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Um palavra de agradecimento à professora Bernardete Ribeiro pela disponibilidade

e incentivo. Ainda, agradeço ao Tiago O. Pereira e ao Tiago C. Pereira por todas as

contribuições e conselhos imprescind́ıveis que auxiliaram na melhoria deste trabalho.

A todos os restantes colegas do LARN, pelos inúmeros debates e sugestões, um

grande obrigada.

Aos meus pais por todo o esforço e apoio para que eu pudesse ter a melhor experiência

de estudar em Coimbra. Obrigada por acreditarem sempre em mim e por nunca me
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Resumo

O cancro é uma das principais causas de morte em todo o mundo, urgindo a neces-

sidade da sua deteção e tratamento. Na era da medicina de precisão, o principal

objetivo é incorporar a variabilidade individual para selecionar com mais exatidão

as estratégias de terapia e prevenção que se adequam a cada pessoa. No entanto, a

previsão acerca da resposta a um fármaco para o tratamento do cancro continua a

ser um desafio.

Abordagens bem sucedidas, incluindo aprendizagem de máquina e aprendizagem

profunda, foram apresentadas para prever a sensibilidade de tumores a tratamentos

anticanceŕıgenos, contudo, devido à complexidade do problema, permanecem ainda

muitos desafios em traduzir a combinação de diversos dados cĺınicos com dados

genómicos num prognóstico adequado.

Neste trabalho, são propostos dois modelos de arquitetura de aprendizagem pro-

funda para prever o efeito de fármacos anticanceŕıgenos em tumores através da

concentração inibitória média (IC50). Ambos os modelos podem ser divididos em

duas partes: primeiramente, é realizado o pré-treino de dois autoencoders com dados

de grande dimensão (expressão e mutação genéticas) para capturar as caracteŕısticas

fundamentais dos tumores; de seguida, este conhecimento genético é transferido para

linhas celulares canceŕıgenas para prever o impacto das variantes genéticas num de-

terminado fármaco. Ademais, foram introduzidas estruturas SMILES para o modelo

apreender as caracteŕısticas relevantes das moléculas através da utilização de Redes

Neuronais Recorrentes e Redes Neuronais Convolucionais. Finalmente, o modelo

aplica dados de sensibilidade de fármacos correlacionados com os dados genómicos

e moleculares para identificar caracteŕısticas que prevêem o valor de IC50 para cada

par fármaco-linha celular.

Os resultados obtidos demonstram a capacidade de ambos os modelos em extrair

representações relevantes dos dados para prever interações fármaco-recetor, isto é, o

valor de IC50 que descreve a potência de uma substância em inibir um tumor. Os

modelos propostos alcançaram um desempenho de erro quadrático médio de 1,08 e

1,06, superando modelos anteriormente apresentados no estado da arte.
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Abstract

Cancer is a leading cause of death worldwide, enhancing the need for its detection

and treatment. In the era of precision medicine, the main goal is to incorporate indi-

vidual variability in order to choose more accurately which therapy and prevention

strategies suit each person. However, drug response prediction for cancer treatment

remains a challenge.

Successful approaches, including machine and deep learning, have been proposed to

predict the sensitivity of tumors to specific anticancer treatments, however, due to

the complexity of the problem, there remain many challenges in how to effectively

translate the combination of clinical data with genomics data into prognostic.

In this work, it is proposed two deep neural network models to predict the effect

of anticancer drugs in tumors through the half-maximal inhibitory concentration

(IC50). The models can be seen as two-fold: first, we pre-trained two autoencoders

with high-dimensional data (gene expression and mutation profiles) to capture the

essential features from tumors; then, this genetic background is translated to cancer

cell lines to predict the impact of the genetic variants on a given drug. Moreover,

SMILES structures were introduced so that the model can apprehend relevant fea-

tures regarding the drug compound using Recurrent Neural Networks (RNNs) and

Convolutional Neural Networks (CNNs). Finally, the model applies drug sensitivity

data correlated to the genomic and drugs data to identify features that predict the

IC50 value for each pair of drug-cell line.

The obtained results demonstrate the effectiveness of both models in extracting deep

representations to predict drug-target interactions, i.e., the IC50 value that portrays

the potency of a substance in inhibiting a tumor. The proposed models achieved

a performance of a mean squared error of 1.08 and 1.06, outperforming previous

state-of-the-art models.

Keywords

Deep Learning, Recurrent Neural Networks, Convolutional Neural Networks, Gene

Expression and Mutation Profiles, SMILES.
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1

Introduction

1.1 Context and Motivation

Diverse commonly prescribed drugs have unexpected side effects based on individ-

ual inherited genetic variants. Despite the advances in high-throughput sequencing

technology, due to the low frequency of some genetic variants and the inherent com-

plexity of drug development, association studies are mainly conducted after the drug

is approved and adverse reactions are reported. To tackle this problem, pharma-

cogenomics focuses on the association between genetic variants and drug responses

to enhance the development of effective, safe medications and doses, aiming to build

a scenario where drug prescription is based on patient profile [1].

Since cancer is a leading cause of death worldwide, it increased the demand to

predict drug response and identify novel anticancer drugs, resulting in an exhaustive

process due to intra- and inter-tumor heterogeneity. Therefore, several projects,

like The Cancer Genome Atlas (TCGA) Program, are making efforts to catalog

genetic mutations for cancer and study the entire spectrum of genomic changes

involved in human cancer through the application of genome analysis technologies

[2]. These researches provide a massive amount of publicly available data, enabling

the development of bioinformatics tools to highlight candidate cancer biomarkers

and drug targets. Therefore, the main goal is to construct an efficient model able

to correlate genomic information with anticancer compounds. Figure 1.1 illustrates

the field of cancer pharmacogenomics and how the different parts that compose

it are interconnected. As may be noted, identifying the best drug(s) requires an

understanding of tumor genomics. However, it is also necessary to incorporate

chemical descriptors of drugs to understand drugs’ mechanisms [3].

Considering the sizeable combinatorial scale of the problem, this can benefit from

1



1. Introduction

Figure 1.1: Overview of pharmacogenomics in cancer where three components are
linked: drugs, genomics, and patient responses.

recent advances in Deep Learning (DL) methods. DL technologies can be applied

directly to raw data, automatically learn useful features and make predictions with-

out prior knowledge [3]. However, the limited drug response data compared to cell

line screening data resulted in a barrier to using these algorithms. In recent years,

the Genomics of Drug Sensitivity in Cancer (GDSC) project was able to relate more

than 1000 human cancer cell lines with a wide range of anticancer compounds, iden-

tifying alterations in cancer genomes that strongly influence patient response [4].

Although computational models have been proposed for this issue, there is still room

for improving the prediction performance by combining multiple types of drug and

genomic data. This work presents two deep neural network models to predict the

effect of anticancer drugs in tumors through the half-maximal inhibitory concentra-

tion (IC50). Both models are trained using public mutation and expression profiles

of many cell lines to capture the genomic heterogeneity that underlies human can-

cer and also the drug’s candidate in the format of Simplified Molecular Input Line

Entry Strings (SMILES) notation to extract relevant features from the chemical

compounds. Furthermore, the models were trained with drug sensitivity data cor-

related to the genomic data retrieved from the GDSC project to identify genetic

features that are predictive of sensitivity. Therefore, this study aims to address

the challenge of using computational methods to simply and accurately predict the

effect of genetic variants on a given drug.

2



1. Introduction

1.2 Background

Gene Expression

Genes encode proteins, on the other hand, proteins dictate cell function, i.e., the

thousands of genes expressed in a particular cell determine what that cell can do.

Therefore, gene expression describes the process where the information encoded

in a gene is used to make RNA molecules or non-coding RNA molecules. The

RNA molecules are responsible for encoding the proteins, whereas non-coding RNA

molecules play important roles in diverse biological processes but do not have ap-

parent protein-coding roles. Thereby, gene expression acts as an “on/off switch” to

control when and where RNA molecules and proteins are made [5]. From one side,

gene overexpression is the process that causes abundant target protein expression.

On the other side, gene underexpression can lead to a lack of protein expression.

Thus, this process is essential to maintain cellular structure and function, chang-

ing considerably under different conditions such as environmental factors like diet,

drugs, or exposure to toxins [6, 7].

The gene expression analysis provides quantitative information about the RNA

molecules in cells and tissues through microarrays, transcriptome profiling by RNA

sequencing (RNA-Seq), and other methods that measure the levels of RNA molecules

in biological systems. The classical analysis of RNA-Seq data focuses on finding

genes that present differential expression between groups. The main advantages of

this method, compared with microarrays-based approaches, are the increase in sensi-

tivity, the capacity to detect unannotated transcripts, and the digital quantification

of RNA molecules [8]. The increased availability of genomic technologies and the de-

velopment of processing techniques have enabled the analysis of extensive amounts

of data. As a result, gene expression profiling has become a tool for detailing tumor

molecular profiles [9].

Naturally, genetic variants (or mutations) affect gene expression levels and conse-

quently impact protein levels, cell morphology, or disease phenotypes [10]. In this

matter, gene expression has proven to be a powerful tool from which conclusions

can emerge regarding the genes which are more impactful in certain diseases.

Gene Mutations and Cancer

One of the keys to understanding cancer is knowing which genes and mutations

promote tumor development, allowing the growth of cells and tumor progression.

3



1. Introduction

It has been proven that tumor cells are the result of a course of genetic and epi-

genetic events caused by DNA or environmental changes [11]. These alterations

can origin different genetic alterations like chromosomal changes, gene mutations,

and epigenetics events. Among the gene mutations are included base substitutions,

rearrangements, and small insertions and deletions. In this way, these changes in

specific genes, and different patterns of gene mutations can lead to a disruption of

genetic pathways, such as cell cycle control and cell signaling, contributing to tumor

development [12].

Drug Response

Drugs play a significant role in modern medicine as they treat, control, cure, or

prevent a disease or disorder. However, drug discovery and development is a com-

plex, long and expensive process. Although several strategies have been suggested

in the artificial intelligence field, there remain new techniques and pathways to be

pursued [13]. Pharmacogenomics by combining pharmacology (the science of drugs)

and genomics (the study of the genome and gene functions) may enhance drug

discovery and development through the identification of genetic variants that pre-

dispose individuals to adverse drug reactions [14]. Consequently, can be examined

the possibility of subpopulation-specific drug development.

Changes in DNA sequences can lead to different expression or function of proteins

that are targeted by drugs making individuals respond differently to drugs, some-

times with unpredictable side effects. Despite the idea proposed in the 1950s that

genes regulate some drug responses, the description of the first human gene contain-

ing a DNA sequence with alterations that impact drug metabolism just took place

in the late 1980s. Nonetheless, there are still many challenges to overcome in order

to understand the total contribution of genetic variants to drug effects and transfer

this knowledge into clinical practice [1].

In precision medicine, the goal is to design treatments according to the characteris-

tics of a particular cohort or even individual patients. Therefore, it depends on the

effective translation of high-throughput profiling data into clinically meaningful re-

sults. In this matter, the amount of drug response profiles spanning a wide range of

drugs and genetic analysis of different cohorts is essential to identify drug response

biomarkers and develop predictive models of drug sensitivity [15].

