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Abstract

The exponential growth of Deep Learning (DL) algorithms as drawed the attention of the

most wide variety of areas as they prove to be applicable in almost every imaginable use

case, giving relatively fast solutions, with a desirable abstraction in a world thirsty for

reliable solutions and with only two requirements: huge quantities of data and computational

power. The telecommunications area is no different, reaching for answers to new problems

or optimizations for already existing ones. An example of this is the tradeoff made by the

Magnitude Modulation (MM) technique. As current applications become more and more

demanding, with increasingly higher data rates and consequently higher spectral efficiencies,

Root-Raised Cosine (RRC) filters with a low roll-off and high order constellations have

become preponderant. With this, an undesirable increase in the signal’s Peak-to-Average

Power Ratio (PAPR) occurred, which has harmed the Power Amplifier (PA) efficiency. The

MM was then one of the techniques that solved this problem. However, it undermined the

demodulator, establishing the already mentioned compromise.

Traditional demodulators perform worst when subjected to magnitude modulated and

noisy symbols. Hence, in this thesis, different single DL models were developed and tested,

as well as multi-model systems, aiming to attenuate the effect of MM at 4-QAM symbols

when transmitted through an Additive White Gaussian Noise (AWGN) channel. The models

were always thought in a way that allowed to keep the simplicity high and computational

expensiveness low. Thus, three models were built based on the following Neural Networks

(NN): Feed-Forward Neural Network (FFNN), Convolutional Neural Network (CNN) and

Bidirectional Long Short-Term Memory (BLSTM). The most suited Eb/N0 ratio for training

was studied, as well as the symbol’s window length to consider.

Hence, this thesis presents a new demodulator based on deep neural networks models,

capable of mitigate the MM effect at 4-QAM symbols, transmitted through an AWGN

channel. Furthermore, it leaves the possibility of taking the results even further via a multi-

model system.

Keywords: Deep Learning, Neural Networks, Magnitude Modulation, Demodulator
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Resumo

O crescimento exponencial dos algoritmos de Aprendizagem Profunda (Deep Learning) atrai

a atenção das mais variadas áreas, reforçado pelo facto de serem aplicáveis em quase todos os

casos imagináveis, facultando soluções de forma relativamente rápida e com uma abstração

cada vez mais desejável num mundo que urge de soluções confiáveis e com dois requisitos prin-

cipais: grandes quantidades de dados e poder computacional. A área das telecomunicações

não é diferente, procurando soluções para novos problemas ou otimizações para problemas

já existentes. Um exemplo disto é o compromisso estabelecido pela técnica Modulação de

Magnitude (MM). À medida que as aplicações atuais se tornam cada vez mais exigentes,

com taxas de débito cada vez mais altas e, consequentemente, crescentes eficiências espe-

trais, o uso de filtros Root-Raised Cosine (RRC) com baixo roll-off e constelações de ordens

cada vez mais elevadas tornaram-se fulcrais. Contudo, isto leva ao aumento indesejado do

rácio entre a potência de pico e a potência média dos sinais, o que diminui drasticamente a

eficiência dos amplificadores de potência. A MM foi então uma das técnicas propostas para

resolver este problema, permitindo um aumento da eficiência de transmissão. No entanto,

prejudica o desempenho do desmodulador, estabelecendo o compromisso já mencionado.

Os desmoduladores tradicionais veem o seu trabalho dificultado quando na presença de

símbolos modulados em magnitude e transmitidos por canais ruídosos. Desta forma, nesta

tese, diferentes modelos de DL foram desenvolvidos e testados individualmente, assim como

a sua combinação, com o objetivo de atenuar o efeito da MM na desmodulação de símbolos

para a modulação 4-QAM, aquando da transmissão num canal AWGN. Os modelos foram

projetados sempre com a premissa de os manter o mais simples possível e com baixo peso

computacional. Os três modelos construídos acentam nas seguintes redes neuronais: Feed-

Forward Neural Network (FFNN), Convolutional Neural Network (CNN) e Bidirectional

Long Short-Term Memory (BLSTM). O rácio Eb/N0 mais apropriado para o treino dos

modelos foi estudado, assim como o tamanho da janela de símbolos a considerar.

Por conseguinte, esta tese apresenta um novo desmodulador baseado em modelos com re-

des neuronais profundas, capaz de mitigar o efeito da modulação em magnitude em símbolos

xii



de constelações 4-QAM e transmitidos em canais AWGN. É ainda deixada a possibilidade

de melhorar os resultados através da utilização de um sistema com modelos complementares.

Palavras-chave: Aprendizagem Profunda, Redes Neuronais, Modulação de Magnitude,

Desmodulador
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1 Introduction

We live in an era where information, even if in a hidden way, is becoming our most valuable

asset. Diving into subjects like Big Data, Blockchain, Data Mining, and many others, it

is clear the increasing dimensions that they have been taking. What most people do not

realize is that, in order for all this data to flow correctly, emergent, up-to-date, complex and

reliable systems of transmission and reception are needed.

1.1 Motivation

There is no way to deny the emergent application of Machine Learning (ML) and Deep

Learning (DL) techniques in everything that surrounds us, in a way that it is becoming

difficult to think of something in our daily life that does not have some Artificial Intelligence

(AI) behind it. For example, the simple process of writing an e-mail or text message, has

Recurrent Neural Network (RNN) based models embedded to predict the next word to be

written. It is rare to enter a website without the pleasant pop-up "accept cookies", which

allows algorithms to cross-reference our searches with our tastes in order to present more

specific advertisements. Taking a simple photo can become a DL task in order to recognize

faces, for example, using Convolutional Neural Network-based models, and the process of

editing can also become quite complex if unwanted elements are present. With AI, that job

turned out to look simple, as smartphones, nowadays, come with neural engines to support

tasks like the ones exposed. All this to remind that, even though AI or ML/DL might be

seen as black boxes from a high level, their potential is immeasurable.

Successfully applied in fields like image and speech recognition, self-driving cars, online

fraud detection, and many more, deep learning algorithms are showing as well great results

in the signal processing systems area and have high hopes to take many techniques a step

further.

The efficiency of a High-Power Amplifier (HPA) employed in a system’s transmitter

is highly dictated by the signal being transmitted. Magnitude modulated and bandwidth
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limited information signals show high carrier fluctuations, which lead to the use of linear

power amplifiers (PAs). Anyhow, as nowadays applications demand for increasingly higher

data rates, which implies higher spectral efficiencies, very low roll-off Root-Raised Cosine

(RRC) filters and constellations with higher orders have become a constant. In this way,

undesirable consequences emerged, like an increase in the signal’s Peak-to-Average Power

Ratio (PAPR). With this raise, the PA efficiency is drastically reduced, typically to around

16% [1].

Data Magnitude Modulation was first proposed as a concept by Miller et al. [1, 2] and

was used to construct an adaptive peak-suppression algorithm that worked well for Phase

Shift Keying (PSK) and generalized PSK constellations. Later, Tomlinson et al. [3] im-

proved the initial concept of MM with an Look-Up Table (LUT) implementation that was

successfully applied to QPSK and Offset Quadrature Phase Shift Keying (OQPSK) constel-

lations. Lastly, Gomes et al. [4, 5, 6, 7, 8] presented a Multistage Polyphase Magnitude

Modulation (MPMM) scheme to control the envelope’s peak power of Single-Carrier (SC)

band limited signals in a more efficient way. This novel technique allowed to expand the

MM concept to higher order constellations, even for non-constant amplitude ones.

However, MM, besides its great contribution to reduce the PAPR, induces higher dif-

ficulties in the reception side of the system, which is translated, for example, in a higher

Bit Error Rate (BER). Even tough there were efficient solutions proposed to mitigate this

drawback [8], they either weren’t powerful enough or implied changes in the conventional

receivers.

So, the motivation to this thesis is to take advantage of the potential of DL, in particular

making use of Deep Neural Networks, to conceive a demodulator that allows to reduce the

effect of MM in the received signal’s envelope.

1.2 Objectives

The goal of this dissertation is to connect the DL capabilities to the MM technique, aiming

to vanish the tradeoff established when the PAPR got successfully reduced, while the errors

through a conventional demodulator increased. To do so, a DL-based demodulator for mag-

nitude modulated signals upon transmission on an AWGN channel is studied. We consider

multiple simulation scenarios, such as the variation of the noise power of the AWGN channel,

and the MM memory to consider upon signal detection.
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1.3 Dissertation Outline

This thesis is organized into the following chapters:

• Chapter 1 presents the motivation and objectives for this study.

• Chapter 2 gives an overview on the Magnitude Modulation technique, exploring its

concept as well as its successive refinements overtime.

• Chapter 3 introduces some core concepts about Artificial Neural Networks, useful for

further understanding the models employed and their details.

• Chapter 4 gives an explanation of the subjects used in the work, explains the models

constructed in detail, and describes and discusses the results achieved with the direct

application of the NN-based models.

• Chapter 5 presents multi-model systems, combining the ones presented in the previous

chapter, in an attempt for taking the results a step further.

• Chapter 6 summarises the conclusions extracted from the work performed and en-

hances future work and possible refinements to be made.
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2 Magnitude Modulation

In order to keep up with present high demands for higher data rates, which implies higher

spectral efficiency, very low roll-off RRC pulse shaping filters and constellations with a high-

order became much-requested resources. However, these led to undesirable consequences, like

an increase on signal’s PAPR. This is an issue, since it constrains either the transmitter’s

Digital-to-Analog Converter (DAC), as well as the HPA, while degrading the system’s power

efficiency. So, in order to decrease the PAPR, several techniques emerged, such like Trellis

Coding (TC) [9, 10] and MM [2, 3, 4]. Although their undeniable efficiency, the trellis PAPR

reduction techniques were very computationally expensive and hard to embed in actual

operating radio transmission systems, making the MM more desirable since, performance-

wise, it was similar and offered a considerable ease of integration with the current systems.

In this chapter, the MM concept will be explored, giving an historical context and followed

by the current approaches and improvements made to date.

2.1 MM Concept

The principle of MM [6, 11, 12], illustrated in Figure 2.1, consists of controlling the envelope

resulting from the pulse shaping filter by multiplying each complex modulated symbol, sn,

at the entry of the bandwidth limiting pulse shaping filter, by a time-varying factor mn, with

mn ≥ 0 and mn ∈ ℜ. The transmitted magnitude modulated signal, xn, is given by

xn = hn ∗
∑
k

mkskδn−kL, (2.1)

in which L represents the oversampling rate of operation of the pulse shaping filter, δn

being the discrete Dirac delta signal, hn being the impulse response, and ’*’ the discrete

convolution.
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Figure 2.1: Block diagram of a transmitter employing MM and example of a magnitude

modulated BPSK signal (adapted from [11]).

Taking into consideration the maximum allowed excursion that does not lead to the

PA saturation, a maximum amplitude, A, on the transmitted signal, is set up through the

continuous adjustment of the mn factor applied to each symbol sn by the MM technique,

ensuring that |xn| ≤ A, while seeking to maintain the average power of the signal unchanged.

