at the same time.

Challenge #2

Finding techniques that would either join the classifiers or the information com-
ing from different services was hard. We had to find techniques that would not
only be able to deal with the problems we were facing regarding microservices,
such as being lightweight and being able to deal with enormous amounts of data,
we also had to check if they made sense and were worth pursuing. Most of the
techniques were either aimed at joining information coming from databases, in
different formats; or at joining classifiers designed for the same task. These would
not work for our study, since classifiers from different services are expected to be
different, and the information we are trying to join is already in the same format.
For example, two decision making techniques we found were using the highest
value of the classifiers, or the lowest. Well, that is too simple for what we are
trying to accomplish and we didn’t need a “system" to analyze that. Therefore,
looking for a technique was harder and longer than expected, delaying the thesis.

Challenge #3

One thing we did not consider during the planning of the experiments was the
amount of memory needed to run the various classifiers in paralel. Although col-
lecting the data was pretty simillar to what was done before, in terms of analysing
the test data with the classifiers, we would need more memory for the same pe-
riods of time. That is justified by the fact that, overall, the classifiers are bigger,
since they represent different systems, which results in a wider variety of pat-
terns. Therefore, running the classifiers obviously, used more memory than be-
fore. This is something that was overlooked which resulted in many runs being
aborted and needing to be restarted. To prevent this from becoming a problem,
four different machines were used to process the results.

Challenge #4

We knew and were expecting the space required for collecting the data, however,
the classifiers and the results took more space than before, which gave us some
space management issues. This can be explained for two reasons, one was al-
ready detailed in the previous challenge, which is the size of the classifiers being
bigger; the other is that the testing experiments were three times bigger than the
previous ones. Also, the problem was aggravated when we starting using vari-
ous machines to process the results. In the end, after compressing many unused
files, everything worked out great.
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Conclusion

This work proposes an approach to handle host-based intrusion detection with
fusion techniques, tackling challenges in microservice systems, and evaluating
the techniques proposed.

Work had already been done in regards to the analysis of single service intrusion
detection, where I contributed to the analysis of the results and also in regards
to the data processing techniques. This analysis allows us to understand how to
deal with the scalability of the microservices. Now, we extended and focused on
how to deal with various services.

The state of the art was studied to determine which attacks made sense on this
architecture, and the testbeds were analysed and chosen. We presented the exper-
imental campaign conducted, taking advantage of the approach and techniques
proposed, and evaluate the fusion techniques regarding their detection effective-
ness of different attacks. Four different techniques were tested against 10 different
attack scenarios.

We also evaluated a loop removal algorithm with the goal of reducing the amount
of data without affecting the classifiers. With this algorithm, we were able to
reduce the training tests to 55% of their original size, with almost no cost to the
effectiveness of the classifiers.

In the end, applying the classifiers to each service does not look like a good tactic
as they seem to be unable to detect attacks alone. Research can be extended to
apply the same classifiers with bigger training times, so to increase the volume of
data per service, allowing for better profiles. Also, decision making techniques
do not show good results, which can be related to the point stated above. The
matrix technique is unscalable, and some adjustments are needed, while the in-
terleaving technique shows promising results, obtaining the highest F-Measure,
going up to 0.673 with a Precision of up to0.782, however, there is still room for
improvement.
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