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Abstract

Black holes are a great laboratory to probe high energy physics. Recent works studied black

holes that, through the superradiant instability phenomenon, produce in their vicinity a cloud

constituted by the quantum chromodynamics axion or axion-like particles. In this thesis, we an-

alyze some of the phenomenological aspects of the underlying physics of these systems focusing

on their applications to cosmology and astrophysics.

We review the Klein Gordon equation for a massive scalar field in the Kerr spacetime, which

leads to superradiant instabilities of the particles connected with the field. We obtain an

analytical approximation to the radial part of the solution and interpret physical properties of

the particle cloud in analogy with the Hydrogen atom. Then, we propose axions as candidates

for these systems and we review the quantum chromodynamics axion as well as the physics

underlying this beyond the Standard Model particle. To complete these systems, we ponder

primordial black holes due to their wide mass range and we present a review on these objects’

formation mechanism. Then, we study the dynamics of a system composed by a rotating

primordial black hole, assuming primordial black holes are a relevant fraction of the dark

matter, surrounded by a cloud of heavy axions, which decay into photons, in the presence

of interactions between superradiant states. We perform numerical and analytical studies to

determine the number of axions produced by superradiance throughout the cosmic history and

we estimate the resulting Milky Way’s galactic center and extragalactic background photon

fluxes and compare them with observational data. This way, we present a new cosmological

axion production mechanism that represents a fraction of the dark matter.

Keywords: Primordial Black Hole, Superradiant Instabilities, Superradiance, Quantum

Chromodynamics Axion, Axion-Like-Particle, Dark Matter.
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Resumo

Os buracos negros são um ótimo laboratório para testar f́ısica de altas energias. Trabalhos

recentes estudaram buracos negros que, através do fenómeno de instabilidades superradiantes,

produziram na sua vizinhança uma nuvem constitúıda por axiões da cromodinâmica quântica ou

part́ıculas axiónicas. Nesta tese, analisamos alguns aspetos fenomenológicos da f́ısica subjacente

a estes sistemas focando-nos nas suas aplicações à cosmologia e astrof́ısica.

Revemos a equação de Klein Gordon para um campo escalar massivo num espaço-tempo de

Kerr, que leva a uma instabilidade superradiante de part́ıculas associadas a este campo. Obte-

mos uma aproximação anaĺıtica para a solução da parte radial e interpretamos propriedades

f́ısicas da nuvem de part́ıculas em analogia com o átomo de Hidrogénio. Posteriormente, propo-

mos axiões como candidatos a estes sistemas e revemos o axião da cromodinâmica quântica e

a f́ısica subjacente a esta part́ıcula. De forma a completarmos estes sistemas, ponderamos

buracos negros primordiais devido ao seu vasto intervalo de massas e apresentamos uma re-

visão ao mecanismo de formação destes objetos. De seguida, estudamos a dinâmica de sistemas

constitúıdos por um buraco negro primordial em rotação, assumindo que os buracos negros

primordiais são uma fração significativa da matéria escura, rodeado por uma nuvem de axiões

pesados, que decaem em fotões, na presença de interações entre estados superradiantes. Efet-

uamos estudos numéricos e anaĺıticos para determinar o número de axiões produzidos através

de superradiância ao longo da história cósmica e estimamos os fluxos de fotões de fundo extra-

galático e do centro galáctico da Via Láctea e comparamos com dados observacionais. Desta

forma, apresentamos um novo mecanismo cosmológico de produção de axiões que representam

uma fração da matéria escura.

Palavras-Chave: Buraco Negro Primordial, Instabilidades Superradiantes, Superradiância,

Axião da Cromodinâmica Quântica, Part́ıcula Axiónica, Matéria Escura.
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µ = 1 keV, M = 1014 kg and ã = 0.01. . . . . . . . . . . . . . . . . . . . . . . . . . . 52

21 Sketch of the geometry. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

22 Experimental data of the intensity flux bound for the XMM-NuSTAR observation, for [2− 30]

keV range X-ray particle decay. Plot taken from [64]. . . . . . . . . . . . . . . . . . . . 58

23 Parameter space for which the galactic center photon flux estimate exceeds the observational

data in the bosenova analysis, and is therefore excluded. Parameters assumed: ã = 0.9,
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Notation and Conventions

Throughout this thesis we use the following notations and conventions:

• Natural units c = G = ℏ = 1 are always assumed unless specifically mentioned;

• Einstein’s summation notational convention is always assumed unless specifically men-

tioned;

• The signature used is (-,+,+,+);

• The Minkowski metric is written as ηµν and non-Minkowski metrics are written as gµν ;

• Planck’s mass is given by Mp =
√

ℏc
G

≃ 2.2× 10−8 kg. In sections 2, 3 and 4 we set it as

Mp = 1 for a simpler analysis;

• We write log(x) as a base-10 logarithm and ln(x) as a base-e logarithm.
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1 Introduction

One of the most fascinating breakthroughs in physics was Albert Einstein’s General Relativity.

Massive objects distort the fabric of spacetime, which is reflected in their dynamics. As the

objects move, the curvature of spacetime changes accordingly providing a constant evolution

of its geometry. Besides several important features, General Relativity, and more concretely

the solutions to Einstein’s field equations, predict the existence of objects with such a powerful

gravitational pull that nothing can escape them. These objects are called black holes and they

are characterized by three quantities: mass, M , charge, Q, and angular momentum, J . The

geometry of the surrounding spacetime depends on these particular properties of the black

hole. One particularly interesting solution to Einstein’s field equations is the Kerr solution

which describes a rotating uncharged axially-symmetric black hole. Our main interest in this

particular solution is due to superradiance.

Superradiant scattering in classical systems was originally considered by Zel’dovich where

the effects of scalar waves hitting a rotating absorbing cylinder were studied [1]. Zel’dovich

concluded that below a given frequency of the incident wave, the scattered wave would be

amplified and, by surrounding the object with a mirror, the system would become unstable.

Some years after, Press and Teukolsky proposed the “Black Hole Bomb” [2, 3] where the

rotating absorbing cylinder surrounded by mirrors was replaced by a Kerr black hole. The

mirrors, which may be naturally mimicked with the introduction of a massive scalar field where

the gravitational potential of the black hole traps the massive field, would reflect back and forth

the scattered wave. Due to the presence of the rotating black hole, the amplitude of the wave

would then grow exponentially and eventually become unstable. In this way, a cloud of light

bosons that are copiously produced in quasi-bound states would be generated around the black

hole at the expense of its angular momentum. In the presence of self-interactions there can be

a non-trivial dynamics between the quasi-bound states [4].

Black holes are a great laboratory to probe high energy physics. Recent works studied

systems of black holes with a surrounding cloud constituted by the Quantum Chromodynamics

(QCD) axion or Axion-Like Particles (ALPs) [5, 6, 7]. The QCD axion is a Pseudo-Nambu-

Goldstone (PNG) boson resulting from the spontaneous symmetry breaking of the anomalous

U(1)PQ [8] symmetry postulated to solve the problem that emerges from the existence of the

QCD theta vacuum, the strong CP problem [9]. ALPs are the PNG bosons emerging from the

spontaneous symmetry breaking of more general U(1) symmetries [10]. These particles may

decay into photons, which will ultimately be relevant when estimating the electromagnetic flux

1



emitted by these systems. In order for the superradiant phenomena to occur one requires that

the superradiance condition1, 4µMM−2
p < ã, which involves the mass of the scalar field, µ,

the black hole’s mass, M , and its dimensionless spin, ã, to be satisfied [11]. Since we will be

considering particularly heavy particles we must ponder black holes with smaller masses than

the ones resulting from stellar collapse.

Black holes are usually connected with the collapse of dying stars. Stephen Hawking

introduced and studied a new possibility. He predicted that gravitationally collapsed objects of

mass larger than the Planck mass ≃ 10−8 kg could be formed as a result of large fluctuations in

the density of the early universe [12]. These black holes formed in the early universe are named

Primordial Black Holes (PBH). Their masses vary largely depending on their time of formation

[13] and for a small window of masses they might represent 100% of the Dark Matter (DM)

fraction [14]. These black holes may fulfill the requirements for the superradiant condition with

heavy axions.

Our goal is to study the dynamics of a system made of a rotating PBH, assuming PBHs are

a relevant fraction of the DM, surrounded by a cloud of heavy axions, which decay into photons,

in the presence of interactions between superradiant states. Furthermore, theoretical estimates

for the extragalactic background and galactic photon fluxes are compared with observational

data providing signatures of these systems.

The outline of this thesis is as follows:

In section 2 we review the Klein Gordon equation for a massive scalar field in the Kerr

spacetime and obtain an analytical approximation to the radial part of its solution. Further-

more, physical properties of the particle cloud are interpreted in analogy with the Hydrogen

atom.

In section 3 we review the physics behind the QCD axion as well as the main ingredients

that motivate its existence. Then, we study the QCD axion and elaborate on the requirements

made by R. Peccei and H. Quinn in order to solve the strong CP problem.

In section 4 we review the main ideas that constitute the Cosmological Standard Model

followed by an insight into the physics of PBHs and inflationary regimes which effectively

predict the observations of the Cosmic Microwave Background (CMB) and may produce large

enough density fluctuations on small physical scales in order to produce these objects.

In section 5 we study the dynamics of axion/ALP clouds around spinning PBHs, including

1For the dominant superradiant state in the small spin, ã, and mass coupling constant, α, limit.

2



the effects of axion self-interaction and decays. We perform numerical and analytical studies

to determine the number of axions produced by superradiance throughout the cosmic history.

In section 6 we estimate the photon flux for these systems assuming PBHs to be a significant

fraction of DM and the axion decay into photons. We cover two options for this calculation: the

flux from the center of our galaxy and the extragalactic background flux. We end this section

by comparing theoretical results with observational data.

3





2 Black hole superradiant instabilities

Superradiant scattering in classical systems was originally considered by Zel’dovich, who studied

the effects of scalar waves hitting a rotating absorbing cylinder [1]. Furthermore, Zel’dovich

concluded that below a given frequency of the incident wave, the scattered wave would be

amplified. The frequency of this incident wave ω would have to satisfy what is now known as

the superradiance condition that can be written as ω < mΩ, where Ω is the angular velocity

of the object and m is the angular momentum quantum number. He also concluded that by

surrounding the object with a mirror the system would become unstable.

Inspired by this idea, Press and Teukolsky took a step further and proposed the “Black

Hole Bomb” [2, 3] where the rotating cylindrical absorbing object surrounded by mirrors was

replaced with a Kerr black hole. The task of placing a mirror around a black hole may seem very

much undoable but it turns out that this impossible task could be reproduced by considering a

massive field scattering off a Kerr black hole [15]. The trapping of the low-frequency wave modes

is ultimately achieved by the black hole’s gravitational potential on which massive fields can

be trapped in Hydrogen-like bound states (see e.g [11] and references therein). The potential

would reflect back and forth the scattered wave. Due to the presence of the rotating black hole,

the amplitude of the wave would then grow exponentially and eventually become unstable.

In this section we develop the Klein Gordon equation for a massive scalar field in the

Kerr spacetime and obtain an analytical approximation for the radial part of the solution.

Furthermore, we interpret the physical properties of the particle cloud in analogy with the

Hydrogen atom.

2.1 Klein Gordon equation in Kerr spacetime

The Klein Gordon equation in the Kerr background for a scalar field Ψ of mass µ can be written

as [16],
1√
−g

∂µ(
√
−ggµν∂νΨ)− µ2Ψ = 0 (2.1)

where g is the determinant of the metric. In this background one needs to consider Kerr’s

metric which can be written in Boyer-Lindquist coordinates as [17],

4



ds2 =−
(
1− 2Mr

Σ

)
dt2 +

Σ

∆
dr2 + Σdθ2+

+
(
r2 + a2 +

2Mra2 sin2 θ

Σ

)
sin2 θdϕ2 − 4Mra sin2 θ

Σ
dtdϕ (2.2)

where,

a =
J

M
(2.3)

Σ = r2 + a2 cos2 θ (2.4)

∆ = r2 − 2Mr + a2 (2.5)

Here M and J are the mass and angular momentum of the black hole, respectively. The event

horizon is determined by the outermost location where the coefficient of dr2 diverges which

corresponds to a coordinate singularity at ∆ = 0,

r+ = M +
√
M2 − a2 (2.6)

One then concludes that the event horizon exists only in the case where a ≤ M . This conclusion

is ensured by the cosmic censorship hypothesis [18] which states that black holes always form

with J ≤ M2, meaning that singularities are protected by a horizon. Computing this metric in

the Klein Gordon equation and after some algebra (See Appendix A.1),(
1

∆

(
(r2 + a2)2 −∆a2 sin2 θ

)
∂2
t − ∂r(∆∂r)−

1

sin θ
∂θ(sin θ∂θ)+

− 1

∆ sin2 θ
(∆− a2 sin2 θ)∂2

ϕ −
2a

∆

(
∆− (r2 + a2)

)
∂ϕ∂t + Σµ2

)
Ψ = 0 (2.7)

2.2 Solution and separation of variables

To solve this equation one assumes that its solution can be separated as [11],

Ψ = Ψ(r, t) = R(r)S(θ)eimϕe−iωt (2.8)

Inserting this into equation 2.7 one may notice that it is separable into two independent differ-

ential equations,

1

sin θ
∂θ

(
sin θ∂θS(θ)

)
+ S(θ)

(
λl,m + a2(ω2 − µ2) cos2 θ − m2

sin2 θ

)
= 0 (2.9)

∆∂r

(
∆∂rR(r)

)
+R(r)

(
ω2(r2 + a2)2 − r2µ2∆+ a2m2 − 4Maωmr − (ω2a2 + λl,m)∆

)
= 0

(2.10)
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Equation 2.9 has as solutions the oblate spheroidal harmonics functions Sl,m(ic, cos θ) with

eigenvalues λl,m where l,m are integers such that |m| ≤ l [19]. The λl,m eigenvalue is given by,

λl,m = l(l + 1) +
+∞∑
k=1

Cklm(aq)
2k (2.11)

where q is defined as q =
√
µ2 − ω2 and Cklm is a set of coefficients [20]. In the non-relativistic

regime (small scalar field mass) aq ≪ 1, one may then approximate the latter equation as,

λl,m ≃ l(l + 1) (2.12)

As for equation 2.10, it represents the radial differential equation, which does not have an exact

analytical solution and will be further explored in the next subsection.

