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Abstract

Vehicle Re-Identification (V-ReID) attempts to recognize the same vehicle across multiple

cameras, and thus plays a major role in many applications such as video surveillance, criminal

investigation, and traffic flows in Intelligent Transportation Systems (ITS).

Despite the substantial research that has been conducted in this field, V-ReID remains

a difficult problem to solve due to large variations in appearance between intra-class pairs

of vehicle images and small inter-class variability. In other words, the appearance of a

vehicle varies significantly depending on different viewpoints, illumination changes, and other

factors, yet there are different vehicle identities (IDs) that look extremely similar, increasing

the difficulty of Re-Identification (ReID).

Convolution Neural Network (CNN)-based methods have shown impressive results so

far, however, they suffer from detail information loss due to convolution and downsampling

operators. Meanwhile, the Vision Transformer, a revolutionary architecture, has emerged

and gained significant attention with outstanding results in image recognition problems

as well as various ReID benchmarks. This novel architecture can extract more detailed

information because it does not use convolution or downsampling operators.

Taking it all into account and based on the scaling success of Vision Transformers, the

main purpose of this work is to evaluate Transformers ability to detect intrinsic character-

istics of each vehicle that can distinguish it from others, i.e. a vehicle fingerprint based on

appearance, in order to enhance V-ReID performance in well-known benchmarks.

Keywords: Vehicle Re-Identification, Transformer, Deep Learning
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Resumo

A Re-Identificação de Veículos (V-ReID) consiste em reconhecer um veículo em diver-

sas câmaras, desempenhando assim um papel importante em diversas aplicações, tais como

videovigilância, investigação criminal e análise de fluxos de tráfego em Sistemas de Trans-

porte Inteligentes (ITS).

Apesar da elevada investigação que tem sido conduzida neste campo, a V-ReID continua a

ser um problema difícil de resolver devido às grandes variações de aparência entre pares intra-

classe de imagens de veículos e à pequena variabilidade inter-classe. Por outras palavras,

a aparência de um veículo varia significativamente com diferentes perspetivas, variações de

iluminação, e outros factores, e além disso, diferentes veículos podem ser extremamente

semelhantes, aumentando assim a dificuldade de Re-Identificação (ReID).

Os métodos baseados em Redes Neurais Convolucionais (CNNs) têm mostrado resultados

impressionantes, no entanto, sofrem de perda de informação detalhada devido às convoluções

e operadores de downsampling. Entretanto, surgiu uma nova arquitetura revolucionária

designada de Vision Transformer, que recentemente ganhou muita atenção devido aos seus

resultados surpreendentes em problemas de reconhecimento de imagem, bem como em várias

benchmarks de ReID. Esta nova arquitectura pode extrair informação mais detalhada pois

não utiliza convoluções nem opreadores de downsampling.

Tendo isto em conta e com base no crescente sucesso dos Vision Transformers, o principal

objetivo deste trabalho é avaliar a capacidade dos Transformers para detetar características

intrínsecas dos veículos que os possam distinguir entre eles, ou seja, uma espécie de impressão

digital de cada veículo baseada na sua aparência, com o intuito de melhorar o desempenho

da V-ReID em benchmarks conhecidas.

Palavras-chave: Re-Identificação de Veículos, Transformer, Aprendizagem Profunda
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1 Introduction

1.1 Context and Motivation

Vehicle Re-Identification (V-ReID) attempts to recognize a specific vehicle across different

cameras based on its appearance and has gained a lot of attention from the computer vision

community in the past years.

Since the start of the twentieth century, the role of vehicles has become essential. They

are used worldwide and have become the most popular mode of transport in many of the

most developed countries. As a result, numerous applications where V-ReID plays a signifi-

cant role have developed and are continually improving, including traffic flow in intelligent

transportation systems (ITS), criminal investigation, and video surveillance.

Despite the extensive work developed in this area, there is still room for improvement

in terms of robustness, as V-ReID remains a challenging problem due to large variations in

appearance between intra-class pairs of vehicle images. These variations are caused by differ-

ent viewpoints, illumination changes, occlusions, and noisy/blurred images, among others,

as shown in figure 1.1. In addition, vehicles with different identities (IDs) can be of the same

brand, model, and color, making it difficult to distinguish the visual differences between

pairs of vehicle images, i.e. there is small inter-class variability. This issue is illustrated

in Figure 1.2, where the samples in each row appear to be the same vehicle at first look,

although they are not.

Most of the advancements in V-ReID have been accomplished using well-known Convo-

lution Neural Network (CNN)-based methods, but recently Vision Transformer (ViT) that

was introduced by Dosovitskiy et al. in 2020 has gained substantial traction in computer

vision problems, including ReID. Different from CNNs that aggregate and transform features

via local and dense convolutional kernels, Transformers treat an image as a serie of patch

sequence and use the self-attention mechanism to directly model long-range dependencies of

local patches (a.k.a. tokens), resulting in more detailed V-ReID features.
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Figure 1.1: The problem of large variations between intra-class vehicle images. Each row

denotes the same vehicle captured by cameras from different viewpoints. Taken from [1].

Figure 1.2: The problem of small variations between inter-class vehicle images. Each row

denotes different vehicles with similar appearances.
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1.2 Goals and Contributions

Given a query vehicle image taken from one camera, the objective of V-ReID is to identify

the same vehicle from a large gallery set of images captured by other cameras within the

surveillance system. To achieve this, it is required a sophisticated and efficient deep learning

algorithm to generate the feature embedding of each image and then rank the similarity

between query and gallery image vectors. This technology might be used to automatically

locate a specific vehicle in a network of cameras and determine its route as illustrated in

Figure 1.3.

Figure 1.3: Simple illustration of V-ReID.

The main goal of this dissertation is to develop a robust V-ReID network based on the

scaling success of Transformers to extract discriminative features of vehicles, which is crucial

in V-ReID. The University of Coimbra’s Institute of Systems and Robotics (ISR) has been

working on many Research and Development (R&D) projects related to Brisa Highways,

Portugal’s largest private transport infrastructure company. One of the current projects in

ISR is to identify inherent characteristics of each vehicle that can distinguish it from other

identities, even if they are very similar (same brand, model, and color), i.e. to extract a

vehicle fingerprint based on appearance without using vehicle registration plate information.

Following that, one of the dissertation’s intermediate tasks is to analyze and explore trans-

formers’ potential to extract strong features that can assign a unique identification to each

vehicle.
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1.3 Dissertation Structure

The course flow of this dissertation and content of each chapter are the following:

• Chapter 2: Review of the most relevant State-of-the-Art works on V-ReID and other

types of methods, as well as the available datasets.

• Chapter 3: All of the approaches and developments that have been explored in this

work are presented and clearly described.

• Chapter 4: Analysis of the experimental results obtained during the course of the

work.

• Chapter 5: Conclusions are drawn, the possible future work is discussed.

4



2 State of Art

In this chapter, a survey of related works and the most important developments made in

vehicle re-identification are presented.

2.1 Evolution of Re-Identification

Vehicle Re-Identification (V-ReID), as well as Person Re-Identification (P-ReID), have been

widely researched and have made huge progress in the past 10 years, thanks to advances in

deep learning and artificial intelligence. Although vehicle and person ReID appear to be the

same problem, V-ReID is arguably more challenging due to high intra-class variability caused

by the variety of shapes from different viewing angles, as well as small inter-class variability

due to the limited shapes and colors of vehicle models made by different manufacturers. On

the other hand, a person’s appearance does not vary significantly as a result of different

perspectives.

The traditional hand-crafted feature extractors such as LOMO and BOWCN were the

dominant feature representation methods for ReID before the emergence of deep learning.

Between 2012 and 2014, some well-known deep feature learning networks (AlexNet, VG-

GNet, and GoogLeNet) emerged, revolutionizing the entire concept of deep learning and

significantly improving performance for image recognition tasks including V-ReID. Since

then, many studies have been conducted using CNNs to determine the optimal strategy for

extracting robust features, considering all of the V-ReID problems.

2.1.1 Convolutional Neural Networks

A Convolutional Neural Network (CNN) is a Deep Learning algorithm which can take an

image as input, assign importance (learnable weights and biases) to various aspects in the im-

age and be able to differentiate one from the other. CNNs are designed to automatically and

adaptively learn spatial hierarchies of features through backpropagation by using multiple

5



building blocks, such as convolution layers, pooling layers, and fully connected layers.

The most common CNN-based pipeline for ReID is to design appropriate loss functions

to train a CNN backbone, which is used to extract features of vehicle images. In V-ReID,

the cross-entropy loss and triplet loss are the most commonly employed metrics for optimal

and faster convergence of training. Figure 2.1 is an illustration of this standard pipeline.

Figure 2.1: A common pipeline for object ReID. Taken from [2].

The Bag of Tricks and Strong Baseline for P-ReID (BoT) [2] purposed by Hao Luo et

al. is an example of a CNN-based approach that uses a well-known CNN (Resnet-50) as the

backbone. Unlike other works that design sophisticated network structures and concatenate

multi-branch features, the main objective of this work was to design a simple yet effective

pipeline for P-ReID by employing multiple tricks to optimize the training process.

The first trick mentioned in the article is Warmup Learning Rate. The Learning rate is a

crucial parameter that highly impacts the performance of a network and the usual strategy

is to use a constant base learning rate for the initial few steps. The Warmup Learning Rate

prevents early over-fitting by setting the learning rate lower than the base learning rate and

gradually increasing it to approach the base learning rate. Figure 2.2 shows the evolution of

the learning rate with and without the Warmup Learning Rate.

Figure 2.2: Comparison of learning rate schedules. Taken from [2].
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Another trick used by BoT and many other works to overcome the occlusion problem

and improve the generalization ability of ReID models is Random Erasing Augmentation.

As the name implies, it is used to randomly erase a part of an image, typically a rectangular

region of pixels.

Cross-Entropy loss optimizes the cosine distances for image pairs in the embedding space,

whereas triplet loss optimizes the Euclidean distances. If these two losses are employed to

optimize a feature vector at the same time, their goals may be inconsistent. One probable

scenario during the training process is that one loss decreases while the other fluctuates or

even increases. To address this issue, the authors created BNNeck, a structure that adds a

batch normalization (BN) layer after features (and before classifier FC layers).

Since increasing spatial resolution always improves feature granularity, another trick used

by BoT was removing the last spatial down-sampling operation in the backbone or reducing

the stride size in the final layer, resulting in a feature map with higher spatial size, which

enhanced performance.