One of the most used measures of effectiveness in inhibiting biological functions is

the IC50. The IC50 value indicates the concentration of an inhibitory substance

4



1. Introduction

that is required to suppress a given biological function by half. Therefore, large

IC50 values correspond to compounds that interact less efficiently with a cell than

drugs with small IC50 values [16].

1.3 Objectives

The main goal of this master thesis is to address the challenge of using deep learning

methods to accurately predict the effect of genetic variants on a given drug. Thus,

the goal is to develop two half-maximal inhibitory concentration predictors of an-

ticancer drug responses. In this respect, gene expression and gene mutation, and

SMILES notation are used as descriptors of cell lines and drugs, respectively. Given

a pair of drug-cell line, the models predict the IC50, which portrays the impact

of the genetic variant on the drug. Therefore, the following points summarize the

objectives of this project:

1. Overview of DL techniques and their current applications to anticancer drug

prediction.

2. Explore different deep architectures and the best hyperparameters to train the

prediction models.

3. Implement two autoencoders in order to extract relevant information regarding

tumors.

4. Implement two prediction models based on RNNs and CNNs that can predict

the half-maximal inhibitory concentration of anticancer drug responses.

5. Evaluate the proposed models and compare them with different state-of-the-

art approaches.

1.4 Workflow

The significant rise in the prevalence of cancer worldwide in the last decade [17] led to

the pursuit of anticancer drug response prediction approaches. This work focuses on

aligning computational methods with the science of pharmacogenomics to increase

the potential to yield a new set of diagnostic tools that can be used to individualize

and improve drug therapy. In this regard, different deep learning architectures will

be explored to construct models that predict the drug response, i.e., the impact

of genetic variation on treatment response. These models allow to automatically
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identify hidden and complex patterns and relationships between genetic features

(gene expression and gene mutation) and molecules’ descriptors to predict drug

response. Accordingly, they learn this relation using intrinsic information of the

cell lines and drugs, without needing to verify each interaction experimentally and

surpassing the traditional approaches on its capacity to predict the half-maximal

inhibitory concentration. The main goal is to translate knowledge of human genome

variability into better therapeutics, decreasing the frequency of adverse drug effects.

Figure 1.2 shows the contrast between traditional medicine and drug response pre-

diction. Drug selection is subjective, and typically it is required weeks of symptom

evaluation to determine treatment efficacy, emerging the need to develop pharma-

cogenomic/computational approaches that can support decisions regarding optimal

drug choice, and identify poor drug responses.

Figure 1.2: Traditional medicine versus drug response prediction aligned with
computational methods: the use of genetic and compound features.

1.5 Scientific Outcomes

During this thesis, the work developed resulted in contributions submitted to inter-

national journals and presented at national/international conferences.

Papers

• Filipa G. Carvalho, Maryam Abbasi, Bernardete Ribeiro, Joel P. Arrais. ”Pre-

6
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dicting Drug Activity against Cancer through Genomic Profiles and SMILES”.

”Mining healthcare: AI and deep learning for medicine” in the journal Artifi-

cial Intelligence in Medicine (Elsevier), 2022. (In preparation)

• Filipa G. Carvalho, Maryam Abbasi, Bernardete Ribeiro, Joel P. Arrais. ”Deep

Model for Anticancer Drug Response through Genomic Profiles and Com-

pound Structures”. IEEE CBMS, IEEE 35th International Symposium on

Computer Based Medical Systems, 2022. (Presented on July 2022) - Best

Paper Award.

Posters

• Filipa G. Carvalho, Maryam Abbasi, Bernardete Ribeiro, Joel P. Arrais. ”Deep

Modelling for Anti-Cancer Drug Response through Gene Expression and Mu-

tation Data”. ESCI, 56th Annual Scientific Meeting of the European Society

for Clinical Investigation (Presented on June 2022) - Best Poster Award.

• Filipa G. Carvalho, Maryam Abbasi, Bernardete Ribeiro, Joel P. Arrais. ”Pre-

dicting Anticancer Drug Response through Deep Learning”. VIII EJIBCE,

Structural Computational Biology Meeting of Junior Researchers (Presented

on December 2021).

All the implemented models and datasets for this study are publicly available on:

• https://github.com/larngroup/DeepModel-Anticancer-Predictor.

1.6 Document Structure

This thesis is composed of six chapters. The current and first chapter aims to clarify

the context of the problem and how this work intends to contribute to its solution.

Chapter 2, State of the Art, presents a review of various research works developed

using computational approaches to improve the prediction of the effect of a genetic

variant on a given drug. Chapter 3, Deep Learning Models, provides a theoreti-

cal overview of the architectures used to build the proposed models. Chapter 4,

Methods, describes the contribution of this master thesis and englobes the differ-

ent models that were implemented. Chapter 5, Results and Discussion, covers the

performed experiments and the obtained results. Finally, chapter 6 concludes this

study and summarizes the possible future approaches to the proposed work.

7
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2

Artificial Intelligence in

Anticancer Drug Response

Prediction

Resistance to anticancer compounds arises from a wide range of factors, includ-

ing genetic mutations or epigenetic changes and other factors such as microbiome

and different molecular mechanisms. So several approaches, based on different per-

spectives, have been reported and explored to solve the problem of predicting drug

response. Among diverse computational methods presented in the literature stands

out the use of machine learning algorithms like support vector machines and deep

learning models applied to gene expression and mutation profiles and drugs’ fin-

gerprints. However, using the deep architecture to predict the drug response is

still a great challenge, therefore remains the possibility for an improvement in the

predictive performance and generalizability of the models [15].

2.1 Notations and Definitions

Artificial intelligence (AI) is the science of creating an intelligent machine capable

of simulating human intelligence. It plays a relevant role in our daily routines by

performing diverse tasks, such as natural language processing (NLP) [18], facial

recognition [19], and, particularly, drug response prediction [15].

Figure 2.1 shows the relationship between artificial intelligence, machine learning,

and deep learning. Machine learning is a branch of AI, which refers to systems

that can learn without being explicitly programmed, i.e., learn by themselves from

experience on a given sample of information [20]. These methods can be divided

into supervised, unsupervised, or reinforcement learning (RL). Supervised learning

9



2. Artificial Intelligence in Anticancer Drug Response Prediction

algorithms are designed to make associations between inputs and outputs based on

example input-output pairs. Once associations have been learned, the models can

be used to predict unseen examples. Unsupervised methods are characterized by

discovering hidden patterns in data without prior training examples. These algo-

rithms are commonly associated with clustering problems, which goal is to identify

and group similar data points without concern for the specific outcome. Lastly, RL

is the task of learning actions in an environment in order to maximize cumulative

rewards [21].

Figure 2.1: Relationship between Artificial Intelligence, Machine Learning, and
Deep Learning: same context, different concepts.

Deep learning is a subfield of machine learning based on algorithms that replicate

the structure and function of the brain, named Artificial Neural Networks (ANNs).

An ANN is a computational model inspired by biological neural networks, capable

of learning from experience on large datasets. It is established that biological learn-

ing is characterized by complex networks of neurons that can transmit information

through synapses from several locations to the place of action, assimilating knowl-

edge and performing actions. If the received stimulus is enough to trigger an action

potential, i.e., reaches the threshold potential, the neuron transmits the signal along

the axon, producing a response in the organism. In this matter, a single neuron

cannot act alone, and nervous system function depends on groups of neurons that

10
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work together. However, it is relevant to note that, many times, the behavior of

biological processes is difficult to interpret due to their inherent intra- and inter-

variability. Therefore, an ANN is a simplification of biological neural networks com-

posed of artificial neurons that communicate by transferring information from one

neuron to another and are interconnected through multiple layers, defined as hidden

layers [22,23].

The ANN architecture is typically composed of an input layer, multiple hidden

layers, and an output layer. The input layer brings the independent values, which

constitute the initial data, into the network for posterior processing by the neurons

that form the hidden layers. Then, the hidden layers are responsible to transform

the weighted inputs according to the expected outcome. Finally, the output layer

applies an activation function to the weighted sum of all the outputs provided by

the previous layers. Thus, an artificial neuron, represented in Figure 2.2, is the basic

building block of an ANN and it is organized into 5 elements [24]:

• Input: Independent values that are fed to the neuron.

• Weights: Vector of weights which determine the importance of each input.

• Bias: ”extra neuron” that shifts the activation function by adding a constant

to the input.

• Activation function: Responsible for the activation of each neuron by ap-

plying a transformation to the resulting value of the weighted sum. Usually,

it is a non-linear function.

• Output: Result of applying the activation function to the sum of the previ-

ously weighted inputs and bias. The output of the ith neuron can be mathe-

Figure 2.2: Comparison between biological and artificial neuron.
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matically defined as:

y = f(
∑
j

wijxj + bi) (2.1)

, where w is the weight, x the input value and b the bias.

The most common form of learning, deep or not, is supervised learning, whose

objective is to map an input to an output based on example input-output pairs.

During the training stage, the neural network updates its adjustable weights by

calculating, at each iteration, a loss function, which is the difference between the

obtained output and the expected value. This process to find the best set of weights

is performed by backpropagation, and how the weights are updated depends on the

chosen optimizer [25]. The backpropagation algorithm computes the gradient of the

loss function to fine-tune the neural network weights based on the error obtained in

the previous iteration. Theoretically, the model becomes better as the weights are

updated, and the error tends to decrease. The problem’s type to solve determines

the choice of the optimizer and the loss function [26].

2.2 Computational Methods in Anticancer Drug Response

Prediction

The increase in the amount of digitalized data and available computational power has

prompted research on the integration of AI in anticancer drug response prediction

intending to increase efficacy, reduce side effects, and increase the rates of success

in cancer recovery.

Although conventional machine learning techniques usually result in good perfor-

mance, they are limited in their inherent capability to process raw data. Deep

learning has been demonstrated to be very efficient at extracting hidden and com-

plex patterns in high-dimensional space, resulting in better performance in most

cases [15]. Therefore this approach has been applied to many domains of science,

including image recognition and language translation [27].

The current work in the drug response field is focused on the design of frameworks

that can predict drug sensitivity, i.e., predict how cancer cell lines would respond to

both experimental compounds and drugs that have already been approved. In this

context, several prediction models (deep or not) have been proposed through this

issue [15].
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2.3 Data Representation

2.3.1 Tumor and Cell Line Features

In living beings, genetic information in the cells flows from DNA to the mRNA to

protein. The collection of genes that are transcribed from DNA, also referred to

as the expression profile, is a determinant factor in cellular phenotype and function

[28]. The gene expression profile is commonly defined in a matrix, where each row

represents a gene, and each column represents a sample. In this way, each entry in

the matrix displays the expression level of a particular gene in a sample/cell. Figure

2.3 presents a diagram of the gene expression matrix.

Figure 2.3: Schematic diagram of a gene expression matrix 1.

Similar to the gene expression profile, there are different features that can be used

to characterize the cell lines, usually, somatic mutations, copy number variations,

and other omics (epigenomics, proteomics) [29]. Somatic mutations are generally

represented in a matrix alike gene expression, where a row corresponds to a gene

and a column to a sample. However, in this case, each entry indicates the absence

of mutation or the type of mutation present in the gene. Normally, these somatic

mutation matrixes are binarized (presence/absence of an alteration).

