

Miguel Bruno dos Santos Marques

ADVANCES IN 3D POINT CLOUD

COMPRESSION USING DEEP LEARNING

Dissertação no âmbito do Ramo de Computadores do Mestrado de
Engenharia Eletrotécnica e de Computadores orientada pelo

Professor Luís Alberto da Silva Cruz e apresentada ao
Departamento de Engenharia Eletrotécnica e de Computadores da
Faculdade de Ciências e Tecnologia da Universidade de Coimbra.

Setembro de 2022

Advances in 3D Point Cloud

Compression using Deep Learning

Miguel Marques

Coimbra, September 2022

Advances in 3D Point Cloud Compression using

Deep Learning

Supervisor:

Luís Alberto da Silva Cruz

Jury:

Vítor Manuel Mendes da Silva

Luís Alberto da Silva Cruz

Nuno Miguel Mendonça da Silva Gonçalves

Dissertation submitted in partial fulfillment for the degree of Master of Science in Electrical and

Computer Engineering.

Coimbra, September 2022

Acknowledgements

I want to express my sincere gratitude to my supervisor, Dr. Luís Cruz, for his guidance and

support, and without whom this work would not be possible. Thank you for your patience and for

pushing me to be better.

I would also like to thank all my friends and colleagues from DEEC, especially Diogo Santos, Marco

Domingues, André Teixeira, Luiz Cancellier, Óscar Martins, Marta Nunes, Nuno Mendes, Tânia

Gonçalves (and so many more!), for all the fun memories, advice and support. You guys rock.

To Instituto de Telecomunicações for providing me with excellent work conditions and resources.

And to my family, for their unconditional support. My mother, who always wished me the best.

My father, who always listened to what i had to say. My brother, who always had my back (and

i’ve got yours!).

ii

Abstract

As 3D point clouds become more common as a representation of 3D visual content, the need to

efficiently compress this data grows ever stronger. Research has shown that deep learning based

approaches to point cloud coding see an increase in performance when compared with more tra-

ditional methods like the G-PCC and V-PCC encoders developed by MPEG. This Dissertation

examines and evaluates the use of the deep learning Transformer architecture and patch-based in-

puts combined with well developed deep learning point cloud compression solutions described in

the literature. To that end, we propose four new deep learning encoders. The obtained results

show an improvement over the G-PCC Octree encoder in terms of the D1 PSNR metric, as well as

an improvement over the baseline PCC Geo v2 codec. The Dissertation also presents an ablation

study conducted to analyze the impact of several encoder related parameters and structures that

can guide future research in deep learning point cloud compression. Finally, a study is conducted

to extend current state-of-the-art deep learning point cloud compression solutions to also compress

the color information of the point cloud. A detailed study is performed over the RGB, YCbCr, LAB

and HSV color spaces to determine the best suited color space to compress the point clouds, while

also comparing the reconstructed point clouds to the MPEG V-PCC codec baseline.

Keywords: Point cloud, compression, deep learning

iv

Resumo

À medida que nuvens de pontos 3D se tornam mais comuns como uma representação de conteúdo

visual 3D, a necessidade de comprimir eficientemente estes dados torna-se cada vez maior. Inves-

tigações evidenciam que soluções baseadas em aprendizagem profunda para codificação de nuvens

de pontos resultam num aumento no desempenho comparado com métodos mais tradicionais como

os utilizados nos codificadores G-PCC e V-PCC desenvolvidos pela MPEG. No contexto de com-

pressão de nuvens de pontos baseada em aprendizagem profunda, esta Dissertação examina e avalia

o uso da arquitetura de aprendizagem profunda denominada Transformer, bem como entradas do

modelo profundo baseadas em patches. Combinando estas técnicas com soluções estado da arte

na literatura de compressão de nuvens de pontos usando aprendizagem profunda, são propostos e

avaliados quatro novos codificadores. Os resultados obtidos demonstram, não só um aumento de

desempenho comparado com o codificador base MPEG G-PCC Octree em termos da métrica D1

