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reinventar-se constantemente, são vocês que vão continuar o nosso legado. Costini

e Afonso, muito obrigado por todo o companheirismo, que continuem as reuniões

para comer marisco e passar fins-de-semana na “Republica of West Virginia”.

Por último, gostaria de deixar o meu enorme agradecimento à minha famı́lia, em
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Resumo

Esta tese foi desenvolvida no âmbito do projeto “Biofeedback Augmented Software

Engineering” (BASE; Grant POCI - 01-0145 - FEDER- 031581), o qual tem o ob-

jetivo de desenvolver uma solução capaz de detetar as zonas de código com maior

probabilidade de ocorrência de erros, baseado nos sinais vitais do programador. O

objetivo desta tese é avaliar a qualidade e fiabilidade das caracteŕısticas dos sinais

temporais da variabilidade card́ıaca (HRV) e da variação da dilatação da pupila

(pupilografia) para a discriminação de diferentes ńıveis de stress cognitivo em ambi-

entes de inspeção de código, que podem ser adquiridos usando métodos não invasivos.

De modo alcançar a solução proposta pelo projeto BASE, é necessário começar

por descobrir a resolução temporal ideal que otimiza a deteção de variações no

stress cognitivo para cada caracteŕıstica do sinal HRV, sem comprometer a sua

fiabilidade no contexto de inspeção de código. No entanto, os estudos existentes

relacionados com este tópico foram desenvolvidos com os sujeitos em repouso ou

realizando tarefas básicas em ambientes muito controlados. De modo a descobrir

quais as caracteŕısticas do HRV mais adequadas para serem utilizadas em aplicações

reais, como o contexto de inspeção de código mencionado, e para perceber as suas

limitações temporais, foram realizadas abordagens de estudo de análise estat́ıstica

e de classificação. Um total de 31 caracteŕısticas do sinal HRV extráıdas utilizando

janelas temporais de diferentes tamanhos (entre 3 minutos e 10 segundos) foram

analisadas em contexto de inspeção de código.

Seguindo a abordagem da análise estat́ıstica, foi posśıvel identificar um conjunto de

cinco caracteŕısticas consideradas as mais fiáveis em janelas temporais curtas no pre-
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Resumo

sente contexto: mNN, HF, LF, LFpeak e totPow. Desta abordagem, determinou-se

ainda que 30 segundos foi a duração mais curta contendo caracteŕısticas consider-

adas fiáveis. A abordagem da classificação utilizou classificadores SVM (Support

Vector Machine) para analisar o impacto da janela de extração nos resultados da

classificação da complexidade de secções de código de software. As caracteŕısticas

do sinal HRV foram associadas às secções de código observadas pelo programador e

transformadas estat́ısticas das mesmas foram calculadas. Os F1-Scores obtidos para

os diferentes classificadores variaram entre 0.62 e 0.75, sendo que se desconsiderar-

mos os resultados da janela temporal de 10 segundos, que mostrou ser demasiado

curta para o contexto atual, os F1-scores variaram entre 0.66 e 0.75. Estes resultados

indicam que é posśıvel obter performances de classificação semelhantes utilizando

janelas mais curtas comparativamente com as mais longas.

Relativamente às caracteŕısticas do sinal da pupilografia, verifica-se a falta de con-

senso nas linhas de orientação relativas às bandas de frequência deste sinal, com

diversos autores a utilizarem diferentes bandas de frequência na sua análise. Com

isto em mente, procurámos de entre várias hipóteses a combinação de limites de

bandas que maximiza a correlação entre a banda das baixas frequências (LF) e a

das altas frequências (HF) da pupilografia com estas mesmas bandas do sinal HRV.

Seguindo este procedimento fomos capazes de selecionar os limites de banda adequa-

dos para as bandas LF e HF para a extração de caracteŕısticas. Os nossos resultados

indicam que a banda mais adequada para as LF vai desde 0.13Hz a 0.28Hz e para as

HF desde 0.28Hz a 0.35Hz. Destas bandas foram extráıdas caracteŕısticas que foram

associadas à respetiva secção observada pelo participante no respetivo momento de

extração e foram calculadas transformadas estat́ısticas destas caracteŕısticas. Recor-

rendo a classificadores SVM, treinados utilizando estas transformadas, alcançou-se

um F1-Score médio de 0.76 com um desvio padrão de 0.07, o melhor resultado em

todo o estudo, atingindo o maior F1-score médio com a menor variabilidade. Estes

resultados indicam que poderá ser posśıvel alcançar um método totalmente não in-

vasivo baseado em caracteŕısticas da pupilografia para classificação de complexidade

de secções de código.
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Abstract

This thesis was developed under the Biofeedback Augmented Software Engineering

(BASE) project (Grant POCI - 01-0145 - FEDER- 031581), which aims to develop a

solution capable of using biofeedback from the programmer to detect software code

areas more prone to error. This thesis aims to assess the quality and reliability

of Heart Rate Variability (HRV) and Pupillography (Pupil Diameter time series)

measurements for cognitive stress discrimination in a code inspection context, which

can be acquired using non-intrusive methods.

In order to accomplish the solution described, we need to find the ideal time resolu-

tion for each HRV feature which optimizes the detection of cognitive stress variations

without compromising its reliability in a code inspection context. However, the stud-

ies found in the literature related to this topic were developed with the subjects at

rest or performing elementary tasks in controlled environments. In order to find

out which HRV features are adequate to be used in real-life applications, such as

the mentioned high cognitive dynamic code inspection context, and to understand

their time frame limitations, statistical and classification analysis approaches were

followed. A total of 31 HRV features, extracted using time frames of variable sizes

(ranging from 3 minutes to 10 seconds) in a code inspection context, were analyzed

through these two approaches.

From the statistical approach, we could identify five features as the most reliable for

the smallest time frames considering the present context: the mean NN, the HF, the

LF, the LFpeak and the totPow features. Furthermore, we also determined that the

30-second window was the smallest time frame considered to have reliable measure-
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Abstract

ments. The classification approach used Support Vector Machine (SVM) classifiers

to analyze the impact of the extracting window in the complexity classification of

software code sections. The HRV features were associated with the corresponding

code section gazed at the extraction time, and statistical transformations of these

features were computed. The F1-Scores obtained for the different classifications

ranged from 0.62 to 0.75 across all windows. Furthermore, excluding the 10-second

corresponding results, a window that proved to be too short of a time frame in the

current context, the mean F1 scores obtained ranged between 0.66 and 0.75, indi-

cating that it is possible to achieve similar classification performances using smaller

time frames.

Regarding the pupillography measurements, in the literature, there is a lack of

consensus in the guidelines about the pupillography frequency bands, with several

authors using and reporting different bands for this signal analysis. With this in

mind, we searched through several pupillography frequency band combinations to

find the low-frequency (LF) and high-frequency (HF) bands that maximized the

correlation with the HRV LF and HF bands. Following this procedure, we were

capable of selecting adequate LF and HF band limits for the feature extraction in

the present code inspection context: the LF band from 0.13Hz to 0.28Hz and the HF

band from 0.28Hz to 0.35Hz. The features extracted from these bands were asso-

ciated with the corresponding code section, and statistical transformations of these

features were computed. An SVM classifier was trained using these transformed fea-

tures, achieving a 0.76 mean F1-Score with a standard deviation of 0.07 which was

the best performance in the overall study, having the highest mean F1-Score with

the lowest variability. These results indicate that it could be possible to achieve

an entire non-intrusive method using pupillography features for code complexity

classification.

Keywords: software engineering; human error; biofeedback; cognitive demanding

tasks; code comprehension; bio-signal processing; Heart Rate Variability (HRV);

ultra-short-term HRV features; pupillography; frequency-bands limits
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Introduction

1.1 Context and Motivation

Currently, the world is facing a software boom driven by the current continuous de-

velopments in the different technology fields. The internet is now globally available,

making everything interconnected, which leads to a vast market opportunity in e-

commerce, advertisement, and telehealth, among other sectors. Furthermore, recent

advances in automation, machine learning and artificial intelligence (AI) technolo-

gies allowed the emergence of new technology solutions such as speech recognition,

autonomous driving and even clinical decision support systems.

In order to fulfil the demands and requirements of the different specific software de-

velopment fields, and due to the programming inner cognitively demanding charac-

teristics, software engineers and developers are constantly under tremendous amounts

of pressure and stress. This intense environment is prone to human error in the form

of residual software faults (bugs), which are currently one of the software industry’s

most significant problems. A study conducted in 2018 estimated the existence of

an average of about 15 to 50 errors per 1000 lines in completed code [1]. This fact

translates into effective costs, both in human time and effort as well as in finan-

cial costs. Code comprehension and bug detection tasks consume up to 70% of the

programmers working time [2] and according to a Tricentis’ research [3], in 2017

was estimated that the total net losses due to software bugs ascended to about 1.7

trillion dollars across the globe.

Software bugs commonly occur in the most complex code sections, so code com-

plexity measures can be included in the fault avoidance techniques [4]. However,
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assessing the code complexity level is not a straightforward process. Two of the

most commonly employed metrics are Halstead’s effort metric, and McCabe’s cyclo-

matic metric [5]. Unfortunately, these measures are not sensitive enough to specific

contexts and fail to consider interactions between different program components

[5]. The Biofeedback Augmented Software Engineering (BASE) (POCI - 01-0145

- FEDER- 031581) project attempts a different approach using the programmers’

biofeedback to identify the code sections’ complexity according to the subject’s cog-

nitive stress.

The most complex code sections are also the code areas which require a higher

mental effort and cognitive load from the programmers. This cognitive stress can

be measured through the Autonomous Nervous System (ANS) physical responses,

which can include subtle changes in the heart rate [6], or pupil size variations [7].

In this way, a biofeedback approach using these biological measurements could be

used to achieve software capable of identifying the code sections with higher bug

probability and consequently, that should be reviewed. Finding the link between

the code complexity and the physiological signals controlled by the ANS that can

be extracted using non-invasive devices is precisely one of the goals of the BASE

project.

1.2 Objectives

In order to achieve the software goal with the described traits, one of the first dilem-

mas faced is which time resolution should be used in the analysis of the measure-

ments. Smaller time windows may provide greater time resolution in the analysis,

making it possible to capture ANS dynamics during smaller gazing periods at a

specific code area; information that could not be accessed using larger time win-

dows. However, if the time frame is too small, the measurements’ reliability may be

compromised. In this way, one of the objectives of this thesis is to comprehend

how the time window size chosen affects the reliability of different Heart

Rate Variability (HRV) features and how it influences the complexity

classification of software code.
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During the research phase of the project it was also found a lack of consensus

regarding the frequency bands of the pupil size variation signal (pupillography).

With this in mind, another goal of this work is to define the optimal frequency

bands of the Pupillography that should be applied to study cognitive

stress during high cognitively demanding contexts.

1.3 General outline of the thesis

This document is structured as follow: Chapter 2 briefly describes the physio-

logical background and concepts related to the Autonomous Nervous System, the

Heart Rate Variability and the pupil size variation; Chapter 3 dissects the state

of the art of cognitive stress detection through Ultra-Short-Term HRV features and

pupil size variation measurements; Chapter 4 describes the experiment design and

data collected; Chapter 5 is divided into three main sections regarding the meth-

ods, results and discussion related to the HRV measurements different approaches

followed to assess the quality and reliability of these measurements; Chapter 6 is

also divided into three main sections regarding the methods, results and discussion

related to the pupillography measurements bands’ limits definition and assessment

of these measurements discriminative code complexity ability; Chapter 7 presents

the study limitations and suggests the future work that should be conducted; finally,

Chapter 8 delineates the main conclusions of the present thesis.

1.4 Main Contributions

This thesis includes several original contributions. Two different papers were pub-

lished in the scope of the present work. Furthermore, we are currently preparing a

third paper that will be submitted to Scientific Reports journal.

The six pages two columns article ”Impact of Ultra-Short-Term HRV Features in

Software Code Sections Complexity Classification”, depicting the window HRV anal-

ysis reduction effects in code sections complexity classification, was submitted, ac-

cepted and orally presented at the 21st IEEE Mediterranean Electrotechnical Con-
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ference (IEEE MELECON 2022), held in Palermo, Italy, on June 14-16, 2022 [8].

The study ”How Reliable Are Ultra-Short-Term HRV Measurements during Cogni-

tively Demanding Tasks?”, which uses statistical and correlation analysis to evaluate

the reliability of ultra-short-term HRV measurements under cognitively demanding

tasks context, was submitted to Sensors on June 22, and was published on August

30, 2022 [9].

Besides the highlighted contributions regarding the reliability and classification im-

pact of ultra-short-term HRV features, the present thesis also provides insight into

the pupillography frequency bands that should be used for the pupillography signal

analysis under highly cognitively demanding contexts. Furthermore, it includes the

analysis of the pupillography features discriminative power for code complexity clas-

sification. This work is currently being prepared to be submitted to the Scientific

Reports journal.
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Physiology Background Concepts

2.1 Human Nervous System

The Nervous System is the structure in charge of everything that happens in the Hu-

man Body. This system is highly complex and organized, compiling several functions

like reasoning, movement control, sensory responses and performing an integrative

role across the different physiologic systems. Regarding its configuration, two ma-

jor subdivisions compose the Human Nervous System: the Central Nervous System

(CNS) and the Peripheral Nervous System (PNS) [10].

The PNS is responsible for carrying the signals exchanged between the different

body components, whereas the CNS is accountable for receiving these messages,

processing the contained information, and sending back signals answering the re-

ceived stimuli [11].

Anatomically speaking, the CNS is formed by both the brain and the spinal cord.

The brain is essentially composed of a complex network of wired neurons supported

by glia cells and is encapsulated by the skull. This organ has four main constituents

[10]:

• The cerebrum - is a significant part of the brain. The cerebrum is composed

of the right and the left hemispheres, each in control of the opposing side of

the body. The hemispheres are arranged in four lobes: Frontal, Temporal,

Parietal and Occipital.

• The brain stem - the cerebrum is connected to the spinal cord by this struc-

ture. “Medulla oblongata” is another name for it.

• The cerebellum - positioned beneath and behind the cerebrum.
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• The diencephalon - the thalamus and hypothalamus are part of this struc-

ture.

Figure 2.1: Representation of the cerebrum, divided into four lobes (Frontal, Tem-
poral, Parietal and Occipital), the Cerebellum, the Brain stem and the Spinal cord.
Adapted from [12]

The spinal cord is integrated into the vertebral column and connects the brain to

the rest of the body, having in its composition 31 segments, and a pair of spinal

nerves surges from each segment. The sensory and motor nerves are housed in the

spinal cord [13].

Concerning the PNS, essentially every nervous tissue (sensory neurons, nerves, au-

tonomic ganglia, enteric plexuses and others), excluding the brain and the spinal

cord, are part of this system. The PNS has two distinct constituents, the Somatic

Nervous System (SNS), which manages the voluntary and conscious activities (in-

cluding sensory neurons and motor nerves), and the Autonomous Nervous System

(ANS). This project thesis develops itself around the ANS dynamics.

2.1.1 Autonomic nervous system

As its name suggests, the ANS is behind the regulation of the body’s involuntary

visceral functions, having a central role in the homeostasis maintenance [14]. The

cardiac pulsation, blood pressure, breathing mechanisms, digestion, or pupillary
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response, are examples of these functions [11]. The ANS structuration has three

divisions: the Enteric, the Sympathetic and the Parasympathetic Nervous Systems.

The Enteric Nervous System is responsible for the gastrointestinal system’s involun-

tary operation, and functions independently from the CNS [10]. The Sympathetic

and the Parasympathetic Nervous Systems are the two major ANS subdivisions.

The Sympathetic Nervous System takes over during stressful or emotional situa-

tions, activating the so-called fight-or-flight mode, which prepares the body to face

dangerous events. The responses of the sympathetic system can include: increasing

blood pressure and heart rate, where in some circumstances, the body is capable of

doubling its heart rate in 3 to 5 seconds [11]; sweating; pupil dilation, which has the

effect of improving human long-range vision [10]; activate the adrenal medulla and

redirect the blood flow to increase the available energy in the muscles and brain.

On the other hand, the Parasympathetic Nervous System has an antagonistic func-

tion and constantly works to assist the body in maintaining homeostasis. It is re-

sponsible for energy conservation and restoring body stability after the sympathetic

system activation caused by stressful situations [10]. Some processes regulated by

the parasympathetic system are the redirection of more blood to the intestines to

promote the digestion processes; decreasing the heart rate and blood pressure (in

extreme circumstances the arterial pressure can be drastically reduced during 10 to

15 seconds causing fainting [11]) and pupils’ constriction, which enables closer vision

improvement [10].
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Figure 2.2: Schematic representation of the ANS and the several functions it controls.
Adapted from [15]

2.2 Cognitive Stress

In a normal and calm environment, the human body establishes a dynamic equilib-

rium called homeostasis [16]. As seen in section 2.1.1, the parasympathetic nervous

system takes control during this equilibrium [10]. Stress is an actual or anticipated

disruption of this equilibrium [16]. This disruption occurs when the existing men-

tal and physiological resources are insufficient to meet current demands, such as a

response to an actual physical dangerous situation or when a person is a few min-

utes away from the deadline of important work submission [17]. The stress reaction
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allows the body to adjust to the stimuli that provoked the homeostasis disruption

by supplying the body with additional suppressing the immune system [18]. Dur-

ing these situations of stress, the sympathetic nervous system takes over while the

parasympathetic is suppressed [17].

Cognitive stress is the stress provoked by increased cognitive load demands, such as

the cognitive stress induced when solving arithmetic equations [18, 19]. According

to the Cognitive Load Theory [20], cognitive architecture is divided into working

memory and long-term memory. Working memory is the limited memory employed

for all conscious activities, such as reading. On the other hand, long-term mem-

ory corresponds to the memories and knowledge stored that can be accessed by the

working memory. The cognitive load is the quantity of information being processed

by the subject and can not exceed the working memory limit. Different factors can

influence the cognitive load, such as the subject’s characteristics, the environment or

the complexity of the task being performed. A task with higher complexity will re-

quire an increased mental effort (i.e. cognitive capacity allocated to the task) than a

lower complexity task, producing a higher cognitive load which induces more cogni-

tive stress [20].These changes in cognitive stress levels manifest themselves through

Autonomous Nervous System (ANS) variations and are reflected in biosignals con-

trolled by the ANS, such as the Heart Rate Variability (HRV) or the pupil diameter

variation [10,19].

2.3 The Heart

The Human Heart can be found in the thoracic cavity, slightly placed left to the

body’s centre midline and is the central organ of the circulatory system. This system

is composed essentially of the heart and a system of arteries, veins and capillaries,

and is responsible for supplying the different body parts with nutrients and oxygen

transported in the bloodstream. The heart is accountable for pumping the blood

through the body’s blood vessels so that it reaches all the body components, acting

as a ”muscular pumping mechanism” [21].

In terms of anatomy, the heart has four cavities, two ventricle chambers (left and
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right), and two atrium chambers (left and right). During the circulation process, the

blood arrives from the body in the heart’s right atrium, then to the right ventricle,

where it is pumped in the direction of the lungs for gas exchanges (pulmonary

circulation). The oxygen-enriched blood returns to the heart through the left atrium,

from where it goes to the left ventricle so that it can be pumped to the rest of the

human body (systemic circulation). In order to prevent blood reflux, the heart also

has a set of valves which force the blood to flow in the correct direction. Two

atrioventricular valves connect the atriums and ventricles (tricuspid valve on the

right side and bicuspid valve on the left), and semilunar valves that manage the

blood flow between the heart and other body parts (pulmonary and aortic valves)

[21].

Figure 2.3: Schematic representation of the heart. Adapted from [22]

2.3.1 Electrocardiogram

The Electrocardiogram (ECG)) was reportedly first introduced in 1902 and, despite

consisting in an initial less advanced form, allowed the medical and scientific commu-

nity to collect objective information relative to how the human heart works. Later
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developments through the 20th century’s first half led the ECG to evolve and im-

prove to the current 12-lead electrocardiogram widely spread form [23]. Nowadays,

the ECG plays a massive role in the first line of diagnostic and health monitoring

for patients with cardiovascular malfunctions, such as arrhythmias, myocardial is-

chemia or infarction, to name a few [24]. Furthermore, with the advancement of new

technologies, namely in the several fields of machine learning and data analysis, the

ECG is currently being used for smart health monitoring systems, and other smart

solutions, including cognitive stress assessment [25].

The ECG is a technique that records the electrical activity generated by the func-

tioning of the heart through electrodes positioned at the surface of the body [26]. In

the standard 12-lead ECG, which is currently one of the most clinical used configu-

rations, ten electrodes are positioned on the patient’s chest and limbs. The process

behind the electrical signal collection is the cardiac cycle which, in short, consists

of the atria and ventricles depolarization/contraction (the systole) and repolariza-

tion/relaxation (the diastole). This activity produces an electrical current in the

heart that spreads along the adjacent tissues and is then captured by the electrodes

positioned on the surface of the body throughout the ECG exam.

During the ECG signal collection, a set of waves correspondent to the cardiac cycle

sequenced moments is captured. This set is the PQRST complex and represents

an entire cardiac cycle. This complex starts with the P wave, which results from

the atria depolarization, and the sequence continues with the QRS complex, which

represents the ventricular depolarization. Finally, the T wave reflects the ventricular

repolarization [26].
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Figure 2.4: Schematic representation of two heartbeats captured by the ECG.
Adapted from [27]

From the ECG signal is possible to extract different information, including the

variance of the PQRST complex, the intervals between heartbeats and the heart

rate, among other features that can be processed to evaluate the patient’s health

condition. One of the most studied measurements that can be computed from the

ECG is the Heart Rate Variability (HRV), which has several applications ranging

from health conditions evaluation to cognitive stress detection [28,29].

2.3.2 Heart Rate Variability

The Heart Rate Variability (HRV) is a time series bio-signal that can be computed

through the detection of the R-peaks present in the ECG signal. By definition, the

HRV is the variance in the time duration of the intervals between consecutive heart-

beats, known as R-R intervals (or NN intervals), which are measured in milliseconds

(ms) [30]. The HRV can be influenced by several different physiological factors,

such as the subjects’ age, gender, ethnic group, lifestyle behaviour or the presence

of chronic diseases [31]. Heart and respiratory rates have also been observed to af-

fect the HRV [32, 33]. A healthy heart is expected to present chaotic dynamics. It

is characterized by a higher HRV so that it can rapidly react to different internal

or external stimuli, for instance, to respond to acute ischemia, imbalances in the
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metabolism or alterations in physical or mental activity [28]. Several health condi-

tions have been observed to cause the decrease in the HRV, diminishing the heart’s

capability of replying to these stressful events [34].

In order to achieve the stability of the cardiovascular system and efficiently respond

to sudden changes such as the previously mentioned, the ANS controls the heart rate,

the blood pressure and other elements of this system that influence the HRV [28].

The R-R intervals are believed to behave like an index of the autonomic control [35]

since they are influenced by the dynamic interaction between the parasympathetic

and the sympathetic systems signals delivered to the heart (via the sinoatrial node).

The parasympathetic activation reduces the heart rate in a process mediated by

the synaptic release of acetylcholine. In contrast, sympathetic activation increases

the heart rate, which is mediated by the synaptic release of noradrenaline. The

metabolization of the acetylcholine occurs with short latency, and so the parasym-

pathetic activation is associated with the higher frequencies of the HRV, whilst the

sympathetic activation is related to the lower frequencies of the HRV since the no-

radrenaline reabsorption and metabolization are slower [28]. In this way, the HRV

spectrum analysis can provide a measure of the sympathovagal balance [36]. The

R-R intervals have also been reported to have a strong relationship with a subject

cognitive load [37].

The mentioned facts make the HRV a non-invasive solid marker of the ANS activity.

Several studies point to the HRV potential to be used not only for diagnosis and

prognosis of health problems [38], but also for assessing a subject cognitive load.

Several features can be extracted from the HRV time series across Time, Geometri-

cal, Non-linear and Frequency Domains that can be used to assess the different ANS

dynamics. These measurements can be extracted using different recording periods

and are divided into three main categories, the long-term HRV measurements, last-

ing 24 hours; the short-term HRV measurements, which are recorded for around 5

minutes; and the ultra-short-term HRV measurements, which are the ones with the

segments of analysis lasting under 5 minutes [39]. The time resolution of the HRV

features will be further discussed in Chapter 3.

13



2. Physiology Background Concepts

2.4 The Eye

The human eye is the sense organ responsible for collecting visual images. After

being captured, the images are delivered from the eye to the brain, where they are

processed and interpreted, allowing the human to be aware of his surroundings.

Anatomically speaking, the eye resembles a sphere assembled with a small portion

of a second transparent sphere with a higher curvature (cornea). Under the cornea

lies the iris, which consists of a coloured ring of tissue; as the cornea is transparent,

the iris colour defines the colour of the eyes. The structure that captures the light

necessary to collect the visual images is the pupil, which is located in the centre of

the iris. The pupil has a dark appearance, resultant of the fact that the light, which

passes by the pupil into the eye, is almost entirely not reflected [40]. The pupil size

(diameter) changes according to the environment’s light intensity and other factors

regulated by the ANS, namely by the sphincter and the dilator muscles [41]. The

sympathetic activation induces pupil dilation, which improves the human long-range

vision ability, while the parasympathetic activation results in pupil constriction,

leading to improvements in the closer vision capabilities [10].

Figure 2.5: Schematic representation of the eye. Adapted from [42]
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2.4.1 Eye-tracking and Pupillography

The optical channel carries almost 80% of all human collected sensory perceptions,

and besides being the most abundant, the visual data is also the fastest to reach

the brain. These exciting facts make the sight a very appetizing sense in many

physiologic research fields [43]. However, despite some reported studies dating back

to as early as the 19th century, the Eye-tracking technology was only first introduced

at the start of the 20th century [44]. This technology at that time allowed the tracing

of horizontal eye movements.

In the present day, the most common eye tracking devices use infrared cameras

to detect the reflection on the pupil and cornea of near-infrared lights directed to

the eyes. The eye tracking devices can provide x and y coordinates for the eye

movements, allowing the detection of the exact location to where the subject is

staring, with some devices also being capable of collecting the pupil size (diameter

or area) [45,46].

The collection of the pupil size variation by the eye tracking device results in a

time-series signal, the pupillography signal. As mentioned before, the pupil size is

controlled by muscles that are regulated by the ANS, i.e., which are managed by the

parasympathetic and sympathetic nervous systems [47]. In this way, from the eye

activity can be extracted different measurements, such as the blink duration, the

blink rate, the pupil-size variability, the pupil diameter, the fixed staring duration,

or other features resultant from the pupillography spectrum analysis, that can be

used to assess the subject’s ANS dynamics and act as a measure of the cognitive

stress. These traits make pupillography increasingly popular, and many studies have

been recently developed using this non-intrusive signal as an index of mental effort

[7, 48].
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State of the Art

3.1 Overview

Software development is a cognitively demanding task requiring a lot of focus,

decision making and logical reasoning. Conventionally, software development in-

volves (usually) seven phases: planning, analysis, design, development, testing and

maintenance. These phases compose the Software Development Life Cycle (SDLC);

through the years, different strategies have been created to model the SDLC. Two of

the most commonly used SDLC models are the waterfall and the agile models. The

waterfall model essentially consists of a sequence of stages where a stage’s output

is the next stage’s input. The agile models are processed incrementally and itera-

tively, allowing a quick response to requirements changes. Both methodologies have

characteristics optimized for different software requirements. The agile models are

ideal for developing small and useful software, having shorter delivery time frames,

and the waterfall model is the best approach regarding larger projects with precise

specifications [49]. However, software faults are practically unavoidable even when

using adequate planning and delivering methodologies, making software reliability

one of the most prevalent concerns in this industry [4, 50].

Nowadays, society relies hugely upon technology systems to perform various activi-

ties, including critical activities such as aviation control or assisted surgery. Behind

these systems often lies complex software, so the concerns about software reliability

have constantly been increasing, leading to the appearance of different approaches

to avoid software faults (bugs), including verification, validation, software testing,

and proof methodology strategies. The BASE project focuses exactly on fault avoid-
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ance, namely in fault prevention, fault removal, and fault forecasting [4]. It intends

to prevent the faults before the software deployment using biofeedback from the

programmers to identify the code sections more prone to having bugs.

Software faults typically occur in the most complex code areas, and as so, code

complexity measures can be included in the fault avoidance techniques [4]. How-

ever, assessing the code complexity level is not a straightforward process. A study

dating back to 1988 evaluating software complexity measures, performed by Elaine

J. Weyuker, reports the strengths and weaknesses of different complexity metrics,

including Halstead’s effort metric and McCabe’s cyclomatic metric [5]. The first

method is based on the number of mental comparisons required to generate a pro-

gram [51]. While the second is related to the decision structure of a program,

accounting for the different control paths existing in the program [51,52]. Unfortu-

nately, both measures are revealed not to be sensitive enough to specific contexts

and fail to consider interactions between different program components [5]. Using

biofeedback from the programmer, the BASE project intends to identify the code

sections’ complexity according to the subject’s cognitive stress. With this approach,

the project expects to account for the several factors involved in software develop-

ment and even allow personalized software faults detection models, signaling code

areas where the programmer had a higher cognitive load as being more prone to

bugs.