BoT used the above-mentioned tricks, as well as others, to create a more efficient pipeline

for P-ReID, as shown in Figure 2.3. Despite the fact that this method was developed

specifically for P-ReID, the employed tricks are widely used in V-ReID works to enhance

performance.

Figure 2.3: A more efficient pipeline proposed by BoT. Taken from [2].

2.1.2 Vision Transformers

One of the most important breakthroughs in Deep Learning research in the last decade is

the attention mechanism. It has spawned the rise of so many recent developments in natural

language processing (NLP) and Computer Vision, including the Transformer architecture

which is the current state-of-the-art for V-ReID.
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Attention mechanisms can be divided into several groups, however, in computer vision,

the most popular type of attention is Self-Attention. Self-attention initially calculates the

queries, keys, and values (Q, K, V ) from a feature map. The attention function’s goal is to

map the set of key-value pairs and the query into an output. The output is computed as a

weighted sum of the values, with each value’s weight determined by a compatibility function

of the query with the corresponding key. The output is computed as follows:

Attention(Q,K, V ) = Softmax

(
QKT

√
d

)
V (2.1)

By reviewing CNN-based methods, it is clear that there has been a significant improve-

ment over the years, however, these methods mainly focus on small discriminative regions

due to a Gaussian distribution of effective receptive field. Even with attention mechanisms

to explore long-range dependencies, attention-based methods still prefer large continuous

areas and make it difficult to extract multiple diversified discriminative parts as shown in

figure 2.4. Besides that, the CNN downsampling operators (e.g. pooling and strided convo-

lution) reduce the spatial resolution of output feature maps, which has a major impact on

the discrimination ability of objects with similar appearances.

Transformers were introduced in NLP and have since become the new standard for a vast

scope of NLP tasks. Transformers have recently been used in a wide range of vision tasks,

including image classification, object detection, semantic segmentation, and visual tracking,

and have demonstrated outstanding capabilities and potential for handling sequential data.

Figure 2.4: Grad-CAM [3] visualization of attention maps: (a) Original images, (b) CNN-

based methods, (c) CNN+attention methods, (d) Transformer-based methods which cap-

tures global context information and more discriminative parts. Taken from [4].

Vision Transformer (ViT) [5] and Data-efficient image Transformers (DeiT) [6] have

shown that pure transformers can be as effective as CNN-based methods on feature extrac-

tion for image recognition. The main problem of transformers is that they do not generalize

well when dealing with small amounts of data. The authors of ViT, on the other hand,

obtained impressive results when training on larger datasets (14M-300M images), achieving

8



state-of-the-art results in the ImageNet benchmark, without using any convolution. DeiT

also achieves competitive results on ImageNet without requiring a large training dataset and

with less computing resources.

The functioning of a Vision Transformer can be stated as follows: the input image is

split into fixed-size patches, each of them is linearly embedded, position embeddings are

added, and the resulting sequence of vectors is fed to a standard Transformer encoder. The

Transformer encoder consists of alternating layers of multiheaded self-attention (MSA) and

MLP blocks. In order to perform classification, it is used the standard approach of adding

an extra learnable “classification token” to the sequence, which output will serve as a global

feature representation. Figure 2.5 shows an overview of the ViT model.

Figure 2.5: Vision Transformer model overview. Taken from [5].

2.2 Vehicle Re-Identification

Vehicle Re-Identification based on appearance is a difficult task since distinct vehicle identi-

ties (IDs) with similar appearances have little inter-instance variability, yet one vehicle has

large intra-instance variability under different viewpoints and lighting conditions. The most

difficult challenge in V-ReID is associating a vehicle with the same ID but from multiple

perspectives, hence several studies focus on that problem, attempting to extract a highly

discriminant feature from the vehicle so that it can be re-identified even from a different

perspective.

9



Quadruple Directional Deep Learning Features (QD-DLF) [1] that was proposed by Jian-

qing Zhu et al. in 2018 is an example of work that focuses on the perspective problem.

The author created four networks that share the same backbone, which is a shortly and

densely connected CNN. To comprehensively describe vehicle images from different direc-

tions, quadruple directional (i.e., horizontal, vertical, diagonal, and anti-diagonal) average

pooling layers are designed to extract different features after the backbone. Then, the result-

ing feature maps are concatenated together as a quadruple directional deep learning feature

for V-ReID. This work is interesting in terms of methodology for employing multiple net-

works to extract different features, and it was state-of-the-art at the time it was published

but due to the fast advancement in this field, was quickly outperformed by new methods

that now perform significantly better.

2.2.1 Attribute extraction based methods

Many works explore attribute clues (for instance: color, type, model) to enhance V-ReID.

The common pipeline for this approach is the Vanilla-Attribute Design Network (VAN)

illustrated in figure 2.6. The problem with these methods is the lack of effective interaction

between the attribute-based branches and the V-ReID branch, where the attribute modules

learn features for attribute recognition but are not explicitly designed to serve V-ReID.

To address this problem, Rodolfo Quispe et al. developed a network called AttributeNet

(ANet) [7] that jointly extracts identity-relevant features and discriminative feature at-

tributes. ANet uses the VAN network as a backbone and then encourages interaction be-

tween the attribute features and the V-ReID feature by distilling attribute information and

incorporating it into the global representation (from the backbone) to generate more robust

features. ANet architecture is illustrated in Figure 2.7. The network, in particular, combines

the feature maps of several attribute branches to create a single representation G of all the

attributes. The helpful attribute feature from G is then distilled and compensated onto the

global V-ReID feature F to produce the final feature map J, where the spatial average pooled

feature of J is the final ReID feature. Furthermore, the authors introduced the Amelioration

Constraint (AC), a novel supervision objective that pushes the compensated V-ReID feature

J to be more discriminative than the V-ReID feature F.
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Figure 2.6: Vanilla-Attribute Design Network (VAN). Adapted from [7].

Figure 2.7: ANet Architecture. Taken from [7].
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Stripe-based and Attribute-aware Network (SAN) [8] proposed by Jingjing Qian et al. is

another work based on attributes to learn efficient embeddings for V-ReID. In this paper, a

ResNet-50 is employed as the backbone network to generate a feature map, which is then

used in two independent branches. SAN is a two-branch neural network that consists of a

stripe-based branch and an attribute-aware branch as shown in Figure 2.8. Since the human

body may be separated into multiple significant parts (e.g., head, thorax, legs, and feet), this

feature division is a frequent method in P-ReID models. Inspired by this, the authors of this

work also considered that a car body can be roughly divided into several meaningful parts

along the vertical axis (e.g., ceiling, windshield, header panel, and wheels), so they used a

stripe-based branch with horizontal average pooling and dimension-reduced convolutional

layers to achieve part-level features. Meanwhile, the attribute-aware branch extracts the

global feature under the supervision of vehicle attribute labels to separate similar vehicle

identities with different attribute annotations. Finally, the part-level and global features are

concatenated to generate the final descriptor for V-ReID.

Figure 2.8: SAN Architecture. Taken from [8].
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2.2.2 Attention based methods

Attention is one of the most essential mechanisms of human visual perception. When con-

fronted with a complex scene, humans are able to select regions of interest and use attention

to reduce the search and speed up recognition.

Attention mechanisms have proven to be particularly effective in fine-grained visual recog-

nition tasks and become a key component in many state-of-the-art methods, improving the

discriminative power of CNN features in the person and vehicle ReID problem by focusing

on significant characteristics and suppressing irrelevant features.

Yongmin Rao et al. introduced a method called counterfactual attention learning (CAL)

[9] to enhance attention learning based on causal inference. Despite the widespread use of

attention mechanisms, the problem of learning efficient attention is still insufficiently un-

derstood. Most existing approaches learn visual attention in a weakly-supervised manner,

i.e., the attention modules are merely supervised by the final loss function, without a pow-

erful supervisory signal to guide the training process. This likelihood-based technique only

explicitly supervises the final prediction but ignores the connection between prediction and

attention. To address this issue, the authors designed a tool to analyze the effects of learned

visual attention with counterfactual causality. The main idea is to measure the quality of

attentions by comparing the learned attentions and the counterfactuals (i.e., uncorrected at-

tentions) on the final prediction. Then, the goal is to maximize the difference to encourage

the network to learn more effective visual attentions and reduce the effects of biased training

set. The results of this method were not particularly outstanding in V-ReID, but they were

interesting in P-ReID.

A Strong Baseline for V-ReID was proposed by Su V. Huynh et al. specifically targeting

the Track 2 dataset of the 5th AI City Challenge [10]. Since the dataset contains synthetic

data, they adopted MixStyle Transfer as a regularization method to reduce the gap between

the real and synthetic data. To help the model learn more detailed features, a multi-head

with an attention mechanism was employed attached to the backbone as seen in Figure 2.9.

Using multiple heads instead of only one encourages the ReID model to learn more diverse

features from different vehicle characteristics. The 2048-dim feature of the backbone is fed

into many parallel fully connected (FC) layers (heads), and the attention mechanism selects

which head’s features contribute more to the final encoding feature.
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Figure 2.9: Multi-Head with attention mechanism. Taken from [11].

Additionally, the typically used Triplet Loss was replaced by the Supervised Contrastive

Loss [12], which helped the network to learn more effectively. In practice, ID Loss is substan-

tially larger than Metric Loss, causing an imbalance and affecting training performance. The

loss weights are generally set equally, i.e. 1:1 ratio, therefore the authors developed a simple

module called Momentum Adaptive Loss Weight (MALW). This module increase training

stability by automatically updating loss weights according to the statistical characteristics

of loss values between the Supervised Contrastive Loss and the Cross-Entropy Loss, which

significantly enhanced performance.

2.2.3 Variational Auto-Encoders based methods

Self-supervised Attention for V-ReID (SAVER) [13] was proposed by Pirazh Khorramshahi

et al. that developed a Variational Auto-Encoder (VAE) to generate a vehicle image tem-

plate without its details. Following that, the authors create a residual image by calculating

the pixel-wise difference between the reconstructed template image and the original one.

This residual includes key ReID details and serves as a pseudo-saliency or pseudo-attention

map, highlighting discriminative and salient regions in a vehicle image. These vehicle-specific

salient regions carry critical details that are essential for distinguishing two visually similar

vehicles. Several methods in the literature rely on costly key-point labeling, part annota-

tions, and other characteristics such as vehicle brand, model, and color. Strongly-supervised

algorithms are unable to scale across domains due to a large number of V-ReID datasets

with various levels of annotations. Self-supervised Attention, on the other hand, stands out

for its ability to effectively learn vehicle-specific discriminative features without the use of

additional annotations, attributes, spatio-temporal, or multi-modal information. Figure 2.10

shows the proposed SAVER pipeline.
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Figure 2.10: SAVER pipeline. Taken from [13].