2.3 An approximation to the radial solution

Even though the radial equation does not have an exact analytical solution, one can use

Starobinsky’s matching procedure which consists in dividing the exterior of the black hole into

two overlapping regions [21]. It is easier to first re-write equation 2.10 in a more convenient

way by using a set of dimensionless coordinates [11],

x =
r − r+
r+

and τ =
r+ − r−

r+
(2.13)

where r− = M −
√
M2 − a2 is the Cauchy horizon. Now it yields,

x2(x+ τ)2∂2
xR + x(x+ τ)(2x+ τ)∂xR + V (x)R = 0 (2.14)

where V (x),

V (x) =
(
x(x+ τ)ω̄ + (2− τ)(ω̄ −mΩ̄)

)2
+

+ x(x+ τ)
(
(τ − 1)ω̄2 + 2(2− τ)mω̄Ω̄− µ̄2(x+ 1)2 − λ

)
(2.15)

where a set of dimensionless quantities, identified by a bar on top of the respective quantity,

e.g, µ̄ = r+µ, was used. Here Ω represents the angular velocity of the black hole at the event

horizon [11],

Ω =
a

r2+ + a2
=

ã

2r+
(2.16)

where the dimensionless spin parameter ã is given by,

ã =
a

M
0 < ã < 1 (2.17)
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As previously mentioned, one may obtain an approximate analytical solution by dividing

the exterior of the black hole into two overlapping regions: a near region defined by x ≪ l
ω
and

a far region x ≫ 1. One may solve it analytically by matching the solutions in the overlapping

domain of validity 1 ≪ x ≪ l
ω
[11, 21]. In the small mass coupling limit, ω̄ ≃ µ̄ ≪ 1. Thus, in

the near region equation 2.14 can be written as,

x2(x+ τ)2∂2
xR + x(x+ τ)(2x+ τ)∂xR +

([
(2− τ)(ω̄ −mΩ̄)

]2
− x(x+ τ)λ

)
R = 0 (2.18)

The boundary conditions are obtained as follows: one requires the wave to travel into the black

hole and never outwards. In this sense, and using Starobinsky’s procedure, this equation has

an analytical solution [11, 20, 21],

RN(x) = A
( x

x+ τ

)− iϖ̄
τ

2F 1

(
l + 1,−l, 1− 2iϖ̄

τ
,−x

τ

)
(2.19)

where ϖ̄ = (2−τ)(ω̄−mΩ̄) and 2F 1(a, b, c, x) is the hypergeometric function. In the limit x ≫ τ ,

and using the properties of the hypergeometric function in this asymptotic limit (|x
τ
| ≫ l), one

finds an approximate solution of the form [11, 20],

RN(x) ≃ AΓ
(
1− 2iϖ̄

τ

)[ Γ(2l + 1)

Γ(l + 1)Γ(l + 1− 2iϖ̄
τ
)

(x
τ

)l
+

Γ(−2l + 1)

Γ(−l)Γ(−l − 2iϖ̄
τ
)

(x
τ

)−l−1
]

(2.20)

As for the far region, equation 2.14 reduces to,

x2∂2
xR + 2x∂xR + (q̄2x2 + 2q̄νx− λ)R = 0 (2.21)

where,

ν =
(2− τ

2

)( ω̄2 − q̄2

q̄

)
(2.22)

This differential equation has an asymptotically regular solution in terms of the confluent

hypergeometric function U(a, b, x),

RF (x) = Bxle−q̄xU(l + 1− ν, 2l + 2, 2q̄x) (2.23)

In the far limit, q̄x ≪ 1, this equation has an approximate solution of the form [11, 20],

RF (x) ≃
Bπ

sin (2π(l + 1))

[
xl

Γ(−ν − l)Γ(2l + 2)
− (2q̄)−1−2l x−1−l

Γ(l + 1− ν)Γ(−2l)

]
(2.24)

Having found the solutions in both regions, one can match the near region solution with the

far region solution since in this domain they overlap. Matching the coefficients of xl and x−l−1

yields,
Γ(2l + 2)Γ(−ν − l)

Γ(l + 1− ν)Γ(−2l)
= −(2q̄τ)2l+1Γ(l + 1)Γ(−2l − 1)Γ(l + 1− 2iϖ̄

τ
)

Γ(2l + 1)Γ(−l)Γ(−l − 2iϖ̄
τ
)

(2.25)
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In the non-relativistic limit, q̄ ≪ 1, the right-hand side of the latter equation is ≃ 0. Thus, the

matching gives,
1

Γ(l + 1− ν)
= 0 (2.26)

For any negative integer value of the argument of the gamma function one obtains infinity. Let

n′ be a positive integer,

l + 1− ν = −n′ ↔ ν = n′ + 1 + l ↔ ν = n (2.27)

where n′ is the number of the radial function.

In order to get the bound state frequency one can recall equation 2.22 in order to expand

the frequency as ω̄ = ω̄(0) + δω̄. After some algebra and Taylor expanding terms up to first

order, the bound state frequency results in the Hydrogen-like spectrum,

ω̄ = µ̄
(
1− (µM)2

n2

)1/2
≃ µ̄

(
1− (µM)2

2n2

)
(2.28)

and,

q̄ =
√

µ̄2 − ω̄2 ≃ (µM)µ̄

n
(2.29)

This expansion is useful because unstable particles are characterized by a complex frequency

which is ultimately the decay width/growth rate2 of the particle. One may consider the fre-

quency to have the form ω = ωR+iωI . Now, and to determine whether the mode is superradiant,

one computes the sub-leading imaginary part of the bound state by expanding the left-hand

side of equation 2.25 perturbatively and matching it with the right-hand side with the leading

order result ω̄(0). Using some properties of the gamma function [11] and after some algebra the

right-hand side of the mentioned equation becomes,

i(l!)2

(2l + 1)!(2l)!

(Mω1

τ

) l∏
k=1

(
k2 + 16

(Mω1

τ

)2)(r+ − r−
r+ + r−

)2l+1

24l+3
((µM)2

n

)2l+1

(2.30)

where ω1 = ω −mΩ. As for the left hand side,

− (2l + 1)!(n− l − 1)!(2l)!

(n+ l)!
δν (2.31)

Recall that to leading order ω̄ = µ̄− µ̄
2
(µM

n
)2, with n ≡ ν, which means that,

δν =
n3

µ(µM)2
δω (2.32)

2Depending whether the sign is negative or positive, respectively.
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Putting all pieces together, one can get the sub-leading imaginary part of the bound state

frequency. After some algebra,

ωIM = −1

2

( l!

(2l + 1)!(2l)!

)2 (l + n)!

(n− l − 1)!

42l+2

n2l+4
×

×
l∏

k=1

(
k2 + 16

(Mω1

τ

)2)(Mω1

τ

)
(µM)4l+5

(r+ − r−
r+ + r−

)2l+1

(2.33)

Looking at the initial anzats (equation 2.8) one concludes that if the imaginary part of the

frequency is positive one gets a positive exponential, which means an exponential amplification,

leading to the superradiant instability. So, a mode is unstable for ωI > 0, when the superradiant

condition ϖ̄ < 0 or equivalently ωR < mΩ is satisfied. In the small mass limit ωR ≃ µ and for

the fastest growing state [11, 22], which is the 2p state (n = 2, l = 1,m = 1), the superradiant

condition yields,

µ <
ã

2M(1 +
√
1− ã2)

=⇒ µM <
1

2
(2.34)

The number of particles has an exponential growth of the form [11],

|Ψ|2 ∝ eΓst (2.35)

where we defined the superradiant rate as Γs = 2ωI . This is the quantity of interest when

making this analysis.

Of course the analytical solution of equation 2.14 is only an approximation. To obtain a

better result one needs to apply numerical methods in order to compute the spectrum of quasi-

bound states. Such studies have been done for instance in [11] where the radial equation was

integrated from the horizon up to large distances. Quasi-bond states were then extrapolated

by minimizing the solution in the complex frequency plane. In the same work it is concluded

that analytical results deviate significantly from numerical results for µM ⪆ 0.1 and for large

values of the black hole’s spin ã. Using the same reference and in order to get better results

we extract an improved analytical expression3 which will be used in future calculations when

considering high spins. For the fastest growing mode the improved analytical expression yields

[11],

ωIM = − 1

12

(Mω1

τ

)
(µM)9

(r+ − r−
r+ + r−

)3
×

×
(
1 +

(
2µM(1 +

√
1− ã2)− ã

)2
1− ã2

)(
1 +

3

2

ã9/5√
1− ã

(µ
Ω

)6)
(2.36)

3The starting point to this expression was the analytical approximation exactly obtained here. From equation 2.33

the correction was obtained by trial and error aiming to a result as close as possible to the numerical result.
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2.4 Properties of the boson cloud and compari-

son with the Hydrogen atom

There are plenty of similarities between the system consisting of light bosons being copiously

produced in quasi-bound states around a Kerr black hole and an electron “orbiting” the nucleus

of the Hydrogen atom forming a bound state. One may then obtain and interpret some physical

properties of the cloud such as its volume and radius in perfect analogy with the Hydrogen

atom.

The time independent Schrödinger equation yields [23],

ĤΨ = EΨ (2.37)

where the Hamiltonian Ĥ for the Hydrogen atom is given by,

Ĥ = −∇2

2µ
− e2

4πϵ0r
(2.38)

where µ is the reduced mass of the proton/electron system and r is the radial position under

the Born-Oppenheimer approximation that assumes the nucleus approximately fixed. Taking

as an anzats [23],

Ψn,l,ml
(r, θ, ϕ) = Rn,l(r)Y

ml
l (θ, ϕ) (2.39)

one can separate this equation according to the variable dependence, with the separation con-

stant4 λ = l(l + 1),

r2∂2
rR + 2r∂rR +

(
2µr2E +

µe2r

2πϵ0
− l(l + 1)

)
R = 0 (2.40)

1

sin θ
∂θ(sin θ∂θY ) +

1

sin2 θ
∂2
ϕY + l(l + 1)Y = 0 (2.41)

It is now clear that the radial part (equation 2.40) has the exact same form as equation 2.21

which corresponds to the far region of the black hole. As for the angular part (equation 2.41)

it is similar to equation 2.9. In this case it corresponds to the spherical harmonics, whereas for

the black hole it corresponds to the equation of the spheroidal harmonics which has a slightly

different form [20].

For the Hydrogen case, the wave functions are well studied [23] and one can check what is

the form of the wave function for a 2p state. In order to get a pictorial view of the black hole’s

4The value for this constant can be obtained if one solves the angular part which can be checked in various physics

books e.g [24].
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cloud we constructed the probability density of particles surrounding the black hole with the

help of Wolfram Mathematica. We constructed this probability density as,

|Ψ|2r2 sin θ (2.42)

where Ψ is the solution as depicted by equation 2.8 for the wave function considering the radial

function in the far region of the black hole. The 3D plot is as shown in Figure 1. The cloud

Figure 1: Black hole’s particle cloud sketch constructed from the radial and angular solutions. The cloud has

an oblate toroidal shape.

has an oblate5 toroidal shape. As stated, the eigenstates of our system are Hydrogen-like with

a redefined “Bohr radius”, r0, and a redefined “fine structure constant”, α. In perfect analogy

with the Hydrogen atom, the radial function can be expressed as [7],

Rn,l ∝ r2l+1L2l+1
n−l−1(2qr)e

−qr (2.43)

and from equation 2.29,

Rn,l ∝ r2l+1L2l+1
n−l−1

( 2r

nr0

)
e
− r

nr0 (2.44)

where L2l+1
n−l−1 is the associated Laguerre polynomial [20] where we defined the “Bohr radius”

as,

r0 =
1

αµ
≃ 10−5

(4× 10−4

α

)(keV
µ

)
cm (2.45)

5It is oblate due to the spheroidal harmonics. In contrast, if we had considered the spherical harmonics we would

obtain a perfectly spherical shape.
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and the “fine structure constant” as,

α =
µMG

ℏc
(2.46)

where, for reference, we explicitly included all the missing constants. This definition provides

an elegant way of expressing the superradiant condition as depicted by equation 2.34, which,

for extremal black holes can be written as,

α <
1

2
(2.47)

There are still two important quantities to take into consideration: the major radius and

the minor radius of the cloud’s oblate toroidal shape, as depicted in Figure 2.

Figure 2: Black hole’s oblate toroidal 2D shape representing the major radius and the minor radius.

The size of the major radius may be obtained via the expectation value of the radial coordinate

for each state [16],

⟨rn,l,m⟩ =
∫∞
0

drr3R2
n,l(r)∫∞

0
drr2R2

n,l(r)
(2.48)

For the 2p state,

R2,1 ∝ rL3
0

( r

r0

)
e
− r

2r0 (2.49)

Thus,

⟨r2,1,1⟩ = 5r0 (2.50)

For the radius of the cloud, that is the minor radius, one can estimate it by measuring the

uncertainty of the observable r as a spread of results around ⟨r⟩,

∆r =
√

⟨r2⟩ − ⟨r⟩2 (2.51)
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which gives,

⟨r22,1,1⟩ = 30r20 and ∆r =
√
5r0 (2.52)

One may now estimate the root-mean-square (RMS) of the velocity. Considering [23],

⟨H⟩ = ⟨|v|2⟩µ
2

+ ⟨V (r)⟩ (2.53)

In analogy with the Hydrogen atom, V (r) = −α
r
where α is now the redefined fine structure

constant and for the 2p state, ⟨H⟩ = E2 = −µα2

8
. This translates into,

− µα2

8
=

⟨|v|2⟩µ
2

− α
〈1
r

〉
(2.54)

where
〈

1
r

〉
= µα

4
can be obtained in a similar way as the mean square radius. So the RMS of

the velocity yields, √
⟨|v|2⟩ = α

2
(2.55)

For the purposes of this work α ≪ 1, where one immediately concludes that the velocity of the

particles is non-relativistic.

Furthermore, one can estimate where the cloud is located by working out the quotient,

r0
r+

=
1

α2(1 +
√
1− ã2)

=⇒ r0 ≫ r+ (2.56)

meaning that the cloud is located far away from the horizon and curvature effects may be

neglected within the cloud.

Finally, one can estimate the volume of the cloud. According to its toroidal shape and

considering the volume of a torus which is given by,

Vtorus = 2π2r2Mrm (2.57)

where rM is the major radius and rm is the minor radius, yielding,

Vtorus =
50π2

α3µ3
≃ 10−45

(4× 10−4

α

)3(keV
µ

)3
cm3 (2.58)
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3 Axions

The QCD axion is a PNG boson resulting from the spontaneous symmetry breaking of the

anomalous U(1)PQ symmetry first formulated by the physicists Roberto Peccei and Hellen

Quinn in 1977 [8]. More general axions, named ALPs, are the PNG bosons emerging from the

spontaneous symmetry breaking of more general U(1) symmetries [10]. The physics underlying

these beyond the Standard Model particles is intriguing and requires a closer look. Here, we try

both to understand the physics behind these particles as well as capture the main ingredients

that motivate their existence. We will focus mainly on the QCD axion throughout this section.

3.1 Quantum anomalies

Quantum anomalies are important in the understanding of the QCD axion in the sense that

it is the U(1)PQ anomaly that provides the axion’s mass. The main goal of this subsection is

therefore to understand where the anomaly comes from. To do so, one may consider a massless

Dirac field Ψ with charge Q = +1. The Lagrangian is [25],

L = iΨ̄γµDµΨ− 1

4
F aµνF a

µν (3.1)

where Dµ is the covariant gauge derivative defined as Dµ = ∂µ − igAµ where g is a coupling

constant and Aµ the gauge field. The non-abelian field strength tensor, F a
µν , is defined as

F a
µν = ∂µA

a
ν − ∂νA

a
µ + gfabcAb

µA
c
ν where fabc are the structure constants. For simplicity, we

consider the gauge field as a fixed background quantity to be integrated afterwards. In these

terms, the path integral over the Dirac field has the following form,

Z(A) =

∫
DΨ̄DΨeiS(A) (3.2)

where S(A) =
∫
d4xiΨ̄γµDµΨ is the action and DΨ̄DΨ is the integration measure where the

condensed notation was used,
∏

t,x dΨ(t,x) ≡ DΨ. Considering a local axial U(1) transforma-

tion of the Dirac field,

Ψ(x) → e−iα(x)γ5Ψ(x) (3.3)

Ψ̄(x) → Ψ̄(x)e−iα(x)γ5 (3.4)

which transforms the action, after integrating by parts, as,

S(A) → S(A)−
∫

d4xα(x)∂µJ
µ
a (x) (3.5)

14



Naively, one could consider the integration measure DΨ̄DΨ invariant under such a transforma-

tion, which would lead to a conserved current and hence the validation of Noether’s Theorem,

∂µJ
µ
a (x) = 0. But this assumption would be incorrect. In fact, the integration measure is not

invariant under such a transformation and it transforms as6,

DΨ̄DΨ → DΨ̄DΨe−
ig2

16π2

∫
d4xα(x)εµνρτTr(Fµν(x)Fρτ (x)) (3.6)

which translates into a transformation of the path integral as,

Z(A) →
∫

DΨ̄DΨei(S(A)−
∫
d4xα(x)[ g2

16π2 ε
µνρτTr(Fµν(x)Fρτ (x))+∂µJ

µ
a (x)]) (3.7)

where one concludes that for the path integral to be invariant under the axial transformation

from equations 3.3-3.4 the quantity in between square brackets in equation 3.7 must vanish (so

that the path integral is exactly the same as the original expressed in equation 3.2). By doing

so, one gets an anomalous divergence of the axial current,

∂µJ
µ
a (x) = − g2

16π2
εµνρτTr(Fµν(x)Fρτ (x)) (3.8)

Therefore, an anomaly is a classical symmetry that is not a symmetry of the quantum path

integral.