PSNR, mas também um aumento no desempenho comparado com o codificador base baseado em

aprendizagem profunda PCC Geo v2. Esta Dissertação também apresenta um estudo que analisa o

impacto no desempenho dos codificadores propostos de vários parâmetros, com o intuito de guiar

investigações futuras no tópico de compressão de nuvens de pontos baseada em aprendizagem pro-

funda. Finalmente, é realizado um estudo com o objetivo de extender a funcionalidade de soluções

estado da arte em compressão de nuvens de pontos baseada em aprendizagem profunda para tam-

bém comprimir informação da cor de cada ponto da nuvem de pontos. Em termos de espaço de

cor na codificação, são realizados estudos usando os espaços de cor RGB, YCbCr, LAB e HSV para

determinar qual deles é o mais adequado para comprimir as nuvens de pontos. Todas as soluções

exploradas são também comparadas com o desempenho do codificador base V-PCC.

Palavras chave: Nuvem de pontos, compressão, aprendizagem profunda

vi

“Any fool can know. The point is to understand."

— Albert Einstein

viii

Contents

Acknowledgements ii

Abstract iv

Resumo vi

List of Acronyms xv

List of Figures xvi

List of Tables xx

1 Introduction 1

1.1 Context and Motivation . 1

1.2 Objectives . 2

1.3 Scientific Contributions . 3

1.4 Dissertation Outline . 3

2 Background Information 5

2.1 Point Cloud Acquisition . 5

2.1.1 Point Cloud Voxelization . 5

2.2 Point Cloud Quality Metrics . 6

2.2.1 Point-to-Point Metrics . 8

2.2.2 Point-to-Plane Metric . 9

2.2.3 PCQM Metric . 10

2.2.4 Bjontegaard Deltas Metric . 12

2.3 Deep Learning Fundamentals . 14

2.3.1 Convolutional Layer . 15

2.3.2 Pooling Layer . 17

2.3.3 Activation Layer . 18

2.3.4 Normalization Layer . 18

x

2.3.5 Fully Connected Layer . 19

2.3.6 Dropout Layer . 20

2.4 Deep Learning Auto Encoder . 20

2.4.1 Deep Learning Variational Auto Encoder . 20

2.5 Deep Learning Hyperparameters . 21

2.5.1 Learning Rate . 21

2.5.2 Batch Size . 22

2.5.3 Number of Epochs . 22

3 Overview of DL-based

Point Cloud Compression 23

3.1 Auto Encoder-based Point Cloud Compression . 23

3.2 Adaptive End-to-End Auto Encoder-based PCC . 24

3.3 Neighborhood Adaptive Distortion Loss . 25

3.4 Further RD Control via Implicit and Explicit Quantization 26

3.5 Scalable DL-based PCC . 26

3.5.1 Resolution scalability . 26

3.5.2 Quality scalability . 27

3.6 Point-based End-to-End Auto Encoder-based PCC 28

4 Proposed End-to-End AE-based

Geometry Point Cloud Coding 29

4.1 The Transformer . 29

4.2 DL-based Encoder for Point Cloud Compression . 31

4.3 DL-based Decoder for Point Cloud Compression . 33

4.4 DL-based Hyper Transform for Point Cloud Compression 34

4.4.1 Hyper Analysis Transform . 34

4.4.2 Hyper Synthesis Transform . 34

4.5 DL Model Training and Testing . 35

4.5.1 Block partition method . 35

4.5.2 Training dataset . 36

4.5.3 Loss function . 36

4.6 Experimental conditions . 37

4.6.1 Testing dataset . 37

4.6.2 Performance Metrics . 39

4.6.3 Benchmarking . 39

4.7 Experimental results . 40

xi

4.7.1 Full Transformer Encoder . 40

4.7.2 Progressive Transformer Encoder . 43

4.7.3 Full ConvMixer Encoder . 45

4.7.4 Progressive ConvMixer Encoder . 47

4.7.5 Qualitative study . 48

