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Abstract

The discovery of MgB2’s superconducting behavior spawned a new interest in conven-
tional superconductors. One of the applications of superconductivity is in distribution
of electricity over long distances. For that goal the wire must be ductile. The ductility
of a superconductor material is a clear advantage in the fabrication of wires over the
brittle ceramics typical of high-Tc compounds. From a theoretical point of view, there
are at least two advantages of metallic superconductor materials, they have ductil-
ity, and the mechanism behind their superconductivity is known. The main goal of
this thesis was to examine a set of thermodynamically stable new AlxLiyPdz ternary
metallic materials and determine their superconducting transition temperature from
first-principles. These new materials were previously discovery by other members of
the research group. We also used the density functional theory and density functional
perturbation theory implemented in QUANTUM ESPRESSO software to obtain the
electronic and superconducting properties. The Allen–Dynes-modified McMillan equa-
tion was applied to calculate the transition temperature. Our results show that these
materials are metals and work in the weak electron-phonon coupling limit, i.e, they
obey the BCS theory. The coupling constants are in the range from 0.21 to 0.33 range,
while the transition temperatures are between 0 and 0.27 K.
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Resumo

A descoberta do comportamento supercondutor de MgB2 gerou um novo interesse em
supercondutores convencionais. Uma das aplicações da superconductividade está na
distibuição de electricidade por longas distâncias. A ductilidade de um material su-
percondutor é uma clara vantagem na fabricação de fios diferentemente das cerâmicas
frágeis que são t́ıpicas de compostos supercondutores de alto Tc. Do ponto de vista
teórico, existem pelo menos duas vantagens dos materiais supercondutores metálicos,
eles têm ductilidade e o mecanismo por detrás de sua supercondutividade é conhecido.
O objetivo principal desta tese foi analisar um conjunto de novos materiais metálicos
ternários AlxLiyPdz termodinamicamente estáveis e determinar sua temperatura de
transição supercondutora a partir dos primeiros prinćıpios. Os novos materiais foram
previamente previstos por outros membros do grupo de investigação. Usamos a teoria
do funcional de densidade e teoria perturbativa do funcional de densidade implemen-
tadas no software QUANTUM ESPRESSO para obter as informações electrônicas e
supercondutoras. A equação de McMillan modificada por Allen-Dynes foi aplicada
para calcular a temperatura de transição. Nossos resultados mostram que esses ma-
teriais são metais e funcionam no limite fraco de acoplamento electrão-fonão, ou seja,
obedecem à teoria BCS. As constantes de acoplamento estão na faixa de 0,21 a 0,33,
enquanto as temperaturas de transição estão entre 0 e 0,27 K.
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Chapter 1

Introduction

The discovery of the superconducting state in mercury, in 1911, by Kamerlingh Onnes
opened a new scientific area that remains technologically and scientifically promising.
More than one hundred years later, this area is still dynamic and rich, always mani-
festing novel properties or phenomena.

Although there are superconductors with significantly high transition temperature
(Tc), see section 3.3, such as the high-temperature superconducting cuprates, these
materials are highly anisotropic and inherently brittle, factors that constitute serious
handicaps and challenges for their technological applications as conductor wires and
tapes for transmission cables and high-field electromagnets [13].

Di↵erent from the conventional superconductors (which obey the BCS theory 3.3.1),
another handicap for these high-Tc cuprates and pnictides superconductors is the un-
known mechanism behind their superconductivity.

With respectively a Tc = 15 K and Tc = 18.5 K for NbTi and Nb3Sn conventional
superconductors, these materials are used to generate high magnetic fields between 10
- 20 T. The first one, with critical magnetic field1 (Hc) equal to 15 T, is an alloy with
low e�ciency. The second one is intermetallic and is more e�cient, with Hc = 30 T.
However, the last one is di�cult to fabricate and, therefore, more expensive.

For long distances, it is necessary to have not only a high-Hc superconductor but
also to be accessible and malleable. These characteristics are useful for long distances
electricity distribution and fabrication of coil windings, technologies of high importance.

Generally, metallic materials present the last property (malleability). That means
that a metallic superconductor with Tc around 20 K, Hc about 30 T, and easy to
fabricate could be feasible for long power transmission cables production. Thus, the
transmission of large quantities of power to densely populated regions could be possible,
helping with health, safety, and environmental problems.

The above information is su�cient to motivate searching metallic superconductor
materials to find at least one with all the above-listed properties.

Nowadays, it’s possible to predict materials’ properties using materials’ quantum
simulations. For that goal, there are theoretical and computational methods with
di↵erent complexities.

1
While small magnetic fields are expelled from the interior of a superconductor material, there exists

a limit magnetic field which destroys the superconductivity of the material. This limit magnetic field

is the so-called critical magnetic field (Hc)

1



Section

The most used approaches for modern quantum simulations of crystalline materials
are the density functional theory (DFT) used to predict ground state properties such
as the crystalline structure, electronic band structure, etc, and the density functional
perturbation theory (DFPT) used to predict the lattice vibrations’ related properties
such as phonon spectra.

DFT and DFPT have great applicability in modern studies of many-body sys-
tems due to their a↵ordable computational e↵ort [14], and their accuracy in predicting
the properties of the materials giving a quantitative understanding of these proper-
ties [15][16], including all quantum e↵ects of the many-body systems (exchange and
correlation e↵ects) in their structure, although by approximations.

The rudimentary exchange-correlation functional energy is the local density ap-
proximation (LDA). But this approximation has acceptable accuracy for electronic and
phonon calculations for metallic materials. Thus, we hope to use this approximation
to predict the electronic properties (crystalline structure, lattice parameters, electronic
band structure, and density of states), phonon spectrum, coupling constant, and su-
perconducting transition temperature of a set of new ternary material with Aluminum,
Palladium, and Lithium elements in di↵erent combinations.

The structure of this thesis is the following: in the second and third chapters,
we present topics about DFT, DFPT, and solid-state and superconductivity concepts.
With this background, we proceed in chapter four with the methodology, where we
present the steps of the computational calculus and show the results of magnesium
diboride (MgB2). In the final chapter, fifth, we present the results of the new ternary
materials and conclusions. We also present in the last chapter what is possible to do
as the next step of study of these materials.

2 Chapter 1



Chapter 2

Many-body problem, DFT and
DFPT

2.1 Introduction

All matter is a collection of atoms. To be more precise, a collection of nuclei and
electrons.

Materials hold together owing to a balance between the repulsive Coulomb interac-
tions of pairs of electrons and nuclei, and the attractive Coulomb interactions between
electrons and nuclei [17].

In quantum theory, to study any non-relativistic quantum system (which will remain
the domain of our work), we must solve the Schrödinger equation associated, i.e, for any
non-relativistic material, we must solve an equation with the following Hamiltonian in
atomic units 1:

Ĥ = �
X

i

1

2
r2

i
�

X

I

1

2MI

r2

I
+
X

i<j

1

|ri � rj|
+
X

I<J

ZIZJ

|RI �RJ |
�
X

i,I

ZI

|RI � ri|
(2.1)

or,
Ĥ = T̂e + T̂n + V̂int + Ênn + V̂ext (2.2)

In equation (2.1), ri, RI , MI , and ZJ are the electronic degrees of freedom, the nu-
clear degrees of freedom, the I th nucleus mass, and the J th nucleus charge, respectively[18].
In equation (2.2), T̂e is the electronic kinetic energy, T̂n is the nuclei kinetic energy, V̂int

is the potential energy of electron-electron interaction, Ênn is the potential energy of
nucleus-nucleus interaction, and, V̂ext is the potential energy of electron-nucleus inter-
action. Small case indices indicate electronic degrees of freedom, upper case indicates
the nuclear coordinates.

A system described by this equation has nuclei and electrons moving and interacting
relatively to and with each other. Thus, we must solve a many-body Schrödinger’s
equation.

Solving the many-body Schrödinger’s equation is one of the grand challenges of the-
oretical physics: to develop theoretical approaches and computational methods that

1
In atomic units we have ~ = e = me =

1
4⇡✏0

= 1
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Section 2.1. INTRODUCTION

can accurately treat the interacting system of many electrons and nuclei[19], particu-
larly for solids that are our object in this thesis.

2.1.1 Approximate solutions of the many-body Schrodinger’s
equation

Born–Oppenheimer approximation

As said above, the Schrodinger equation with the Hamiltonian in 2.1 is di�cult, indeed
impossible, to solve, even analytically. However, the nuclei masses are higher than the
masses of the electrons. This masses di↵erence is reflected in the higher motion of
electrons relative to the nuclei motion. That means the electronic energies are higher
than nuclei energies, and the electrons adapt quickly to any change in nuclei positions.
Therefore, we can determine the electronic motion for each fixed nuclei position.

These arguments make it possible to think that we can separate the problem in elec-
tronic and nuclear terms, where the electronic issue satisfies the following Schrodinger
equation

Ĥe 
l

R({ri}) =
h
T̂e + V̂int + V̂ext

i
 l

R({ri}) = E
l({RI}) l

R({ri}) (2.3)

with the electronic wavefunction depending parametrically on the nuclei position.
E

l({RI}) is the l
th eigenvalue of the electronic subsystem for a given set of nuclear

coordinates.
Thus, the full wavefunction can be written as a sum of products of nuclear and elec-

tron wavefunctions, �l({RI}) and l

R({ri}), i.e, �({ri}; {RI}) =
P

l
 l

R({ri})�l({RI}).
When we act the Hamiltonian in 2.2 in �({ri}; {RI}), multiply by  k⇤

R ({ri}) and inte-
grate by r we get the nuclear problem, where nuclear motion is realised in an electronic
potential El({RI}).

The parametric dependence of the electron wavefunction in the nuclei position origi-
nates two extra terms, in the nuclear problem, that are proportional to the inverse mass
of the nuclei and, one, the first and, another one, second variations of the electronic
wavefunction due to the nuclei position changes (rR k⇤

R ({ri}) and r2

R 
k⇤
R ({ri})). We

can neglect these two extra terms and get the Born-Oppenheimer approximation.
Actually, in this approximation, after solving the electronic problem, we introduce

the nuclear motion as a perturbation, and both subsystems, electronic and nuclear,
contribute to the materials’ properties.

The spin can easily be included in the formalism if we specify each particle’s coor-
dinates as (ri, �i) ⌘ xi

Independent electrons

In the Born–Oppenheimer approximation, the next question is how can we write the
solution for the electronic Schrodinger equation, which is still a tricky problem.