3.2 Solitons and instantons

Having the concept of quantum anomalies understood one can proceed to the next topic.

Instantons play a major role in the axion discussion because it is due to them that the axion

acquires a potential and hence a mass. Ultimately, they make the integration measure non-

invariant under a given chiral transformation, which leads to an effective anomaly that then

generates the mass of the resulting Goldstone boson. But first, let us introduce the concept of

soliton. Consider a gauge field theory in D spatial dimensions with a scalar field Φ. The energy

of a localized time-independent solution is given by [26],

E =

∫
dDx

[1
2
(DiΦ)

2 +
1

4
F a
ijF

aij + V (Φ)
]

(3.9)

where Di is the usual covariant gauge derivative, and F a
ij is the non-abelian field strength

tensor. One can then separate the integral in equation 3.9 into a sum of three quantities for

each component of the latter equation and the localized solution can be written as,

E = IK + IG + IV (3.10)

6The complete calculation is extensive and will not be performed here. For more technical details check [25].
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where the potential is positive defined such that the kinetic, IK , gauge, IG, and potential, IV ,

terms are also positive. Under the transformations,

Φ(x) → Φ(λx) (3.11)

Aa
i (x) → λAa

i (λx) (3.12)

where λ is a positive defined parameter, one gets the following energy configuration,

E = λ2−DIK + λ4−DIG + λ−DIV (3.13)

In order to find a stable solution one requires two conditions,

1.
dE

dλ

∣∣∣
λ=1

= 0 (3.14)

2.
d2E

dλ2

∣∣∣
λ=1

> 0 (3.15)

Requiring also that this solution is finite one obtains a solution called a soliton: a solution of

the classical field equations with a finite energy density that is localized in space, and that does

not change its shape with time. Furthermore, one can draw two conclusions:

• In the absence of gauge fields (IG = 0) there are only stable solutions for D = 1, which

is a consequence of Derrick’s Theorem [26]: In the absence of gauge fields there are no

spatially localized, finite energy and time-independent solutions in more than 1D. The

problem arises from the divergence of the gradient of energy at large distances;

• In the absence of scalar fields (IK = IV = 0) there are only solutions for D = 4. Af-

terwards, if one performs a Wick Rotation, one gets a non-trivially topological solution

named an instanton which is characterized by a finite action and localized in spacetime.

Following the line of thought of the latter conclusion, and in order to get the instanton solution,

consider a pure gauge theory in which the Lagrangian is invariant under transformations of a

non-abelian gauge group G. The Euclidean action is [27],

S =
1

4g2

∫
d4xF a

µνF
a
µν (3.16)

For the action to be finite one requires the field strength tensor to vanish at spatial infinity

(F a
µν → 0 at |x| → ∞). In this limit the gauge field, Aa

µ, must approach a pure gauge

configuration [27],

Aa
µ(x) →

i

g
(∂µU(x̂))U−1(x̂) at |x| → ∞ (3.17)
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where U(x̂) is an element of the gauge group G. This equation maps S3
∞ to the group manifold

G. One requires such mapping because configurations of finite action depend on their value

at spatial infinity and one wants to map the spatial infinity to the set of vacua. Classes of

such mappings are topologically distinguishable and define the third homotopy group of the

group manifold G. For QCD, where G ≡ SU(3), this homotopy group is non-trivial. The

topological distinguishability of the vacuum of QCD is classified by an integer element of Z and

characterized by a topologically invariant quantity called winding number. For SU(2) in 4D it

can be written7 as an integral over the Euclidean space [27],

ν =
g2

32π2

∫
E4

d4xF a
µνF̃

a
µν (3.18)

where F̃ a
µν = 1

2
εµνασF

aασ. This is a topological invariant in the sense that it is invariant under

changes of coordinates8 and under applied deformations. If one were to consider the gauge

group to be the abelian group U(1) any mapping from S3 to U(1) would be continuously

deformed into the trivial map, that is, S3 mapped to a single point. So the winding number is

a quantity exclusive to non-abelian theories.

3.3 Theta vacuum

According to these instanton solutions, one could consider describing the QCD vacuum by the

winding number which corresponds to the instanton configuration with index ν = |p⟩. But

this would not be a good vacuum because it is not gauge invariant. A gauge transformation of

winding number p′ changes the ground state as |p⟩ → |p′⟩. The way to solve this problem is to

construct the vacuum as a superposition of all possible winding numbers [8, 9],

|θ⟩ =
∞∑

p=−∞

eipθ |p⟩ (3.19)

Calculating the vacuum-to-vacuum transition amplitude,

⟨θ′|e−iHt|θ⟩ = δ(θ′ − θ)

∫
DAe

−
∫
d4xL+iνθ (3.20)

where the delta function ensures that this is a good vacuum because it only allows one vacuum

and no transitions between different vacua. Along with this choice of vacuum, one term is

7This result is also valid for SU(N). This is a consequence of Raoul Bott’s theorem that states that any continuous

mapping of S3 into a group manifold G can be continuously deformed into a mapping into a SU(2) subgroup of G.
8Notice that the indices in the field strength tensor are lowered by the anti-symmetric Levi-Civita tensor and not by

the usual metric, which means that it is independent of the metric.
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added to the action. Notice the iνθ term in the latter equation where ν corresponds to the

configuration of the winding number given by equation 3.18. So QCD is described by the usual

action plus a term resulting from the winding number. The full action yields,

Seff = SQCD +
g2θ

32π2

∫
d4xGa

µνG̃
aµν (3.21)

which represents a new term in the Lagrangian of the form,

Lθ =
g2θ

32π2
Ga

µνG̃
aµν (3.22)

Since this term is a total derivative it does not impact the QCD theory at the perturbative

level as one knows it in the sense that neither the Feynman rules nor the equations of motion

are affected by it. This term does not violate QCD symmetries (Poincaré symmetry, SU(3)

gauge symmetry, CPT invariance...) but it violates parity, time reversal and conserves charge

conjugation, so it violates CP.

3.4 Strong CP problem

The explicit violation of CP leads to an electric dipole moment of the neutron. The theta term

induces an eletric dipole moment to the neutron of the form [28],

|dn| ≃
eθmq

M2
N

≃ 3.6× 10−16θ e cm (3.23)

Experimental data gives an upper bound on this quantity [29],

|dn| < 2.9× 10−26 e cm (3.24)

Which implies that θ is also bound to,

θ ⪅ 10−10 (3.25)

Why such a low order of magnitude for this parameter? It so happens that the problem is even

more severe. In fact, we were not considering the action of chiral transformations in the theta

vacuum and the fact that the quarks most likely have a mass9. Chiral transformations, and

due to an anomaly, change the theta vacuum as [9],

eiαQ5 |θ⟩ = |θ + α⟩ (3.26)

9Lattice QCD estimates mu
md

≃ 0.5 [30].
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where Q5 is the generator of the U(1)A symmetry. If one were not considering the mass of the

quarks one could just define a chiral symmetry that is conserved in order to get rid of the theta

term, by rotating it to zero. Taking into account the mass of the quarks, the Lagrangian mass

term is [31],

Lmass = −iq̄iRMijqjL + h.c (3.27)

where Mij is the quark mass matrix that is not diagonal and not real. Due to this fact a

new problem arises. When studying the physical content of a theory one wants to express the

theory in a basis where Mij is real and diagonal. In order to do so one must perform a chiral

transformation of the form,

qL → e−iArgDet(M)qL (3.28)

qR → eiArgDet(M)qR (3.29)

Such a chiral rotation implies that the theta vacuum changes as anticipated by equation 3.26

meaning that the Lagrangian changes as,

L → L+
g2θ

32π2
ArgDet(M)Ga

µνG̃
aµν (3.30)

So what in fact must be smaller than 10−10 as expressed by equation 3.25 has two contributions:

one arising from the structure of the QCD vacuum (the theta term) and the second from the

dynamics of the electroweak theory that is ArgDet(M),

θ̄ = θ + ArgDet(M) ⪅ 10−10 (3.31)

Why do two terms that arise from different physics cancel each other out with such precision?

This is the strong CP problem.

3.5 Possible solution - axion

The axion10 is a possible solution to the strong CP problem. The main ingredients formulated

by R. Peccei and H. Quinn [8, 9] are to consider a chiral symmetry named U(1)PQ that is

spontaneously broken at some energy scale greater than ΛQCD (ΛQCD ≃ O(102) MeV). The

quarks must also be charged with a PQ charge such that a quantum anomaly is generated. The

introduction of this symmetry in the theory replaces the θ̄ parameter with a dynamic field, the

axion. The axion is a PNG boson where the term “Pseudo” comes from the fact that it has a

mass. From Goldstone’s theorem one knows that each spontaneously broken symmetry leads

10For this particular case it is in fact the QCD axion. We drop the “QCD” label for simplicity.
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to a massless and spinless boson, but due to the fact that the symmetry is anomalous the axion

acquires a potential and hence a mass. The U(1)PQ symmetry acts as a shift on the axionic

field as [8],

U(1)PQ : a → a+ αfa (3.32)

where α is an arbitrary parameter and fa is the order parameter associated with U(1)PQ

breaking. As stated, the current is not conserved due to an anomaly [9],

∂µJ
µ
PQ = ξ

g2

32π2
Ga

µνG̃
aµν (3.33)

where ξ is a quantity called colour anomaly, which leads to an additional term in the Lagrangian.

At low energies the relevant Lagrangian is [10],

L ⊃ 1

2
∂µa∂

µa+
g2θ̄

32π2
Gb

µνG̃
bµν + ξ

a

fa

g2

32π2
Gb

µνG̃
bµν (3.34)

and this leads to an effective term coupled to GG̃,

θ̄eff = θ̄ +
ξa

fa
(3.35)

The new term resulting in the Lagrangian of equation 3.34 represents an effective potential for

the axion field being its minimum at ⟨a⟩ = − θ̄fa
ξ
,〈∂Veff

∂a

〉
= − ξ

fa

g2

32π2
⟨Gb

µνG̃
bµν⟩
∣∣
⟨a⟩=−θ̄fa

ξ

= 0 (3.36)

The problem is solved because the minimum of the potential lies exactly at the point where

the effective value of θ̄ is completely cancelled, providing a dynamical solution to the strong

CP problem. Instantons of QCD generate a potential for the axion which can be obtained by

integrating over the gluon fields [9],

Veff ≃ Λ4
QCD cos

(
θ̄ +

ξa

fa

)
(3.37)

One can then extract the mass of the QCD axion by expanding the potential at the minimum,

m2
a =

〈∂2Veff

∂a2

〉
= − ξ

fa

g2

32π2

∂

∂a
⟨Gb

µνG̃
bµν⟩
∣∣
⟨a⟩=−θ̄fa

ξ

(3.38)

and establishing a connection between mass and energy scale by expanding the potential of

equation 3.37 in a power series and retaining the quadratic term of the axionic field. This

gives,

ma ≃
Λ2

QCD

fa
(3.39)
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One concludes that the QCD axion has only one free parameter: its mass or equivalently its

PQ symmetry breaking scale. There may be other axions besides the QCD axion such as ALPs

that emerge from the spontaneous symmetry breaking of more general U(1) symmetries [10].

The physics underlying these particles is very similar to the QCD axion but since ALPs do not

couple to QCD there is, a priori, no connection between the decay constant, fa, and their mass.

The QCD axion’s mass has several astrophysical constraints [32, 33, 34]. The length of the

Neutrino burst of SN1987A and, more recently investigated, cosmological effects of axion hot

relics provide an upper bound on the QCD axion’s mass [32, 34]. Symmetry breaking scales

greater than Planck’s mass, where General Relativity and hence gravity takes control are not

of interest. Furthermore, a small window (depicted as the small rectangle in Figure 3) between

[10−13 − 10−11] eV is constrained by black hole superradiance [33]. Thus, one has an open

window of [10−11 − 10−2] eV for the QCD axion mass range.

Figure 3: Constraints on the QCD axion mass. The constraints give an upper bound of 10−2 eV [32, 34] and a

lower bound of 10−11 eV [33]. This gives an open window of [10−11 − 10−2] eV for the QCD axion mass range.

At low energies, the QCD axion interacts with matter as [35],

Lint = igaNN∂µa(N̄γµγ5N) +
igaee
2me

∂µa(ēγ
µγ5e) + gaγγaE ·B (3.40)

where the g components represents the axion coupling to the respective particle. For the

purposes of this thesis the most relevant coupling is the interaction with photons depicted by

the last term in equation 3.40. The decay rate into photon pairs for a general axion is given by,

Γ =
α2
EM

256π3
|Caγγ|2ma

(ma

fa

)2
(3.41)

We derive this quantity in Appendices B.1-B.2. The decay rate will play a crucial role in our

analysis of axion superradiant instabilities and their observational signatures.
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4 Primordial black holes as dark mat-

ter candidates

The study of black holes is a growing subject in physics. The growth of this subject is reflected

in its recent achievements. From merger detections of black holes with tens of solar masses

by LIGO/Virgo [36], which granted in 2017 the Nobel Prize to Kip Thorne, Barry Barish and

Rainer Weiss, to more recently the 2020 Nobel Prize [37] which has been divided: one half to

Roger Penrose for the discovery that black hole formation is a robust prediction of the general

theory of relativity and the other half to Reinhard Genzel and Andrea Ghez who proved the

existence of a black hole with a mass of ≃ 106M⊙ in the center of our galaxy. Black holes of

this magnitude are labelled as Supermassive Black Holes (SMBH) and it is well established that

in the center of every galaxy there should be a SMBH of very large proportions ⪆ 106M⊙ [38].

Some of these SMBH have high redshifts and it is just not possible from accretion or mergers

of stellar black holes to gather such a huge amount of mass in such short time scales [39]. How

do these non-stellar black holes form? Stephen Hawking predicted in 1971 that gravitationally

collapsed objects of mass larger than the Planck mass ≃ 10−8 kg could be formed as a result

of large fluctuations in the density of the early universe [12]. These black holes formed in the

early universe are named Primordial Black Holes (PBH) and a relatively recent proposal is a

population of PBHs that provide the requisite seeds for the observed population of SMBHs

[39]. As we shall see, their masses vary largely depending on their time of formation and for

the mass range ≃ [1014 − 1018] kg they might represent 100% of the fraction of DM present

in the universe. These are the black holes we are interested in. In this chapter, we will start

by reviewing the main ideas that constitute the Cosmological Standard Model followed by an

insight into the physics of PBHs.