2.2.4 Data Augmentation based methods

Alternatively to the abovementioned studies, several other works use additional data for more

robust training and better results. The extra data can be obtained from generative adver-

sarial networks (GANs), which create vehicle images with different orientations, appearance

variations, and other attributes. Since labeling data is extremely costly and time-consuming,

using synthetic data provided by GANs is increasingly being used by many works. However,

there is always a domain gap between the real and the synthetic data, which leads to feature

distribution shifting.

Pose-Aware Multi-Task Learning for Vehicle Re-Identification Using Highly Randomized

Synthetic Data (PAMTRI) [14] and Joint Semi-supervised Learning and Re-ranking for

Vehicle Re-identification [15] are two examples of works that used GANs to generate large-

scale synthetic data to enrich the training set, demonstrating that using synthetic images is

beneficial to improve the results.

CNN’s are known as data hungry and most of the V-ReID datasets are small-scale,

causing the networks to easily over-fit. To overcome this issue, Zhedong Zheng et al. created

a unique large-scale vehicle dataset (called VehicleNet [16]) by combining four public vehicle

datasets and designed a simple yet successful two-stage progressive technique to learn more

robust visual representations from VehicleNet. The purpose of the first stage is to train with

the traditional classification loss to learn the generic representation for all domains (i.e., the

datasets present in VehicleNet). The second stage involves fine-tuning the trained model

purely on the target vehicle set by decreasing the distribution gap between VehicleNet and

any target domain.
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2.2.5 Transformers based methods

To overcome some of the CNN problems, a pure transformer-based object ReID framework

named TransReID [4] was introduced by Shuting He et al. This architecture use multi-head

self-attention to capture long-range dependencies for spatial and sequential data and does

not use downsampling operators, keeping more detailed information. Moreover, the authors

designed a Jigsaw Patch Module (JPM), consisting of shift and patch shuffle operation,

which facilitates perturbation-invariant and robust feature representation of objects. They

also introduced a Side Information Embeddings (SIE) that encodes non-visual information,

such as camera IDs, viewpoints, or other types of information into embedding representations

to learn invariant features and is shown to effectively mitigate the bias of learned features.

The results obtained in both person and vehicle ReID surpassed some of the most advanced

CNN-based algorithms, demonstrating the capability of Transformers. Figure 2.11 shows

the TransReID architecture.

Figure 2.11: TransReID architecture. Taken from [4].

In P-ReID, the rising use of transformers was also noticeable, with high success rates such

as the novel Locally Aware Transformer (LA-Transformer) [17] developed by Charu Sharma

et al. The primary output of a vision transformer is a global classification token but vision

transformers also yield local tokens which contain additional information about local regions

of the image, which are not used in ViT. LA-Transformer employs a Parts-based Convolu-

tion Baseline (PCB)-inspired strategy for aggregating globally enhanced local classification

tokens into an ensemble of
√
N classifiers, where N is the number of patches. PCB is a

16



strong convolutional baseline for P-ReID that divides the feature vector obtained from the

backbone network into six vertical regions and uses a voting strategy to form an ensemble

of regional classifiers to determine the predicted class label. One of PCB’s weaknesses is

that each regional classifier ignores global information, which is crucial for recognition and

identification. Despite this limitation, PCB has had a lot of success, hence LA-Transformer

architecture incorporates a PCB-like approach for combining globally enhanced local tokens.

Another innovative aspect of this approach is the use of blockwise fine-tuning, which im-

proves the classification accuracy of the LA-Transformer for P-ReID. Blockwise fine-tuning

is viable as a form of regularization when training models with a large number of parameters

over relatively small in-domain datasets. It entails freezing all the transformer layers except

for the bottleneck model at the start, then unfreezing one layer at a time from the last to

the first every t epochs. Figure 2.12 shows the LA-Transformer architecture.

Figure 2.12: LA-Transformer architecture. Taken from [17].
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A more recent study entitled Multi-attribute adaptive aggregation transformer for vehicle

re-identification [18] developed by Zhi Yu et al. is an attribute-based Transformer network

that considers image feature and the attribute feature simultaneously. The authors consider

that the vehicle’s color and model are the most intuitive attributes, as well as the most stable

and distinctive. Another additional attribute is the viewpoint of the vehicle images which

differs from image to image. Different attributes are supposed to have different importance,

therefore, a multi-attribute adaptive aggregation network was designed to compare different

attributes and assign different weights to the corresponding features, which is a benefit for

generating more robust and discriminative features. In addition, a multi-sample dispersion

triplet (MDT) loss was proposed to improve the suggested transformer network. This loss

includes not only the hardest positive sample and hardest negative sample based on the hard

mining strategy but also some extra positive and negative samples. The loss is dynamically

adjusted via multi-sample dispersion, which can guide better feature space division for V-

ReID. The architecture is illustrated in Figure 2.13.

Figure 2.13: Multi-attribute adaptive aggregation transformer. Taken from [18].
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2.3 AI City Challenge

The AI City Challenge has the purpose of improving the efficiency of operations in city

environments by pushing the boundaries of research and development in intelligent video

analysis for smarter cities use cases, and assessing tasks where the level of performance is

enough to cause real-world adoption. One of the challenges purposed is a V-ReID Track

with both real-world and synthetic data in the 5th AI City Challenge 2021 [19].

The winning team of this challenge [19] used the above-mentioned Bag of Tricks (BoT)

as the CNN-based baseline and mainly focus on four points. First, they used synthetic data

because there was a lack of real data. They observed that the real data had inaccurate

bounding boxes, which introduced noise into the images, so they re-detected the bounding

boxes of real-world images based on their heatmaps and added them to training data. The

second stage was to use an unsupervised domain-adaptive model (UDA) since a new sce-

nario appeared in the test set, resulting in domain bias between the training and test sets.

This method is essentially a clustering algorithm that generates pseudo labels on testing

data before fine-tuning baseline models to reduce current domain bias between the training

and test sets. The third point was applying a variety of post-processing techniques, such

as re-ranking, image-to-track retrieval, inter-camera fusion, and so on, which considerably

enhanced final performance. Lastly, to boost performance, they made an ensemble of several

CNN-based models with a transformer-based model (TransReID) and discovered that the

Transformer provided representation diversity different from CNN models.

2.4 Loss Functions

The loss functions have an important role in the optimization of the network training and the

main goal is to pull samples with the same ID together, while pushing those with different

IDs far apart. Generally, in almost all V-ReID works, the final cost function is composed

of two losses: Cross-Entropy and Triplet Loss. The Cross-Entropy Loss (CE Loss) is also

known as Identity Loss and its main goal is to minimize the Identity Classification Error.

CE Loss is:

LCE =
N∑
i=1

−qilog(pi)

qi = 0, y ̸= i

qi = 1, y = i

(2.2)

where, qi is the truth label and pi is the Softmax probability for ith class.
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The Triplet Loss (Tri Loss) is also known as Metric Loss, and it has the ability to enhance

the intra-class compactness and inter-class separability in the Euclidean space. Because of

these two factors, triplet loss is more suitable for a V-ReID network than identity loss. A

triplet loss is defined in terms of three image instances: Anchor (a randomly chosen instance);

Positive (an instance that has a common ID with the anchor); and Negative (an instance

that does not share a common ID with the anchor). Denoting these instances a, p and n,

respectively, the triplet loss can be written as:

L(ai, pi, ni) = max(d(ai, pi)− d(ai, ni) + α, 0) (2.3)

where α is the desired margin separation between the positive and negative instance, and

d(ai, pi) and d(ai, ni) are the feature distances of positive pair and negative pair, respectively.

The final triplet-cost is computed by summing the individual triplet losses:

Ltri =
T∑

j=1

L(ai,j, pi,j, ni,j) (2.4)

where T is the total number of triplets.

Despite the fact that triplet loss is better than identity loss, it is not used alone. Instead,

combining the two works out better, which leads to the final cost function:

L = λCELCE + λtriLtri (2.5)

where λCE and λtri are the loss weights.

Incorporating every possible triplet into the triplet-cost in a naive manner frequently

produces unsatisfactory results. Therefore many studies opt for triplet-mining, a technique

that aims to incorporate only the most relevant triplets into the triplet-cost. The most com-

monly used sample strategy heuristic is the hard mining Triplet Loss [20], which selects the

hardest positive sample and the hardest negative sample, within the batch. In other words,

the hardest positive is an embedding of the same class as the anchor, and the euclidean

distance between them is maximized. The hardest negative is an embedding that does not

belong to the same class as the anchor and the euclidean distance between them is mini-

mized. Compared with the traditional Triplet Loss, hard mining Triplet Loss can increase

the model’s training speed and accuracy.

Recently, Adhiraj Ghosh et al. developed a Relation Preserving Triplet Mining (RPTM)

for Stabilizing the Triplet Loss in Vehicle Re-identification [21]. The authors of this paper

suggest that severe appearance changes due to pose variations are indicators that an object

ID is made up of numerous natural groups and that forcing instances from different groups to
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a shared location is counter-productive. The idea is to choose a semi-hard positive that shares

a natural group with the anchor, rather than a hard positive, which is the most challenging

positive to the anchor and usually has a completely distinct pose and appearance.

To select the triplet samples, a modern feature matcher GMS [22] is used between anchor-

positive pair images as a relational indicator, using the following criterion: high number of

matches between anchor-positive pair images means they are similar and belong to the same

natural group; otherwise, they do not. A positive that is too similar to the anchor does not

provide significant value to the triplet-cost, thus a threshold τ is set as the average number

of GMS matches in the set of non-zero pairwise GMS matches between the anchor and all

other images. The anchor-positive pair that has the closest number of matches to τ is then

selected for the triplet. According to the authors, relational triplets give more attention to

the problem of intra-class separability than alternative triplet mining methods.

Many additional studies in the literature focus on different aspects of loss; for example,

some use not only the hardest positive and negative sample based on the hard mining

technique but also some extra positive and negative samples. Others, on the other hand,

explore losses such as Circle Loss, Center Loss, Large Margin Cosine Loss, and so on.