2.3.2 Simplified Molecular-Input Line Entry System

Chemists have different strategies to represent molecules, being the International

Union of Pure and Applied Chemistry (IUPAC) nomenclature the most used. How-

1Figure adapted from https://geneviatechnologies.com/bioinformatics-analyses/rna-seq-data-
analysis/.
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ever, this notation cannot be interpreted by computational methods. To overcome

this problem, notation systems, particularly SMILES, have been developed to able

the representation of molecules independent of the computer system in use [30].

Simplified Molecular-Input Line Entry System (SMILES) is a line notation for de-

scribing the structure of chemical compounds through short ASCII strings. This is

a non-unique representation, i.e., for each molecule can exist several SMILES strings

depending on the atom that started the encoding process. Nonetheless, it has the

advantage of being an extremely compact notation once it does not contain 2D or

3D atom coordinates [31]. The encoding process follows a set of basic rules and

conventions [32]:

• Atoms are represented by their atomic symbols;

• Single, double, triple, and aromatic bonds are represented by ’-’, ’=’, ’#’, and

’:’, respectively;

• Branches are specified in parentheses;

• Cyclic structures are represented by breaking a bond in any order and number-

ing it, followed by the remaining atoms and the repetition of the same number

to designate ring closure. Atoms from aromatic rings are written in lower case;

• Implicit hydrogen atoms can be omitted;

• Explicit hydrogen atoms and charges are specified inside square brackets.

Figure 2.4 presents some examples of chemical compounds and their corresponding

SMILES string.

Figure 2.4: Example of chemical compounds and respective SMILES strings.
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2.4 Review of Machine Learning Approaches

Regarding the context problem, most of the machine learning approaches are super-

vised due to the large drug screening datasets and their capacity to learn patterns

among the data and make new predictions based on the extracted knowledge [33].

Ideally, the data used to train anticancer drug response prediction should come from

patient cohorts however, the majority of the available data is from cell-line screening

experiments. On this account, the prediction of drug response is still a challenge, as

cell lines may not be representative of original tumors. Nevertheless, clinical data

can be used to evaluate or refine the prediction models, improving their applicability

to tumors [15].

In 2012, the National Cancer Institute (NCI) and the Dialogue on Reverse Engineer-

ing Assessment and Methods (DREAM) project presented a community challenge

to predict drug response based on a cohort of genomic, epigenomic, and proteomic

profiles measured in human breast cancer cell lines. The group concluded that gene

expression was the most informative dataset in different approaches, but the combi-

nation of expression data with other omics data can enhance prediction performance.

Similarly, further studies incorporate different types of genomics data applying ML

methods, like SVM, to improve performance [34].

Iorio et al. (2016) integrated different combinations of molecular data, namely gene

expression, somatic mutations, copy number alterations, and DNA methylation, to

predict drug response by elastic nets and random forests models. They concluded

that cell lines can portray the oncogenic alterations presented in tumors, and many

of these alterations are associated with drug response [35].

Huang et al. (2017) used SVM combined with a recursive feature elimination ap-

proach to predict drug responses based on gene expression profiles. The model was

trained on gene expression and drug response data from the National Cancer In-

stitute 60 Human Cancer Cell Line Screen (NCI-60). This study revealed that the

accuracy of the drug response related to a particular cancer type increased when

the model was built on data from a variety of cancer types instead of using just the

information about the same cancer type. This assessment reinforces the growing

evidence that the information for a specific cancer drug response may not be in the

tissue of origin. However, the mechanisms by which genomic signatures are shared

across tissues remain unknown [36].
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2.5 Review of Deep Learning Approaches

Most drug response prediction workflows have been developed based on deep learn-

ing, investigating different types of architectures, in the past few years. Unlike many

traditional ML algorithms, DL can learn lower-dimensional representations of the

input data without prior feature selection and has been shown to achieve better

performance.

The DeepDSC model uses stacked deep autoencoders for dimensionality reduction

and to predict drug sensitivity. First, an AE encodes the gene expression data which

characterize the cancer cell lines. These encoded features are then merged with pre-

computed molecular fingerprints and fed into a fully connected predictive network.

DeepDSC was trained and evaluated on the GDSC dataset, and the authors found

that the model’s performance decreased drastically when testing with unseen drugs,

showing that the model does not generalize well [37].

DeepDR is a deep learning model to predict drug response based on expression

and mutation profiles of cancer cell lines and tumors. The model is composed

of three DNNs: first, a pre-trained expression encoder and a mutation encoder,

both using data retrieved from The Cancer Genome Atlas (TCGA); then, a drug

response predictor that integrates the previous two networks. The model was trained

on cell line data from CCLE and drug response data, measured by log scale of

IC50 values, from GDSC. The DeepDR model achieved low mean square errors,

close to 1.96, outperforming classical methods, like linear regression models and

SVMs. Moreover, the model was applied to TCGA data to prove the applicability

of DeepDR to tumors, and the authors demonstrated that DeepDR was able to

identify novel resistance mechanisms underlying the drug response and new possible

drug targets [38].

Another heterogeneous ensemble called MOLI is composed of three separated en-

coding subnetworks to learn representations from somatic mutations, CNVs, and

gene expression profiles and a final subnetwork that concatenates all the features to

classify the drug response of cell lines. MOLI was trained using GDSC data, and

the authors observed that using multiple omics data was preferable to a single omics

approach [39].

The tCNNS model is composed of two convolutional neural networks branches fol-

lowed by a fully connected network. These separate CNNs learn representations
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from genomic features and compound data, represented by the one-hot encoding of

SMILES strings. Distinct from the previously described methods, the two encoders

are 1D convolutional networks that extract the features of the different types of

data. The model obtained a value of R2 around 0.826 when predicting drug re-

sponse for unknown cell line-drug pairs. However, the model performed much worse

when making predictions for unknown drugs [40].

Another model based on CNN is CDRscan which consists of an ensemble of five

convolutional networks with different architectures. Four of them are a dual con-

vergence model that performs a sequence of convolutions to each input data type

(mutations on cancer cell lines and molecular fingerprints). Subsequently, the con-

voluted features are merged and, then another set of convolutions are applied to

the data before predicting the IC50 values. The remaining model receives all the

descriptors as input and they are convoluted together. CDRscan achieved higher

performance compared to random forest and CNN, reflected in an MSE value of

1.14 and an R2 value of 0.84. The authors demonstrated that the dual conver-

gence models performed better and argued that the ensemble approach improves

the generalizability of the model [41].

Nevertheless, in the last decade, emerged a deep learning technique, named attention

mechanism, addressed to improve the performance of the encoder-decoder model for

NLP and machine translation. Attention in deep learning can be interpreted as a

vector of importance weights, i.e., the attention vector estimates how a pixel in

an image or a word in a sentence is strongly correlated with other elements. The

mechanism allows for the utilization of the most relevant parts of the input sequence

by a weighted combination of all of the encoded input vectors, with the most relevant

values being attributed to the highest weights [42].

This mechanism is now used in diverse problems like image captioning, and it has

already been implemented to predict drug response. PaccMann is a DL model

for drug response prediction that uses a multimodal attention-based convolutional

encoder. This model receives gene expression data and SMILES strings of com-

pounds to predict the IC50. PaccMann is constituted by a gene expression encoder,

a compound encoder, and a final prediction network. The gene expression encoder

incorporates an attention mechanism that generates weights according to the rele-

vance of the input features. Concerning the compound encoder, the authors studied

different architectures and concluded that the attention encoders achieved the best

performance. Also, they show that attention-based SMILES encoders outperformed
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a feedfoward model using Morgan fingerprints [43].

Manica et al. used attention-based encoders that act on gene expression profiles to

focus on genes that are more relevant for IC50 prediction. In addition, they demon-

strated that SMILES attention-encoders performed better than other architectures

like DNNs. So the authors explored different models using attention mechanisms

on GDSC data, and the multiscale convolutional attention (MCA) model surpass

previously reported results. This model is composed of three parallel channels of

convolutions over SMILES strings and another channel to operate on the token level.

To each channel is added a gene attention layer and, then, the processed SMILES

and filtered genes are fed into a multihead of contextual-attention layers. Finally,

the outputs are concatenated and pass through a set of dense layers to predict the

IC50. Although achieving good performance, the range of the predicted values was

narrowed to a small set, and the majority of the tests were done with normalized

IC50 values, which means that the lower error is due to a smaller interval scale [44].

In a similar way, Zuo et al. implemented a deep learning model based on multitasking

and self-attention to predict drug response from cancer genomic signatures and

compound data. The model includes the application of Graph Neural Network

(GNN) to extract drugs’ features into continuous vectors and a convolutional neural

network to encode gene expression and mutations profiles simultaneously. Then,

is applied the self-attention mechanism to integrate the structural similarity into

the vector of gene signature and, lastly, the drug vector and the genetic vector

are concatenated to predict the IC50. The model was trained with genomic data

from CCLE and drug response data from GDSC and outperformed other models by

obtaining a RMSE of 1.16 and a R2 of 0.73 [45].
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Deep Learning Models

This work comprises different deep learning models; accordingly, it is fundamental

to describe them in detail. Thus, this chapter starts by explaining the mechanism

of autoencoders and their application. Afterward, the core principles of RNNs are

presented adjoining specific architectures like Long-Short Term Memory (LSTM)

and Gated Recurrent Units (GRU). Additionally, the fundamentals of Convolutional

Neural Networks (CNN) are explained. Ultimately, the Fully Connected Neural

Network (FCNN) is introduced as the model applied to predict the IC50.

3.1 Autoencoders

An autoencoder is an unsupervised neural network that consists of an encoder and

a decoder. The encoder is a network that maps high-dimensional input data into a

lower-dimensional vector (denoted by latent or context vector). On the other hand,

the decoder is responsible for reconstructing the original data from this lower di-

mension representation. The goal of the training is to minimize the loss between the

original input x and the reconstructed output x̂ (Figure 3.1) through backpropaga-

tion. Therefore, the autoencoder finds the weights for both networks by comparing

the input to its reconstruction without needing target labels [46].

The context vector represents a compression of the original data, and it can be

seen as an encoding of the input that extracts the most informative features from

the high dimensional space [3]. Thereby, the lower the dimensionality of the latent

space, the lower the quality of the reconstruction. It is still important to note that

the available data should match the research goal once the model does not work for

any possible input, i.e., it works with data that belong to the same distribution as

the training data. So, it learns how to efficiently compress data and reconstruct this

reduced encoded representation to a representation as close to the original input as
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Figure 3.1: Schematic diagram of an autoencoder.

possible [47].

A traditional approach for dimensionality reduction is Principal Component Anal-

ysis (PCA). This technique is an orthogonal linear transformation of data into a

lower-dimensional space such that the squared reconstruction error is minimized.

Although having a similar objective to PCA, autoencoders often obtain a superior

reconstruction due to the non-linearity activation functions [46].

3.2 Recurrent Neural Networks

Recurrent Neural Networks (RNNs) are a class of neural networks designed to pro-

cess sequential data, such as speech, language, and molecules. These networks

examine an input sequence one element at a time, taking into account the history

of all the past elements to predict future outputs [26].