This highly reduces the PAPR of the transmitted signal, thus improving the transmitter’s

power efficiency. Each MM coefficient, mn, depends on the imposed limit A, on the impulse

response, hn, of the filter, and, ultimately, on the sn neighbors (that depend on the filter

length) that contribute to the transmitted signal xn. These coefficients can be determined

in advance for low order constellations being stored in a LUT (as exposed in the following

Section 2.2.2) or computed in real time, using the MPMM technique (Section 2.2.3).

As depicted in the example of Figure 2.1, MM smooths all the peaks that surpass the

desired amplitude A, with the advantage of not affecting the spectral bandwidth once it is

applied previously to pulse shaping.

2.2 Context

MM was primarily proposed in 1998 by Miller et al. [1, 2] in order to develop an adap-

tive peak-suppression algorithm that performs well for PSK and generalized PSK constel-

lations. About five years later, Tomlinson et al. [3] proposed an alternative LUT-based

implementation which was shown to be very efficient when applied to QPSK and OQPSK

constellations. Later, Gomes et al. presented an improved evolution to the LUT-based MM

technique [13, 14], as well as a filter polyphase decomposition-based MM technique [4, 5, 6, 8],

designated Multistage Polyphase Magnitude Modulation, both enabling applying the MM

principle to high-order constellations.
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2.2.1 Adaptive Peak Supression Algorithm

So, as the first introduction to the concept of MM, Miller et al. [1, 2] came up with this

algorithm that adjusts the amplitude of every single data pulse, trying to attenuate or even

suppress peaks in the transmitted signal.

Working majorly well for PSK and concentric PSK formats, this algorithm was based

in a few considerations. Firstly, the transmitted information in PSK formats is held in the

phase, making this type of modulation very robust to tenuous changes in the amplitude of the

signal. On the other hand, at concentric PSK formats, there is some data information being

sent in the amplitude, obligating to a wise choice of the N-PSK format in order to guarantee

that the distance between points on the same circle, i.e., corresponding to the same original

constellation symbol, is smaller than the distance between points on different circles, making

this format also impartial to small amplitude variations. Secondly, using a pulse shape such

as the RRC to constraint the bandwidth, when a peak occurs in the transmitted waveform

at some instant t0, in a way that (k − 1) TS < t0 < k TS, the main contribution to that

peak is due to the pulses corresponding to the (k− 1)th and kth data symbol, being TS the

symbol’s duration. In this way, reducing the amplitude of these, will substantially reduce

the resultant peak. Lastly, considering a long stream of random data symbols, it will exist

some symbol intervals where the peak value of the transmitted waveform is somewhat small,

inducing that the amplitudes of the data symbols on each side can be raised without raising

the overall peak power of the transmitted waveform. This allow to maintain the average

power constant, as the amplitudes that have been decreased are balanced.

After simulation, it was concluded that this algorithm had a lot of potential, even though

it left some drawbacks and loose ends. Firstly, due to the small adjustments made in the

amplitudes of the data symbols, as a way to get exempt of peaks in the transmitted symbols,

the sensitivity to noise was increased, inducing a tradeoff between PAPR and average power

efficiency. Then, this algorithm brings a somewhat computational complexity attached,

which will be addressed later. Finally, the fact that the information is processed in blocks,

introduces a delay. So, as exposed, there are some topics to be further improved.

2.2.2 LUT-based MM approach

Seeking to apply MM to other constellations like QPSK and OQPSK and addressing some

of the problems identified by Miller et al., refering to the computational complexity of the

algorithm, Tomlinson et al. [3] came up with a LUT-based implementation.
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Figure 2.2: Magnitude modulation system proposed by Tomlinson et al. (adapted from [3]).

As can be seen in Figure 2.2, the idea behind this approach was to magnitude modulate

each data pulse before the RRC filtering. The magnitude modulation coefficients are defined

based on the symbol which they apply to and its closest (m−1) left and right neighbors, thus

having the MM system memory. These coefficients are computed a-priori using an iterative

loop (described by Algorithm 1) and stored in two 2m-size LUTs (for their in-phase and

quadrature signal components, respectively), which enables this data magnitude modulation

implementation to be applied in real time.

The iterative loop was composed by the following steps, described in Algorithm 1.

Algorithm 1 LUT-based MM iterative loop to determine the MM coefficients.

i. Filter data stream using RRC filtering.

ii. Limit the magnitude of the resulting signal to 1.

iii. RRC filter the signal again. (When no more signal limitation occurs at step ii, this

filter will act as true matched filter.)

iv. Sample the signal to extract the data values, now magnitude modulated.

v. Return to step i with the magnitude modulated data while signal limitation occurs in

step ii.

vi. Output the absolute values of the magnitude modulated data.

These factors are then used to modulate the central bit of the data sequence. Apart from

other problems, MM leads to variations in the bit level, inducing, as mentioned, a higher

sensitivity to noise for some data bits, which ones that tend to dominate the BER of the

system. However, the authors have shown that error correction coding is quite effective in

compensating for data magnitude modulation, as it improves the signal’s resistance to noise.
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2.2.3 Multistage Polyphase Magnitude Modulation

The MPMM scheme, proposed by Gomes et al. [4, 5, 6, 7, 8], introduced the capability of

computing the MM coefficients in real-time via a polyphase filter structure that is solely

dependent on the RRC impulse response. Because it was independent of the modulation

used on the data symbols, this scheme allowed the MM concept to be generalized to higher

order constellations, even if they were not of constant amplitude.

This technique foundation was the polyphase decomposition of the pulse shaping filter,

H(z), FIR. So, using the concept of multirate systems [15] applied to FIR filters, the

structure shown in Figure 2.3 established the kernel to this alternative MM approach.

Figure 2.3: Interpolator: 1-to-L up-sampler preceding a FIR filter H(z) (adapted from [8]).

Considering a causal FIR transfer function H(z) of order N :

H(z) = h[0] + h[1]z−1 + ...+ h[N ]z−N . (2.2)

For any L ≤ N + 1, L ∈ Z, the previous equality can be reformulated as

H(z) =
L−1∑
i=0

z−iEi(z
L), (2.3)

with

Ei(z) =

⌊(N+1)/L⌋∑
n=0

h[nL+ i+ λ]z−n, 0 ≤ i ≤ L− 1. (2.4)

The added λ ∈ Z represents a time-delay or advance (λ < 0 or λ > 0, respectively) of the

filter impulse response. Thus, from (2.3) and (2.4) it is possible to transform the structure

shown in Figure 2.3, first by replacing H(z) with a polyphase bank, as shown in Figure 2.5a,

and then, using the noble identity1 presented in Figure 2.4, bringing the upsampler through

the polyphase filters, Figure 2.5b.

Figure 2.4: Noble identity (adapted from [8]).

1An equality that allows the upsampler operator to be commutated, simplifying the multirate structure.
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Figure 2.5: H(z) decomposition: (a) replacing it by the polyphase bank; (b) applying the

noble identity (adapted from [8]).

So, the pulse shaping filter shown in Figure 2.1 was replaced by its efficient multirate

polyphase derivation.

Once the RRC pulse shaping filter is derived, the block depicted in Figure 2.6 was de-

veloped to adjust the symbol’s amplitude in order to control the output excursion of the

polyphase filters Ei(z). These were divided into filters G0i(z) and G1i(z), whose impulse

responses are

g0i[n] =

ei[n] , 0 ≤ n ≤ N

0 , otherwise

, (2.5)

g1i[n] =

ei[n+N + 1] , 0 ≤ n ≤ N − 1

0 , otherwise

. (2.6)

...

X

f( )

f( )

f( )

...

Figure 2.6: MPMM block for an arbitrary stage k (adapted from [8]).
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Without getting into too much detail, the purpose of this block is to predict the output

of each Ei(z) in order to determine the MM coefficient that, when applied to the symbol

prior to the pulse shaping filter, allows to limit its excursion.

2.3 Detection

As pointed out earlier in this document, the MM technique was introduced as a successful

way to decrease the PAPR of a signal to be transmitted, which is a value that dictates the

efficiency of the HPA, i.e., a high PAPR places high linearity requirements on the HPA,

resulting in high power consumption and, as a result, low power efficiency.

Nonetheless, as in most practical cases, in order to improve something, commitments have

to be made along the way. In this case, conventional demodulators, completely unaware of

the MM applied at the transmitter’s side, saw their performance hugely degraded due to

the distortion provoked by the MM, which increased the symbols’ sensitivity to the noise

introduced by the transmission channel. This had a significant impact on the BER during

demodulation.

This problem was then addressed with the introduction of Low-Density Parity-Check

(LDPC) codes and by reversing the MPMM on the receptor side [8], but left a margin for

improvement. In this way, seeking for new strategies to bring the MM awareness to the

demodulation side of the system, DL, in particular, Artificial Neural Networks (ANNs),

seemed capable of replacing the conventional demodulators, which led to this study.
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3 Artificial Neural Networks

The birth of the so-called ANN remarks dates back to 1943, but it was only in 1975 that

their potential was unlocked with the appearance of the backpropagation algorithm that

allowed the training of multi-layer networks. These structures were based on the biological

composition of the animals’ nervous systems, whose basic unit is the neuron. A real neuron

is essentially composed of: a branching dendritic tree that establishes the connection with

other neurons and collects their signals; a cell body that processes the signals and produces

a response; and a branching axon responsible for transmitting that response to the following

neurons. In a similar way, ANNs are composed of a variable number of processing units

(neurons) that are joined through weighted connections (dendrites/axons) whose outputs

depend on the incoming value and on the weights attached to each link.

In this chapter, the basics of neural networks will be addressed, particularly those com-

posing the models used in this study.

3.1 Basic unit

.
.
.


.
.
.


Figure 3.1: Artificial neuron model (adapted from [16]).

As already introduced, the model presented in Figure 3.1 constitutes the basis of a neural

network. A neuron has a response according to

yi = f

( n∑
j

wijxj

)
(3.1)
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where xj are the inputs to the network or the outputs from previous nodes, wij are the

weights associated to each link (to a particular neuron i), and f() is a nonlinear function,

called Activation Function (AF). This unit computes a weighted linear combination of its

inputs that pass through the AF, yielding a scalar output. To ui (Figure 3.1) can be added

an extra parameter, so-called bias, not represented in the figure.

By combining multiple units in parallel, it is possible to form a layer, and by sequentially

linking layers, a feedforward network structure arises, which is the basis for almost every

network nowadays.

3.2 Supervised Learning

In machine learning, there are essentially three types of learning: supervised, unsupervised,

and reinforcement learning. The last two are irrelevant to this study, since only supervised

learning was considered.

Supervised learning can be seen as a function approximation problem, in the sense that

the model is trained with a pair of inputs, x, and expected targets, t, i.e., we pretend to find

a function y() that, given x, outputs t. It is unnecessary to say that in most cases, there is

not an obvious relationship between the values, also called features, and their correspondent

targets. Otherwise, much more comprehensible methods could be used [17].

A neural network "learns" by iterative refinement of its connections weights, which is

obtained by the back-propagation algorithm (explained in Section 3.4). Anyhow, within the

training phase, the inputs are propagated through the network, which produces an output.