2.5 Grad-CAM

Deep learning algorithms are typically used as a "black box" and it can be challenging

to comprehend both how they function and, more importantly, why they do so. For the

purpose of facilitating and improving the interpretation of the results, Gradient-weighted

Class Activation Mapping (Grad-CAM) [3] was created to produce "visual explanations" for

Deep Learning Algorithms’ decisions.

Grad-CAM uses the gradients of any target concept flowing into the final layers to create

a coarse localization map highlighting the key regions in the image for predicting the concept.

Grad-CAM can map explanatory visuals at any layer of the model, however as is well known,

higher-lever visual representations are obtained at deeper layers. Because the neurons will

be searching for class-specific information in the last stages, the interest is typically in the

final layers. One example of this representation has been shown previously in Figure 2.4.
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2.6 Post-Processing Techniques

Lot of studies started to adopt Post-Processing Techniques to improve the final results. The

most common is Re-Ranking methodology proposed in [23]. Re-ranking is a k-reciprocal

encoding method to refine the ReID results which takes the high-confidence candidate images

into consideration. Given the initial ranking list, if a gallery image is similar to the probe

in the k-reciprocal nearest neighbors, it is more likely to be a true match as seen in Figure

2.14. Specifically, given an image, a k-reciprocal feature is calculated by encoding its k-

reciprocal nearest neighbors into a single vector, which is used for re-ranking under the

Jaccard distance. The final distance between two images is computed as the combination of

the original distance and the Jaccard distance. This method is widely used because it does

not require any human interaction or any labeled data.

Figure 2.14: Re-Ranking. Taken from [23].

Camera Verification is another technique used in Post-Processing. Given the assumption

that the query image and the gallery images were captured with different cameras, candidate

images with the same camera ID are removed for each query image.

Model Ensemble is another popular approach to enhance final performance. It requires

to train multiple networks with different backbones and then combine all them together by

simply taking the averaged distance of each query image to gallery images or concatenating

features.
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2.7 Datasets

During the development and evaluation of ReID algorithms it is essential to rely on a properly

annotated datasets. Therefore, a review of the most relevant V-ReID benchmark datasets is

done below.

Veri-776 dataset [24], proposed by Li et al., contains a large number of vehicles captured

by non overlapping cameras with different perspectives, scales and illuminations in real-world

traffic surveillance environment. VeRi-776 contains 49,357 images of 776 vehicles from 20

cameras. The training subset has 37,781 images of 576 vehicles and for the evaluation,

Veri776 dataset provides a query set with 1,678 images of 200 vehicles and a gallery with

11,579 images of 200 vehicles. It includes attribute labels for color and type. The author

also provides the meta data, e.g., the collected time and the location.

Vehicle ID dataset [25] is captured in daytime by multiple real-world surveillance cam-

eras distributed in a small city of China. There are 221,763 images of 26,267 subjects in

the entire database. The vehicle images are collected in two views, i.e., frontal and rear

views, and the vehicle brand and model information are marked. The colors are divided into

7 categories. A total of 110,178 images from 13,134 vehicles make up the training subset.

VehicleID also provides 3 testing subsets for evaluating performance on different data scales:

Test800, Test1600, and Test2400. Test800, in particular, has 800 gallery images and 6,532

probe images of 800 vehicles. Test1600 contains 1600 gallery images and 11,395 probe images

of 1,600 vehicles. Test2400 contains 2400 gallery images and 17,638 probe images of 2,400

vehicles.

Veri-Wild dataset [26] is one of the largest V-ReID datasets, composed of 416,314

vehicle images of 40,671 identities acquired from 174 surveillance cameras over the course

of a month, under unconstrained scenarios. Poor weather conditions, such as rainy, foggy,

and so on, are also included in Veri-Wild, which are not included in other datasets. The

training set contains 277797 images of 30671 vehicles and the testing set is divided into three

sets with 3,000 (small), 5,000 (medium) and 10,000 (large) vehicle IDs. It includes attribute

labels for vehicle model, color and type.

CityFlow-V2 dataset [27] is a real-world dataset captured by 46 cameras in a real-world

traffic scenario. It has 85,058 images of 880 vehicles in total. For training, 52,717 images of

440 vehicles were used. The remaining 31,238 images of 440 vehicles is used for testing. It’s

worth noting that the training set has been recorded by 40 cameras. In the test set, part of

images were captured by 6 new cameras that do not exist in the training set.
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VehicleX dataset [28] is a synthetic dataset that only provides training set that contains

192,150 images of 1,362 vehicles in total. In addition, the attribute labels, such as car colors,

car types, orientation labels are also annotated.

2.8 State-of-the-art Results

In the following tables 2.1 and 2.2 are shown the State-of-the-art results for the datasets

Veri-776 and Veri-Wild, respectively.

Method
mAP

(%)

Rank-1

(%)

Rank-5

(%)

QD-DLF [1] 61.8 88.5 94.5

PAMTRI [14] 71.9 92.9 97.0

PVEN [29] 79.5 95.6 98.4

SAVER [13] 79.6 96.4 98.6

GLAMOR [30] 80.3 96.5 98.6

VAT [18] 80.4 97.5 98.7

SGFD [31] 81 96.7 98.6

Transreid [4] 82.1 97.4 98.4

VehicleNet* [16] 83.4 96.8 -

Table 2.1: State-of-the-art on the Veri-776 dataset.

*This method uses large additional data from other datasets (extra data).

Test Size = 3000 Test Size = 5000 Test Size = 10000

Method
mAP

(%)

Rank-1

(%)

Rank-5

(%)

mAP

(%)

Rank-1

(%)

Rank-5

(%)

mAP

(%)

Rank-1

(%)

Rank-5

(%)

Strong Baseline [11] 76.6 90.8 97.3 70.1 87.5 95.2 61.3 82.6 92.7

PVEN [29] 79.8 94.0 98.1 73.9 92.0 97.2 66.2 88.6 95.3

SAVER [13] 80.9 93.8 97.9 75.3 92.7 97.5 67.7 89.5 95.8

DFNet [32] 83.1 94.8 98.1 77.3 93.2 97.5 69.9 89.4 96.0

Table 2.2: State-of-the-art on the Veri-Wild dataset.
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3 Methodology

This chapter presents the solutions and methods developed during the thesis towards the

improvement of current V-ReID approaches. In order to accomplish the objective of this

dissertation, the methodology that will be followed is greatly influenced by TransReID [4],

which is the current V-ReID state-of-the-art approach.

3.1 Baseline Network

In the first place, a simple V-ReID Baseline network was designed using the Vision Trans-

former ViT [5] as a backbone to extract features of vehicle images. Figure 3.1 illustrates the

Baseline pipeline.

Figure 3.1: Baseline pipeline. Adapted from [5].

Given an input image x ∈ RH×W×C , where H, W, C denote its height, width, and number

of channels, respectively, it is decomposed into a batch of N fixed-sized patches xi
p, i = 1,..,N

as seen in figure 3.2.
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Figure 3.2: Image x is split in N patches.

Each patch xi
p is linearly projected and flattened into a vector of D dimensions using

a Patch Embedding Function E(xi
p), which is obtained using a convolution layer with a

kernel size of P×P and stride size of P for non-overlapping patches. D is the number of

channels and is set to 768 which represents the size of the embedding and (P,P) is the patch

resolution. As seen in Figure 3.3, the outcome of this operation is a sequence of vectors

(embedded patches) that form a D×N matrix.

Figure 3.3: Sequence of embedded patches.

Afterward, a learnable class embedding xclass is prepended at the first position of the

sequence of embedded patches as depicted in Figure 3.4. The output state of xclass keeps

the information of the entire image and serves as the global feature to predict the class. To

preserve positional information for each patch, learnable 1-D position embeddings Pe are

added to the embedded patches. Then, the resulting sequence of embedding vectors Z0 (Eq.

3.1) serves as input to the transformer encoder to generate N+1 feature vectors where N is

the number of patches plus the class embedding.

Z0 = [xclass;E(x1
p);E(x2

p); · · ·;E(xN
p )] + Pe (3.1)
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Figure 3.4: The input of the Transformer Encoder.

3.1.1 Transformer Encoder

The transformer encoder is composed of L = 12 blocks in series. Each block contains

alternating MSA (Multiheaded Self-Attention) and MLP (Multi-layer Perceptron) blocks.

The MLP block is composed of two linear layers separated by a GeLu activation. The first

linear layer expands the dimension from D to 4D, and the second layer reduces the dimension

from 4D back to D.

Before MSA and MLP blocks, a Layernorm (Norm) is applied, as well as residual con-

nections before each Norm block to allow better information flow through the network and

prevent data loss. LayerNorm is a technique to normalize the distributions of intermediate

layers. It enables smoother gradients, faster training, and better generalization accuracy. In

Figure 3.5 is presented a schematic of a single Transformer Encoder block.

The following equations describe the functioning of a Transformer Encoder. The first

Transformer Encoder block takes the Embedded Patches Z0 as input, and after passing

through all of the L blocks (eq. 3.2 and 3.3), the final output of the Transformer Encoder

y (eq. 3.4) is obtained. This output y is composed of a global feature and N local features

associated with each patch, however, only the global feature will be used for V-ReID in the

Baseline network.

Z
′

l = MSA(LN(Zl−1)) + zl−1, l = 1...L (3.2)

Zl = MLP (LN(Z
′

l )) + Z
′

l , l = 1...L (3.3)

y = LN(ZL) (3.4)
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Figure 3.5: Transformer Encoder block.

Multihead self-attention (MSA) was proposed by Vaswani et al. [33] and it is an expansion

of standard QKV self-attention (SA). The Attention block takes its input in the form of three

parameters, known as the Query, Key, and Value. The logic behind the attention mechanism

can be described as mapping a query vector and a set of key-value vector pairs to an output.

The output is computed as a weighted sum of the values, where the weight assigned to each

value is computed by a compatibility function of the query with the corresponding key. Each

query vector is matched against all the keys using inner products. These inner products are

then scaled and normalized with a softmax function to obtain the weights on the values. In

practice, sets of vector Queries, Keys and Values are packed together into matrices Q, K

and V, resulting in a output matrix defined as:

Attention(Q,K, V ) = Softmax

(
QKT

√
d

)
V (3.5)

Finally, the Multi-head self-attention (MSA) is defined by taking into account h attention

"heads," i.e., h self-attention functions applied in parallel to the input and project their

concatenated outputs as illustrated in Figure 3.6

Figure 3.6: Multihead self-attention block. Adapted from [33].
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3.1.2 Loss Functions

After obtaining the global feature, ID Loss and Metric Loss are employed to optimize the

network. The ID Loss is the typical Cross-Entropy loss (eq. 3.6) and the Metric Loss is

the Triplet Loss with soft-margin (eq. 3.7). When compared to the standard Triplet, the

advantage of this loss is that it removes the need to determine the margin, which in the

usual triplet must be carefully selected for the best results.