The next step is reducing the di�culty considering that the electrons don’t feel
the other electrons, and then we can remove the Vint from the Hamiltonian. This new
approximation is called the independent electrons approximation and has

Ĥe = T̂e + V̂ext (2.4)

4 Chapter 2



Section 2.1. INTRODUCTION

and a solution for the independent electrons Schrodinger’s equation can be written as
a product of each independent electron’s wavefunctions, �i(xi):

 (x1,x2, ...,xN) =
NY

i=1

�i(xi) (2.5)

Slater determinant

The expression in 2.5 is a solution for Schrodinger’s equation with the Hamiltonian in
2.4. But, it doesn’t satisfy the anti-symmetry requirement which states that when we
exchange two indistinguishable fermions’ coordinates, the wavefunction must exchange
its signal. A simple way to satisfy this statement is writing the wavefunction using a
Slater determinant. The Slater determinant is made up of single-particle wavefunctions
�i(xj):

 (x1,x2, ...,xN) =
1p
N !

�1(x1) �1(x2) ... �1(xN)
�2(x1) �2(x2) ... �2(xN)

: : ... :
: : ... :

�N(x1) �N(x2) ... �N(xN))

(2.6)

We’ll use rj ⌘ xj from here, without loss of generality.

Mean-field approximation

Until now, we consider that the electrons are not feeling each other in the system.
However, they interact with each other. Classically, a charge density, n(r), generates
an electrical potential, '(r), that satisfies Poisson’s equation

r2
'(r) = �4⇡n(r) (2.7)

and another external charge, q, will have V = q' as the potential energy. In our case,
as we are working with electrons and q = �1, we have VH(r) = �'(r) that satisfies
also Poisson’s equation. Thus, we have

r2
VH(r) = 4⇡n(r) (2.8)

and a solution for this di↵erential equation is

VH(r) =

Z
dr0

n(r0)

|r� r0| (2.9)

Here the electron density is given as n(r) =
P

N

i=1
|�i(r)|2, the many-body wavefunction

is written as in equation 2.5, and the Hamiltonian is Ĥ = T̂e + V̂ext + V̂H, with VH the
Hartree potential.

Thus, in this approximation, each electron feels a mean-field generated by the other
electrons and satisfies the Schrödinger’s equation of independent electrons

Ĥe�i(r) = [T̂e + V̂ext + V̂H]�i(r) = "i�i(r) (2.10)
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Section 2.2. DENSITY FUNCTIONAL THEORY

Hartree-Fock equations

In the mean-field approximation we introduced the electron-electron interaction consid-
ering the electrons as classical particles, but we can include this interaction considering
the electrons as quantum particles and require that the many-body wavefunction is a
Slater determinant of some single-particle wavefunctions. We then use the variational
principle, requiring that these single-particle wavefunctions are those that minimize
the energy and are orthonormal [20][17]:

�E

��i

= 0,

Z
�
⇤
i
(r)�j(r)dr = �ij (2.11)

The expectation value of the energy is

E =

Z
dr1...drN 

⇤(r1, ..., rN)Ĥe (r1, ..., rN) (2.12)

Using the requirements in equation 2.11, we get the Hartree-Fock equations for the
single-particle wavefunctions written as

Ĥe�i(r) = [T̂e + V̂ext + V̂H + V̂x]�i(r) = "i�i(r) (2.13)

where V̂H is the Hartree contribution, 2.9, and V̂x is the so-called exchange energy. The
exchange term arises from the anti-symmetry nature of the single Slater determinant
and is a non-local term:

V̂xj(r)�i(r) =
X

j

⇢
�
Z

dr0

|r� r0|�
⇤
j
(r0)�i(r

0)

�
�j(r) (2.14)

2.2 Density functional theory

Density functional theory (DFT) is a very successful theory in solving the Schrödinger
equation for di↵erent kinds of quantum systems such as atoms, molecules, and solids,
giving a quantitative understanding of their properties [15][16].

As mentioned in subsection 2.1.1, DFT is not the unique method to solve the many-
body problem, at least the electronic problem. However, DFT has many advantages
over Hartree-Fock (HF) because HF computational e↵ort very quickly grows with in-
creasing N, and description of large systems becomes prohibitive [17][16].

The basic idea of DFT is that any property, in any stationary system of N-interacting
fermion particles can be viewed as a functional of the ground state density n(r)[19]. In
this sense the total energy, E, is a functional of the density, E[n][17]. The foundations
of this theory are the Hohenberg-Kohn theorems:

• Theorem I: For any system of interacting particles in an external potential,
Vext(r), this potential is uniquely determined, except for a constant, by the density
of the ground state, n(r).
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Section 2.2. DENSITY FUNCTIONAL THEORY

To demonstrate this theorem, firstly is necessary to solve the Schrödinger equation
that, for a non-degenerate system, each V̂

(i)

ext gives only one  (i)⇤(r1, r2, ..., rN). After
that, using the definition of the one-particle density

n
i(r) = N

Z
 (i)⇤(r, r2, ..., rN) 

(i)(r, r2, ..., rN)dr2...drN

we obtain that there exists only one n
i(r) for each  (i)⇤(r1, r2, ..., rN).

Thus, we assume, by a reductio ad absurdum, that two di↵erent external potentials
V

i

ext
(r) and V

j

ext(r), satisfying V
i

ext
(r)�V

j

ext(r) 6= const, generate the same ground state
 k, i.e,

Ĥ
(i) k = [T̂e + V̂int + V̂

(i)

ext ] 
k = E

(i) k and Ĥ
(j) k = [T̂e + V̂int + V̂

(j)

ext ] 
k = E

(j) k

Subtraction of these two expressions gives

[V̂ (i)

ext � V̂
(j)

ext ] 
k = (E(i) � E

(j)) k

This result is false because, by construction, V i

ext
(r)� V

j

ext(r) 6= const.
To conclude the second part we assume that two di↵erent ground states  i and  j,

of di↵erent systems, generate the same ground state density n
i(r) = n

j(r). Thus,

h (i)|Ĥ(i)| (i)i = E
(i) (2.15)

and
h (j)|Ĥ(j)| (j)i = E

(j) (2.16)

The variational principle ensures that h (i)|Ĥ(j)| (i)i > E
(j) and h (j)|Ĥ(i)| (j)i >

E
(i).
The only di↵erence between the Hamiltonians is the external potentials and, using

their definitions, we get

h (i)|T̂e+V̂int+V̂
(j)

ext | (i)i > E
(j) () h (i)|Ĥ(i)| (i)i+h (i)|V̂ (j)

ext�V̂
(i)

ext | (i)i > E
(j) ()

() E
(i) + h (i)|V̂ (j)

ext � V̂
(i)

ext | (i)i > E
(j) (2.17)

We can use the same steps to show that with h (j)|Ĥ(i)| (j)i > E
(i), we have

h (j)|V̂ (i)

ext � V̂
(j)

ext | (j)i+ E
(j)

> E
(i) (2.18)

For Ĥ(i) and  (i), we have that h (i)|Ĥ(i)| (i)i = h (i)|T̂e| (i)i + h (i)|V̂int| (i)i +R
drV̂ (i)

extn
i(r), thus, if  (i) and  (j) both generate the density n

i(r) = n
j(r), that means

that, by definition of the one-particle density,  (i) is equal to  (j). The density is equal.
Then, because the external potentials are multiplicative (are local), the sum of the last
two inequalities 2.17 and 2.18 gives

E
(i) + E

(j)
> E

(j) + E
(i) (2.19)

This inequality, 2.19, is obviously an absurd, and shows that for each ground state,
 (i), there is only one ground state density, ni(r) and vice-versa. Thus, V̂ (i)

ext,  
(i) and

n
i(r) determine each other uniquely [21], and we have fully demonstrated the first

Hohenberg-Kohn theorem.
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Section 2.2. DENSITY FUNCTIONAL THEORY

With the first theorem demonstrated, we conclude that the wavefunction is a func-
tional of the density,  [n(r)], by mapping n to  .

The second theorem is implicit in the first one when we consider that only Vext(r)
can change the Hamiltonian for a given number of electron. Indeed, this means that
we take the T̂e+ V̂int as a universal term for all N-electron systems defining a universal
functional F [n]. Thus, the ground state energy can be written as

E
i

Vi [ni] = F [ni] +

Z
drV i(r)ni(r)

The second theorem states that:

• Theorem II: For any particular external potential Vext(r), the global minimum
value of the energy functional of a system is the exact ground state energy, and
the density n(r) that minimizes the energy functional is the exact ground state
density.

Again, the variational principle ensures that if Vext(r) has the corresponding ground
state n(r), then for other density n

0(r) we have

E[n0(r)] = h 0|Ĥ| 0i = F [n0(r)] +

Z
drVext(r)n

0(r) > h |Ĥ| i = E[n(r)]

2.2.1 The Kohn-Sham approach

A good way to introduce the Kohn-Sham approach is consider a system of non-
interacting electrons in a multiplicative potential vs. The Hamiltonian of this sys-
tem is Ĥ = T̂ + V̂s with V̂s =

R
drn(r)vs(r) and its N-particle ground state a Slater

determinant  0 with the non-interacting Kohn-Sham density n0. This Slater deter-
minant is constructed from the energetically lowest solutions �i of the single-particle

Schrödinger equation
n
�r2

2
+ vs

o
�i = "i�i. The Kohn-Sham assumption is that there

exists a non-interacting system whose density is the density of the interacting system
under study. This parallelism implies that the structure of vs reflects the nature of the
interacting system[21].

Thus, the Kohn-Sham idea is the exchanging the many-body interacting problem
by a single-particle system, splitting the universal functional, F [n], in terms such as
that in the Mean-field Approximation, 2.10, plus an extra term which includes the
many-body e↵ects, exchange and correlation e↵ects, Exc[n]. That is, the total energy
is

E[n] =

Z
drVext(r)n(r)�

X

i

Z
dr�⇤

i
(r)

r2

2
�i(r) +

1

2

Z
dr

Z
dr0

n(r)n(r0)

|r� r0| + Exc[n]

(2.20)
This equation tells us that we know all the three initial terms, and if we knew the

last one, then we could calculate, using the density, the system’s total energy in its
ground state[17].

To determine the density, we use the variational principle, stating that

�E[n]

��
⇤
i
(r)

= 0
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Section 2.2. DENSITY FUNCTIONAL THEORY

with �i(r) othonormal between them, and we get the Kohn-Sham equations rewritten
as 

�r2

2
+ Vext + VH + Vxc

�
�i(r) = "i�i(r) (2.21)

with Vxc = �Exc[n]

�n(r) , the so-called exchange-correlation potential. The density here is

determined by expression n(r) =
P

i
|�i(r)|2. And we have a self-consistency problem.

Thus, if we know the exact form of Exc, we can determine exactly the properties of
the system.

To be more clear, the wavefunctions �i(r) are fictitious, and the only requirement
is that the density of our fictitious non-interacting system where these �i(r) are the
true solutions is equal to the real electron density. Now all our attention is concerned
with the term we don’t know, and constructing useful approximations for that.

2.2.2 Local density approximation

There are several degrees of approximation for the exchange-correlation functional.
These degrees obey the Jacob’s Ladder [14]. For the goal of this job, we will be
concerned only with the more simple class. This class however, is reasonably accurate
in practical calculations. This class is the so-called Local Density Approximation, LDA.