Even when fully trained, a model is not, and should not be, perfect (generalization capacity).

So, an error function is used in order to evaluate the deviation between the target and the

output of the model, and the goal is to minimize the error for the training data without

incurring overfitting, in which the model "memorizes" the data presented to it, which is

translated in poor performance when different data is shown.

Training can then be seen as an optimization problem with a considerable number of

factors prone to being adjusted, such as: features to consider, network structure, error

function, optimization method, among others.
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3.3 Activation Functions

An AF, also known as a transfer function, is used to introduce non-linearity into the neural

network. Without an AF as an intermediate step, each neuron would only be performing a

linear combination of its inputs, gathering its weights and biases. In this way, it would not

matter if we added layers to the network since combining two linear functions results in a

linear function as well; that is, all layers would behave in the same way.

So, there exist essentially three types of activation functions: binary step function, linear

and non-linear. The binary step function is expressed by

f(x) =

0 if x < threshold

1 if x ≥ threshold

(3.2)

and is useful for deciding if a neuron should be activated or not based on a threshold. It

presents some constraints as it cannot be employed in multi-class classification problems

and, since its gradient is zero, it jeopardises the back-propagation process.

The linear activation function, or identity function, is straight forward, as it does nothing

to the input, which is why it is barely used. Additionally, given its derivative is a constant, the

back-propagation algorithm is inapplicable, and, as all consequent layers are linear functions

of the first one, the network can be resumed to one layer. Finally, the most useful AFs are

the non-linear ones, as they permit the use of back-propagation (their derivative is input

related). Some of the most used AFs are presented in Table 3.1.

15



Table 3.1: State-of-the-art activation functions.

AF Equation Pros Cons

Sigmoid/

Logistic
1

1+e−x

Range between 0 and 1,

which makes it optimal for

probabilistic outputs.

Differentiable and gives a

smooth gradient.

Makes the training difficult

and unstable.

Vanishing gradient problem.

Tanh ex−e−x

ex+e−x

Output zero centered,

which allows to differ the

outputs as strongly

negative, neutral or

strongly positive.

Makes the learning

for consequent layers

easier.

Vanishing gradient

problem.

ReLU max(0, x)

Computationally efficient

(only certain neurons

are activated).

Accelerate the convergence

of gradient descent towards

the global minimum.

Dying ReLU problem.

Leaky ReLU max(0.1x, x)

Same as the ReLU, and

enables back-propagation

even for negative values.

For negative input values,

the predictions may be

inconsistent.

The gradient is small for

negative values, which

delays the training

process.

ELU


x, x ≥ 0

α(ex − 1), x < 0

Smooth transition around

the origin.

Avoids the Dying

ReLU problem.

Increases the

computational time

due to the exponential

operation.

Exploding gradient

problem.
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These are just some of the most commonly used activation functions. There are many

others, especially derivations of the ReLU.

3.4 Back-Propagation

Back-propagation was developed by Rumelhart, Hinton, and Williams [18] and is currently

the most widely used training method for FFNNs.

As said earlier, the learning capability of a neural network comes from the fine adjusting

of its weights to the data presented to it. The role of the back-propagation algorithm is

precisely to, making use of the chain rule, modify the weights with a basis on the error

between the output and the desired target.

So, in order to train a network, there are the basic steps enumerated in Algorithm 2.

Algorithm 2 Basic steps of the training stage of a NN.

i. Feed the data and propagate it through the network to get the outputs.

ii. Match the outputs with the targets to measure the error.

iii. Calculate the derivative of the error relating to the weights, i.e., the gradient ∂E/∂wij.

iv. Amend the weights to minimize the error, by moving in the opposite direction of the

gradient.

v. Repeat until the error/performance is acceptable.

Trying to explain the back-propagation algorithm without getting into too much detail,

let’s consider a simple example with a network with two layers (Figure 3.2), sigmoid activa-

tion function, squared error cost function (3.3) and gradient descent [19] as the optimisation

algorithm.
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Input Hidden Output

n m l

Figure 3.2: Two-layer FFNN example. x, z and y represent the neurons of the input, hidden

and output layers, respectively. v and w are the weights attached to each connection between

layers. n, m and l are the total number of neurons in the correspondent layers.

Ei =
1

2

l∑
i=0

(ti − yi)
2 (3.3)

Let’s agree then, to simplify the notation, that

Ii =
m∑
k=0

wikzk, (3.4)

so

yi = σ(Ii) =
1

1 + e−Ii
. (3.5)

Introducing η as the learning rate hyper-parameter (this will be explained in Section 3.5),

the updating factor of the weights between the hidden and output layer can be defined as

∆wik = −η
∂Ei

∂wik

(3.6)

which, through the chain rule, can be decomposed into

∆wik = −η
∂Ei

∂wik

= −η
∂Ei

∂yi

∂yi
∂Ii

∂Ii
∂wik

= η(ti − yi)yi(1− yi)zk. (3.7)

Now considering E as the total error and

Ik =
n∑

j=0

vkjxj, (3.8)

from the hidden layer to the input layer, the updating factor is represented as

∆vkj = −η
∂E

∂vkj
(3.9)
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which can be extended in

∆vkj = −η
∂E

∂vkj
= −η

∂E

∂Ik

∂Ik
∂vkj

= −η
∂E

∂Ik
xj. (3.10)

So, the last thing to do is to establish a relation between the total error E and the input

signal Ik. The key idea here is that the total error E is equal to the sum of the partial errors

Ei.

∂E

∂Ik
=

l∑
i=0

∂Ei

∂Ik
(3.11)

Decomposing the previous equality like

∂E

∂Ik
=

l∑
i=0

∂Ei

∂Ik
=

l∑
i=0

(
∂Ei

∂Ii

∂Ii
∂Ik

)
(3.12)

and establishing that

∂Ei

∂Ii
=

∂Ei

∂yi

∂yi
∂Ii

= −(ri − yi)yi(1− yi) = −δi (3.13)

and

∂Ii
∂Ik

=
∂Ii
∂zk

∂zk
∂Ik

= wikzk(1− zk) (3.14)

we can put it all together and define

∆vkj = ηzk(1− zk)

( l∑
i=0

δiwik

)
xj. (3.15)

With both the updating factors determined, all that remains is to add them to the

previous weights values

wik(t+ 1) = wik(t) + ∆wik

vkj(t+ 1) = vkj(t) + ∆vkj

with t and t+ 1 denoting the currently and following iterations, respectively.

Thus, all the weights get refreshed to a better suited value for the purpose with a back-

ward pass.
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3.5 Hyperparameters

3.5.1 Learning Rate

The learning rate, usually identified by η, is one of the most important hyperparameters.

This factor is responsible for controlling the speed at which the model learns by influencing

the weight updates during the optimisation stage. A learning rate too high leads to faster

training but could translate into a miss of the minimum of the lost function. On the other

hand, a learning rate too low can induce very slow training and make the model never reach

the optimal solution or stay stuck at a local minimum.

3.5.2 Batch Size

The batch size defines how many samples of the training dataset are fed to the model between

each weight update. This hyperparameter is highly limited by the amount of memory in the

system, since the samples have to be loaded into it.

3.5.3 Number of Epochs

In ML/DL, an epoch is the process that takes all the dataset, divided into batches, to pass

through the network. Usually, we define a number of epochs for the training to happen, which

means that the entire dataset will be fed to the model that number of times. Complex models

can take several thousand epochs to train, but usually techniques like early stopping are used

to prevent unnecessary training time (and, consequently, reduce allocated resources), as well

as overfitting scenarios. These techniques evaluate the model’s performance and if minor or

no progress is being made, they cease the training.

3.6 Convolution Layers

The CNN is a special type of network designed to work with images, i.e., two-dimensional

data, although it works with one-dimensional and three-dimensional data as well.

The main type of layer in these networks is the convolution layer, which, as the name

indicates, performs an element-wise multiplication (dot product) of a set of weights, called

the filter/kernel, with the input, similar to a conventional neural network. This kernel is

smaller than the input array, allowing it to be applied several times at different points.
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Figure 3.3 gives an example of what happens at the convolution layers. The kernel is

applied from left to right, top to bottom of the 2D array, generating a scalar value from each

convolution that consolidates a feature map. In the example, a 3x3 kernel was considered,

but other sizes can be taken into account. Another option made was stride 1, which means

the kernel moves only one value each time. Other values can also be chosen, having in mind

that, since no padding was applied, the feature map will always be smaller than the input.

Padding consists of adding one or more values around the original array to extinguish loss

of information.

Kernel Input Feature map

Figure 3.3: Example of convolution on a 2D level, considering a 3x3 kernel, stride of 1 and

no padding.

Enhance that many other layers might compose a CNN, like pooling [20] and normaliza-

tion layers [21, 22, 23].

3.7 LSTM Networks

The Long Short-Term Memory (LSTM) network was introduced by Hochreiter and Schmid-

huber in 1997 [24] as a successful way to mitigate the long training times observed in tra-

ditional RNNs, mainly due to inadequate error backflow. They are optimal to avoid the

long-term dependency problem as they are designed to remember information for long peri-

ods of time.

This type of network, similarly to what happens in all the recurrent neural networks,

follows a chain structure where the modules are as presented in Figure 3.4.
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Figure 3.4: LSTM module.

The top horizontal line that flows across the module is the cell state. As it can be seen,

there are some minor interactions with this line, i.e., only small alterations are made to the

information running through the cell state, carefully controlled by the gates, composed by

the sigmoid neural network layer and by the pointwise multiplication. The module has three

of these gates, whose function is to safeguard and manage the cell state. As known, the

sigmoid function outputs values in the range [0, 1], 0 meaning that nothing passes through

and 1 meaning that everything passes through.

As a first step in the module, is the forget gate layer, ft (3.16). Taking the new input,

xt, and the previous output, ht−1, this gate determines the information of the cell state that

is kept.

ft = σ
(
Wf .[ht−1, xt] + bf

)
(3.16)

The W parameters in the previous equation and the ones that follow represent the weights

of the neural network layer within each gate.

The next stage, composed of two parts, consists of determining what new data is stored

in the cell state. The first part, called the input gate layer, it, is given by

it = σ
(
Wi.[ht−1, xt] + bi

)
, (3.17)

and consists of a sigmoid layer that decides which values will be updated. The second part

originates, through a tanh layer, a vector of potential new values to add to the cell state,

C̃t, computed as

C̃t = tanh
(
WC .[ht−1, xt] + bC

)
. (3.18)
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These two parts are then combined to originate the update to the cell state, according to

Ct = ft.Ct−1 + it.C̃t. (3.19)

The last step is to determine the output of the module, which is based on the concate-

nation of the last output and the new input passing through a gate, ot, and on the tanh of

the cell state, as per

ot = σ
(
Wo.[ht−1, xt] + bo

)
(3.20)

and

ht = ot. tanh(Ct). (3.21)

As a final note about this topic, remark that LSTMs have evolved throughout the years,

existing many versions of them [25, 26, 27].

With the fundamental concepts of the MM technique and DL established, it is time to

move on to the work done and the corresponding results.