4.1 Brief introduction to the Standard Model of

Cosmology

Before investigating PBHs, per se, it is convenient to make a brief review of the basic ideas

that make up the Standard Model of Cosmology,

1. Hot Big Bang: The universe is expanding. If one could reverse time in order to go back
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in the opposite direction of the expansion one would eventually reach a singularity called

the Big Bang. Considering an isotropic and homogeneous universe, one can describe its

dynamics regarding only four fundamental equations11. These are the two Friedmann

equations, which are obtained from the Einstein field equations using the Friedmann-

Lemâitre-Robertson-Walker (FLRW) metric, the equation of continuity and one equation

of state for a perfect fluid with a given pressure and density that permeates the universe

[13],

H2 =
( ȧ
a

)2
=

ρ

3M2
PL

− K

R2
oa

2
(4.1)

ä

a
= − 1

6M2
PL

(ρ+ 3P ) (4.2)

ρ̇+ 3H(ρ+ P ) = 0 (4.3)

P = wρ (4.4)

where ρ and P are the energy density and pressure of the fluid, respectively. Also, K

represents the spatial curvature of the universe, R0 represents the radius of curvature of

the universe measured today, M2
Pl =

1
8πG

is the reduced Planck mass, a is the scale factor

that describes the expansion of the universe and w is a constant which depends on the

type of fluid.

2. Gravitational instabilities: The structures observed today (stars, galaxies, clusters...)

were originated from the growth of gravitational instabilities. The idea is that starting

from small fluctuations in the matter distribution in the early universe, denser regions

will exert a stronger gravitational attraction on their neighbours, accreting them. These

overdense regions will both become progressively larger and more irregular as time goes

by. Therefore, starting with an initial spectrum of fluctuations that is observed in the

CMB12, which grows in time through this process of gravitational instabilities, one gets

the large structures observed today.

3. Inflation: These small fluctuations can be originated during an early phase of the universe

known as inflation. Inflation is believed to have taken place in the very first fraction

of a second after the Big Bang singularity [40] where the universe had an extremely

11Homogeneous means that the universe is the same everywhere on large scales and isotropic means that the universe

looks the same no matter which direction we look at.
12The CMB was originated when the temperature of the universe lowered enough allowing the electrons to bind

with atomic nuclei in the recombination epoch around 400000 years after the Big Bang singularity [13]. Photons that

previously scattered with electrons now became free and traveled long distances. The CMB is the imprint of these free

photons and it represents a picture of the density fluctuations in the universe at this epoch.
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rapid growth. It is usually more convenient not to use the concept of how much time

it lasted for but, more accordingly, how much the universe grew in this period with the

concept of e-folding time, where 1 e-fold means that the universe expanded by a factor

of e1 ≃ 2.72. It so happens that the universe might have grown about 60 efolds (it grew

1026 times its original size!) during this period [13, 41]. This theory is also motivated

by three troublesome problems of cosmology: the flatness, the horizon and magnetic

monopole problems [41]. Inflation will be further explored in the next subsections in

order to understand how exactly these fluctuations are produced.

4. Ingredients that make up the energy density of the universe: Through accu-

rate measurements of the CMB fluctuations, the Wilkinson Microwave Anisotropy Probe

(WMAP), and more recently, the Planck mission [42], were able to measure the basic pa-

rameters of the Big Bang model including the density and composition of the universe13.

These experiments determined that the universe is nearly flat, which tells us that the

mean energy density of the universe is equal to the critical density14. Of this total density

we know that around 5% corresponds to baryonic matter, 72% corresponds to Dark En-

ergy (DE) and 23% corresponds to DM [43]. The present composition of the universe is

represented in Figure 4 [44]. For the purposes of this thesis we are more interested in DM.

Figure 4: This figure represents the constrains of the content of the present-day universe resulting from the

measurements of WMAP [43, 44].

Apart from the CMB, another way we know that DM exists is due to confrontation of

theoretical and experimental values of the rotation velocity of certain objects in different

relative positions to the center of our galaxy [45]. From observations, DM interacts weakly

through gravity although it may have additional weak interactions [46]. We also know

that black holes do not interact with anything except through gravity. This is a good

13WMAP and Planck were NASA spacecrafts that measured temperature differences across CMB sky. These mea-

surements played a very important role in establishing the current Standard Model of Cosmology.
14The critical density is the density of a flat universe.
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motivation to consider PBHs as DM candidates.

4.2 Formation of PBHs

Black holes are usually connected with the collapse of dying stars. However, one can extend this

line of thought thinking about the existence of large structures in the universe. The existence

of such structures implies that surely there have been some deviations from homogeneity and

isotropy at earlier times in the history of the universe. One would therefore expect some regions

to become sufficiently compressed through gravitational forces to overcome pressure and the

expansion of the universe and to eventually collapse into black holes.

4.2.1 Possible masses

The formation of PBHs through the initial inhomogeneities is possible if an overdense region

with size R is greater than the associated Jeans length15 [35], RJ ,

R > RJ =⇒ R > cs

( π

Gρc

)1/2
(4.5)

where ρc is the critical energy density of a flat universe and cs =
(

P
ρ

)1/2
= w1/2 is the sound

speed in the medium. Nevertheless, the collapsing region must be inside its Schwarzschild

radius in order for the region to collapse into a black hole. Since an overdense region can only

collapse once the particle horizon16 exceeds its size, one assumes that the Hubble horizon17 is

approximately the size of the particle horizon [13, 47],

RH ≃ RPH ≃ 1

H
(4.6)

which means that the mass of a PBH is approximately the mass enclosed in the particle horizon,

yielding [47],

MPBH ≃ MPH ≃ 4π

3
ρcR

3
PH =

1

2GH

∣∣∣
H at formation

≃ 1015
( t

10−23

)
g (4.7)

15Jeans length is the critical radius of a cloud where gravity starts to overcome pressure causing its collapse.
16The particle horizon is defined as the maximum distance that particles could have traveled to the observer since the

Big Bang.
17The Hubble horizon, c

H
, is defined as the distance that light can travel in one Hubble time, 1

H
. We explicitly write

the speed of light, c, to distinguish Hubble horizon and Hubble time. Henceforth it will be set to 1 so that Hubble

horizon and Hubble time are indistinguishable.
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where the formation was considered to be in the radiation dominating epoch, w = 1
3
. The latter

expression shows that one has a very wide range of masses depending on the time of formation.

For instance, considering a very early time t ≃ 10−43 s one could get a PBH of a mass of ≃ 10−8

kg. In contrast, if one considers just a second after the Big Bang singularity one gets a mass

of ≃ 105M⊙.

4.2.2 Formation mechanisms

Some formation mechanisms propose high densities in the early universe for PBH formation

as well as large density fluctuations, so that overdense regions can eventually cease to expand

and recollapse [48]. There are several possible mechanisms for PBH formation such as cosmic

strings, bubble collisions and collapse of domain walls [49]. We will, however, briefly discuss the

more common explanation of production in the current literature: density fluctuations resulting

from inflation. This will be further explored in the following subsections.

It is required that for a PBH to form, the collapsing region must have enough density to

surpass a threshold value for formation [13], that is,

δ =
δρ

ρ
> δc (4.8)

where δ is the density contrast, δρ is the density fluctuation and ρ is the average density. An

initial estimate by Bernard Carr using the Jean’s length and Newtonian gravity showed that

an overdensity would collapse into a PBH in a radiation dominating epoch if [48],

δ =
δρ

ρ
> δc = c2s =

1

3
(4.9)

More recent calculations show that δc ≃ 0.45 [50]. Comparing this with the typical amplitude of

the density perturbations, As, on CMB scales [13] δ ≃ δρ
ρ
≃

√
As ≃ 10−5, one therefore requires

much larger density perturbations than the ones observed in the CMB for an overdensity to

collapse into a PBH.

4.2.3 Abundance

Let us assume that some density fluctuations can surpass the threshold value and collapse

into black holes. What is the abundance of PBHs we expect to find? One may answer this
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question considering the statistics of density fluctuations and by calculating the abundance

or the relative energy density in PBHs relatively to the total energy density of the universe

using the Press-Schechter formalism [51]. The main idea of the formalism is that one assumes

that the fraction of the universe that collapses into PBHs at the time of formation is estimated

considering the fraction of the universe with δ > δc using a Probability Density Function (PDF)

[13], P (δ),

β(MPBH) =
ρ(MPBH)

ρtotal

∣∣∣
at formation

= γ

∫ ∞

δc

P (δ)dδ (4.10)

where γ ≃ 0.2 is a numerical factor which depends on the details of gravitational collapse18

[48]. Given the Gaussian nature of fluctuations during inflation the PDF is usually taken to be

[52],

P (δ) =
1√
2πσ

e−
δ2

2σ2 (4.11)

where σ2 is the variance of the density fluctuations on the mass scale MPBH which is estimated

as [53],

σ2(R) =

∫
d ln k Pδ(k)W̃

2(k,R) (4.12)

where Pδ(k) is the power spectra of the primordial density fluctuations19 which is a function of

the comoving wavenumber20, k, and W̃ (k,R) is the Fourier transform of a real space window

function smoothing over the comoving scale R ≃ 1
aH

. Putting all pieces together and assuming

σ ≪ 1,

β(MPBH) ≃
γσ√
2πδc

e−
δ2c
2σ2 (4.13)

On CMB scales, the amplitude of the fluctuations is σ ≃ 10−5 which leads to β ≃ 10−5e−1010 ,

which is completely negligible [52].

4.2.4 PBH mass as a function of the comoving

wavenumber k

PBHs could be formed when an overdense region enters the Hubble horizon [53]. It is crucial

that the perturbation enters the horizon because the process of PBH formation is purely causal.

Gravity, which travels at the speed of light, has to communicate the existence of an overdensity

18This value was estimated considering a radiation dominating epoch.
19This quantity will be discussed in the following subsection.
20Physicists often use length scales in terms of the comoving wavenumber k ≃ 1

comoving length
[13]. This will be relevant

when considering the scales at which perturbations form PBHs, that is when perturbations enter the particle horizon.
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so that the gravitational collapse begins. If an overdense region is sourced from primordial

perturbations, the size of the overdense region should be characterized by its respective comov-

ing wavenumber. One can therefore obtain the relation between the Hubble scale at the PBH

formation and the comoving wavenumber [53],

aH
∣∣∣
at formation

= k (4.14)

One may now establish a connection between the mass of the PBH and the scales required to

obtain overdensities capable of producing black holes. In a radiation dominating epoch, one

can show that [54],

MPBH(k) = 30M⊙

( γ

0.2

)( g∗
10.75

)−1/6( k

2.9× 105Mpc−1

)−2

(4.15)

where g∗ accounts for the number of relativistic degrees of freedom at the epoch of formation

[54]. As we shall see in the next subsection, for PBH formation the density perturbations

must enter the Hubble horizon which constrains the accessible scale range. This equation is

Figure 5: Hierarchy between the CMB/LSS scale and amplitudes and accessible scale by PBHs [53].

important because it shows that in order to form PBHs one requires very small physical scales

(large k’s). Looking upon the scales one has access to, Figure 5, that is the CMB scales,

we get ≃ [10−3 − 10−1]Mpc−1. But the physical scales one requires to form PBHs are much

smaller. Thus, to form PBHs from primordial density perturbations, one needs to consider some

mechanism that can amplify perturbations during the inflationary phase at smaller physical

scales than those accessible with CMB observations.

28



4.3 Inflation

Overdense regions are required for PBH formation. The most studied way of fulfilling this

requisite is through inflation. Inflation justifies the fluctuations one observes in the CMB,

which then answers the riddle of the growth of cosmological structures observed today, by

assuming quantum perturbations in the inflationary epoch [13]. The most concrete definition

of inflation is of an accelerated phase of expansion of the universe,

ä > 0 (4.16)

One concludes from equation 4.2 that this is only achievable considering a negative pressure

fluid, w < −1
3
. It so happens that considering a perfect fluid with w < −1

3
one would obtain

an eternal inflation. To make it finite, at some point w > −1
3
must yield so w must be time

dependent. It is also extremely difficult to get an extended duration of inflation unless the

equation-of-state parameter satisfies w ≃ −1. This is usually a practical definition of inflation

[13]. One may then introduce a new scalar field, the inflaton, with such characteristics that

may reproduce the accelerated expansion of the early universe.

The dynamics of a scalar field minimally coupled to gravity is given by the action [40],

S =

∫
d4x

√
−gL =

∫
d4x

√
−g
[
− 1

2
∂µϕ∂

µϕ− V (ϕ)
]

(4.17)

where g is the determinant of the metric. From the Euler-Lagrange equations for a homogeneous

field [41],

ϕ̈+ 3Hϕ̇+ V ′(ϕ) = 0 (4.18)

where 3Hϕ̇ is a friction term resulting from the expansion of the universe and V ′(ϕ) = dV
dϕ
.

For a homogeneous field, one may obtain its energy density, ρϕ, and pressure, Pϕ, from the

energy-momentum tensor,

T00 = ρϕ =
ϕ̇2

2
+ V (ϕ) (4.19)

Tii = Pϕ =
ϕ̇2

2
− V (ϕ) (4.20)

In order for the inflaton to behave as a negative pressure fluid with w ≃ −1, as required

for an accelerated expansion, the potential energy must dominate over the kinetic energy,

V (ϕ) ≫ ϕ̇2. Requiring this implies that one can neglect the first term in equation 4.18 because

the acceleration of the field must be small. This consideration is regarded as the Slow Roll

(SR) assumption which can be written in terms of two dimensionless parameters [41],

ϵϕ =
M2

Pl

2

(V ′

V

)2
≪ 1 |ηϕ| = M2

Pl

∣∣∣V ′′

V

∣∣∣≪ 1 (4.21)
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However, as previously stated, our interest in these inflationary models is due to the production

of density perturbations. The inflaton is a quantum field so it must exhibit small quantum

fluctuations about its homogeneous value [41]. Introducing these fluctuations in equation 4.18

and expanding the field fluctuations in a basis of Fourier modes rescalled by the scale factor one

may obtain a mode equation which corresponds to a harmonic oscillator with a time-dependent

frequency [41],

χ′′
k +

(
k2 − 2

τ 2

)
χk = 0 (4.22)

where χk(τ) = δϕk(τ)a(t) and τ is the conformal time21. One can show that when a mode exits

Figure 6: The evolution of a comoving scale and comoving horizon as a function of ln a. Modes with a constant

comoving scale become super-horizon (k < aH) during inflation and then re-enter the horizon after inflation

has ended when the comoving horizon, 1
aH , grows. The red line corresponds to a large scale observed in the

CMB, while the yellow line corresponds to a smaller scale that re-enters the horizon earlier [13].

the horizon, its amplitude approaches a constant value whereas for a mode inside the horizon its

amplitude decays exponentially [41]. This is important because it shows that inflation stretches

quantum fluctuations to super-horizon scales and amplifies them to a constant value. Since the

physical wavelength associated to a mode k is exponentially stretched by expansion during

inflation,

λ =
2π

k
a (4.23)

at some point it will become larger than the horizon which remains roughly constant during

inflation. Perturbations with length scales that are larger than the horizon are known as super-

21The conformal time is defined as dτ = dt
a(t)

=⇒ τ =
∫

dt
a(t)

= − 1
aH

. During inflation the scale factor grows

exponentially, a(t) ≃ eHt, and H is approximately constant.
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horizon, k < aH, while perturbations with length scales smaller than the horizon are known

as sub-horizon, k > aH. A mode crosses the horizon when k = aH, as represented in Figure

6. Since comoving modes with the same wavelength re-enter the horizon at the same time

their oscillating phases will be aligned and they will oscillate in phase. However, this will

produce a coherent phase structure in the perturbations due to the SR assumptions such that,

at the time of recombination, different modes will be in different phases of their oscillation,

producing the small fluctuations one observes in the CMB [41]. One could estimate the power

spectrum of these modes but it so happens that this quantity is not appropriate since it is

not gauge invariant. This is because the field perturbations will lead to perturbations in the

energy-momentum tensor, which in turn generate perturbations of the metric of the expanding

spacetime [41]. Thus, the small quantum fluctuations of the inflaton field make the underlying

spacetime slightly inhomogeneous inducing deviations both in the scalar field as well as in the

metric,

ϕ = ϕ̄+ δϕ gµν = ḡµν + δgµν (4.24)

Therefore, if one wants to compare theoretical values with experimental data one requires

a gauge invariant quantity that is invariant under change of coordinates. The quantity of

interest is the comoving curvature perturbation which represents the gravitational potential of

a comoving hypersurface [40],

ζ =
1

a

(H
ϕ̇
δϕ+Ψ

)
(4.25)

With this gauge invariant quantity one may obtain the power spectrum which is defined from

its 2-point correlation function [40],

Pζ(k) =
(H
2π

)2(H
ϕ̇

)2
(4.26)

For the production of PBHs, one requires larger perturbations as well as smaller physical

scales (larger k’s). One has the freedom to study a smaller wavenumber but this leaves a

problem. This wavenumber exits the horizon after the one we were considering before and

re-enters the horizon earlier22, that is the yellow line in Figure 6. So for these times one can

only take an educated guess. What about the large perturbation requirement? A quick look at

equation 4.26 tells us that if one could somehow slow down the field maybe one could produce

a larger power spectrum. One can imagine another inflationary regime without spoiling the SR

prediction considering, for instance, a regime with an inflection point in the scalar potential, as

depicted in Figure 7, where the approximation that the velocity is nearly constant is spoiled.