In the Kohn-Sham approach, the unknown term, Exc[n], can reasonably be approx-
imated as a local or nearly local functional of the density, i.e, we can write Exc[n]
as

Exc[n] =

Z
drn(r)✏xc([n], r) (2.22)

with ✏xc[n] exchange-correlation energy per electron at position r, depending only upon
the density n(r) in some neigborhood of point r[19].

Kohn and Sham, in 1965, proposed a way to write the exchange-correlation func-
tional by considering a sort of locally homogeneous gas. In this approximation, a small
volume in space contributes the same exchange-correlation energy as an equal volume
of a homogeneous electron gas at the same density [22][15]. In this case the exchange-
correlation energy is given as Exc[n] =

R
drn(r)✏xc[n] and Vxc = (✏xc[n] + n

d✏xc[n]

dn
).

It is expected that this approximation works well in systems where the true density
is close to a homogeneous gas (like a nearly free-electron metal) and it is not expected
to work for very inhomogeneous systems such as atoms[19].

In the Hartree-Fock theory of free electrons, the contribution of the exchange term
to the total energy is given by, in atomic units,

Ex = �3

4

1

⇡
kFN = �3

4

1

⇡

Z
kFndr = �3

4
(
3

⇡
)
1
3

Z
n

1
3ndr

where N =
R
ndr and kF = (3⇡2

n)1/3. Using this as a start point, we can generalize
to situations with non-uniform density and assume the general expression as

Ex[n] =

Z
drn(r)✏x[n] (2.23)

with ✏x([n]) = �3

4
( 3
⇡
)
1
3n

1
3 . The exchange potential is, in this case, Vx = �( 3

⇡
)
1
3n

1
3 .

But we know that there are other many-body e↵ects that we shall designate by the
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Section 2.3. SELF-CONSISTENCY

correlation. The LDA is based upon this exchange energy and a lot of approximations
and fitting to numerical correlation energies for the homogeneous gas[19].

We don’t know the exact form of the correlation term, but there are asymptotic
forms for the homogeneous electrons gas in the high and low density limits [23]:

• for the high-density limit (rs �! 0)

✏c[n] = c0 ln rs � c1 + c2rs ln rs � c3rs + ... (2.24)

with c0 = 0.031091 and c1 = 0.046644

• for low-density limit (rs �! 1)

✏c[n] =
1

2
(�d0

rs
+

d1

r
3/2

s

+ ...) (2.25)

where rs = ( 3

4⇡n
)1/3. The correlation term, in the Perdew-Zunger parametrization, has

the formulae [19]:

• for rs < 1:

✏
PZ

c
[n] = �0.0480 + 0.031 ln rs � 0.0116rs + 0.0020rs ln rs (2.26)

• for rs > 1:
✏
PZ

c
[n] = �0.1423/(1 + 1.0529

p
rs + 0.3334rs) (2.27)

and then, given ✏x and ✏c, we can construct ✏xc = ✏x + ✏c and introduce this into

Exc[n] =

Z
drn(r)✏xc[n] (2.28)

2.3 Self-consistency

We have seen that in the single-particle picture, the electronic density is given by

n(r) =
X

i

|�i(r)|2 (2.29)

and, from equations 2.21, 2.13 we see that the e↵ective potential depends on the so-
lution of the Schrodinger equation. This means that each orbital �i(r) can be deter-
mined by solving the corresponding single-particle Schrodinger’s equation, if all other
orbitals �j(r), j 6= i[2] were known. In other words, our Hamiltonian depends on its
eigenstates[20]. That is a self-consistency problem, and solving the equations must be
done iteratively. In practice, we start with a guess, a set of trial wavefunctions with
which we construct the e↵ective potential. After that, solving Schrödinger’s equation,
we compare the resulting new wavefunctions with the older ones. This procedure con-
tinues until new and old wavefunctions are the same. Schematically it’s illustrated in
Figure 2.1.
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Section 2.4. DENSITY FUNCTIONAL PERTURBATION THEORY

Initial guess of wave functions �guess

i
(r)

Construct the density n
guess(r)

Calculate the e↵ective potential Veff = Vext(r) + VH [nguess] + Vx[nguess] + Vc[nguess]

Solve [�1

2
r2 + Veff ]�out

i
(r) = "

out

i
�
out

i
(r)

Construct the new density n
out(r) =

P
i
|�out

i
(r)|2

Compare n
out(r) to n

guess(r)

self-consistent?

output quantities: energy, forces, stresses, ...

No

Yes

Figure 2.1: Schematic representation of the self-consistent loop.

2.4 Density functional perturbation theory

As we mentioned earlier, the electronic and ionic subsystems both define the matter’s
properties. A wide variety of physical properties of solids depend on their lattice-
dynamical behavior. The heat capacity is an example of such properties. The resis-
tivity of metals and superconductivity are physical phenomena related to the electron-
phonon2 interaction.

2.4.1 The lattice vibrations and electronic structure theory

After solving the electronic problem, we introduce the ionic problem, vibrations of the
lattice, as a perturbation. We consider that the ions are moving in a potential energy
surface provided by the solution of the electronic problem[20][22]. Thus for dynamical
properties, we must solve the Schrodinger equation given as

(
�
X

I

1

2MI

r2

I
+ E(R)

)
�(R) = ⇠�(R) (2.30)

2
In section 3.2 we talk about phonons
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Section 2.4. DENSITY FUNCTIONAL PERTURBATION THEORY

where E(R) is the ground state eigenvalue in 2.3 plus the ion-ion interaction contribu-
tion, Ênn =

P
I<J

ZIZJ
|RI�RJ |

3, RI is the coordinate of the I
th nucleus, MI its mass, and

R ⌘ {RI}.
By definition, the force acting on the I

th nucleus is given as the negative of the
gradient of the potential E(R) with respect to the position RI and the equilibrium
condition requires that the forces acting on the individual nuclei must be equal to zero.
That is

FI = �@E(R)

@RI

= 0 (2.31)

On the other hand, vibrational frequencies of a nucleus, !, are eigenvalues of the
Hessian of the potential energy surface scaled by the nuclear masses

det
⇣

1p
MIMJ

@
2
E(R)

@RI@RJ
� !

2

⌘
= 0 (2.32)

2.4.2 Hellmann-Feynman theorem

The equilibrium condition and evaluation of nuclei’s vibrational frequencies require cal-
culations of derivatives of the potential, the electronic ground state eigenvalue, E(R).
To do this, we use the Hellmann-Feynman theorem. This theorem states that with the
eigenvalue problem

Ĥ � = E� �

where � is a parameter, nuclei positions, for example, the derivative of the eigenvalue
is given by

@E�

@�
= h �|

@Ĥ�

@�
| �i (2.33)

For our case, this means that we can evaluate the forces as

FI = �h R|
@

@RI

{�
X

i

1

2
r2

i
+
X

i<j

1

|ri � rj|
+
X

I<J

ZIZJ

|RI �RJ |
�

X

i,I

ZI

|RI � ri|
}| Ri

(2.34)
where the first and second terms on the derivative are zero, and we get

FI = �h R|
@VR(r)

@RI

+
@Enn(R)

@RI

| Ri = �
Z

nR(r)
@VR(r)

@RI

dr� @Enn(R)

@RI

(2.35)

Here VR(r) ⌘ Vext(r) =
P

i,I

ZI
|RI�ri| . Using equation 2.38 we determine the Hessian

in equation 2.35 as

@
2
E(R)

@RI@RJ

= � @FI

@RJ

=

Z
{@nR(r)

@RJ

@VR(r)

@RI

+ nR(r)
@
2
VR(r)

@RI@RJ

}dr+ @
2
Enn(R)

@RI@RJ

(2.36)

The first derivative of the ground state electronic density with respect to the nucleus,
@nR(r)/@RJ , is called linear response to a distortion of the nuclear geometry. The
Hessian here represents the interatomic force constants. Thus, the equation 2.39 tells
us that to calculate the nuclei frequencies of oscillation is necessary to know the ground

3
We neglected this term in the electronic problem because, for fixed nuclear positions, it is a

constant, and a constant has no e↵ect on the operator eigenfunctions[20]
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Section 2.4. DENSITY FUNCTIONAL PERTURBATION THEORY

state electronic density and its change as a consequence of a distortion of the nuclear
geometry, linear response. Here lives the main object of density functional perturbation
theory; evaluation of the linear response after all calculations using density functional
theory.

2.4.3 Linear response

To determine the linear response, we can use our definition of electronic density in the
single-particle picture, equation 2.29, and linearize it as

nR(r) =
X

i

�
⇤
i
(r;R)�i(r;R)

X

I

@nR(r)

@RI

dRI ⌘ �n(r) = 2Re

X

i

�
⇤
i
(r;R)

X

I

@�i(r;R)

@RI

dRI =

2Re

X

i

�
⇤
i
(r;R)��i(r;R) (2.37)

The external potential is real, which means that the Kohn-Sham wavefunctions
and their complex conjugate are degenerate, and the imaginary part in equation 2.37
is zero.

To determine the variation of the wavefunction, ��i, we use first-order perturbation
theory.

(HSCF � "i)��i = (�"i ��VSCF )�i (2.38)

with its solution given as

��i(r) =
X

j 6=i

�j(r)
h�j|�VSCF |�ii

"i � "j
(2.39)

where HSCF is the full Khon-Sham Hamiltonian, equation 2.21, and VSCF is its asso-
ciated e↵ective potential. Thus the first-order variation of the Kohn-Sham eigenvalues
"i is given as

�"i = h�i|�VSCF |�ii (2.40)

and the first-order correction to the e↵ective potential, �VSCF , is

�VSCF (r) = �Vext(r) +

Z
�n(r0)

|r� r0|dr
0 +

dVxc(n)

dn
�n(r) (2.41)

Now we can substitute equation 2.39 in equation 2.37, and we get the linear response
given as

�n(r) = 2
X

i

X

j 6=i

�
⇤
i
(r)�j(r)

h�j|�VSCF |�ii
"i � "j

(2.42)

Equations 2.38, 2.41, 2.42 form a set of self-consistent equations for the perturbed
system and this self-consistency requirement manifests itself in the dependence of the
right-hand side upon the solution of the linear system, 2.38 [22]. This procedure is
important because it will help us to calculate phonon frequencies, as is described in
the next chapter.
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Section 2.5. PSEUDOPOTENTIAL APPROXIMATION

2.5 Pseudopotential Approximation

Not all electrons contribute equally to the physical properties of materials. We can
consider that only the valence electrons contribute, that is, core electrons remain es-
sentially inactive [24] such that many electronic structure properties such as bonding,
ground and excited states, and their related properties depend almost only on the va-
lence electrons[25]. Then, we have a natural separation between electrons in core and
valence electrons, which is the principal idea behind the pseudopotential approxima-
tion.