4.7.6 Final experiment remarks . 50

5 Extending DL-based Geometry PCC to include color information 51

5.1 Overall DL-based Geometry PCC Pipeline Changes 51

5.1.1 Architectural changes . 51

5.1.2 Model loss modification . 52

5.2 Color PCC DL Model Training and Testing . 52

5.2.1 Training dataset . 53

5.2.2 Loss function . 53

5.3 Experimental conditions . 54

5.3.1 Testing dataset . 54

5.3.2 Performance Metrics . 55

5.3.3 Benchmarking . 55

5.4 Experimental results . 55

5.4.1 RGB color space . 56

5.4.2 YCbCr color space . 58

5.4.3 LAB color space . 59

5.4.4 HSV color space . 60

5.4.5 Final experiment remarks . 61

6 Conclusion 65

6.1 Final Dissertation remarks . 65

6.2 Future work . 66

7 Bibliography 67

A Proposed End-to-End AE-based

PC Geometry Coding Results 71

B Color conversion transformations 89

B.1 YUV . 89

B.2 YCbCr . 89

B.3 LAB . 90

xii

B.4 HSV . 92

C Article - EUVIP 2022 94

xiii

List of Acronyms

AE Auto Encoder

bpp Bits-per-point

CD Chamfer Distance

CMEL ConvMixer Encoder Layer

CNN Convolutional Neural Network

DL Deep Learning

FCME Full ConvMixer Encoder

FL Focal Loss

FTE Full Transformer Encoder

G-PCC Geometry-based Point Cloud Compression

JPEG Joint Photographic Experts Group

KL Kullback-Leibler

MLP Multilayer Perceptron

MPEG Moving Picture Experts Group

MSE Mean Squared Error

PC Point Cloud

PCC Point Cloud Compression

PCME Progressive ConvMixer Encoder

PSNR Peak Signal-to-Noise Ratio

xiv

PTE Progressive Transformer Encoder

RD Rate Distortion

ReLU Rectified Linear Unit

TEL Transformer Encoder Layer

V-PCC Video-based Point Cloud Compression

VAE Variational Auto Encoder

wBCE weighted Binary Cross Entropy

xv

List of Figures

1.1 Point cloud examples. 2

2.1 Example of 1D voxelization with a bit depth of 4. The three values next to each

point are the RGB color components. 6

2.2 Point-to-point distance vs. point-to-plane distance. Source: [27] 6

2.3 Example of a strong and weak correlation between a subjective metric and a objective

metric. 7

2.4 Example of a pair of original vs. reconstructed point clouds. 7

2.5 Point-to-point metrics. 8

2.6 Point-to-plane D2 metric. 10

2.7 Ilustration of the point-to-surface correspondence computation. Source: [18] 11

2.8 Example of the computation of the BD-PSNR metric. In this case, A2 − A1 will be

negative. 13

2.9 Example of the application of the BD-rate metric. In this case, A′
2 − A′

1 will be

negative, because, in the considered interval, the area to the left of the RD curve 2

is smaller than the area to the left of the RD curve 1. 14

2.10 Architecture of the AlexNet deep learning network. Its objective is to classify an

input image into one of 1000 classes. In this case, the final latent representation is

the 1D tensor resultant of the Pool 5 operation. Source: [21] 15

2.11 2D example of stacked convolutional layers. Source: [14] 16

2.12 2D example of a convolution operation with a 3× 3 kernel, zero padding of 1, 1 filter

and different strides. Source: [14] . 16

2.13 2D example of a convolutional layer with multiple feature maps. Source: [14] 17

2.14 2D example of a max pooling operation with a 2× 2 kernel and stride 2. Source: [14] 17