Several studies have been conducted throughout the years aiming to detect cogni-

tive stress using biosignals. Some approaches include pattern recognition methods

using electroencephalogram (EEG) spectral features to distinguish different levels of

cognitive load [53]. Cognitive stress is known to affect ANS activity, with both the

increment in sympathetic activity and the reduction in the parasympathetic activity

being linked to a decline in performance during the execution of cognitively demand-

ing tasks [37, 54]. This way approaches using biosignals controlled by the ANS are

becoming increasingly popular. These signals can often be collected using non-

intrusive devices, and some examples are Pupil Diameter (PD), Electrocardiogram

(ECG), Electrodermal Activity (EDA) and Photoplethysmogram (PPG) [55,56]. In

the present study, we will focus on the HRV (extracted from the ECG) and on the
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pupil size variation (Pupillography) to assess stress manifestations.

3.2 Heart Rate Variability measurements

Across different papers that approach the HRVanalysis, the most common features

referenced in the time domain are mean NN (mNN), SDNN, SDSD, RMSSD, NN50

and pNN50 (see HRV features terminology in table 5.1). Regarding Power Spectrum

Density analysis, the frequency domain is divided into three bands, the very-low-

frequency band (VLF: under 0.04Hz), the low-frequency band (LF: 0.04 to 0.15Hz),

and the high-frequency band (HF: 0.15 to 0.40Hz) [57]. The features extracted from

each band most referenced in the literature are the total power and the peak. The

ratio between the LF power and the HF power is also frequently mentioned.

Some of the previously mentioned features have already been linked to physiological

dynamics. Starting with the VLF band is mentioned to be a heart’s intrinsic nervous

system consequence. The SDNN, as mentioned in [57], is influenced by every cyclic

component responsible for variability in the recording period. This feature is highly

correlated with the LF band, and the two are associated with both the sympathetic

and parasympathetic systems dynamics. The LF band is as well linked to blood

pressure regulation via baroreceptors. The features RMSSD, pNN50 and the HF

band are also correlated and are closely influenced by the parasympathetic system.

Thus, the ratio between LF power and HF power is believed to be a good measure of

the balance between the sympathetic and parasympathetic systems. Although this

belief is not consensual and this relationship is not as straightforward as some once

believed, we can still look at this ratio as a metric of one system’s predominance

over another [6].

In addition to time and frequency domains, several authors also pursued the extrac-

tion of measures in the non-linear space in order to unveil non-linear HRV patterns.

Based on the studies present in the literature, several measurements have been se-

lected, focusing on their consistency when extracted using small time frames (e.g., 5

mins) [35,58–60], which are: Approximate Entropy, Poincare’ plot parameters (SD1

and SD2), Point Transition Measure, Katz Fractal Dimension and Higuchi Fractal
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Dimension from the non-linear domain, Stress Index, HRV Triangular Index and

TINN from the geometric domain were the ones selected.

3.2.1 Ultra-short-term HRV

Heart Rate Variability is conventionally used for the analysis of cardiac diseases

in recordings lasting 24 hours, the long-term HRV measurements, or in 5 minutes

recordings, the short-term HRV measurements [39]. Short-term HRV features (ap-

proximately 5 minutes in length) are already a standard and are currently well

accepted as suitable time frames for extracting accurate HRV measurements [57].

However, the need to extract HRV measurements using time frames shorter than 1

minute (ultra-short-term HRV features) has grown due to several reasons [38,59,61].

Among these are the need to reduce the time spent and costs in the extraction of

these indexes; the fact that they are incompatible with the dynamics of the physio-

logical mechanisms to be captured (e.g., cognitive load spikes during code compre-

hension tasks execution); or the need to extract these features in new environments

using modern wearable devices [61]. Also, the interest in using HRV in software

engineering is growing very fast, and applications such as the identification of prob-

lematic code areas (that may have bugs and need revision) require a swift response

in assessing programmers’ cognitive load using HRV features [62]. To ensure a real-

time response and to detect acute cognitive stress changes, we need time analysis

windows as short as possible to achieve the required time resolution. This way, a

wide range of new applications can benefit from the advances in the ultra-short-term

measurements field and several studies have been conducted focusing on investigat-

ing the reliability of these ultra-short-term HRV features compared to the short-term

ones.

In order to evaluate the ultra-short-term HRV measurements’ reliability as a sur-

rogate of the short-term HRV, different analyses can be performed. A procedure

proposed by Pechia et al. [35] included a correlation analysis to test the existence of

a significant association between features. If the correlation was significant and the

correlation coefficient was above 0.07, perform a Bland-Altman plot to analyse the

degree of bias. In case the data dispersion remains within the 95% line of agreement,
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the final step was to perform an effect size statistic (Cohen’s d Statistic to parametric

data or Cliff’s Delta Statistic to non-parametric data). The feature is then consid-

ered a good surrogate if the effect size statistic test only detects minor differences.

The mentioned procedure agrees with Shaffer et al. [38], which recommend using

correlation/regression analyses paired with a Bland-Altman plot. Both works agree

that only a correlation analysis is not enough to determine if an ultra-short-term

HRV feature is a good surrogate of the short-term HRV. In fact, the two compared

measurements can be highly correlated but have significantly different values.

A 2017 study carried out by Castaldo et al. [59] used Bland-Altman plots and

Spearman’s rank correlation analysis to assess which ultra-short-term HRV features

are a valid surrogate of the short-term HRV. The study also built a machine learning

model using ultra-short-term HRV features to discriminate between stress and rest

states. The conclusions were that mean HR, the standard deviation of HR, mNN,

SDNN, HF, and SD2 are appropriate short-term HRV surrogates for cognitive stress

assessment. The paper also highlighted a machine learning model obtained using

the mNN, the standard deviation of HR, and the HF features, which achieved an

accuracy above 88%.

In Salahuddin et al. [39], the authors used mobile-derived ECG recording to extract

several HRV measurements and the Kruskal-Wallis test to analyse the reliability of

these measurements. It was ”assumed that short-term analysis was not significantly

different to the 150 seconds analysis if the p-value was greater than 0.05”, and the

goal was to find until which window span a feature is a good estimative of the 150-

second window. The authors concluded that mean HR and RMSSD extracted using

10 seconds were not significantly different from the estimates using 150 seconds. This

finding was also confirmed when using 20 seconds windows for extracting pNN50,

HF, LF/HF, LFnu and HFnu features, 30 seconds for LF features and 50 seconds

for VLF features. As for the remaining features studied by the authors, a minimum

time frame of 60 secs was necessary for extracting features that were not significantly

different from the 150 seconds reference features. This study data was recorded

during the subject’s day-to-day activities, like normal daily work, study, physical

activities, and sleep.
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In Baek et al. [63], a similar approach has been used to evaluate the reliability

of ultra-short-term HRV measurements as short-term (5 minutes) HRV surrogates.

The data was acquired in 5 minutes recordings while the subjects were ”sitting at

rest in a comfortable chair”. In order to accomplish the proposed goal, the authors

computed the p-value by the Kruskal–Wallis test, the Pearson correlation r and

the Bland–Altman plot analysis comparing the 5 minutes short-term measurements

with the ultra-short-term ones with different time frames (270, 240, 210, 180, 150,

120, 90, 60, 30, 20, and 10 seconds). The highlighted features with the best results

in this study were the mean HR, where 10 seconds windows were used to get results

comparable to the 5 minutes analysis, the HF, which required 20 seconds windows,

and the RMSSD, which required 30 seconds windows.

Following similar approaches, other works, such as the publications by Landreani

et al. [61], Li et al. [64], Salahuddin et al. [65], Nussinovitch et al. [66] and

McNames et al. [67], converged on a set of conclusions, where mean HR, mNN,

SDSD, RMSSD, pNN50, HF, LF/HF, LFnu and HFnu were shown to be reliable

under the 60 seconds recordings.

Overall Remarks

For the reported works, it is possible to conclude that ultra-short-term measure-

ments are far from being consensual. Due to their extraction particularities only

some features keep their stability under small window constraints. Additionally, it

is still unclear what is the time frame limit for each HRV feature that can be applied

to compute a reliable surrogate of its counterpart extracted from 5 minutes record-

ings. Furthermore, the studies found related to this topic have some limitations

since they were developed with the subjects either at rest or performing elementary

tasks in controlled environments, which are not expected in real-life contexts. In

this work, we aim to elucidate these aspects and validate them under stressful and

intellectually demanding environments, more precisely with the subjects performing

software code inspection tasks (i.e., bug detection), which is a highly complex, dy-

namic, and cognitively demanding task. Our work’s primary goal is to investigate

the ultra-short-term HRV features to determine whether HRV-based tools can ef-
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fectively be used in software development environments. To this extent, our present

study investigates the smallest time frame, i.e., the shortest time resolution, where

each feature is reliable. We also expect to investigate the ultra-short-term HRV

measurements discrimination ability between two levels of acute cognitive stress

(low and high complexity code sections) and how it is affected by the time frame

reduction.

Another relevant aspect that is worth to be mentioned is that the existing studies

perform an inter-subject statistical analysis of the features, i.e., perform the corre-

lation or statistical analysis after concatenating the features collected from different

subjects. This fact can lead to biased correlation values since it captures the inter-

subject feature tendencies that may overwhelm the actual feature tendencies. In

order to avoid this kind of bias, our study performs an intra-subject and intra-run

feature statistical analysis.

3.3 Pupillography measurements

Pupillography measurements are becoming increasingly popular for clinical appli-

cations. One of the main advantages of this bio-signal is that it can be collected

through non-invasive infrared video devices. Pupillography can be used, for instance,

to detect visual field or afferent pupillary defects, accurately evaluating the pupil

size variation (diameter) produced by changes in the environmental light intensity

(Pupillary Light Response - PLR). Other pupillography applications include quan-

tifying the autonomic effects of pharmaceuticals or measuring emotional responses

such as fear, anger or stress, which have pupil dilation effects [68].

Several studies have investigated the relationship between mental activity and pupil

size. A study by Hess et al. [69], dating back to 1964, experimented with using pupil

size variation as a measure of cognitive load during simple problem-solving and con-

cluded that the pupil size increases with the problem difficulty level (increase in

cognitive load). In another study by Chen et al. [7], eight different features of eye

activity were extracted as a measure of human cognitive load to discriminate be-

tween two cognitive stress levels. The features present in the experiment were the
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mean and the standard deviation of the pupil size, the blink latency and the blink

rate, the fixation time and rate, and finally, the saccade size and speed. The inves-

tigation concluded that the present features have significant discriminative power in

discerning the two cognitive stress levels.

In Pedrotti et al. [70], the authors followed a different approach using pupillography

frequency domain features to distinguish four different driving tasks with different

levels of complexity. The experiment showed a four-way parallel neural network

classifier that obtained 79.2% precision using these features. This study also men-

tioned the lack of consensus regarding the frequency bands of the pupillography and

their approach using wavelet transforms. In fact, several papers can be found using

different bands for the frequency band analysis.

In an investigation conducted by Lüdtke et al. [71], after the detection and removal

of blink artefacts, a frequency analysis of the pupillography was performed using a

Fast Fourier Transform (FFT) in the 0.0 to 0.8Hz frequency region. The region was

split into eight bands of 0.1Hz length, which were used to discern sleepiness from

alert states. Significant differences were found between the alert and the sleepy

groups using Mann–Whitney U-test. Another different study by Nakayama et al.

[72] demonstrated the increase in Power Spectrum Density (PSD) in the regions

of 0.1 to 0.5Hz and 1.6 to 3.5Hz with the complexity escalation of oral calculation

tasks.

In Murata et al. [47], the low-frequency band was considered from 0.05 to 0.15Hz,

while the frequencies ranging from 0.35 to 0.40Hz belonged to the respiration fre-

quency band. The ratio between those two bands was employed to evaluate the

cognitive load. Furthermore, in a 2015 study by Peysakhovich et al. [73], a similar

approach used the LF/HF ratio to assess the subjects’ cognitive load. The ratio

was concluded to be sensitive to cognitive load and not affected by changes in the

environmental light. This study considered frequencies ranging from 0.0 to 1.6Hz as

part of the LF band, while frequencies within 1.6 to 4.0Hz belong to the HF band.

In order to use frequency domain features in the pupillography analysis, we need to

define the correct frequency bands’ limits in our experiment context. A 2004 study

by Lee et al. [74] used HRV as ground truth to evaluate different pupil size estimation
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methods. In the experiment, the approach was to compute the correlation between

the LF/HF ratio extracted from the HRV and the same ratio extracted from the

pupil size variation spectrum, using different methods for pupil size estimation. The

LF and HF pupillography bands considered were the same as the HRV (LF: 0.04

to 0.15Hz and HF: 0.15 to 0.40Hz), and the study obtained a maximum correlation

of 69% between the LF/HF extracted from the HRV and the same ratio computed

from the pupil size variation spectrum.

Overall Remarks

Through our research, we can conclude that the frequency bands’ limits of the

pupillography signal are neither well defined nor consensual since it is possible to

find several studies using different bands’ limits. In order to capture the acute

ANS variations with the cognitive stress increase or decrease, namely the balance

between the sympathetic and parasympathetic nervous systems, it is essential to use

the correct frequency bands. As stated in subsection 2.2.2, sympathetic activation

is related to the lower frequencies (LF band), and parasympathetic activation is

associated with the higher frequencies (HF band) [28]. In the HRV signal, the

two the LF band (0.04 to 0.15Hz) and the HF band (0.15 to 0.40Hz) are well-

documented [57]. Knowing that the HRV and the pupil size variation are both

controlled by the ANS [10], in the present study, we decided to follow an approach

using the HRV as the ground truth for the pupillography frequency bands definition.

The approach consists of varying the pupillography LF and HF band limits to find

the pupillography frequency bands that maximize the correlation between these

pupillography bands’ power and the same bands’ power computed from the HRV.
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Data Acquisition Protocol

4.1 Participants

The data used in the current work was collected in the scope of the BASE project

and aimed at the research of error making and error discovery during software in-

spection tasks. These datasets contain biometrical signals extracted using functional

magnetic resonance imaging (fMRI) and other non-invasive sensors including Elec-

trocardiogram (ECG), Electroencephalogram (EEG), Photoplethysmogram (PPG),

Electrodermal activity (EDA) and eye movements (Eye Tracking). In the current

study, we will focus on the analysis of the HRV computed from the ECG signals

and on the Pupillography signals obtained from the eye tracking during the periods

associated with the code sections inspected by the subjects.

In order to collect the data used in the study, we opened a call for participation in

the experiment. Through this process, we obtained 49 candidates consisting of a

mixture of students (pursuing PhDs and MSs in different computer science fields),

academic professors, and professional specialists in the software sector (code review-

ers). The candidates were then interviewed and screened to guarantee their fitment

to the study objectives. During the interview, demographic and biometric charac-

teristics (e.g., age), professional status, programming experience, availability and

motivation were accessed. Subsequently, each candidate’s proficiency level has also

been accessed based on the score provided by two questionnaires: 1) Programming

experience questionnaire and 2) Technical questionnaire. The first questionnaire

aimed to assess the candidate’s programming experience based on the candidate’s

coding volume in the last three years. The second questionnaire’s goal, composed of
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10 questions, was to assess the candidate’s coding skills. The programming experi-

ence gives us an overall idea of the experience in the past years from the candidate:

1. Experience in SW programming (Number of years)

2. Coding lines programmed in any language in the last 3 years (approximate

number)

3. Coding lines programmed in C in the last 3 years (approximate number)

4. Coding lines written in the most extensive C program written (approximate

number)

On the other hand, the technical questionnaire was used for the candidate char-

acterization regarding the present knowledge and coding skills, which is, therefore,

more helpful in selecting and classifying the candidates. Based on the results ob-

tained in these questionnaires, the candidates with a score below 3 (out of 10) were

considered not eligible since they were not representative of software industry profes-

sionals. The remaining ones were characterized as non-experienced (score between

4 and 7) and experienced (score between 8 and 10).

In summary, 21 male subjects, ranging from 19 to 40 years, with a median of 22

years, were selected for the experiments after the screening process.

All subjects provided a written informed consent, and all the data has been anonymized.

This study was approved by the Ethical Committee of the Faculty of Medicine of

the University of Coimbra, following the Declaration of Helsinki and the standard

procedures for studies involving human subjects.

4.2 Experimental protocol and setup

The selected candidates were submitted to 4 different runs of code inspection tasks

using 4 code snippets written in C code language (selected randomly at each run).

Each run starts with a fixation cross in the middle of the screen for 30 seconds.

Subsequently, three tasks are presented to the subject: a natural language reading

(literary excerpt) task, a neutral (bug-free and straightforward code) code reading

task, and one code inspection (code with bugs) task. The order of the presentation

was randomly selected to avoid biasing the results, following a randomized control
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crossover design. Between each task and at the end of each run, a fixation cross is

presented to the subject for 30 seconds. The description of each task is provided as

follows:

1. Natural language reading - In this task, a text in natural language is pre-

sented to the subject (selected randomly from the existing 4 different texts) for

60 seconds. The presented texts were selected in order to have neutral char-

acteristics and avoid measurement fluctuations induced by narrative-triggered

emotions.

2. Simple code snippet reading - In this task, the subject is presented with a

simple and iterative code snippet (selected randomly from the set of 4 different

neutral code snippets) for 300 seconds. The presented code snippets were

selected with the objective of inducing the subject into a low cognitive effort

state which will be used as a reference state during the posterior analysis.

3. Code inspection - In this task, a code snippet in C language is displayed

to the subject (selected randomly from a set of 4 different code snippets of

different complexities) for a maximum of 600 seconds. In this task, the subject

is asked to analyze and inspect the code aiming for bug detection (see code

snippet example in figure 4.1).

Figure 4.1: Example of a code snippet inspected during the experiment.
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The schematic representation of each run is provided below (see figure 4.2).

Figure 4.2: Schematic representation of an experiment run.

Each run had a duration of about 21 minutes, meaning that the whole protocol lasted

about 1 hour and 20 minutes. During the experiment, the subjects were alone in

a quiet, isolated room when performing the tasks. Furthermore, the subjects were

informed apriori about all the protocol and processes of the experiment and were

instructed not to take anything that could stimulate/inhibit them the day before

the experiment. The code inspection tasks were presented to participants using the

Vizard software [75].

The equipment used to collect the Electrocardiogram (ECG) signal was the Maglink

RT (Neuroscan) with a sampling frequency of 10 kHz [76] (see equipment set up

in Figure 4.3). For the ECG signal acquisition, the electrodes from Neuroscan

equipment were positioned in the V1 and V2 locations. The EyeLink 1000 Plus Eye

Tracker (with Long Range mount display) with a sampling frequency of 500 Hz was

the equipment utilized to acquire the pupilogram and eye movements [77].

Figure 4.3: Equipment set up used in the experiment.
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Heart Rate Variability

measurements

This chapter contains the study conducted to investigate the ultra-short-term HRV

measurements reliability following two different approaches. The first approach

used a statistical analysis (statistical significance tests, correlation tests and Bland-

Altman plots) to investigate the lower time frame where each feature is reliable. The

second approach examines the impact of reducing the window size in the complexity

classification of software code sections. This chapter is divided into three main

sections: Methods, where the methodology used in the experiment is described;

Results, where the obtained results are presented; and Discussion, where the results

obtained are discussed.

5.1 Methods

This section describes the practical steps and methods performed to investigate

the reliability of the ultra-short-term HRV measurements. The ECG signal is pre-

processed and segmented to obtain the R-R time series (HRV) before the ultra-

short-term HRV measurements extraction using 18 different time frames. These

measurements’ reliability is then investigated using a statistical analysis approach

(statistical significance tests, correlation tests and Bland-Altman plots) and a clas-

sification approach (with linear SVM classifiers). Figure 5.1 represents the general

flow chart of the experimental steps followed for the HRV measurements quality and

reliability study using the statistical and classification approaches.
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Figure 5.1: General Flow Chart of the experimental steps followed for the HRV
measurements quality and reliability study.

5.1.1 Pre-processing and ECG segmentation

During the present experiment, several different biosignals were collected. Func-

tional Magnetic Resonance Imaging (fMRI) was one of the exams performed. This

exam forces the experiment to be conducted inside an MRI scanner. The fMRI has

a noise effect in the ECG signal, which induces the gradient artifact (GA) on this

signal. In order to remove the GA, we performed an average artifact subtraction

(AAS) method based on the algorithm from Niazy et al. [78], which allows the mit-

igation of the GA effect. Furthermore, the MRI scanner produces a magnetic field

which impacts and alters the ECG morphology, making the T-wave more extensive

than the QRS complex and reducing the R-wave amplitude. These changes in the

ECG morphology lead to the failure of the traditional QRS detection algorithms,

which ultimately leads to the incorrect R-R intervals computation.

In these scenarios, the R-peak detection method proposed by Christov et al. [79]

is frequently employed. This algorithm has proven to be robust to the changes in

the ECG morphology, and it achieves high performance in the R-peak detection on

ECG signals collected inside the MRI scanner. This way, we utilised the Christov et
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al. [79] algorithm for the R-peak detection and visually inspected the data obtained

to examine the R-peak detection method quality. After concluding the R-peak

detection process, we computed the R-R intervals to achieve the HRV time series.

5.1.2 Feature Extraction

In order to carry out the HRV analysis, following pre-processing and ECG segmenta-

tion, we proceed with the features extraction from the Code inspection data collected

during each subject run. This data corresponds to the most cognitively demanding

task of the current experiment, where the subject inspects code snippets, having

sections of different complexity levels, aiming to find software faults (bugs). A total

of 31 features across Time, Geometrical, Non-Linear and Frequency domains were

extracted using a sliding window of variable size and a jumping step of 1 second.

The sliding window size used was ranged from 3 minutes to 10 seconds, being itera-

tively reduced by 10 seconds, making up a total of 18 different windows (see Figure

5.2). All 31 features were extracted by applying the 18 different sliding windows.

The 3 minutes (180-second) sliding window was used as the gold standard in the

statistical and classification approaches. This time frame was the larger window size

since the study was performed during a highly complex, dynamic and cognitively

demanding task (code inspection). In the present context, a 5 minutes time frame is

a considerably large window. A window of this size would capture physiological data

corresponding to more than one code section, where the subject could feel different

difficulty levels, leading to inaccurate results since it would capture different ANS

dynamics.

Figure 5.2: Schematic representation of the extraction of a feature using one of the
sliding windows. In the end we obtain a total of 558 feature vectors, corresponding
to the 31 features times 18 window sizes, for each experiment run.

The described extraction procedure produces vectors of individual measurements

from the HRV data collected during the Code inspection task (to facilitate referenc-
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ing, we will call these the ‘Extracted Feature Vectors’). Each individual measure-

ment is computed based on a RR signal portion with the size of the sliding window

employed. The individual measurements are then associated with the time instant

corresponding to the center of the RR signal portion used to compute the respective

individual measurement.

It is important to mention that the same RR signal originates ‘Extracted Feature

Vectors’ of different lengths accordingly to the time frame applied in the extrac-

tion process. The vector obtained with the 180-second sliding window is the one

with fewer individual measurements, while the vector extracted with the 10-second

sliding window is the larger, having more individual measurements. In this study,

the ‘Extracted Feature Vectors’ are directly used in the statistical approach. In the

statistical analysis, these measurements do not need to be normalized since the sta-

tistical analysis is performed run by run and subject by subject, not being impacted

by the inter-run and inter-subject variability. For the classification approach, these

‘Extracted Feature Vectors’ were baseline normalized before the feature transforma-

tion used in the classification process.

5.1.2.1 Feature Description

The set of 31 features in study includes six features from the Time Domain, three

from the Geometrical Domain, six from the Non-Linear Domain, and 16 from the

Frequency Domain. The different features were selected based on the current litera-

ture on the subject of Ultra-Short-Term HRV measurements and are the result of a

search for the most reliable features extracted using small time frames. This section

briefly describes the 31 features present in the current study (summarized in Table

5.1).

1. Time Domain Features

In this experiment, we computed the standard six most referenced features in

the literature from the time domain: mean of NN (or RR) intervals (mNN),

standard deviation of NN (or RR) intervals (SDNN), the standard deviation

of the differences between heart beats (SDSD), the root mean square of the

differences between heart beats (RMSSD), the number of consecutive RR
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intervals differing more than 50 milliseconds (NN50) and the proportion of

consecutive RR intervals differing more than 50 milliseconds (pNN50) [30,35,

57,80].

• The mean NN (mNN) is precisely the mean of the RR intervals, which

can be computed by [80]:

mNN =
1

N

N∑
n=1

RRn (ms) (5.1)

• The standard deviation of RR intervals (SDNN) can be obtained by the

formula [80]:

SDNN =

√√√√ 1

N − 1

N∑
n=1

(RRn −mNN) (ms) (5.2)

This measurement represents the HRV time series short-term and long-

term variations [80].

• In the standard deviation of the differences between heartbeats (SDSD),

we first must compute the difference between adjacent heartbeats and

then calculate the standard deviation of the resulting values [57]. It is

worth mentioning that the vector resulting from the computation of the

difference between adjacent heartbeats will have one element less relative

to the original RR vector. The formula used for the SDSD computation

is the following [80]:

SDSD =
√

E{∆RR2
n} − E{∆RRn}2 (ms) (5.3)

In contrast to the SDNN, the SDSD characterizes the short-term (beat-

by-beat) variability [80]. It is also important to note that for stationary

RR series: E{∆RRn} = E{∆RRn+1} − E{RRn} = 0. This means that

SDSD equals the root mean square of the differences between heartbeats

(RMSSD) for stationary RR series [80]. The SDSD and the RMSSD

measurements present a high correlation between the two.
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• The root mean square of the differences between heart beats (RMSSD)

is calculated by the following expression [80]:

RMSSD =

√√√√ 1

N − 1

N−1∑
n=1

(RRn+1 −RRn)2 (ms) (5.4)

• In order to obtain the NN50 feature, the number of consecutive RR inter-

vals differing more than 50 milliseconds is counted. The pNN50 feature

is the percentage of consecutive RR intervals differing more than 50 mil-

liseconds [80]:

NN50 = count(|RRi+1 −RRi| > 50ms) (5.5)

pNN50 =
NN50 × 100

N − 1
(%) (5.6)

2. Geometrical Domain Features

The RR intervals sequence can form a geometrical pattern that geometrical

domain features can characterize [81]. From the geometrical domain, three

features were extracted, the HRV Triangular Index (TI), the Triangular Inter-

polation of RR (or NN interval) Histogram (TINN) and the Baevsky’s Stress

Index (SI).

• To determine the HRV Triangular Index (TI), we start by computing a

Histogram of RR intervals with a bin size of 1/128 seconds [81]. Then the

HRV Triangular Index will be given by the total number of RR intervals

D divided by the absolute frequency Y of its most frequent value X (the

mode) [81]:

TI =
D

Y
(5.7)

• The Triangular Interpolation of NN Histogram (TINN) consists of ap-

proximating the distribution histogram by a triangle, with the same bin

size as the TI measurement. Its value corresponds to the baseline width

of the NN interval histogram [81]. In order to compute the TINN feature,
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the following expression is used [82]:

TINN = M–N (5.8)

In the above expression, M and N represent the triangular function T

vertices, where T (t) = 0 for t <= N and for t >= M , and in the

modal bin, T (X) = Y . T obtains the values of linear functions with the

connection of the points (N, O) with (X, Y) and (X, Y) with (M, O).

The M and N values are defined by the triangular function best fitting

the sample distribution [82].

• Regarding the Baevsky’s Stress Index (SI), the expression used for its

computation is the following [80,83]:

SI =
Amo× 100%

2Mo×MxDMn
(5.9)

In the previous expression, Amo stands for the mode amplitude which

is denoted in the percentage form, Mo represents the mode, being this

the RR interval that appears more frequently in the series and MxDMn

which constitute the variation scope, this last variable presents the degree

of RR interval variability of the heart.

3. Non-Linear Domain Features

Referring to the non-linear measurements, we computed a total of 6 features:

the Approximate Entropy (ApEn), SD1 and SD2 from Poincare Plot Pa-

rameters, the Point Transition Measure (PTM), the Katz Fractal Dimension

(KFD) and the Higuchi Fractal Dimension (HDF).

• The Approximate Entropy (ApEn) is a measure of the complexity or ir-

regularity of the RR series. The algorithm for the computation of this

feature consists of given a series of N RR intervals (RR1, RR2, . . . , RRN),

a series of vector of length m (X1, X2, . . . , XN−m+1) is defined from the RR

intervals: Xi = [RRi, RRi+1, . . . , RRi+m−1]. Then the distance d[Xi, Xj]
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between the vectors Xi and Xj will be established as the maximum ab-

solute difference between their respective scalar components [84].