3.8 Performance metrics

Performance metrics are required to assess a model’s behavior. Because there are several,

the one(s) best suited to the task at hand must be chosen in order to have an accurate

perception of the model’s capabilities.

Following, are presented the most common metrics used in the state of the art.

Confusion matrix

The confusion matrix is a performance metric that allows to immediately compare the output

of the model (predicted labels) with the ground-truth/labels, in terms of the number of

samples correctly and incorrectly classified, exposing that distribution by class.

Taking as example a binary classification task, the confusion matrix would be like the

one at Figure 3.5. This tool allows to extract several metrics, particularly those exposed

below and used in this work.
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0 1

0
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Figure 3.5: Confusion matrix of a binary classification task.

• True Positive (TP): the model predict the positive class (1) and the actual output is

the positive class;

• True Negative (TN): the model predict the negative class (0) and the actual output is

the negative class;

• False Positive (FP): the model predict the positive class and the actual output is the

negative class;

• False Negative (FN): the model predict the negative class and the output is the positive

class.

Accuracy

The accuracy metric is probably the most well-known and widely used, as it indicates the

percentage of correctly classified samples. It is applicable when dealing with balanced data

and is calculated as

Accuracy =
TP + TN

TP + TN + FP + FN
. (3.22)

Precision

Another important metric is the Precision, as it evaluates the proportion of the predicted

positive class actually being positive, and is obtained through

Precision =
TP

TP + FP
. (3.23)
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Recall

This metric gives information about how many of the actual samples of the positive class

the model has captured by labeling them as positive.

Recall =
TP

TP + FN
(3.24)

F1 Score

The F1 Score metric can be seen as the Harmonic mean of the Precision and Recall metrics.

If one of these values tends to be very low, the F1 Score will be closer to the smaller one,

giving the model an adequate score.

F1Score =
2× Precision×Recall

Precision+Recall
=

TP

TP + 1
2
(FP + FN)

(3.25)

Specificity

Also known as True Negative Rate, this metric evaluates the proportion of the negative class

that are rightfully predicted as negative, with respect to all the negative class samples.

Specificity =
TN

TN + FP
(3.26)
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4 MM signals detection with single model

NN-based systems

In this chapter, we explain the approaches taken to the development of a NN-based detector

for QAM magnitude modulated signals. It also addresses the necessary concepts to further

understand the experiences performed in the investigation, giving a detailed description and

explaining the decisions that were made.

4.1 4-QAM Constellation

In an M-ary PSK system, the components of the modulated signal are typically constrained

in order that the envelope remains constant, resulting in circular constellations. Nevertheless,

if that constraint is removed, allowing in-phase and quadrature to be independent of one

another, a new type of modulation, known as M-ary QAM, emerges. Once the carrier is

modulated in amplitude and phase, QAM is an hybrid type of modulation.

Hence, this constellation is described by two orthogonal passband basis functions:

ϕ1(t) =

√
2

Ts

cos(2πfct), 0 ≤ t ≤ Ts

ϕ2(t) =

√
2

Ts

sin(2πfct), 0 ≤ t ≤ Ts

(4.1)

in which Ts corresponds to symbol duration and fc is the carrier frequency. In this way, a

transmitted M-ary QAM signal for any symbol k is defined as the engaging of two phase-

quadrature carriers:

sk(t) =

√
2E0

Ts

ak cos(2πfct)−
√

2E0

Ts

bk sin(2πfct), 0 ≤ t ≤ Ts (4.2)

with E0 being the energy of the lowest amplitude symbol, and ak and bk corresponding to

the symbols to be transmitted in phase and quadrature, respectively.
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So, referring to the constellation under study, the 4-QAM, represented in Figure 4.1, it

is a square constellation since the number of bits per symbol, L, is even:

L =
√
M = 2 (4.3)

1

2

00

01 10

11

1

1

Labels

0

1

2

3

Figure 4.1: Signal-space diagram of a 4-QAM constellation with gray-encoded dibits.

Even though this signaling scheme is bandwidth efficient, it needs to operate in the linear

region of the PA to dismiss any signal deterioration [28].

The Magnitude Modulation technique applies polar scaling to the symbols by multiplying

both the in-phase (I) and quadrature (Q) components by the same MM coefficient in order

to avoid phase modulation, which spreads the constellation symbols throughout the linear

functions y = x and y = −x, as demonstrated in Figure 4.2. As it can be seen, this brings the

symbols closer to the origin, which is why MM increases constellation symbol’s sensitivity

to noise and can even cause some symbol’s errors. Figure 4.3 illustrates a 10000 4-QAM

symbol’ sequence, magnitude modulated, and scattered with different noise levels. In green

are the symbols that kept their quadrant. In red are the ones that changed quadrant due to

MM and noise.
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Figure 4.2: Effect of MM applied to 4-QAM symbols.
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(b) Eb/N0 = 2 dB
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(c) Eb/N0 = 4 dB
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(d) Eb/N0 = 6 dB
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(e) Eb/N0 = 8 dB
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(f) Eb/N0 = 10 dB

Figure 4.3: Sequence of 10000 QPSK symbols with MM scattered with different Eb/N0 ratios.

Presented in green are the symbols that kept their original quadrant. The red ones switched

quadrants due to magnitude modulation plus noise and are prone to being misclassified by

conventional demodulators.

Following in this document, it will be presented BER curves for this type of constellation.

As a benchmark or method of comparison with the results achieved, two curves are always

shown: one that represents the theoretical demodulation BER of a conventional demodulator,

29



and another that displays the theoretical demodulation BER of a conventional demodulator

when in the presence of MM symbols. Since in this study only the AWGN channel was

considered, the first curve mentioned was obtained through (4.6) [29], which was simplified

from (4.5), with M = 4. Remark that Q(.) is the Gaussian Q-function defined as

Q(x) =
1√
2π

∫ ∞

x

e−
t2

2 dt . (4.4)

BERM−PSK =
2

log2(M)
Q

(√
2Eb log2(M)

N0

sin
( π

M

))
(4.5)

BER4−QAM = Q

(√
2Eb

N0

)
(4.6)

The second curve was obtained by taking a magnitude modulated sequence and con-

sidering its transmission through an AWGN channel with different noise powers, and by

demodulating it with a conventional and unaware detector. Nonetheless, analytical formulas

were determined for the BER performance of MM M-PSK signals transmission over AWGN

channels. The first one was presented by Gomes et al. [30] and relied on the grasp of the MM

factor’s distribution statistics. Unfortunately, it was an onerous integral difficult to evaluate

and somewhat exclusive to the AWGN channel, i.e., it was harsh to broad to other channel

types, like time-dispersive ones. Thus, Equation (4.7) [11] was developed, much simpler than

the previous one. Without getting into unnecessary detail, this expression took a Gaussian

approximation to model the statistical characterisation of the distortion term introduced by

the MM technique, α, which is used as an weighting factor on MM distortion’s power: α is

a function of the Kullback-Leibler (KL) divergence [31] of the MM coefficients’ probability

function from the Gaussian approximation.

PMM
e (γ) ≃ 2

log2(M)
Q

(√
2m̄2Es

σ2
nz

+ ασ2
d sin

2 (π/M)
sin
( π

M

))
(4.7)

Here, the BER performance is in function with the Signal to Noise Ratio (SNR), γ, which

is given by γ = σ2
sn/σ

2
nz

, with σ2
sn = E

[
|sn|2

]
= Es = Eb log2(M), where Es and Eb symbolize

the energy per information symbol and per information bit, respectively, and σ2
nz

= N0, this

being the power spectral density. Finally, m̄ = E[m] is the average constellation symbol

position after MM and σ2
d = E

[
|s′

n − m̄sn|2
]

is the power of dn = s
′
n − m̄sn which is the MM

distortion. This nomenclature is in accordance with the block diagram of Figure 2.1. The

relation between α and DKL was then found to be accurately expressed by the logarithmic
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expression α = a log10(DKL) + b, where a and b depend on the constellation being studied

[11].

4.2 Datasets

Datasets had to be generated in order to train and test the DL models. Because the en-

tire project is simulation-based, the data was gathered using a Monte Carlo Simulation of

digital modulation techniques over a noisy channel with and without magnitude modula-

tion, employing the MPMM technique, as described in Section 2.2.3, using the MATLAB

framework.

The base system model of a transceiver employing MM is here remembered and depicted

in Figure 4.4. An uncoded stream of bits is modulated, originating the symbol’s sequence s.

This sequence is magnitude modulated, sMM , passing then through an RRC filter in order

to shape the pulse, giving rise to x. This is then transmitted over an AWGN channel. The

receptor, here our NN-based system, takes y (x with the noise added by the channel), and

outputs ŝ, a prediction of the original modulated symbols.

Modulator MM Pulse Shaping
Bits

AWGN

NN-based MM
demodulator

Figure 4.4: Block diagram of a transceiver system comprising MM.

Thus, three different MM symbol sequences were generated: one for training, other for

validation and another for testing. Tipically, a portion of the training dataset is used for

validation, especially when the data available is limited. However, because that was not the

case, a different sequence was chosen. This justify as well why techniques like cross-validation

were not used. The initial sequences, i.e., those without any modulation, were also saved,

since they represent our labels/ground-truth. Enhance that the original sequences had nearly

26.5 million symbols, but due to the number of different datasets required, each one ended

to comprise only 15 million samples, enabling to balance the representativeness and richness

of the dataset with its memory occupancy.

So, the datasets were constructed according to the following sequence:

i. Stochastic generation of a stream of numbers in the interval [0,M − 1], M being the

constellation order;
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ii. Modulation of the previous stream to QAM symbols, using gray encoding as shown in

Figure 4.1;

iii. MM of the sequence, using the parameters of Table 4.1;

iv. Addition of White Gaussian Noise according to the specified SNR given by

SNR(dB) = Eb/N0(dB)
+ 10 log10(k ∗ coderate) (4.8)

with k = log2(M) being the number of bits per symbol;

v. Decomposition of the symbols in real and imaginary parts1.

Table 4.1: RRC filter definition parameters for the MPMM technique usage and constants.

Parameters Values

Filter oversampling 4

Roll-off 0.2

Delay 18

Span 36

Coderate 1

k 2

M 4

Once the symbol sequences were prepared, i.e., magnitude modulated and with addition

of noise due the transmission channel, the samples were truncated using a sliding window

method, as shown in Figure 4.5, with the size of the window depending on the memory being

considered by the receiver upon detection.
1There has already been a substantial amount of research into Complex-Valued Neural Networks (CVNNs)

[32, 33], and the results have been promising. However, their application still is difficult and beyond the

scope of this study.
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Figure 4.5: Schematic representation of the sliding window method used to build the

datasets, showing a sequence of MM symbols with noise and the original sequence, used

as ground-truth/labels (see Figure 4.1), for the various window sizes employed.

Usually, when using public datasets, there is a need for preparing the data, which is a

critical process nowadays in the data science field, as the Law of Reality (“Garbage in, garbage

out.”) plays a huge role in the ML algorithms’ performance. Around 60% of data scientists’

time is spent cleaning and organizing the data, so-called feature engineering. Nevertheless,

since the data was generated throughout a controlled simulation, the only concerns taken

into account were possible, but very unlikely, redundant samples (repetitions) and equally

distributed classes within the datasets [34].