2.15 Graphs for the ReLU, leaky ReLU and hyperbolic tangent activation functions. . . . 18

2.16 Normalization layer operation. 19

2.17 Example of a fully connected network. In this case, the bias is considered as a unit

value concatenated to the input and a step activation function is used after every

layer. Source: [14] . 19

xvi

2.18 Example of a dropout layer on a 3× 4 input. The red cells were dropped out. 20

2.19 Standard DL-based AE architecture in PCC. 20

2.20 Standard DL-based VAE architecture in PCC. 21

3.1 Basic pipeline of AE-based PCC. 23

3.2 Basic pipeline of Adaptive AE-based PCC. 24

3.3 Adaptive DL-based PCC. 25

3.4 Example of progressively decoding a point cloud. 26

3.5 Example of interlaced sampling with a sampling factor of 2 in each 3D direction. . . 27

3.6 Example of a multiscale DL-based model. Each encoder block downsamples the input

by a factor of N and each decoder block upsamples the input by a factor of N 27

3.7 Example of latent set grouping on the decoder side. As more latent sets are available,

the more complete the latent representation becomes and the higher quality the

reconstructed PC is. 28

4.1 Base architecture of the Transformer Encoder Layer. 29

4.2 Multi-Head Attention pipeline. In this context, linear refers to a fully connected

layer and matmul refers to matrix multiplication. Source: [29] 30

4.3 Proposed Transformer-based and ConvMixer-based PCC encoders. 32

4.4 Final implementation of the Transformer Encoder Layer. In testing, D = 3 for the

kernel size and f = 4/3 for the number of channels of the first convolutional layer

were set empirically. In this iteration, the feed forward network is implemented as

two convolutional layers. 33

4.5 Final implementation of the ConvMixer Encoder Layer. In testing, D = 3 for the

kernel size was set empirically. 33

4.6 Synthesis Transform of the DL-based PCC model. Both the number of channels

and dimensions of the blocks progressively increase with Di = {8, 16, 32} and Ni =

{16, 32, 64}. 33

4.7 Hyper Analysis Transform of the DL-based PCC model. 34

4.8 Hyper Synthesis Transform of the DL-based PCC model. 35

4.9 Full final pipeline of the experimental PCC model. 35

4.10 Test point clouds. 38

4.11 D1 PSNR RD performance graphs for the FTE. 40

4.12 D2 PSNR RD performance graphs for the FTE. 41

4.13 D1 PSNR RD performance graphs for the PTE. 44

4.14 D2 PSNR RD performance graphs for the PTE. 44

4.15 D1 PSNR RD performance graphs for the FCME. 45

xvii

4.16 D2 PSNR RD performance graphs for the FCME. 45

4.17 D1 PSNR RD performance graphs for the PCME. 47

4.18 D2 PSNR RD performance graphs for the PCME. 48

4.19 Difference between the original test PCs and the reconstructed PCs. Points in blue

mean that the reconstructed point is close (closer than, on average, four voxels) to

the original, while points in green mean that the reconstructed point is far (farther

than, on average, four voxels) from the original. 49

5.1 Altered Synthesis Transform from the PCC GEO V2 work to also process color

information. 52

5.2 Illustration of the application of the colorV1 loss and colorV2 loss in the 2D case

with only one color component. Blue cubes refer to filled voxels, green cubes refer

to filled voxels in the geometry information, red cubes refer to color values in the

colorV1 loss and orange cubes refer to color values in the colorV2 loss considering a

3× 3 window. 54

5.3 Example of the pipeline when encoding and decoding a PC in the LAB color space. . 55

5.4 RD graphs for the relevant metrics on the Long Dress test PC. 61

5.5 RD graphs for the relevant metrics on the Statue Klimt test PC 62

5.6 Best of the reconstructed Long Dress PCs. For every color space, the reconstructed

PC using the PCC GEO SLICING encoder with the colorV 1 loss is shown. 63

5.7 Best of the reconstructed Statue Klimt PCs. For every color space, the reconstructed

PC using the PCC GEO SLICING encoder with the colorV 1 loss is shown. 64

A.1 D1 PSNR RD performance graphs for the FTE. 72

A.2 D2 PSNR RD performance graphs for the FTE. 73

A.3 D1 PSNR RD performance graphs for the PTE. 77

A.4 D2 PSNR RD performance graphs for the PTE. 78

A.5 D1 PSNR RD performance graphs for the FCME. 80

A.6 D2 PSNR RD performance graphs for the FCME. 81

A.7 D1 PSNR RD performance graphs for the PCME. 85

A.8 D2 PSNR RD performance graphs for the PCME. 86

xviii

List of Tables

4.1 Model hyper parameters: learning rate (LR), batchsize (B), kernel size (KS), f , N

and λ. 37

4.2 Test PCs characteristics. The sparsity of the PCs was measured by calculating, for

all points in a PC, the average of the euclidean distance between the point and their