22A mode re-entering the horizon earlier than the CMB scales means that it is not accessible to us.
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Figure 7: An example of an inflaton potential that has a SR regime and an USR regime which may produce a

strong enough spectrum to form PBHs. The inflaton eventually leaves this inflection point moving to the global

minimum which translates in the ending of inflation. Image taken from [13].

At this point V ′ ≃ 0 and from equation 4.18 [13],

ϕ̈+ 3Hϕ̇ = 0 (4.27)

The inflection point implies that the velocity of the field is exponentially suppressed therefore

enhancing the power spectrum. This is known as the Ultra Slow Roll (USR) regime. This way,

when the perturbations re-enter the horizon, they will be so large at such small scales that they

will collapse forming PBHs. The inflaton eventually leaves this inflection point23 moving to the

global minima which translates in the ending of inflation.

4.4 Constraints on PBHs as DM candidates

When studying PBHs as a DM candidate the constraints are normally best expressed as the

fraction of DM in the form of PBHs today, fPBH = ΩPBH

ΩDM
. There are several phenomena that

provide constrains on the PBH’s mass such as Evaporation, Microlensing, Gravitational Waves,

Accretion, Dynamical [13, 14, 55]. A summary on fPBH showing which types of constraints are

most important over a wide range of mass scales is shown in Figure 8 [14]. From this figure one

can extract the mass range on which PBH may represent 100% of DM, ≃ [1014 − 1018]kg. This

mass range was constrained until 2014 due to PBH capture by neutron stars at the centres of

globular clusters [38, 56, 57]. However, these constrains have been disputed because the DM

23Note that the potential must be carefully chosen such that a period of eternal inflation is avoided.
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Figure 8: All constraints on the fraction of DM in the form of PBHs: evaporation, microlensing, gravitational

waves, PBH accretion and dynamical constraints. Attention is restricted to PBHs with MPBH ≪ 107M⊙ which

could constitute the DM halos of small dwarf galaxies [14].

density in globular clusters is currently known to be much lower than assumed in these analyses

[38, 58]. We will focus our study of PBH superradiant instabilities in this mass range since,

being the most abundant PBHs, they may lead to the largest axion population on galactic and

cosmological scales, and therefore to the strongest electromagnetic signatures.
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5 Dynamics of primordial axion super-

radiant clouds

After the thorough analysis of the cloud properties in section 2 we are ready to study the

dynamics of the system composed by a rotating PBH surrounded by a cloud of heavy axions,

which decay into photons, in the presence of interactions between superradiant states [4]. In

this section, we perform numerical and analytical studies to determine the number of axions

produced by superradiance throughout the cosmic history. Henceforth, we use Planck’s mass

as Mp ≃ 2× 10−8 kg and we write ℏ explicitly to recognize angular momentum exchange.

5.1 Dynamics of multiple superradiant states

Here, we study the dynamics of these systems and analyse the number of axions within and

outside the cloud. What is the number of particles produced through superradiance and how

does this number vary in time? In what manner do axion self-interactions and decays affect

the cloud’s growth? In order to answer these questions we first need to compute the equations

that rule the dynamics of the dominant superradiant states. This dynamics is non-trivial and

requires a thorough investigation.

5.1.1 Equations that rule the dynamics

For a spin-0 particle, the simplest non-gravitational interaction is a quartic self-interaction.

The introduction of such a term induces non-trivial dynamics amongst superradiant states and

the evolution of the system can be treated perturbatively [4]. Such analysis confronts the non-

linear term with the gravitational binding energy in the non-relativist limit providing numerous

possible quartic self-interaction processes. All these processes occur at a given rate that grows

with a power of the fine structure constant α [4]. Since for this analysis to hold it is required

that α ≪ 1, the dominant quartic self-interaction processes are the ones depicted in Figure 9 [4].

Note that there are other quartic self-interaction processes that represent different transitions

than the ones illustrated in Figure 9. In particular, some processes provide gravitational wave

emission. However, these are negligible when compared with the dominant processes depicted
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Figure 9: Dominant axion self-interaction processes. Process a) is the annihilation of two axions in the 211

state leading to one axion in the 322 state and the other in an m = 0 non-superradiant mode that is absorbed

by the black hole. Process b) is the annihilation of two axions in the 322 state leading to one axion in the

211 state and the other to escape the black hole’s gravitational potential. Note that angular momentum m is

conserved.

in Figure 9 [4]. This way, we perform a simplified analysis where the dominant processes involve

only two superradiant states. In process a) we expect the annihilation of two axions in the 211

state24 leading to one axion in the 322 state and the other in an m = 0 non-superradiant mode

that is absorbed by the black hole. In process b) we expect the annihilation of two axions in

the 322 state leading to one axion in the 211 state and the other to possess enough energy

to escape the black hole’s gravitational potential, becoming free. Apart from these processes,

the evolution of the scalar field around black holes is also driven by superradiant growth and

axion to photon decay. The number of axions in the 211 and 322 states varies according to

Boltzmann equations,

dN2

dt
= Γ2N2 − 2Γ22N

2
2N3 + Γ33N

2
3N2 − ΓaγγN2 (5.1)

dN3

dt
= Γ3N3 + Γ22N

2
2N3 − 2Γ33N

2
3N2 − ΓaγγN3 (5.2)

where Γaγγ is the axion to photon decay rate (equation 3.41), Γ2/Γ3 is the superradiant rate

of the 211/322 state, and Γ22/Γ33 is the transition rate of the annihilation of two axions in the

211/322 state (Figure 9 a)/b)), respectively. Taking into account superradiant emission into

the 211 and 322 states, as well as the m = 0 mode reabsorption, the black hole’s mass and

24We use the spectroscopic notation where 211 means n = 2, l = 1 and m = 1.

35



angular momentum vary according to,

dM

dt
= −µ(Γ2N2 + Γ3N3 − Γ22N

2
2N3) (5.3)

dJ

dt
= −ℏ(Γ2N2 + 2Γ3N3) (5.4)

These, together with equations 5.1-5.2, describe the dynamics of the system. The system

reaches an equilibrium when,
dN2

dt
=

dN3

dt
= 0 (5.5)

As we shall discuss in the next subsections, in our analysis we consider regimes where Γ2 > Γaγγ,

meaning that we can neglect the decay terms in equations 5.1-5.2. Additionally, since α ≪ 1,

we also neglect the superradiant growth rate of the 322 state which grows as Γ3 ∝ α12 [4].

Solving equation 5.5 provides the equilibrium numbers for the 211 and 322 states,

N2 =
2

Γ22

√
Γ33Γ2

3
, N3 =

√
Γ2

3Γ33

(5.6)

According to the computation in [4] we can extract the rates of the relevant processes,

Γ22 ≃ 8× 10−7α7λ2µ , Γ33 ≃ 10−8α4λ2µ and Γ2 ≃ 4× 10−2α8µ(ã− 4α) (5.7)

where λ is the coupling constant of the quartic self-interaction term and Γ2 is obtained from

equation 2.33 considering Γ2 = 2ωI and evaluating for the 211 state in the α ≪ 1 limit. Since

for axions from equation 3.37, λ−1 =
(

fa
µ

)2
, we estimate the equilibrium number for the 211

state as,

Neq ≃
50√
3

√
ã− 4αα−1

(fa
µ

)2
(5.8)

5.1.2 Parameter space

Before proceeding we recall the fundamental parameters of the problem. Whether we consider

the QCD axion or an ALP, the black hole spin, ã, and mass, M are always two fundamental

parameters. For the QCD axion, its mass, µ, is an additional parameter. For an ALP, the

decay constant, fa, is independent of its mass meaning that it is another additional parameter.

In this work we are interested in black holes with masses capable of accounting for 100% of

the fraction of DM [14], [1014 − 1018]kg, since they may lead to the largest axion population on

galactic and cosmological scales, and therefore to the strongest electromagnetic signatures. We

compute our parameter space plots (in yellow) in Figures 10-11 for the ALP and QCD axion

with low ã = 0.01 and high ã = 0.99 spins where two conditions must be satisfied:
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1. To guarantee the superradiant growth we require the superradiant condition to be fulfilled,

2µM

M2
p

<
ã

1 +
√
1− ã2

(5.9)

2. We want the cloud to be fully formed within the universe’s age. We therefore require

that the universe’s age is greater than the equilibrium time which can be obtained from

equation 5.1 where we neglected the self-interaction terms, since they are negligible until

equilibrium is reached, yielding dN2

dt
≃ Γ2N2. This provides a condition,

tuni > teq ≃
ln (Neq)

Γ2

(5.10)

where Neq is given by equation 5.8 and Γ2 by equation 5.7. Even though this equation is

fa dependent, different fa values do not imply a significant change in the parameter space

since this condition scales logarithmically with fa.

We are particularly interested in the low spin plots since recent studies propose that PBHs

formed in a radiation dominating era should possess a percent level dimensionless spin param-

eter [59].

Figure 10: Regions where condition 1 and 2 are satisfied for ALPs. We consider black hole masses within

the range where they may account for 100% of the DM and fa = 1010 GeV. Different values for the decay

constant do not imply a significant change in the allowed parameter space since the fa dependent condition

scales logarithmically. We consider two extreme values of spin: In the left plot ã = 0.01, and in the right plot

ã = 0.99. Different values of α are represented by straight lines with different colours as labelled.
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Figure 11: Regions where condition 1 and 2 are satisfied for the QCD axion. There is no available region for

the black hole masses within the [1014 − 1018] kg range. We extended this region until 1019 kg where it may

represent 10% of the DM [14]. We consider two extreme values of spin: In the left plot ã = 0.01, and in the

right plot ã = 0.99. Different values of α are represented by straight lines with different colours as labelled.

5.1.3 Numerical solution

We may now proceed with the numerical study of the dynamics resulting from equations 5.1-

5.4. Now that we possess an insight on the parameter space, we compute values within this

range and solve the equations numerically. We will restrict our discussion to ALPs since it

represents the most demanding case. In fact, the equations are exactly the same for both cases

the only difference being the fa connection with the QCD axion’s mass. For ALPs, there is no

connection.

Due to self-interactions the number of particles cannot grow arbitrarily large. In this

manner, we compare the equilibrium number, Neq, with the maximum axion number it is

possible for the cloud to hold, Nmax, in the absence of self-interactions. We establish an upper

value for the decay constant, above which the equilibrium number surpasses the maximum

number. This threshold is estimated from the superradiant condition (equation 2.34) neglecting

the variation of the black hole’s mass, ∆M ≃ 0, which is a valid approximation for small spin

values,

Nmax =
∆J

ℏ
= (ãi − ãf )

M2

M2
p

=⇒ Nmax = (ãi − 4α)
M2

M2
p

(5.11)
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where the final spin value is ãf ≃ 4α, saturating the superradiance condition. We compare

these quantities as Neq

Nmax
< 1 leading to,

fupper
a < 1.8× 1013

( α

4× 10−4

)3/2
(ã− 4α)1/4GeV =⇒ fupper

a < 5.0× 1012GeV (5.12)

where in the last expression we considered, and will consider henceforth, an ALP with µ = 1

keV, and a black hole spin, ã = 0.01, and mass, M = 1014 kg which corresponds to α ≃ 4×10−4.

This provides an upper bound for the decay constant, above which self-interactions are negligible

and the axion number reaches is maximal value. For values above this threshold we assume

the number of axions to remain approximately stable, at ≃ Nmax, as long as Γ−1
aγγ > tuni. We

can also construct a lower bound for the decay constant ensuring an effective axion production

with Γ2 > Γaγγ,

f lower
a > 1.6× 104(ã− 4α)−1/2

( µ

keV

)(4× 10−4

α

)4
GeV =⇒ f lower

a > 2.2× 105GeV (5.13)

where in the last expression we used the same parameters as above and considered, and will

consider henceforth, |Caγγ| = 1. To have a complete understanding of the dynamics, we perform

a numerical analysis of the differential equations within this range. Considering the previous

parameters, we study four different fa values. Results are plotted in Figure 12.

Figure 12: Numerical solution to the dynamics considering four different fa values assuming M = 1014 kg,

ã = 0.01, µ = 1 keV and |Caγγ | = 1.
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The cloud reaches an equilibrium after ≃ 107 years, where it remains approximately stable until

today for low fa values (upper plots of Figure 12). As fa increases, the number of particles in the

dominant superradiant states is enhanced. When the black hole loses a significant portion of its

angular momentum (notice the green line in the lower plots of Figure 12) the equilibrium ceases

and the axion number slowly decreases at an approximately constant rate. This suppression

will be further explored in the next subsection. The relevant quantity in this analysis is the

number of particles in the 211 state. We therefore evaluate the evolution of the ALP number

in this state for different fa values in Figure 13 (left plot). We are interested in computing the

photon flux emitted by axion clouds and this is ultimately a product of the ALP final number

in the cloud, which grows with f 2
a when the equilibrium is reached, and the ALP decay rate

(equation B.15), which decreases with f−2
a , so that we compute N2/f

2
a in order to estimate

the values of fa that maximize this flux. The latter statement anticipates constant flux values

(fa independent) as long as the equilibrium is sustained. Results are illustrated in Figure 13

(right plot). As previously anticipated, for fa values smaller than 1010 GeV the fraction seems

to reach a constant value. For higher fa values, the axion number suppression translates into

a smaller quotient value. For this particular case, fa’s ranging over ≃ [2 × 105 − 1010] GeV

maximize N2/f
2
a .