LCE =
N∑
i=1

−qilog(pi)

qi = 0, y ̸= i

qi = 1, y = i

(3.6)

Given a triplet set {a,p,n}, where a is the anchor, p is the positive and n is the negative,

d(a, p) and d(a, n) are feature distances of positive pair and negative pair.

L(a, p, n) = log[1 + exp(d(a, p)− d(a, n))] (3.7)

A batch normalization (BN) layer is applied before passing the global feature through

the ID Loss as shown in Figure 3.7, resulting in a better feature compactness and loss

convergence as mentioned in section 2.4.

Figure 3.7: Loss Functions of the Baseline network.

The final loss is given by a weighted sum of Triplet Loss (LT ) and Cross-Entropy Loss

(LCE) as follows:

L = λCELCE(fg) + λTLT (fg) (3.8)

where fg is the final global feature vector and λCE, λT are the loss weights which are

typically set to a ratio of 1:1.
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3.2 TransReID Network

The Baseline network only uses the global feature, however, the authors of TransReID added

two modules to extract more robust features for V-ReID improvement. Furthermore, the

TransReID uses a sliding window to generate patches with overlapping pixels, contrary

to pure transformer-based networks such as ViT, which split images into non-overlapping

patches, resulting in the loss of local neighboring structures around the patches. Denoting

the step size (stride) as S and size of the patch as P, an input image with a resolution H×W

will be split into N patches. N can be easily calculated using the eq. 3.9.

N =
⌊H + S − P

S

⌋
×
⌊W + S − P

S

⌋
(3.9)

The Jigsaw Patch Module (JPM) and Side Information Embedding (SIE) are the two

novel modules designed for TransReID as shown in Figure 3.8.

Figure 3.8: TransReID pipeline. Adapted from [4].

SIE was inspired by position embeddings, which use learnable embeddings to encode po-

sitional information. The fundamental purpose of SIE is to include non-visual information,

such as camera IDs or viewpoints, into learnable 1-D embedding representations to learn

invariant features. This will improve the network in reducing scene-bias caused by multiple

cameras and viewpoints, helping the same vehicle to be recognized in diverse scenarios. In

particular, as shown in Figure 3.8, SIE is placed before the transformer encoder, added to

the patch embeddings, and position embeddings. In specific, if there are total NC camera
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IDs, the learnable side information embeddings are set to SC ∈ RNC×D. Camera embeddings

SC are the same for all patches of an image, unlike position embeddings, which change be-

tween patches. Furthermore, if the vehicle’s viewpoint is known, either through a viewpoint

estimate algorithm or through human annotations, it is possible to encode the viewpoint

label as SV ∈ RNV ×D for all patches of an image, where NV is the number of viewpoint IDs.

In order to integrate two different types of information, the authors proposed to encode the

camera and viewpoint together as S(C,V ) ∈ R(NC×NV )×D.

Finally, the input sequences with camera ID r and viewpoint ID q are fed into transformer

layers as follows:

Z
′

0 = Z0 + λS(C,V )[r ×NV + q] (3.10)

where Z0 is the sequence of patch embeddings from Eq. 3.1 and λ is a hyperparameter

to balance the weight of SIE.

JPM was created to cope with the problem of occlusions and misalignments. The global

feature of the Baseline network uses information from the entire image for V-ReID, however

ReID is more difficult with only a partial observation of the vehicle. Therefore, JPM shuffles

the patch embeddings and then re-group them into different parts, each containing several

random patch embeddings of an entire image. This way, local features can cover patches

from diverse body or vehicle parts, implying that local features hold global discriminative

capability.

First, the patch embeddings (except the class token) [z1l−1, z
2
l−1, ..., z

N
l−1] obtained before

the last layer are shifted in m steps to become [zm+1
l−1 , zm+2

l−1 , ..., zNl−1, z
1
l−1, z

2
l−1, ..., z

m
l−1]. The

shifted patches are further shuffled by the patch shuffle operation and divided in k groups.

In this case, k=4, which will result in 4 local features [f 1
l , f

2
l , f

3
l , f

4
l ].

The concatenation of the global feature fg with the local features results in the final

output feature, which is represented by ZL = [fg, f
1
l , f

2
l , f

3
l , f

4
l ].

Finally, LID and LT are used to train the global feature and local features. The overall

multi-branch loss is computed as follow:

L = LID(fg) + LT (fg) +
1

k

k∑
j=1

(LID(f
k
l ) + LT (f

k
l )) (3.11)

During inference, the global feature and local features are concatenated [fg, f
1
l , f

2
l , ..., f

k
l ]

as the final feature representation.
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3.3 Viewpoint Estimation Network

One of the biggest challenges of V-ReID is the varying appearances of the same vehicle ID in

different viewpoints. As a result, the TransReID network incorporates viewpoint information

into the embeddings to improve the results; however, not all datasets provide that type of

information. Zhongdao Wang et al. [34] provided vehicle orientation annotations for all of

the images in the VeRi-776 Dataset, which are categorized as illustrated in Figure 3.9.

Figure 3.9: VeRi-776 Dataset Viewpoint Labels.

Since VeRi-776 Dataset have a large amount of images, a classification network was

trained offline to predict the vehicle orientation using a pre-trained ResNet-18 as the back-

bone as seen in Figure 3.10.

Figure 3.10: Viewpoint Estimation Network Diagram.
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A brief analysis of the Veri-776 dataset’s images and orientation labels showed up some

annotation errors as well as some extremely similar vehicle images with different viewpoint

labels, which introduced additional error into the classification network training. The labels

that potentially confuse the network the most were combined together based on similarity

in order to minimize errors. Therefore, the original 8 viewpoints were reduced to only 3,

grouping together the following label’s groups: (front, left front, right front), (rear, left rear,

right rear), and (left, right). The proposed rearrangement of labels is illustrated in Figure

3.11.

Figure 3.11: Rearrangement of viewpoint labels.

After training the classification network, the produced model was incorporated into the

TransReID pipeline to automatically determine the viewpoint for each input vehicle image.

To determine which model produced the best results, tests were conducted using both models

with 8 and 3 viewpoint predictions.
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3.4 Locally Aware Transformer Network

Despite TransReID’s outstanding performance and state-of-the-art results in V-ReID, mul-

tiple efforts to improve the current network have been made. In this case, a Person ReID-

specific Locally Aware Block from [17] was used to investigate its performance in V-ReID.

First, the ViT Baseline network is used as backbone to extract N+1 features F = [fg, f1, f2, ..., fN ],

where N is the number of patches. Then, as shown in Figure 3.12, the Locally Aware Block

is added. The SIE module from TransReID is also used in this network.

Figure 3.12: Locally Aware Transformer Network. Adapted from [17].

The transformer encoder generates N+1 feature vectors, with fg representing the global

token and the rest tokens ranging from f1 to fN representing the local tokens, which are

then combined via weighted averaging and placed into a 2D spatial grid, resulting in Globally

Enhanced Local Tokens (GELT). The total number of patches per row is defined as NR, and

the total number of patches per column is defined as NC . In this case, vehicle images have a

fixed input size of 256×256, therefore NR=NC=
√
N=16. Then L is defined as the averaged

GELT obtained after average pooling of fg and f as follows:

Li =
1

NR

(i+1)×NR∑
j=i×NR+1

fj + λfg
1 + λ

i = 0...NC − 1 (3.12)

The FC classifiers are composed of two fully connected layers separated by a ReLU and

Batch Normalization. The final output y is defined as follows:

yi = FCi(Li) i = 1...NC (3.13)
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3.5 Momentum Adaptive Loss Weight

Most ReID studies combine an ID loss with a Metric Loss, however the ID Loss is much

larger than the Metric Loss, causing an imbalance and affecting training performance, and

the relationship between the two is rarely explored.

The loss weights are generally set equally, i.e. 1:1 ratio, therefore a simple module

called Momentum Adaptive Loss Weight (MALW) was proposed in [11] to increase training

stability by automatically updating loss weights according to the statistical characteristics

of loss values between ID Loss and Metric Loss as illustrated in Figure 3.13.

Figure 3.13: Momentum Adaptive Loss Weight (MALW). Taken from [11]

Assuming that λID and λMETRIC are the ID Loss and Metric Loss weights, respectively,

the ratio between λID and λMETRIC is initially set to 1:1. After K iterations of training, the

ID loss weight λID is adjusted based on the standard deviation of the recorded ID Loss σID

and Metric Loss σMETRIC with a momentum factor α, using the following equations 3.14

and 3.15.

λIDNEW
= 1− σID − σMETRIC

σID

(3.14)

λID = αλID + λIDNEW
(3.15)

The authors reported significant improvements in V-ReID when employing the MALW

module and different fixed ratios between the two losses, which are addressed in the results

section.
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3.6 Relation Preserving Triplet Mining Loss

Inspired in [21], a Relation Preserving Triplet Mining Loss was implemented to compare its

performance with the commonly used Triplet Hard-Mining Loss. According to the authors of

this work, significant appearance changes caused by pose variations indicate that an object

ID is made up of many natural groups, and that forcing instances from distinct groups to

a single location is counter-productive. Instead of choosing a hard positive, which is the

most difficult positive for the anchor and usually have an entirely different appearance, the

idea is to pick a semi-hard positive that shares a natural group with the anchor. The above

provides a soft positive mining, that ensures anchor-positive pairs meet the natural grouping

while also assuring that the positive is significantly different from the anchor. Figure 3.14

illustrates the difference between Positive Hard-mining and Positive Soft-mining.

Figure 3.14: Difference between Positive Hard-mining and Positive Soft-mining.

In order to select the triplet samples, orb keypoints are extracted and a modern feature

matcher GMS [22] is used between anchor-positive pair images as a relational indicator, using

the following criterion: high number of matches between anchor-positive pair images means

they are similar and belong to the same natural group; otherwise, they do not. However, a

positive that is too similar to the anchor does not add considerable value to the triplet-cost,

therefore the decision is made based on the number of matches between anchor-positive pair

images.
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Figure 3.15 shows the number of matches for the same vehicle ID in different situations:

on the left, there are two images from different natural groups, so there are no matches;

on the middle, the vehicle is shown in similar scenarios, not exactly the same but not too

dissimilar, so there are 250 matches. On the right, both images are identical, resulting in

approximately 5000 matches; this is only an example to demonstrate that if the images are

extremely similar, the number of matches will be incredibly high.