20 closest neighbors and averaging these distances over all points of the PC. 39

4.3 BD metrics for the FTE with N feature map channels compared to the G-PCC

encoder. The BD-rate is in percentage and the BD-PSNR is in dB. The best value

is in bold. 41

4.4 BD metrics for the FTE with N feature map channels compared to the V-PCC

encoder. The BD-rate is in percentage and the BD-PSNR is in dB. The best value

is in bold. 42

4.5 BD metrics for the FTE with N feature map channels compared to the PCC GEO

V2 encoder. The BD-rate is in percentage and the BD-PSNR is in dB. The best

value is in bold. 43

4.6 BD metrics for the PTE compared to the G-PCC, V-PCC and PCC GEO V2 en-

coders. The BD-rate is in percentage and the BD-PSNR is in dB. 44

4.7 BD metrics for the FCME with N feature map channels compared to the G-PCC

encoder. The BD-rate is in percentage and the BD-PSNR is in dB. The best value

is in bold. 46

4.8 BD metrics for the FCME with N feature map channels compared to the V-PCC

encoder. The BD-rate is in percentage and the BD-PSNR is in dB. The best value

is in bold. 46

4.9 BD metrics for the FCME with N feature map channels compared to the PCC GEO

V2 encoder. The BD-rate is in percentage and the BD-PSNR is in dB. The best

value is in bold. 47

4.10 BD metrics for the PCME compared to the G-PCC, V-PCC and PCC GEO V2

encoders. The BD-rate is in percentage and the BD-PSNR is in dB. 48

xx

4.11 Summary of BD metrics for the proposed encoders compared to the PCC GEO V2

encoder. The BD-rate is in percentage and the BD-PSNR is in dB with the best

values in bold. For the FTE, the 256 channel model was chosen as its overall best.

For the FCME, the 512 channel model was chosen as its overall best. 50

4.12 Complexity of the proposed encoders compared to the PCC GEO V2 encoder. 50

5.1 Performance metrics and bpp for the different encoders with the Long Dress PC. The

C1, C2 and C3 metrics refer to the three color components. The D1, D2, C1, C2 and

C3 metrics are in dB. The PCQM values listed have been multiplied by 1000. The

best value for all the metrics is in bold. 56

5.2 Performance metrics and bpp for the different encoders with the Statue Klimt PC.

The C1, C2 and C3 metrics refer to the three color components. The D1, D2, C1,

C2 and C3 metrics are in dB. The PCQM values listed have been multiplied by 1000.

The best value for all the metrics is in bold. 57

5.3 Performance metrics and bpp for the different encoders with the Long Dress PC. The

C1, C2 and C3 metrics refer to the three color components. The D1, D2, C1, C2 and

C3 metrics are in dB. The PCQM values listed have been multiplied by 1000. The

best value for all the metrics is in bold. 58

5.4 Performance metrics and bpp for the different encoders with the Statue Klimt PC.

The C1, C2 and C3 metrics refer to the three color components. The D1, D2, C1,

C2 and C3 metrics are in dB. The PCQM values listed have been multiplied by 1000.

The best value for all the metrics is in bold. 58

5.5 Performance metrics and bpp for the different encoders with the Long Dress PC. The

C1, C2 and C3 metrics refer to the three color components. The D1, D2, C1, C2 and

C3 metrics are in dB. The PCQM values listed have been multiplied by 1000. The

best value for all the metrics is in bold. 59

5.6 Performance metrics and bpp for the different encoders with the Statue Klimt PC.

The C1, C2 and C3 metrics refer to the three color components. The D1, D2, C1,

C2 and C3 metrics are in dB. The PCQM values listed have been multiplied by 1000.