The decomposition of states into active and inert states is done for most atoms.
For example, in a silicon atom the 1s22s22p6 core states are tightly bound compared
to the 3s23p2 valence states [1]. The following image shows the concept of ionic cores
for a crystalline solid, with each atomic nucleus and its core electrons forming the ion
core.

Figure 2.2: Model of a solid and valence electrons using ionic cores [1].

Actually, with this approximation, we are replacing the Coulomb potential in the
many-electron system Hamiltonian with an e↵ective potential so that the electron
wavefunctions oscillating rapidly in the core region are replaced by nodeless pseudo-
wavefunctions having the right energy and the same outer range properties[26].

To develop the pseudopotential for a specific atom, we consider it as isolated and
denote the solutions of single-particle equations, for the atom, by | (n)i [2]. Thus,
separating the core electron, | ci, from the valence electrons, | vi, both wavefunctions
must satisfy the single-particle equations

Ĥ| vi = "
v| vi (2.43)

Ĥ| ci = "
c| ci (2.44)

We can define a new set of smooth valence states |�vi such that

| vi = |�vi+
X

c

ac| ci (2.45)
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Figure 2.3: Schematic representation of the construction of the pseudo-wavefunction �
and pseudopotential V ps[2].

with |�vi non-orthogonal to | ci, but | ci and | vi are orthogonal between them. In
this way, we can make inner product with h c| and get the result

h c| vi = h c|�vi+
0X

c

a
0
c
h c| c

0i () h c|�vi+ ac = 0 )

) | vi = |�vi �
X

c

h c|�vi| ci (2.46)

Replacing equation 2.46 in equation 2.43, and using the equation 2.44 we get

Ĥ|�vi �
X

c

h c|�viĤ| ci = "
v{|�vi �

X

c

h c|�vi| ci} ()

() {Ĥ �
X

c

"
c| cih c|}|�vi = "

v{ 1�
X

c

| cih c|}|�vi )

) {Ĥ +
X

c

("v � "
c)| cih c|}|�vi = "

v|�vi (2.47)

That means that the new set of valence electron states, |�vi, obeys a single-particle
equation with a new potential, but with the same eigenvalues, "v, as the original valence
electron states | vi. The new set of valence states we call pseudo-wavefunctions and
we have a new potential which we call pseudopotential, V̂ +

P
c
("v � "

c)| cih c|.
The pseudopotential incorporating the core electrons is smoother than the original

nucleus potential at the origin. It is because the repulsive contribution from the core
electrons cancels a part of the Coulomb’s attractive potential from the nucleus. How-
ever, farther away from the core domain where the core states decay exponentially, the
valence states feel the original Coulomb potential, as it’s possible to see in figure 2.3.

Chapter 2 15



Section 2.5. PSEUDOPOTENTIAL APPROXIMATION

Although the potential is weak and only binds the valence state, this potential
is energy-dependent, state-dependent, and involves a non-local, non-Hermitian op-
erator, (

P
c
("v � "

c)| cih c|)|�vi =
R
V

ps(r, r0)�v(r0)dr0 with V
ps(r, r0) =

P
c
("v �

"
c) c⇤(r0) c(r), and the pseudopotential is not unique. These problems make the
pseudopotential within this construction more complex than the original potential.
However, the practice of this art has shown that these features can actually be ex-
ploited to define pseudopotentials that work very well in reproducing the behavior
of the valence wavefunctions in the regions outside the core, which are precisely the
regions of interest for the physics of solids [1][2][19].

2.5.1 Norm conserving pseudopotential

As we mentioned above, the peudowavefuntions |�vi are not orthonormal because the
complete function | vi also contains the sum over core orbitals, equation 2.46[19].

One of the most widely used type of pseudopotentials is the family of norm-
conserving pseudopotentials.

Essentially, five properties must be satisfied in the norm-conserving construction of
pseudopotentials[27][28][19]:

• All-electron and pseudovalence eigenvalues agree for the chosen atomic reference
configuration;

• All-electron and pseudovalence wavefunctions agree beyond a chosen core radius
rc;

• The logarithmic derivatives of all-electron and pseudowavefunctions agree at rc;

• The integrated charge inside rc for each wavefunction agrees (norm conservation);

• The first energy derivative of the logarithmic derivatives of the all-electron and
pseudowavefunctions agrees at rc, and therefore for all r � rc

The first and second items guarantee that the atomic pseudopotential outside the
core-region is equal to the original potential; the third property guarantees that the
scattering properties of the pseudopotential match those of the full potential

Dl(", r) = r 
0

l
(", r)/ l(", r) = r

d

dr
ln l(", r) (2.48)

with  representing the all-electron wavefunction and also the pseudowavefunction with
angular momentum l, and the prime represents derivation of the function. The norm
conservation, inside rc, means the total charge inside must equal for both wavefunctions

Ql =

Z
rc

0

drr
2| l(r)|2 =

Z
rc

0

drr
2|�l(r)|2 (2.49)

This in turn guarantees that scattering at energies close to " is well described.
In equation 2.49,  l(r) and �l(r) represent all-electron radial orbital and its pseu-

dowavefunction. Property five is crucial toward the goal of constructing a good pseu-
dopotential, i.e, one that is generated in a spherical atom and can be used in a more
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complex environment[19]. Indeed, we need to calculate @Dl(",r)

@"
and for that, we consider

the Kohn-Sham radial equation for a spherical atom which can be written as

�1

2

d
2
�l(r)

dr2
+ { l(l + 1)

2r2
+ V

eff � "}�l(r) = 0 (2.50)

with V
eff the atomic’s e↵ective potential in the Kohn-Sham procedure. Using the

definition

xl(", r) ⌘
@

@r
ln�l(", r) =

1

�l(", r)

@�l(", r)

@r
(2.51)

di↵erentiating this with respect to r, it’s possible to show that we get the following
equation

@xl

@r
+ x

2

l
=

l(l + 1)

2r2
+ 2(V eff � ") (2.52)

Di↵erentiating the equation 2.52 with respect to the energy, and rewriting @

@"

@xl
@r

as
@

@r

@xl
@"

gives
@

@r

@xl

@"
+ 2xl

@xl

@"
= �2 (2.53)

Using the relation valid for any function f(r) and any l

f
0
+ 2xlf =

1

�
2

l

@

@r
(�2

l
f) (2.54)

and comparing with the equation 2.53, we obtain f(r) = @xl
@"
. Thus, we can show that

at radius rc, we get

@xl(", rc)

@"
= � 2

�
2

l
(rc)

Z
rc

0

dr�
2

l
= �2Ql(rc)

�
2

l
(rc)

(2.55)

or, in terms of Dl

@Dl(", rc)

@"
= � 2rc

�
2

l
(rc)

Z
rc

0

dr�
2

l
= � 2rc

�
2

l
(rc)

Ql(rc) (2.56)

Thus, we have shown that @xl
@"

and @Dl
@"

are the same for the pseudo and all-electron
wavefunction if �l obeys the norm-conservation [19].
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Chapter 3

Superconductivity

3.1 Periodic solids and electronic bands

When ions are chemically bound to one another and have well-defined equilibrium
separations determined by the condition that the total energy is minimum and leads
to a three-dimensional periodic arrangement, we say that they are in a 3D crystalline
state. In a crystalline state, we can predict the positions, points of the lattice, of all
other atoms if we know the stationary points of a few ions. This set of a few ions forms
periodically repeated units [29][30].

A 3D lattice is spanned by three vectors a, b and c, and every point (lattice point)
on the lattice can be reached by a translation operation given by

T = n1a+ n2b+ n3c (3.1)

i.e, we can reach r0 from r using T as

r0 = r+T = r+ n1a+ n2b+ n3c (3.2)

where n1, n2 and n3 are integers, and a, b and c are called the fundamental translation
vectors or basis vector or, also, crystal axes. If the transformation in equation 3.2 is
possible with non-integral n1, n2, and n3, then the a, b, and c vectors are said to be
non-primitive translation vectors[31].

The translation vectors form parallelograms called unit cells, and if n1, n2, and n3

are any integers, then the unit cell is also called primitive. Thus, for any values of n1,
n2, and n3, the translation operation takes us from a unit cell to another. A unit cell
may contain an ion or a collection of them. Any primitive unit cell contains only one
lattice point [32][31]. There are many possibilities for a primitive unit cell, but always
one can choose a primitive cell with the following construction:

• using one lattice point, connect it to all its nearby lattice points, and for each
connector line at the midpoint, draw a normal

The volume enclosed by these normals is a primitive unit cell (Wigner-Seitz cell).
The Wigner-Seitz cell is the most common choice, although a non-primitive unit

cell can be selected as the conventional unit cell if this possesses higher symmetry than
the primitive unit cell[31].
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Section 3.1. PERIODIC SOLIDS AND ELECTRONIC BANDS

Figure 3.1: Primitive (A and B) and non-primitive (C and D) 2D unit cells [3].

Figure 3.2: Construction of Wigner-Seitz cell (the hexagon inscribed by the dashed
lines)[4].

3.1.1 Fundamental types of three-dimensional lattices

The translation symmetry operation is not the only one in crystalline solids. There are
other symmetry operations, such as rotation, reflection, and inversion. These symmetry
operations also transform crystals into themselves. The rotation operation is a rotation
operation about an axis that passes along a lattice point. Lattices can rotate by 2⇡/n
around an axis, then called n-fold rotation axes with n = 1, 2, 3, 4, 6. If there exists a
plane in the lattice which divides the lattice into two identical halves and these halves
are mirror images of each other, then we can, by reflection operation, exchange them,
and the lattice remains the same. It’s possible to have mirror reflections m about a
plane through a lattice point. The inversion symmetry operation (which is only for
three dimensions) implies that each point located at r relative to a lattice point has an
identical point located at �r relative to the same lattice point [33][31].

The lattice point group is the collection of symmetry operations that, when applied
to a lattice point, carries the lattice into itself. The symmetry operations are helpful for
the classification of crystal structures (lattice + basis1) by comparing the symmetry of

1
An ion or group of placed at each lattice point in regular fashion
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Section 3.1. PERIODIC SOLIDS AND ELECTRONIC BANDS

di↵erent point groups. There are 32 di↵erent point groups. However, lattices consistent
with the point group operations are limited and form the so-called Bravais lattices,
which are fourteen, grouped into seven crystal systems as is showing in the Table 3.3.

Figure 3.3: The fourteen Bravais lattices in three dimensions [5].

There are 230 crystallographic space groups in three-dimensional space and they
are illustrated in appendix A.

3.1.2 The reciprocal lattice and Brillouin zone

With the periodicity of a crystal lattice, any physical quantity q(r) is also periodic so
that we can expand in a Fourier series q(r) =

P
G ↵Ge

iGr withG = m1a⇤+m2b
⇤+m3c⇤.