4.3 Deep Fully Connected model

As an initial note, this and the following models were fully developed using the PyTorch

framework [35].

The main goal of this study was to develop a receiver based on a NN to demodulate

QPSK/OQPSK signals with MM. So, as this is an untouched topic yet, we started by testing

the performance of one of the less complex neural networks used in supervised learning tasks,

the FFNN/Multilayer Perceptron (MLP) [36], using it to demodulate MM signals of one of

the simplest constellations, the 4-QAM. A relatively similar approach was made by Liu

and Romero [37], where a DNN was used as a demodulator to decode symbols envolved

in radar signals. Their model showed up to be very robust, outperforming other current

state-of-the-art techniques such match filtering demodulation [38].

Because there is some disagreement about how to count layers in a network, the conven-

tion adopted in [16] will be followed for the purposes of this work: an L-layer network has

L − 1 hidden layers and an output layer. After many iterative refinements to the network

structure, the final architecture that yielded the best results is depicted in Figure 4.6, making
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up five layers, which turns this into a DL model [39]. This architecture counts with a total of

7.549 parameters for the maximum input size, N , tested, and is fully exposed in Appendix

A.1. As shown in Figure 4.5, the biggest window considered comprised 7 symbols, which led

to N = 14 due to the decomposition into real and imaginary parts.

The other decisions made to compose the model, like the activation function, weight

initialization, optimization function, and others, are justified hereafter and summarized in

Table 4.2.

Input Hidden Output

N 420 50 70 35Number of nodes

.


.


.

.


.


.

.


.


.

.


.


.

Figure 4.6: Feedforward Fully Connected Neural Network architecture developed. The num-

ber of input nodes depends on the memory being considered, N .

Table 4.2: Choices made for the FFNN-based model constitution and hyperparameter values.

(a) Activation Function ReLU

(b) Loss Function Cross Entropy

(c) Optimization Function AMSGrad

(d) Learning Rate 10−2/10−3

(e) Batch Size 500000

(f) Weight & Bias initialization Default

Following, there is a list justifying the options made to the model and presented in Table

4.2.
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(a) In the process of designing a neural network, a crucial decision passes through the AF

to be employed. Without it, the operations within the network would just be pure

linear regressions, as mentioned in Section 3.3. Thus, the AFs allow the model to learn

the feature representations more efficiently by introducing non-linearity. The Rectified

Linear Unit (ReLU) and its derivations [40] have been successfully integrated into the

majority of cutting-edge DL applications nowadays, and once they keep showing good

results, they are the functions to go for. Another reason why the ReLU was the AF

chosen, stands within the exposed at (f), since it is less sensitive to random weight

initialization. Other AFs like the Tanh were tested during the development of the

model, but none of them led to better results than the ReLU.

(b) As relevant as the previous point, the loss function is another important element of the

model since it is the means by which the NN learns. Comparing the prediction made

by the model with the true label of the data, the goal within training is to minimize

the validation loss without incurring the overfitting problem. Thus, the loss function

employed was the Cross Entropy. Known from Information Theory [41], it has been

widely employed in the DL field and, as it shows a faster convergence rate than other

loss functions like MSE [42, 43], further developments have been proposed to enhance

it [44].

(c) In order for the parameters of the network, i.e., weights and biases, to be adjusted

at each epoch, so that the data can be learned, there is a need for a function that

updates them. That is exactly what an optimization function does. Hence, being an

improvement from Adaptive Moment Estimation (Adam) [45], one of the currently

best and largely used optimizers, the AMSGrad [46] was the optimization function

employed in this model. Lets recall that L2 regularization is inherently associated in

PyTorch, where the weight decay value used was 10−4.

(d) From the several hyperparameters that comprise a DL model, the Learning Rate (LR)

might be the one with greater immediate influence (Section 3.5). So, even though

AMSGrad adjusts it, an adaptive LR technique was employed, the MultiStepLR, with

one milestone in which the LR was multiplied by a 0.1 valued decay factor.

(e) Between many other aspects, the size of the batch utilized heavily dictates how fast

the training stage is performed. Considering the datasets size, batches of 500 thousand

samples was the size that established the better tradeoff between model performance
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and training duration.

(f) Another major boost in the model performance could be induced by the way the NN

parameters are initialized. Hence, this option was left as the PyTorch’s default, i.e., the

weights and biases values were instantiated according to the formulation proposed by

Kaiming He [47], the Gaussian distribution ωl = G
(
0.0,

√
2
nl

)
, where n is the number

of inputs to the particular node l.

In addition to what has already been stated, it was used early stopping in the train-

ing, preventing overfitting, unnecessary time and computational resources. It must also be

pointed that, in the data preprocessing stage, the features were standardized.

4.3.1 FFNN results

4.3.1.1 System without memory

Similarly to conventional demodulators, where the memory characteristics of the Magnitude

Modulation algorithm are not taken into account, the performance of a FFNN was tested first

with the symbol itself, i.e., only the in-phase and quadrature components were considered

as features (N = 2).

So, in order to test the influence of the Eb/N0 (i.e. the energy per information bit to

noise power spectral density ratio), characterizing the AWGN channel on the performance

of the network, two trainings were performed: one with Eb/N0 = 6 dB and another with

Eb/N0 = 10 dB. These choices were based on preliminary tests that had revealed minor

differences when the training was performed with values like 0, 2, 4 and 8 dB, leading to

the choice of those two Eb/N0 values. The value Eb/N0 = 6 dB corresponds to an average

SNR situation in which noise plus MM causes some errors. On the other hand, Eb/N0 = 10

dB is a scenario where noise is residual, leaving the magnitude modulation as main causer

of distortion. In this case, only sporadic errors occur. Both of the mentioned circumstances

are depicted in Figure 4.3. Datasets made up of symbols with different Eb/N0 ratios were

also tested, but they provided no benefit.

Relating to the training stage of this model, for an Eb/N0 = 6 dB, it took 63 epochs to

train until it was stopped by the early stopping, which was set with a patience of 10 epochs.

In this way, the confusion matrices for each test are presented in Figure 4.7, Table 4.3

displays the performance metrics derived from them, and the BER curves obtained are those

depicted in Figure 4.8. The confusion matrix is a helpful performance measurement tool for
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classification tasks in ML. It allows to have a quick perception of the model behavior,

by establishing a direct comparison between the predictions of the model (horizontal axis)

and the desired outputs, i.e. labels/ground-truth (vertical axis). From this matrices, it is

possible to extract the metrics presented in Table 4.3, which allows to evaluate the model

performance. Analysing the results, it is clear that, even though the FFNN was trained with

MM symbols with an Eb/N0 of 6 dB, the model can generalize well for all the spectrum

considered, performing better as the noise intensity gets lower.

(a) Eb/N0 = 0 dB (b) Eb/N0 = 2 dB (c) Eb/N0 = 4 dB

(d) Eb/N0 = 6 dB (e) Eb/N0 = 8 dB (f) Eb/N0 = 10 dB

Figure 4.7: Confusion matrices for each Eb/N0 value applied to the test dataset, for the

model trained with a sequence with Eb/N0 = 6 dB and without considering any memory.
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Table 4.3: Metrics extracted from the previous confusion matrices.

Eb/N0

(dB)

F1 Score

(%)

Specificity

(%)

Recall

(%)

Precision

(%)

Accuracy

(%)

0 84.214 94.738 84.214 84.214 84.214

2 91.901 97.3 91.901 91.901 91.901

4 96.911 98.97 96.911 96.911 96.911

6 99.192 99.731 99.192 99.192 99.192

8 99.866 99.955 99.866 99.866 99.866

10 99.986 99.995 99.986 99.986 99.986

As it can be seen from Figure 4.8, there is not much of a difference between the curves for

different trainings. Our goal is to get as close as possible to the red curve, which represents

the theoretical BER for a hard decoder for signals without MM, i.e., only affected by noise.

For an Eb/N0 ratio in the interval [0, 4], the neural network performs quite well. However, as

we continue to reduce the noise, the effect of the MM gets increasingly higher, and the curve

starts to follow the theoretical BER for a hard decoder when in presence of MM signals.

Even though the result obtained is better than the one from the method currently applied,

there is still margin for improvements.
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Figure 4.8: BER for a FFNN trained with MM symbols and Eb/N0 = 6 and 10 dB for

comparison, without consideration of memory in the system.
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4.3.1.2 System with memory

Given that, in the previous section, we were only feeding the FFNN with two features (i.e. the

real and imaginary part of the received symbol to be demodulated), it can be considered that

it was not enough. So, as the Magnitude Modulation algorithm embeds memory within the

transmitted signal, since it considers the neighbors of each symbol to magnitude modulate

in order to determine the MM coefficient to apply to it, we trained the FFNN-based model

considering this memory of the system, starting first with two neighbors.

As in 4.3.1.1, the model was once trained with symbol sequences with an Eb/N0 = 6

dB, during 35 epochs, but this time with a dataset comprising six features, in-phase and

quadrature components of each MM symbol, yi, to be demodulated, and its right and left

neighbors, yi+1 and yi−1, and the target being the original symbol (without MM and noise),

i.e. si. From 4.3.1.1, it was possible to conclude that training the neural network with

Eb/N0 = 10 dB did not bring any advantage, as reducing the noise gives less generality to

the dataset.

Observing the following Figure 4.9, as well as the Table 4.4, it is noticeable that, in fact,

by inducing memory, consequently giving more features to the DNN to learn, the performance

can be enhanced and the BER can be reduced even more.

(a) Eb/N0 = 0 dB (b) Eb/N0 = 2 dB (c) Eb/N0 = 4 dB

(d) Eb/N0 = 6 dB (e) Eb/N0 = 8 dB (f) Eb/N0 = 10 dB

Figure 4.9: Confusion matrices for each Eb/N0 value applied to the test dataset, for the

model trained with a sequence with Eb/N0 = 6 dB and considering a 3-symbol window.
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(a) Eb/N0 = 0 dB (b) Eb/N0 = 2 dB (c) Eb/N0 = 4 dB

(d) Eb/N0 = 6 dB (e) Eb/N0 = 8 dB (f) Eb/N0 = 10 dB

Figure 4.10: Confusion matrices for each Eb/N0 value applied to the test dataset, for the

model trained with a sequence with Eb/N0 = 6 dB and considering a 5-symbol window.

(a) Eb/N0 = 0 dB (b) Eb/N0 = 2 dB (c) Eb/N0 = 4 dB

(d) Eb/N0 = 6 dB (e) Eb/N0 = 8 dB (f) Eb/N0 = 10 dB

Figure 4.11: Confusion matrices for each Eb/N0 value applied to the test dataset, for the

model trained with a sequence with Eb/N0 = 6 dB and considering a 7-symbol window.
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Table 4.4: Metrics extracted from the confusion matrices of Figures 4.9, 4.10, and 4.11.