RNNs have loops that can keep a sort of memory to allow the information to persist

throughout time. This memory is kept in a vector designated as the hidden state

ht, which stores the states of previous inputs to generate the next output of the

sequence. Therefore, in each time step t, the output ŷt depends not only on the

current input xt but also on the previous hidden state ht−1. Additionally, the RNN

cell produces an updated hidden state, ht, that will be included in the following time

step. The mathematical formalism that describes the RNN mechanism is represented

in Equations 3.1 and 3.2 [48]:

ht = σ1(Whxxt +Whhht−1 + bh) (3.1)

ŷt = σ2(Wyhht + by) (3.2)
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where σ1 and σ2 represent activation functions, generally, tangent and softmax,

respectively; Whx, Whh, and Wyh are weight matrices (input-to-hidden, hidden-to-

hidden, and hidden-to-output, respectively), and bh and by are bias vectors.

The left side of Figure 3.2 represents an RNN with a single recurrent layer, whereas

the right side shows the unfolding of an RNN. The unfolded representation enables

the visualization of how the network processes a complete sequence and how the

hidden states are updated at each time step [26]. Compared to other ANNs, the

RNNs reduce their complexity since the layers are independent, i.e., they do not

memorize the previous outputs. Besides, weights and biases are the same for all lay-

ers, and therefore these layers can be joined into a single recurrent layer, decreasing

the number of training parameters. It is also worth noting that this architecture is

able to process inputs of different sizes, and the size of the input does not increase

the size of the model [49].

Figure 3.2: Schematic diagram of a recurrent layer and the respective unfolding
representation.

In order to train a network, the loss should be computed and then backpropagated.

In this specific case, the loss function L corresponds to the sum of the losses at each

time step, and the backpropagation is done at each point in time (backpropagation

through time) by differentiating the loss L concerning weight matrix W as expressed

in Equation 3.3 [50].

∂L(T )

∂W
=

T∑
t=1

∂L(T )

∂Wt

(3.3)

RNN is distinguishable from other types of ANN by being a simple and powerful

model capable of processing sequential data, however, in practice, it has difficulties
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handling long-term dependencies. In fact, there is empirical evidence showing that

it is hard to store information for very long [26], which can lead to exploding and

vanishing gradients. The vanishing gradients arise when the gradients become expo-

nentially smaller near zero, making it impossible to train the network. On the other

side, exploding gradients occur when there is a large increase in the gradients during

training. To tackle this problem, were proposed other networks, such as LSTMs and

GRUs, specifically to avoid these problems [48].

3.2.1 Long Short-Term Memory

Long Short-Term Memory (LSTM) networks are a form of RNN designed to avoid

problems that involve long-term dependencies. These architectures comprise a

blockchain with gates that help control information flow. The key to LSTMs is

the cell state that acts as ”memory” by allowing information from previous inter-

vals to be stored within the LSTM cell. The gate units decide when to keep or

override information in the memory cell through a sigmoid neural net layer and a

pointwise operation, which can be a sum or a multiplication [51]. Each sigmoid

layer outputs a vector of values in the range [0,1], where a value of zero means that

no information is retained, while a value of one means all the information is kept.

Figure 3.3 demonstrates the structure of the ”memory” blocks that compose the

LSTM and how they interact [52].

Figure 3.3: LSTM architecture 1.

1Figure from [52].
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The cell state Ct can be described as the global memory of the LSTM network over all

time steps. Therefore, it is dependent on three things: the long-term memory of the

network, i.e., the previous cell state Ct−1, the output at the previous point in time,

called the hidden state ht−1, and the input data at the current time step xt [53].

Figure 3.4 represents the cell state that enables a continuous flow of information

without vanishing gradients problems.

Figure 3.4: LSTM cell state 2.

An LSTM cell comprises four steps that are supported by Equations 3.4 to 3.9 [52].

• Forget gate (Figure 3.5a): the forget gate is the first step, and it determines

which information is relevant from the previous hidden state and from the cur-

rent input. This network generates a vector that is passed through a sigmoid

function and then pointwise multiplied with the previous cell state.

ft = σ(Wf · [ht−1, xt] + bf ) (3.4)

• Store (Figure 3.5b): this step, which includes two phases, decides what new

information should enter the cell state, given the previous hidden state and

new input data. First, similarly to the forget gate, the input gate has a sigmoid

activation function that acts as a filter and identifies which components of the

”new memory vector” are worth retaining. Second, the input data is passed

through a tanh layer that creates a new vector C̃t which is composed of new

candidates that could be added to the cell state.

it = σ(Wi · [ht−1, xt] + bi) (3.5)

2Figure from [52].
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C̃t = tanh(WC · [ht−1, xt] + bC) (3.6)

• Update (Figure 3.5c): the old state Ct−1 is multiplied by ft (first term of

Equation 3.7) to forget the information that was defined in step 1. Then, the

output of step 2 is pointwise multiplied, and the combined vector is added to

the cell state (second term of Equation 3.7), resulting in the long-term memory

of the network Ct being updated.

Ct = ft ∗ Ct−1 + it ∗ C̃t (3.7)

• Output gate (Figure 3.5d): the output will be based on the newly updated

cell state, the previous hidden state, and the new input data. First, ht−1

and xt are passed through the sigmoid-activated neural network to obtain a

filtered vector. Second, a tanh layer is applied to the newly updated cell state.

Finally, the vectors resulted from these two processes are pointwise multiplied

to output the new hidden state ht.

ot = σ(Wo · [ht−1, xt] + bo) (3.8)

ht = ot ∗ tanh(Ct) (3.9)

3.2.2 Gated Recurrent Units

The above mechanism describes the most general version of LSTMs, however, over

the years, other variants of this architecture have been proposed. One of the most

successful approaches is the Gated Recurrent Units (GRU), which is simpler due to

having fewer training parameters. Instead of three gates, GRU replaces the forget

and input gates with reset and update gates and merges the cell state and the output

gate. Therefore, the hidden state ht is the only output and is determined by the

following expressions (Equations 3.10 to 3.13):

rt = σ(Wr · [ht−1, xt] + br) (3.10)

h̃t = tanh(W · [rt ∗ ht−1, xt] + b) (3.11)

zt = σ(Wz · [ht−1, xt] + bz) (3.12)

3Figure from [52].
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(a) Forget gate. (b) Store.

(c) Update of the cell state. (d) Output gate.

Figure 3.5: Steps to update an LSTM cell 3.

ht = (1− zt) ∗ ht−1 + zt ∗ h̃t (3.13)

The reset gate decides the amount of past information from the previous hidden

state that should be forgotten. Similar to LSTMs, a sigmoid function filters this

information generating a vector rt, which values belong to the interval between 0 and

1. Then, the new cell state h̃t is obtained from vector rt. The update gate determines

the amount of previous information, i.e., from previous time steps, that needs to pass

along to the next state. So, the gate outputs a vector zt which is combined with the

cell state h̃t to obtain the final hidden state ht. Figure 3.6 represents the diagram

of GRU architecture and the respective flow of information [54].

3.3 Convolutional Neural Network

Convolutional neural networks (CNNs) are a type of neural network that can detect

patterns from data composed of multiple arrays. There are three main types of

CNNs: 1D for signals and sequences; 2D for images [55] and voice recognition; and

3D for video or volumetric images.

4Figure from [52].

25



3. Deep Learning Models

Figure 3.6: GRU architecture 4.

Figure 3.7 presents the basis of a CNN architecture. The convolutional layers are

the main layers of this architecture, and their objective is to condense the input

by extracting relevant features and producing feature maps used as input in the

following layer. In the first convolutional layer, neurons filter simple features like

edges. The neurons in the next layers learn to compile the information to obtain a

bigger picture of the input, detecting high-order features [56].

Figure 3.7: CNN architecture 5.

The basic units that constitute the convolutional layers are filters, which corre-

spond to arrays of weights that spread along with the entire input. When the data

5Figure from https://medium.com/techiepedia/binary-image-classifier-cnn-using-tensorflow-
a3f5d6746697.
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encounter a convolutional layer, the layer convolves each filter across the spatial

dimensionality of the input to produce a feature map. The final number of feature

maps corresponds to the number of filters in the layer [57]. Initially, the weights of

the filters are randomized, but during training are updated according to the objec-

tive.

Convolution is the key operation of this network, and its described as an element-

wise product between each element of the kernel and each location of the input

tensor, followed by the sum of all the results (Figure 3.8). Afterward, an activation

function, e.g., ReLU, is applied on every element of the output of the convolution

layer [56].

Figure 3.8: Convolution operation with zero-padding and stride equals to 1.

The output size of each feature map can be given by:

Output size =
Input size− Filter size+ 2 ∗ Padding

Stride
+ 1 (3.14)

The distance between two successive filter positions is designated as a stride, which

also characterizes the convolution operation. Usually, this value is 1 in both direc-

tions, however, a stride superior to 1 can be used in order to reduce the samples of

the feature maps.

Depending on the problem, padding and pooling are other hyperparameters that

could be set before the training process starts to improve the model’s performance.

Padding, typically zero-padding, is a simple process of adding zeros on the borders

of the input to give further control of the dimensionality of the output volumes [57].

On the other hand, pooling is an alternative technique to perform the downsampling

of the feature maps. Pooling reduces width and height by substituting a specific
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location with the result from an operation performed on the nearby values. Max-

pooling and average-pooling are the most used pooling approaches in CNNs, where is

extracted the maximum and the average value, respectively, within a selected neigh-

borhood area of the feature map. This process allows decreasing the computational

power required to process the data and extracting dominant features with a trans-

lation invariance to small shifts and distortions. It is worth noting that, contrary

to height and width, the depth dimension of feature maps remains unchanged [56].

The output of a pooling layer is given by the following expression.

Output pooling =
Input size− Pool size

Stride
+ 1 (3.15)

Figure 3.9 represents the pooling operation, which reduces the spatial size of each

feature map by extracting a representative feature (maximum or mean). The re-

sulting feature vector is then used as the input of an FCNN architecture.

Figure 3.9: Pooling operation and the resulting feature vector.

3.4 Fully Connected Neural Network

Fully Connected Neural Networks (FCNNs) are analogous to traditional forms of

ANNs, where all the neurons are interlinked, i.e., each node in a fully-connected

layer is directly connected to every node in both the previous and the next layers

(Figure 3.10).

6Figure from https://www.gabormelli.com/RKB/Fully-Connected Neural Network
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Figure 3.10: Fully Connected Neural Network Architecture with 2 hidden layers
6.

Due to the considering number of nodes and connections, the FCNN comprises many

parameters that require complex computational. Therefore, the dropout technique

removes nodes and connections to obtain a simpler network [58].