Themi are integers, and a⇤, b⇤, c⇤ span the so-called reciprocal space. These reciprocal
primitive lattice vectors are defined by

a⇤ =
2⇡(b⇥ c)

|a · (b⇥ c)| , b⇤ =
2⇡(c⇥ a)

|a · (b⇥ c)| , c⇤ =
2⇡(a⇥ b)

|a · (b⇥ c)| (3.3)

with a⇤ ·a = b⇤ ·b = c⇤ ·c = 2⇡ and a⇤ ·b = a·⇤c = b⇤c = ... = 0, and the volume of the
primitive lattice, Brillouin zone, is given by VBZ = |a⇤ · (b⇤ ⇥ c⇤)| = (2⇡)

3

|a·(b⇥c)| =
(2⇡)

3

Vcell

2.
The Wigner-Seitz cell in the reciprocal lattice is called the first Brillouin zone, and as
is expected, it has all properties of the lattice.

2
The expression VBZ =

(2⇡)3

Vcell
tells us that the larger the real primitive cell, the smaller the reciprocal

primitive cell
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The reciprocal lattice of a simple cubic lattice is also a simple cubic lattice, for
hexagonal lattice is also hexagonal although rotated with respect to the crystal lattice.
The bcc and fcc lattices are reciprocal to one another[19].

The product of T, in real space, and G, in reciprocal space, gives

T ·G = 2⇡l, l = n1m1 + n2m2 + n3m3 (3.4)

where, as ni and mi are integers then, l is always integer.
We can define a function f(G), in reciprocal lattice, which reproduces the period-

icity of a periodic function, f(r), in real lattice, by Fourier transformation

f(G) =
1

Vcell

Z

Vcell

drf(r) exp (iG · r) (3.5)

The symmetry operations are helpful in calculating and analyzing the physical
properties of a crystal. By these operations, we can reduce the volume in the reciprocal
space (to irreducible Brillouin zone or a fraction of the Brillouin zone)[2]. There are
high-symmetry points for each of the 14 Bravais lattices, see Table 3.3. Figure 3.4
shows these high-symmetry points for two of them.

Figure 3.4: Brillouin zone and high symmetry path for FCC, on the left, and Hexagonal,
on the right, structures with b1 ⌘ a

⇤
, b2 ⌘ b

⇤
, b3 ⌘ c

⇤ (adapted from [6]).

3.1.3 Bloch’s theorem

Bloch’s theorem tells us how translation symmetry a↵ects the wavefunctions in the
crystal. This theorem states that the eigenfunctions,  (r), of a single-particle Hamil-
tonian H = �1

2
r2 + V (r) with a periodic potential V (r) = V (r + T), for all T =

n1a+ n2b+ n3c, can be chosen to have the form

 nk(r) = unk(r) exp (ik · r) (3.6)
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whit unk(r) preserving the periodicity unk(r) = unk(r + T). unk(r) is defined as
unk(r) = 1p

VBZ

P
G cnk+Ge

iGr with the Fourier coe�cients specifying the form that

the wavefunction  nk(r) will take[34].
Using the Born-Von Karman condition,  nk(r) =  nk(r +Niai), with ai the three

primitive vectors, Ni the unit cells number for each direction, and N = N1 ·N2 ·N3 the
total number of the primitive unit cells in the crystal, we get

k =
3X

i=1

mi

Ni

b⇤
i

(3.7)

as the Bloch wavevectors allowed with b⇤
i
= a⇤

,b⇤
,, ⇤mi = 0, 1, 2, . . . , and we can

determine the volume of the parallelepiped with edges b⇤
1

N1
,
b⇤
2

N2
and b⇤

3
N3

which is actually
the volume, �k, of k-space per allowed k as

�k =
b⇤
1

N1

· (b
⇤
2

N2

⇥ b⇤
3

N3

) =
VBZ

N
(3.8)

The equation 3.8 shows that the Brillouin zone always contains the same number
of k as the number of the primitive unit cells in the crystal[34]. In figure 3.4, the
coordinates of higher symmetry k-points are given in fractions of b1, b2 and b3

3 [6].

3.1.4 Band structure and density of states

In a periodic potential, equation 3.6 tells us that, for a given n, there exists a family
of solutions, one for each k. Each family is called a band and each member has energy
Enk which depends on k’s. Thus, we have that

H nk(r) = Enk nk(r)

As the electrons can have spin up or spin down, each band may have just two times
the number of primitive cells in the crystal. There exist energy gaps where there are
no eigenstates for any n[34][19].

The density of states tells us how many states exist in a range of energy in a system,
and is given as

g(E) =
1

Nk

X

n,k

�("n,k � E) =
Vcell

(2⇡)3

X

n

Z

BZ

dk�("n,k � E) (3.9)

with Nk the number of k values in the Brillouin zone which is indeed the total number
of unit cells in a material, and Vcell is the volume of a primitive cell in real space.

3.1.5 Integrals in k-space and special k-points

For properties such as the number of electrons in bands, the total energies, etc, we
must make summations over the states labeled by k:

hfni =
1

VBZ

Z

BZ

dkfn(k) =
Vcell

(2⇡)3

Z

BZ

dkfn(k) (3.10)

3
The Brillouin zone for all other structures can be found in[6]
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But there is a simplification: using only few k values in the irreducible part of
the Brillouin zone, we can obtain an excellent approximation to the sum 3.11[2][19].
The most used method is the Monkhorst-Pack method which leads to a uniform set of
points determined by the sequence of numbers

ur =
2r � q � 1

2q
(3.11)

with q an integer that determines the number of the special points and ur defines then
the k points given as

kprs = upb1 + urb2 + usb3 (3.12)

and using the symmetries of the crystal, hfni has the form

hfni =
IBZX

k

wkfn(k) (3.13)

with wk defining the total number of distinguishable k points related by symmetry to
the given point in the irreducible Brillouin zone (IBZ) divided by the total number of
points Nk [35][19].

3.2 Lattice vibrations and phonons

The ions in crystalline materials are vibrating around their equilibrium position. These
vibrations contribute to the physical properties, properties such as the superconduc-
tivity of the materials. Because of these oscillations, we expand the potential energy
of the system until the second term and, by the equilibrium criterion, the linear term
is equal to zero so that we have the harmonic approximation

U = U0 +
1

2

X

↵,�=x,y,z

X

i,j

X

m,n

u
↵

i,m
D

ij,mn

↵�
u
�

j,n
(3.14)

with the force constant between ions i and j in the cells m and n, respectively, and in
↵� direction, given by

D
ij,mn

↵�
=

@
2
U

@u
↵

i,m
@u

�

j,n

(3.15)

3.2.1 One-dimensional diatomic lattice

We consider the one-dimensional diatomic case, figure 3.5, whose generalization to a
three-dimensional case and with a general basis is straightforward. Consider a lattice
with a basis of two ions, the ions with massesm1 andm2, with the label 1 and 2, respec-
tively, and these ions are harmonically oscillating around their equilibrium positions.

The index n represents the order of the ion on the chain. In this case, the system’s
potential energy has the form of the second term in equation 3.14 in one direction.

Chapter 3 23



Section 3.2. LATTICE VIBRATIONS AND PHONONS

Figure 3.5: Simple diatomic chain model, with atoms of di↵erent mass connected by
harmonic forces that are of equal strength between all nearest-neighbour atom pairs[7].

Considering the interaction between the neighboring ions and, as a starting point, only
two ions, we have the forces acting on each one given as

m1

d
2
u1,n

dt2
= � @U

@u1,n

= �D(u1,n�u2,n)�D(u1,n�u2,n�1) = �D(2u1,n�u2,n�u2,n�1)

m2

d
2
u2,n

dt2
= � @U

@u2,n

= �D(u2,n�u1,n)�D(u2,n�u1,n+1) = �D(2u2,n�u1,n�u1,n+1)

(3.16)

Equations 3.16 are second-order di↵erential equations that admit solutions (travel-
ling waves) that, in the general case (3D), are:

u↵

i
(r↵, t) = A↵

i
exp i(k↵r↵ � !(k)t) (3.17)

with k the wavevector and !(k) the angular frequency.
For the case of one-dimensional diatomic lattice, we have

u1,n = A1 exp i(kna� !t), u2,n = A2 exp i(kna� !t) (3.18)

Substituting equations 3.18 in 3.16, we obtain a system of two equations that can
be written as

!
2

✓
A1

A2

◆
=

1
p
m1m2

D(k)

✓
A1

A2

◆
(3.19)

with

D(k) =

0

@
2D

q
m2
m1

�D

q
m2
m1

(1 + exp (�ika))

�D

q
m1
m2

(1 + exp (ika)) 2D
q

m1
m2

1

A (3.20)

We see that the solutions of our problem are solutions of the eigenvalue problem in
equation 3.19, that is, solving the equation4

det
⇣

1p
m1m2

D(k)� !
2

⌘
= 0 (3.21)

This yields two solutions for !2, which means that our dynamical equations have
given two normal modes. If we introduce A1 =

e1

m
1/2
1

and A2 =
e2

m
1/2
2

in equation 3.19 and

using as a new variables ei we get a new dynamical matrix D(k) that is Hermitian5.
That means that !2 are real and, if one of them or both !

2 are negative then ! is
imaginary and physically means that that point is not a minimum of the potential
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Figure 3.6: Dispersion curve of the diatomic chain model[8][7].

energy and the crystal is unstable concerning the set of displacements[7]. Figure 3.6
shows the dispersion curves for the diatomic chain The upper curve (mode) is said
optical branch and the lower curve is said acoustic branch.

3.2.2 General case

The generalizations to 3D are

• The type of solution remains the same as in equation 3.17

• equation 3.19 is !2ei = D(k)ei

• D
ij(k) =

P
↵,�=x,y,z

P
n

1p
mimj

D
ij,0n

↵�
exp i[k↵(ri,↵,0 � rj,↵,n)]

with Ai =
ei

m
1/2
i

. And, for a unit cell with p atoms as the basis, there are 3p normal

modes !2

s
(k), s = 1, 2, . . . 3p, with 3 acoustic modes and 3p� 3 optical modes.

3.2.3 Phonons

There is an energy associated with the vibrations. In quantum mechanics, this energy
is quantized, and the quantum is called a phonon with the energy ~!s(k). Thus, in
3D, a harmonic crystal has the energy

E =
X

ks

(nks + 1/2)~!s(k) (3.22)

where nks is the number of phonons with angular frequency !s(k). When we want to
talk about lattice-lattice and lattice and external field interactions, we use phonons as
the particles with momentum ~k that can be exchanged.

4
This equation is identical to equal the equation 2.32 in three dimensions real space

5
That means that D(k) = D†

(k)
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3.3 Superconductivity

Superconductivity is a state of matter exhibiting a combination of remarkable electric
and magnetic properties which appear in materials when the temperature of these
materials decreases below certain critical temperature (Tc). These properties are zero
resistance, permanent current, perfect diamagnetism, and so on. The explanation of
these and other properties are in [36] and other text books.