After this step, for every vector Xi, the relative number of vectors Xj

for which d[Xi, Xj] ≤ r, Ci
m(r) is calculated using the expression that

follows:

Ci
m(r) =

number of{d[Xi, Xj] ≤ r}
N −m + 1

(5.10)

Here r represents the tolerance value. Subsequently, the index ϕm(r) is

computed by taking the natural logarithm of each Ci
m(r) and averaging

them over i, as shown in the following expression:

ϕm(r) =
1

N −m + 1

N−m+1∑
i=1

ln Ci
m(r) (5.11)

In the end, the approximate entropy is estimated using the next formula

[84]:

ApEn(m,r,N) = ϕm(r) − ϕm+1(r) (5.12)

• The Poincare Plot is a geometrical and non-linear method regularly used

to analyze HRV and to represent the correlation between successive inter-

beats intervals. This method gives origin to a scattered plot that repre-

sents the beat-to-beat intervals against the prior intervals, i.e., a point in

the Poincare Plot will be the RRi on the x-axis and the RRi+1 on the

y-axis. In order to reach a quantitative analysis of the Poincare Plot, we

proceed with the adjustment of an ellipse to the scattered plot, obtaining

the standard descriptor, SD1 and SD2 [58].

SD1 is the standard deviation of the Poincare plot perpendicular to the

line-of-identity [35]. This feature represents the standard deviation of

short-term inter-beats interval variability, which is referenced to empha-

size the short-term dynamics of HRV [58]. In order to perform the SD1
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computation, the following expression is used:

SD1 =

√
2

2
std(xi − xi+1)

2 (5.13)

In this expression std represents the standard deviation of the HRV time

series and x stands for the time interval between successive beats.

On the other hand, SD2 is the standard deviation of the Poincare plot

along the line-of-identity [35]. In contrast to the SD1, this feature repre-

sents the standard deviation of long-term inter-beats interval variability,

referenced to illustrate the long-term dynamics of HRV. The expression

applied to compute SD2 is the following [58]:

SD2 =

√
2std(xi)2 −

1

2
std(xi − xi+1)2 (5.14)

• The Point Transition Measure (PTM) is a new feature proposed by Zubair

et al. [58] with the goal of quantifying not only the spatial information

but also the temporal variation at the point-to-point level of the Poincare

plot. In this way, the PTM tries to overcome the SD1, and SD2 measure-

ments limitation since these two features only present spatial information

and do not include temporal variation. In order to compute the PTM

measurement, two successive points of the Poincare plot are used, with a

moving window being applied to draw these two successive points.

To compute this feature, in the first place, we must calculate the vector’s

length and angle between two points. Then, the effects of these values

are integrated using the following expression so that a single value can

be obtained [58]:

PTM =
1

N

N∑
i=1

(li)(sin(
θi
4

)) (5.15)

In this equation, the N value corresponds to the total number of vectors,

l is the length computed between two successive points, corresponds to

the angle of the vector and the application of the number 4 is derived
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from the repetition of the angle.

• Two features regarding the Fractal Dimension were computed using two

different algorithms, the Katz Fractal Dimension (KFD) and the Higuchi

Fractal Dimension (HFD). These algorithms numerically classify wave-

forms, such as the HRV time series, by assessing their fractal dimension-

ality [85,86].

With the purpose of computing the Katz Fractal Dimension, two variables

need to be known: the total length of the curve ‘L’ and the ‘d’, which

stands for the planar extent or diameter of the waveform. The total length

of the curve ‘L’ is simply the sum of the distance between successive

waveform points [85]. To this extent, the Euclidian distance is used:

d(s1,s2) =
√

(x1 − x2)2 + (y1 − y2)2 (5.16)

In this expression, (x1−x2) is equivalent to one in all samples. ‘L’ is then

computed as the sum of all Euclidian distances between two successive

points.

The distance between the beginning point of the sequence and the point

that offers the greatest distance serves as a rough approximation for the

waveform’s planar extent or diameter, ‘d’.

d = max(dist(1,i)) i = 2,. . . ,N (5.17)

With N corresponding to the total number of points. Having these two

parameters, we can proceed to the Kratz Fractal Dimension computation,

applying the expression [85]:

KFD =
log10(n)

log10(n) + log10(d/L)
(5.18)

In the previous equation, ’n’ represents the number of steps in the wave-

form, which is equal to the subtraction of 1 to the total number of points

(n = N − 1).

The Higuchi Fractal Dimension (HFD) consists of computing the mean
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length of the curve for every k-sample set and, after that, in log-log scale,

making a plot of the length curve against the k parameter. The resulting

slope of the graphic will express the Higuchi Fractal Dimension (HFD)

[86].

In this way, the estimation of the optimal maximum parameter k, kmax,

is needed. In order to find this parameter, a search was conducted

throughout plotting HFD values against different kmax [86]. We con-

cluded that no more improvements were observed after a kmax value

equal to 50, and the HFD value remained stable. It is also important

to mention that the kmax parameter must be less than half the window

length since it is the maximal distance between compared instances [87].

The analysis windows in the current study range from 10 to 180 seconds.

In this way, a kmax value of 50 cannot be used in any window with a size

below 100 seconds. Saying so, regarding the windows from 180 to 100

seconds, the kmax = 50 was applied in the HFD computation. Mean-

while, the kmax used was precisely half the respective window size for

the other time frames in the present study.

4. Frequency Domain Features

In order to investigate how Power distributes as a function of frequency, a

Power Spectral Density (PSD) estimation was performed using Burg’s au-

toregressive method with order 16. The order was assessed using the partial

autocorrelation sequence. The frequency bands recommended by the 1996

Task Force [57] were the ones used in this study: the very-low-frequency band

(VLF), which includes frequencies under 0.04Hz, the low-frequency band (LF),

with frequencies ranging between 0.04Hz and 0.15Hz, and high-frequency band

(HF) were the frequencies are within the 0.15Hz to 0.4Hz range. After the three

different frequency bands computation, the Power features were extracted by

calculating the area under the PSD curve [30,35,57].

• The total Power (totPow) is the sum of the Power of every frequency

band.
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• The Peak is the maximum Power across every frequency of interest.

• VLF, LF and HF are respectively the sums of the total Power on the

very-low-frequency, low-frequency, and high-frequency bands.

• VLF normalized (VLFnu), LF normalized (LFnu), and HF normalized

(HFnu) are the frequency bands relative Power. These features corre-

spond to the VLF, LF and HF measurements normalized by the total

Power.

• VLFpeak, LFpeak and HFpeak are respectively the maximum Power

on the very-low-frequency, low-frequency, and high-frequency bands.

• VLFpeak normalized (VLFpeak-nu), LFpeak normalized (LFpeak-nu)

and HFpeak normalized (HFpeak-nu) are the frequency bands relative

peaks. These features correspond to the VLFpeak, LFpeak and HFpeak

divided by the Peak.

• The ratio between the LF band’s maximum Power and the HF band’s

(LFpeak/HFpeak) consists of the quotient between the LFpeak and

the HFpeak features. In a similar way, the ratio between the total Power

of the LF band and the total Power of the HF band (LF/HF) is the

quotient between the LF and the HF measurements.
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Table 5.1: Set of Features used in the current study presenting the designation used
across the document, the units of measurement, a description of the feature and the
papers reporting that feature for the analyse of HRV.

HRV Features

Initials
Units HRV Features Description References

Time Domain

mNN [ms] mean of NN (or RR) intervals [35]

SDNN [ms] standard deviation of NN (or RR) intervals [35,57]

SDSD [ms]
standard deviation of the differences

between heart beats
[35,57]

RMSSD [ms]
the root mean square of the differences

between heart beats
[35,57]

NN50 –
number of consecutive RR intervals differing

more than 50 milliseconds
[35,57]

pNN50 [%]
proportion of consecutive RR intervals differing

more than 50 milliseconds
[35,57]

Geometrical Domain

TI –
HRV Triangular Index - integral of the NN interval

histogram divided by the height of the histogram
[35,57,81,82]

TINN –
Triangular Interpolation of RR (or NN interval)

Histogram - baseline width of the NN interval histogram
[35,57,81,82]

SI – The Baevsky’s Stress Index [80,83]

Non-Linear Domain

ApEn –
Approximate Entropy - measures the

complexity or irregularity of the RR series
[84]

SD1 [ms]
Standard Deviation of the Poincare’ plot

perpendicular to the line-of-identity
[35,58]

SD2 [ms]
Standard Deviation of the Poincare’ plot

along the line-of-identity
[35,58]

PTM –
Point Transition Measure - quantifies the temporal

variation at the point-to-point level of the Poincare plot
[58]

KFD – Katz Fractal Dimension [85]

HFD – Higuchi Fractal Dimension [86]

Frequency Domain

VLF [ms2] Very-Low Frequency band power (≤ 0.04Hz) [30, 35,57]

LF [ms2] Low Frequency band power (0.04 - 0.15 Hz) [30,35,57]

HF [ms2] High Frequency band power (0.15 - 0.4 Hz) [30,35,57]

VLFnu n.u. VLF power normalized [30,35,57]

Lfnu n.u. LF power normalized [30,35,57]

HFnu n.u. HF power normalized [30,35,57]

VLFpeak [ms2] VLF power frequency peak [30,35,57]

LFpeak [ms2] LF power frequency peak [30,35,57]

HFpeak [ms2] HF power frequency peak [30,35,57]

VLFpeak-nu n.u. VLF power frequency peak normalised [30,35,57]

LFpeak-nu n.u. LF power frequency peak normalised [30,35,57]

HFpeak-nu n.u. HF power frequency peak normalized [30,35,57]

totPow [ms2] Total Power [30,35,57]

Peak [ms2] Overall frequency power peak [30,35,57]

LF/HF – Ratio of LF and HF band powers [30,35,57]

LFpeak/HFpeak – Ratio of LF and HF band power frequency peak [30,35,57]
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5.1.2.2 Normalization

In order to reduce the inter-subject and inter-run variability, i.e., the variability

between different subjects and the internal variability of a subject during the ex-

periment (different runs), all the features extracted during the ”code inspection”

task were normalized before the feature transformation used in the classification

approach.

The data collected during the ”natural language reading” periods was used as a

baseline for the normalization process. With this intent, the features present in

the current study (table 5.1) were also extracted from the data collected during

the ”natural language reading” task periods, using a similar procedure as explained

in section 5.1.2. To facilitate the reference, let us call these the ’rest features’

and the features regarding the ”code inspection” task the ’code features’. In the

”natural language reading” period, the subjects are supposed to be in a low cognitive

stress state, which corresponds to an optimal state for the normalization process.

The normalized features were obtained by calculating the ratio between each ”code

feature” and the corresponding ”rest feature” median. The median has been selected

to perform this computation since the data does not follow a normal distribution

(assessed using the Kolmogorov–Smirnov test).

5.1.2.3 Feature Transformation

As mentioned in chapter 4, during the ”Code inspection” task, the subjects in-

spected a code snippet in C language, aiming for bug detection. The code snippets

contain different code sections with different complexity levels. The code sections

are labelled as low or high complexity according to a classification performed by a

panel of experts. In order to capture and enhance the cognitive stress state presented

by the subjects at the different code complexity sections, statistical feature transfor-

mations were computed. To this extent, the individual measurements present in the

’Extracted Feature Vectors’ (produced in the feature extraction process, see section

5.1.2), after the normalization process (section 5.1.2.2), were grouped based on all

the instants the subject was looking to a specific section during a run. From each
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group, a set of features was computed employing statistic transformations:

• Simple statistic transformations:

– mean

– standard deviation

– maximum

– minimum

– median

– quantile 0,50

– quantile 0,75

– quantile 0,85

– quantile 0,95

• Peak statistic transformations, where the grouped measurements local maxima

are extracted, and then the simple statistic transformations are computed:

– peaks mean

– peaks standard deviation

– peaks maximum

– peaks minimum

– peaks median

– peaks quantile 0,50

– peaks quantile 0,75

– peaks quantile 0,85

– peaks quantile 0,95

– peaks rate (ratio of local max-

ima)

The scheme present in figure 5.3 illustrates the statistical transformations method

followed.

Figure 5.3: Feature statistical transformations scheme.

This process resulted in 589 features (31 features (section 5.1.2) x 19 statistical

transformations) for each of the 18 different sliding window sizes used in the initial

extraction (to simplify reference, let us call these the ’Transformed Features’). In

resume, 18 datasets were built, one for each time frame in the current study, where
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each section gazed during a run is an instance, labelled according to their difficulty,

and the dataset features are the 589 ’Transformed Features’. The resultant datasets

are the ones used in the classification approach.

5.1.3 Statistical analysis

In order to investigate the smallest time frame, i.e., the finest time resolution, where

each ultra-short-term HRV feature is reliable, under our experiment context, the

first approach conducted was the statistical analysis of these measurements. To this

extent, an intra-subject and intra-run statistical analysis of the ’Extracted Feature

Vectors’ (features resultant from the initial extraction process, section 5.1.2) was

performed using statistical significance tests, correlation tests and Bland-Altman

plots. In the present study, the ’Extracted Feature Vectors’ using the 180-second

sliding window are used as the gold standard in the statistical analysis. Figure 5.4

represents the flow chart of the experimental steps followed to evaluate the ultra-

short-term HRV measurements’ reliability through the statistical analysis approach.

When performing statistical analysis, the first important step is to choose the proper

tests according to the data distribution. In order to determine if the features ex-

tracted follow a normal distribution, the Kolmogorov-Smirnov test was performed

individually by measurement in each experiment run. The test’s null hypothesis is

that the data follows a standard normal distribution. At a 5% significance level, we

obtained the rejection of the null hypothesis for every measurement in all the runs.

The conclusion is that our data does not follow a standard normal distribution, so

the statistical significance and correlation tests applied must be non-parametric.
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Figure 5.4: Flow chart of the experimental steps followed to evaluate the ultra-short-
term HRV measurements’ reliability through the statistical analysis approach.

5.1.3.1 Statistical Significance test

The Wilcoxon rank sum test was performed to assess the sliding window size stabil-

ity limit for each feature, i.e., to assess the smallest time frame where each feature

is reliable. In this test, the measurements extracted using the different time frames

were placed against the measurements computed using the 180 seconds sliding win-

dow. The test was performed independently for every experiment run and to all

the 31 features in the study. With the explained procedure, we can inspect how the

variation of the window size in the features extraction process affects the different
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measurements, assuming the 180 seconds window as the reference. The Wilcoxon

rank sum null hypothesis is that the samples compared belong to distributions with

equal medians.

Completing this procedure, a p-value was obtained for all the 31 features extracted

using the 18 different sliding windows, totalizing a matrix of 31x18 p-values for each

experiment run of the different subjects. If the p-value was below 0.05, the null

hypothesis was rejected. Otherwise, the null hypothesis was accepted. To analyze

the global extension of this test across the different runs, we computed the percentage

of runs where each feature extracted with a specific time frame and the same feature

obtained using the 180-second sliding window do not present significant statistical

differences. These percentages were arranged in heatmap tables where the effect of

reducing the sliding window size on the extraction can be observed.

In order to further investigate and quantify the time frame reduction effect, a graph

was done for the results obtained from each feature. The 18 different time frames

(window sizes used) were placed as the independent variable on the xx axis, and

the percentage of runs without significant statistical differences as the dependent

variable on the yy axis. It is essential to mention that the 180-second time frame is

positioned at the origin of the xx axis, and each unit of this axis corresponds to a

reduction of 10 seconds in the time frame used, being the minimum (10 seconds time

frame) the last result on the xx axis. The yy axis ranges between 0 and 100%. Then

a linear regression was performed for the results of each feature, and the respective

coefficients of determination (R2) were computed for each linear regression.

5.1.3.2 Correlation test

In order to complement the insight obtained with the significance test and investi-

gate the smallest time frame where each feature behavior is still representative of the

180-second correspondent measurement under our experiment context, Spearman’s

correlation test was also performed. Through the application of Spearman’s corre-

lation test, both a p-value and a correlation coefficient are obtained. The p-value is

used to determine if a significant correlation exists between the data compared, while

the correlation coefficient measures how correlated they are. This test compared the
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measurements obtained with the different sliding windows to those acquired with

the 180 seconds reference time frame. Again, the procedure was done independently

for each run.

An essential difference between Spearman’s correlation test and the significance test

of the previous section is that, in this correlation test, we must compare two vectors

of the same length. As explained in section 5.1.2, extracting a measurement from

an RR signal with a sliding window of 180 seconds produces a vector inferior in

length compared to extracting the same measurement using a sliding window of an

inferior time frame. Hence, with this test, we use the portion of the extracted feature

vectors, computed using the smaller time frames, corresponding to the instants of

the measurements in the vector resulting from the 180 seconds extraction (see Figure

5.5 illustration).

Figure 5.5: Schematic of the portion of two feature vectors compared on the corre-
lation test, extracted using respectively 180 and 60 seconds sliding windows, with 1
second steps.

After the correlation tests completion, for each experiment run of the different sub-

jects, a p-value and a correlation coefficient are obtained for all the 31 features

extracted using the 18 different sliding windows in the study (matrix 31x18 p-values

and matrix 31x18 p-values correlation coefficients, for each experimental run). After

this step, we computed the percentages of runs where significant correlation existed,

and these percentages were arranged on a matrix. The matrix lines correspond to

the features and the columns to the sliding window size used in their extraction.

Regarding the correlation coefficients obtained through this procedure, we calculated

the means of these values across the different runs. Due to the presence of runs with

different sample sizes, the means were computed using Fisher’s z Transformation.

This method allows us to give more weight to the feature extracted in runs with a
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larger number of samples [88]. With this step, the average correlation across runs

was obtained between the 31 features extracted with the 180 seconds window and

the same 31 features extracted with the other time frames in the study. The Fisher’s

mean values were placed in tables where the lines correspond to the features and the

columns to the sliding window sizes used in their extraction. In these tables, we can

efficiently observe how reducing the sliding window time span affects the correlation

values.

Similarly to the process done in the previous subsection, a linear regression was

performed with the mean correlation results obtained for each feature. This time,

the correlation means are used as the dependent variable on the yy axis, which

ranges from 0 to 1. The coefficients of determination (R2) associated with the linear

regressions were also computed.

5.1.3.3 Bland-Altman plots

Following Pechia et al. [35] and Shaffer et al. [38] recommendations, we proceeded

with the Bland-Altman plot analysis to evaluate the features’ degree of bias. A

relevant difference between our approach and the existing studies is that we perform

an intra-subject and intra-run feature analysis, i.e., we test the features’ correlation

and statistical differences using different time frames within the same experiment

run. In order to maintain the same intra-group analysis approach, we performed

a Bland-Altman plot for non-parametric data for each feature extracted with the

different time frames compared with the respective feature extracted with the 180-

second window. This procedure was repeated for every experiment run. In the

resultant Bland-Altman plots, it is possible to observe the level of agreement between

the compared measurements.

5.1.4 Classification

In order to further investigate the impact of the time frame reduction in the HRV

features extraction, we followed an alternative approach using these features for

the complexity classification of software code sections. To this extent, we propose

the performance analysis of several classifiers fed with the ’Transformed Features’
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(section 5.1.2.3), resulting from the statistical transformations of standard HRV

features, computed at different time resolutions, i.e., using sliding windows ranging

from 180 down to 10 seconds. These classifiers aim to discriminate between low

and high complexity software code sections. We anticipate that by experimenting

with diverse time frames, we will be able to investigate how the extracting window

reduction affects the ultra-short-term HRV features and, ultimately, the classifiers’

performance. In this study, the performance obtained by the classifiers using the

features computed with the 180-second time frame was used as the reference. Figure

5.6 represents the flow chart of the experimental steps followed to investigate the

ultra-short-term HRV impact on the classifiers’ performance.

Regarding the current approach, it is essential to emphasize the use of ’Transformed

Features’. The ’Transformed Features’ are computed after the individual measure-

ments present in the ’Extracted Feature Vectors’ (produced in the feature extraction

process, see section 5.1.2), being normalized (section 5.1.2.2) and concatenated based

on all the instants the subject was gazing at a particular section during a run. This

procedure allows us to capture and enhance the cognitive stress state presented by

the subjects in the different code complexity sections. However, this makes our

classifiers’ approach conclusions specific to software code inspection tasks or similar

contexts since we are evaluating specifically the transformed features discriminative

ability between code sections of different complexity. In this way, this approach’s

conclusions are not as generalizable as the statistical analysis approach described in

section 5.1.3, which does not involve statistical transformations and evaluates the

features behavior and tendencies with the time frame reduction.
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Figure 5.6: Flow chart of the experimental steps followed to investigate the ultra-
short-term HRV impact on the classifiers’ performance.

5.1.4.1 Cross-validation scheme

The classification procedure was performed using a Nested Leave-One-Subject-Out

cross-validation scheme and SVM classifiers with linear kernel. The SVM classifier

with linear kernel was selected for performing the current analysis since it is a simple

and interpretable algorithm that allows the inspection of the weight given to each

feature. In this way, the linear SVM is ideal for avoiding overfitting and compar-

ing the results based on the features obtained using different extracting windows,

minimizing the influence of other factors.

The Nested Leave-One-Subject-Out essentially consists of two loops, the inner and

the outer loop. The outer loop is used to evaluate the classification performance,

using the samples corresponding to one subject for testing and the remaining sub-
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jects for training. The inner loop uses the training dataset, dividing it into an inner

testing dataset with the samples corresponding to one subject and an inner training

dataset with the remaining samples, for selecting the best model parameters. To this

extent, the inner loop is used to perform a grid search, which allows the optimiza-

tion of several classification parameters. Among these parameters are the classifier’s

regularization parameter (C), the number of features selected that optimizes the

classification results and the selected features. The regularization parameter and

the number of features used for classification are selected by testing different models

and identifying the model which produces the most robust performance. The fea-

tures are selected based on a statistical test evaluating the features’ discriminative

ability between the different complexity code sections (see 5.1.4.2 section). These

parameters optimization and the classification procedure is performed independently

for each time frame dataset.

5.1.4.2 Feature selection

At this point of the study, 589 transformed features were contained in each time

frame dataset (section 5.1.2.3). In order to reduce the number of features by dataset,

and since the data did not follow a normal distribution, we performed the non-

parametric Kruskal-Wallis test for each transformed feature split into two groups

based on the complexity label (at each inner loop iteration of the nested cross-

validation scheme used). The Kruskal-Wallis test algorithm returns the p-value for

the null hypothesis that both groups come from the same distribution. The null

hypothesis was rejected for a p-value below 0.05. A feature is designated as discrim-

inative if the samples compared are considered samples from different distributions,

i.e., if the null hypothesis is rejected and the feature’s samples regarding the low

and high complexity code sections have significant statistical differences.

From this procedure, it was observed that the datasets resulting from the smaller

time frames had a substantially higher number of discriminative transformed fea-

tures compared to the datasets corresponding to the more extensive sliding ex-

tracting windows. Through the grid search procedure, we concluded that five is

the number of discriminative features that optimizes the classification results for
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most of the time frame datasets used in the classification process. In this way, we

searched the five most discriminative transformed features by time frame, i.e., with

the lowest p-values obtained in the Kruskal-Wallis analysis, at each inner loop of the

nested cross-validation scheme used. Then, we computed the transformed features’

occurrence percentages as the five most discriminative. The five most occurring

transformed features in this search were selected as the top 5 most discriminative

transformed features of the respective time frame. Concluded this step, in order to

produce an appropriate comparison between the classification models, we followed

three different approaches:

• Approach 1) Selection of the 5 most discriminative transformed features

from the 180-second sliding window dataset, and used these 5 features in the

construction of the 18 datasets;

• Approach 2) Selection of the 5 most discriminative transformed features

from the 10-second sliding window dataset, and used these 5 features in the

construction of the 18 datasets;

• Approach 3) Selection of the 5 most discriminative transformed features

from each window size dataset, and use them in the respective time resolution

dataset construction.

Each of the multiple datasets produced by the described approaches was used to

train and test an SVM classifier with a linear kernel. This procedure allows us to

evaluate the impact of the time resolution on the different classifiers’ performances.

5.1.4.3 Classifier Train and Test

The classification procedure was performed using a Nested Leave-One-Subject-Out

cross-validation scheme (section 5.1.4.1) for every 18 datasets resultant from the

three feature selection approaches (section 5.1.4.2). Each classifier’s performance is

evaluated in the outer loop of the nested cross-validation scheme.

In order to assess the performance of each classifier, the F-measure (or F1-score) was

the evaluation metric selected. This robust metric is defined as the harmonic average

between the Precision (P) and the Recall (or sensitivity, R) metrics, computed by

class [89]. In this way, the F-measure permits the False Positives (FP) and False
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Negatives (FN) general evaluation for each class. The following expressions allow

the F-measure calculation [89]:

• Precision (P) is the number of True Positives (TP) divided by the sum of the

True Positives (TP) plus the False Positives (FP), i.e., the number of samples

classified correctly of a given class divided by the number of samples classified

as being part of that given class:

P =
TP

TP + FP
(5.19)

• Recall (or sensitivity, R) corresponds to the number of True Positives (TP),

i.e., the number of samples classified correctly of a given class, divided by the

sum of the True Positives (TP) plus the False Negatives (FN), i.e., divided by

the number of samples which are part of that given class:

R =
TP

TP + FN
(5.20)

• Ultimately, the F-measure (or F1-score) can be computed by the harmonic

average of the last two metrics [89]:

F1 =
2PR

P + R
(5.21)

The confusion matrix present in table 5.2 further enlightens the True Positives (TP),

False Positives (FP), True Negatives (TN) and False Negatives (FN) nomenclature

meaning, to better understand the performance metrics.

Table 5.2: Confusion Matrix used in the classifiers’ performance evaluation.

Actual Values

Positive (1) Negative (0)

P
re

d
ic

te
d

V
al

u
es Positive (1)

True Positives

(TP)

False Positives

(FP)

Negative (0)
False Negatives

(FN)

True Negatives

(TN)
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The F-measure was computed for both training and test in each outer loop of the

Nested Leave-One-Subject-Out cross-validation method. This strategy produces a

vector of F1-scores for each window size dataset constructed following the three

different feature selection approaches. The size of this vector will be equivalent to

the number of subjects in the study. In order to assign an F-measure score for each

time frame dataset, the average of the F-measures obtained for the respective time

frame was computed. The standard deviation was also calculated to quantify the

performance variability of the classifiers.

In order to compare the results obtained from the different time frames, a statisti-

cal significance analysis was conducted comparing the F1-scores results distributions

from each window size dataset against the 180-second dataset, assumed as reference.

Through the Kolmogorov-Smirnov test application, it was possible to determine that

the F1-Score results vector for each time frame did not follow a normal distribution.

Consequently, the non-parametric Wilcoxon rank sum test was selected to verify if

there were significant statistical differences between the performances obtained with

the classifiers fed with the features from each time frame dataset and the classifiers

fed with the features from the 180-second dataset. The F1-scores performance vec-

tors compared were considered from different distributions if the p-value obtained

was below 0.05, i.e., if the Wilcoxon rank sum null hypothesis was rejected. This

procedure was repeated for three different approaches followed.
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5.2 Results

5.2.1 Reliability of ultra-short HRV measurements - statis-

tical analysis approach

5.2.1.1 Statistical Significance test results

Figures 5.7 and 5.8 summarize the results obtained using the procedure introduced

in section 5.1.3.1. In particular, figure 5.7 summarizes the results related to the

Time, Geometrical and Non-Linear Domain features, whereas figure 5.8 presents

the results achieved using the Frequency Domain features. The values on each cell

correspond to the percentage of runs where there is no significant difference between

the feature (row) extracted using a respective window size (column) and the same

feature obtained using the 180 seconds reference sliding window.

Figure 5.7: Wilcoxon Rank Sum Test (Time, Non-Linear and Geometrical Domain)1
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Figure 5.8: Wilcoxon Rank Sum Test (Frequency Domain)1

Figures 5.9 and 5.10 are the graphic presentations of the linear regressions obtained

respectively for the Time, Geometrical and Non-Linear Domain features results and

for the Frequency Domain features results. The features’ lines chosen to be presented

were the ones considered representative of the overall results. In the appendix section

A, it is possible to consult the slopes, the yy interceptions and the coefficients of

determination obtained for every feature in the study.

1Percentage of runs where the feature (line) extracted with a respective window size (column)
did not present significant statistical differences compared to the same feature extracted using the
180-second window.
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Figure 5.9: Linear Regressions of the Statistical Percentages obtained for the features
mNN, pNN50, PTM and TI.

Figure 5.10: Linear Regressions of the Statistical Percentages obtained for the fea-
tures LF, HF, LFpeak and LF/HF.

From both heatmaps in figures 5.7 and 5.8, it is possible to observe that reducing the

sliding window size has a great impact on the significance test results in almost every

feature. This drop represents a large decrease, through the time frame reduction,

in the percentage of runs where there is no significant difference between extracting
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features using that window and the 180 seconds reference window. From figures 5.9

and 5.10, we can observe that the linear regressions obtained provide quantitative

and visual support for this claim.

5.2.1.2 Correlation test results

Figures 5.11 and 5.12 introduce the correlation testing results described in section

5.1.3.2, i.e., figure 5.11 corresponds to the correlation analysis of the Time, Geo-

metrical and Non-Linear Domain features, whereas figure 5.12 corresponds to the

correlation analysis of the Frequency Domain features. Each cell value corresponds

to the Fisher’s means, across the different experiment runs, of the correlations be-

tween the feature (row) extracted using a window size (column) and the same feature

obtained using the 180 seconds sliding window. While the heatmap colours cor-

respond to the percentage of runs where a significant correlation (α = 0.05) exists

between the feature (line) extracted using a given window size (column) and the

same feature obtained using the 180 seconds sliding window.