Figure 13: Left plot: Evolution of the ALP number in the 211 state for different fa values. We observe a

slight suppression of the ALP number which seems to slowly decrease, at an approximately constant rate, for

fa ⪆ 1010 GeV. Right plot: N2/f
2
a fraction as a function of time. We consider a time interval ranging over

the instant the system reaches an equilibrium until today. For fa ⪅ 1010 GeV, the fraction reaches a constant

value. For both cases we consider fa values ranging over [107 − 1012] GeV with different colours as labelled.
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5.1.4 Analytical solution

Now that we have a numerical insight on the dynamics, we construct an analytical description

of the axion number in the 211 state. In order to proceed, and considering the lower (equation

5.13) and upper (equation 5.12) fa values, we distinguish four regimes:

1) fa > fupper
a : The cloud reaches the maximum particle number allowed before any kind of

equilibrium is achieved. We estimate an instant, tmax, taking into account N2(t) ≃ eΓ2t

and using Nmax (equation 5.11),

tmax ≃ 8.0× 102
ln [Nmax]

ã− 4α

( α

4× 10−4

)−8(keV
µ

)
years ≃ 1.2× 107 years (5.14)

Self-interactions play a negligible role and the cloud remains stable around the black hole

as long as Γ−1
aγγ > tuni,

fa > 6.6× 107
( µ

keV

)3/2
GeV =⇒ fa > 6.6× 107GeV (5.15)

Equations 5.15 and 5.12 dependence on the axion mass ensure us that the cloud remains

approximately stable around the black hole for any parameter value within our previously

determined parameter space. For this regime we estimate,N(t) =eΓ2t for t ∈ [0, tmax]

N(t) =Nmax for t ∈ [tmax, tuni]
(5.16)

2) fa < fupper
a : The system reaches a dynamical equilibrium which prevents the cloud from

growing arbitrarily large. After reaching equilibrium one of two situations may occur:

2.1) The black hole does not lose a significant portion of its angular momentum within

the age of the universe and the cloud remains stable, tJ > tuni. We estimate this

instant as tJ ≃ J
J̇
≃ ãM2

M2
pNeqΓ2

, yielding,

tJ ≃ 2.6× 107
ã

(ã− 4α)3/2

(keV
µ

)( α

4× 10−4

)−5(1011GeV

fa

)2
years (5.17)

which bounds the decay constant as,

fa < 4.4× 109
ã1/2

(ã− 4α)3/4

(keV
µ

)1/2( α

4× 10−4

)−5/2

GeV =⇒ fa < 1.8× 1010GeV

(5.18)
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For this regime we estimate,N(t) =eΓ2t for t ∈ [0, teq]

N(t) =Neq for t ∈ [teq, tuni]
(5.19)

where teq is given in a similar manner as equation 5.14,

teq ≃ 8.0× 102
ln [Neq]

ã− 4α

( α

4× 10−4

)−8(keV
µ

)
years (5.20)

2.2) The black hole loses a significant portion of its angular momentum within the age of

the universe and the cloud is unstable, tJ < tuni,

fa > 4.4× 109
ã1/2

(ã− 4α)3/4

(keV
µ

)1/2( α

4× 10−4

)−5/2

GeV =⇒ fa > 1.8× 1010GeV

(5.21)

As concluded through the numerical solutions, after the black hole loses a significant

portion of its angular momentum the particle number starts to slowly decrease. Thus

far, we have considered the superradiant growth rate, Γ2, as constant. Looking at

Figure 12, we conclude that the black hole’s mass has indeed a very small variation

but its angular momentum has significantly changed. At this particular point we can

no longer consider the superradiant growth rate as a constant parameter. In fact,

equation 5.6 and the superradiant growth rate in equation 5.7 should be re-written

as,

Γ2(t) ≃ 4× 10−2α8µ(ã(t)− 4α) and N2(t) ≃
2

Γ22

√
Γ33Γ2(t)

3
(5.22)

The variation in the black hole’s spin neglecting the variation of its mass, ∆M ≃ 0

yields,

˙̃a ≃
(Mp

M

)2 J̇
ℏ

(5.23)

and from equation 5.4,

˙̃a = −
M2

pN2(t)Γ2(t)

M2
(5.24)

Inserting equation 5.22,

˙̃a = −z(ã(t)− 4α)3/2 with z =
(Mp

M

)2 2

Γ22

√
Γ33

3
(4× 10−2α8µ)3/2 (5.25)

We solve the differential equation,

ãf =
4(ãi − 4α)

(2 + z(ãi − 4α)1/2(t− tJ − teq))2
+ 4α (5.26)
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and insert this result in the axion number in equation 5.22,

N(t) =
Neq

1 + 2× 10−2Neq

(
Mp

M

)2
α8µ(t− tJ − teq)

(5.27)

For this regime we then have,

N(t) =eΓ2t for t ∈ [0, teq]

N(t) =Neq for t ∈ [teq, teq + tJ ]

N(t) =
Neq

1 + 2× 10−2Neq

(
Mp

M

)2
α8µ(t− tJ − teq)

for t ∈ [teq + tJ , tuni]

(5.28)

3) The black hole has not yet lost a significant portion of its angular momentum by today but

Γ−1
aγγ < tuni and continuously adds ALPs to the cloud as they decay into photons, meaning

that the number of particles stays at equilibrium values. In terms of the dynamics region

3) is equal to region 2.1), N(t) =eΓ2t for t ∈ [0, teq]

N(t) =Neq for t ∈ [teq, tuni]
(5.29)

A pictorial description, illustrated in Figure 14, of the different regimes using the particular

ALP parameters previously discussed, provides a better understanding of the scales involved.

Figure 14: Different regimes for the dynamics according to the decay constant value. Here we consider µ = 1

keV, ã = 0.01 and M = 1014 kg.
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Now that we have separated our analysis into different parametric regimes, we present an

analytical plot of the 211 state evolution for different fa values in Figure 15. We compute

the numerical versus analytical solutions and conclude that there is a very good matching for

fa < 1011 GeV. However, there seems to be a large discrepancy for fa = 5.0 × 1012 GeV, that

is, in the far upper limit of our analysis. This requires a closer look.

Figure 15: Contrast between numerical and analytical solutions. We obtain a fairly reasonable matching for

fa < 1011 GeV. For higher fa values a change in the dynamics is required.

In this case, the black hole has lost a significant amount of its angular momentum and the

superradiant condition is near its saturating point (ω ≃ mΩ). At some instant, previous to

tuni, it must have completely saturated. From equations 5.1-5.2 we set the superradiant term

to zero ensuring the superradiant saturation25,

dN2

dt
= −2Γ22N

2
2N3 + Γ33N

2
3N2 (5.30)

dN3

dt
= Γ22N

2
2N3 − 2Γ33N

2
3N2 (5.31)

A closer look at Figure 12 tells us that the occupation number for both states decreases at a

25We also neglect the decaying terms and the superradiant rate of the 322 state as previously justified.
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constant proportional rate. We therefore establish a connection between the particle number

in the 211 and 322 states after saturation,

N3 = fN2 (5.32)

where f is the suppression constant. Inserting this in equations 5.30-5.31 and solving for f

yields,

f ≃ Γ22

2Γ33

(5.33)

Using this result we obtain a differential equation,

dN2

dt
= −3

4

Γ2
22

Γ33

N3
2 (5.34)

and solving it yields,

N2(t) =
Nsat(

1 +
3Γ2

22

2Γ33
Nsat(t− tsat − teq)

)1/2 (5.35)

where Nsat is equation 5.27 evaluated at t = teq + tsat and tsat is the instant the superradiant

condition is saturated. How do we define this instant? A simple plot for fa = 1011 GeV can

provide us the answer. If we extend the interval to 1016 years and plot equation 5.27 and 5.35

both starting at Neq at the same time26, we observe that the expressions match at one particular

point (Figure 16).

Figure 16: Numerical solution plot for fa = 1011 GeV (in red). We match the analytical axion number, once

the superradiant condition is saturated (in blue), with the analytical axion number, once a significant amount of

the black hole’s angular momentum is extracted but has not yet saturated (in green). We plot both expressions

starting at exactly the same point.

26We considered the instant the black hole loses a significant amount of its angular momentum, teq+ tJ , as the starting

point.
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Therefore, matching equation 5.27 and 5.35 analytically provides an estimate of tsat. This

matching yields,

tsat ≃ 5.4× 1012
( µ

keV

)3(1011GeV

fa

)4(4× 10−4

α

)6
years ≃ 8.2× 1012years (5.36)

We then re-write the dynamics of regime/scenario 2.2) as,

N(t) =eΓ2t for t ∈ [0, teq]

N(t) =Neq for t ∈ [teq, teq + tJ ]

N(t) =
Neq

1 + 2× 10−2Neq

(
Mp

M

)2
α8µ(t− tJ − teq)

for t ∈ [teq + tJ , teq + tsat]

N(t) =
Nsat(

1 +
3Γ2

22

2Γ33
Nsat(t− tsat − teq)

)1/2 for t ∈ [teq + tsat, tuni]

(5.37)

We re-plot this result with the numerical solution in Figure 17 where we ensure that the problem

is solved. We now have a complete understanding of the analytical description of the system

dynamics within the cloud.

Figure 17: Numerical (red) versus analytical (black) plot for fa = 5.0× 1012 GeV.

To determine the errors associated with our calculations we use,

%error =
|analytical− numerical|

numerical
× 100% (5.38)

We evaluate the value discrepancy for different fa values in Tables 1-4.
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Table 1: Value discrepancy for the numerical and analytical solutions for the 211 occupation number

with fa = 106 GeV.

N at t = teq N at t = teq + tJ N at t = teq + tsat N at t = tuni

Numerical ≃ 6.89× 1027 Not reached Not reached ≃ 6.89× 1027

Analytical ≃ 7.07× 1027 Not reached Not reached ≃ 7.07× 1027

%error ≃ 2% - - ≃ 2%

Table 2: Value discrepancy for the numerical and analytical solutions for the 211 occupation number

with fa = 109 GeV.

N at t = teq N at t = teq + tJ N at t = teq + tsat N at t = tuni

Numerical ≃ 7.07× 1033 Not reached Not reached ≃ 7.05× 1033

Analytical ≃ 7.07× 1033 Not reached Not reached ≃ 7.07× 1033

%error ≪ 1% - - ≪ 1%

Table 3: Value discrepancy for the numerical and analytical solutions for the 211 occupation number

with fa = 1011 GeV.

N at t = teq N at t = teq + tJ N at t = teq + tsat N at t = tuni

Numerical ≃ 7.06× 1037 ≃ 6.60× 1037 Not reached ≃ 3.77× 1036

Analytical ≃ 7.07× 1037 ≃ 7.07× 1037 Not reached ≃ 3.76× 1036

%error ≪ 1% ≃ 6% - ≪ 1%
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Table 4: Value discrepancy for the numerical and analytical solutions for the 211 occupation number

with fa = 5.0× 1012 GeV.

N at t = teq N at t = teq + tJ N at t = teq + tsat N at t = tuni

Numerical ≃ 9.28× 1040 ≃ 4.26× 1040 ≃ 3.13× 1040 ≃ 4.15× 1038

Analytical ≃ 1.76× 1041 ≃ 1.76× 1041 ≃ 3.49× 1040 ≃ 4.16× 1038

%error ≃ 90% ≃ 300% ≃ 11% ≪ 1%

5.1.5 Axions outside the cloud

In the previous section we studied the system dynamics in the presence of self-interactions

within the cloud. As observed, self-interactions do not allow the cloud to grow arbitrarily

large, which then fixes an equilibrium particle number. But what about outside the cloud?

From Figure 9 we know that a fraction of the axions escape the black hole’s gravitational

potential. These axions become free and, depending on their velocity, they might be bound to

our galaxy. These axions should be taken into consideration when computing flux calculations.

From Figure 9 b) and through energy conservation, the particles that become free possess,

E∞ =
α2

72
µ (5.39)

Since these axions become free, this resulting energy is purely kinetic. In a non-relativistic

analysis,

v =
α

6
(5.40)

For the parameter space (Figure 10) we are studying α ⪅ 2× 10−3,

v ⪅ 100 kms−1 (5.41)

where we conclude that this velocity is lower than the Milky Way’s escape velocity [60] ≃
497 kms−1, which ensures that the particles are bound to our galaxy. A subtle detail in this

analysis is that, even though this is difficult to measure, the photon energy detected in this

case would be slightly different from the axions bound to the black hole. This is due to the fact

that the photon energy is half the axion’s energy and not exactly the axion’s mass. Therefore,
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if they are bound to the black hole, the energy detected is smaller. Nevertheless, the difference

is O(α2) and since α ≪ 1 this difference is practically negligible.

Let us now try to estimate the axion number that escapes the black hole’s gravitational

potential. We construct an additional equation for our dynamics,

dN∞

dt
= Γ33N

2
3N2 − ΓaγγN∞ (5.42)

We plot numerical simulations for the particular ALP we were previously considering for dif-

ferent fa values in Figure 18. In the initial moments, the number of axions that become free,

Figure 18: Numerical solutions considering µ = 1keV, M = 1014kg and ã = 0.01.

N∞, seems to have a similar growth rate steepness as N3 until 211 and 322 eventually reach

equilibrium. However, when this equilibrium is achieved, N∞ seems to continue its very steep

growth until N∞ ≃ Neq. Afterwards, it continues to grow but at a significantly smaller rate.

We are not particularly interested in how this number evolves throughout the cosmic history,

but rather in how it evolves after equilibrium is reached. There seems to be two restrictive

factors for the N∞ growth rate: the decay rate and the black hole’s significant loss of angular

momentum. When the decay rate is negligible,

dN∞

dt
≃ Γ33N

2
3N2 (5.43)
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where N2 and N3 are evaluated at equilibrium. Integrating this equation, and assuming

N∞initial
≃ Neq, yields,

N∞(t) = Neq + 3.0× 1035(ã− 4α)3/2
( fa
1011GeV

)2(keV
µ

)( α

4× 10−4

)7
(t− teq)years

−1 (5.44)

The decay rate is relevant when,

ΓaγγN∞ > Γ33N
2
3N2 (5.45)

which yields,

N∞ > 9.4× 1051(ã− 4α)3/2
( α

4× 10−4

)7( fa
1011GeV

)4(keV
µ

)4
(5.46)

We can estimate the instant the decay rate starts to suppress N∞’s growth. Eventually, equa-

tions 5.46 and 5.44 will match at t = tdecay, yielding,

tdecay ≃ 3.1× 1016
( fa
1011GeV

)2(keV
µ

)3
years (5.47)

Now, we envisage a fa parameter space for which the decay rate is relevant within the universe

timeline, tuni > tdecay,

fa < 6.5× 107
( µ

keV

)3/2
GeV (5.48)

From Figure 18 we conclude that once the decay rate becomes negligible, N∞ grows at a

constant rate as long as tJ < tuni. For regimes where tJ > tuni the growth is suppressed once a

significant amount of the black hole’s angular momentum is lost. After this instant, N∞ seems

to reach an equilibrium slightly lower than Nmax. How do we estimate this number? From

Figure 9 we know that a fraction of axions go back into the black hole. We can construct a

similar equation accounting for the rate of this process,

dNBH

dt
= Γ22N

2
2N3 (5.49)

We now compute the fraction of both rates at equilibrium,

Γ33N2N
2
3

Γ22N2
2N3

∣∣∣
at eq

=
1

2
(5.50)

The rate at which the axions go back into the black hole is twice the rate at which they become

free. Through conservation, the sum of both quantities should be equal to Nmax which means

that N∞ ≃ Nmax

3
.