These properties have importance in applications from science to technology, com-
putation, health, transport, and electricity distribution.

Today, superconductivity has been observed in a wide variety of materials (see Table
3.1) with Tc reaching up as high as 134 K[11].

Superconductor Tc

Hg 4.2 K
Pb 7.2 K

NbGe 23 K
MgB2 39 K
3He 2.5 mK
UPt3 0.51 K

Sr2RuO4 0.93 K
CeCu2Si2 0.65 K
PuCoGa7 18.5 K

HgBa2Ca2Cu3O8 134 K
Sr0.5Sm0.5FeAsF 56 K

Table 3.1: Selected superconductors (adapted from [11]).

In this section, we want to talk about a mechanism from which matter can reach
this state. And also we talk about the Eliashberg theory.

3.3.1 Cooper pairs and BCS theory

In a crystal, the electron-electron interaction between two electrons with energies "k
and "k0 is screened by the presence of other electrons and ions. So, there is a correction
given as6

4⇡

|k� k0|2
�! 4⇡

|k� k0|2 + k
2

0

(
1 +

!
2

k,k0

!2 � !
2

k,k0

)
(3.23)

with ! = ("k � "k0)/~2, and !k,k0 the phonon frequency. This expression tells us that
there are two regimes for electron interaction in a crystal. These regimes are associated
with the energy di↵erences between both electrons and the phonon lattice frequencies

• if "k � "k0 > !k,k0 , the second term in 3.23 is positive and the electron-electron
interaction remain repulsive

6k0 is the ”normal” screening of electron gas
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• if "k � "k0 < !k,k0 , the second term in 3.23 is negative and larger than 1, in this
situation the electrons experience an attraction

Cooper, in 1956, showed that this attraction between electrons below Tc is the core of
superconductivity. That is because these pairs form bound states, the so-called Cooper
pairs. This attraction is possible around the Fermi surface and, in BCS theory, between
electrons with opposite momenta and spins (k ",�k #). As the equation 3.23 and the
following figure show, this attraction is phonon’s mediated. Particularly, the first four
materials in Table 3.1 are phonon-mediated[11].

Figure 3.7: Electron-electron interaction mediated by phonon (adapted from [9]).

The interaction becomes attractive within an energy !D of the Fermi surface, with
!D the Debye frequency7. The binding energy in BCS is given as

Eb = 2!D exp

✓
� 2

V0gF

◆
(3.24)

with V0 = constant > 0 the interaction potential and gF the density of states at the
Fermi surface.

The Cooper pair is a Bosonic particle and is the core of BCS and Eliashbergh’s the-
ories. The BCS theory considers the existence of phonons but doesn’t use it explicitly
in the theory. The ground state energy, at zero temperature and in k-space, is given as

E
(s)

0
=

X

k

2"k|vk|2 +
X

kk0

Vkk0u
⇤
kv

⇤
k0uk0vk (3.25)

with the ground state wavefunction

 (s)

0
= ⇧k{uk|0k0�ki+ vk| k �ki} (3.26)

where uk and vk must satisfy the relation

uku
⇤
k + vkv

⇤
k = 1 (3.27)

and |vk|2 represents the probability that a Cooper pair of wave-vector k is present
in the ground state and |uk|2 the probability that it is not. The first term in 3.26
represents unbound electron states with momenta k and �k. In equation 3.25, "k is

7
In the Debye model, 1D mono-atomic case, the first Brillouin zone is replaced by a sphere of

radius kD containing all N allowed wave vectors, and !D = ckD [32]

Chapter 3 27



Section 3.3. SUPERCONDUCTIVITY

the eigenvalue of a single particle Hamiltonian (Hsp
 k = "k k), and the second term

results from the fact that we consider the electron-electron interaction as a process of
phonon exchange.

We can show that the real superconducting ground state is given with |uk|2 =
1

2
(1 + "k

⇠k
) and |vk|2 = 1

2
(1 � "k

⇠k
), where ⇠k =

p
"
2

k + |�k|2 and �k =
P

k0 Vkk0v
⇤
k0uk0 .

It’s also possible to show that there is a gap between the normal and the super-
conducting states which is Eg = 2|�| and, in the weak coupling limit, we get that
|�| = 2!D exp (� 1

V0gF
). It’s very important to observe that in the BCS the interaction

potential Vkk0 is considered as a constant �V0 < 0 in the range of Debye energy.
To calculate the transition temperature, we must include the thermal e↵ects via

occupancy nk of the single-particle state k per spin unit, where we use (1�2nk) as the
Cooper pair occupation number, 2nk for an electronic state that is not part of Cooper
pair. Factor 2 is the spin degeneracy. Writing the free energy, F (s) of the system and
considering its minimum defined by @F

(s)

@nk
= 0 we get

nk =
1

1 + exp ⇠k

kBT

(3.28)

and the gap equation in finite temperature

�k = �
X

k0

Vkk0
�k0

2⇠k0
tanh

⇠k0

2kBT
(3.29)

which when we solve in the weak coupling limit we obtain 8

kBTc = 1.14!D exp

✓
� 1

gFV0

◆
(3.30)

The result in the last equation shows that there exists a relation between the ion
mass and the transition temperature. It is because, as we saw in section 3.2, the angular
frequency of lattice vibration is proportional to 1/

p
m, then the critical temperature

is also
Tc ⇠ m

�1/2 (3.31)

for conventional superconductors.

3.3.2 Eliasheberg theory and McMillan-Allen-Dynes formula
for Tc

The Eliashbergh theory is more general than the BCS theory because it includes ex-
plicitly the phonons in the theory.

A parameter that is important in the Eliashberg theory is the spectral function, also
called the Eliashberg function, which describes the phonon density of states weighted
by the electron-phonon interaction

↵
2
F (!) =

X

q⌫

!q⌫�q⌫�(! � !q⌫) (3.32)

8
here, again, we are using ~ = 1
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where �q⌫ is the electron-phonon coupling constant for mode ⌫ at wavevector q.
Using the Eliashberg function, we can calculate !ln, called average logarithmic

frequency or characteristic phonon frequency, as

!ln = exp


2

�

Z 1

0

ln(!)
↵
2
F (!)

!
d!

�
(3.33)

with � =
P

q⌫ �q⌫ . The critical temperature, in the isotropic regime, is calculated
using the McMillan-Allen-Dynes formula, for non-very strong coupling limit � < 2 and
µ
⇤
< 0.15

Tc =
!ln

1.2
exp


� 1.04(1 + �)

�� µ⇤(1 + 0.62�)

�
(3.34)

The introduction of the Coulomb repulsive correction to electron-electron attraction
is not easy so that is introduced as an empirical parameter µ⇤ given as µ⇤ = µ

1+µ ln(
"F
!c

)
.

µ is an average electron-electron matrix element times the electronic density of states
at the Fermi level and !c is a frequency cuto↵[37][38][39][40].
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Chapter 4

Methodology

In this chapter, we want to describe the procedures we used in this thesis describing.
As a way to validate our results, we present the results of MgB2 that we used as the
model material. In the next chapter we talk about the results for the new materials.

The MgB2 is a material with superconductivity experimentally observed in 2001,
with Tc = 39 K [41]. It is also computationally simulated with a Tc of 19 K for isotropic
Eliashberg theory and Tc of 39 K for the anisotropic case [42]. Another important detail
is that MgB2 is the known conventional (phonon-mediated) superconductor with its
conventionality supported by isotope e↵ect (substitution of 11B by 10B increases the
Tc by 1 K). At normal-state, this material has low resistivity ⇢ (42 K) ' 0.3 µ⌦cm
[13].

MgB2 is the only member of the AlB2 family (with hexagonal space group P6/mmm)
with a high-Tc (39 K). Other members either are not superconductors (ReB2), or have
Tc < 10K (MB2 with M = Nb, Ta, Zr or Be).

The unconventional superconductors have not only one critical magnetic field but
two critical magnetic fields. While the critical magnetic field in conventional supercon-
ductors destroys the superconductivity, in unconventional superconductors, increasing
the applied magnetic field, firstly is observed the purely Meissner e↵ect (exclusion of
magnetic field) until reaching the first critical magnetic field (Hc1). After reaching Hc1,
increasing the applied magnetic field, in unconventional superconductors is observed a
mix of superconductor and normal states. That means that the magnetic field begins
to penetrate the specimen. There is the second critical magnetic field (Hc2 from which
the superconductivity is destroyed.

Although MgB2 is a conventional superconductor, it has two critical magnetic field.
The high-Tc and acceptable Hc2 (14 T) make MgB2 a good competitor of Nb Ti
and Nb3Sn which are the most technologically relevant superconductors in nowdays.
However, some fabrication processes of MgB2 wires for large applications are di�cult
because the material is brittle.

As we saw in Chapters 1 and 2, we can use DFT and DFPT to calculate properties
of materials. In our case, to predict the early mentioned electronic, phononic, and
superconducting properties we used the Quantum ESPRESSO (QE) software. This
software is an integrated suite of open-source computer codes for electronic struc-
ture calculations of material properties using state-of-the-art electronic-structure tech-
niques. It’s based on DFT, DFPT, and pseudopotentials (norm-conserving, ultrasoft,
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and projector-augmented wave) [43][44].
Generally, we used the plane wave method and pseudopotential approach for all

calculus. We also used the norm-conserving pseudopotentials and LDA approximation.
The convergence energy criterion was 10�5 Ry/atom. We used the vc-relax cal-

culation variable for the geometry optimization with the ionic relaxation (bfgs) [45]
method.

There are two kinds of calculus, the self-consistent (SCF) and non-consistent (NSCF)
calculus. The first one is exactly the procedure in 2.1 where the convergence of the
charge density is imperative. The later is performed using a constant electronic den-
sity, thus being faster than a self consistent calculation. So, we can always use more
k-points to make a NSCF calculus easily.

For the self-consistent (SCF) and non-consistent (NSCF) calculus, we used the
Monkhorst-Pack meshing method, the gaussian smearing with 0.01 Ry as the gaussian
spreading for the first Brillouin zone integrations.

For the MgB2, the pseudopotentials used incorporate all 2s, 2p and 3s electrons for
Mg and, 2s and 2p electrons for B as the valence electrons. These pseudopotentials
were obtained from [46].

The steps used in our work and also the results, for instance, for MgB2 are:

1. Convergence tests

We observed in the earlier chapter that the electrons in crystal materials are
described by Bloch states, which we can expand using a plane waves basis set

 nk(r) = unk(r) exp (ik · r) =
X

G

1p
VBZ

cnk + G exp (i(k + G) · r) (4.1)

where unk(r) is a function that has the same periodicity as the lattice, k taking
N (number of unit cells) into Brillouin zone, and the sum over reciprocal lattice
vectors G being infinite.