Figure 3.15: Number of matches between different image pairs.

After analyzing a large number of cases, the choice criterion for selecting the anchor-

positive pair is the example whose number of matches is closest to the threshold τ = 200.

3.7 Cross-ViT Network

Cross-Attention Multi-Scale Vision Transformer (Cross-ViT) for Image Classification [35]

developed by Chun-Fu Chen et al. is a novel dual-branch vision transformer that combines

image patches of different sizes. The popularity of Transformers as well as multi-scale fea-

ture representation, which has a long history in computer vision, served as inspiration for

this study. This method processes small-patch and large-patch tokens using two separate

branches of different computational complexity. These tokens are then fused using a novel

token fusing module based on cross attention, which uses a single token for each branch as

a query to exchange information with other branches. The Cross-ViT pipeline is illustrated

in figure 3.16.

In this work, the ViT backbone was replaced by the Cross-ViT network and the V-ReID

pipeline was trained on the Veri-776 dataset. In previous results, the ViT network was pre-

trained on ImageNet-21k, which has around 14.2 million images. The Cross-ViT network,

on the other hand, only provides a model that has been pre-trained on ImageNet-1k, which

has approximately 1.2 million images. As a result, the Baseline network was trained using

ViT pre-trained on ImageNet-1k to provide a base for comparison with Cross-ViT results

pre-trained on the same dataset.
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Figure 3.16: Cross-ViT pipeline. Adapted from [35].

The Cross-Attention Module is similar to Self-Attention, but two feature maps are used

instead of one. The main goal is to make the CLS token from the large branch interact with

the patch tokens from the small branch and the CLS token from the small branch interact

with the patch tokens from the large branch. Figure 3.17 shows the Cross-Attention Module

for the large branch. The small branch follows the same procedure but swaps CLS and patch

tokens from another branch. f l() and gl() are projection functions to align dimensions.

Specifically, for L-Branch, it first collects the patch tokens from the S-Branch and con-

catenates them with its own CLS tokens to produce x
′l. The module then conducts cross-

attention between xl
cls and x

′l, where CLS token is the only query as the information of patch

tokens are fused into CLS token. Cross-Attention (CA) can be expressed as follows:

q = x
′l
clsWq, k = x

′lWk, v = x
′lWv

CA(Q,K, V ) = Softmax

(
qkT√
C/h

)
v

(3.16)

where C is the embedding dimension, h is the number of heads, and Wq, Wk, and Wv

are learnable weights.
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Figure 3.17: Cross-Attention Module for Large Branch. Taken from [35].

Cross-ViT produces two features, whereas ViT produces only one, therefore different

fusing strategies were also explored. The first branch processes 12×12 patches, producing

feature 1 with a dimension of 224. The second branch works with 16×16 patches to produce

feature 2 with a dimension of 448. The following feature combinations were tested:

• A - Using only feature 1 with dimension 224.

• B - Using only feature 2 with dimension 448.

• C - Concatenating features 1 and 2 with default dimensions.

• D - Reducing the dimension of feature 2 to 224 and concatenating the features.

• E - Reducing the dimension of feature 2 to 224 and average the features.

• F - Reducing the dimension of feature 2 to 224, stacking the features and using a

convolutional layer to automatically learn weights and decide which feature is more

significant for V-ReID. The result of this operation is a feature with dimension 224.
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Figure 3.18 shows a visual representation of the fusion strategies above-mentioned.

Figure 3.18: Fusion strategies used to produce the final feature.
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4 Results and Discussion

This chapter presents all the relevant outcomes obtained during the development of this

dissertation. Section 4.1 begins with a brief overview of the evaluation metrics that were

used. Then, in section 4.2, all of the important training and testing implementation details

are specified. Finally, the performance results of the proposed methodologies and more

experiments are shown in section 4.3.

4.1 Evaluation Metrics

Mean Average Precision (mAP) and Cumulative Matching Characteristic (CMC) are the

standard metrics for ReID evaluation that will be used to evaluate the proposed methodolo-

gies.

The final goal of V-ReID is to compute a ranking similarity list for each query image,

i.e. the feature of each query will be compared with all the images in a gallery set using

an euclidean distance, generating a list sorted from most similar to least similar. A larger

distance means less similarity between features.

The mean average precision of the model can be computed if there are multiple ground-

truths in the gallery for each query. The average precision (AP) for each query can be

determined as follows:

AP =

∑n
k P (k)×R(k)

GTP
(4.1)

where GTP refers to the total number of ground truth positives, n refers to the total

number of images in gallery set, P(k) refers to the precision and R(k) is a relevance function.

The relevance function is an indicator function that returns a value of 1 if the kth image

belongs to the same class as the query and a value of 0 otherwise.
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Finally, the mAP is simply the mean of all the queries. Denoting Q as the total number

of queries, mAP is defined as follow:

mAP =
1

Q

Q∑
q=1

AP (q) (4.2)

CMC-k or Rank-k metric shows how often, on average, the correct vehicle ID is included

in the best k matches against the gallery set for each query image. In case of a single query,

if there is just one correct image in the 5th position in the top 10 matches, the Rank-1 is

equivalent to 0%, Rank-5 is equal to 100%, and Rank-10 is equal to 100%. In the end, each

Rank-k result will be the average for all the queries.

4.2 Implementation Details

The backbone network for all the proposed methodologies is ViT and its initial weights are

pre-trained on ImageNet-21K and then finetuned on ImageNet-1K. All the images are nor-

malized, resized to 256×256, and the training images are augmented with random horizontal

flipping, padding, random cropping and random erasing. The networks are trained over 120

epochs with a batch size of 32. A batch consists of 8 identities, each containing 4 samples.

The optimizer used is SGD with a momentum of 0.9, weight decay of 1e-4 and an initial

learning rate of 0.008 with cosine learning rate decay. These are the parameters used unless

otherwise mentioned.

Despite the fact that all networks are trained for 120 epochs, the best model that achieves

a superior result in the test set can be obtained before the last epoch. Therefore, after epoch

100 an inference is performed every epoch and all models are saved to ensure that the best

model is always obtained.

The exact same training and testing sets are used in every run due to a random seed that

is always set to the same value. This is useful for comparing different models always under

the same conditions and reproducing the results.

All the networks were trained using PyTorch and one of the following GPUs: Nvidia

TITAN X or Nvidia RTX 3090.
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4.3 Validation Results

4.3.1 Baseline Network Results

Initially, the Baseline network was trained on Veri-776 and Veri-Wild datasets in order to

establish a Baseline for comparison with upcoming results. The Baseline network is a simple

network in which only the global feature output generated by the ViT backbone is used for

V-ReID. Since it serves as the foundation for the subsequent most sophisticated approaches,

the initial stage also included certain parameter adjustments.

The Veri-776 dataset is relatively small, with about 38 000 training images, while Veri-

Wild has nearly 280 000 training images. Due to the longer training times for the Veri-Wild

dataset, it was required to create smaller training sets, specifically with 10% and 20% of the

total images. However, most of the parameter adjustments were performed on the Veri-776

dataset for more reliable outcomes, since the entire dataset was trained.

After training on Veri-776 and Veri-Wild datasets over 120 epochs, the models achieved

99.8% and 99.9% accuracy in the training set, respectively. The following figures 4.1 and

4.2 show the loss and accuracy plots in training. Although it seems that the model trained

on Veri-776 (figure 4.1) stopped learning around epoch 40, the validation results and the

up-scaled graph from epoch 40 to 120 revealed the opposite. An inference is made every 20

epochs until epoch 100, at which point the inference is made every epoch until epoch 120,

and here is when the best model with the best validation results is always obtained, showing

the importance of training across all of the 120 epochs. The loss of the model trained on

Veri-Wild (figure 4.2), on the other hand, takes significantly longer to converge because of

the larger size of the dataset.

Figure 4.1: Baseline network Loss and Accuracy over 120 epochs on the Veri-776 dataset.

43



Figure 4.2: Baseline network Loss and Accuracy over 120 epochs on the Veri-Wild dataset.

The achieved results with the Baseline network for the Veri-776 and Veri-Wild datasets

are presented in table 4.1 and table 4.2, respectively.

Method
mAP

(%)

Rank-1

(%)

Rank-5

(%)

Baseline 77.8 96.2 98.5

Baseline + RR 88.0 97.1 97.8

Table 4.1: Performance results of the Baseline network on the Veri-776 dataset.

Test Size = 3000 Test Size = 5000 Test Size = 10000

Method
mAP

(%)

Rank-1

(%)

Rank-5

(%)

mAP

(%)

Rank-1

(%)

Rank-5

(%)

mAP

(%)

Rank-1

(%)

Rank-5

(%)

Baseline 71.4 86.4 95.9 64.1 81.8 93.6 54.2 76.0 90.1

Baseline + RR 72.8 82.6 93.5 64.9 77.8 81.0 - - -

Table 4.2: Performance results of the Baseline network on the Veri-Wild dataset.

The reported results are a good starting point and even superior to many existing ap-

proaches, given that the state-of-the-art mAP scores are 82.1% and 83.1%, respectively, for

the Veri-776 and Veri-Wild datasets. Given that all parameter adjustments were made on

the Veri-776 dataset and because of the dataset’s increased complexity, it was previously

expected that the performance on the Veri-Wild dataset would be slightly worse.

As can be seen, the re-ranking (RR) post-processing technique mentioned in section 2.6

significantly enhances the results on Veri-776. However, if the initial ranking list is poor,
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this technique may not perform well and might potentially make the outcomes worse. Thus,

it must be used with caution. Another disadvantage is that it is time-consuming, but for

applications where time is not a crucial factor, it is beneficial in terms of performance. This

technique is also highly computationally demanding, hence it was not possible to assess it

on the largest Veri-Wild test set. However, because the initial list was poor, no good results

with re-ranking were expected.

Figure 4.3 shows a few examples of Grad-CAM attention maps that were generated in

order to better understand what the network is capturing from each vehicle to perform the

V-ReID task. The network is focusing more on the areas highlighted in red. Two images

are displayed side by side for each vehicle example; the left image is the original, and the

right image is the resized version that has been fed into the network with the attention map

superimposed. In the first row of images, it is possible to see that the network is focusing

on distinctive car features like wheels, rearview mirrors, headlights, and even a text at the

top front of the truck. However, it is also possible to notice some less explicit examples in

the second row, where the network concentrates on areas outside of the vehicle region.