Figure 5.11: Spearman’s Correlation Test (Time, Non-Linear and Geometrical Do-
mains)2
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Figure 5.12: Spearman’s Correlation Test (Frequency Domain)2

Figures 5.13 and 5.14 allow a visual inspection of the linear regressions obtained

respectively for the Time, Geometrical and Non-Linear Domain features correlation

means and for the Frequency Domain features correlation means. Following the

same scheme as sub-section 5.2.1.1 (statistical significance), we selected a few rep-

resentative linear regressions examples to be graphically presented. The appendix

section B tables contain the values obtained for the slopes, the yy interceptions and

the coefficients of determination.

2Heatmap Colours: Percentage of runs where there exists significant correlation between the
feature (row) extracted using the respective window size (column) and the same feature obtained
using the 180 second sliding window.
Cell Values: Means, across the different runs, of the correlation coefficients between the feature

(row) extracted using the respective window size (column) and the same feature obtained using
the 180 second sliding window.
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Figure 5.13: Linear Regressions of the Mean Correlations across runs obtained for
the features mNN, pNN50, PTM and TI.

Figure 5.14: Linear Regressions of the Mean Correlations across runs obtained for
the features LF, HF, LFpeak and LF/HF.

5.2.1.3 Bland-Altman plots results

For illustrative purposes, figure 5.15 depicts the Bland-Altman plots achieved for

the feature LF/HF, extracted with the 120, 90, 60, 30 and 10 seconds time frames
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compared to the same feature extracted using a 180 seconds window. The data

used to perform these plots corresponds to a single experiment run of an individual

subject. The Bland-Altman plots allow us to observe the degree of bias present

between the compared features and if the data dispersion remains within the 95%

line of agreement.

Figure 5.15: Bland-Altman plots of the LF/HF feature extracted with 120, 90, 60,
30 and 10 seconds compared to the LF/HF extracted with 180 seconds time frame,
regarding a single experiment run of an individual subject.
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5.2.2 Impact of Ultra-Short-Term HRV Features in Soft-

ware Code Sections Complexity Classification

Tables 5.3 and 5.4 contain respectively the top 5 most discriminative transformed

HRV features from the 180 seconds and from the 10 seconds time frames datasets.

The occurrence is the percentage of times the feature is present in the five most

discriminative features set at the inner loop of the nested cross-validation scheme.

The top 5 mean position corresponds to the average position the feature occupied

when present in the five most discriminative features set, which varies between 1

and 5. The five most discriminative transformed HRV features from the other time

frames in the study can be consulted in the appendix C.

Table 5.3: 5 most discriminative transformed HRV features from the 180 seconds
dataset (selected using the Kruskal Wallis test at each Nested Leave-One-Subject-
Out inner iteration).

180 seconds Time Frame

HRV Feature Transformation Occurrence (%)
Top 5

Mean Position
HF peaks rate 100.0 1.0

mNN peaks rate 82.42 3.2
HFD peaks rate 78.02 3.2

LF/HF peaks rate 76.92 2.9
TI peaks rate 56.04 4.0

Table 5.4: 5 most discriminative transformed HRV features from the 10 seconds
dataset (selected using the Kruskal Wallis test at each Nested Leave-One-Subject-
Out inner iteration).

10 seconds Time Frame

HRV Feature Transformation Occurrence (%)
Top 5

Mean Position
HFpeak peaks min 94.29 2.0

HFpeak-nu min 75.24 2.3
KFD peaks rate 61.90 3.0
HFD min 60.00 3.1
ApEn peaks min 54.29 2.9

The results of the classification procedure described in section 5.1.4.3 are presented

in figure 5.16 and table 5.5. Figure 5.16 corresponds to the graphical representation

64



5. Heart Rate Variability measurements

of the median and standard deviation of the F-measure values obtained for each

window size dataset following the three feature selection approaches (see table in

appendix D to consult the plotted values). In table 5.5, we present the results of the

Wilcoxon rank sum test analysis of the F-measures distributions, using the results

of the 180 seconds dataset of the respective approach as reference.

Figure 5.16: Mean F1-Scores and Standard Deviations plot obtained using the
datasets based on the different time frames and approaches.
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Table 5.5: Wilcoxon rank sum test analysis of the F1-Scores distributions compared
to the 180 seconds dataset using the results of the 180 seconds dataset of the re-
spective approach as reference.

5.3 Discussion

5.3.1 Reliability of ultra-short HRV measurements - statis-

tical analysis approach

Regarding the statistical analysis and the Time Domain features (heatmaps in fig-

ures 5.7 and 5.8, and graphs in figures 5.9 and 5.10), it is observed that four features

have significance levels remaining relatively stable throughout the sliding window

duration variation, having a yy interception value close to 100 and a relatively

gradual slope. The mentioned features are the SDSD, the RMSSD (basically the

normalised version of the SDSD, which explains the similar percentages obtained

in both measurements), the pNN50 and the mean NN (mNN). The latter two cor-

respond to the features that exhibit the highest overall stability in the significance

study. It is important to note that the linear regression obtained from the pNN50
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significance results has a low R2 value (0.50). However, this low value results from

a clear outlier in the 10 seconds time frame.

Keeping our attention on the Non-Linear and Geometrical Domain features, these

groups have the lowest percentages of runs without significant differences between

the compared features. In some cases, linear regressions with yy interception val-

ues are much further away from 100 (ApEn, KFD, SI, TI, TINN); in other cases,

with very sharp slopes (SD1, SD2, HFD), or with both these characteristics. This

was an expected observation considering the literature regarding similar studies on

the ultra-short-term HRV measurements. However, the Point Transition Measure

(PTM) shows promising results since the yy interception is 94,66% and the slope

-3,04, which is a relative soft slope in the overall context. The fact that this feature

proposed in Zubair et al. [58] attempts to quantify the temporal variation at the

Poincare plot’s point-to-point level may help explain the much better significance

results when compared to other Non-Linear measurements.

Lastly, regarding the features of the Frequency Domain, we can notice that the fea-

tures corresponding to the Very-Low-Frequency band have the worst performance

in this test. All these features have linear regression yy interception values between

70% and 80% and slope values below -5, which is a relatively sharp slope considering

other features. This result is expected considering the current literature. It may be

explained since the VLF band includes waves with 25 seconds periods and above

(frequencies under 0.04Hz), which means that with a sliding window of fewer than

25 seconds, we cannot capture a full wave, which increases uncertainty. This compli-

cation may also be extended to the Low-Frequency Band. Considering the scope of

the LF band, which periods range from 6.7 seconds to 25 seconds, with 10 seconds or

a 20 seconds time frame, it is not possible to capture a complete oscillation period.

Even the LF band may not be the best way to go regarding ultra-short-term HRV

measurements. This is well reflected in the obtained results. According to Pechia

et al. [35], it is recommended that spectral analyses are performed on stationary

recordings lasting at least ten times more than the slower significant signal oscilla-

tion period. This may help to explain the quick drop in the acceptance percentage

results. In fact, from the 110 seconds window, we soon observe that most features
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do not have even 50% of the runs without a significant difference to the 180 seconds

reference extraction window.

The results obtained based on the Wilcoxon Rank Sum test (figures 5.7, 5.8, 5.9

and 5.10) should be carefully analysed since some features have characteristics that

directly affect these test results, which compare the sample distribution and its me-

dians. One example where the statistical significance test results are affected is

when the feature being analysed depends, directly or indirectly, on the time frame

used for its computation, for instance, the NN50 feature. This feature is the num-

ber of consecutive RR intervals differing more than 50 milliseconds. For the same

cognitive state, a larger window is expected to catch a larger number of consecu-

tive RR intervals differing more than 50 milliseconds. This fact affects the feature’s

median values across the time frame reduction, and significant statistical differences

will be found comparing this feature extracted with two different sized windows.

The features from the Frequency Domain, which compute the total power, are other

examples (more oversized windows will expectedly have higher total power values

for the same cognitive state). Also, the HFD relies on the parameter ”kmax” for its

computation, dependent on the window size employed. On the other hand, features

which are normalised values, like pNN50, tend to have more consistent acceptance

percentages through the window size reduction. In this way, a comparison using

an isolated statistical significance test like the two-sided Wilcoxon rank sum, which

compares the features medians, may lead to biased results in these features. Fur-

thermore, we believe that having different medians does not mean the feature is not

proper to be extracted with smaller windows, considering our current goal, i.e., find-

ing the smallest time frame where each feature behaviour is still representative of

the 180-second correspondent measurement, for cognitive stress levels discrimination

purposes.

Another problem with the isolated use of the significance analysis was that in many

features, the acceptance percentage decreases to zero very early as the window size

decreases. This fact gives the false impression that, for instance, in the TI features,

using 60-second or 10-second window essentially produces equivalent results. In this

way, the correlation results corroborate some considerations made previously during
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the analysis of the significance tables. In addition, the linear regression obtained for

the correlation results has more solid fits, having no R2 values under 0.90, allowing

more accurate conclusions. The correlation analysis may give us more insight into

how a feature changes with the reduction of the window size and, in this way, help

us to evaluate until each window size a particular feature remains reliable in our

study conditions.

Regarding the correlation analysis (heatmaps in figures 5.11 and 5.12, and graphs

in figures 5.13 and 5.14), starting with the Time Domain HRV feature set, the mNN

is the only feature where the correlation means remains above 0.50 until the 60

seconds window (more precisely, its correlation mean remains above 0.50 until the

30 seconds time frame). This feature achieved the highest correlation in the smaller

time frame in the study (0.40). From the literature, some studies concluded that the

mNN is reliable until the 10 seconds time frame, such as the study by Salahuddin

et al. [39], so the expectation was to see higher correlation values until smaller

extraction time frames. The same can be said regarding the RMSSD and the pNN50

features. In the literature, these features are often mentioned as being reliable

using 60 seconds time frames and lower [59, 63], yet, in the current experiment,

the correlation means obtained for these features using the 60 seconds window were

already below 0.50. However, in the study performed by Salahuddin et al. [39], some

recommendations by Pechia et al. [35] and by Shaffer et al. [38] are not adopted,

such as the recommendations regarding the features bias quantification, which may

be increasing with the time frame reduction. Also, the mentioned study used a 150-

second reference for the statistical analysis, while we used a 180-second time frame

as a reference. Furthermore, the existing investigations, such as the study by Baek

et al. [63], perform an inter-subject analysis of the features. This fact can lead to

biased correlation values since it captures the inter-subject feature tendencies that

may overwhelm the actual feature tendencies and increase the correlation of the

features. In our present study, we perform an intra-subject and intra-run feature

analysis, avoiding this kind of bias. This analysis difference explains the lower

correlations obtained in the present study. It is also important to underline that,

contrary to the most existing literature on the topic, our study is projected in a
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real-life, non-controlled environment, emulating contexts for real applications, like

bug detection algorithms based on the features under study. Accounting for these

considerations, we cannot expect as high correlation values or as clean and clear

results as those obtained in more controlled and resting environments, requiring

lower cognitive effort.

Regarding the Non-Linear and Geometrical Domain HRV features, some features

would probably be overlooked considering only the significance results. Let us take

as an example the significance values of the KFD, the SI, the TI and the TINN.

The acceptance percentages in the significance test drop to very low values in the

170-, 140-, 130- and 120-second windows, respectively. However, in the correlation

results, we can observe the existence of correlation until smaller windows. Actually,

in the KFD feature, more than 50% correlation is observed until 80 seconds, and

this feature has correlation values similar to HFD. This similarity is expected since

both features compute the Fractal Dimension. If the significance test results were

the only ones taken into consideration, we could have erroneously concluded that

these features are very distinct. From the Geometrical and Non-Linear Domains

(figure 5.13), the PTM was the feature which had a higher correlation on the smaller

windows and with the softer slope (-0,037) of these two groups, which corroborates

the considerations previously done.

Globally speaking, the features from the Frequency Domain are the ones that exhibit

higher consistent correlation values for smaller windows. Several features from this

domain have mean correlation values above 50% until windows of 40 seconds, with

the HF obtaining more than 50% correlation mean also when using the 30 seconds

sliding window. This observation is substantially different from the significance re-

sults, which could biasedly suggest that Time Domain’s features are more reliable

in the smaller time frames. The set of features HF, LF, LFpeak and totPow, are

the features with the most promising correlation results from this domain, having

correlation mean values greater than 25% at the 10 seconds time frame. Analyzing

the slopes of the linear regressions achieved using the correlation means, it is ob-

servable that the frequency domain features exhibit higher yy interception values,

maintaining a relative softer slope. These facts indicate that their tendencies are
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less impacted by the sliding window size reduction. Once more, as expected, the

VLF band had the poorest results from the Frequency Domain set of features, with

the steepest linear regression slopes, despite the correlation results not being as low

as the literature would suggest until the 60 seconds window, compared to the other

measurements. The set of features, with yy interception value of at least 0.95, with

the softer slopes of the overall study where: the mNN (a = -0,033), the HF (a =

-0,038), the LF (a = -0,039), the LFpeak (a = -0,040) and the totPow (a = -0,040).

These features are also the ones with the higher correlation means in the 10 sec-

onds time frame. Both these indicators can mean that this set of measurements is

adequate to perform the intended analysis in a code inspection context.

In table 5.6 is presented a summary of the top 5 features by sliding window, according

to the correlation mean values obtained. From this table, we can observe that the

features from the Frequency Domain clearly stand out. In fact, only one feature

from the Time Domain reached these tops, the mNN when the extracting sliding

window was 60 seconds or under, being the feature with the highest correlation when

using the 10 seconds sliding window. The HF is the more consistent feature with

the higher correlation values until the 30 seconds time frame.

Table 5.6: Top 5 features by time frame regarding the correlation means.

120 secs 90 secs 60 secs 30 secs 10 secs
HF 90% HF 82% HF 70% HF 51% mNN 40%
LF 90% totPow 80% totPow 67% mNN 50% LF 32%

totPow 89% LF 80% LF 65% LF 48% LFpeak 30%
LF/HF 87% LFpeak 75% LFpeak 61% totPow 48% HF 28%
HFnu 87% HFnu 74% mNN 60% LFpeak 44% totPow 25%

From the significance and correlation analyses performed, it is observable that every

HRV measurement present in the current study is affected by the time frame size

used in their extraction. The Bland-Altman plots further corroborate this statement.

These plots allow us to observe the generalised increase in the lines of agreement

values of the features with the extracting window size decrease. Figure 5.15 cor-

responds to the Bland-Altman plots of the LF/HF feature extracted with 120, 90,

60, 30 and 10 seconds compared to the same measurement extracted with the 180

seconds time frame. In these illustrative plots, it is possible to observe this increase
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in the lines of agreement values with the sliding extracting window shortening. The

number of measurements that fall out of the lines of agreement also increases with

the time frame reduction. In the LF/HF feature, this effect is very clearly observ-

able. In this way, we can conclude that the degree of bias increases with the analysis

window size reduction compared to the 180-seconds measurements. However, in this

study context, it is observed that the variability which occurs in some features might

be due to the fact that the samples extracted from the 180-second window capture

a more overall picture of the ANS dynamics, i.e., during a window of 180-second

duration a higher degree of variability of the ANS activity might exist due to a

higher degree of variability in cognitive stress during that period, in comparison

to the samples extracted from the shorter windows, where a lower degree of the

variability of cognitive stress is observed. This remark is in accordance with the

increased variability observed as the time window duration is decreased. There-

fore, given the task’s nature and application, the existence of variability on some of

the Bland-Altman plots might be considered a concern but not a limitation for the

software engineering application, given the high correlations between the two time

series of comparison (180-seconds vs shorter windows). These results show that the

prevalent cognitive state in both windows is similar but not necessarily equal since

larger windows will capture higher cognitive state fluctuations compared to shorter

windows. Furthermore, these differences can be readily captured and compensated

by current machine learning and statistical techniques used to model risk scores

based on HRV.

Overall Remarks

Considering the results obtained, it is observed that the chosen time frame signifi-

cantly impacts every feature in the study. The features from the frequency domain

are the ones that maintain higher correlation levels until the smaller extraction win-

dow durations. From the set of the considered HRV features in this analysis, 13

features had at least 50% correlation when using the 60 seconds time frame (12

from the frequency domain and only the mNN from the time domain). The lower

statistical significance results can be explained by the fact that features like HF or
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LF compute the total power of the respective band. Using a window with a larger

size will expectedly have higher total power values for the same cognitive state.

Despite this fact, these features accurately represent the 180-second correspondent

measurement behaviour, as observable in the correlation results. Furthermore, for

cognitive stress levels discrimination purposes, we do not need an exact surrogate

of the short-term measurements, and the feature behaviour and tendencies resul-

tant from Autonomous Nervous System changes can be used to evaluate different

cognitive stress levels.

Regarding the smaller window size in the study (10 seconds), only three features

exhibited at least 30% correlation: the mNN, the LF and the LFpeak. Thus, a 10

seconds window time frame is too optimistic in our study context (high cognitive

stress). The 30-second time frame is the smallest window with features with at least

50% correlation, and only two fulfilled this criterion, the HF and the mNN. The

mNN, the HF, the LF, the LFpeak and the totPow features presented the softer

linear regression slopes of the overall correlation analysis, with a yy interception

value above 0.95, meaning they are less impacted by the time frame reduction. In

this way, this set of five features has shown to be the most reliable for the smallest

time frames considering the present context. The mNN feature has proven to be

particularly robust to the reduction of the extracting window. This feature has

a correlation mean of 50% using a 30 seconds window and showed no significant

statistical differences in more than 50% of the experiment runs using all the sliding

windows under study while maintaining a low degree of bias compared to the 180-

second reference.

Considering all the results, in a cognitively demanding tasks context, a classifier

built with features extracted using time frames under 30 seconds might lead to

inconsistent results, with potential low scores and high deviations. However, further

study is required to assess whether to discard features extracted using smaller time

frames in machine learning contexts since these features may catch some shorter

cognitive patterns that larger time frames may not be able to discriminate. An

approach using classifiers trained with datasets, each composed of features extracted

with a different time frame, may offer more extensive insight and help to answer the
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raised hypothesis. In the next section, we will precisely discuss the impact of the

time frames used in the feature extraction process in the complexity classification

of software code sections.

5.3.2 Impact of Ultra-Short-Term HRV Features in Soft-

ware Code Sections Complexity Classification

Foremost, regarding the classification procedure (section 5.1.4), it should be under-

lined why, in the experiment context, we opted to use the statistical transformed

HRV features instead of directly using the HRV features. When a programmer

inspects software code with multiple sections having different complexities, he is

expected to go back and forward through the sections, searching for code flaws and

bugs. This behaviour makes that a single code section can be gazed at by the pro-

grammer several times. Also, during each gaze, the cognitive load presented by the

subject may be different. To illustrate this logic, we may think of the following

example: a programmer inspects a particular section for the first time and does

not feel any difficulty, although, through the code inspection continuation, he has a

doubt and suspects that the answer to his doubt may be in a previous section, so

he returns to that initial section, he may now feel a more intense difficulty there,

where previously that level of difficulty was not felt.

In the datasets used for the classification process, each data sample corresponds

to a particular section gazed by a subject during an experiment run (see section

5.1.2.3). The features characterizing each sample are the statistical transformations

of the HRV features extracted during the gazing periods. The importance of using

transformed features is to capture and enhance the subject’s cognitive state on each

specific code section over the experiment. The use of different size sliding windows

in the HRV features extraction (before the statistical transformations) is proposed

since different time frames may access different ANS dynamics. Furthermore, smaller

time frames may provide greater granularity in the HRV analysis, making it possible

to capture the ANS dynamics during smaller code section gazing periods. This way,

the analysis conducted in this section assesses the impact of the time frames used
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to extract ultra-short-term HRV features in the complexity classification of software

code sections. More specifically, we propose to evaluate which time frames are

more suited to employ in the features extraction process in this specific software

development or similar contexts.

Through the analysis of figure 5.16, it is possible to observe that the three different

approaches achieved similar results. In approach number one, the F1-Scores remain

particularly stable until the 60 seconds time frame. Regarding the performances

achieved using the 60 seconds time frame dataset, it is observed that the F1-Scores

do not belong to the same distribution as F1-Scores obtained using the 180-second

reference dataset (see table 5.5). This result appears to be an outlier since the

distributions obtained with the time frames below 60 seconds belong to the same

distribution as the 180-second ones. This observation is in accordance with the

expected outcome since all the datasets used in this approach were based on the

most discriminative transformed features of the 180 seconds time frame. From the

results achieved with this approach, we can also observe that the performance of

the classifiers did not change substantially with the time frame reduction. This

statement is confirmed by the range of the F1 scores obtained being between 0.66

and 0.75. The most considerable difference found across the time frame reduction

results is in the standard deviation values, which are significantly larger in the

results related to the use of smaller time frames. The best result achieved using this

approach corresponds to the use of the 140 seconds sliding window.

Analysing the results achieved following the second approach, it is possible to notice

an increase in the performance of the classifiers fed with features extracted using

smaller sliding windows compared to the first approach results. However, the clas-

sification based on the features extracted with the 10 seconds window decreased its

performance. Also, the two larger windows obtained higher performances in this

approach. These facts were not initially expected since we used the most discrimi-

native features of the 10 seconds time frame dataset in this approach. However, they

can be explained by the presence of a compensatory behaviour between transformed

features.

Finally, regarding the performances achieved with the third approach, the conclu-
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sions are not much different from the other two. This approach used the most

discriminative transformed features for each dataset time frame. Therefore, the

different time frame classifiers are expected to achieve the higher F1-Scores from

the three approaches for each extracting window size and present a lower variabil-

ity (standard deviation). Nonetheless, one can observe some exceptions believed

to be the result of the before-mentioned compensatory behaviour of the different

sets of transformed features. The higher performance model of the overall study

was obtained with the 130 seconds time frame following this approach. This model

obtained a mean F1-Score of 0.75 and a standard deviation of 0.06, indicating that

the 130 seconds time frame can be adequate for the current study classification ob-

jectives. On the other hand, a 10 seconds window has proven to be too short of a

time resolution. This window obtained the lower mean F1-score of the study (0.62),

and, in approaches 2 and 3, the distribution of its results did not belong to the same

distribution as the 180 seconds reference results.

Overall Remarks

Considering the higher F1-Score mean value obtained for each time frame across

the three different classification approaches, we can observe that the classification

performance remains relatively stable with the extraction window size reduction.

The mean F1-scores obtained ranged between 0.75 and 0.62 across all windows and

approaches. Furthermore, excluding the 10-second corresponding results, a window

that proved to be too short of a time frame in the current context, the mean F1-

scores obtained ranged between 0.75 and 0.66. In this way, it is possible to conclude

that the reduction of the time frame used for extracting the HRV features before

the statistical transformations method application does not substantially affect the

results obtained in the classification process. This conclusion is a relevant outcome

since most published results regarding the window size impact on the HRV analysis,

as well as our results (see section 5.2.1.1), suggest that the lower the window size,

the higher the uncertainty of the HRV features. Moreover, the correlation between

the feature extracted using the reference window (180 seconds) and the feature

extracted using the smaller windows decreases with the time frame reduction (see
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section 5.2.1.1)—facts expected to impact the classification results. However, in

the present study context, when applied in a classifier paired with the proposed

statistical transformations method in the dataset construction, the results show

that the performance degradation is much smaller than expected.

The higher-than-expected performance results might be explained by the comple-

mentary nature of the feature set selected, which can compensate for the uncertainty

in each feature. This belief is reinforced since, although some sets of transformed

features were considered the most discriminative set in a particular window size

dataset (approach 3), other different sets of features ended up having the best F1-

Scores. This compensatory effect has also proven to be present across the different

time frames since the F1-Score values hold relatively stable with the window size re-

duction. A possible approach to further explore these compensatory effects may be

applying a Principal Component Analysis (PCA) to the features, under the penalty

of losing some of its interpretability.

Another explanation for the obtained results stability may reside in the statistical

transformation method used in the dataset construction. This procedure reduces

the probability of, in a sample, the programmer’s difficulty sensation being differ-

ent from the actual complexity label of the code section gazed. With this method

implementation, in each sample’s features, it is possible to account for every time

a particular section is gazed at by the programmer. In this way, each code sec-

tion sample accounts for the different difficulty levels, i.e., the different cognitive

stress levels, felt at each gaze, helping further extend the compensatory behaviour

discussed. Nevertheless, the standard deviation of F1-Scores obtained with the

cross-validation method used reveals higher variability in the smaller time frame

datasets.

Regarding the features selected as the top 5 most discriminative HRV transformed

features by time frame (appendix C), one interesting observation is the predom-

inance of the frequency domain features. Also, the HF feature (with the peaks

rate transformation) is the most frequently selected feature across the different time

frames. These observations are in accordance with the statistical approach correla-

tion results, corroborating and strengthening the thesis and justifications presented
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in the 5.3.1 discussion subsection.

Considering the use case reported in this section, where the extraction of HRV

features under ultra-short time periods is vital to capture fine events such as the

inspection of short but complex code sections, a classifier fed with statistical trans-

formations of features extracted using different time frames could be an optimal

solution. It is essential to underline that the conclusions presented in this section

are context-specific and should be carefully analysed and further studied.
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This chapter contains the study developed for defining pupillography frequency

bands’ limits and investigating the pupillography features’ discriminative potential

for code section complexity classification. This chapter is divided into three main

sections: Methods, where the methodology used in the experiment is described; Re-

sults, where the obtained results are presented; and Discussion, where the results

obtained are discussed.

6.1 Methods

This section describes the experimental methods performed to define the adequate

pupillography frequency bands’ limits for the frequency features extraction used to

feed a software code complexity classifier. Initially, the pupillography signal collected

during the Code inspection was pre-processed to remove blink-related and other

artefacts. Then the study of the pupillography frequency bands’ limits definition was

conducted. With the frequency bands defined, the pupillography frequency features

were extracted, and statistical transformations of these features were computed.

The resultant statistical transformed features were used to classify the complexity

of code sections. Finally, the best features from the HRV and the pupillography

signal were joined to build a final code section complexity classifier. The flow chart

in figure 6.1 schematically represents the practical steps followed.
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Figure 6.1: The flow chart of the practical steps followed for the pupillography signal
analysis.

6.1.1 Pre-processing

In order to remove blink-related and other artefacts from the pupillography signal

of the left eye (i.e., pupil diameter variation signal of the left eye), the same pre-

processing methodology as the one implemented by Ricardo et al. [90] was used.

The first step of the pre-processing methodology implemented was to remove all

the pupil diameter (PD) readings considered inaccurate. The readings considered

inaccurate included the ones marked by the eye tracking as invalid (∆inv) and the

adjacent readings 100 milliseconds before the onset and 100 milliseconds after the

offset of the readings marked as invalid since they were observed to be questionably

larger.

After the first inaccurate readings removal procedure, we also identified the existence

of some PD readings in the pupillography signal, which represented pupil dilations

happening too quickly or too deviated from the trend line to reflect the underlying

physiological function. In order to detect and remove these inaccurate readings,
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we performed an outlier detection technique using boxplot analysis [91]. To this

extent, we differentiated the pupil diameter signal (PD’) and computed the lower

(Q1) and upper (Q3) quartiles, i.e., the 25th and 75th percentiles. Following this

step, we computed the interquartile range equal to the difference between the lower

and upper quartiles: IQR = Q3 −Q1 [91]. Then, the PD reading corresponding to

the t instant is marked as an outlier when:

PD′(t) < Q1 − 1.5IQR ∨ PD′(t) > Q3 + 1.5IQR (6.1)

Concluded the exclusion of all the outliers and inaccurate readings, we performed

a shape-preserving piecewise cubic interpolation to interpolate the excluded values.

Then, we down-sampled the pupillography signal resultant from this procedure to

20 Hz. This way, the data size was significantly reduced without interfering with

the study frequency of interest (between 0 and 10 Hz).

Furthermore, it is essential to minimize the impact of eye blinks and other external

factors artifacts in the pupillography time series, which significantly affect the time

and frequency analysis of this signal, as stated by Nakayama et al. [72]. To this

extent, we employed an algorithm which uses Singular Spectrum Analysis (iterative

SSA) [92–94] to fill the signal missing data. This algorithm decomposes the initial

signal into multiple components which have a meaningful interpretation, such as

oscillatory modes, trends, or noise. Then the missing data gaps are iteratively

reconstructed based on an arbitrary number of components.

Finally, the pupillography signal was filtered using a high-pass filter with a cut-

off frequency of 4 × 10−4 Hz to reduce the impact of medium-term nonstationary

components present in the time interval being analyzed [95].

6.1.2 Feature Extraction

For the feature extraction from the Code inspection pupillography data collected

during each subject run, we used a sliding window with 180 seconds and a jumping

step of 1 second. A total of 12 features were computed from the frequency domain.