In a similar way to what was previously done, let us try to compute an analytical description

of the free axion number evolution. First, we provide a pictorial description for the particular

ALP we have been studying in Figure 19.

50



Figure 19: Different regimes for the dynamics of N∞ according to the decay constant value considering µ = 1

keV, M = 1014 kg and ã = 0.01.

For region I, we expect N∞ to grow until a certain threshold value, forced by the decay rate,

where it remains stable,
N(t) =Neq +

3.0× 1035

(ã− 4α)−3/2

( fa
1011GeV

)2(keV
µ

)( α

4× 10−4

)7
(t− teq)years

−1 for t ∈ [teq, tdecay]

N(t) =9.4× 1051(ã− 4α)3/2
( α

4× 10−4

)7( fa
1011GeV

)4(keV
µ

)4
for t ∈ [tdecay, tuni]

(5.51)

For region II, we expect N∞ to grow at a steady rate since the decay rate is negligible and it

never reaches Nmax,{
N(t) = Neq +

3.0× 1035

(ã− 4α)−3/2

( fa
1011GeV

)2(keV
µ

)( α

4× 10−4

)7
(t− teq)years

−1 for t ∈ [teq, tuni]

(5.52)

For region III, we expect N∞ to grow being eventually suppressed when the black hole loses a

significant amount of its angular momentum,
N(t) =Neq +

3.0× 1035

(ã− 4α)−3/2

( fa
1011GeV

)2(keV
µ

)( α

4× 10−4

)7
(t− teq)years

−1 for t ∈ [teq, tJ ]

N(t) =
Nmax

3
for t ∈ [tJ , tuni]

(5.53)

Notice that for large µ values there is a possibility that region I is extended overlapping region

III. Nevertheless, in this scenario equations 5.53 hold. Now that we managed to compute an

analytical description of the free axion number evolution, we plot analytical versus numerical
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results in Figure 20. Since we are ultimately interested in this number as of today, we estimate

numerically and analytically N∞ at t = tuni for various fa values inserted in different regions.

We estimate the error of our results in Table 5 where we obtain an excellent match.

Table 5: Value discrepancy for the numerical and analytical solutions for N∞ at t = tuni for various

fa values.

fa = 107 GeV fa = 109 GeV fa = 1011 GeV fa = 1012 GeV

Numerical ≃ 4.81× 1032 ≃ 2.11× 1038 ≃ 5.96× 1040 ≃ 5.98× 1040

Analytical ≃ 4.82× 1032 ≃ 2.04× 1038 ≃ 5.98× 1040 ≃ 5.98× 1040

%error ≪ 1% ≃ 3% ≪ 1% ≪ 1%

Figure 20: Contrast between numerical and analytical solutions for the number of free axions considering µ = 1

keV, M = 1014 kg and ã = 0.01.
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This analysis is important because it shows that one can produce a vastly larger number of

axions outside the cloud at lower fa values than within the cloud. Since photon flux values are

ultimately a fraction N/f 2
a , a larger axion number at smaller fa values produces a significantly

larger flux.

5.2 Bosenova

We have so far followed the perturbative, non-relativistic approach in [4] to study the dynamics

of superradiant axion clouds, which should hold for α ≪ 1. For larger values of α (within

the superradiant regime) this approach may no longer be accurate, but self-interactions should

nevertheless halt the growth of superradiant axion clouds when the leading quartic interaction

term λΨ4

4!
becomes comparable to the axion mass term in the Lagrangian µ2Ψ2

2
, at a field value,

Ψ2
B = 12f 2

a (5.54)

When the field reaches this value, the non-linear effects of the attractive self-interactions cause

a gradual concentration of the axion field configuration leading to a dynamical collapse usually

known as bosenova [61, 62]. This phenomena decreases the field value back to the linear

superradiant regime where it grows again to the bosenova value. The number density27 is,

n =
N

V
= µΨ2 (5.55)

where N is the axion number and V the cloud volume. Using the bosenova field value and the

cloud volume (equation 2.58) we obtain,

NB =
600π2

α3

(fa
µ

)2
(5.56)

In terms of the dynamics, we can only assume that the cloud has an exponential growth until it

reaches the bosenova number where it remains approximately stable. Comparing the bosenova

number with the equilibrium value yields,

Neq

NB

≃ 5× 10−3
√
ã− 4αα2 (5.57)

In order to distinguish this case from the equilibrium one, which considers a non-relativistic

approach [4], we require larger α values,

α ⪆ 0.1 (5.58)

27This is obtained from the energy momentum tensor in the non-relativistic limit.
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Nevertheless, since α < 1, we conclude that the bosenova number is larger than the equilibrium

value. We are not particularly interested in this analysis due to the fact that we cannot establish

an accurate description of the cloud’s growth throughout the cosmic history. However, for the

sake of completeness, we will also consider this number, assuming that it stays roughly constant

until today as long as Γ−1
aγγ > tuni, when we estimate photon fluxes in the next section.
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6 Electromagnetic signatures of super-

radiant axion clouds

In this section we estimate the photon flux emitted within and outside the axion cloud, consid-

ering a system made of a rotating PBH, assuming it to be a relevant fraction of the DM, that

copiously produces “heavy” axions, which decay into photon pairs, in the presence of interac-

tions between superradiant states. We will cover two options for this calculation: the flux from

the center of our galaxy, where we use the Navarro-Frenk-White (NFW) dark matter density

profile, and the extragalactic background flux. We then compare our results with observational

data.

6.1 Photon emission from bound axions

In this subsection we estimate the photon flux emitted within the cloud taking into consideration

the dynamics induced by the interactions between superradiant states and the bosenova effect.

We estimate the flux emitted from the Milky Way as well as the extragalactic background flux

and compare them with observational data.

6.1.1 Milky Way’s galactic center photon flux

Assuming that black holes within the considered mass range represent 100% of the DM, the

differential photon flux produced by axion decay is [63],

dϕ

dE
=

1

4π

( 1

MPBH

) JD
∆Ω

dN

dEdt
(6.1)

where we take into account the number of PBHs (represented by 1
MPBH

) and the J-factor, JD,

accounts for the amount of DM one is looking at and depends on the choice of the DM density

profile. Its value can be obtained integrating [64],

J(∆Ω) =

∫
∆Ω

dΩ

∫ ∞

0

ρ[r(l,Ω)]dl (6.2)

which is an integral of the density profile, ρ[r(l,Ω)], that runs along the line-of-sight, l, inte-

grated over a certain solid angle ∆Ω. A sketch of the geometry of the problem is illustrated
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Figure 21: Sketch of the geometry.

in Figure 21. Geometrically, the observer is located at O and is looking along the line-of-sight,

l⃗, that is separated from the straight line, d⃗, separating the observer and the galactic centre,

G.C. Furthermore, the angle Ψ connects the observer and the centre of the halo. This way, r⃗

connects the centre of the halo with the line-of-sight. We use the NFW density profile [64],

ρ(r) =
ρs

r
rs

(
1 + r

rs

)2 (6.3)

where ρs and rs are the scale density and scale radius, respectively, which are characteristic

of individual halos. According to the geometry of the problem, one just has to write r as a

function of l, d and Ψ in order to write the density profile as a function of these variables to

integrate equation 6.2,

r =
√
l2 + d2 − 2ld cosΨ (6.4)

which yields,

ρ[r(l,Ψ)] =
ρsr

3
s√

l2 + d2 − 2ld cosΨ(rs +
√
l2 + d2 − 2ld cosΨ)2

(6.5)

Considering,

dΩ = 2π sinΨdΨ (6.6)

and the 40 arcsec region around the galactic center [64], as well as ρs = 0.4GeVcm−3, rs =

21 kpc and d = 8kpc, we integrate numerically using Wolfram Mathemathica, yielding,

J ≃ 5.54× 1016GeVcm−2 (6.7)

As for the emission spectrum, dN
dEdt

, and since the axions are non-relativistic as concluded

from equation 2.55, we consider that the photons are emitted with an energy Eγ ≃ µ
2
. We

then consider a monochromatic distribution [11] with a fixed energy, meaning that dN
dEdt

≃
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2NΓaγγδ(E − Eγ). Here, N is the axion number and Γaγγ the axion decay rate which is given

by equation B.15. The observed flux over an energy band spanning the range (E1, E2) is,

ϕ =

∫ E2

E1

dϕ

dE
dE (6.8)

Therefore, and multiplying28 by ∆Ω, equation 6.1 may be re-written as,

ϕ =
JD

4πMPBH

∫ E2

E1

2NΓaγγδ(E − Eγ)dE (6.9)

where we conclude that,

ϕ =
JD

2πMPBH

NΓaγγ (6.10)

To determine whether or not the flux estimates are strong enough to surpass the observa-

tional data, we test the regime that maximizes axion numbers within the cloud. More precisely,

and as previously anticipated from Figure 13, we are particularly interested in the regime where

an equilibrium is reached and the number of particles remains approximately stable within the

age of the universe, since this is the regime that produces a larger N2/f
2
a fraction and, hence,

larger flux values. We substitute the number of axions within the cloud with two options: the

equilibrium value, Neq (equation 5.8), and the bosenova value, NB (equation 5.56). Introducing

these in equation 6.10 yields,

ϕeq ≃2.2× 10−7|Caγγ|2
√
ã− 4α

( JD

1016GeVcm−2

)(1014kg
M

)2
ph m−2s−1 (6.11)

ϕB ≃4.5× 10−3|Caγγ|2
(10−1

α

)2( JD

1016GeVcm−2

)(1014kg
M

)2
ph m−2s−1 (6.12)

where ϕeq is the flux associated with the equilibrium analysis and ϕB with the bosenova analysis.

We conclude that for the same parameters used the bosenova flux is greatly enhanced. Never-

theless, for the QCD axion, where the black hole masses are required to be much higher (Figure

11), the flux in both cases is very small and, henceforth, we only consider ALPs. We want to

compare these estimates with the observational data given in Figure 22. Even though it only

shows a small range for the X-ray particle decay ([2− 30] keV), from reference29 [65] we know

that for larger masses the observational photon flux decreases at a constant rate as apparent

in Figure 22. For ALPs, in the equilibrium analysis, there are no flux estimates greater than

the observational data. However, for the bosenova analysis, some values surpass this threshold.

Fixing30 M = 1014 kg, ã = 0.9 and |Caγγ| = 1, we envisage a parameter space in which the flux

28We do this because we want to compare with observational data that is in units of ph m−2 s−1.
29In this paper the bounds are written in terms of the decaying time of the DM candidate which is nearly constant

within the X-rays range.
30For this analyses to hold we require α ⪆ 0.1, hence, higher spins.
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estimated exceeds the observational data thus excluding the particular parameters assumed.

Results are illustrated in Figure 23.

Figure 22: Experimental data of the intensity flux bound for the XMM-NuSTAR observation, for [2− 30] keV

range X-ray particle decay. Plot taken from [64].

Figure 23: Parameter space for which the galactic center photon flux estimate exceeds the observational data

in the bosenova analysis, and is therefore excluded. Parameters assumed: ã = 0.9, |Caγγ | = 1, M = 1014 kg

and α > 0.1.
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Notice that these flux estimates could be vastly enhanced if we considered dwarf spheroidal

galaxies such as Draco or Fornax which possess larger DM densities, and hence larger J-factors

[66]. However, there is currently no observational data with which we can compare our theo-

retical estimates, so we restricted our analysis to the Milky Way.

6.1.2 Extragalactic background photon flux

In order to estimate the extragalactic background flux one usually assumes that the distribution

of PBHs is isotropic [11]. This produces an isotropic photon flux resulting from the decay of

axions produced by superradiant instabilities. The flux measured today will be a superposition

of all photons emitted since the very beginning of the process31, resulting in a broadening of the

spectrum. The emission rate per volume per unit solid angle (cm−3s−1sr−1) at a cosmological

time t is given by [11],

dnγ

dt
(Eγ, t) ≃

1

4π
nPBH(t)Eγ

dNγ

dEγdt
(Eγ, t) (6.13)

where nPBH is the PBH number density. Experimentally, one measures the photon flux in an

energy interval ∆E ≃ E [67], which means that the flux can be written as,

I =
dI

dE
∆E ≃ dI

dE
E (6.14)

To use the data illustrated in Figure 24, and to compare it with our estimates, we must consider

the intensity as a function of the wavelength which means that equation 6.14 must be written

as,

I ≃ −dI

dλ
λ2 1

λ
= −dI

dλ
λ (6.15)

and, equivalently, equation 6.13 as,

dnγ

dt
(λγ, t) ≃ − 1

4π
nPBH(t)λγ

dNγ

dλdt
(λγ, t) (6.16)

Recall that due to the universe’s expansion, and if one wants to consider the flux measured

today, one must account for the redshift factor of the wavelength and densities, (1 + z) and

(1 + z)−3, respectively. The PBH number density can be written as,

nPBH(t) = Ω0
PBH

ρ0c
M

(1 + z)3 (6.17)

31In fact, only photons emitted after recombination are important. Nevertheless, this will not be relevant for our

analysis due to the large timescales involved.
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Figure 24: Extragalactic background photon flux. Plot and data taken from [68].

where Ω0
PBH = fDMΩCDM is the PBH abundance (which is a function of the DM fraction in

PBHs, fDM , and the cold DM abundance, ΩCDM) and ρ0c ≃ 9.47× 10−33 kg cm−3 is the critical

density of the universe, both measured as of today. This leads to,

n0
γ(λ

0
γ) = − 1

4π
Ω0

PBHρ
0
cλ

0
γ

∫
dt

1

(1 + z)M(t)

dNγ

dλdt
(6.18)

As previously stated, we consider the emission spectrum relation [11],

dNγ

dEdt
≃ 2NΓaγγδ(E − Eγ) (6.19)

which for our analysis must be re written as,

dNγ

dλdt
= −2NΓaγγδ(λ− λγ) (6.20)

Introducing this result in equation 6.18 we get,

n0
γ(λ

0
γ) =

1

2π
Ω0

PBHρ
0
cλ

0
γΓaγγ

∫
dt

N(t)

(1 + z)M(t)
δ(λ− λγ) (6.21)

According to the time scales we are considering all relevant photons are emitted in the CDM

dominated era, for which (1 + z)−1 = ( t
t0
)2/3. So, the present photon flux in cm−2s−1sr−1 units

is,

I(λ0) =
c

2π
Ω0

PBHρ
0
cλ

0
γΓaγγ

∫ ttoday

trecomb

dt
( t

t0

)2/3 N(t)

M(t)
δ(λ− λγ) (6.22)

60



Notice that, ( t

t0

)2/3
=

λ

λ0
γ

=⇒ dt =
3t0

2
(λ0

γ)
−3/2λ1/2dλ (6.23)

Inserting this into equation 6.22 and after integration,

I(λ0) =
3c

4π
Ω0

PBHρ
0
ct

0Γaγγ

(λγ

λ0
γ

)3/2 N(t)

M(t)

∣∣∣
t=t(λ0

γ)
(6.24)

In order to get the spectral flux and to compare our results with Figure 24 we calculate the

derivative of the latter equation with respect to the wavelength as of today, dI
dλ0

γ
,∣∣∣ dI

dλ0
γ

∣∣∣ = 9c

8π
Ω0

PBHρ
0
ct

0Γaγγ

(λγ

λ0
γ

)3/2 N(t)

M(t)

∣∣∣
t=t(λ0

γ)

1

λ0
γ

(6.25)

Recall that N(t) and M(t) are the axion number and the black hole’s mass, respectively, in the

instant the photons are emitted. We know that the axion number’s growth is extremely steep

as soon as the superradiant instability is triggered and the black hole’s mass is approximately

constant throughout the process (Figure 12). To determine whether or not the flux estimates

are strong enough to surpass the observational data, we test the regime that maximizes axion

numbers within the cloud. We re-write equation 6.25 in terms of the fundamental parameters

considering the general axion decay rate (equation B.15) the equilibrium value, Neq (equation

5.8), and the bosenova value, NB (equation 5.56). We also ease this calculation considering

the flux values for photons emitted today, which possess lower wavelengths, and hence a larger

differential flux value. For the equilibrium differential flux we obtain,∣∣∣ dI
dλ0

γ

∣∣∣
eq
= 1.7× 10−5

√
ã− 4α

( µ

keV

)(1014kg
M

)2
|Caγγ|2 ph cm−2s−1sr−1Å

−1
(6.26)

and considering equation 5.57, we obtain the bosenova differential flux,∣∣∣ dI
dλ0

γ

∣∣∣
B
= 3.5× 10−1

(10−1

α

)2( µ

keV

)(1014kg
M

)2
|Caγγ|2 ph cm−2s−1sr−1Å

−1
(6.27)

where we conclude that the bosenova differential flux is vastly enhanced. Similarly to what

we concluded in the previous subsection, for the QCD axion, where the black hole masses are

required to be much larger, flux values seems to be much lower than observational data. Fur-

thermore, in this particular region (around the microwave range in Figure 24) the observational

constraints are much weaker. As for ALPs, regarding the equilibrium analysis, there are still no

parameter values capable of producing a large enough flux to surpass the observational data.