Memory

Window Size

Eb/N0

(dB)

F1 Score

(%)

Specificity

(%)

Recall

(%)

Precision

(%)

Accuracy

(%)

3

0 84.186 94.729 84.186 84.186 84.186

2 91.949 97.316 91.949 91.949 91.949

4 97.021 99.001 97.021 97.021 97.021

6 99.293 99.764 99.293 99.293 99.293

8 99.293 99.764 99.293 99.293 99.293

10 99.994 99.998 99.994 99.994 99.994

5

0 84.2 94.736 84.2 84.2 84.2

2 91.977 97.326 91.977 91.977 91.977

4 97.049 99.016 97.049 97.049 97.049

6 99.309 99.77 99.309 99.309 99.309

8 99.917 99.972 99.917 99.917 99.917

10 99.995 99.998 99.995 99.995 99.995

7

0 84.199 94.733 84.199 84.199 84.199

2 91.977 97.326 91.977 91.977 91.977

4 97.04 99.013 97.04 97.04 97.04

6 99.306 99.769 99.306 99.306 99.306

8 99.917 99.972 99.917 99.917 99.917

10 99.995 99.998 99.995 99.995 99.995

Looking to find if augmenting the window size, i.e., the number of neighbors, would

translate into a more accurate decoding, we considered a 5-symbol window, inducing a ten-

feature dataset with the same ground-truth as in the previous case. The training lasted for

30 epochs and, analysing Figure 4.10 and Table 4.4, it is clear that there is an improvement

relative to the previous cases. This was the best BER curve achieved for this DL model and,

probably, by spending more time fine tuning the model hyperparameters, these results could

be slightly improved.

As a last attempt to study the effect of memory on the performance of the model, a

7-symbol window was used for training. This time, the model took 35 epochs to train. It

is perceivable from the confusion matrices of Figure 4.11 and their correspondent metrics in

Table 4.4 that there were no major advantages in the use of a larger memory window. The

BER of the tested scenarios so far are combined in the following section for comparison.
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4.3.1.3 Comparison
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Figure 4.12: Combination of all the BER curves achieved with a FFNN-based model, trained

with MM symbols with Eb/N0 = 6 dB and considering different symbol’ window sizes.

Gathering all the results exposed at the previous sections, it is noticeable that taking into

consideration the memory of the system translates into a gain. However, increasing the

symbol window size barely makes a difference: as it can be seen in Figure 4.12, there is a

small improvement from a 3 to 5 window size, but from 5 to 7 it is unnoticeable.

4.4 Convolutional Neural Network model

The results obtained with the FFNN-based model fell a little short of expectations. This

could be due to the model’s simplicity, as a FFNN is the entry base model in the ANN

subject.

Seeking to improve them, another well-known NN in classification tasks was employed,

the Convolutional Neural Network (CNN) [48]. This network architecture is extensively used

in image classification. Nonetheless, it has demonstrated to be effective in other tasks such

as time series classification [49], which is why it was worth a try in this study.

So, following a network structure somewhat similar to the one presented in [49], the

architecture presented in Figure 4.13 was the one that led to the finest results. This model

is fully detailed in Appendix A.2.
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Even though CNNs can perform 1D convolutions, as pointed out previously in Section

3.6, which would be the obvious choice for this application, we opted to transform the symbol

window into a 2D layout, as illustrated in Figure 4.14. This opens up a wider range of options

for model tuning. The symbol window was then reshaped from 1 × 2N to 2 × N , N being

the size of the window considered.

Analysing the network structure, following the input layer is the feature extraction part,

which counts with two conv2D layers (Section 3.6), each of them followed by an Exponential

Linear Unit (ELU) activation [50] and a max pooling layer. Adding dropout [51] showed up

to be effective. The details on the mentioned layers and other options made to the model

are presented in Table 4.5 and justified afterwards. Regarding the classification part of the

network, it counts with three hidden layers.
D

ro
po

ut
 (0

.3
)

Flatten

Conv-2D Conv-2D

2

N

2
2

20 40

2

2

3

N+1

3

N+1
ELU

MaxPool ELU
MaxPool

1

30 50 70 25 4

ReLUReLU ReLUReLU

50 70

Input Feature extraction Classification

2

2

Figure 4.13: Convolutional Neural Network architecture developed. N represents the window

of MM and noisy symbols being considered.

...

...

...

...

Figure 4.14: Data format at the entry of the network, considering a window size of N

symbols.
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Table 4.5: Layers’ details, options made to the CNN-based model constitution and hyper-

parameter values.

Kernel size = (2,2)

(a) Conv2D Stride = 1

Padding = zeros (1,1)

(b) ELU Alpha = 1.0

Kernel size = (2,2)

(c) MaxPool Stride = 1

No padding

(d) Dropout Probability = 0.3

(e) Optimization Function Adam

(f) Batch size 100000

Next, is presented a list giving further insight and justifications for the options made for

the model and presented in Table 4.5.

(a) Due to the small size of the input given to the network, there was not much of an

option in terms of the convolution kernel size to be applied and to employ padding, in

this case with zeros.

(b) At the first iterations of this model, ReLU was the AF utilized at the feature extraction

part of the network. However, the results achieved were on pair with the ones obtained

with the FFNN. Changing to the ELU activation function (Section 3.3) contributed

to improve the accuracy. This choice was due as well to the stated in [50], where the

advantages of this AF were shown, not only in the generalization capability of the

model, but also in speeding up the training stage.

(c) The options to the max pooling layer follow the considerations already made at point

(a).

(d) The introduction of dropout is usually made in cases were overfitting problems occur.

Even though that was not the case, zeroing some elements before the flatten with a

probability of 0.3 proved to be helpful.

(e) In this model, there was no visible advantage in using AMSGrad, contrarily to the

FFNN-based one, reason why Adam was kept.
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(f) Being computationally heavier than the FFNN-based model, a smaller batch size was

needed in order to keep the training duration acceptable.

The remaining options and hyperparameter values were kept as indicated in Table 4.2.

4.4.1 CNN Results

4.4.1.1 System without memory

From Section 4.3.1, it was noticeable that training the network without considering the

neighbors (further and previous) of the symbols to demodulate, led to poor classification

results, which translates into a BER curve far from what was desired. Anyhow, to establish

a comparison between the CNN and FFNN-based models, similar training conditions were

tested.

So, giving as input just the symbol itself, which results are shown in Figure 4.15 and

Table 4.6, allows to see that no improvements were obtained in comparison with the ones

for the FFNN-based model (Figure 4.7 and Table 4.3): this conclusion is translated into the

curve shown in Figure 4.16. It should be noted that, since training the previous model with

symbols having Eb/N0 = 10 dB was worthless, only trainings with 6 dB were performed for

this model. It should also be mentioned that the training went for 50 epochs.

Once more, this proves that giving as input to a model just two learning features to learn,

in this specific study case, is insufficient.
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Figure 4.15: Confusion matrices for each Eb/N0 value applied to the test dataset, for the

CNN-based model trained not considering memory.

Table 4.6: Metrics extracted from the confusion matrices of Figure 4.15.

Eb/N0

(dB)

F1 Score

(%)

Specificity

(%)

Recall

(%)

Precision

(%)

Accuracy

(%)

0 84.212 94.737 84.212 84.212 84.212

2 91.893 97.298 91.893 91.893 91.893

4 96.907 98.969 96.907 96.907 96.907

6 99.19 99.73 99.19 99.19 99.19

8 99.866 99.955 99.866 99.866 99.866

10 99.985 99.995 99.985 99.985 99.985
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Figure 4.16: BER for a CNN trained with MM symbols and Eb/N0 = 6 dB, without consid-

eration of memory in the system.

4.4.1.2 System with memory

The CNN-based model, similarly to what have been made in Section 4.3.1.2, was tested

with different symbol input sizes, in order to determine the influence of the memory in the

system. As intended, being a more complex model than the FFNN-based one, the following

Figures 4.17, 4.18, and 4.19 and Table 4.7 prove that there is a considerable improvement

in the performance, which results in the BERs of Figure 4.20.
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(f) Eb/N0 = 10 dB

Figure 4.17: Confusion matrices for each Eb/N0 value applied to the test dataset, for the

model trained considering a memory window of 3 symbols.
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(f) Eb/N0 = 10 dB

Figure 4.18: Confusion matrices for each Eb/N0 value applied to the test dataset, for the

model trained considering a memory window of 5 symbols.
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(f) Eb/N0 = 10 dB

Figure 4.19: Confusion matrices for each Eb/N0 value applied to the test dataset, for the

model trained considering a memory window of 7 symbols.
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Table 4.7: Metrics extracted from the confusion matrices of Figures 4.17, 4.18, and 4.19.

Memory

Window Size

Eb/N0

(dB)

F1 Score

(%)

Specificity

(%)

Recall

(%)

Precision

(%)

Accuracy

(%)

3

0 84.165 94.721 84.165 84.165 84.165

2 91.988 97.329 91.988 91.988 91.988

4 97.092 99.03 97.092 97.092 97.092

6 99.337 99.779 99.337 99.337 99.337

8 99.922 99.974 99.922 99.922 99.922

10 99.996 99.999 99.996 99.996 99.996

5

0 84.198 94.733 84.198 84.198 84.198

2 92.048 97.349 92.048 92.048 92.048

4 97.145 99.048 97.145 97.145 97.145

6 99.365 99.788 99.365 99.365 99.365

8 99.929 99.976 99.929 99.929 99.929

10 99.996 99.999 99.996 99.996 99.996

7

0 84.196 94.731 84.196 84.196 84.196

2 92.045 97.348 92.045 92.045 92.045

4 97.142 99.047 97.142 97.142 97.142

6 99.364 99.788 99.364 99.364 99.364

8 99.928 99.976 99.928 99.928 99.928

10 99.996 99.999 99.996 99.996 99.996
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4.4.1.3 Comparison
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Figure 4.20: Combination of all the previous results shown for a CNN trained with MM

symbols with Eb/N0 = 6 dB.

As it can be seen from the previous figure, the BER curves arising from this model are very

similar to the ones presented in Figure 4.12. However, in the next section, the results of

both models are analysed in greater detail.

4.5 Model performance comparison

Although the BER curves seem equal to the ones provided by the FFNN-based model, when

compared side by side in detail in Figure 4.21, it is noticeable that the CNN performed

better. As a quantitative measure, for an Eb/N0 = 10 dB, the BER suffered an improvement

of 5×10−6 (AU) from the FFNN to the CNN model. Considering a high-speed data transfer

like, for example, 1 Mb/s, it would translate in 5 error bits per second.
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Figure 4.21: Excerpt of the BER curves of both models for comparison, when the networks

were trained with MM symbols with Eb/N0 = 6 dB.

Having explored the capabilities of two common state-of-the-art neural networks, the

FFNN allowing to enquire if a simpler model would be enough for the task intended and

the CNN inducing a higher complexity in the system, and knowing the limitations in terms

of richness of the data, it was clear that, without bringing something new to the study, it

would be difficult to achieve an even better demodulation BER. This prompt us to the next

chapter.
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5 MM signals detection with multi-model

NN-based systems

The models presented previously proved that it is possible to mitigate the MM effect in the

demodulation stage. However, since there is still margin for improvement, a new approach

was taken, whose premise was based on reverting the MM system.