In the same way as the HRV features (section 5.1.2), the described procedure pro-
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duces vectors of individual measurements from the pupil diameter time series col-

lected during the Code inspection task (to facilitate referencing, we will call these

the ’Extracted Feature Vectors’). Each individual measurement is computed based

on a pupillography signal portion with the size of the sliding window employed. The

individual measurements are then associated with the time instant corresponding

to the center of the pupillography signal portion used to compute the respective

individual measurement.

In this study, the ’Extracted Feature Vectors’ are directly used in the frequency

bands definition study. We used the HF, the LF, and the LF/HF features in the

band definition study. After the bands were defined, all 12 features were extracted

based on that defined bands.

6.1.2.1 Feature Description

In order to study the Power distribution as a function of the frequency, we employed

Burg’s autoregressive method with order 16 to estimate the Power Spectral Density

(PSD) of the pupil diameter time series. The order used in the Burg’s method was

assessed using the partial autocorrelation sequence. Completed this step, the LF and

HF bands were computed using several frequency band limits and the LF, HF and

LF/HF features were extracted based on that different bands. These features were

employed for assessing the adequate bands’ limits definition. After the adequate

bands’ limits were defined, the LF and HF bands were computed based on the

adequate limits obtained. Then, the following Power features were extracted by

calculating the area under the PSD curve:

• The total Power (totPow) is the sum of the Power of all frequencies considered

of potential interest (0 to 1 Hz).

• The Peak is the maximum Power across every frequency of interest (0 to 1

Hz).

• LF and HF are, respectively, the sums of the total Power on the low-frequency

and high-frequency bands.

• LF normalized (LFnu) and HF normalized (HFnu) are the frequency bands

relative Power. These features correspond to the LF and HF measurements
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normalized by the total Power.

• LFpeak and HFpeak are, respectively, the maximum Power on the low-

frequency and high-frequency bands.

• LFpeak normalized (LFpeak-nu) and HFpeak normalized (HFpeak-nu) are

the frequency bands’ relative peaks. These features correspond to the LFpeak

and HFpeak divided by the Peak.

• The ratio between the LF band’s maximum Power and the HF band’s maxi-

mum Power (LFpeak/HFpeak) consists of the quotient between the LFpeak

and the HFpeak features. Finally, the ratio between the LF band’s total Power

and the HF band’s total Power (LF/HF) is the quotient between the LF and

the HF measurements.

6.1.2.2 Baseline Normalization

In order to reduce the inter-subject and inter-run variability, i.e., the variability

between different subjects and the internal variability of a subject during the ex-

periment (different runs), all the pupillography features extracted during the ”code

inspection” task were normalized before the feature transformation used in the clas-

sification following the same procedure used on the HRV measurements. The data

collected during the ”natural language reading” periods was used as a baseline in

the normalization process. With this intent, the features described in section 6.1.2.1

were also extracted from the pupil diameter data collected during the ”natural lan-

guage reading” task periods. To facilitate the reference, let us call these the ’rest

features’ and the features regarding the ”code inspection” task the ’code features’.

The normalized features were computed by calculating the ratio between each ”code

feature” and the corresponding experimental run ”rest feature” median. The me-

dian has been selected to perform this baseline normalization since the data does

not follow a normal distribution (assessed using the Kolmogorov–Smirnov test).

6.1.2.3 Feature Transformation

In order to capture and enhance the cognitive stress state presented by the subjects

at the different code complexity sections (low or high complexity) during the code
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inspection task, statistical feature transformations were computed. To this extent,

the individual measurements present in the ’Extracted Feature Vectors’ (produced

in the feature extraction process, see section 6.1.2), after the normalization process

(section 6.1.2.2), were grouped based on all the instants the subject was looking

to a specific section during a run. From each group, a set of features was com-

puted employing statistic transformations, the same procedure used for the HRV

measurements (see section 5.1.2.3). The feature transformations computed were:

• Simple statistic transformations:

– mean

– standard deviation

– maximum

– minimum

– median

– quantile 0,50

– quantile 0,75

– quantile 0,85

– quantile 0,95

• Peak statistic transformations, where the grouped measurements local maxima

are extracted, and then the simple statistic transformations are computed:

– peaks mean

– peaks standard deviation

– peaks maximum

– peaks minimum

– peaks median

– peaks quantile 0,50

– peaks quantile 0,75

– peaks quantile 0,85

– peaks quantile 0,95

– peaks rate (ratio of local max-

ima)

This process resulted in 228 ’Transformed Features’ (12 features (section 6.1.2) x

19 statistical transformations). In summary, in the resultant dataset, each software

code section gazed during a run is an instance, labelled according to their difficulty,

and the dataset features are the 228 ’Transformed Features’. The resultant datasets

are the ones used in the classification.
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6.1.3 Frequency Bands definition

In order to carry out the study of the adequate pupillography frequency bands’

limits for frequency features extraction, we started by using Burg’s autoregressive

method with order 16 to estimate the Power Spectral Density (PSD) of the pupil

diameter time series. To this extent, we used a 180-second sliding window with a

jumping step of 1 second to analyse the data collected during the Code inspection

task. This procedure forms a vector with the PSD of each window analysed. Then,

we computed the mean of the PSD for each subject in the study and the overall

PSD average. Figure 6.2 corresponds to the PSD averages (overall and by subject)

plots regarding the code inspection experiment task data.

Figure 6.2: Plot of the PSD averages, computed by subject and overall, from the
pupillography signal collected during the code inspection task.

From the figure 6.2 it is possible to conclude that the frequencies of interest for the

pupillography spectrum analysis are between 0 and 1 Hz. With this in mind, in order

to find the limits for the LF and HF bands, we computed the power of 51594 band

combinations using the PSD computed with the 180-second sliding window with a

jumping step of 1 second from the signal collected during the Code inspection task.

The band combinations tested were built by defining an initial limit for the LF band

(ranging from 0 to 0.20 Hz in 0.01 steps) and a final limit for this band (ranging
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from 0.10 to 0.50 Hz in 0.01 steps), always respecting the condition of the final limit

being superior to the initial one. Then the initial limit of the HF band is defined as

the final limit of the LF band, and the HF band’s final limit is ranged from 0.30 to

1 Hz in 0.01 Hz steps, respecting the same condition of the final limit being superior

to the initial one. The ratio between the power of the LF and HF resultant bands

was also computed.

In order to select the most suitable combination of bands, we used the LF, HF and

LF/HF measurements extracted from the HRV resultant from the data collected

during the Code inspection task, using the 180-second sliding window with a jump-

ing step of 1 second (section 5.1.2), as ground truth. We started by performing

the Kolmogorov-Smirnov test individually by measurement in each experiment run

to assess the data distribution. With this test, we concluded that the features did

not follow a normal distribution, so the correlation test used to compare the HRV

and the pupillography measurements should be non-parametric. This way, we com-

puted Spearman’s correlation test comparing the LF, HF, and LF/HF HRV features

with the LF, HF and LF/HF pupillography features resultant from the frequency

bands tested. The procedure was conducted independently for each run (intra-group

analysis).

The Spearman’s correlation test output is a p-value and a correlation coefficient.

The p-value is used to determine if a significant correlation exists between the data

compared, while the correlation coefficient measures how correlated they are. This

way, after the correlation test procedure, for each experiment run of the different

subjects, a p-value and a correlation coefficient are obtained for the LF, HF, and

LF/HF for each band combination tested. After this step, we computed the percent-

ages of runs having significant correlation and calculated the correlation coefficient

means across the different runs for the LF, HF, and LF/HF measurements for each

band combination tested. Due to the presence of runs with different sample sizes,

the means were computed using Fisher’s z Transformation, which allows us to give

more weight to the feature extracted in runs with a larger number of samples [88].

With the correlation results obtained, to select the most suitable LF and HF band

combination, two different approaches were followed:
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• Approach 1) In this approach, the goal was to simultaneously maximize the

LF and HF pupillography bands’ power correlation with the LF and HF of the

HRV signal. To this extent, we selected the top 10 bands’ combinations based

on the geometric mean between the LF and the HF correlation mean values

across the runs. After this step, the LF, the HF, the LF/HF and the geometric

mean of the LF and the HF (
√
LF ∗HF ), correlation means and percentages

of runs having a significant correlation of the obtained top 10 were arranged

in heatmap tables.

• Approach 2) This approach aimed to maximize the pupillography LF/HF

feature correlation with the LF/HF feature of the HRV signal. To this extent,

we selected the top 10 bands’ combinations based on the obtained LF/HF cor-

relation means. After this step, the LF, the HF, the LF/HF and the geometric

mean of the LF and the HF (
√
LF ∗HF ), correlation means and percentages

of runs having a significant correlation of the obtained top 10 were arranged

in heatmap tables.

The top 10 bands’ combinations results from the two approaches were observed and

analyzed to select the most suitable LF and HF bands’ limits for the frequency

features extraction. We opted to conduct these two different approaches given the

nature of the LF, HF and LF/HF features. As seen in the State of the Art chapter

(chapter 3), the LF is more associated with the sympathetic nervous system, while

the HF is linked to the parasympathetic nervous system. The LF/HF ratio repre-

sents the balance between the two systems. This way, if we maximize the isolated

correlation of the LF and the HF features, but the LF/HF ratio obtains a low cor-

relation, it can be due to the fact that we are not selecting the correct frequency

bands’ limits. The inverse logic is also true. Following the two described approaches

and crossing the results obtained, we reduce the hypothesis of not selecting the cor-

rect frequency bands’ limits. The flow chart in figure 6.3 summarizes the practical

steps followed for the pupillography frequency bands definition.
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Figure 6.3: Flow chart of the practical steps followed for the pupillography frequency
bands definition.

6.1.4 Classification

In order to investigate the pupillography transformed features’ ability to discrimi-

nate between low and high complexity code sections, we built a classifier fed with

the features based on the frequency bands’ limits previously defined extracted with

a 180-second sliding window and assessed its performance (figure 6.4). The perfor-

mance obtained with these features was then compared to the performance achieved

by the classifier fed by the HRV transformed features, resulting from the statis-

tical transformation of the ultra-short-term HRV measurements extracted using a

180-second sliding window (section 5.1.4).
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Figure 6.4: Flow chart of the steps followed for the classification using the pupil-
lography features based on the frequency bands’ limits previously defined extracted
with a 180-second sliding window.

Furthermore, in order to test the existence of a complementary relationship between

HRV and pupillography features, we simultaneously searched for the most discrim-

inative features from both HRV and pupillography transformed features (both ex-

tracted using the 180-second time frame). The features selected through this search

were then used to train another SVM classifier (figure 6.5).

Figure 6.5: Flow chart of the steps followed for the classification using both pupil-
lography and HRV features extracted with a 180-second sliding window.
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6.1.4.1 Cross-validation scheme

The classification procedure was performed using a Nested Leave-One-Subject-Out

cross-validation scheme and SVM classifiers with linear kernel. Using the same

procedure described in section 5.1.4.1 of the HRV measurements chapter, we used

the inner loop of the nested cross-validation scheme to conduct a grid search, which

allows the optimization of several classification parameters. Among these parameters

are the classifier’s regularization parameter (C), the number of features selected

that optimizes the classification results and the selected features. The classification

performance assessment is conducted in the nested cross-validation outer loop.

6.1.4.2 Feature Selection

At this point of the study, we have 228 transformed pupillography features obtained

(section 6.1.2.3). In order to reduce the number of features, we selected the ones

considered the most discriminative of the code sections’ complexity (low vs high)

using the Kruskal-Wallis test. Similarly to the process performed in the HRV clas-

sification approach (section 5.1.4.2), we conducted a grid search to find the number

of features which optimized the classifier performance. The results indicated that

five was the number of features which optimized the performance. This way, we

selected the five most occurring transformed features as the most discriminative top

5 features in this search.

The grid search was then repeated using pupillography and HRV transformed fea-

tures simultaneously, making up a total of 817 transformed features (228 pupillogra-

phy + 589 HRV) present in this search. The conclusion was that five was again the

number of features which optimized the classification performance. This way, the

five most occurring transformed features as the most discriminative top 5 features

in this search were selected for the SVM classifiers train and test.

6.1.4.3 Classifier Train and Test

A SVM classifier was trained and tested using the top 5 most discriminative features

selected in the grid search based on the pupillography transformed features. This
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classifier performance was compared to the performance achieved by the classifier

based on the HRV transformed features resulting from the 180-second time frame

(section 5.1.4). A second SVM classifier was trained and tested using the top 5

most discriminative features selected in the grid search based on simultaneously

pupillography and HRV transformed features.

As mentioned in section 6.1.4.1, the classification procedure was performed using a

Nested Leave-One-Subject-Out cross-validation scheme for each of the two described

classifiers. In order to assess the performance of each classifier, the F-measure (or

F1-score) was the evaluation metric selected (see section 5.1.4.3 to consult the F-

measure metric description). The average and standard deviation of the F-measures

obtained for the respective classifier were computed in the outer loop of the Nested

Leave-One-Subject-Out cross-validation scheme.
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6.2 Results

6.2.1 Frequency Bands definition

Figures 6.6 and 6.7 represent the results obtained following the section 6.1.3 method-

ology. Figure 6.6 corresponds to the top 10 mean correlation results based on the

geometric mean between the LF and HF mean correlation across runs criteria (ap-

proach 1), obtained for each band combination tested. Figure 6.7 correspond to the

top 10 mean correlation results base on the LF/HF mean correlation across runs

criteria (approach 2) obtained for each band combination tested.

Figure 6.6: Correlation means (first heatmap) and percentage of runs with significant
correlation (second heatmap) between the LF, HF, LF/HF pupillography and the
HRV features, top 10 bands results following approach 1. The fourth row on the
heatmaps corresponds to the geometric mean between the LF and HF results.
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Figure 6.7: Correlation means (first heatmap) and percentage of runs with significant
correlation (second heatmap) between the LF, HF, LF/HF pupillography and the
HRV features, top 10 bands results following approach 2. The fourth row on the
heatmaps corresponds to the geometric mean between the LF and HF results.

The first heatmap in each figure represents the mean correlation results of the

LF, HF, LF/HF and the geometric mean between the LF and HF band results

(sqrt(LF*HF)). The second heatmap in each figure is the percentage of runs hav-

ing a significant correlation for the same LF, HF, LF/HF and the geometric mean

between the LF and HF band results (sqrt(LF*HF)). The bands’ combination used

in the pupillography band power extraction are identified using three numbers: the

first corresponds to the beginning of the LF band; the second to the end of the

LF band, and the beginning of the HF band (immediately after the end of the LF

band); and finally, the third number corresponds to the end of the HF band. For

example: ”BANDS = [0.15, 0.28, 0.34]” means that the tested LF band was from

0.15Hz to 0.28Hz (LF = [0.15, 0.28]Hz), and the HF from 0.28Hz to 0.34Hz (HF =

]0.28, 0.34]).
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6.2.2 Classification

Table 6.1 contains the top 5 most discriminative pupillography features. The occur-

rence is the percentage of times the feature is present in the five most discriminative

features set at the inner loop of the nested cross-validation scheme. The top 5 mean

position corresponds to the average position the feature occupied when present in

the five most discriminative features set, which varies between 1 and 5.

Table 6.1: Top 5 most discriminative Pupillography Features.

180 seconds Time Frame

Pupillography

Feature
Transformation Occurrence (%)

Top 5 Mean

Position

LF peaks rate 100.0 1.2

HF peaks rate 100.0 1.9

HFpeak peaks rate 80.22 3.5

LFnu peaks rate 72.53 3.9

LF/HF peaks rate 51.65 4.1

Table 6.2 presents the top 5 most discriminative features resultant from the grid

search conducted using all HRV and Pupillography features.

Table 6.2: Top 5 most discriminative overall Features.

180 seconds Time Frame

Signal Feature Transformation Occurrence (%)
Top Mean 5

Position

Pupillography LF peaks rate 100.0 1.5

Pupillography HF peaks rate 100.0 2.2

Pupillography LFnu peaks rate 91.21 3.1

Pupillography HFpeak peaks rate 86.81 3.4

Pupillography HFnu peaks rate 26.37 4.5

Table 6.3 presents the mean and standard deviation F1-Scores of the classifiers

trained and tested using the top 5 most discriminative features of the HRV (section

5.1.4, appendix C), Pupillography (table 6.1) and overall (HRV + Pupillography;
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table 6.2), extracted with the 180-second window.

Table 6.3: Performance obtained by the top 5 most discriminative features of the
HRV, Pupillography and overall (HRV + Pupillography).

HRV Pupillography
HRV +

Pupillograqhy

Mean F1-scores 0,74 0,76 0,76

Standard Deviation

of the F1-scores
0,10 0,07 0,10

6.3 Discussion

6.3.1 Frequency Bands definition

Considering the top 10 results obtained following the two approaches (Figures 6.6

and 6.7), it is possible to verify consistent results for the bands’ regions that maxi-

mize the correlation with the HRV bands. This consistency indicates that the real

pupillography LF and HF bands are situated around the region from 0.12Hz to

0.35Hz. Regarding the first approach, we can verify the existence of bands that

maximize the simultaneous correlation of both the LF and HF features. However,

in some band combinations, although the simultaneous correlation of the LF and HF

power features, the correlation of the LF/HF ratio is not optimized. On the other

hand, considering the second approach, the opposite is verified, with some bands

maximizing the LF/HF correlation but not the individual band combinations. This

observation is especially true for the HF band power, in which the correlation is not

above 0.50 in any of the top 10 combinations of this second approach. This fact can

be related to the respiration effect on the HRV, which was not accounted for in the

current HRV signal pre-processing.

In order to find the most satisfactory and generalizable result, both the individual LF

and HF band and LF/HF correlation should be maximized without compromising

the correlation of the other. Considering this, two band combinations of approach 1

obtained an individual LF and HF correlation above 0.50 and an LF/HF correlation
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above 0.70. These band combinations correspond to the LF band from 0.13Hz to

0.28Hz and the HF band from 0.28Hz to 0.34Hz for one combination and from 0.28Hz

to 0.35Hz in the other. Both these combinations have generalizable results and high

correlation results since, in addition to high mean correlation, these combinations

also achieved a high percentage of runs having significant correlation. As the results

of the two combinations were the same, we selected the LF band as being from

0.13Hz to 0.28Hz and the HF band from 0.28Hz to 0.35Hz since a slightly wider HF

band may be more generalizable in different scenarios. The features described in

section 6.1.2.1 were then extracted from these bands.

6.3.2 Classification

Starting with the analysis of the classifier based on the top 5 most discriminative

features from the pupillography signal (table 6.1), it obtained a mean F1-score of

0.76 with a standard deviation of 0.07. This result is in line with the result obtained

by the classifier based on the HRV features extracted using the 180 seconds time

frame (0.74 ± 0.10). In fact, the pupillography-based classifier obtained the best

performance in the overall study, having the highest mean F1-Score with the lowest

variability.

Regarding the classification using the top 5 most discriminative features resultant

from the grid search conducted using all HRV and Pupillography features (F1-score:

0.76 ± 0.10), the first noticeable result is that all the top 5 features resulted from the

Pupillography signal (table 6.2). Another interesting observation is that the top 5

most discriminative features resultant from the grid search conducted using all HRV

and Pupillography features have one different feature from the top 5 produced by

the search using exclusively Pupillography features. This observation is explained

precisely by the inclusion of the HRV features, which alter the occurrence of each

feature, also explaining the different variability obtained. In this way, the feature set

obtained through the search using exclusively Pupillography features produces more

reliable results (i.e., with lower variability), being the best performance classifier in

the overall study.

Considering the present results, we can conclude that it is possible to achieve similar
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performances using pupillography features to those achieved using HRV features. In

fact, the pupillography features have proven to possess a higher discriminative power

than the HRV features, leading to higher classification performances. However, the

obtained results were unexpected since the pupillography frequency features were

based on the frequency bands’ limits defined using the HRV signal as the reference

(section 6.1.3) and should be carefully analysed. Furthermore, the dataset used for

the bands’ definition was the same employed for the classifiers’ train and test. In

this way, we can be in the presence of an overfitting result, and the present results

should be confirmed by testing the pupillography features in a different dataset.

For future work, the present results should also be tested in other time frames

shorter than 180 seconds. A similar study to the one used to evaluate the HRV

features reliability in smaller windows should also be conducted to assess these

features’ discrimination power in shorter time segments. Furthermore, since the

frequency of interest of the pupillography PSD ranges from 0Hz to approximately

1Hz (as seen in figure 6.2), a study should be conducted to test the existence of

different frequency bands besides the LF and HF bands, which may assess distinct

ANS dynamics. Finally, additional features related to eye-tracking can be extracted

outside the pupillography frequency domain, such as the blink duration, the blink

rate or the fixed staring duration, among others.
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7

Threats to Validity and Future

Work

In summary, overall promising results were achieved, indicating that both the HRV

and the pupillography signals can be used to develop a non-invasive tool for iden-

tifying the higher complexity code sections using the programmer’s biofeedback.

However, some study limitations were present, which translated into threats to our

conclusion’s validity. First, it is essential to mention that the data collection study

was designed with a broader goal and not specifically for HRV stability assessment.

As such, several different biosignals and images were collected. Functional Magnetic

Resonance Imaging (fMRI) was one of the exams performed. This exam forces the

experiment to be conducted inside an fMRI scanner. The fMRI has an inherent

noise effect on the ECG signal. This effect was mitigated through several ECG

pre-processing and segmentation methods (section 5.1.1). The methods employed

effectively mitigate the fMRI noise and are capable of detecting ECG peaks, which

are necessary to compute a quality HRV signal. Regarding the pupillography time

series, is essential to mention that obtaining a perfectly clean pupillography sig-

nal is nearly unachievable, even with the best pre-processing methodologies, due to

blink-related and other artefacts

It is also important to underline that the subjects were alone in a quiet and isolated

room when performing the tasks to control the experimental environment. Further-

more, the subjects were informed apriori about all the protocols and processes of the

experiment and were instructed not to take anything that could stimulate/inhibit

them the day before the experiment. Nevertheless, these external effects are min-
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imized, given that the potential effect is blurred as we perform an intra-subject

analysis in the HRV statistical analysis (section 5.1.3) and in the pupillography

frequency bands definition (section 6.1.3), and the external effects are present in

the different measurements compared. Regarding the classification analysis (sec-

tions 5.1.4 and 6.1.4), the extracted features were baseline normalized before the

classification procedures, which also reduces these potential external effects.

Another limitation of our study was the time frame employed for the HRV features

extraction (180 seconds) that were used as the golden standard for the different stud-

ies conducted. The measurements extracted with a 180-second window are already

considered ultra-short-term HRV measurements. Ideally, a 5 minutes (300 seconds)

window reference would be preferable since this is a well-known and consensual time

frame in the scientific community. That being said, this was not possible due to our

dataset constraints. From our original 21x4 (subjects x runs by subject) runs, we

had a few middle run dropouts, which led to only 47 having more than 180 sec-

onds, considering the HRV measurements study. For the pupillography frequency

bands study, this number is further reduced to 43 runs due to time accordance be-

tween the data extracted with the ECG and the eye tracker (pupil diameter time

series). If the chosen reference were 300 seconds measurements, the dataset would

be substantially reduced, leading to lower statistical power. Furthermore, the study

is performed during software code inspection tasks (i.e., bug detection), which is a

highly complex, dynamic, and cognitively demanding task - in this study context,

a 5 minutes window is a considerably large window. A window of this size would

capture physiological data corresponding to more than one code section, where the

subject could feel different difficulty levels, leading to inaccurate results since it

would capture different ANS dynamics. Another relevant constraint in the dataset

is the fact that all study subjects had the same gender (male). This fact is hard to

counter once the software engineering and programming field are largely dominated

by male subjects, which makes it challenging to balance the gender groups in the

experiment.

Regarding the study context, most of the related work carried out until now was

developed with the subjects at rest or performing elementary tasks in very con-
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trolled environments. In contrast, our study is done in a highly demanding task

environment. Naturally, the dynamic characteristics of the higher cognitive func-

tion, resulting from our experiment context, will generate more dynamic signals.

Also, the code sections inspected do not have all the same complexity. In this way,

the transition from one code section to the next is expected to produce physiologi-

cal signals with different characteristics and patterns, which are expected to present

high variability in these periods, impacting the analysis performed. Another limita-

tion regarding the experiment design is the code snippets used for code inspection.

These snippets were developed to be representative of real-world software. However,

due to time constraints and practical reasons (the study was conducted inside an

MRI machine), the snippets used could not be as long as an actual software code.

Furthermore, the fact that the present experimental design protocol did not account

for daytime cognitive stress variations or more extended ANS dynamics is another

limitation.

In order to complement the present work, additional future work should be con-

ducted. First, regarding the HRV classification impact study, a classifier fed with

statistical transformations of features extracted using different time frames should be

tested since different features at different time resolutions may assess distinct ANS

dynamics and patterns. Furthermore, additional classification algorithms should be

tested, such as Decision Trees, Random Forest or K-Nearest Neighbours, to name a

few, and compare the performances obtained to choose the most suitable technique.

Another significant effect that should be studied is the influence of the breathing

effect on the HRV, which was not accounted for in the current HRV signal pre-

processing.

Regarding the pupillography features, a similar study to the ultra-short-term HRV

analysis should be conducted to assess the adequate time resolution for these features

and how the time frames impact the pupillography classification results. Moreover,

additional eye-tracking-related features can be extracted outside the pupillography

frequency domain, such as the blink duration, the blink rate or the fixed staring

duration, among others.
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Conclusions

The present work assessed the quality and reliability of Heart Rate Variability (HRV)

and Pupillography (Pupil Diameter time series) measurements for cognitive stress

discrimination in a code inspection context. Regarding the HRV measurements, a

statistical and a classification approach were conducted to investigate the impact

of reducing the duration of time frames on the HRV feature extraction process and

determining whether HRV-based tools can effectively be used in software develop-

ment environments. Concerning the Pupillography measurements, the present work

investigated the adequate LF and HF band limits for the feature extraction and the

acute stress discrimination capacity of the features extracted from these bands to

discern between low and high complexity code sections.

The HRV statistical approach studied the reliability of 31 ultra-short-term HRV

features extracted using time frames of variable sizes (ranging from 3 minutes down

to 10 seconds) in a code inspection context. In this analysis, we investigated the

smallest time frame where each feature behaviour is still representative of the 180-

second correspondent measurement (used as reference). From this approach, the

main results show 13 features that presented at least 50% correlation when using

60-second windows. The HF and mean NN features achieved around 50% correlation

using a 30-second window, and this window was the smallest time frame considered

to have reliable measurements. From this investigation, a set of five features could be

identified as the most reliable for the smallest time frames considering the present

context: the mean NN, the HF, the LF, the LFpeak and the totPow features.

Furthermore, the mean NN feature proved particularly robust to the time resolution

reduction.
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8. Conclusions

The HRV classification approach analyzed the impact of the extracting window in

the complexity classification of software code sections, using Support Vector Ma-

chine (SVM) classifiers. The HRV features extracted with the different time frames

were associated with the corresponding code section gazed at the extraction time,

and statistical transformations of these features were computed. The F1-Scores ob-

tained for the different classifications ranged from 0.62 to 0.75 across all windows.

Furthermore, excluding the 10-second corresponding results, a window that proved

to be too short of a time frame in the current context, the mean F1-scores ob-

tained ranged between 0.66 and 0.75, indicating that it is possible to achieve similar

classification performances using smaller time frames. However, it was observed

a consistent increase in the performance results’ variability with the time frame

reduction.

Regarding the pupillography measurements, several pupillography frequency band

combinations were tested to find the LF and HF bands that maximized the correla-

tion with the HRV LF and HF bands. Following this procedure, we were capable of

selecting adequate LF and HF band limits for the feature extraction: the LF band

from 0.13Hz to 0.28Hz and the HF band from 0.28Hz to 0.35Hz. The features ex-

tracted from these bands were associated with the corresponding code section, and

statistical transformations of these features were computed. An (SVM) classifier was

trained using these transformed features, achieving a 0.76 F1-Score mean value, very

similar to the HRV based classifiers’ performances. In fact, the pupillography-based

classifier obtained the best performance in the overall study, having the highest mean

F1-Score with the lowest variability, and the pupillography features have proven to

possess the highest code complexity discriminative ability among the features in the

present study. Indicating that it could be possible to achieve an entire non-intrusive

method using pupillography features for code complexity classification.

104



Bibliography

[1] I. Sandu, A. Salceanu, and O. Bejenaru, “New approach of the customer defects

per lines of code metric in automotive sw development applications,” in Journal

of Physics: Conference Series, vol. 1065, p. 052006, IOP Publishing, 2018.

[2] R. Minelli, A. Mocci, and M. Lanza, “I know what you did last summer-an

investigation of how developers spend their time,” in 2015 IEEE 23rd Interna-

tional Conference on Program Comprehension, pp. 25–35, IEEE, 2015.

[3] S. Matteson, “TechRepublic report: Software failure caused $1.7 trillion in

financial losses in 2017.” https://www.techrepublic.com/article/repor

t-software-failure-caused-1-7-trillion-in-financial-losses-in-2

017/, 2018. Last Accessed: 2022-07-07.

[4] G. K. Saha, “Software fault avoidance issues,” Ubiquity, vol. 2006, no. Novem-

ber, pp. 1–15, 2006.