Figure 4.3: Examples of some Grad-CAM attention maps obtained with the Baseline network

on the Veri-776 dataset.

For each query image, a ranking list is created with all the images of the gallery set. The

top 10 ranking results for some query images can be seen in figure 4.4. In general, the top 10

gallery images retrieved are true positives, but in some situations, such as the last row, the

network got most of the images wrong. However, the false positives are very similar to the

query, and the query image is partially occluded and has some reflections on the windows,

making the ReID more difficult.
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Figure 4.4: Top 10 ranking results using the Baseline network. Each row presents the query

images and retrieved top 10 gallery images. Green and red boxes denote true positive and

false positive samples, respectively.

4.3.2 TransReID Network Results

The second stage of this work was to enhance the results obtained with the Baseline network

in the previous section. With this in mind, the TransReID Network was created by adding

two more modules to the Baseline network in order to improve the performance of V-ReID.

To summarize, the primary changes between this network and the Baseline network

are the use of Overlapping patches (OP), the Jigsaw Patch Module (JPM), and the Side

Information Embeddings (SIE) module. Several tests were performed to analyze the influence

of each module independently, as shown in table 4.3.

Method OP JPM SIE
mAP

(%)

Rank-1

(%)

Rank-5

(%)

Baseline

77.8 96.2 98.5

✓ 79.4 96.9 98.9

✓ 79.5 96.5 98.3

✓ 79.8 97.2 99.0

Table 4.3: The effects of different TransReID modules.
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Since the SIE module considers information about the camera and the vehicle’s per-

spective, an ablation experiment was conducted to examine the impact of these elements

separately. These results are presented in table 4.4.

Method Camera Viewpoint
mAP

(%)

Rank-1

(%)

Rank-5

(%)

Baseline

77.8 96.2 98.5

✓ 78.9 96.2 98.5

✓ 77.8 96.5 98.5

Table 4.4: Ablation study of SIE module.

Finally, the achieved results with the TransReID network for the Veri-776 and Veri-Wild

datasets are presented in table 4.5 and table 4.6, respectively.

Method
mAP

(%)

Rank-1

(%)

Rank-5

(%)

Baseline 77.8 96.2 98.5

TransReID 82.1 97.3 98.8

TransReID + RR 91.1 97.7 98.5

Table 4.5: Performance results of the TransReID network on the Veri-776 dataset.

Test Size = 3000 Test Size = 5000 Test Size = 10000

Method
mAP

(%)

Rank-1

(%)

Rank-5

(%)

mAP

(%)

Rank-1

(%)

Rank-5

(%)

mAP

(%)

Rank-1

(%)

Rank-5

(%)

Baseline 71.4 86.4 95.9 64.1 81.8 93.6 54.2 76.0 90.1

TransReID 81.1 92.5 97.4 75.3 89.9 96.7 66.4 85.1 94.2

TransReID + RR 81.3 89.7 95.4 75.0 85.5 94.0 - - -

Table 4.6: Performance results of the TransReID network on the Veri-Wild dataset.

As seen in table 4.3, all three additional modules improved the Baseline outcome when

used separately. The SIE module was then analyzed more deeply to discover which parame-

ter had the largest effect, and it was observed that the camera information had the greatest

impact on the outcome. Although viewpoint information had minimal influence when em-

ployed alone, it produced the best performance when combined with camera information.
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The increase in complexity and the use of overlapping patches which, resulted in more

patches and hence bigger features, increased the training time by approximately 30% when

compared to the Baseline. However, the TransReID network significantly outperforms the

Baseline results in both datasets, demonstrating the efficacy of the employed modules. The

Veri-Wild dataset does not provide orientation labels, therefore the network was trained only

using camera embeddings information in the SIE module.

In practice, SIE can be extended to encode more types of information, such as categorical

and numerical data. The color of vehicles is information that is available in most of the

datasets and could be used in SIE; however, the Transformer network must already consider

this information. To verify this, the Veri-776 test set images were converted to grayscale

with three channels, yielding 59.6% mAP, which is more than 20% lower than the best result,

proving that color is a crucial attribute for extracting discriminative features in Transformer

networks. As a result, there is no need to include this information in the SIE module.

Figure 4.5 depicts the Grad-CAM attention maps for the same vehicle examples as in

figure 4.3 but using the TransReID network. The differences between the Grad-CAM at-

tention maps produced by the Baseline and TransReID networks can be more easily seen

in Figure 4.6. There is definitely an improvement in the activation maps, as well as more

discriminating attention on particular vehicle elements, proving the efficacy of the JPM and

SIE modules once again.

Figure 4.5: Examples of some Grad-CAM attention maps obtained in the validation with

TransReID network in Veri-776 dataset.
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Figure 4.6: Examples of Grad-CAM attention maps obtained on the Veri-776 dataset using

the Baseline and TransReID networks.

Figure 4.7 depicts the top 10 ranking results for some query images. The same vehicle

queries as in Figure 4.4 were used to compare the results to the Baseline network. As can

be observed, the TransReID network considerably improved the number of true positives in

the last two rows.

Figure 4.7: Top 10 ranking results using the TransReID network. Each row presents the

query images and retrieved top 10 gallery images. Green and red boxes denote true positive

and false positive samples, respectively.
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4.3.3 Viewpoint Estimation Network Results

The Veri-776 dataset has vehicle viewpoint annotations that were annotated by Zhongdao

Wang et al. for the proposed work [34]. However, the Veri-Wild dataset, like many other

well-known datasets, lacks information regarding the vehicle’s orientation.

Since the vehicle’s viewpoint proved to be a benefit for V-ReID in the TransReID network

when used jointly with camera information, it motivated the development of a classification

network that receives vehicle images and predicts their orientation.

To accomplish that goal, a pre-trained Resnet-18 network was trained using the Veri-776

training set. Padding, random cropping, and random erasing were applied to the training

images, which were resized to 256×256. The network was trained over 10 epochs with a

batch size of 32. Adam was used as the optimizer, with an initial learning rate of 0.001 and

a weight decay of 0.001. A ReduceLROnPlateu scheduler with patience of 1 was used to

reduce the learning rate throughout the epochs.

The initial strategy was to use the Veri-776 dataset to train the network to predict 8-class

orientations. In the test set, the first approach produced an 87% mAP, which is not optimal.

The detailed results for each class is shown in table 4.7 and figure 4.8.

AP (%) Nº Images

Class 0 (front) 73 1262

Class 1 (rear) 79 826

Class 2 (left) 67 65

Class 3 (left front) 90 3021

Class 4 (left rear) 95 3202

Class 5 (right) 81 256

Class 6 (right front) 77 1172

Class 7 (right rear) 85 1176

mAP (%) 87

Table 4.7: Classification results for 8-classes. Figure 4.8: Confusion Matrix for 8-classes.

Many efforts were made to increase the classification mAP result, such as several param-

eter adjustments and the use of a Resnet-50, but there were no major changes. Following

a brief inspection of the annotations, it was discovered that some of them are inaccurate or

may confuse the networks to learn properly. Figure 4.8 shows the confusion matrix for the

obtained results, which shows that the network usually confuses the label groups: (front, left
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front, right front) and (rear, left rear, right rear), which are very similar in most cases. In

addition, there is a significant imbalance in the number of images available for each class.

The solution to this issue was to group several labels that, due to their similarities, could

induce confusion in the network. The proposed rearrangement of labels is illustrated in

Figure 3.11.

After rearranging the viewpoint labels, a Resnet-18 was trained under the same conditions

as before, yielding a result of 98.1% mAP, which is considerably better than the result with

8-classes. The detailed results for each class is shown in table 4.8 and figure 4.9.

AP (%) Nº Images

Class 0 (fronts) 97 5455

Class 1 (rears) 99 5804

Class 2 (sides) 82 321

mAP (%) 98.1

Table 4.8: Classification results for 3-classes. Figure 4.9: Confusion Matrix for 3-classes.

These classification networks were then used to predict vehicle viewpoints for the V-ReID

network. The Veri-Wild dataset was trained for the first time using viewpoints information

for the SIE module, and the Veri-776 dataset, despite having its own annotations, was also

trained with the predicted viewpoint labels to see if it was still better than without. Tables

4.9 and 4.10 show the results for Veri-776 and Veri-Wild datasets, respectively.

Method
mAP

(%)

Rank-1

(%)

Rank-5

(%)

Transreid 82.1 97.3 98.8

TransReID + 8V 81.7 97.3 98.6

TransReID + 3V 82.1 97.0 98.7

Table 4.9: Performance results of the TransReID model on the Veri-776 dataset using the

8-class (8V) and 3-class (3V) models to predict the viewpoints.
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Test Size = 3000 Test Size = 5000 Test Size = 10000

Method
mAP

(%)

Rank-1

(%)

Rank-5

(%)

mAP

(%)

Rank-1

(%)

Rank-5

(%)

mAP

(%)

Rank-1

(%)

Rank-5

(%)

TransReID 81.1 92.5 97.4 75.3 89.9 96.7 66.4 85.1 94.2

TransReID + 8V 80.5 92.6 97.8 74.8 90.0 96.4 65.9 84.9 94.3

TransReID + 3V 81.4 92.7 97.9 75.7 90.2 96.7 66.8 85.7 94.5

Table 4.10: Performance results of the TransReID model on the Veri-Wild dataset using the

8-class (8V) and 3-class (3V) models to predict the viewpoints.

As can be seen, using the model to predict the 8 views yields unsatisfactory results;

nonetheless, this was to be expected given the model’s low classification accuracy. However,

when using the 3-class model, a better performance was obtained on the Veri-Wild dataset

that had previously been evaluated without the viewpoint information, and the results in the

Veri-766 dataset remained nearly identical to the results with the given viewpoints, indicating

that using the predicted viewpoints is beneficial to using no viewpoint information.

4.3.4 Locally Aware Transformer Network Results

The Locally Aware Transformer network is utilized in Person ReID and also employs the ViT

as a backbone but uses the output tokens differently from TransReID. The results obtained

with the Locally Aware Block can be observed in table 4.11.

Method
mAP

(%)

Rank-1

(%)

Rank-5

(%)

Baseline 77.8 96.2 98.5

LA-Transformer without OP 78.6 96.6 98.4

*LA-Transformer without OP 78.8 96.4 98.2

*LA-Transformer with OP 80.6 96.5 98.6

Table 4.11: Performance results of the LA-Transformer network on the Veri-776 dataset.