3.5 Regularization Techniques

Underfitting occurs when the model performs poorly on the training data and on

the test set. On the other side, overfitting occurs when the model performs well on

the training data but does not perform well on the test set [59]. So, regularization

techniques are a set of methods used to prevent overfitting by improving the gen-

eralization of the model and, consequently, reducing the generalization error. On

the other hand, a simpler model can lead to underfitting. Therefore, it is crucial

to choose the appropriate complexity in the model. The following are the most

commonly used regularization techniques:

• Dropout: Dropout is a form of regularization that randomly drops some

nodes in a fully connected layer (Figure 3.11), i.e., the contribution of the

node to the corresponding activation function is set to 0, and, consequently,

the gradients for these nodes drop to zero as well [56]. This method ensures

that the network learns a more robust set of features that perform equally

well with random subsets of the node selected. So, the network can learn a

better-generalized mapping from input to output, enabling the reduction of

overfitting [60].
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Figure 3.11: Dropout randomly removes neurons from a network while training 7.

• Batch Normalization: The goal of this technique is to overcome a phe-

nomenon designated as internal covariate shift, which describes the change in

the distribution of network activations due to the change in network parame-

ters during training [61]. So, batch normalization normalizes the input values

of the following layer, improving gradient flow through the network, avoiding

exploding or vanishing gradients, and preventing overfitting.

• Early Stopping: Early stopping allows for interrupting the training process

if there is no improvement of the evaluation metric in a pre-chosen number of

epochs. Accordingly, early stopping requires a validation set, therefore, some

samples are not fed into the model, decreasing the size of the training data.

However, it has the advantage of requiring almost no changes in the training

procedure. Whenever the error on the validation set improves, is stored a copy

of the model parameters, so once the training algorithm finishes, it is possible

to recover the best set of parameters [62].

• Reduce Learning Rate on Plateau: This technique reduces the learning

rate once it hit a plateau, i.e., the point when the change in loss is less than a

threshold θ. Learning rate is one of the most critical hyperparameters. While

increasing the learning rate allows the model to learn faster, it may result in

a non-optimal final set of weights. However, a smaller learning rate may allow

the model to acquire an optimal set of weights, but it will take too long to

7Figure from https://www.oreilly.com/library/view/tensorflow-for-
deep/9781491980446/ch04.html
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train. So, this callback, as represented in Figure 3.12, is designed to reduce

the learning rate when the model stops improving with the hope of fine-tuning

model weights [63].

Figure 3.12: Reduce learning rate on plateau 8.

8Figure adapted from https://cntk.azurewebsites.net/pythondocs/Manual How to use learners.html
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Methods

This chapter presents a general overview of the proposed drug response framework.

This work can be divided into two main steps. First, two autoencoders were imple-

mented to apprehend the genetic features of tumors. Both are previously trained so

that the knowledge can be transferred to a prediction model whose goal is to accu-

rately predict the half-maximal inhibitory concentration. Therefore, in the second

step, two types of deep neural networks were explored: Recurrent Neural Networks

and Convolutional Neural Networks. The recurrent model resorts to LSTM and

GRU cells, while the convolution model comprises a series of convolution layers.

Both models are trained using cancer cell line features and SMILES strings as input

data. Finally, the effect of the different hyperparameters on the efficiency of the

models is evaluated.

4.1 Data Preprocessing

Gene Expression and Gene Mutation

There are many procedures to decode phenotypic information from RNA-sequencing

(RNA-seq) concerning the gene expression data. In this study, we analyze two

types of gene expression quantification, namely TPM and RSEM. TPM stands for

transcripts per million; in other words, if TPM equals 4 for gene BRCA, for ev-

ery 1,000,000 RNA molecules in the RNA-seq sample, four molecules came from

that gene [64]. On the other hand, RSEM represents RNA-Seq by Expectation-

Maximization and is a software tool that has proven to achieve better performance

than other quantification methods. This algorithm consists of two steps, first calcu-

lates expected read counts given current expression levels and then computes expres-

sion values maximizing likelihood given expected read counts [65]. Thus, the expres-

sion data was normalized according to the quantification method, log2(TPM + 1)
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for TPM data, and a z-score transformation was applied to RSEM data.

The mutation data is constituted by Mutation Annotation Format (MAF) files,

which integrate the discovered or validated mutations and the respective category

of these mutations. We only considered four types of non-synonymous mutations,

particularly missense and nonsense mutations and frameshift insertions and dele-

tions, which have proven to be the best candidates for pathogenic variants [66].

Missense mutations and nonsense mutations are characterized by coding a different

amino acid and interrupting protein synthesis before it is completed. Frameshift

mutations are caused by a nucleotide deletion or insertion in a DNA sequence that

shifts the grouping for all downstream amino acids, usually resulting in a nonfunc-

tional protein [67]. In this way, the mutation data was expressed in binary matrices,

where 0 represents wild-type, and 1 represents a mutation.

Drugs

SMILES strings were used as the drugs’ input data, each composed of a unique

set of characters representing the chemical structure. Therefore, each character is

considered a feature, and in order to have the same amount of features, is defined a

threshold for the length of the SMILES strings. Accordingly, this threshold was set

to 90.

There are different ways of encoding categorical data, but in the present work,

embedding was used to convert SMILES strings. The preprocessing of this technique

is represented in Figure 4.1 and comprehends three steps: tokenization, padding, and

encoding. Tokenization involves converting data into unique characters (tokens) that

characterize all the essential information based on a dictionary with all the existing

tokens. Then, the padding of the SMILES strings assures that all sequences have the

same size. So, SMILES that have a size smaller than the pre-defined threshold are

padded with a character until they reach the same size, in this case, character ’A’.

Finally, the SMILES strings are transformed into an encoded vector. In this type

of encoding, each token is converted to the correspondent index in the previously

constructed dictionary. It is important to note that atoms composed of two letter

symbols (e.g. Br and Cl) and sections of SMILES enclosed in brackets (e.g. [N+]

and [C@@H]) were considered as a single token.

The embedding layer works as a lookup table that transforms each encoded token

into a fixed-length dense vector, resulting in a matrix of size |(dictionary length)

x (embedding dimension)|. The embedding values are trainable parameters, i.e.,
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Figure 4.1: Encoding of the compound Dimethyloxalylglycine.

weights initially random that allow the model to obtain its own representation for

each token. So, as represented in Figure 4.2, the output of the embedding layer

is a matrix of size |(input data length) x (embedding dimension)| that is given as

input to the following layers [68]. This approach is particularly interesting because

it can reduce the dimensionality over one-hot encoding as it enables the control of

the number of features, and it is capable of learning the context of a token so that

similar tokens have similar embeddings [69].

Figure 4.2: An encoded vector is passed through an embedding layer, i.e., each
encoded drug is converted into a fixed length vector of defined size.

4.2 Autoencoders Module

The autoencoders modules are adopted to map a high-dimensional space into a

lower-dimensional representation. In the present study, each cell line was repre-
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Figure 4.3: The general framework of the autoencoders with mutation and ex-
pression profiles of TCGA dataset to extract crucial features from high-dimensional
data.

sented with more than a thousand genes, resulting in a considerable amount of

data. Therefore, it can be obtained a reduced dimension of complex data with the

crucial features captured from the original observations by using autoencoders. In

this manner, two autoencoders were pre-trained with TCGA expression and muta-

tion data to acquire high-order features. The encoder contains five dense layers, each

followed by batch normalization and dropout, to make the model more flexible and

the latent vector more robust. For the decoder, the context vector serves as input

to a set of layers that are symmetric to the encoder’s layers. The autoencoders are

trained using the mean squared error (MSE) between the input and the predicted

output as the loss function, and the NN weights are then updated using the Adam

optimizer.

Figure 4.3 shows the architecture of the proposed autoencoder applied to train with

gene expression and mutation data separately. This model is used to recover the

weights that are expertise in the features of this domain. Later, this information is

applied to novel data to improve the prediction task so that the predictor can have

a better starting point than from scratch.

4.3 RNN Prediction Model

Figure 4.4 illustrates the structure of the proposed prediction model that consists of

three modules: two encoders to apprehend the genetic features of the cell lines and

an RNN architecture to capture the SMILES strings’ characteristics of the drugs.

First, we implemented expression (Figure 4.4a) and mutation encoders (Figure 4.4b)
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Figure 4.4: The general workflow of the proposed prediction model. (a) Gene
expression encoder. (b) Mutation encoder. Both encoders were trained with CCLE
data and initialized with the weights of the pre-trained autoencoders. (c) SMILES
RNN structure: an RNN architecture is used to capture the relevant features of
SMILES strings from the PubChem dataset. (d) Regularized Feedforward Predictor
ingests the genetic’s and drug’s deep representations to predict the IC50 value that
demonstrates the correlation between a cell line and a drug.

that were initialized with the weights of the pre-trained autoencoders. Thus, the

two encoders have the same architecture as the encoders from the autoencoders with

the best performance. In their training data, we included the CCLE dataset.

Furthermore, in order to incorporate the relevant information that underlies the

structure of each drug, was implemented an approach based on RNNs and SMILES

notation (Figure 4.4c). The architecture of the RNN is suitable for processing se-

quential data once it possesses memory stems that are able to take into account

the previous data to predict future outputs. Thereby, two types of RNN layers

were tested, Long Short-Term Memory (LSTM) and Gated Recurrent Units (GRU).

LSTM is used to solve problems that involve long-term dependencies and, typically,

is more accurate on a larger dataset. On the other hand, GRU uses fewer training

parameters and accordingly uses less memory and executes faster than LSTM.

Therefore, first, the drugs’ SMILES strings shorter than the maximum length were

padded. Then a dictionary-based approach was considered to encode the SMILES
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strings into integers based on the number of different tokens, resulting in a 34-token

dictionary. After this processing, the dictionary-encoded SMILES string is passed

through an embedding layer, followed by two RNN layers and one dense layer.

The resulting deep representations from expression and mutation encoders and RNN

are then concatenated into a single feature vector, combining the most relevant

sequential and structural features, and used as input for the regularized feed forward

neural network (Figure 4.4d). Between dense layers is introduced a dropout layer

to prevent overfitting. Finally, an output layer is added, which is composed of

one neuron that returns the real-valued impact of genetic variants on a given drug

measured in log10(IC50).

4.4 CNN Prediction Model

Furthermore, a model based on convolutional neural networks was built to explore

the applicability of this type of architecture in the prediction of the half-maximal

concentration. Figure 4.5 exhibits the framework of the proposed prediction model

that, similar to the previous model, consists of three modules: two encoders to

capture the genetics beyond the cell lines and a CNN architecture to extract the

SMILES strings’ characteristics of the drugs. First, the weights of the pre-trained

autoencoders were fed into the new expression and mutation encoders, analogous to

the RNN-based architecture, and included the CCLE dataset as their training data.

After passing through the encoders, the resulting deep representations, once they

are both related to the genes that are more relevant, were multiplied to compose a

feature map describing the genetics of each cell line. At that point, the feature map

is fed into two convolutional layers to uncover deep patterns present in the genetics.

Finally, a pooling layer is applied to reduce the spatial size of each feature map to

its maximum or mean representative feature, depending on the type of pooling used.

Moreover, to incorporate the relevant information of each drug, it was implemented

an approach based on SMILES notation and, also, on CNNs. Once again, first,

the drugs’ SMILES strings shorter than the maximum length were padded, and a

dictionary-based approach was considered to encode the SMILES strings. Afterward,

the dictionary-encoded SMILES string is passed through an embedding layer. The

deep representation obtained from this layer is seen as a feature map that is fed into

two CNN layers, followed by a pooling layer.