[5] E. J. Weyuker, “Evaluating software complexity measures,” IEEE transactions

on Software Engineering, vol. 14, no. 9, pp. 1357–1365, 1988.

[6] R. Castaldo, P. Melillo, U. Bracale, M. Caserta, M. Triassi, and L. Pecchia,

“Acute mental stress assessment via short term hrv analysis in healthy adults:

A systematic review with meta-analysis,” Biomedical Signal Processing and

Control, vol. 18, pp. 370–377, 2015.

[7] S. Chen, J. Epps, N. Ruiz, and F. Chen, “Eye activity as a measure of human

mental effort in hci,” in Proceedings of the 16th international conference on

Intelligent user interfaces, pp. 315–318, 2011.

[8] A. Bernardes, R. Couceiro, J. Medeiros, J. Henriques, C. Teixeira, J. Durães,
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[71] H. Lüdtke, B. Wilhelm, M. Adler, F. Schaeffel, and H. Wilhelm, “Mathematical

procedures in data recording and processing of pupillary fatigue waves,” Vision

research, vol. 38, no. 19, pp. 2889–2896, 1998.

[72] M. Nakayama and Y. Shimizu, “Frequency analysis of task evoked pupillary

response and eye-movement,” in Proceedings of the 2004 symposium on Eye

tracking research & applications, pp. 71–76, 2004.

[73] V. Peysakhovich, M. Causse, S. Scannella, and F. Dehais, “Frequency analysis

of a task-evoked pupillary response: Luminance-independent measure of mental

effort,” International Journal of Psychophysiology, vol. 97, no. 1, pp. 30–37,

2015.

[74] J. Lee, J. Kim, K. Park, and G. Khang, “Evaluation of the methods for pupil

size estimation: on the perspective of autonomic activity,” in The 26th Annual

International Conference of the IEEE Engineering in Medicine and Biology

Society, vol. 1, pp. 1501–1504, IEEE, 2004.

[75] H. Rehatschek and G. Kienast, “Vizard-an innovative tool for video navigation,

retrieval, annotation and editing,” in Proceedings of the 23rd Workshop of PVA:

Multimedia and Middleware, p. 11, 2001.

[76] B. Stemmer and J. F. Connolly, “The eeg/erp technologies in linguistic research:

An essay on the advantages they offer and a survey of their purveyors,” The

Mental Lexicon, vol. 6, no. 1, pp. 141–170, 2011.

[77] S. Research, “Eyelink 1000 plus.” https://www.sr-research.com/eyelink-1

000-plus/, 2022. Last Accessed: 2022-04-08.

[78] R. K. Niazy, C. F. Beckmann, G. D. Iannetti, J. M. Brady, and S. M. Smith,

“Removal of fmri environment artifacts from eeg data using optimal basis sets,”

Neuroimage, vol. 28, no. 3, pp. 720–737, 2005.

[79] I. I. Christov, “Real time electrocardiogram qrs detection using combined adap-

112

https://www.sr-research.com/eyelink-1000-plus/
https://www.sr-research.com/eyelink-1000-plus/


Bibliography

tive threshold,” Biomedical engineering online, vol. 3, no. 1, pp. 1–9, 2004.

[80] Kubios, “HRV analysis methods.” https://www.kubios.com/hrv-analysi

s-methods/, 2022. Last Accessed: 2022-11-08.
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A

Wilcoxon Rank Sum Test - Linear

Regressions of the Statistical

Percentages (HRV)

Table A.1: Wilcoxon Rank Sum Test - Linear Regressions of the Statistical Percent-
ages (Time Domain).

Time Domain
mNN SDNN SDSD RMSSD NN50 pNN50

A -2.84 -5.7 -3.98 -3.99 -1.75 -1.32
B 98.01 85.13 94.14 94.35 20.47 95.87

RSQ 0.97 0.94 0.94 0.94 0.16 0.50
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A. Wilcoxon Rank Sum Test - Linear Regressions of the Statistical Percentages
(HRV)

Table A.2: Wilcoxon Rank Sum Test - Linear Regressions of the Statistical Percent-
ages (Non-Linear Domain).

Non-Linear Domain
ApEn SD1 SD2 KFD HFD PTM

A -5.09 -5.70 -5.70 -1.85 -7.60 -3.04
B 77.78 85.13 85.13 21.66 107.94 94.66

RSQ 0.87 0.94 0.94 0.18 0.85 0.93

Table A.3: Wilcoxon Rank Sum Test - Linear Regressions of the Statistical Percent-
ages (Geometrical Domain).

Geometrical Domain
SI TI TINN

A -3.95 -4.89 -4.97
B 48.55 62.82 65.15

RSQ 0.51 0.70 0.73

Table A.4: Wilcoxon Rank Sum Test - Linear Regressions of the Statistical Percent-
ages (Frequency Domain - part 1).

Frequency Domain
totPow Peak VLF LF HF VLFpeak LFpeak HFpeak

A -6.10 -6.14 -5.41 -6.24 -6.24 -5.34 -5.69 -5.29
B 80.83 92.0 71.42 101.31 97.86 70.92 91.64 99.79

RSQ 0.80 0.93 0.76 0.98 0.95 0.78 0.93 0.96

Table A.5: Wilcoxon Rank Sum Test - Linear Regressions of the Statistical Percent-
ages (Frequency Domain - part 2).

Frequency Domain
VLFnu LFnu HFnu VLFpeak-nu LFpeak-nu HFpeak-nu LF/HF LFpeak/HFpeak

A -5.66 -5.37 -5.76 -5.76 -5.07 -5.14 -4.71 -4.71
B 77.63 86.31 83.59 79.61 92.25 92.17 90.37 89.9

RSQ 0.84 0.87 0.87 0.85 0.89 0.94 0.85 0.89
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B

Spearman’s Correlation Test -

Linear Regressions of the Mean

Correlations (HRV)

Table B.1: Spearman’s Correlation Test - Linear Regressions of the Mean Correla-
tions (Time Domain).

Time Domain
mNN SDNN SDSD RMSSD NN50 pNN50

A -0.033 -0.043 -0.037 -0.037 -0.038 -0.038
B 0.979 0.936 0.909 0.909 0.772 0.772

RSQ 0.99 0.98 0.97 0.97 0.90 0.90
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B. Spearman’s Correlation Test - Linear Regressions of the Mean Correlations
(HRV)

Table B.2: Spearman’s Correlation Test - Linear Regressions of the Mean Correla-
tions (Non-Linear Domain).

Non-Linear Domain
ApEn SD1 SD2 KFD HFD PTM

A -0.042 -0.043 -0.043 -0.041 -0.043 -0.037
B 0.888 0.936 0.936 0.917 0.934 0.902

RSQ 0.96 0.98 0.98 0.97 0.97 0.96

Table B.3: Spearman’s Correlation Test - Linear Regressions of the Mean Correla-
tions (Geometrical Domain).

Geometrical Domain
SI TI TINN

A -0.043 -0.045 -0.041
B 0.905 0.906 0.823

RSQ 0.97 0.97 0.93

Table B.4: Spearman’s Correlation Test - Linear Regressions of the Mean Correla-
tions (Frequency Domain - part 1).

Frequency Domain
totPow Peak VLF LF HF VLFpeak LFpeak HFpeak

A -0.04 -0.043 -0.052 -0.039 -0.038 -0.052 -0.04 -0.043
B 1.094 1.066 1.112 1.091 1.099 1.105 1.064 1.065

RSQ 0.91 0.97 0.94 0.95 0.9 0.94 0.97 0.97

Table B.5: Spearman’s Correlation Test - Linear Regressions of the Mean Correla-
tions (Frequency Domain - part 2).

Frequency Domain
VLFnu LFnu HFnu VLFpeak-nu LFpeak-nu HFpeak-nu LF/HF LFpeak/HFpeak

A -0.054 -0.052 -0.046 -0.055 -0.049 -0.048 -0.046 -0.048
B 1.11 1.103 1.099 1.048 0.88 1.031 1.101 1.051

RSQ 0.95 0.97 0.94 0.99 0.98 0.98 0.96 0.99
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C

5 most discriminative transformed

HRV features by time frame

(HRV)

Table C.1: 5 most discriminative transformed HRV features by time frame (selected
using the Kruskal Wallis test at each Nested Leave-One-Subject-Out inner iteration).

180 seconds Time Frame

HRV Feature Transformation Occurrence (%)
Top 5

Mean Position
HF peaks rate 100.0 1.0

mNN peaks rate 82.42 3.2
HFD peaks rate 78.02 3.2

LF/HF peaks rate 76.92 2.9
TI peaks rate 56.04 4.0
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C. 5 most discriminative transformed HRV features by time frame (HRV)

170 seconds Time Frame

HRV Feature Transformation Occurrence (%)
Top 5

Mean Position
HF peaks rate 93.41 2.2

HFnu peaks rate 86.81 2.2
LF/HF peaks rate 78.02 3.2
LFnu peaks rate 65.93 3.1

HFpeak-nu peaks rate 57.14 3.5

160 seconds Time Frame

HRV Feature Transformation Occurrence (%)
Top 5

Mean Position
LF/HF peaks rate 98.90 1.6

HF peaks rate 95.60 2.3
TI peaks rate 82.42 3.4

LFpeak/HFpeak peaks rate 45.05 3.9
totPow peaks rate 43.96 3.7

150 seconds Time Frame

HRV Feature Transformation Occurrence (%)
Top 5

Mean Position
HF peaks rate 100.0 1.0

mNN peaks rate 100.0 2.5
HFnu peaks rate 80.00 3.4

HFpeak peaks rate 75.24 3.4
Peak peaks rate 45.71 4.1

140 seconds Time Frame

HRV Feature Transformation Occurrence (%)
Top 5

Mean Position
LF/HF peaks rate 100.0 1.3

HF peaks rate 100.0 1.7
totPow peaks rate 59.05 4.0
LFpeak peaks rate 49.52 3.7

VLF peaks rate 46.67 3.9

130 seconds Time Frame

HRV Feature Transformation Occurrence (%)
Top 5

Mean Position
totPow peaks rate 100.0 1.2

HF peaks rate 100.0 1.8
HFpeak peaks rate 93.33 3.5

LF peaks rate 72.38 3.7
HFpeak-nu peaks rate 29.52 4.6
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C. 5 most discriminative transformed HRV features by time frame (HRV)

120 seconds Time Frame

HRV Feature Transformation Occurrence (%)
Top 5

Mean Position
HF peaks rate 98.10 1.8

LF/HF peaks rate 93.33 1.6
VLFnu peaks rate 66.67 3.6
HFD peaks rate 56.19 4.1
Peak peaks rate 53.33 3.6

110 seconds Time Frame

HRV Feature Transformation Occurrence (%)
Top 5

Mean Position
LF/HF peaks rate 94.29 1.6

HF peaks rate 78.10 2.8
totPow peaks rate 67.62 2.9
VLF peaks rate 67.62 3.1

LFpeak peaks rate 67.62 3.5

100 seconds Time Frame

HRV Feature Transformation Occurrence (%)
Top 5

Mean Position
VLFpeak peaks rate 99.05 2.3
totPow peaks rate 88.57 2.2
VLFnu peaks rate 83.81 3.0

TI peaks rate 79.05 3.3
HF peaks rate 60.95 3.3

90 seconds Time Frame

HRV Feature Transformation Occurrence (%)
Top 5

Mean Position
HF peaks rate 100.0 1.1
TI peaks rate 96.19 3.4

HFnu peaks rate 84.76 3.3
VLFpeak peaks rate 77.14 3.2

VLF peaks rate 75.24 3.7

80 seconds Time Frame

HRV Feature Transformation Occurrence (%)
Top 5

Mean Position
HF peaks rate 99.05 1.2

VLF peaks rate 80.95 3.2
HFnu peaks rate 74.29 3.4

VLFpeak peaks rate 69.52 3.3
LF/HF peaks rate 68.57 3.0
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C. 5 most discriminative transformed HRV features by time frame (HRV)

70 seconds Time Frame

HRV Feature Transformation Occurrence (%)
Top 5

Mean Position
VLFnu peaks rate 100.0 1.0

VLFpeak peaks rate 100.0 2.4
LF/HF peaks rate 85.71 3.3
HFnu peaks rate 73.33 3.7
VLF peaks rate 73.33 4.1

60 seconds Time Frame

HRV Feature Transformation Occurrence (%)
Top 5

Mean Position
HF peaks rate 100.0 1.0

LF/HF peaks rate 91.43 2.4
LFnu peaks rate 85.71 3.3
HFnu peaks rate 72.38 3.8

LF peaks rate 28.57 4.6

50 seconds Time Frame

HRV Feature Transformation Occurrence (%)
Top 5

Mean Position
LFnu peaks rate 100.0 1.5
HFnu peaks rate 85.71 2.1

totPow peaks rate 77.14 3.2
HFpeak peaks rate 66.67 3.8

VLF peaks rate 61.90 3.7

40 seconds Time Frame

HRV Feature Transformation Occurrence (%)
Top 5

Mean Position
HFnu peaks rate 100.0 1.6

totPow peaks rate 100.0 2.1
LF/HF peaks rate 100.0 2.4
LFnu peaks rate 57.14 4.4
HF peaks rate 56.19 4.1

30 seconds Time Frame

HRV Feature Transformation Occurrence (%)
Top 5

Mean Position
SDNN peaks rate 100.0 1.2
SD1 peaks rate 100.0 2.2
SD2 peaks rate 98.10 3.2
LF peaks rate 43.81 4.3

HFnu peaks rate 37.14 4.1
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C. 5 most discriminative transformed HRV features by time frame (HRV)

20 seconds Time Frame

HRV Feature Transformation Occurrence (%)
Top 5

Mean Position
totPow peaks min 89.52 2.1
VLFnu peaks min 85.71 2.1

HF peaks rate 85.71 2.5
LFpeak peaks rate 44.76 4.0

VLFpeak-nu peaks min 37.14 3.5

10 seconds Time Frame

HRV Feature Transformation Occurrence (%)
Top 5

Mean Position
HFpeak peaks min 94.29 2.0

HFpeak-nu min 75.24 2.3
KFD peaks rate 61.90 3.0
HFD min 60.00 3.1
ApEn peaks min 54.29 2.9
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C. 5 most discriminative transformed HRV features by time frame (HRV)
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D

Mean and Standard Deviation of

the F1-Scores values obtained in

the classification process (HRV)

Table D.1: Mean and Standard Deviation of the F1-Scores values obtained using the
datasets based on the different time frames and approaches.
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How Reliable Are Ultra-Short-Term HRV Measurements during
Cognitively Demanding Tasks?
André Bernardes * , Ricardo Couceiro, Júlio Medeiros, Jorge Henriques, César Teixeira, Marco Simões ,
João Durães, Raul Barbosa, Henrique Madeira and Paulo Carvalho

Centre for Informatics and Systems of the University of Coimbra (CISUC), 3030-290 Coimbra, Portugal
* Correspondence: ambernardes11@gmail.com

Abstract: Ultra-short-term HRV features assess minor autonomous nervous system variations such
as variations resulting from cognitive stress peaks during demanding tasks. Several studies compare
ultra-short-term and short-term HRV measurements to investigate their reliability. However, existing
experiments are conducted in low cognitively demanding environments. In this paper, we propose
to evaluate these measurements’ reliability under cognitively demanding tasks using a near real-
life setting. For this purpose, we selected 31 HRV features, extracted from data collected from
21 programmers performing code comprehension, and compared them across 18 different time
frames, ranging from 3 min to 10 s. Statistical significance and correlation tests were performed
between the features extracted using the larger window (3 min) and the same features extracted with
the other 17 time frames. We paired these analyses with Bland–Altman plots to inspect how the
extraction window size affects the HRV features. The main results show 13 features that presented at
least 50% correlation when using 60-second windows. The HF and mNN features achieved around
50% correlation using a 30-second window. The 30-second window was the smallest time frame
considered to have reliable measurements. Furthermore, the mNN feature proved to be quite robust
to the shortening of the time resolution.

Keywords: ultra-short-term HRV features; statistical significance; correlation; cognitively demanding
tasks; code comprehension

1. Introduction

Heart rate (HR) is defined as “the number of heartbeats per minute” [1], and does not
provide direct information about autonomic nervous system (ANS) dynamics since it is
a static index of autonomic input to the sinoatrial node [2]. On the other hand, heart rate
variability (HRV) is described as “the fluctuation in the time intervals between adjacent
heartbeats” (RR intervals or NN intervals) [1]. RR intervals are measured in milliseconds
(ms) and “result mostly from the dynamic interaction between the parasympathetic and the
sympathetic inputs to the heart through the sinoatrial node” [3]. Unlike HR, HRV analysis
is useful for providing a “quantitative assessment of cardiac autonomic regulation” [2].

HRV is often used as a non-invasive marker of ANS activity, and its spectrum analysis
can measure the sympathovagal balance [4]. Thereby, many studies point to the potential
of HRV for diagnosis and prognosis of health problems [5] and other areas such as the
measurement of a subject’s cognitive load [6–8].

From the physiological point of view, our nervous system has two major subdivisions:
the central nervous system (CNS) and the peripheral nervous system (PNS). The CNS is
formed by the spinal cord and the brain and is responsible for receiving signals from differ-
ent body components, processing these signals and producing responses as new signals
to be delivered across these body components. The PNS is the subdivision accountable
for carrying messages exchanged between the CNS and the organs, glands, muscles and
senses [9]. Belonging to the PNS, we have a further two different constituents: the somatic

Sensors 2022, 22, 6528. https://doi.org/10.3390/s22176528 https://www.mdpi.com/journal/sensors
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nervous system (SNS), which is the constituent responsible (essentially) for voluntary and
conscious actions, and the autonomic nervous system (ANS), where our study focuses. The
ANS has two subdivisions: the sympathetic and the parasympathetic nervous systems.
The sympathetic nervous system is more associated with stressful situations that need an
emergency response, the so-called fight-or-flight mode.

In contrast, parasympathetic nervous system activity is associated with more conser-
vative and restoring processes, bringing the body back to a stable state [6]. In this way, the
CNS has the power to influence every other system in the body, which, in theory, makes it
possible to access data, such as the cognitive load of the brain through physiological signals
controlled by the ANS, that might be captured using HRV. In fact, HRV is considered
an index of autonomic control of the heart and has been pointed out as having a good
physiological correlation with cognitive functioning [3]. However, despite several studies
in the field, this is still a controversial subject across the scientific community.

Taking a leading role in the regulation of cardiac function, the ANS controls the
constriction and relaxation of blood vessels, which allows it to regulate blood pressure
and, in this way, is capable of adjusting heart rate and heart contractility. Using an ECG
signal, it is possible to compute HRV through time fluctuations of the intervals between
the consecutive R-peaks. Then, from the HRV measurement, different features can be
extracted in time, geometric, non-linear and frequency domains, which can be used to
access the different ANS sympathetic and parasympathetic systems’ dynamics. Across
different papers that approach HRV analysis, the most common features referenced in the
time domain are mNN, SDNN, SDSD, RMSSD, NN50 and pNN50 (see terminology in
Table 1). Regarding power spectrum density analysis, the frequency domain is divided
into three bands: the very-low-frequency band (VLF: under 0.04 HZ), the low-frequency
band (LF: 0.04 to 0.15 HZ) and the high-frequency band (0.15 to 0.4 HZ) [10]. The features
extracted from each band most referenced in the literature are the total power and the peak.
The ratio between the LF power and the HF power is also frequently mentioned.

From the features previously mentioned, some features have already been linked
to physiological dynamics. Starting with the VLF band, this band is mentioned to be
a heart’s intrinsic nervous system consequence. The SDNN, as mentioned in [10], is
influenced by every cyclic component responsible for variability in the recording period.
This feature is highly correlated with the LF band, and the two are associated with both
the sympathetic and parasympathetic systems’ dynamics. The LF band is as well-linked
to blood pressure regulation via baroreceptors. The features RMSSD, pNN50 and the HF
band are also correlated and are closely influenced by the parasympathetic system. Thus,
the ratio between the LF power and the HF power is believed to be a good measure of the
balance between the sympathetic and parasympathetic systems. Although this belief is not
consensual, and this relationship is not as straightforward as once believed, we can still
look at this ratio as a metric of one system’s predominance over another [7].

In addition to time and frequency domains, several authors have also pursued the
extraction of measures in the non-linear space in order to unveil non-linear HRV patterns.
Based on the studies present in the literature, several measurements have been selected, fo-
cusing on their consistency when extracted using small time frames (e.g., 5 min) [2,6,11,12],
which are: approximate entropy, Poincare’s plot parameters (SD1 and SD2), point transi-
tion measure, Katz fractal dimension and Higuchi fractal dimension from the non-linear
domain, stress index, HRV triangular index and TINN from the geometric domain.

Short-term time frames (5 min in length) are already a standard and are currently
well-accepted as suitable for extracting accurate HRV measurements [10]. However, the
need to extract HRV measurements using time frames shorter than 1 min (ultra-short HRV
features) has grown for several reasons [5,11,13]. Among these are the need to reduce the
time spent and costs in the extraction of these indexes, the fact that they are incompatible
with the dynamics of the physiological mechanisms to be captured (e.g., cognitive load
spikes), or the need to extract these features in new environments using modern wearable
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devices [13]. In fact, these brought a wide range of new applications that can benefit from
the advances in ultra-short-term measurements fields.

The current study is integrated into the Biofeedback Augmented Software Engineering
(BASE) project, which aims to develop a solution capable of using biofeedback from the
programmer to detect code areas more prone to error and save time in the bug detection
process. Code comprehension and bug detection tasks consume up to 70% of the program-
mers working time, representing millions spent every year trying to avoid these software
faults [14]. The BASE project aims to solve this significant socioeconomic problem. The
interest in using HRV in software engineering is growing very fast, and applications such
as the identification of problematic code areas (that may have bugs and need revision)
require very fast response in assessing programmers’ cognitive loads using HRV [15]. In
order to ensure a real-time response and to detect acute cognitive stress changes, we need
time analysis windows as short as possible to achieve the required time resolution, which
is the motivation behind the current study.

In order to find out which features are adequate to be used in real-life applications, such
as the mentioned code inspection context, and to understand their time frame limitations,
this study aims to analyze the stability of 31 existing HRV features. To this end, these
features were extracted using time frames of variable sizes (e.g., as low as 10 s) in a code
inspection context, an environment very demanding from the intellectual perspective and,
therefore, with individuals subjected to high cognitive loads. Our current work investigates
the smallest time frame where each feature is reliable, performing an intra-subject and
intra-run analysis to avoid biasing the results.

2. Background and Related Work

Long-term (recordings lasting 24 h) and short-term (recordings lasting 5 min) HRV
measurements are well-documented and conventionally accepted as valid HRV measure-
ments, having multiple clinical applications [10]. However, as mentioned earlier, there is a
growing need to use shorter segments. Some studies focus on investigating the reliability
of these ultra-short-term measurements when compared to short-term HRV measurements.

In order to evaluate ultra-short-term HRV measurements’ reliability as a surrogate
of the short-term HRV, different analyses can be performed. A procedure proposed by
Pechia et al. [2] included a correlation analysis to test the existence of a significant asso-
ciation between features. If the correlation was significant and the correlation coefficient
was above 0.07, the researchers performed a Bland–Altman plot to analyze the degree of
bias. In case the data dispersion remained within the 95% line of agreement, the final step
was to perform an effect size statistic (Cohen’s d statistic to parametric data or Cliff’s delta
statistic to non-parametric data). The feature was then considered a good surrogate if the
effect size statistic test only detected minor differences. The mentioned procedure agrees
with Shaffer et al. [5], which recommend using correlation/regression analyses paired with
a Bland–Altman plot. Both works agree that only a correlation analysis is not enough to
determine if an ultra-short-term HRV feature is a good surrogate of short-term HRV. In
fact, the two compared measurements can be highly correlated but still have significantly
different values.

A 2017 study carried out by Castaldo et al. [11] used Bland–Altman plots and Spear-
man’s rank correlation analysis to assess which ultra-short-term HRV features are a valid
surrogate of short-term HRV. The study also built a machine learning model using ultra-
short-term HRV features to discriminate between stress and rest states. The conclusions
were that mean HR, the standard deviation of HR, mNN, SDNN, HF and SD2 are appropri-
ate short-term HRV surrogates for mental stress assessment. The paper also highlighted a
machine learning model obtained using the mNN, the standard deviation of HR and the
HF features, which achieved an accuracy above 88%.

In an article by Salahuddin et al. [8], the authors used mobile-derived ECG recording
to extract several HRV measurements and the Kruskal–Wallis test to analyze the reliability
of these measurements. It was “assumed that short-term analysis was not significantly
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different to the 150-second analysis if the p-value was greater than 0.05”, and the goal was
to find until which window span a feature is a good estimative of the 150-second window.
The authors concluded that mean RR and RMSSD extracted using 10-second windows
were not significantly different from the estimates using 150-second windows. This finding
was also confirmed when using 20-second windows for extracting pNN50, HF, LF/HF,
LFnu and HFnu features, 30-second windows for LF features and 50-second windows
for VLF features. As for the remaining features studied by the authors, a minimum time
frame of 60 s was necessary for extracting features that were not significantly different from
the 150-second reference features. This study’s data were recorded during the subject’s
day-to-day activities such as regular daily work, study, physical activities and sleep.

In the work of Baek et al. [16], a similar approach has been used to evaluate the
reliability of ultra-short-term HRV measurements as short-term (5 min) HRV surrogates.
The data were acquired in 5-minute recordings while the subjects were “sitting at rest in
a comfortable chair”. In order to accomplish the proposed goal, the authors computed
the p-value by the Kruskal–Wallis test, the Pearson correlation r and Bland–Altman plot
analysis comparing 5-minute short-term measurements with ultra-short-term ones with
different time frames (270, 240,210, 180, 150, 120, 90, 60, 30, 20 and 10 s). The highlighted
features with the best results in this study were the mean HR, where 10-second windows
were used to obtain results comparable to the 5-minute analysis, the HF, which required
20-second windows, and the RMSSD, which required 30-second windows.

Following similar approaches, other works, such as the publications by Landreani et al. [13],
Li et al. [17], Salahuddin et al. [18], Nussinovitch et al. [19] and McNames et al. [20], were able to
converge on a common set of conclusions, where mean HR, mean RR, SDSD, RMSSD, pNN50,
HF, LF/HF, LFnu and HFnu were shown to be reliable under the 60-second recordings.

From the reported works, it is possible to conclude that ultra-short-term measurements
are far from being consensual. Due to their extraction, only some features keep their stability
under small window constraints. Additionally, it is still unclear what the time frame limit is
for each HRV feature that can be applied to compute a reliable surrogate of its counterpart
extracted from 5-minute recordings. Furthermore, the studies found related to this topic
were developed with the subjects at rest or performing elementary tasks in controlled
environments. In this work, we aim to elucidate these aspects and validate them under
stressful and intellectually demanding environments; more precisely, with the subjects
performing software code inspection tasks (i.e., bug detection), which is a highly complex,
dynamic, and cognitively demanding task. The main goal of our work is precisely to
investigate ultra-short-term HRV features to determine whether HRV-based tools can
effectively be used in software development environments. To this extent, our present
study investigates the smallest time frame, i.e., the finest time resolution, where each feature
is reliable, i.e., the smallest time frame where each feature behavior is still representative of
the corresponding 180-second measurement, under our experiment context.

Another relevant aspect that is worth mentioning is that the existing studies perform
an inter-subject analysis of the features, i.e., perform the correlation or statistical analysis
after concatenating the features collected from different subjects. This fact can lead to
biased correlation values since it captures the inter-subject feature tendencies that may
overwhelm the actual feature tendencies. In order to avoid this kind of bias, our study
performs an intra-subject and intra-run feature analysis.

3. Methods
3.1. Participants

The data used in the current work were collected in the scope of the BASE project
and aimed at the research of error making and error discovery during software inspection
tasks, using functional magnetic resonance imaging (fMRI) and other non-invasive sensors
such as the ECG. In order to collect the data used in the study, we opened a call for
participation in the experiment. Through this process, we obtained 49 candidates consisting
of a mixture of students (pursuing PhDs and MSs in different computer science fields),
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academic professors and professional specialists in the software sector (code reviewers).
The candidates were then interviewed and screened to guarantee their fitment to the study
objectives. During the interview, demographic and biometric characteristics (e.g., age),
professional status, programming experience, availability and motivation were collected.
Subsequently, each candidate’s proficiency level was also assessed based on the score
provided by two questionnaires: (1) a programming experience questionnaire and (2) a
technical questionnaire (see Appendix A). The first questionnaire aimed to assess the
candidate’s programming experience based on the candidate’s coding volume in the last
three years. The second questionnaire’s goal, composed of 10 questions, was to assess
the candidate’s coding skills. The programming experience gave us an overall idea of the
experience in the past years from the candidate: (1) experience in SW programming (number
of years); (2) lines programmed in any language in the last 3 years (approximate number);
(3) lines programmed in C in the last 3 years (approximate number); and (4) lines written
in the biggest C program written (approximate number). On the other hand, the technical
questionnaire was used for candidate characterization regarding present knowledge and
coding skills, which is, therefore, more helpful in selecting and classifying the candidates.
Based on the results obtained in these questionnaires, the candidates with a score below
3 (out of 10) were considered not eligible since they were not representative of software
industry professionals. The remaining ones were characterized as non-experienced (score
between 4 and 7) and experienced (score between 8 and 10). In summary, 21 male subjects,
ranging from 19 to 40 years, with a median of 22 years, were selected for the experiments
after the screening process.