Substituting this expression in the Kohn-Sham equations 2.25, we get a set of
matrix equations. However, in practice we can’t do infinite sums so that we must
truncate the plane waves and the k-points to soft values, i.e, values that give us
accurate results. For the plane wave expansion we define a kinetic energy cuto↵,
in atomic units,

Ecut =
1

2
(k + G)2 (4.2)

meaning that the number of plane waves, Nop, included in the calculation scales
is Nop ⇠ E

3/2

cut .

The way as we introduce the k-points depends on the relation between the lattice
parameters, and obeys the ruleN1 : N2 : N3 ⇡ 1/|a1| : 1/|a2| : 1/|a3|. That means
that if we have a structure with a⇥ma⇥na then the grid is k⇥k/m⇥k/n. Many
times these fractions are not integers, so we use the immediate integer numbers.
For integrations on the Brillouin zone, we use a set of finite k-point grids.

The convergence tests were performed to determine the cuto↵ energies and k-
point grids which converged the values of the total energy per atom within
10�5Ry/atom.
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Figure 4.1: Cuto↵ convergence for MgB2.

As the figure 4.1 shows, we calculated the energy/atom for di↵erent cuto↵ energies
and determined the point from which the energy decrease is less or equal to
10�5Ry/atom. For this case, we have that the converged cuto↵ energy is 80 Ry.
The same procedure gave converged k-point grid equal to 12.

2. Geometry optimization

A crucial step is the geometry optimization with which we determine the geom-
etry with the minimum energy, i.e, the geometry for which the total force/atom,
FI , and stress are zero. For MgB2 we started with the experimental struc-
ture, which is hexagonal structure with its lattice vectors a = (

p
3/2, 1/2, 0)a,

b = (0, 1, 0)a and c = (0, 0, 1)c. This structure has a graphite-like B2 layer be-
tween Mg layers. Our result of the geometry optimization calculation gave the
same result (hexagonal structure), figure 4.2. The results for the lattice param-
eters are a = 3.036Å and c/a = 1.139, with c = 3.459Å. This is result is in
agreement with previous DFT calculations [47][48][49][50].

3. Electronic band structure and density of states

After the geometry optimization, we began to calculate the electronic band struc-
ture and density of states to observe if the material is a metal or not. In the
electronic structure calculation, we made SCF calculation to get wave-functions
and charge density. Because we included the smearing variable in our input cal-
culation, also we get Fermi energy which is necessary for the band calculations.

After the NSCF calculation, we made the bands’ calculation for the high-symmetry
paths suggested in references [6] and [51]. To get these high-symmetry paths, we
used the xcrysden software [10].

With the bands’ calculations, we extracted bands using the bands.x code, and,
finally, we used Gnuplot [52] to the plot the graphics.
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Figure 4.2: Hexagonal structure of MgB2. left: primitive unit cell; right: 2x2 supercell
viewed from the z direction. Images obtained using xcrysden[10].

Figure 4.3: High-symmetry path, �–M–K–�–A–L–H–A, for hexagonal structure in
xcrysden [10].

For the Density of states (DOS), we used the previous procedure for electronic
band structure, only changing the occupations variable, where we used occupa-
tions = tetrahedra to obtain a soft curve and eliminate spurious around the gap
caused by the smearing. To extract the DOS we used dos.x code.

For MgB2 case we get the expected results, i.e, it’s a metal[48]. The electronic
band structure and DOS of MgB2 obtained is showed in the figure 4.4.

The calculation of DOS is the last step in the electronic calculations, where
the main goal was to observe if the material is or not a metal. If the material
is a metal, the following steps are making the k-points convergence for that
phonon calculation, the phonon spectrum and electron-phonon coupling constant
calculations, and, as the last step, the critical temperature calculation.

4. k-points convergence for phonon calculations

There are two possibilities to make phonon calculations. Using the ph.x code,
the calculation can be for a specific q-point or a selected set of q points. For
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Figure 4.4: Electronic structure and DOS of MgB2.

the calculation of phonons, the convergence test means running ph.x code for
di↵erent q for di↵erent k-point grids and observe the frequency changes for each
normal mode. We used the � point for that goal. We start with the converged
k-points from the electronic structure calculation.

Our results show that often the k-point grid used in the previous calculations
is su�cient. However, as a practical way for phonon calculation for a general
calculation, it’s necessary to select a k-points grid with, if possible, at least, two
dividers di↵erent from one. That is why many times we increase the converged
k-points to another adequate values.

k = 12 k = 15 k = 16
0.537049 0.538359 0.537923
0.537049 0.538359 0.537923
0.540860 0.541568 0.540591
10.449623 10.426689 10.418321
10.449623 10.426689 10.418321
12.505183 12.447760 12.502675
20.152897 17.549041 18.426109
20.15289 17.549041 18.426109
21.195794 21.297623 21.194891

Table 4.1: Frequency, in cm–1, of the phonon modes of MgB2 at � point for k-point
grids (k, k, k) with k = 12, k = 15 and k = 16, from left to the right.
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Our calculations showed that 12x12x12 is a k-point grid su�cient for phonon
calculations, as the Table 4.1 shows.

5. Obtaining the phonon spectrum, electron-phonon coupling constant,
and Tc

Our result for the phonon spectrum, figure 4.5, is similar to results previously
obtained by references [47][53]. As it is shown in the phonon density of states,
4.5, around 343 cm–1 to up begin the high contribution of boron in the lattice
vibrations, while the lower contribution comes from Mg.
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Figure 4.5: Phonon spectrum, on the left, and phonon DOS, on the right, of MgB2 for
12x12x12 k-point grids, 6x6x6 q-point grids and nk = 16. Particularly, in the phonon
DOS the black graph is the total DOS, the green is the contribution of Mg and the
dark-orange are the B contributions.

On the the calculation of electron-phonon coupling and Tc we must the define
a plateau which is the maximum di↵erence between two subsequent electron-
phonon coupling constant. We defined the plateau being 0.007. With this
plateau, we have that the coupling constant is 0.61688 and the respective Tc
is 14.947 K. These results are possible to see in the figures 4.6 and 4.7 with the
green lines. The defined smearing is 0.006 and !ln is 746.551 K.

These results are satisfactory for us because they are close to previous DFT calcula-
tions using the McMillan-Allen-Dynes formula. That means that we can use the same
steps to predict the superconducting properties of the new materials and get insights
into them.
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Figure 4.6: Coupling constant of MgB2 as a function of the smearing parameter.
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Figure 4.7: Transition temperature of MgB2 as a function of the smearing parameter.
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Chapter 5

Results

5.1 Electronic structure calculations

We studied a set of new metallic ternary materials, listed in Table 5.1, that were
previously discovered by other members of our research group.

Material Structure SPG Volume (a.u)3 Lattice parameters
Al2Li2Pd2 Hexagonal P3m1 535.2 a=4.186 Å, c/a =1.25
Al2Li3Pd P-3m1 566.8 a=4.226 Å, c/a = 1.29
Al3LiPd2 P-3m1 546.4 a=4.238 Å, c/a = 1.23
AlLi2Pd3 P-3m1 505.4 a=4.136 Å, c/a = 1.22
AlLi4Pd P3m1 577.2 a=4.269 Å, c/a = 1.27
Al2LiPd fcc Fm-1m 361.1 a=5.982 Å
AlLiPd2 Fm-3m 344.0 a=5.886 Å
Al4LiPd Trigonal R3m 632.0 a=6.520 Å, cos(�) = 0.790
Al2Li2Pd R-3m 461.8 a=5.071 Å, cos(�) = 0.655

Table 5.1: Resume of the crystalline information of the AlxLiyPdz ternary materials.

Al2Li2Pd2, Al2Li3Pd, Al3LiPd2, AlLi2Pd3 and AlLi4Pd have a hexagonal structure.
Their lattice parameters are indicated in Table 5.1 and their structures are shown in
Figures 5.1–5.5.

Al2LiPd and AlLiPd2 have a fcc structure, and Al4LiPd and Al2Li2Pd were found
to possess trigonal R crystalline structures. Their lattice parameters are indicated in
Table 5.1 and their structures are shown in Figures 5.6–5.8.

We used norm-conserving, scalar relativistic pseudopotentials taken from pseu-
dodojo [46]. They include all the 3s and 3p electrons of Al, all 3 electrons of Li, and
all 4s, 4p, and 4d electrons of Pd.

All the hexagonal structures had total energy converged with respect to kinetic
energy cuto↵ at 80 Ry. Although convergence with respect to the k-points grid was
already attained for a coarser grid, we used a 12x12x12 grid in our calculations for all
the hexagonal structures in order to get really accurate densities of states and band
structures.

The electronic band structure and density of states of all the hexagonal compounds
are plotted in Figures 5.9–5.13.
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Figure 5.1: Hexagonal structure of Al2Li2Pd2. Left: primitive unit cell; right: z direc-
tion visual with 2 unit cells in the x and y directions.

Figure 5.2: Hexagonal structure of Al2Li3Pd. Left: primitive unit cell; right: z direction
visual with 2 unit cells in the x and y directions.

Figure 5.3: Hexagonal structure of Al3LiPd2. Left: primitive unit cell; right: z direction
visual with 2 unit cells in the x and y directions.

Results for the fcc structures indicated that the calculations were converged with a
kinetic energy cuto↵ 80 Ry, as before. This was expected, as the pseudopotentials were
the same. However, as the structures were di↵erent, the convergence with respect to
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Section 5.1. ELECTRONIC STRUCTURE CALCULATIONS

Figure 5.4: Hexagonal structure of AlLi2Pd3. Left: primitive unit cell; right: z direction
visual with 2 unit cells in the x and y directions.

Figure 5.5: Hexagonal structure of AlLi4Pd. Left: primitive unit cell; right: z direction
visual with 2 unit cells in the x and y directions.

Figure 5.6: fcc structure of Al2LiPd. Left: primitive unit cell; right: z direction visual
with 2 unit cells in the x and y directions.

the k-points grid indicated the need for denser grids for the fcc structures: 15x15x15 for
Al2LiPd, and 12x12x12 for AlLiPd2. For the trigonal R crystalline structures we used a
12x12x12 k-point grid for Al4LiPd, and a 15x15x15 k-point grid for Al2Li2Pd. For the
trigonal structures, convergence with respect to the kinetic energy cuto↵ was reached
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Figure 5.7: fcc structure of AlLiPd2. Left: primitive unit cell; right: z direction visual
with 2 unit cells in the x and y directions.

Figure 5.8: Trigonal structure of Al4LiPd (leftmost figures) and Al2Li2Pd (rightmost
figures). First and third figures: primitive unit cells; second and fourth figures: z
direction visual with 2 unit cells in the x and y directions.

at 75 Ry and 120 Ry, respectively, although we incremented 5 Ry for the electronic
band structure and density of states for both materials.

The electronic band structures and densities of states of all the last four materials
are illustrated in Figures 5.14–5.17.