The resulting deep representations from both pooling layers are then concatenated
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Figure 4.5: The general workflow of the proposed prediction model. (a) Gene
expression encoder. (b) Mutation encoder. Both encoders were trained with CCLE
data and initialized with the weights of the pre-trained autoencoders. (c) SMILES
CNN structure: a CNN architecture is used to capture the relevant features of
SMILES strings from the PubChem dataset. (d) Fully Connected Predictor in-
gests the genetic’s and drug’s deep representations to predict the IC50 value that
demonstrates the correlation between a cell line and a drug.

into a single feature vector, combining the most relevant features of the input data,

and used as input for the fully connected neural network. Between dense layers is

introduced a dropout layer to prevent overfitting. At last, an output layer is added,

which is composed of one neuron that returns the half-maximal concentration in

log10(IC50).

4.5 Evaluation Metrics

Different metrics can be used to evaluate the model’s performance. The choice of

the metrics depends on the context of the problem and the target of the model. In

this case, the model aims to predict a set of continuous values, and therefore it is

necessary to use metrics designed to evaluate regressions. It is worth noting that,

in some applications, looking at a single metric can be misleading, and finding a

trade-off is essential to have a whole picture of the problem.

For performance comparison, the following metrics were used:

• Mean Square Error (MSE): average squared error between the predicted
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and actual values.

MSE =
1

N

N∑
i=1

(yi − ŷi)2 (4.1)

• Root Mean Square Error (RMSE): square root of mean squared error.

RMSE =

√√√√ 1

N

N∑
i=1

(yi − ŷi)2 (4.2)

• Coefficient of determination (R2): measures how well observed outcomes

are replicated by the model.

R2 = 1−
∑

(yi − ŷi)2∑
(yi − y)2

(4.3)

, where yi represents the true values and ŷi the predicted values.
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Results and Discussion

This chapter starts with a description of all data used to train, validate and test

both autoencoders and the prediction models. Then, the performed experiments

to optimize the autoencoders are presented along with the obtained results. Fur-

thermore, after finding the best parameters that guarantee the implementation of

the autoencoders, some optimization experiments were carried out to explore the

efficiency of the prediction models and the respective results are stated. Nonethe-

less, both models, the one based on RNN and the other on CNN, need to be able

to accurately predict the half-maximal inhibitory concentration in order to validate

its performance and therefore establish a relation between the drug and the genetic

variant.

5.1 Datasets

The dataset used to pre-train the two autoencoders includes 36 pan-cancer tumors

belonging to The Cancer Genome Atlas (TCGA) program. Thus, the TPM data

along with the tumors’ mutations were collected from the UCSC TumorMap [70], and

the RSEM values and the respective mutations from the Firebrowse database [71].

Meanwhile, the omics data used to train the predictor belong to the Cancer Cell Line

Encyclopedia (CCLE) database and was downloaded from CTD2 Data Portal [72],

and again both expression normalization were collected.

To establish the correlation between drugs and the cell lines, we also obtained

drug response measured across 996 cell lines with 265 anticancer drugs by the half-

maximal inhibitory concentration (IC50) from the Genomics of Drug Sensitivity in

Cancer (GDSC) Project. The IC50 was measured in µM and is represented in log

scale. Finally, the SMILES strings were extracted from PubChem based on the

compound nomenclature presented in the GDSC database [73].
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Overall, in this study, we analyzed 604 cell lines with available expression, mutation,

and IC50 data related to 224 drugs, resulting in 109,337 trios of mutation, expression,

and SMILES vectors. The range of the log10(IC50) was from -9.00 to 12.8 with a

standard deviation of 2.49.

Both datasets, i.e., TCGA and CCLE, utilize a large set of genes (over 10,000) to

define each tumor and cell line, respectively. As a result, utilizing the complete set

of genes required a huge computational effort and a more complex model. Hence, we

decided to select the most informative genes among the 2128 genes explored in [44]

to overcome this problem. After narrowing the data to these genes, we obtained

1954 genes for RSEM data and 1428 for TPM data.

5.2 Experimental Analysis and Results

5.2.1 Autoencoders

This section describes the experimental analysis and the grid search strategy that

was employed to find the best architecture and set of parameters for both autoen-

coders (gene expression and mutation). This model aims to convert the gene expres-

sion and mutation profiles into latent space vectors and reconstruct them correctly.

The smaller the mean squared error, the better the model’s generalization.

The optimized architecture for this model was determined using five-fold cross-

validation. The dataset is divided into 85% for training/validation and 15% for

testing. Then, the training/validation data is divided into five folds to train the

same amount of models, and these models are ultimately evaluated with an external

test set. In order to evaluate the effect of each hyperparameter, several experiments

were conducted with 5 epochs of 5-fold validation in each epoch. Rectified Linear

Unit (ReLU) was chosen as the activation function for each dense layer, except the

final output layer that uses a linear activation function. Regarding the optimizer

function, Adam was used to adjust the network weights in each iteration of the

training process, and the selected loss function was the mean squared error (MSE).

Table 5.1 shows the results obtained when keeping all the hyperparameters fixed

except the number of layers and the respective hidden neurons of each layer. The

batch normalization momentum was set to 0.99, the dropout to 0.2., and the batch

size to 64. As can be noted, in each case, mutation autoencoder reflects the lowest

error as they capture features from binary data, while gene expression autoencoders
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cover a range of values from -1.78 to 37.25. However, the model with five layers

outperformed the model with six layers. For this reason, five encoder layers were

used for the following experiments.

Table 5.1: Results for different number of layers and hidden neurons - Autoen-
coders (Batch size=64, Batch normalization momentum=0.99, Optimizer=Adam,
Dropout=0.2).

Type
of Data

No. of
Layers Hidden neurons

MSE
Exp

RMSE
Exp

MSE
Mut

RMSE
Mut

RSEM
6

5

[4096,2048,1024,512,256,128]

[4096,2048,1024,512,128]

0.6287

0.6065

0.7929

0.7788

0.0086

0.0072

0.0926

0.0848

TPM
6

5

[4096,2048,1024,512,256,128]

[4096,2048,1024,512,128]

0.4385

0.3921

0.6622

0.6262

0.0058

0.0062

0.0764

0.0788

Regarding the number of batch sizes, the results of the experiments are shown in

Table 5.2 from which it can be concluded that a batch size of 64 produces a model

with better generalization capabilities.

Table 5.2: Results for different number of batch size - Autoencoders (Dense lay-
ers=5, Batch normalization momentum=0.99, Optimizer=Adam, Dropout=0.2).

Type of Data Batch size
MSE
Exp

RMSE
Exp

MSE
Mut

RMSE
Mut

RSEM

32

64

128

0.6266

0.6065

0.6371

0.7916

0.7788

0.7982

0.0116

0.0072

0.0097

0.1079

0.0848

0.0983

TPM

32

64

128

0.4141

0.3921

0.4571

0.6435

0.6262

0.6761

0.0087

0.0062

0.0085

0.0932

0.0788

0.0920

After setting the batch size to 64, the effect of using different dropout rates (0.1,

0.2, and 0.3) was evaluated. According to Table 5.3, a dropout value of 0.1 returned

the best results in the test set.

After finding the best hyperparameters, both autoencoders were trained using 80%

for training, 10% for validation, and 10% for testing, and the models were saved to

apply later to the predictor. The number of epochs was set to 100, however reduce

learning rate on plateau and early stopping were used to prevent overfitting.
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Table 5.3: Results for different number of dropout - Autoencoders (Dense layers=5,
Batch size=64, Batch normalization momentum=0.99, Optimizer=Adam).

Type of Data Dropout
MSE
Exp

RMSE
Exp

MSE
Mut

RMSE
Mut

RSEM

0.1

0.2

0.3

0.5957

0.6065

0.6508

0.7718

0.7788

0.8067

0.0067

0.0072

0.0097

0.0820

0.0848

0.0983

TPM

0.1

0.2

0.3

0.3890

0.3921

0.4107

0.6237

0.6262

0.6409

0.0049

0.0062

0.0063

0.0699

0.0788

0.0791

5.2.2 Prediction Model - RNN

The primary purpose of the first set of tests realized regarding the autoencoders

is to analyze and evaluate the set of parameters that obtains the lowest error in

the reconstruction of genetic information. Therefore, transferring the weights of the

encoders to the prediction model can be seen as the starting point for the training

process followed by their update in response to this new problem.

Similarly to the previous section, it is presented a description of the experimental

analysis and the grid search strategy that was employed to find the best architecture

and set of parameters for the prediction model based on RNNs. This model aims to

predict the half-maximal inhibitory concentration through the gene expression and

mutation profiles of the cell lines and the SMILES strings that represent the drugs.

The smaller the mean squared error and the higher the coefficient of determination,

the better the model’s generalization.

The optimized architecture for this model was determined using 80% for training,

10% for validation, and 10% for testing. In order to evaluate the effect of diverse

hyperparameters, several experiments were conducted with 100 epochs. Once again,

Rectified Linear Unit (ReLU) was chosen as the activation function for each layer,

except for the final output layer that uses a linear activation function. The model

was trained using the Adam Optimizer, and the loss function was the mean squared

error (MSE). Furthermore, early stopping with the patience of 10 and reducing the

learning rate on plateau were also applied to avoid too-tight adjustment for the

training data. Too many epochs can result in overfitting, whereas too few may

lead to an underfitted model. Thus, it is possible to adopt a large number of epochs
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because the training process finishes when the model’s performance does not improve

in the validation subset.

The first experiments performed comprise keeping all the hyperparameters fixed

except for the type of recurrent neural network, i.e., Long Short Term Memory or

Gated Recurrent Units. Table 5.4 shows the results obtained when training the

model with a number of RNN Units of 128, a batch size of 128, and a dropout rate

of 0.1. The decoder comprises 3 layers with the units 512, 256, and 128, in the order

specified.

Table 5.4: Results for different types of RNN layers - RNN model (RNN Units=128,
Decoder layers=[512, 256, 128], Batch Size=128, Dropout rate=0.1).

Type of Data Type of RNN MSE RMSE R2

RSEM
LSTM

GRU

1.2326

1.0952

1.1102

1.0465

0.7791

0.8036

TPM
LSTM

GRU

1.2024

1.1247

1.0965

1.0605

0.7836

0.7990

The results revealed that the architecture of GRU yielded better results than the

LSTM and, therefore, the type of RNN was defined as GRU in the following experi-

ments. Regarding the number of GRU units, the results are shown in Table 5.5 from

which it can be concluded that 128 units produce the model with better efficiency.

Table 5.5: Results for different number of RNN units - RNN model (Type of
RNN=GRU, Decoder layers=[512, 256, 128], Batch Size=128, Dropout rate=0.1).

Type of Data RNN Units MSE RMSE R2

RSEM

64

128

256

1.2360

1.0952

1.1040

1.1118

1.0465

1.0507

0.7793

0.8036

0.8014

TPM

64

128

256

1.1530

1.1247

1.2297

1.0739

1.0605

1.1089

0.7931

0.7990

0.7798

After setting the number of RNN units to 128, was evaluated the effect of using a

different number of layers in the decoder. According to Table 5.6, hidden units of

512, 256, and 128, respectively, returned the best results.