At an early stage of the work, unwittingly, the MM coefficients of the symbols were

being fed to the model, together with both the components of the symbols, accordingly with

the window being employed. The BER obtained was staggering, since it matched almost

perfectly the theoretical BER for the 4-QAM constellation’s symbols, as presented in Figure

5.1. The problem with this was: the receptor only gets the MM symbols with AWGN, y, so,

unless the MM coefficients were estimated on the basis of y, there was no way to achieve such

results. So, the next step was precisely to come up with a system composed of complementary

models in order to estimate the MM coefficients prior to the symbol classification.
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Figure 5.1: Demodulation BER of a FFNN-based model trained with MM symbols with

AWGN of Eb/N0 = 6 dB and with the addition of the MM coefficients in the dataset,

considering a 3-symbol window.
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5.1 Bidirectional LSTM model

In addition to the models presented in the last chapter, a BLSTM-based one was implemented

for the classification task intended.

Widely used at Natural Language Processing (NLP) related fields like hand-writing and

speech recognition [52, 53], the RNNs have proven to be effective due to their architecture,

specially the LSTM (Section 3.7). Attending to the current state of the art, complexity

and computational cost were not taken into consideration here, since Transformers [54] have

proven to lead on those topics. However, the BLSTM allows to consider not just the past

symbols, but, by reversing the sequence, take into account the future ones, which is somewhat

similar to what happens at the MPMM technique.

Firstly introduced for framewise phoneme classification [55], the bidirectional version of

an LSTM outperformed both the RNN and its bidirectional version, as well as the "vanilla"

LSTM, showing improvements in performance and on the number of training epochs. So, it

was a typology worth trying.

Regarding the model employed, its architecture is as the one presented in Figure 5.2, and

the setup options made are presented at Table 5.1.

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

Forward

Backward

Figure 5.2: Bidirectional Long Short-Term Memory Recurrent Neural Network architecture

developed. x represent the input sequence at a specific instant t, h is the LSTM module

output, σ represent the activation function and y is the layer output.
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Table 5.1: Choices made for the BLSTM-based model constitution and hyperparameter

values.

(a) Hidden size 128

(b) Activation Function ELU

(c) Loss Function Cross Entropy

(d) Optimization Function Adam

(e) Learning Rate 10−2/10−3

(f) Batch Size 64

(g) Weight & Bias initialization Default

The model options were similar to the other models in that they followed current state-

of-the-art functions and chose specific values such as (a) and (f) in Table 5.1 that resulted

in better results. The difference between the previous models is visible in relation to the

parameter (f).

Contrarily to the FFNN and CNN-based models, this model was applied with a new

paradigm, which was to predict the MM coefficient used for a symbol. Thus, beyond consid-

ering the symbols, the MM coefficients were also added to the datasets. Due to the symbol

sequences nature, these coefficients follow a far from uniform distribution, leading to un-

balanced datasets. To avoid this, sample selection had to be done, drastically reducing the

dataset size, which is why the batch size hyperparameter is significantly lower than in the

other models.

5.2 First approach: Cascaded Feed-Forward

The first approach taken was to consider the feed-forward cascaded system represented in

Figure 5.3, composed by two DL estimators. The first estimator, A, receives the MM symbols

with added white noise, y, and outputs an estimation of the corresponding MM factors, m̂.

Then, the second model, B, takes those estimations and the received symbols y to classify

them into the original ones, ŝ.
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Figure 5.3: System composed by two DNNs: A - takes as input the symbols received and

outputs an estimation of the MM coefficients class; B - accepts both the symbols and re-

spective estimated MM coefficients and predicts the original symbols.

Getting into more detail, the model A consisted of the BLSTM RNN described in Section

5.1. In order to keep it fairly simple and the most computationally inexpensive possible, this

was the one that led to the best classification among the evaluated ones. An important

decision made was one regarding the matter of the quantization applied to the MM coeffi-

cients. Pointing out that, regarding the magnitude modulated symbol’s sequence in study,

the coefficients were comprised in the interval [0.39, 1.00], with a distribution as presented

in Figure 5.4. However, in order to enable a DL model to perform the classification of the

MM coefficients, it was necessary to discretize this interval.

Two concerns stand out from the following figure:

1. In order to maintain a class balanced dataset, no matter what kind of quantization

is applied, there will be a loss of samples for the training phase because most of the

MM coefficients stand between 0.8 and 0.87, approximately. With such an uneven

distribution, the most populated classes have to be trimmed, leading to sample loss.

2. Having established that the MM coefficients can take an almost continuous range of

values, how much can they be discretized without arming the system?
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Figure 5.4: Distribution of the 15 million MM factors, m, rounded to two decimals, corre-

sponding to the training sequence symbols.

Regarding model B, it was based on the FFNN described in Section 4.3, with some

modifications in the hyperparameters. As demonstrated, although simple, this model led to

the BER curve at Figure 5.1, which is an optimal result.

So, seeking to understand how much the accuracy of the MM factors matters to the model

while comprehending their importance as features, B was tested considering different levels

of quantization (from 3 to 8 bits) within the provided MM factors, using Lloyd’s algorithm

[56, 57]. Surprisingly, model B proved to be very robust. Figure 5.5 shows that there is

only a minor performance loss when using a 3-bit quantization, which gives an answer to

the second concern. On the other hand, a 3-bit quantization is equivalent to have 8 classes,

allowing to simplify model A, since, generally, a higher class classification problem requires

a more complex model.
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Figure 5.5: BER achieved from the system when the model B was provided with MM

factors quantized with different levels, for comparison. Training was performed considering

a window of 3 symbols with Eb/N0 = 6 dB.

Thus, the system was tested making use of a window of 7 magnitude modulated and

noisy symbols.

5.2.1 First approach results

Knowing the indifference of model B to the quantization applied to the MM coefficients, we

opted for the simplest path, training model A as an 8-class classifier. Despite the efforts to

gather a model with a promising performance, the one that led to the best results was based

on the BLSTM RNN described in Section 5.1, achieving an overall accuracy of 60.2%.

Nonetheless, despite the training dataset having been balanced, the symbols’ sequence

of the testing dataset gathers a highly unevenly distributed MM factors sequence, as ex-

emplified before, reason why using the accuracy as an evaluation metric is not ideal. So,

accordingly with Branco et al. [58], the Area Under the Curve (AUC)-Receiving Operating

Characteristics (ROC) curve is the best suited metric to deal with imbalanced data, ROC

being a probability curve, and AUC the degree of separability (i.e., representing the model

capability of distinguish classes). Having an AUC close to 1, indicates that the model can

differentiate almost perfectly between classes. Since this is an 8-class model, the one vs
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all methodology is employed, which means that each ROC curve refers to one class being

compared against all the other seven. For example, having an AUC equal to 0.8 for class 0,

means that there is a 80% chance that the model differs class 0 from classes 1 to 7.

So, the system was tested and its performance evaluated, leading to the results of Figures

5.6 and 5.7.
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Figure 5.6: AUC-ROC for each class of the results from the BLSTM when tested for an

Eb/N0 = 6 dB.

As the previous graph shows, the performance of the model is quite promising, with an

average AUC rounding 0.74, meaning that, in average, the model can distinguish one class

from the remaining ones with 74% certainty. However, it performs worse at the predominant

classes, which proved to compromise model B, since the BER curve achieved (Figure 5.7)

was far from what is desired (Figure 5.1).
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Figure 5.7: BER of the system when feeding the predictions of the MM coefficients from

model A (BLSTM RNN as classifier) to the symbol classifier, B (FFNN as classifier), con-

sidering a 7-symbol window.

Knowing that the symbol classifier model was resistant to the quantization applied to the

MM factors, led to conclude that, while the MM factors classifier (model A) performance was

reasonable, it was insufficient to meet the expectations. As it can be seen, for lower levels

of noise, the system loses completely its advantage relatively to traditional demodulators.

5.3 Second approach: Cascaded Feed-Forward with a

Twist

The poor performance of the first multi-model system prompted us to consider the options

available to achieve the desired BER while mitigating the MM effect.

As previously stated, classification and regression are two of the most common appli-

cations of machine learning algorithms. Classification is the process of associating a set of

characteristics with a specific type or class. Regression is about approximating a given sam-

ple to a value, like a function that, given a certain input, produces a correspondent output.

Until now, only classification was taken into account. Nonetheless, reminding that, for the

configuration exposed, the magnitude modulation factors of the sequences being used stand
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at the interval [0.39, 1.00], there is a possibility to make use of a DNN for the regression task

of estimating the MM factor inherent to each symbol.

So, a twist was given to the system developed for the first approach, resulting in the one

depicted at Figure 5.8, in which model A is now a regressor instead of a classifier.

AWGN

DNN 

Magnitude modulation
coefficient regressor

DNN 

Signal classifier

A

B

Figure 5.8: System composed by two DNNs: A - takes as input the symbols received and

outputs an estimation of the MM coefficient values; B - accepts both the symbols and

respective estimated MM coefficients and predicts the original symbols.

Thus, the FFNN-based model introduced earlier in Section 4.3 was used to this task,

with the appropriate amendments, replacing the model A in Figure 5.3. Particularly, the

output layer now has just one neuron, and the loss function employed was the L1/ Mean

Absolute Error (MAE).

5.3.1 Second approach results

In order to compare the performance of both models A, this is, the classification one em-

ployed in the first approach and the regression model employed in the second approach, the

MSE metric was used. Figure 5.10 shows the discrepancy between the model performing

classification with the BLSTM RNN (full blue line), and the one performing regression with

the FFNN (full red line). In relation to the real coefficients, the regression model can get

much closer to them. However, this is still not enough to achieve the BER presented at

Figure 5.1, as shown in Figure 5.9.

Figure 5.10 explains why the system using the regressor, although performing better

than the one of the first approach with the classifier predicting the MM coefficients, do not

reach the optimal result. Having in consideration the value kept by the horizontal pink line

that gives the MSE between the real coefficients used and their correspondent quantized
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(with 3 bits) values, we can observe that the red line never reaches it. So, the robustness

guaranteed by the quantization algorithm and comproved in Figure 5.5 is not achievable

with the regression model.

Nonetheless, the red line shows low MSE values for symbols with little noise. To empha-

size this point, the model’s behavior with no-noise symbols was tested, resulting in the value

represented by the horizontal green line. As it can be seen, this value gets pretty close to the

one achieved with the quantized true coefficients, implying that this system could perform

well for channels with little to no noise interference.
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Figure 5.9: BER of the system when feeding the predictions of the MM coefficients from

model A (FFNN as regressor) to the symbol classifier, B (FFNN as classifier), considering a

7-symbol window.
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Figure 5.10: MSE plots for comparison of the regression and classification-based models.

Although the system had been trained with symbols with an Eb/N0 = 6 dB, as a test,

we presented to it symbols just magnitude modulated, i.e., without noise, and it performed

flawlessly.

So, this brought us to the final approach, as the problem seems to reside on the MM

factors.

5.4 Third approach: Classification with Iterative Refine-

ment

Since neither of the two previous multi-model systems led to the expected results, out-

performing the CNN-based model performance presented in Section 4.4, another one was

thought of.