5.2 Phonon spectra and Tc calculations

After the convergence tests and electronic structure calculations, we began with phonon
spectra and Tc calculations for all materials.

5.2.1 Phonon spectra and Tc of the hexagonal structures

Although band structures and densities of states were very well converged with the k-
points grids mentioned before, we decided to increase the grid for phonon calculations,
in order to be sure that the coupling constant calculations and lambda calculations
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Figure 5.9: Electronic band structure and DOS of Al2Li2Pd2.

Figure 5.10: Electronic band structure and DOS of Al2Li3Pd.

were really well converged. As the k-points grid has to be commensurate to the q-
point grid for the phonon calculations, the increase in the the k-points sampling took
in account that the q-grids chosen were 3x3x3 for Al3LiPd2, Al2Li3Pd, Al2Li2Pd2 and
AlLi4Pd, and 6x6x6 for AlLi2Pd3. Therefore, we used a coarse k-grid of 15x15x15,
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Figure 5.11: Electronic band structure and DOS of Al3LiPd2.

Figure 5.12: Electronic band structure and DOS of AlLi2Pd3.

and a fine k-grid of 30x30x30 for Al3LiPd2, 12x12x12 and 24x24x24 for Al2Li2Pd2 and
12x12x12 and 36x36x36 for Al2Li3Pd, AlLi4Pd and AlLi2Pd3. Phonon spectra and DOS
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Figure 5.13: Electronic band structure and DOS of AlLi4Pd.

Figure 5.14: Electronic band structure and DOS of Al2LiPd.

of phonons are presented in figures 5.18–5.22.

The coupling and transition temperatures are as follows: 0.34 and 0.15 K for
Al2Li2Pd2, 0.34 and 0.17 K for Al2Li3Pd, 0.37 and 0.27 K for Al3LiPd2, 0.13 and
0.0 K for AlLi2Pd3, and 0.55 and 2.43 K for AlLi4Pd.
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Figure 5.15: Electronic band structure and DOS of AlLiPd2.

Figure 5.16: Electronic band structure and DOS of Al4LiPd.

5.2.2 Phonon spectra and Tc of the fcc structures

For materials with fcc structure, we used for Al2LiPd a coarse k-point grid with
15x15x15 points and a denser k-point grid with 30x30x30 points. The q-points grid
for the phonon, lambda, and Tc calculations was a 5x5x5 grid. For AlLiPd2 we used
16x16x16 and 32x32x32 k-point grids and a 4x4x4 q-point grid. The phonon spectra
and DOS of phonons of this set of materials are in figures 5.23 and 5.24.
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Figure 5.17: Electronic band structure and DOS of Al2Li2Pd.

Figure 5.18: Phonon spectrum and density of states of phonon of Al3LiPd2, with blue
color for Pd contribution, yellow and green for Al contribution, and finally, red color
for Li contribution.

With these data we obtained lambda and Tc equal to 0.27 and 0.008 K for Al2LiPd
and 0.21 and 0.0 K for AlLiPd2.
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Figure 5.19: Phonon spectrum and density of states of phonon of AlLi2Pd3, with yellow
and orange for Pd contribution, green for Al, and finally, red color for Li contribution.

Figure 5.20: Phonon spectrum and density of states of phonon of Al2Li3Pd, with
yellow color for Pd contribution, red for Al contribution, and finally, blue color for Li
contribution.
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Figure 5.21: Phonon spectrum and density of states of phonon of AlLi4Pd, with blue
color for Pd contribution, dark blue for Al contribution, and finally, other colors for Li
contribution.

Figure 5.22: Phonon spectrum and density of states of phonon of Al2Li2Pd2, with red
color for Pd contribution, yellow and orange for Al contribution, and finally, blue color
for Li contribution.
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Figure 5.23: Phonon spectrum and density of states of phonon of Al2LiPd, with orange
color for Pd contribution, blue for Al contribution, and finally, yellow color for Li
contribution.

Figure 5.24: Phonon spectrum and density of states of phonon of AlLiPd2, with orange
color for Pd contribution, blue for Al contribution, and finally, yellow color for Li
contribution.

5.2.3 Phonon spectra and Tc of the Trigonal R (3 fold axis c)
structures

The phonon spectra of trigonal structures are given in figures 5.25 and 5.26.
For these materials, we used for Al4LiPd a 36x36x36 and 12x12x12 fine and coarse
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Figure 5.25: Phonon spectrum and density of states of phonon of Al2Li2Pd, with
green color for Pd contribution, grey for Al contribution, and finally, blue color for Li
contribution.

Figure 5.26: Phonon spectrum and density of states of phonon of Al4LiPd, with red
color for Pd contribution, blue, yellow and grey for Al contribution, and finally, green
color for Li contribution.

k-point grids, respectively. For phonons, we used a 3x3x3 q-point grid, as well as for
lambda, and Tc calculations. For Al2Li2Pd we used 15x15x15 and 30x30x30 k-point
grids and a 5x5x5 q-point grid. With these data, we obtained lambda and Tc equal to
0.21 and 0.00 K for Al4LiPd, and 0.31 and 0.059 K for Al2Li2Pd.
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5.2.4 Summary

The following table summarizes all information about the calculations for all AlxLiyPdz

ternary materials studied in this thesis.

Material !log [K] smearing Lambda Tc [K]
Al2Li2Pd2 251.285 0.009 0.34 0.15
Al2Li3Pd 277.663 0.003 0.34 0.17
Al3LiPd2 207.417 0.007 0.37 0.27
AlLi2Pd3 216.483 0.003 0.13 0.00
AlLi4Pd 180.642 0.002 0.55 2.43
Al2LiPd 283.484 0.005 0.27 0.008
AlLiPd2 233.480 0.002 0.21 0.00
Al4LiPd 302.472 0.007 0.21 0.00
Al2Li2Pd 290.365 0.005 0.31 0.059

Table 5.2: Summary of the Tc calculations for the AlxLiyPdz ternary materials.
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Chapter 6

Conclusions

The phonon spectra and densities of states for phonons for most of the materials
under study showed groups of normal modes where the acoustic normal modes are
dominated by the Palladium contribution. The highest optical frequencies originate
from Lithium, the lightest element in all materials. The lower optical frequencies are
mostly dominated by Aluminum, which is the second lightest element.

The material with the highest transition temperature is AlLi4Pd. This material
has a larger Li content than the others, which might explain its higher transition
temperature. However, the second highest Tc material is Al3LiPd2, with Tc = 0.27 K,
where the greatest contribution seems to come from Al atoms.

Unfortunately, if we consider the accuracy of the computational methods for con-
ventional superconductors to be 20% [54], these materials may, in practice, not show
superconducting properties. But they might present other phenomena with technolog-
ical applications, like, e.g., mechanical resistivity.

In our work, we didn’t proceed with phonon spectra and critical temperature cal-
culation of a few other new metallic materials discovered by members of the research
group because they have very low symmetry and that implies high computational cost.
This could be the next step of this work, in order to fully explore all metallic ternary
materials AlxLiyPdz.
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Appendix A

A. The 230 crystallographic space
groups

In three-dimensional space there are 230 crystallographic space groups as the next table
shows

Table A.1: The 230 Crystallographic Space Groups (adapted from [12])

Crystal Sys-
tem

Laue
Class

Crystal
Class

Lattice
Centring

230 3-Dimensional Space
Groups

Triclinic -1 1 P P1
-1 P-1

Monoclinic 2/m 2 P P2, P21
C C2

m P Pm, Pc
C Cm, Cc

2/m P P2/m, P21m, P2/c, P21c
C C2/m, C2/c

Orthorhombic mmm 222 P P222, P2221, P21212, P212121
C C222, C2221
F F222
I I222, I212121

mm2 P Pmm2, Pmc21, Pcc2, Pma2,
Pca21,
Pnc2,Pmn21, Pba2, Pna21,
Pnn2

C or A Cmm2, Cmc21, Ccc2, Amm2,
Abm2,

Ama2,
Aba2
F Fmm2, Fdd2
I Imm2, Iba2, Ima2

mmm P Pmmm, Pnnn, Pccm, Pban,
Pmma,
Pnna, Pmna, Pcca, Pbam, Pccn,
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Pbcm, Pnnm, Pmmn, Pbcn,
Pbca, Pnma

C Cmmm, Cmcm, Cmca, Cccm,
Cmma, Ccca

F Fmmm, Fddd
I Immm, Ibam, Ibcm, Imma

Tetragonal 4/m 4 P P4, P41, P42, P43
I I4, I41

-4 P P-4
I I-4

4/m P P4/m, P42/m, P4/n, P42/n
I I4/m, I41/a

4/mmm 422 P P422, P4212, P4122, P41212,
P4222,
P42212,P4322, P43212

I I422, I4212
4mm P P4mm, P4bm, P42cm, P42nm,

P4cc,
P4nc, P42mc, P42bc

I I4mm, I4cm, I41md, I41cd
-42m P P-42m, P-42c, P-421m, P-421c

I I-42m, I-42d
-4m2 P P-4m2, P-4c2, P-4b2, P-4n2

I I-4m2, I-4c2
4/mmm P P4/mmm, P4/mcc, P4/nbm,

P4/nnc, P4/mbm,
P4/mnc, P4/nmm, P4/ncc,
P42/mmc, P42/mcm,
P42/nbc, P42/nnm, P42/mbc,
P42/mcm, P42/nmc,
P42/ncm

I I4/mmm, I4/mcm, I41/amd,
I41/acd

Trigonal -3 3 P P3, P31, P32
R R3

-3 P P-3
R R-3

-3m 312 P P312, P3112, P3212
321 P321, P3121, P3221

R R32
31m P P31m, P31c
3m1 P3m1, P3c1

R R3m, R3c
-31m P P-31m, P-31c
-3m1 P-3m1, P-3c1
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R R-3m,
R-3c

Hexagonal 6/m 6 P P6, P61, P62, P63, P64, P65
-6 P-6
6/m P6/m, P63/m

6/mmm 622 P622, P6122, P6222, P6322,
P6422, P6522

6mm P6mm, P6cc, P63cm, P63mc
-6m2 P-6m2, P-6c2
-62m P-62m, P62c
6/mmm P6/mmm, P6/mcc, P63/mcm,

P63/mmc
Cubic m-3 23 P P23, P213

F F23
I I23, I213

m-3 P Pm-3, Pn-3, Pa-3
F Fm-3, Fd-3
I Im-3, Ia-3

m-3m 432 P P432, P4232, P4332, P4132
F F432, F4132
I I432, I4132

-43m P P-43m, P-43n
F F-43m, F-43c
I I-43m, I-43d

m-3m P Pm-3m, Pn-3n, Pm-3n, Pn-3m
F Fm-3m, Fm-3m, Fd-3m, Fd-3c
I Im-3m, Ia-3d

Crystal Sys-
tem

Laue
Class

Crystal
Class

Lattice
Centring

230 3-Dimensional Space
Groups
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