The star * in the superscript indicates that the classifiers employed differ from those in

the original paper. Instead of using two linear layers separated by a ReLU, only one linear

layer was employed for classification, which enhanced the network’s performance.

As can be seen, the obtained results were better than the Baseline but significantly lower

than TransReID. This result suggests that networks created specifically for Person ReID do

not perform well in V-ReID. In fact, Person ReID is an easier challenge because, in most
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cases, the perspective has little effect on a person’s appearance. With that in mind, this

network was evaluated in a simpler scenario, in which the network was trained and tested

using vehicle images with a single perspective. In this case, the Veri-776 dataset was used

with only front-oriented vehicle images according to the labels. The results of this study are

presented in table 4.12.

Method mAP (%) Rank-1 (%) Rank-5 (%)

TransReID 93.1 96.8 99.2

LA-Transformer 93.8 97.6 99.2

Table 4.12: Performance results of the TransReID network versus the LA-Transformer net-

work in a subset of the Veri-776 dataset using only front-oriented vehicle images.

The LA-Transformer network performed poorly in the multiple-views scenario; but, when

evaluated simply in one orientation scenario, the LA-Transformer network outperformed the

TransReID network.

Figure 4.10 shows a few examples of Grad-CAM attention maps using the LA-Transformer

network. As can be seen, the network focuses on the most distinguishing features of each

vehicle.

Figure 4.10: Examples of Grad-CAM attention maps obtained on the Veri-776 dataset using

the LA-Transformer network.

The top 10 ranking results for some query images using the TransReID and LA-Transformer

networks trained only with front-oriented vehicle images can be seen in figure 4.11.
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Figure 4.11: Top 10 ranking results using the TransReID and LA-Transformer networks.

Each row presents the query images and retrieved top 10 gallery images. Green and red

boxes denote true positive and false positive samples, respectively.

Since this is a simpler problem, both networks perform well, and the top 10 retrieved

gallery images are usually true positives. However, as seen in the second and third query

examples, the LA-Transformer network outperforms the TransReID network.
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4.3.5 Loss Weight Ratios Results

The loss functions play an important role in network training optimization, and it is well

known that Cross Entropy Loss is significantly larger than Triplet Loss. Nevertheless, the

majority of V-ReID studies use a loss weight ratio of 1:1, as do all of the experiments below.

Following the literature study [11], multiple experiments were conducted to identify the effect

of loss weights on the final V-ReID outcomes.

First, various fixed ratios were tested, including 1:2 and 0.5:0.5, which produced better

results than a 1:1 ratio, according to the paper. Next, the Momentum Adaptive Loss Weight

(MALW) module was incorporated into the TransReID network. Figure 4.12 displays the

loss weights behavior while using the MALW module and Table 4.13 presents the obtained

results with different loss weight ratios.

Figure 4.12: Loss weights over the epochs with the MALW module.

The loss weights were both set to 1 initially, and the MALW module had a significant

impact on the ID loss weight, which decreased over epochs. The Triplet Loss weight, on the

other hand, remained constant with the initial value over all epochs. The evolution of the

weights over the epochs makes sense; since the ID Loss is superior, the goal is to give it a

lower weight so that both losses contribute to the final loss in a more equal proportion.
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Ratio mAP (%) Rank-1 (%) Rank-5 (%)

1:1 82.1 97.3 98.8

1:2 82.1 97.1 98.6

0.5:0.5 82.0 97.2 98.7

MALW 82.0 96.6 98.7

Table 4.13: Performance results with different loss weights strategies on Veri-776 dataset.

As can be seen, all of the experiments with different ratios and the MALW module

produced slightly worse results, which contradict those reported in the article. This also

shows that the weight given to losses has a minimal impact on the final results. Therefore,

the 1:1 ratio, which was used in all previous experiments, produced the best outcomes.

4.3.6 Triplet Soft-Mining Loss Results

Triplet Loss Function is essential for V-ReID, therefore one of the experiments was to replace

the Triplet Hard-Mining Loss with the Triplet Soft-Mining Loss. Figure 4.13 shows the visual

difference between Hard-Positive Mining and Soft-Positive Mining.

Figure 4.13: Difference between the Hard-Positive Mining and Soft-Positive Mining.
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The last figure shows the anchor-positive choices with both losses during training on the

Veri-776 for a specific vehicle ID within a batch. As can be seen, while Hard-Positive Mining

always selects the hardest positive for the anchor, which usually has a completely different

perspective, Soft-Positive Mining selects a positive that is more similar but not completely

equal. This shows that the implemented loss is working correctly.

After incorporating this loss into the TransReID network, the training loss started lower

than usual, as expected given the lower distances between anchor-positive pairs. The loss,

however, converged to the same as with Hard-Positive Mining, and the final result remained

exactly the same as in table 4.5. In conclusion, the Triplet Soft-Mining Loss had no effect

on the current results.

4.3.7 Cross-ViT Network Results

Cross-ViT is a network that generates two features: the first branch produces feature 1

with a dimension of 224, while the second branch produces feature 2 with a size of 448.

The triplet loss requires only one feature to conduct V-ReID, therefore the following feature

fusion strategies were tested to achieve the best outcome. The final results are shown in

table 4.14.

• A - Using only feature 1 with dimension 224.

• B - Using only feature 2 with dimension 448.

• C - Concatenating features 1 and 2 with default dimensions.

• D - Reducing the dimension of feature 2 to 224 and concatenating the features.

• E - Reducing the dimension of feature 2 to 224 and average the features.

• F - Reducing the dimension of feature 2 to 224, stacking the features and using a

convolutional layer to automatically learn weights and decide which feature is more

significant for V-ReID. The result of this operation is a feature with dimension 224.

57



Method
mAP

(%)

Rank-1

(%)

Rank-5

(%)

A 69.9 94.1 97.2

B 70.7 93.9 97.8

C 72.4 93.3 97.4

D 71.4 93.7 97.6

E 71.9 93.6 97.2

F 72.8 95.1 97.6

Table 4.14: Performance results using Cross-ViT network with different feature fusing strate-

gies on the Veri-776 dataset.

As observed, when only one feature is used, feature 2 outperforms feature 1, but using

both features is always beneficial because the results are higher. When both features are

used, the optimal fusion method for generating a more discriminating final feature for V-

ReID is to use a convolutional layer that learns the best weights for each feature vector during

training. This method yielded 72.8% mAP in the Veri-776 dataset, which was lower than all

previous results; however, the Cross-ViT network was pre-trained on ImageNet-1K, whereas

all previous results were obtained with ViT pre-trained on ImageNet-21K. As a result, the

Baseline network was trained using weights pre-trained on ImageNet-1K to provide a basis

for comparison. Table 4.15 shows the results achieved with the two different backbones.

Method
mAP

(%)

Rank-1

(%)

Rank-5

(%)

Baseline (ViT) 71.2 93.6 97.4

Cross-ViT 72.8 95.1 97.6

Table 4.15: Performance results using different backbones pre-trained on ImageNet-1k on

the Veri-776 dataset.

When both methods are tested under the same pre-training conditions, the network with

Cross-ViT as the backbone outperforms the Baseline network that uses ViT by 1.6% in mAP.

This is a great result that implies Cross-ViT has the potential to outperform the TransReID

network when trained on ImageNet-21K; however, this cannot be inferred due to hardware

limitations.
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5 Conclusions and Future Work

Re-Identification (ReID) has many challenging issues that result from the high variability of

the vehicle’s appearance in the camera images due to different illumination, different camera

perspectives, occlusions, noisy images, and other factors. Furthermore, a vehicle identity can

be very similar to other identities, and since ReID in this work is purely based on appearance

and does not use license plate information, a network capable of extracting strong features

is required.

Vision Transformers are novel networks known for extracting robust fine-grained features

and are state-of-the-art for many computer vision tasks; thus, this was the choice for extract-

ing the vehicle’s features. Alike the work on [4], the TransReID network proved to operate

extremely well achieving very good ReID results. This network makes use of external in-

formation such as vehicle perspective, and because this information is not available in all

datasets, a classification network was trained to predict the vehicle viewpoint, which helped

to improve the results on the Veri-Wild dataset.

Person Re-Identification (P-ReID) is a much more researched topic than Vehicle Re-

Identification (V-ReID), so a network called Locally Aware Transformer from a top-performing

P-ReID work was integrated into this work. When trained with the original datasets with

multiple viewpoints, this network did not produce good results; however, when trained with

a single viewpoint, such as only the fronts of the vehicles, this network outperformed the

TransReID network. The P-ReID problem is typically simpler than V-ReID because the

perspective problem is not as significant. Therefore, this result is interesting since it reveals

that this network performs well when the problem is simplified. This implies that networks

designed for P-ReID will typically perform poorly on V-ReID.

The loss functions play an important role in network training optimization, and it is well

known that Cross Entropy Loss is substantially larger than Triplet Loss, therefore alternative

weight ratios were tested, as well as a module called Momentum Adaptive Loss Weight, which

automatically adjusts the weights during training. Furthermore, the Triplet Hard-Mining
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Loss was replaced with a Soft-Mining Loss, however, none of these experiments produced

better results.

Finally, the ViT backbone was replaced by a novel network known as Cross-ViT. Because

this network outputs two features, multiple feature fusion strategies were tested, and Cross-

ViT outperformed ViT when both were pre-trained on ImageNet-1K. Cross-ViT has shown

promising results that should surpass TransReID when pre-trained on ImageNet-21K, but

due to hardware limitations, that result could not be inferred.

Considering the work developed and the results obtained, there are several possibilities

for continuing the project to improve the current work, such as:

• The sampler used to generate each batch is completely random, but when different

seeds are used, the results can vary considerably, indicating that some batches may

have better examples to optimize the triplet loss than others. Given the importance of

image batches in V-ReID results, one possible future work would be to analyze which

batches perform best and develop an algorithm based on data information to generate

batches with the best samples to optimize the triplet loss.

• A classification network was used to predict the vehicle’s perspective label, however,

this could be improved by using different methods such as clustering, regression, or

even using more advanced methods using specific vehicle keypoints to extract the exact

orientation.

• The Cross-ViT network could not be trained on ImageNet-21K due to hardware lim-

itations. According to the results, the pre-trained model has a significant impact

on V-ReID performance. Since Cross-ViT outperformed ViT when pre-trained on

ImageNet-1K, it is expected to outperform ViT when pre-trained on ImageNet-21K.

As a result, one potential future work would be to train Cross-ViT on ImageNet-21K

and then infer the results on V-ReID.
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