The study started by tuning a model capable of demodulating MM symbols with the

addition of AWGN. Furthermore, it was noticed that introducing the MM factors as fea-

tures could result in a significant gain. This took the study through a new path in which

models were combined in order to, previously to the symbol demodulation, predict the MM

factor that was used. The thought approach was: we have a model that works fairly well

by itself, giving it just the received symbols, and another that, in theory, behaves greatly
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with the addition of the magnitude modulation factors, showing no BER performance loss

when compared to a non-MM transmission; so, why not use the MPMM directly to get the

coefficients from the predicted symbol sequence and give them as input to the second model?

Thus, the third system employed was the one displayed in Figure 5.11. This system relies

on iterations, with the goal of iteratively refining the results. First, the received corrupted

symbols, y, pass through model A, which outputs a prediction of the original symbols, ŝ1.

This sequence is then given to the MPMM, from which the MM factors â1 are extracted and

followed to a second iteration. Here, model B takes y and â1 as input and outputs a new

prediction for the original symbols ŝ2 and the cycle is repeated until an optimal demodulation

BER is achieved, in theory.

DNN

Signal classifier MPMM

DNN

Signal classifier

A

B

1st iteration

Next iterations

MPMM

Figure 5.11: Iterative system employing two models, A and B, and the MPMM technique.

As pointed previously, among the models tested, the one containing the CNN (Section

4.4) led to the best BER, which is why it was chosen for model A. On the other hand, the

FFNN-based model (Section 4.3) behaved greatly when the magnitude modulation factors

were introduced as features, making it model B.

5.4.1 Third approach results

With this newly introduced system, the results obtained were more promising, as it can be

seen from Figure 5.12: indeed there is a significant gain with respect to the prior one (Figure

5.9). Nonetheless, it remains a little bit short to the ideal BER and the difference between

iterations is unnoticeable.
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Figure 5.12: BER of the third system, considering a 7-symbol window and comprising three

iterations.

The previous figure leads us to the conclusion that there was no significant benefit to

iteratively refining the models’ predictions, as no significant BER performance was achieved

in relation to the previous approaches. The similarities with the results of the CNN-based

model (Section 4.4.1) are due to the fact that the first iteration of this approach was based

on the outputs of such a model.

Thus, despite the efforts made to take the BER of a DNN-based demodulator a step

further, improving even more the BER in comparison with the one provided by the conven-

tional demodulators, the best attained result still was the one achieved with the CNN-based

model. Nonetheless, the main idea to take the results a step further was found, in theory,

and the BER already achieved is very promising.
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6 Conclusions

The aim of this study was to find a neural network-based DL model able to extinguish the

increase in the demodulation error introduced by the Magnitude Modulation technique.

To create a fully capable model and system, it was necessary to first understand the data,

specifically the symbols’ sequences, how the AWGN channel affected them, and how the

extent of the features affected the model’s ability to learn. This study began by determining

the best SNR to be used (and therefore the variance of the AWGN applied to the sequences)

in order for a model to learn them and generalize the demodulation for sequences affected

by other noise intensities other than the one for which the model was trained. So, after

experimenting with a wide range of Eb/N0 ratios and even composing datasets with mixtures

of symbol sequences having different SNRs, we concluded that Eb/N0 = 6 dB was the ratio

most representative of the entire spectrum considered. It provides a good margin for errors

and is a good compromise between high and low level noise.

The next step was to comprehend the role of memory in the system. It is well known

that the more the characteristics of the data, provided their representativeness, the better

the model will learn. We were able to define a window of symbols to input to the neural

network-based detector by introducing a buffer, intending to discern the effect of the MM

symbols window size in the performance. Here, we came to the conclusion that there is

a noticeable improvement on the detection performance (i.e. lower BER) when increasing

the memory length up to 5 symbols, while additional gains for higher memory lengths were

almost imperceptible. These findings come aligned with the starting assumption of the work

that MM introduces memory on the transmitted signal, and that we can leverage this to

improve detection. Nonetheless, following this evaluation, all the models were trained and

tested over a 7-symbol interval, bringing us to the main task: finding the best suited model.

Since this is meant to be applied in real-time operating systems, speed is a non-functional

requirement to have in mind, which means we want models as simple and efficient as pos-

sible. So, among the models built using current state-of-the-art neural networks, the one

that performed best was a CNN-based one. We also attempted to extend the results by
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composing systems that combine multiple models, such as predicting the magnitude modu-

lation coefficients prior to the symbol classification stage. However, and despite the fact that

for a genie receiver (that is, having knowledge of exact MM factors) it works in theory, the

three different approaches tested to predict the MM factors failed to estimate these with the

required precision. So, in practice, we were never able to achieve the desired BER coincident

to the one of the demodulation when in the presence of non-magnitude modulated symbols.

In conclusion, this study demonstrated that it is possible to use DL algorithms to signifi-

cantly improve the demodulation BER compared to state-of-the-art techniques and mitigate

the tradeoff established by the MM technique initially, while also leaving open the possibility

of taking the results a step ahead.

6.1 Future Work

This thesis’s overall goal was accomplished. However, there are always topics that can be

explored in greater depth.

Some future considerations include studying the performance of DL algorithms in other

types of transmission channels, such as Rayleigh. As a proof-of-concept, only a 4-QAM

constellation was considered in this study, so bigger constellations should be taken into

account. Other topic subject to further analysis is the amplification scenario. Here, was

considered an operation in the linear region of the amplifier. Would be interesting to bring

non-linear amplification scenarios to the equation. One last relevant approach might be

consider not just neural network-based models but probabilistic-based ones, for example.
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A Appendix

A.1 Deep Neural Networks Architectures

FFNN Arch i t e c tu r e : NeuralNet (

( f c 1 ) : L inear ( in_fea ture s =14, out_features =20, b i a s=True )

( f c 2 ) : L inear ( in_fea ture s =20, out_features =50, b i a s=True )

( f c 3 ) : L inear ( in_fea ture s =50, out_features =70, b i a s=True )

( f c 4 ) : L inear ( in_fea ture s =70, out_features =35, b i a s=True )

( f c 5 ) : L inear ( in_fea ture s =35, out_features =4, b i a s=True )

( r e l u ) : ReLU( )

)

=================================================================

Layer ( type : depth−idx ) Param #

=================================================================

Linear : 1−1 300

Linear : 1−2 1 ,050

Linear : 1−3 3 ,570

Linear : 1−4 2 ,485

Linear : 1−5 144

ReLU: 1−6 −−

=================================================================

Total params : 7 ,549

Tra inable params : 7 ,549

Non−t r a i n ab l e params : 0

=================================================================

Listing A.1: FFNN architecture in detail for the maximum window size employed, N = 14.
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CNN Arch i t e c tu r e : nnModel (

( cnn_layers ) : S equent i a l (

( 0 ) : Conv2d (1 , 10 , k e rne l_s i z e =(2 , 2 ) , s t r i d e =(1 , 1 ) ,

padding=(1 , 1 ) )

( 1 ) : ReLU( )

( 2 ) : MaxPool2d ( ke rne l_s i z e =(2 , 2 ) , s t r i d e =1, padding=0,

d i l a t i o n =1, ceil_mode=False )

( 3 ) : Conv2d (10 , 20 , k e rne l_s i z e =(2 , 2 ) , s t r i d e =(1 , 1 ) ,

padding=(1 , 1 ) )

( 4 ) : ReLU( )

( 5 ) : MaxPool2d ( ke rne l_s i z e =(2 , 2 ) , s t r i d e =1, padding=0,

d i l a t i o n =1, ceil_mode=False )

( 6 ) : Dropout (p=0.5 , i np l a c e=False )

)

( l i n e a r_ l ay e r s ) : S equent i a l (

( 0 ) : F lat ten ( start_dim=1, end_dim=−1)

( 1 ) : L inear ( in_feature s =280 , out_features =30, b i a s=True )

( 2 ) : ReLU( )

( 3 ) : L inear ( in_feature s =30, out_features =50, b i a s=True )

( 4 ) : ReLU( )

( 5 ) : L inear ( in_feature s =50, out_features =70, b i a s=True )

( 6 ) : ReLU( )

( 7 ) : L inear ( in_feature s =70, out_features =25, b i a s=True )

( 8 ) : ReLU( )

( 9 ) : L inear ( in_feature s =25, out_features =4, b i a s=True )

)

)

=================================================================

Layer ( type : depth−idx ) Param #

=================================================================

Sequent i a l : 1−1 −−

Conv2d : 2−1 50
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ReLU: 2−2 −−

MaxPool2d : 2−3 −−

Conv2d : 2−4 820

ReLU: 2−5 −−

MaxPool2d : 2−6 −−

Dropout : 2−7 −−

Sequent i a l : 1−2 −−

Flat ten : 2−8 −−

Linear : 2−9 8 ,430

ReLU: 2−10 −−

Linear : 2−11 1 ,550

ReLU: 2−12 −−

Linear : 2−13 3 ,570

ReLU: 2−14 −−

Linear : 2−15 1 ,775

ReLU: 2−16 −−

Linear : 2−17 104

=================================================================

Total params : 16 ,299

Tra inable params : 16 ,299

Non−t r a i n ab l e params : 0

=================================================================

Listing A.2: CNN architecture in detail for the maximum window size employed, N = 14.

77


	Acknowledgements
	Abstract
	Resumo
	List of Acronyms
	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivation
	1.2 Objectives
	1.3 Dissertation Outline

	2 Magnitude Modulation
	2.1 MM Concept
	2.2 Context
	2.2.1 Adaptive Peak Supression Algorithm
	2.2.2 LUT-based MM approach
	2.2.3 Multistage Polyphase Magnitude Modulation

	2.3 Detection

	3 Artificial Neural Networks
	3.1 Basic unit
	3.2 Supervised Learning
	3.3 Activation Functions
	3.4 Back-Propagation
	3.5 Hyperparameters
	3.5.1 Learning Rate
	3.5.2 Batch Size
	3.5.3 Number of Epochs

	3.6 Convolution Layers
	3.7 LSTM Networks
	3.8 Performance metrics

	4 MM signals detection with single model NN-based systems
	4.1 4-QAM Constellation
	4.2 Datasets
	4.3 Deep Fully Connected model
	4.3.1 FFNN results
	4.3.1.1 System without memory
	4.3.1.2 System with memory
	4.3.1.3 Comparison


	4.4 Convolutional Neural Network model
	4.4.1 CNN Results
	4.4.1.1 System without memory
	4.4.1.2 System with memory
	4.4.1.3 Comparison


	4.5 Model performance comparison

	5 MM signals detection with multi-model NN-based systems
	5.1 Bidirectional LSTM model
	5.2 First approach: Cascaded Feed-Forward
	5.2.1 First approach results

	5.3 Second approach: Cascaded Feed-Forward with a  Twist
	5.3.1 Second approach results

	5.4 Third approach: Classification with Iterative Refinement
	5.4.1 Third approach results


	6 Conclusions
	6.1 Future Work

	7 Bibliography
	A Appendix
	A.1 Deep Neural Networks Architectures