45



5. Results and Discussion

Table 5.6: Results for different number of decoder layers and respective units
- RNN model (Type of RNN=GRU, RNN Units=128, Batch Size=128, Dropout
rate=0.1).

Type of Data Decoder Units MSE RMSE R2

RSEM
[512,256,128]

[256,128]

1.0952

1.1425

1.0465

1.0886

0.8036

0.7869

TPM
[512,256,128]

[256,128]

1.1247

1.1874

1.0605

1.0897

0.7990

0.7870

Afterward, the impact of the number of batch sizes was also evaluated and the

results are summarized in Table 5.7. The model with a batch size of 128 returned

the best performance.

Table 5.7: Results for different number of batch size - RNN model (Type of
RNN=GRU, RNN Units=128, Decoder layers=[512, 256, 128], Dropout rate=0.1).

Type of Data Batch Size MSE RMSE R2

RSEM

64

128

256

1.1121

1.0952

1.1459

1.0546

1.0465

1.0704

0.8013

0.8036

0.7954

TPM

64

128

256

1.1253

1.1247

1.1286

1.0608

1.0605

1.0623

0.7980

0.7990

0.7969

As a final experiment, the effect of using different dropout rates: 0.05, 0.1, and 0.2

was evaluated and presented in Table 5.8. As expected, the higher the dropout rate,

the lower the performance of the model once a higher dropout rate introduces a

significant amount of noise in the data.

In summary, despite having a higher error in autoencoders’ performance, the model

achieves better performance when using RSEM expression data instead of TPM

data. These results demonstrate that the additional noise with dropout and batch

normalization layers can produce a more robust model once a higher error in au-

toencoders does not correspond to the worst performance in the prediction model.

Figure 5.1 summarizes the obtained results for the RNN predictor. The x-axis shows

the real IC50 values, and the y-axis shows the corresponding predictions. The goal is
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Table 5.8: Results for different number of dropout rates - RNN model (Type of
RNN=GRU, RNN Units=128, Decoder layers=[512, 256, 128], Batch Size=128).

Type of Data Dropout MSE RMSE R2

RSEM

0.05

0.1

0.2

1.0753

1.0952

1.2636

1.0370

1.0465

1.1241

0.8025

0.8036

0.7773

TPM

0.05

0.1

0.2

1.1089

1.1247

1.3575

1.0530

1.0605

1.1651

0.8006

0.7990

0.7592

to have the points as close as possible to the diagonal line (perfect model). Thus, the

dispersion of the points close to the diagonal line confirms the model’s capacity to

extract representative features of mutations, gene expression, and SMILES strings.

Figure 5.1: Predictions of log10(IC50) from the proposed model with RNNs against
the true values for the testing set, where the diagonal line is the reference line
(predicted = true value).

5.2.3 Prediction Model - CNN

After implementing the prediction model based on RNNs and finding the best hy-

perparameters, a new prediction model based on CNN was built to explore this

type of architecture and try to surpass the previous results. The model aims to,

once again, accurately predict the IC50 using gene expression, gene mutation, and
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SMILES vectors. The main difference is that the CNN layers will see the data as

feature maps instead of a sequence of values.

Below is described the experimental analysis and the grid search approach that was

implemented to find the best architecture and set of parameters for the prediction

model based on CNNs. The metrics used to evaluate the model were the mean

squared error, the root mean squared error and the coefficient of determination.

The architecture for this model was determined using 80% for training, 10% for

validation, and 10% for testing. Different tests were conducted with 100 epochs,

however early stopping with the patience of 10 and reducing the learning rate on

plateau were also applied. The model was trained using the Adam Optimizer, and

the loss function was the mean squared error (MSE).

Initially, the experiments realized kept all the hyperparameters fixed except for the

CNN filters in the CNN layers. Table 5.9 shows the results obtained when training

the model with a filter length of 4 and 5, in this order, a batch size of 128, and a

dropout rate of 0.05. The type of pooling chosen was the max-pooling.

Table 5.9: Results for different number of CNN filters - CNN model (Decoder
dense layers=[256, 128], Filter length=[4,5], Type of pooling=max, Batch size=128,
Dropout=0.05, Activation function=ReLU).

Type of Data CNN filters MSE RMSE R2

RSEM
[32,64]

[64,128]

1.3034

1.2723

1.1417

1.1279

0.7667

0.7716

Afterward, the effect of the number of filter lengths was also evaluated and the

results are summarized in Table 5.10. The model with a filter length of 4 in both

CNN layers returned the best performance.

Table 5.10: Results for different number of filters’ length - CNN model (Decoder
dense layers=[256, 128], Filters=[64,128], Type of pooling=max, Batch size=128,
Dropout=0.05, Activation function=ReLU).

Type of Data Filter length MSE RMSE R2

RSEM

[4,4]

[4,5]

[4,7]

1.1261

1.2723

1.2048

1.0612

1.1279

1.0977

0.7974

0.7716

0.7833
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Moreover, was tested the impact of the type of pooling in the model’s performance.

Max-pooling and average-pooling were used, and the first one yielded better results.

In this way, this parameter was set to ’max’ in the following experiments.

Table 5.11: Results for different types of pooling - CNN model (Decoder
dense layers=[256, 128], Filters=[64,128], Filters’ length=[4,4], Batch size=128,
Dropout=0.05, Activation function=ReLU).

Type of Data Type of pooling MSE RMSE R2

RSEM
Max

Average

1.1261

1.1423

1.0612

1.0688

0.7974

0.7938

Similar to the previous model, the effect of using different batch sizes: 64, 128,

and 256, was evaluated and presented in Table 5.12. From this table, it can be

concluded that a batch size of 128 outperforms the other values, and consequently,

the parameter was fixed with the value of 128.

Table 5.12: Results for different number of batch size - CNN model (Decoder dense
layers=[256, 128], Filters=[64,128], Filters’ length=[4,4], Type of pooling=max,
Dropout=0.05, Activation function=ReLU).

Type of Data Batch Size MSE RMSE R2

RSEM

64

128

256

1.3117

1.1261

1.2212

1.1453

1.0612

1.1051

0.7656

0.7974

0.7808

Furthermore, the dropout rate was also evaluated, and the increase in this value led

to a higher error in the model’s performance, as presented in Table 5.13.

Table 5.13: Results for different number of dropout rates - CNN model (De-
coder dense layers=[256, 128], Filters=[64,128], Filters’ length=[4,4], Type of pool-
ing=max, Batch size=128, Activation function=ReLU).

Type of Data Dropout MSE RMSE R2

RSEM
0.05

0.1

1.1261

1.1423

1.0612

1.0688

0.7974

0.7938

Finally, the activation function was varied to determine which one, ReLU or Leaky

ReLU, returned the best performance. The results are shown in Table 5.14, and

Leaky ReLU outperformed the ReLU function.
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Table 5.14: Results for different types of activation functions (Decoder dense lay-
ers=[256, 128], Filters=[64,128], Filters’ length=[4,4], Type of pooling=max, Batch
size=128, Dropout=0.05).

Type of Data Activation Function MSE RMSE R2

RSEM
ReLU

Leaky-ReLU

1.1261

1.0557

1.0612

1.0275

0.7974

0.8092

Overall, the CNN approach was more successful as the mean squared error decreased

and the coefficient of determination increased. Figure 5.2 resumes the obtained

results for the CNN predictor. The x-axis represents the real IC50 values, and the

y-axis represents the corresponding predictions. The dispersion of the points close

to the diagonal line corroborates the model’s performance.

Figure 5.2: Predictions of log10(IC50) from the proposed model with CNNs against
the true values for the testing set, where the diagonal line is the reference line
(predicted = true value).

5.3 Comparison between RNN and CNN Prediction Models

In this work, it is presented two deep models with the same goal: to predict anti-

cancer drug response. The objective was to see how these types of architectures could

be used to tackle the problem. The overall frameworks demonstrated the efficiency

of using RNNs and CNNs to extract deep representations over global descriptors.

The results confirm that the introduction of information regarding chemical com-

pounds reflects an increase in performance compared to DeepDR. Meanwhile, it
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is worth noting that although obtaining a good value of R2, the MSE and RMSE

are relatively high due to the wide range of IC50 values that the model covers.

Nonetheless, the main goal was to validate the effectiveness of using structural and

sequential data to extract meaningful deep representations of these types of data in

the prediction of the impact of genetic variants on a given drug. On that account,

considering the obtained results, we believe that the goal was fulfilled.

Table 5.15 presents a summarized comparison between the two proposed models

regarding the implemented structure and the obtained results.

Table 5.15: Comparison between the two proposed models.

Parameter Value

Hidden Neurons (Decoder) [512,256,128] [256,128]

Number of Layers 2 RNN layers 2 CNN layers

Optimizer Adam Adam

Activation Function ReLU Leaky ReLU

Activation Function (Output) Linear Linear

Batch size 128 128

Dropout 0.05 0.05

MSE 1.075 1.056

RMSE 1.037 1.028

R2 0.803 0.809

RNN model CNN model

There is one module that is common in both models concerning the encoding of gene

expression and gene mutation. The main difference regarding this part is the series

of convolutions applied to the encoded vectors in the CNN prediction model. In this

way, once the gene mutation is correlated with the gene expression, it is possible to

mix these two types of information which will result in one single vector with all the

essential features.

With respect to the drugs’ encoding, both models start with an embedding layer and

the difference between them is the type of architecture applied after this layer which

gives the name to the model. While RNNs have the ability to process temporal

information, e.g., a sentence, CNNs are commonly used in solving problems related

to spatial data. At first sight, it might seem that they are used to handle different

problems, but it should be noted that some types of data can be processed by either
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architecture. An example of this is the field of drug discovery, where both systems

have been effective [74, 75].

Finally, the decoder presents some different aspects. The major difference is the

vector that is fed to the model. In the RNN prediction model, the vector is composed

of three parts, one related to the gene expression, another to the gene mutation, and

the last to the drugs. Whereas the CNN prediction model has a vector that can be

divided into two parts, one related to the gene expression and gene mutation and

the other with the drugs. In this way, the number of layers needed to decode the

information differs in the two models, but the final goal is equivalent, which is to

predict the IC50 value through a dense layer composed of one single neuron.

Overall, the two proposed prediction models surpassed previous state-of-the-art

models, proving the applicability of both architectures in the pharmacogenomics

field, specifically in anticancer drug response prediction.

Technical notes: We used Python 3.10.0 and Tensorflow [76] 2.8.0 to develop the

proposed model. The GPU hardware used to train and sample the models was

Nvidia RTX 3090 24GB of GDDR6 VRAM, using CUDA 11.2.
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Conclusions

6.1 Summary

In this work, it was proposed and developed a deep learning approach for anticancer

drug response prediction, capable of automatically extracting features (deep repre-

sentations) from raw data: gene expression, gene mutation, and SMILES strings. In

this way, we performed a comprehensive study on different architectures and their

most common hyperparameters. First, two autoencoders were trained to capture

the features of mutations and gene expression of the TCGA collection of tumors.