All subjects provided written informed consent, and all the data were anonymized.
This study was approved by the Ethical Committee of the Faculty of Medicine of the
University of Coimbra, following the Declaration of Helsinki and the standard procedures
for studies involving human subjects.

3.2. Experimental Protocol and Setup

The selected candidates were submitted to 4 different runs of code inspection tasks
using 4 code snippets written in C code language (selected randomly at each run). Each
run started with a fixation cross in the middle of the screen for 30 s. Subsequently, three
tasks were presented to the subject: a natural language reading (literary excerpt) task, a
neutral (bug-free and straightforward code) code reading task, and one code inspection
(code with bugs) task. The order of the presentation was randomly selected to avoid biasing
the results, following a randomized control crossover design. Between each task and at the
end of each run, a fixation cross was presented to the subject for 30 s. The description of
each task is provided as follows:

1. Natural language reading: In this task, a text in natural language is presented to
the subject (selected randomly from the set of 4 different texts) for 60 s. The presented texts
were selected in order to have neutral characteristics and avoid measurement fluctuations
induced by narrative-triggered emotions;

2. Simple code snippet reading: In this task, the subject is presented with a simple and
iterative code snippet (selected randomly from the set of 4 different neutral code snippets)
for 300 s. The presented code snippets were selected with the objective of inducing the
subject into a state of low cognitive effort which will be used as a reference state during the
posterior analysis;

3. Code inspection: In this task, a code snippet in C language is displayed to the
subject (selected randomly from a set of 4 different code snippets of different complexities)
for a maximum of 600 s. In this task, the subject is asked to analyze and inspect the code,
aiming for bug detection.

The schematic representation of each run is provided below (see Figure 1).
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Figure 1. Schematic representation of an experiment run.

Each run lasted about 21 min, meaning the whole protocol lasted about 1 h and 20 min.
During the experiment, the subjects were alone in a quiet, isolated room when performing
the tasks. Furthermore, the subjects were informed a priori about all the protocol and
processes of the experiment, and they were also instructed not to take anything that could
stimulate/inhibit them the day before the experiment. The code inspection tasks were
presented to participants using the Vizard software [21].

The equipment used to collect the electrocardiogram (ECG) signal was the Maglink RT
(Neuroscan) with a sampling frequency of 10 kHz [22] (see equipment set-up in Figure 2).
For ECG signal acquisition, electrodes from the Neuroscan equipment were positioned in
the V1 and V2 locations. The electroencephalogram (EEG) was also collected using an EEG
cap with 64 channels, although the measured biosignal was not used in the current analysis.
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3.3. Pre-Processing and ECG Segmentation

Given the nature of the experiment, an initial pre-processing was necessary to remove
the gradient artifact (GA) induced by the MRI scanner on the ECG signals. To this end, an
average artifact subtraction (AAS) technique based on the algorithm from Niazy et al. [23]
was performed to reduce this artifact on ECG data. In addition to the GA correction, the
ECG presents some changes in its morphology due to the magnetic field produced by
the MRI machine. Therefore, the ECG signal tends to present a T-wave larger than the
QRS complex and an R-wave with reduced amplitude. Thus, traditional QRS detection
algorithms tend to fail and lead to incorrect RR interval calculation.

Nevertheless, the R-peak detection algorithm proposed by Christov et al. [24] is
commonly used in these scenarios, given its robustness and high performance in R-peak
detection on ECG signals recorded inside an MRI scanner. The data were visually inspected
to assess the quality of the R-peak detection process. After having the R-peaks detected, we
proceeded to the RR interval computation to obtain the HRV time series.

3.4. Feature Extraction

In order to carry out HRV analysis, following pre-processing and ECG segmentation,
we proceeded with the feature extraction from the code inspection data collected during
each subject run. A total of 31 features across time, geometrical, non-linear and frequency
domains were extracted using a sliding window of variable size and a jumping step of 1 s.
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The sliding window size used ranged from 3 min to 10 s, being iteratively reduced by 10 s,
amounting to a total of 18 different windows (see Figure 3). All of the 31 features were
extracted applying the 18 different sliding windows.
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Figure 3. Schematic representation of the extraction of a feature using one of the sliding windows. In
the end, we obtained a total of 558 feature vectors, corresponding to the 31 features times 18 window
sizes for each experiment run.

The described procedure produced vectors of individual measurements from the HRV
data collected during the code inspection task (to facilitate referencing, we will call these the
“extracted feature vectors”). Each individual measurement was computed based on a RR
signal portion with the size of the sliding window employed. The individual measurements
were then associated with the time instant corresponding to the center of the RR signal
portion used to compute the respective individual measurement.

It is important to mention that the same RR signal produces “extracted feature vectors”
of different lengths according to the time frame applied in the extraction process. The
vector obtained with the 180-second sliding window is the one with fewer individual
measurements, while the vector extracted with the 10-second sliding window is the larger,
having more individual measurements. In this study, the “extracted feature vectors” using
the 180-second sliding window were used as the gold standard in the statistical and
correlation analyses.

The 31 features explored in this study included six features from the time domain, three
from the geometrical domain, six from the non-linear domain and 16 from the frequency
domain. The different features were selected based on the current literature on ultra-short-
term HRV measurements and are the result of a search conducted for the most reliable
features extracted using small time frames (see Table 1).

Table 1. Set of Features used in the current study presenting the designation used across the document,
the units of measurement, a description of the feature and the papers reporting that feature for the
analysis of HRV.

HRV Features
Initials Units HRV Features Description References

Time Domain
mNN [ms] mean of NN (or RR) intervals [2]
SDNN [ms] standard deviation of NN (or RR) intervals [2,10]
SDSD [ms] standard deviation of the differences between heartbeats [2,10]

RMSSD [ms] the root mean square of the differences between heartbeats [2,10]
NN50 – number of consecutive RR intervals differing by more than 50 milliseconds [2,10]

pNN50 [%] proportion of consecutive RR intervals differing by more than 50 milliseconds [2,10]
Geometrical Domain

TI – HRV Triangular Index–integral of the NN interval histogram divided by the
height of the histogram [2,10,25,26]

TINN – Triangular Interpolation of RR (or NN interval) Histogram—baseline width of
the NN interval histogram [2,10,25,26]

SI – Baevsky’s Stress Index [27]
Non-Linear Domain

ApEn – Approximate Entropy—measures the complexity or irregularity of the
RR series [28]

SD1 [ms] Standard Deviation of the Poincare plot perpendicular to the line of identity [2,6]
SD2 [ms] Standard Deviation of the Poincare plot along the line of identity [2,6]
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Table 1. Cont.

HRV Features
Initials Units HRV Features Description References

PTM – Point Transition Measure—quantifies the temporal variation at the
point-to-point level of the Poincare plot [6]

KFD – Katz Fractal Dimension [29]
HFD – Higuchi Fractal Dimension [30]

Frequency Domain
VLF [ms2] Very-Low-Frequency band power (≤0.04 Hz) [2,10]
LF [ms2] Low-Frequency band power (0.04–0.15 Hz) [2,10]
HF [ms2] High-Frequency band power (0.15–0.4 Hz) [2,10]

VLFnu n.u. VLF power normalized [2,10]
Lfnu n.u. LF power normalized [2,10]
HFnu n.u. HF power normalized [2,10]

VLFpeak [ms2] VLF power frequency peak [2,10]
LFpeak [ms2] LF power frequency peak [2,10]
HFpeak [ms2] HF power frequency peak [2,10]

VLFpeak-nu n.u. VLF power frequency peak normalized [2,10]
LFpeak-nu n.u. LF power frequency peak normalized [2,10]
HFpeak-nu n.u. HF power frequency peak normalized [2,10]

totPow [ms2] Total Power [2,10]
Peak [ms2] Overall frequency power peak [2,10]

LF/HF – Ratio of LF and HF band powers [2,10]
LFpeak/HFpeak – Ratio of LF and HF band power frequency peak [2,10]

3.5. Statistical Analysis

In order to determine if the features extracted follow a normal distribution, the
Kolmogorov–Smirnov test was performed individually by measurement in each experiment
run. The test’s null hypothesis was that the data follow a standard normal distribution.
At a 5% significance level, we obtained the rejection of the null hypothesis for every
measurement in all runs. The conclusion was that our data do not follow a standard
normal distribution, so the statistical significance and correlation tests applied must be non-
parametric. Figure 4 represents the general flow chart of the experimental steps followed to
evaluate the ultra-short-term HRV measurements’ reliability.

3.5.1. Statistical Significance Test

To assess the sliding window size stability limit for each feature, i.e., to assess the
smallest time frame that enables feature stability (when compared to the chosen reference),
the Wilcoxon rank sum test was performed. In this test, the measurements extracted
using the different time frames were placed against the measurements obtained using the
180-second sliding window. The test was performed independently for every experimental
run and to all 31 features in the study. With the explained procedure, we were able to
inspect how the variation of the window size in the feature extraction process affected the
different measurements, assuming the 180-second window as a reference.

From this process, a p-value was obtained for all 31 features extracted using the
18 different sliding windows, totalizing a matrix of 31 × 18 p-values for each experimental
run of the different subjects. To analyze the global extension of this test across the different
runs, we computed the percentage of runs where each feature extracted with specific
sliding window size and the same feature extracted using the 180-second sliding window
do not present significant statistical differences. These percentages were arranged in tables
where the effect of reducing the sliding window size on the extraction can be observed (see
Figures 5 and 6).
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In order to further investigate the time frame reduction effect, a graph was created
for the results obtained from each feature. The 18 different time frames (window sizes)
were placed as the independent variable on the xx axis, and the percentage of runs without
significant statistical differences (results in Figures 5 and 6) as the dependent variable on
the yy axis. It is essential to mention that the 180-second time frame is positioned at the
origin of the xx axis, and each unit of this axis corresponds to a reduction of 10 s in the time
frame used, the minimum (10-second time frame) being the last result on the xx axis. The
yy axis ranges between 0 and 100%. A linear regression was performed for the results of
each feature, and the respective coefficients of determination (R2) were computed for each
linear regression (see Figures 7 and 8).
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3.5.2. Correlation Test

In order to complement the insight obtained with the significance test, Spearman’s
correlation test was also performed. Through the application of the Spearman’s corre-
lation test, both a p-value and a correlation coefficient were obtained. The p-value was
used to determine if a significant correlation exists between the data compared, while the
correlation coefficient is a measure of how correlated they are. With this test, the measure-
ments obtained with the different sliding windows were compared to the measurements
acquired with the 180-second reference time frame. Again, the procedure was conducted
independently for each run.

An important difference between the Spearman’s correlation test and the significance
test of the previous section is that, in this correlation test, we must compare two vectors with
the same length. As explained in the feature extraction section, extracting a measurement
from an RR signal with a sliding window of 180 s produces a vector inferior in length when
compared to extracting the same measurement using a sliding window of an inferior time
span. Hence, with this test, we used the portion of the extracted feature vectors, computed
using the smaller time frames, corresponding to the instances of the measurements in the
vector resulting from the 180-second extraction (see Figure 9).
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Figure 9. Schematic of the portion of two feature vectors compared in the correlation test, extracted
using 180- and 60-second sliding windows with 1-second steps.

After the completion of the correlation test, for each experimental run of the different
subjects, a p-value and a correlation coefficient were computed for all 31 features extracted
using the 18 different sliding windows in the study (31 × 18 matrix of p-values and
31 × 18 matrix of correlation coefficients). After this step, we computed the percentages of
runs where significant correlation existed, and these percentages were arranged in a matrix.
The matrix lines correspond to the features and the columns to the sliding window size
used in their extraction.

Regarding the correlation coefficients obtained through this procedure, we calculated
the means of these values across the different runs. Due to existing runs with different sizes,
the means were computed using Fisher’s z transformation. This method allowed us to give
more weight to the features extracted in runs with a larger time length [31]. With this step,
the average correlation across runs was obtained between the 31 features extracted with
the 180-second window and the same 31 features extracted with the other time frames in
the study. The Fisher’s mean values were placed in tables where the lines correspond to
the features and the columns to the sliding window sizes used in their extraction. In these
tables we can efficiently observe the overall effect of reducing the sliding window time
span on the correlation values (see Figures 10 and 11).
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Figure 10. Spearman’s Correlation Test (Time, Non-Linear and Geometrical Domains) ** Heatmap Col-
ors: Percentage of runs where there exists significant correlation between the feature (row) extracted
using the respective window size (column) and the same feature obtained using the 180-second
sliding window. Cell Values: Means, across the different runs, of the correlation coefficients between
the feature (row) extracted using the respective window size (column) and the same feature obtained
using the 180-second sliding window.
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Values: Means, across the different runs, of the correlation coefficients between the feature (row)
extracted using the respective window size (column) and the same feature obtained using the
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Similar to the process performed in the previous subsection, a linear regression
was performed with the mean correlation results obtained for each feature. The coef-
ficients of determination (R2) associated with the linear regression were also computed (see
Figures 12 and 13).
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3.5.3. Bland–Altman Plots

Following the recommendations of Pechia et al. [2] and Shaffer et al. [5], we proceeded
with Bland–Altman plot analysis to evaluate the features’ degree of bias. A relevant
difference between our approach and that of existing studies was that we performed an145
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intra-subject and intra-run feature analysis, i.e., we tested the features’ correlation and
statistical differences using different time frames within the same experimental run. In
order to maintain the same intra-group analysis approach, we performed a Bland–Altman
plot analysis for non-parametric data for each feature extracted with the different extracting
window sizes compared with the same feature extracted with the 180-second window. This
procedure was repeated for every experimental run. Figure 14 illustrates 5 Bland–Altman
plot examples where it is possible to observe the level of agreement between the compared
measurements.
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time frames compared to the LF/HF extracted with 180-second time frame, regarding a single
experimental run of an individual subject.

4. Results
4.1. Statistical Significance Test Results

Figures 5 and 6 summarize the results obtained using the procedure introduced in
Section 3.5.1. In particular, Figure 5 summarizes the results related to the time, geometrical
and non-linear domain features, whereas Figure 6 presents the results achieved using
the frequency domain features. The values of each cell correspond to the percentage of
runs where there is no significant difference between the feature (row) extracted using
a respective window size (column), and the same feature obtained using the 180-second
reference sliding window. Figures 7 and 8 are graphical representations of the linear
regressions obtained for the time, geometrical and non-linear domain features results and
for the frequency domain features results, respectively. The feature lines chosen to be
presented were the ones considered representative of the overall results. In Appendix B, it
is possible to consult the slopes, the yy interceptions and the coefficients of determination
obtained for every feature in the study.

From both tables, it is possible to observe that reducing the sliding window size has
a great impact on the results of the significance test in almost every feature. This drop
represents a large decrease, through the time frame reduction, in the percentage of runs
where there is no significant difference between extracting features using that window and
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the 180-second reference window. The linear regressions obtained provide quantitative and
visual support for this claim.

4.2. Correlation Test Results

Figures 10 and 11 introduce the correlation testing results described in Section 3.5.2,
i.e., Figure 10 corresponds to the correlation analysis of the time, geometrical and non-
linear domain features, whereas Figure 11 corresponds to the correlation analysis of the
frequency domain features. Each cell value corresponds to the Fisher’s means, across the
different experimental runs, of the correlations between the feature (row) extracted using a
window size (column) and the same feature obtained using the 180-second sliding window.
The heatmap colors correspond to the percentage of runs where a significant correlation
(α = 0.05) exists between the feature (line) extracted using a given window size (column)
and the same feature obtained using the 180-second sliding window.

Figures 12 and 13 allow a visual inspection of the linear regressions obtained for the
time, geometrical and non-linear domain features’ correlation means and for the frequency
domain features’ correlation means, respectively. Following the same scheme as Section 4.1
(statistical significance), we selected a few representative linear regression examples to
be graphically presented. Appendix C contains the values obtained for the slopes, the yy
interceptions and the coefficients of determination.

4.3. Bland–Altman Plots Results

Figure 14 depicts the Bland–Altman plots achieved for the feature LF/HF, extracted
with the 120-, 90-, 60-, 30- and 10-second time frames compared to the respective features
extracted using a 180-second window. The data used to perform these plots correspond to
a single experimental run of an individual subject. The Bland–Altman plots allow us to
observe the degree of bias present between the compared features and if the data dispersion
remains within the 95% line of agreement.

5. Discussion

Regarding the statistical analysis and the time domain features, it is observed that four
features have significance levels remaining relatively stable throughout variation in the
sliding window duration, having a yy interception value close to 100 and a relatively smooth
slope. The mentioned features are the SDSD, the RMSSD (basically the normalized version
of the SDSD, which explains the similar percentages obtained in both measurements), the
pNN50 and the mean NN (mNN). The latter two correspond to the features that exhibit
the highest overall stability in the significance study. It is important to note that the linear
regression obtained from the pNN50 significance results has a low R2 value (0.50). However,
this low value results from a clear outlier in the 10-second time frame.

Keeping our attention on the non-linear and geometrical domain features, these groups
have the lowest percentages of runs without significant differences between the compared
features. In some cases, linear regressions with yy interception values are much further
away from 100 (ApEn, KFD, SI, TI, TINN); in other cases, with very sharp slopes (SD1, SD2,
HFD); or with both of these characteristics. This was an expected observation, considering
the literature regarding similar studies on ultra-short-term HRV measurements. However,
the point transition measure (PTM) shows promising results, since the yy interception is
94.66% and the slope is −3.04, which is a relatively soft slope in the overall context. The fact
that this feature proposed in the work by Zubair et al. [6] attempts to quantify the temporal
variation in the Poincare plot’s point-to-point level may help to explain the much better
significance results when compared to other non-linear measurements.

Lastly, regarding the features of the frequency domain, we notice that the features
corresponding to the very-low-frequency band have the worst performance in this test. All
these features have linear regression yy interception values between 70 and 80% and slope
values below −5, which is a relatively sharp slope, considering other features. This result
is expected, considering the current literature. It may be explained by the fact that the
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VLF band includes waves with 25-second periods and above (frequencies under 0.04 Hz),
which means that with a sliding window of fewer than 25 s, we cannot capture a full wave,
which increases uncertainty. This complication may also be extended to the low-frequency
Band. Considering the scope of the LF band, whose periods range from 6.7 s to 25 s, with
a 10-second or a 20-second time frame, it is not possible to capture a complete oscillation
period. Even the LF band may not be the best method regarding ultra-short-term HRV
measurements. This is well-reflected in the obtained results. According to Pechia et al. [2],
it is recommended that spectral analyses are performed on stationary recordings lasting at
least ten times longer than the slower significant signal oscillation period. This may help to
explain the quick drop in the acceptance percentage results. In fact, from the 110-second
window, we soon observe that most features do not have even 50% of the runs without
significant differences compared to the 180-second reference extraction window.

The results obtained based on the Wilcoxon rank sum test should be carefully analyzed
due to some features’ properties and the test’s characteristics, which compare the sample
distribution and its medians. In fact, a few features in the study rely on the window size
used on the extraction to be computed, directly or indirectly, which affects its median values
across the time frame reduction, and significant statistical differences will be found compar-
ing these features extracted with two differently sized windows. One example is the NN50,
where a larger window will naturally catch a greater number of consecutive RR intervals
differing by more than 50 milliseconds for the same cognitive state. The features from the
frequency domain, which compute the total power, are other examples (more oversized
windows will, expectedly, have higher total power values for the same cognitive state).
Furthermore, the HFD relies on the parameter “kmax” for its computation, dependent
on the window size employed. On the other hand, features which are normalized values,
such as pNN50, tend to have more consistent acceptance percentages through window
size reduction. In this way, a comparison using an isolated statistical significance test such
as the two-sided Wilcoxon rank sum, which compares the features’ medians, may lead to
biased results in these features. Furthermore, we believe that having different medians
does not mean the feature is not suitable for extraction with smaller windows, considering
our current goal, i.e., finding the smallest time frame where each feature behavior is still
representative of the corresponding 180-second measurement, for cognitive stress level
discrimination purposes.

Another problem with the isolated use of the significance analysis was that, in many
features, the acceptance percentage decreases to zero very early as the window size de-
creases. This fact gives the false impression that, for instance, in the TI features, using a
60-second or a 10-second window essentially produces equivalent results. In this way, the
correlation results corroborate some considerations made previously during the analysis of
the significance tables. In addition, the linear regression obtained for the correlation results
has more solid fits, having no R2 values under 0.90, allowing more accurate conclusions.
The correlation analysis may give us more insight into how a feature changes with the
reduction of the window size and, in this way, may help us to evaluate each window size
until a particular feature remains reliable in our study conditions.

Regarding the correlation analysis, starting with the time domain HRV feature set, the
mNN is the only feature where the correlation mean remains above 0.50 until the 60-second
window (more precisely, its correlation mean remains above 0.50 until the 30-second time
frame). This feature achieved the highest correlation in the smaller time frame in the
study (0.40). From the literature, some studies concluded that the mNN is reliable until
the 10-second time frame, such as the study by Salahuddin et al. [8], so the expectation
was to see higher correlation values until smaller extraction time frames. The same can be
said regarding the RMSSD and the pNN50 features. In the literature, these features are
often mentioned as being reliable using 60-second time frames and lower [11,16], yet, in the
current experiment, the correlation means obtained for these features using the 60-second
window were already below 0.50. However, in the study performed by Salahuddin et al. [8],
some recommendations by Pechia et al. [2] and by Shaffer et al. [5] are not adopted, such as
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the recommendations regarding the features’ bias quantification, which may increase with
time frame reduction. Further, the mentioned study used a 150-second reference for the
statistical analysis, while we used a 180-second time frame as a reference. Furthermore,
the existing investigations, such as the study by Baek et al. [16], perform an inter-subject
analysis of the features. This fact can lead to biased correlation values since it captures
the inter-subject feature tendencies that may overwhelm the actual feature tendencies and
increase the correlation of the features. In our present study, we perform an intra-subject
and intra-run feature analysis, avoiding this kind of bias. This analysis difference explains
the lower correlations obtained in the present study. It is also important to underline that,
contrary to the most existing literature on the topic, our study is projected in a real-life,
non-controlled environment, emulating contexts for real applications, such as bug detection
algorithms based on the features under study. Accounting for these considerations, we
cannot expect as high correlation values or as clean and clear results as those obtained in
more controlled and resting environments, requiring lower cognitive effort.

Regarding the non-linear and geometrical domain HRV features, some features would
probably be overlooked considering only the significance results. Let us take, as an example,
the significance values of the KFD, the SI, the TI and the TINN. The acceptance percentages
in the significance test drop to very low values in the 170-, 140-, 130- and 120-second
windows, respectively. However, in the correlation results, we can observe the existence of
correlation until smaller windows. Actually, in the KFD feature, more than 50% correlation
is observed until 80 s, and this feature has correlation values similar to HFD. This similarity
is expected since both features compute the fractal dimension. If the significance test results
were the only ones taken into consideration, we could have erroneously concluded that
these features are very distinct. From the geometrical and non-linear domains, the PTM
was the feature that had a higher correlation within the smaller windows and with the
softer slope (−0.037) of these two groups, which corroborates previous considerations.

Globally speaking, the features from the frequency domain are the ones that exhibit
higher consistent correlation values for smaller windows. Several features from this domain
have mean correlation values above 50% until windows of 40 s, with the HF obtaining
more than 50% correlation when using the 30-second sliding window. This observation
is substantially different from the significance results, which could biasedly suggest that
the time domain’s features are more reliable in smaller time frames. The set of features HF,
LF, LFpeak and totPow contains the features with the most promising correlation results
from this domain, having correlation mean values greater than 25% at the 10-second time
frame. Analyzing the slopes of the linear regressions achieved using the correlation means,
it is observable that the frequency domain features exhibit higher yy interception values,
maintaining a relatively softer slope. These facts indicate that their tendencies are less
impacted by sliding window size reduction. Once more, as expected, the VLF band had
the poorest results from the frequency domain set of features, with the steepest linear
regression slopes, despite the correlation results not being as low as the literature would
suggest until the 60-second window, compared to the other measurements. The set of
features with yy interception values of at least 0.95 and with softer slopes of the overall
study were: the mNN (a = −0.033), the HF (a = −0.038), the LF (a = −0.039), the LFpeak
(a = −0.040) and the totPow (a = −0.040). These features are also the those with the higher
correlation means in the 10-second time frame. Both these indicators can mean that this set
of measurements is adequate to perform the intended analysis in a code inspection context.

Table 2 contains the summarized top five features by sliding window, according to the
correlation mean values obtained, where one observes that the features from the frequency
domain clearly stand out. In fact, only one feature from the time domain reached these
top five features: the mNN when the extracting sliding window was 60 s or under, being
the feature with the highest correlation when using the 10-second sliding window. The
HF is the most consistent feature with the highest correlation values until the 30-second
time frame.
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Table 2. Top 5 features by time frame regarding the correlation means.

120 s 90 s 60 s 30 s 10 s

HF 90% HF 82% HF 70% HF 51% mNN 40%
LF 90% totPow 80% totPow 67% mNN 50% LF 32%

totPow 89% LF 80% LF 65% LF 48% LFpeak 30%
LF/HF 87% LFpeak 75% LFpeak 61% totPow 48% HF 28%
HFnu 87% HFnu 74% mNN 60% LFpeak 44% totPow 25%

From the significance and correlation analyses performed, it is observable that every
HRV measurement present in the current study is affected by the time frame size used in
their extraction. The Bland–Altman plots further corroborate this statement. These plots
allow us to observe the generalized increase in the lines of agreement values of the features
with decreasing extracting window size. Figure 14 corresponds to the Bland–Altman
plots of the LF/HF feature extracted with 120-, 90-, 60-, 30- and 10-second time frames
compared to the same measurements extracted with the 180-second time frame. In these
illustrative plots, it is possible to observe this increase in the lines of agreement values
with the decrease in the sliding window duration. The number of measurements that fall
out of the lines of agreement also increases with reduction in time frame duration. In
the LF/HF feature, this effect is very clearly observable. In this way, we can conclude
that the degree of bias increases with a reduction in the analysis window size compared
to the 180-second measurements. However, in this study context, it is observed that the
variability which occurs in some features might be due to the fact that the samples extracted
from the 180-second window capture a more overall picture of the ANS dynamics, i.e.,
during a window of 180-second duration, a higher degree of variability of the ANS activity
might exist due to a higher degree of variability in cognitive stress during that period, in
comparison to the samples extracted from the shorter windows, where a lower degree of the
variability of cognitive stress is observed. This remark is in accordance with the increased
variability observed as the time window duration is decreased. Therefore, given the task’s
nature and application, the existence of variability on some of the Bland–Altman plots
might be seen as a concern but not as a limitation for application in software engineering,
given the high correlations between the two time series of comparison (180-second vs.
shorter windows). These results show that the prevalent cognitive state in both windows is
similar but not necessarily equal, since larger windows will capture higher cognitive state
fluctuations compared to shorter windows. Furthermore, these differences can be readily
captured and compensated by current machine learning and statistical techniques used to
model risk scores based on HRV.

Considering the results obtained, it is possible to observe that a set of features remains
stable with the reduction in the window analysis size and is reliable for time frames of
reduced duration. However, we also believe that some features that have underperformed
results should not be excluded just yet, as they might contain complementary information,
e.g., for class discrimination, which could be exploited when using machine learning
algorithms. This should be assessed based on each problem at hand.

Threats to Validity

In this experiment, some limitations were present, which translated into threats to
our conclusion’s validity, which should also be discussed. First, it is essential to mention
that the data collection study was designed with a broader goal and not specifically for
HRV stability assessment, and, as such, several different biosignals and images were
collected. Functional magnetic resonance imaging (fMRI) was one of the examinations
performed. This examination forces the entirety of the experiment to be performed inside
an fMRI scanner. The fMRI has an inherent noise effect on the ECG signal. This effect was
mitigated through several ECG pre-processing and segmentation methods (Section 3.2:
Pre-processing and ECG segmentation). The methods employed effectively mitigate the
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fMRI noise and are capable of detecting ECG peaks, which is necessary to compute a
quality HRV signal. Furthermore, the subjects were alone in a quiet and isolated room
when performing the tasks to control the experimental environment. Furthermore, the
subjects were informed a priori about all the protocol and processes of the experiment and
were instructed not to take anything that could stimulate/inhibit them the day before the
experiment. Nevertheless, these external effects are minimized, given that the potential
effect is blurred as we perform an intra-subject analysis, and the external effects are present
in the measurements extracted with the different windows compared.