However, in the bosenova analysis, some parameter values seem to surpass this threshold. We

envisage a parameter space in which we obtain flux values greater than the threshold providing

an exclusion of the particular parameters assumed. Results are illustrated in Figure 25. Notice
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that the constraints are practically indistinguishable from the ones obtained for the galactic

center in Figure 23. The reason is that the assumption assumed when computing the bosenova

analysis (α > 0.1) is the dominant condition.

Figure 25: Parameter space for which the extragalactic background photon flux exceeds the observational data

in the bosenova analysis, and is therefore excluded. Parameters assumed: ã = 0.9, |Caγγ | = 1, M = 1014 kg

and α > 0.1.

6.2 Photon emission from free axions

In section 5 we concluded that the axion number outside the cloud is vastly larger than within

the cloud for a wide fa range (Figure 18). The axion number enhancement at smaller fa values

may provide a large enough flux capable of surpassing observational data. In the previous

section we provided a thorough analysis of the methods used to compare estimates with obser-

vational data from the Milky Way’s galactic center and the extragalactic background photon

fluxes. Now, we consider a more straightforward method of using existing bounds on the axion-

photon coupling in the literature, which take into account both the galactic centre and the

extragalactic background emission (Figure 26).

We are particularly interested in masses within the X-ray range32 since these represent

32Throughout our main analysis we assumed low spin values, hence, small α which, for a fixed black hole mass,

M = 1014 kg, justifies lower axion masses within the keV range. The results obtained in the bosenova regime, which is

a secondary analysis, forced us to consider heavier axions (within the gamma ray range) due to the α > 0.1 condition.
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Figure 26: Axion-photon coupling strength limits [69]. Constraints in green do not account axions as DM

candidates. The X-ray bounds assume axions as DM candidates.

both the strongest constraints and flux estimates. The X-ray bounds in Figure 26, assume the

axions as DM candidates which would correspond to having M
µ
axions per PBH. In reality, the

number of axions produced through superradiant instabilities per PBH is smaller as previously

estimated. We can then rescale the X-ray bounds in Figure 26 by a factor Nµ
M

where N is the

number of axions produced per PBH. Now, we compare this rescalled observational data with

the photon flux estimate, 2ΓaγγN∞. We use the N∞ analytical expressions obtained in section 5,

providing a parameter space in which the theoretical estimates surpass the observational data.

Results are illustrated in Figure 27. We then convert the allowed parameter space in Figure 27,

which is given in terms of the decay constant, fa, into the coupling constant, gaγγ. We conclude

that constraints from PBH superradiance where axions only account for a fraction of DM, are

stronger than existing astrophysical constraints on keV-axions, namely from globular clusters,

which are independent of axions accounting or not for a sizeable fraction of DM. We emphasize

that these constraints assume 100% of the DM in PBHs with 1014 kg.
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Figure 27: Parameter space for which theoretical flux estimates surpass observational data, and is therefore

excluded. Parameters assumed: M = 1014 kg, ã = 0.01 and |Caγγ | = 1. The axion mass ranges over ≃
[450− 5000] eV (Figure 10).

Figure 28: Constraints on the axion-photon coupling from PBH superradiance (blue), assuming 100% of DM

in 1014 kg and ã = 0.01 PBHs. For comparison, we show existing constraints on axions in the keV mass range

that are independent on the fraction of DM they account for, from globular clusters (green).
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7 Conclusion

In this thesis, we studied superradiant instabilities of axions, which decay into photons, in the

vicinity of a rotating PBH, assuming PBHs are a relevant fraction of the DM. We used the

perturbative analysis in [4], which should hold for α ≪ 1, where axion self-interactions lead to a

non-linear mixing between the two dominant superradiant states, 211 and 322, alongside axion

reabsorption by the black hole and emission to infinity (free axions). There may be other non-

linear processes that populate different bound/free states or emit gravitational waves. However,

since these are negligible when compared with the dominant processes, we perform a simplified

analysis where the main self-interactions involve only two superradiant states.

One of the goals of this project was to describe the dynamics of the axion/black hole system

both numerically and analytically to determine the number of axions produced by superradiance

throughout the cosmic history. Since, due to the presence of interactions between superradiant

states, a significant portion of the black hole’s angular momentum is converted into axions

that escape its gravitational potential, we separate our analysis for the axion production in two

sections: axions produced within and outside the cloud.

Regarding axions produced within the cloud, for low fa values where self-interactions are sig-

nificant, the 211 axion number reaches an equilibrium value before extracting a significant

portion of the black hole spin. This may remain constant until the present day or decrease in

an adiabatic fashion as the black hole spins down and the superradiant growth rate decreases.

For large fa values, self-interactions become less and less important and the 211 axion number

reaches the maximum possible value within the age of the universe.

When self-interactions are important, a large number of axions become free, but are nevertheless

bound within the galaxy. There seems to be two restrictive factors for the N∞ growth rate:

the decay rate and the black hole’s significant loss of angular momentum from superradiance.

For both cases, the system dynamics within the age of the universe varies depending on the

specific parameters assumed. We successfully obtained analytical expressions that accurately

describe the dynamics of these systems for different fa values. These expressions agree with

numerical data for the axion number estimated as of today within an average relative error of

up to only ≃ 3%.

For α ⪆ 0.1 the analysis in [4] is unreliable and the number of axions within the cloud should

reach the bosenova threshold [61, 62], significant larger than the equilibrium value.
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The second goal was to estimate the Milky Way’s galactic center and also the extragalactic

background photon fluxes and compare theoretical results with observational data. Results

obtained are as follows:

For axions within the cloud: in the perturbative analysis, flux estimates were not strong enough

to surpass observational data. However, in the bosenova regime we envisage a parameter space

in which estimates surpass this threshold for both flux sources providing an exclusion of the

particular parameters assumed. This conclusion requires, however, a better understanding of

the superradiant cloud dynamics for α ⪆ 0.1.

For axions outside the cloud: in the perturbative analysis, we obtained a large region where the

flux estimates exceed the observational data, thus, providing a constraint on the axion mass vs

axion-photon coupling parameter space.

Throughout this analysis we fixed various parameters such as the black hole’s mass, M =

1014 kg, spin, ã = 0.01 or ã = 0.9 (whether concerning the equilibrium or the bosenova analysis,

respectively), and |Caγγ| = 1. A more systematic approach to the problem would require a

computational analysis on the full parameter space that may produce bounds on the axion-

photon coupling strength limits, which we plan to do in future works. In addition, an interesting

future avenue for research is to consider the effects and potential observability of gravitational

waves from superradiant axion clouds around PBH DM.

We hope that our results also motivate other future studies of PBH superradiance.
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Appendix A - Details on Klein Gordon

equation in Kerr spacetime

Kerr’s metric is not diagonal meaning that the calculation of 2.7 is not trivial. The metric may

be represented in a matrix form as,

gµν =


gtt 0 0 gtϕ

0 Σ
∆

0 0

0 0 Σ 0

gϕt 0 0 gϕϕ

 (A.1)

where,

gtϕ = −2Mra sin2 θ

Σ

gtt = −
(
1− 2Mr

Σ

)
gϕϕ =

(
r2 + a2 +

2Mra2 sin2 θ

Σ

)
sin2 θ (A.2)

In order to use equation 2.1 one has to find the determinant of the metric as well as its inverse.

It is wise to notice that the coordinates may be written in a different order,

gµν =


gtt gtϕ 0 0

gϕt gϕϕ 0 0

0 0 gθθ 0

0 0 0 gϕϕ

 (A.3)

One then obtains two smaller 2 × 2 diagonal sub-matrices making the task of calculating the

determinant and the inverse of the metric much easier. Evaluating these quantities by blocks

and reorganizing the coordinates to the original form, one gets g = −Σ2 sin2 θ and,

gµν =


gtt 0 0 gtϕ

0 ∆
Σ

0 0

0 0 1
Σ

0

gϕt 0 0 gϕϕ

 (A.4)
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where,

gtϕ = −2Mra

∆Σ

gtt = − 1

∆

(
r2 + a2 +

2Mra2 sin2 θ

Σ

)
gϕϕ =

∆− a2 sin2 θ

Σ∆sin2 θ
(A.5)

It is now straightforward to obtain the full Klein Gordon equation. Putting all pieces together

one obtains equation 2.7.

Appendix B - Decay rate calculation

B.1 Decay rate

Let us consider the golden rule for decays. Suppose a particle 1 decays into two other particles,

1 → 2 + 3 (B.1)

The decay rate for this process is [70],

dΓ = |M|2 S

2m1

d3p2

(2π)32E2

d3p3

(2π)32E3

(2π)4δ4(P1 − P2 − P3) (B.2)

where M is the invariant amplitude and S is a statistical coefficient that goes with 1
j!
for each

j identical particles in the final state. For the specific case of the axion decay into two photons,

the decay rate is significantly simplified in the rest frame33 of the axion because the photons

are massless. In this frame E1 = m1 and p1 = 0. Furthermore, one can write E2 = |p2| and
E3 = |p3|. Taking this into consideration, one can easily get a simplified formula by also taking

advantage of some properties of the delta function [23]. Splitting the delta function as,

δ4(P1 − P2 − P3) = δ(m1 − |p2| − |p3|)δ3(p2 + p3) (B.3)

where the symmetries of the delta function were used, δ3(x) = δ3(−x). For the particular case

where the final state has two identical particles (thus S = 1
2
) and effectively using the latter

delta function, the decay rate is then,

Γ =
1

4m1(4π)2

∫
d3p2

|p2|2
|M|2δ(m1 − 2|p2|) (B.4)

33In fact, equation B.2 was derived assuming the observer is in the rest frame. Considering the decaying particle at

rest, the usual normalization factor 1
2E1

becomes 1
2m1

.
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Moving to spherical coordinates [23], d3p2 = |p2|2d|p2|sinθdθdϕ, using the property δ(kx) =
1
|k|δ(x), and integrating over the angular part,

Γ =
1

32πm1

∫ +∞

0

d|p2||M|2δ(|p2| −
m1

2
) =

1

32πm1

|M|2 (B.5)

Knowing the square modulus of the invariant amplitude one can then compute the decay rate.

B.2 Matrix element M

The Lagrangian for the axion/photon interaction is [10],

Laγγ = −1

4
gaγγaFµνF̃

µν (B.6)

where gaγγ is the coupling constant that includes the fermion-loop integral [10]. The Feynman

diagram leading to this interaction is,

Figure 29: Feynman diagram of the decay of the axion into two photons with coupling strength gaγγ .

In order to get the Feynman rule for this interaction one can expand the field strength tensor

and its dual. By doing so, one gets an expression of the form,

− gaγγ
8

(εµναβ∂µAν∂αAβ − εµναβ∂µAν∂βAα − εµναβ∂νAµ∂αAβ + εµναβ∂νAµ∂βAα) (B.7)

Taking into account the properties of the anti-symmetric Levi-Civita tensor and moving into

momentum space, ∂µ→Pµ and Ai
ν→ϵ∗λi

β (Pi), the Feynman rule for such interaction is,

Raγγ = −1

2
gaγγε

µναβP2µϵ
∗λ1
ν (P2)P3αϵ

∗λ2
β (P3) (B.8)

One can then write the invariant amplitude as,

M = −gaγγε
µναβP2µϵ

∗λ1
ν (P2)P3αϵ

∗λ2
β (P3) (B.9)

where the 1
2
term cancelled out due to the possible permutations of the outgoing state. One may

now write the modulus squared of the invariant amplitude with the help of the completeness
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relation for the photon polarization [31]
∑

λ ϵ
∗λ
µ (P )ϵλν(P ) = ηµν ,

|M|2 = g2aγγε
µναβεγστρP2µP2γP3αP3τησνηρβ (B.10)

Finally, using the contraction for the Levi-Civita tensor εabcdεabkl = 2(δckδ
d
l − δcl δ

d
k),

|M|2 = 2g2aγγ(P
τ
2 P3τP

α
2 P3α − P γ

2 P2γp
τ
3P2τ ) (B.11)

For the first term and using conservation of momentum, P 2
1 = (P2 + P3)

2 = 2P2 · P3 since the

photons are massless, which means that 2P2 · P3 = −m2
a

2
, ma being the mass of the decaying

particle, the axion. The second term of the previous expression is equal to zero because it

corresponds to the product of the squared mass of the massless photons. This yields the final

form of the matrix element,

|M|2 = m4
a

2
g2aγγ (B.12)

Thus, inserting this result in equation B.5 and renaming m1 ≡ ma,

Γ =
g2aγγm

3
a

64π
(B.13)

The coupling constant gaγγ for a general axion is given by [71],

gaγγ =
αEM

2πfa
|Caγγ| (B.14)

where αEM ≃ 1
137

is the electromagnetic fine structure constant and |Caγγ| is the effective

coefficient that describes the mediators that carry the charge in the loop in Figure 29. This

quantity has a wide range of possible values [72]. For a general axion,

Γ =
α2
EM

256π3
|Caγγ|2ma

(ma

fa

)2
(B.15)

For the particular case of the QCD axion,

|Caγγ| =
(E
ξ
− 1.92

)
(B.16)

where E and ξ are the electromagnetic and color anomalies, respectively, of the axial current

associated with the QCD axion. The quotient value E
ξ
varies depending the model one considers.

For the KSVZ model [73], E
ξ
= 0 if the electric charge of the new heavy quark is taken to vanish.

Considering the decay constant relation between the QCD axion’s mass and ΛQCD,

Λ4
QCD ≃ f 2

am
2
a (B.17)

and putting all pieces together, one gets the final form of the decay rate of the QCD axion in

this process [10],

Γ ≃ α2
EM

64π3

m5
a

Λ4
QCD

≃ 1.1× 10−24
(ma

eV

)5
s−1 (B.18)

where we assumed ΛQCD ≃ 75 MeV [71].
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