Then, this knowledge is applied to the prediction models that use as input a combi-

nation of deep representations obtained from the RNNs/CNNs and deep descriptors

representations from the genetic information. Our approach yielded better results,

revealing the model’s potential once it demonstrates a good correlation between

predicted IC50 and the original data, surpassing other models’ performances.

The novelty of our approach is to integrate the compound chemical structures and

different types of omics data that typically are not considered together. By capturing

the deep representations from a huge number of samples of TCGA data, we also

increased the number of samples of the training data. Due to the advantage of

the transferability of neural networks, the vast amount of TCGA data improves

the model’s performance by capturing representations of mutation and expression

profiles of tumors that do not have an associated drug response.

Overall, the implemented models fulfilled the objective of predicting the drug re-

sponse of cancer cell lines from integrated genomic profiles and compound structures

achieving a mean squared error of 1.08 and 1.06, which surpasses previous state-of-

the-art models.
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6.2 Final Remarks

Deep learning has been demonstrating overall success in many prediction studies for

its capacity to learn deep patterns from the data. Likewise, both models illustrate

the remarkable ability to apply these approaches, specifically RNNs and CNNs, to

automatically extract deep representations and use them to describe the impact of

a genetic variant on a given drug. The obtained results showed that using these rep-

resentations outperformed state-of-the-art models, demonstrating the importance of

the extracted features and also the capacity to learn particular characteristics from

cell lines and drugs meaningful to their interaction.

Regarding the RNN prediction model, it can be concluded that GRU cells clearly

outperformed the competing types of RNN. Furthermore, the obtained results demon-

strated that the use of RSEM data reflects a better model’s efficiency, confirming

that this information improves performance compared to other quantification meth-

ods. This model resulted in a mean squared error of 1.08 and a coefficient of de-

termination of 0.80, proving that this is a viable way of predicting anticancer drug

response.

Moreover, the construction of a model based on CNNs was developed to explore a

different type of architecture in the context of this problem. The strategy applied

by resorting to CNN layers surpassed the RNN approach by interpreting the data

as a feature map instead of a sequence. After testing distinct hyperparameters the

model achieved a mean squared error of 1.06 and a coefficient of determination of

0.81, demonstrating once again the model’s capacity to predict drug response.

This work shows that deep learning models can be trained to extract relevant fea-

tures from gene expression and mutation data, and SMILES strings, as the models

obtained lower mean squared errors. Also was possible to conclude that the ad-

dition of SMILES strings benefits the prediction once the MSE decreased by 0.8

(compared to DeepDR). Besides, the model’s potential is highlighted by a good

correlation between the predicted IC50 and the original data.

In summary, the main contribution of this master thesis is the proposal of two

different deep learning methods for anticancer drug prediction, solely based on the

use of gene expression and mutation profiles and SMILES strings to represent the

cell lines and drugs, respectively, without depending on complex feature engineering

and extraction.
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6.3 Future Work

One of the main drawbacks of the proposed frameworks is the limited datasets

available regarding the drug response. On that account, would be interesting to

validate the model on more diverse and representative datasets. So, increasing the

data would increase the capacity of the model to learn and identify more hidden

patterns meaningful to the impact of a cell line on a given drug. With the increasing

methods and studies to define the genetic basis of human cancers, the available drug

screening data have been escalating, opening the path for making even more accurate

predictions.

Moreover, this model can be adapted to incorporate other omics data or different

drug representations. Distinct researches have demonstrated that integrating more

information can contribute to the correct prediction of the IC50, e.g., adding the

drug’s structure led to an increase in the model’s performance. Hence, joining new

meaningful information, which could be integrated into the proposed deep learning

model, could provide better results. Regarding the drugs, there are different possi-

bilities for their representation, for example, fingerprints, or different deep learning

methods to process this type of data like graph neural networks that are able to

learn features from molecular graphs. Thence, exploring the use of different tech-

niques could further validate the practicality of the model as well as be integrated

into it.

Overall, the proposed model paves the way for future applications such as drug

repositioning, as our model predicts drug sensitivity for any given pair of cell lines

and drug vectors, enabling approved or investigational drugs to be used outside the

original medical indication. Ultimately, the ability to move backward, i.e., verify

which genes and SMILES strings have more influence in the drug response would

have a substantial impact on the whole process. This information could exploit

modifications on the compounds to achieve certain properties and even contribute

to the designing of novel patient-specific compounds. Along these lines, personalized

treatments can become the future of patient care.
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[2] K. Tomczak, P. Czerwińska, and M. Wiznerowicz, “The cancer genome at-

las (TCGA): an immeasurable source of knowledge,” Contemporary oncology,

vol. 19, pp. A68–A77, 2015.

[3] Y.-C. Chiu, H.-I. H. Chen, A. Gorthi, M. Mostavi, S. Zheng, Y. Huang, and

Y. Chen, “Deep learning of pharmacogenomics resources: moving towards pre-

cision oncology.” Briefings in bioinformatics, vol. 21, no. 6, pp. 2066–2083,

2020.

[4] F. Iorio, T. A. Knijnenburg, D. J. Vis, G. R. Bignell et al., “A landscape of

pharmacogenomic interactions in cancer,” Cell, vol. 166, pp. 740–754, 2016.

[5] N. H. G. R. Institute, “Gene expression,” https://www.genome.gov/genetics-

glossary/Gene-Expression, 2022.

[6] G. Prelich, “Gene overexpression: uses, mechanisms, and interpretation,” Ge-

netics, vol. 190, no. 3, pp. 841–854, 2012.

[7] G. Orphanides and D. Reinberg, “A unified theory of gene expression,” Cell,

vol. 108, no. 4, pp. 439–451, 2002.

[8] T. V. de Jong, Y. M. Moshkin, and V. Guryev, “Gene expression variability: the

other dimension in transcriptome analysis,” Physiol Genomics, vol. 51, no. 5,

pp. 145–158, 2019.

[9] P. Savas, Z. L. Teo, and S. Loi, Gene Expression Analysis: Applications.

Springer New York, 2016, pp. 137–149.

57

https://www.genome.gov/genetics-glossary/Gene-Expression
https://www.genome.gov/genetics-glossary/Gene-Expression


Bibliography

[10] S. Lutz, C. Brion, M. Kliebhan, and F. W. Albert, “Dna variants affecting the

expression of numerous genes in trans have diverse mechanisms of action and

evolutionary histories,” PLoS Genetics, vol. 15, no. 11, p. e1008375, 2019.

[11] B. V. Chakravarthi, S. Nepal, and S. Varambally, “Genomic and epigenomic

alterations in cancer,” The American journal of pathology, vol. 186, no. 7, pp.

1724–1735, 2016.

[12] I. Lea, M. Jackson, X. Li, S. Bailey, S. Peddada, and J. Dunnick, “Genetic

pathways and mutation profiles of human cancers: site- and exposure-specific

patterns,” Carcinogenesis, vol. 28, no. 9, pp. 1851–1858, 2007.

[13] M. B. M. A. Rashid, “Artificial intelligence effecting a paradigm shift in drug

development,” SLAS Technology, vol. 26, no. 1, pp. 3–15, 2021, special Collec-

tion: Artificial Intelligence in Process Automation.

[14] W. E. Evans and M. V. Relling, “Pharmacogenomics: Translating functional

genomics into rational therapeutics,” Science, vol. 286, no. 5439, pp. 487–491,

1999.

[15] D. Baptista, P. G. Ferreira, and M. Rocha, “Deep learning for drug response

prediction in cancer,” Briefings in Bioinformatics, vol. 22, no. 1, pp. 360–379,

2020.

[16] G. W Caldwell, Z. Yan, W. Lang, and J. A Masucci, “The ic50 concept revis-

ited,” Current topics in medicinal chemistry, vol. 12, no. 11, pp. 1282–1290,

2012.

[17] G. B. of Disease 2019 Cancer Collaboration, “Cancer Incidence, Mortality,

Years of Life Lost, Years Lived With Disability, and Disability-Adjusted Life

Years for 29 Cancer Groups From 2010 to 2019: A Systematic Analysis for

the Global Burden of Disease Study 2019,” JAMA Oncology, vol. 8, no. 3, pp.

420–444, 2022.

[18] Y. Juhn and H. Liu, “Artificial intelligence approaches using natural language

processing to advance ehr-based clinical research,” Journal of Allergy and Clin-

ical Immunology, vol. 145, no. 2, pp. 463–469, 2020.

[19] P. Kaur, K. Krishan, S. K. Sharma, and T. Kanchan, “Facial-recognition algo-

rithms: A literature review,” Medicine, Science and the Law, vol. 60, no. 2, pp.

131–139, 2020.

58



Bibliography

[20] T. Panch, P. Szolovits, and R. Atun, “Artificial intelligence, machine learning

and health systems,” J Glob Health, vol. 8, no. 2, p. 020303, 2018.

[21] B. Mahesh, “Machine learning algorithms - a review,” International Journal of

Science and Research (IJSR), vol. 9, no. 1, pp. 381–386, 2019.

[22] K. Suzuki, Artificial neural networks: methodological advances and biomedical

applications. BoD–Books on Demand, 2011.

[23] D. Rav̀ı, C. Wong, F. Deligianni, M. Berthelot, J. Andreu-Perez, B. Lo, and

G.-Z. Yang, “Deep learning for health informatics,” IEEE journal of biomedical

and health informatics, vol. 21, no. 1, pp. 4–21, 2016.

[24] P. P. Gallego, J. Gago, and M. Land́ın, “Artificial neural networks technology

to model and predict plant biology process,” in Artificial Neural Networks.

IntechOpen, 2011, ch. 10.

[25] A. Krogh, “What are artificial neural networks?” Nature biotechnology, vol. 26,

no. 2, pp. 195–197, 2008.

[26] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, no.

7553, pp. 436–444, 2015.

[27] S. Dong, P. Wang, and K. Abbas, “A survey on deep learning and its applica-

tions,” Computer Science Review, vol. 40, p. 100379, 2021.

[28] D. J. Lockhart and E. A. Winzeler, “Genomics, gene expression and dna ar-

rays,” Nature, vol. 405, no. 6788, pp. 827–836, 2000.

[29] P. S. Reel, S. Reel, E. Pearson, E. Trucco, and E. Jefferson, “Using machine

learning approaches for multi-omics data analysis: A review,” Biotechnology

Advances, vol. 49, p. 107739, 2021.

[30] D. Weininger, “Smiles, a chemical language and information system. 1. intro-

duction to methodology and encoding rules,” Journal of chemical information

and computer sciences, vol. 28, no. 1, pp. 31–36, 1988.

[31] D. C. Elton, Z. Boukouvalas, M. D. Fuge, and P. W. Chung, “Deep learning for

molecular design—a review of the state of the art,” Molecular Systems Design

& Engineering, vol. 4, no. 4, pp. 828–849, 2019.

[32] D. C. I. Systems, “SMILES - A Simplified Chemical Language,” https://www.

daylight.com/dayhtml/doc/theory/theory.smiles.html.

59

https://www.daylight.com/dayhtml/doc/theory/theory.smiles.html
https://www.daylight.com/dayhtml/doc/theory/theory.smiles.html


Bibliography
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