Another limitation of our study was the time frame used as a reference (180 s), which
is already considered an ultra-short-term HRV. Ideally, a 5-minute (300 s) reference window
would be preferable since this is a well-known and consensual time frame in the scientific
community. That being said, this was not possible due to our dataset constraints. From
our original 21 × 4 (subjects × runs by subject) runs, we had a few middle-run dropouts,
which led to only 47 runs having more than 180 s. If the chosen reference were 300 s
measurements, the dataset would be substantially reduced, leading to lower statistical
power. Furthermore, the study is performed during software code inspection tasks (i.e.,
bug detection), which is a highly complex, dynamic and cognitively demanding task—in
this study context, a 5-minute window is a considerably large window. A window of this
size would capture physiological data corresponding to more than one code section, where
the subject could feel different difficulty levels, leading to inaccurate results since it would
capture different ANS dynamics. Another relevant constraint in the dataset is the fact
that all study subjects had the same gender (male). This fact is hard to counter because
the software engineering and programming fields are largely dominated by male subjects,
which makes it challenging to balance the gender groups in the experiment.

Regarding the study context, most of the related work carried out until now was
developed with the subjects at rest or performing elementary tasks in very controlled
environments. In contrast, our study is done in a highly demanding task environment.
Naturally, the dynamic characteristics of the higher cognitive function, resulting from our
experimental context, will generate more dynamic signals. Additionally, the code sections
inspected do not all have the same complexity. In this way, the transition from one code
section to the next is expected to produce physiological signals with different characteristics
and patterns, which are expected to present high variability in these periods, impacting the
statistical and correlation analyses.

6. Conclusions

This paper studied the impact of reducing the duration of time frames on the HRV
feature extraction process. The main goal of the present work was to investigate ultra-
short-term HRV features to determine whether HRV-based tools can effectively be used
in software development environments. To this extent, our present study investigated the
smallest time frame, i.e., the finest time resolution, where each feature is reliable, i.e., the
smallest time frame where each feature behavior is still representative of the corresponding
180-second measurement, under our experimental context.

Considering the results obtained, it is observed that the chosen time frame significantly
impacts every feature in the study. The features from the frequency domain are those
that maintain higher correlation levels until the smaller extraction window durations.
From the set of the considered HRV features in this analysis, 13 features had at least 50%
correlation when using the 60-second time frame (12 from the frequency domain and
only 1, the mNN, from the time domain). The lower statistical significance results can
be explained by the fact that features such as HF or LF compute the total power of the
respective band. Using a window with a larger size will, expectedly, have higher total
power values for the same cognitive state. Despite this fact, these features accurately
represent the corresponding 180-second measurements’ behavior, as observable in the
correlation results. Furthermore, for cognitive stress level discrimination purposes, we do
not need an exact surrogate of the short-term measurements, and the feature behavior and
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tendencies resultant from autonomous nervous system changes can be used to evaluate
different cognitive stress levels.

Regarding the smaller window size in the study (10 s), only three features exhibited
at least 30% correlation: the mNN, the LF and the LFpeak. Thus, a 10-second time frame
is too optimistic in our study context (high cognitive stress). The 30-second time frame
is the smallest window with features with at least 50% correlation, and only two fulfilled
this criterion: the HF and the mNN. The mNN, the HF, the LF, the LFpeak and the totPow
features presented softer linear regression slopes of the overall correlation analysis, with a
yy interception value above 0.95, meaning they are less impacted by a reduction in the time
frame duration. In this way, this set of five features has shown to be the most reliable for
the smallest time frames considering the present context. The mNN feature has proven to
be particularly robust to the reduction of the extracting window duration. This feature had
a correlation mean of 50% using a 30-second window and showed no significant statistical
differences in more than 50% of the experimental runs using all the sliding windows under
study, while maintaining a low degree of bias compared to the 180-second reference.

Considering all the results, in a cognitively demanding task context, a classifier built
with features extracted using time frames under 30 s might lead to inconsistent results,
with potentially low scores and high deviations. However, further study is required to
assess whether to discard features extracted using smaller time frames in machine learning
contexts, since these features may catch some shorter cognitive patterns that larger time
frames may not be able to discriminate. An approach using classifiers trained with datasets,
each composed of features extracted with a different time frame, may offer more extensive
insight and help to answer the raised hypothesis.
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Appendix A. Screening Questions and C-Test
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Appendix B

Table A1. Wilcoxon Rank Sum Test—Linear Regressions of the Statistical Percentages (subpart 1).

Time Domain Non-Linear Domain Geometrical Domain
mNN SDNN SDSD RMSSD NN50 pNN50 ApEn SD1 SD2 KFD HFD PTM SI TI TINN

a −2.84 −5.70 −3.98 −3.99 −1.75 −1.32 −5.09 −5.70 −5.70 −1.85 −7.60 −3.04 −3.95 −4.89 −4.97
b 98.01 85.13 94.14 94.35 20.47 95.87 77.78 85.13 85.13 21.66 107.94 94.66 48.55 62.82 65.15

R2 0.97 0.94 0.94 0.94 0.16 0.50 0.87 0.94 0.94 0.18 0.85 0.93 0.51 0.70 0.73
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Table A2. Wilcoxon Rank Sum Test—Linear Regressions of the Statistical Percentages (subpart 2).

Frequency Domain
totPow Peak VLF LF HF VLFpeak LFpeak HFpeak

a −6.1 −6.14 −5.41 −6.24 −6.24 −5.34 −5.69 −5.29
b 80.83 92.0 71.42 101.31 97.86 70.92 91.64 99.79

R2 0.8 0.93 0.76 0.98 0.95 0.78 0.93 0.96

Table A3. Wilcoxon Rank Sum Test—Linear Regressions of the Statistical Percentages (subpart 3).

Frequency Domain
VLFnu LFnu HFnu VLFpeak-nu LFpeak-nu HFpeak-nu LF/HF LFpeak/HFpeak

a −5.66 −5.37 −5.76 −5.76 −5.07 −5.14 −4.71 −4.71
b 77.63 86.31 83.59 79.61 92.25 92.17 90.37 89.90

R2 0.84 0.87 0.87 0.85 0.89 0.94 0.85 0.89

Appendix C

Table A4. Spearman’s Correlation Test—Linear Regressions of the Mean Correlations (subpart 1).

Time Domain Non-Linear Domain Geometrical Domain

mNN SDNN SDSD RMSSD NN50 pNN50 ApEn SD1 SD2 KFD HFD PTM SI TI TINN

a −0.033 −0.043 −0.037 −0.037 −0.038 −0.038 −0.042 −0.043 −0.043 −0.041 −0.043 −0.037 −0.043 −0.045 −0.041

b 0.979 0.936 0.909 0.909 0.772 0.772 0.888 0.936 0.936 0.917 0.934 0.902 0.905 0.906 0.823

R2 0.99 0.98 0.97 0.97 0.90 0.90 0.96 0.98 0.98 0.97 0.97 0.96 0.97 0.97 0.93

Table A5. Spearman’s Correlation Test—Linear Regressions of the Mean Correlations (subpart 2).

Frequency Domain

totPow Peak VLF LF HF VLFpeak LFpeak HFpeak

a −0.040 −0.043 −0.052 −0.039 −0.038 −0.052 −0.040 −0.043

b 1.094 1.066 1.112 1.091 1.099 1.105 1.064 1.065

R2 0.91 0.97 0.94 0.95 0.9 0.94 0.97 0.97

Table A6. Spearman’s Correlation Test—Linear Regressions of the Mean Correlations (subpart 3).

Frequency Domain

VLFnu LFnu HFnu VLFpeak-nu LFpeak-nu HFpeak-nu LF/HF LFpeak/HFpeak

a −0.054 −0.052 −0.046 −0.055 −0.049 −0.048 −0.046 −0.048

b 1.11 1.103 1.099 1.048 0.88 1.031 1.101 1.051

R2 0.95 0.97 0.94 0.99 0.98 0.98 0.96 0.99
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Abstract—Ultra-short term HRV features are becoming in-
creasingly popular due to the fact that they do not need long
time periods for their assessment and, therefore, can be used
in nearly real-time cognitive load assessment scenarios where
the standard 1-min to 5-min time frames are not applicable.
Several authors focused on the assessment of the validity of these
features by comparing them to the accepted 5-min short term
features, showing that the accuracy of these features decreases
with the decrease of the analysis window length. However,
there is one question that, to the best of our knowledge, has
not been fully addressed yet. How does the reduction of the
analysis window affect the classification process during cognitive
demanding tasks? In this paper we propose the use of 18 different
time frames, ranging from 3 minutes to 10 seconds, to extract
HRV features from data collected out of 21 subjects during code
comprehension tasks. The HRV features are then associated with
a code section, gazed during an experiment run, and statistical
transformations are computed to built the several datasets, where
each section gazed is a sample. A Support Vector Machine
(SVM) classifier was trained for each different dataset using
a Leave-One-Subject-Out cross-validation procedure, following
3 distinct approaches. The classifier’s goal is to discriminate
between low and high complexity code sections analysed by
the subjects during the experiment. The F1-Scores ranged from
0.79 to 0.64, indicating that it’s possible to achieve similar, but
lower classification results using smaller time frames, with a
consistent increase of the variability in the performance evidenced
by a higher standard deviation of F1-Scores in the smaller time
frames.

Index Terms—time frames, sliding window, feature extraction
procedure, HRV features, features statistical transformations,
SVM classifier

I. INTRODUCTION

One of the most demanding tasks in software engineering
is related to the detection of S/W bugs, either during software
programming, or during code inspection tasks. These bugs
typically occur in the more complex sections of the code,
which demands a higher cognitive state to their compre-
hension. Programmers’ difficulties in comprehending specific
code sections do not necessarily map to classic software
complexity metrics [1] [2], which justifies the quest for a

1A. Bernardes, R. Couceiro, J. Medeiros, P. Carvalho, J. Henriques,
C. Teixeira, H. Madeira, J. Duraes, are with with the Centre for Infor-
matics and Systems of the University of Coimbra, Polo II, University of
Coimbra, 3030-290, Coimbra, Portugal, (e-mails: ambernardes11@gmail.com,
{rcouceir, juliomedeiros, carvalho, jh, cteixei, henrique}@dei.uc.pt and jdu-
raes@isec.pt).

2J. Duraes is with the Polytechnic Institute of Coimbra, 3045-093, Coimbra,
Portugal, (e-mail: jduraes@isec.pt).

Fundação para a Ciência e Tecnologia (FCT) under the national project
BASE (POCI - 01-0145 - FEDER- 031581)

neural link between programmers’ cognitive states and poten-
tial code comprehension difficulties. Possible tools capable of
identifying programmers’ code comprehension difficulties in
real-time (i.e., while the programmer is developing the code or
doing a code review) would be essential to assist programmers
during the code analysis/inspection process, warning them
about code sections with high probability of having bugs.
Knowing that code comprehension and bug detection occupies
around 70% of the programmer’s working time [3], it is easy
to understand the relevance of identifying code programmers’
comprehension difficulties to improve code reliability and
reduce software development cost.

The Central Nervous System (CNS), composed by the brain
and the spinal cord, is constantly exchanging information
with all the body parts, and producing responses to every
stimulus received. The Peripheral Nervous System (PNS) is
the system responsible for sustaining these signal exchanges.
A subpart of the PNS is the Autonomic Nervous System
(ANS) which is divided in the sympathetic nervous system,
accountable for being in control during stressful events, and
the parasympathetic nervous system, which is responsible for
the restoration processes to bring the body towards a stable
state [4]. That said, the CNS is capable of influencing all the
physiological systems, including the ANS, and therefore it is
possible to measure the cognitive manifestations through the
analysis of bio-signals that capture the activity of the ANS.

One of these bio signals is the Heart Rate Variability (HRV).
HRV consists of the variation in the duration of the intervals
between successive heartbeats (R-R intervals) [5], measured in
milliseconds (ms). These intervals are believed to behave like
an index of the autonomic control [6], since they are influenced
by the dynamic interaction between the parasympathetic and
the sympathetic systems signals delivered to the heart (via the
sinoatrial node) [7] and have been referenced has having a
good correlation with the cognitive load [7].

In this study we propose to analyse the performance of
multiple classifiers fed with statistical transformations of stan-
dard HRV features, computed at different time-resolutions, i.e.,
using time frames from 3min to 10sec. The goal of these
classifiers is to discriminate between low and high complexity
code sections. By testing different time frame sizes, we
expect to observe its influence in the features extracted and
consequently in the classifier results, even for ultra-short HRV
required for real-time programmers’ support.

It is important to highlight the use of features’ statistical
transformations, which are associated to different complexity
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code sections. The statistical transformations are performed
after the concatenation of the standard HRV features, extracted
during the periods when the programmer gazed at a certain
code section. Following this procedure makes our study con-
clusions specific to code inspection or similar contexts and,
consequently, not as generalizable as the prevailing literature,
which methods do not involve statistical transformations.

The rest of the paper is organized as follows: Section
II provides the description of the data collection procedure,
section III details the proposed approach for the analysis, and
section IV presents the description of the classification process.
Finally, in section V, the results are outlined and section VI
summarizes the main conclusions and future work.

II. DATA COLLECTION

For the development of the current analysis a dataset
collected during the BASE project has been used. This
dataset contains biometrical signals including Electrocardio-
gram (ECG), the Photoplethysmogram (PPG), the Electroder-
mal activity (EDA) and eye movements (Eye Tracking). In
this paper we will focus on the analysis of the HRV obtained
from the ECG signals during the time periods associated to
the code sections analysed by the subjects.

The dataset contains data from 21 programmers with differ-
ent levels of expertise in C language. All the subjects selected
for the experiment were male with ages between 19 and 40
years, and an average age of 22 years old.

The protocol to which the selected subjects were submitted
consisted of 4 different runs that always started with a fixation
cross positioned in the center of the screen, followed by the
next three tasks:

• 1) Task consisting in a natural language reading. Four
small literary excerpts were used here and randomly
selected each run. Estimated duration of the task: 60
seconds

• 2) Task consisting in a neutral code reading. The four
code snippets employed here were selected at random and
were bug free and straightforward. Estimated duration of
the task: 300 seconds

• 3) Task consisting in code inspection and bug detection.
In this task 4 code snippets written in C language were
used; these were selected randomly at each run as well.
Estimated duration of the task: 600 seconds

Between tasks, a fixation cross was presented to the subjects.
In order to reduce any bias in the obtained results, the three
tasks were performed in a random order at the different runs.

A written consent for the data collection was signed by the
subjects that took part in the study. The study, in accordance
with the Declaration of Helsinki, received clearance by the
Ethics Committee of the Faculty of Medicine of the University
of Coimbra.

III. METHODS

A. ECG - Pre-Processing

Given that the experiment was conducted with simultaneous
acquisition of MRI, an initial pre-processing was necessary

to remove the gradient artifact (GA) induced by the MRI-
scanner on the ECG signals. To this end, an average artifact
subtraction (AAS) technique based on the algorithm from
Niazy et al. [8] wwas performed to reduce this artifact on
the ECG data. Beside the GA correction, the ECG by being
recorded inside a MRI-scanner, the recorded signals presents
some changes in its morphology due to the magnetic field.
Therefore, traditional QRS detection algorithms tend to fail
and, consequently, lead to a bad R-R intervals calculation.
Nevertheless, the R-peak detection algorithm proposed by
Christov et al. [9] is commonly used in these scenarios, given
its robustness and high performance in the R peak detection
on ECG signals recorded inside MRI-scanners. After having
the R-peaks detected, we proceeded to the computation of the
R-R intervals to obtain the HRV time-series.

B. Features Extraction

For the HRV analysis, a thorough survey of the most suit-
able features, i.e., the most reliable extracted using small time
frames (Ultra-short HRV measurements) has been conducted,
leading to the selection of a set of 31 features across Time,
Geometric, Non-Linear and Frequency Domains [10]–[16].
The set of features used in this paper are summarised in the
table I.

Starting from the HRV signals corresponding to the data
collected during the code inspection and bug detection task, we
applied a sliding window with a step of 1 sec. for the feature
extracting process, giving origin to a vector of individual
measurements, associated to an instant in time, for each
feature. Every single measurement value is calculated based on
a RR signal portion with the size of the sliding window used.
The time instant associated with that individual measurement
will be the instant corresponding to the centre of the RR signal
portion used on the computation.

The feature extraction step was repeated using 18 different
sliding windows, creating 18 different datasets. The first
features were extracted using a sliding window of 180 seconds,
which was iteratively reduced until 10 seconds, the smallest
window used in the current analysis.

C. Features Normalization

All the features extracted during the “code inspection and
bug detection” task were normalized regarding the “natural
language reading” periods. With this intent, the features men-
tioned in the table I were also extracted from the data collected
during the “natural language reading” periods, using a similar
procedure as the explained in the previous section (to facilitate
the reference let’s call these ones the ‘rest features’, and the
others the ‘code features’). In the “natural language reading”
period the subjects are supposed to be in a low cognitive
stress state, which corresponds to an optimal state for the
normalization process. The normalized features were obtained
by calculating the ratio between each “code feature” and the
median of the corresponding “rest feature”. Here, the median
has been selected since the data does not follow a normal
distribution (assessed using the Kolmogorov–Smirnov test).
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TABLE I

SET OF FEATURES USED ON THE STUDY.

Initials HRV Measurments

mNN mean of RR intervals 

SDNN standard deviation of RR intervals

SDSD standard deviation of the differences between heart beats

RMSSD root mean square of the differences between heart beats

NN50 number of RR intervals that fall within 50 milliseconds

pNN50 percentage of RR intervals that fall within 50 milliseconds

TI HRV Triangular Index

TINN Triangular Interpolation of RR interval Histogram 

SI The Baevsky's Stress Index

ApEn Approximate Entropy

SD1 standard deviation of the Poincare’ plot perpendicular to the line-of-identity

SD2 standard deviation of the Poincare’ plot along the line-of-identity

PTM Point Transition Measure

KFD Katz Fractal Dimension 

HFD Higuchi Fractal Dimension 

VLF very-low frequency band power (<=0.04Hz)

LF low frequency band power (0.04 - 0.15 Hz)

HF very-low frequency band power (0.15 - 0.4 Hz) 

VLFnu VLF power normalised 

Lfnu LF power normalised 

HFnu HF power normalised 

VLFpeak VLF power frequency peak

LFpeak LF power frequency peak

HFpeak HF power frequency peak

VLFpeak-nu VLF power frequency peak normalised

LFpeak-nu LF power frequency peak normalised

HFpeak-nu HF power frequency peak normalised

totPow Total Power

Peak Overall frequency power peak

LF/HF Ratio of LF and HF band powers

LFpeak/HFpeak Ratio of LF and HF band power frequency peak

References: [6] [10]

time domain

non-linear domain

geometric domain

frequency domain

References: [6] [10]

References: [6] [10] [11] [12] [13]

References: [4] [6] [14] [15] [16]

D. Features Transformation

As mentioned before, the code snippets where the subjects
search for bugs have sections with different complexities, la-
belled as low and high complexity, according to a classification
performed by a panel of experts. The individual measurements
from the feature vectors, produced in the feature extraction
process, associated with all instants corresponding to the
periods that the subject was looking to a certain section during
a run, were grouped. From each group, a set of features was
computed using simple statistic transformations, i.e., mean;
standard deviation; maximum; minimum; median; quantile
0,50; quantile 0,75; quantile 0,85; quantile 0,95; peaks mean;
peaks standard deviation; peaks maximum; peaks minimum;
peaks median; peaks quantile 0,50; peaks quantile 0,75; peaks
quantile 0,85; peaks quantile 0,95; and peaks rate. The scheme
of the statistical transformations method used is presented in
the figure 1.

In summary, 589 features (31 features x 19 statistical
transformations) were extracted from the 18 datasets (one
dataset for each different sliding window size used in the initial
extraction) labelled according to its difficulty.

Fig. 1. Feature statistical transformations scheme.

IV. CLASSIFICATION

A. Feature selection and approach

The goal of the classification is to discriminate between low
and high complexity code sections. To reduce the number of
features by dataset, we performed the Kruskal-Wallis test for
each transformed feature divided in two groups by the com-
plexity label. This algorithm returns the p-value for the null
hypothesis that both groups come from the same distribution.
The rejection of the null hypothesis was considered when the
p-value was below 0.05.

From this procedure it was observed that the datasets
resulting from the use of the smaller sliding windows, had
a larger amount of discriminative transformed features when
compared to the datasets corresponding to the larger windows.
Thus, in order to produce a fair comparison between the
classification models, three different approaches were used:

• Approach 1) Selection of the 15 most discriminative
transformed features with the lowest p-values (in the
Kruskal-Wallis analyse) from the 180 seconds sliding
window dataset;

• Approach 2) Selection of the 15 most discriminative
transformed features with the lowest p-values from the
10 seconds sliding window dataset;

• Approach 3) Selection of the 15 most discriminative
transformed features, i.e., with the lowest p-values, for
each window size dataset.

The dataset produced by each of these approaches was used
to train and test a SVM classifier, with linear kernel and
a regularization parameter of 2, allowing us to evaluate the
influence of the window size in the different classifier results.

B. Classifier Train and Test

The classification process was performed using a Leave-
One-subject-Out cross validation scheme using each 18
datasets from our 3 approaches.

To access the performance of each classifier, the F1 Score
was computed for training and test in each loop of the Leave
One Out technique, resulting a vector of F1 Scores for each
window size dataset (with the size equal to the number of
subjects). The F1 Score assigned to each dataset was the
mean of all repetitions using that window size dataset, the
standard deviation was also computed. The data distribution
analysis of each resulting F1 Score vector was done using the
Kolmogorov-Smirnov test, and it was possible to conclude that
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non exhibited a normal distribution. Therefore, the Wilcoxon
rank sum test was used to verify the differences in the F1 Score
distributions from each window size dataset against the 180
second dataset, assumed as reference. The set were considered
to be from different distributions for a p-value below 0,05
(null hypothesis rejected). These steps were repeated for the
3 different approaches.

V. RESULTS AND DISCUSSION

First, it should be underlined in the discussion the reason
why, in this context, we opted to use statistical transformation
of the HRV features, instead of using directly the HRV
features. When a programmer is inspecting code, with multiple
sections of different complexities, it is expected for him to
go back and forward through the sections, searching for code
flaws and bugs. This fact makes that a single section could
be gazed several times, also in each gaze the cognitive load
may be different. To illustrate this logic, we may think on the
following example: a programmer inspects a certain section for
the first time and does not feel any difficult, although through
the code inspection continuation he has a doubt and suspects
that the answer to his doubt may be in a previous section, so
he goes back to that initial section, he may now feel a higher
difficulty there, where previously that level of difficulty was
not felt.

With the use of statistical transformations, each sample on
the dataset built corresponds to a certain section gazed during
a run. The importance of this step is to capture and enhance
the state of the subject on each specific code section over
the experiment. The use of different size sliding windows
in the HRV features extraction (before the transformations)
is proposed since different time frames may access different
ANS dynamics. Furthermore, the use of smaller time frames
may provide greater granularity in the analysis, making it
possible to capture the ANS dynamics during smaller code
sections gazing periods. This way, the analysis done in this
paper reinforces the use of Ultra-Short-term features, more
specifically which time frames are more suited to employ
in the features extraction process in this specific software
development or similar contexts.

The results achieved from the current analysis are presented
in figure 2. In the table II we present the results of the
Wilcoxon rank sum test analysis of the F1 Score distributions.

Through the analysis of Figure 2, it is possible to observe
that the three different approaches achieved similar results.
In approach 1 the F1-Scores remains particularly stable until
the 60 seconds time frame and for time frames below 60
seconds it is observed that the F1-Scores are not from the
same distribution as the reference F1-scores, i.e., the 180
seconds dataset F1-Scores. It is also possible to observe that
the performance of the classifiers did not change substantially,
which is confirmed by the range of the F1 scores between 0.64
and 0.75. The largest difference found across the results are in
the standard deviation values, which are significantly larger in
the results related to the use of smaller time frames. The best
result in this approach is the result correspondent to the use

of the 180 seconds sliding window. This is in accordance to
the expected outcome, since all the datasets were based in the
most discriminative transformed features of the 180 seconds
time frame.

Analysing the second approach, it is possible to notice
an increase in performance when using the datasets obtained
with the smaller window sizes. One possible reason for this
observation is that in this approach the selected features were
the most discriminative assessed by the Kruskal Wallis test
for the 10 seconds dataset. Relatively to the first approach,
there was an increase in the performance of the classifiers fed
with features extracted from the smaller time frames, although
the classifier based on the 10 seconds decreased its score
value. The score correspondent to the 160 seconds dataset with
this approach was the best of the overall study, fact that was
not initially expected, but can be explained by some com-
pensatory behaviour between transformed features. Finally,
regarding the third approach, the conclusions taken are not
much different from the other two. This approach had the
most discriminative features for each dataset and therefore it
is expected that the different time frames classifiers presented
the higher F1-Score attributed from the 3 approaches, and with
the lower variability (standard deviation). Nonetheless, one can
observe some exceptions that are believed to be the result of
the before mentioned compensatory behaviour of the different
set of transformed features.

VI. CONCLUSION

In this paper we presented the analysis of several classifiers
following three distinct approaches. The classifiers were fed by
statistical transformations of standard HRV features extracted
with multiple time frames from 180 secs. to 10 secs. and the
F1-Scores regarding each classifier were computed.

Considering the higher F1-Score values of each time frame
across these approaches, it is possible to conclude that the
reduction of the time frame used for the extraction of the
HRV features, before the statistical transformations method
application, does not affect substantially the results obtained
in the classification process. This is a relevant result since most
published results regarding the window size impact on HRV as
well as our own results suggest that the lower the window size
the higher is the uncertainty of the extracted HRV feature and
the lower its correlation with respect to the feature extracted
using a large window (e.g. the standard 5 minute duration
window). However, in the study context, when applied in a
classifier, paired with the proposed statistical transformations
method in the dataset construction, the obtained results show
that the performance degradation is much smaller. This might
be due to the complementary nature of the feature which is
able to compensate the uncertainty in each feature, i.e., these
interesting results are thought to be the consequence of com-
pensatory effects between features, since although individually
some sets of transformed features were selected in the feature
selection process in a certain window size dataset (approach 3),
in some cases other different set of features ended up having
the best F1-Scores. This compensatory behavior seems also
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Fig. 2. Mean F1-Scores and Standard Deviations plot obtained using the datasets based on the diferent time frames in study

TABLE II
WILCOXON RANK SUM TEST ANALYSIS OF THE F1 SCORE DISTRIBUTIONS COMPARED TO THE 180 SECONDS DATASET

180s 170s 160s 150s 140s 130s 120s 110s 100s 90s 80s 70s 60s 50s 40s 30s 20s 10s

Approach 1 Accepted
p=1.00

Accepted
p=0.95

Accepted
p=0.77

Accepted
p=0.79

Accepted
p=0.98

Accepted
p=0.68

Accepted
p=0.38

Accepted
p=0.51

Accepted
p=0.18

Accepted
p=0.23

Accepted
p=0.22

Accepted
p=0.26

Rejected
p=0.02

Rejected
p=0.04

Rejected
p=0.01

Rejected
p=0.03

Rejected
p=0.01

Rejected
p=0.02

Approach 2 Accepted
p=1.00

Accepted
p=1.00

Accepted
p=0.10

Accepted
p=0.90

Accepted
p=0.74

Accepted
p=0.63

Accepted
p=0.87

Accepted
p=0.98

Accepted
p=0.77

Accepted
p=0.95

Accepted
p=0.51

Accepted
p=0.88

Accepted
p=0.65

Accepted
p=0.93

Accepted
p=0.84

Accepted
p=0.79

Accepted
p=0.60

Accepted
p=0.42

Approach 3 Accepted
p=1.00

Accepted
p=0.61

Accepted
p=0.71

Accepted
p=0.60

Accepted
p=0.57

Accepted
p=0.69

Accepted
p=0.63

Accepted
p=0.34

Accepted
p=0.35

Accepted
p=0.18

Accepted
p=0.20

Accepted
p=0.15

Accepted
p=0.69

Accepted
p=0.13

Rejected
p=0.01

Accepted
p=0.07

Accepted
p=0.18

Rejected
p=0.04

to be present across the different time frames since the F1-
Score values hold relatively stable with the decrease of the
window sizes. To further explore these compensatory effects
a possible approach may be applying a Principal Component
Analysis to the features, under penalty of losing some of its
interpretability. Another explanation to the obtained results
stability, may be the statistical transformation method used
in the dataset construction. This procedure reduces the prob-
ability of, in a sample, the programmer difficulty sensation
being different from the actual labeled complexity of the code
section gazed. With this method implementation, it is possible
to account every time that a certain section is gazed, and the
different difficulty levels felt at each gaze, in each sample,
helping to further extend the compensatory behavior discussed.
Nevertheless, the standard deviation of F1-Scores obtained
with the cross-validation method used, reveal higher variability
in the smaller time frame datasets.

Considering the use case reported in this paper where the
extraction of HRV features under ultra-short time periods is
vital to capture fine events such as the inspection of short, but
complex code sections, a classifier fed with statistical trans-
formations of features extracted using different time frames
could be an optimal solution. The conclusions presented in this
paper are context specific and should be carefully analysed and
further studied. Furthermore, another limitation of this work
is that the experiment design protocol does not account for
daytime HRV variations neither for longer rhythms dynamics,
which can not be captured by ultra-short HRV measurements.
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