The best value for all the metrics is in bold. 59

5.7 Performance metrics and bpp for the different encoders with the Long Dress PC. The

C1, C2 and C3 metrics refer to the three color components. The D1, D2, C1, C2 and

C3 metrics are in dB. The PCQM values listed have been multiplied by 1000. The

best value for all the metrics is in bold. 60

xxi

5.8 Performance metrics and bpp for the different encoders with the Statue Klimt PC.

The C1, C2 and C3 metrics refer to the three color components. The D1, D2, C1,

C2 and C3 metrics are in dB. The PCQM values listed have been multiplied by 1000.

The best value for all the metrics is in bold. 60

A.1 BD metrics for the FTE with N feature map channels compared to the G-PCC

encoder. The BD-rate is in percentage and the BD-PSNR is in dB, with the best

values in bold. 74

A.2 BD metrics for the FTE with N feature map channels compared to the V-PCC

encoder. The BD-rate is in percentage and the BD-PSNR is in dB, with the best

values in bold. 75

A.3 BD metrics for the FTE with N feature map channels compared to the PCC GEO

V2 encoder. The BD-rate is in percentage and the BD-PSNR is in dB, with the best

values in bold. 76

A.4 BD metrics for the PTE compared to the G-PCC, V-PCC and PCC GEO V2 en-

coders. The BD-rate is in percentage and the BD-PSNR is in dB. 79

A.5 BD metrics for the FCME with N feature map channels compared to the G-PCC

encoder. The BD-rate is in percentage and the BD-PSNR is in dB, with the best

values in bold., with the best values in bold. 82

A.6 BD metrics for the FCME with N feature map channels compared to the V-PCC

encoder. The BD-rate is in percentage and the BD-PSNR is in dB, with the best

values in bold. 83

A.7 BD metrics for the FCME with N feature map channels compared to the PCC GEO

V2 encoder. The BD-rate is in percentage and the BD-PSNR is in dB, with the best

values in bold. 84

A.8 BD metrics for the PCME compared to the G-PCC, V-PCC and PCC GEO V2

encoders. The BD-rate is in percentage and the BD-PSNR is in dB. 87

A.9 Summary of BD metrics for the proposed encoders compared to the PCC GEO V2

encoder. The BD-rate is in percentage and the BD-PSNR is in dB with the best

values in bold. For the FTE, the 256 channel model was chosen as its overall best.

For the FCME, the 512 channel model was chosen as its overall best. 88

xxii

1 Introduction

1.1 Context and Motivation

Point Clouds (PCs) are a data structure recognized as being of great importance in the representa-

tion of 3D visual content. They’re used in several diverse applications, such as the representation of

LIDAR signals, the preservation of cultural artifacts and augmented and virtual reality. In a way,

PCs are the 3D extension of 2D images. A PC can be represented by a group of unordered 3D points,

each one represented by their cartesian coordinates (x, y, z). Moreover, each one of these points can

have multiple different attributes such as RGB color, transparency, normal vectors and/or other

application specific values. However, the push to achieve realistic and immersive scenes leads to

PCs having millions of points. As such, their data size can become very large very quickly, leading

to the necessity to efficiently compress these data structures. There are two types of compression:

lossy, when the reconstructed data is an approximation of the original data, and lossless, when the

reconstructed data is equal to the original data. Both types can be achieved using machine learning,

however, the majority of the scientific community is focused on lossy compression as its compression

factors are much higher than those of lossless compression. The work described in this Dissertation

involves only lossy compression and will be referred to as compression, unless otherwise stated.

To better understand the need to compress PCs, an example will be given. Consider a LIDAR

system capturing a PC every 0.1 seconds (10 fps). For example, the PC in Figure 1.1a has geometry

and color information with a total of around 6 million points. This captured PC requires 84.8 MB of

storage space. However, a more typical LIDAR PC has around 100 thousand points, which requires

3× 64 bits per point, resulting in about 2.3 MB per PC. Considering every PC has the same size,

after only 1 minute of operation, around 1.34 GB of space are necessary to store all the captured

PCs. For reference, 1 minute of 8K 24 frames-per-second video weighs about 5.76 GB on disk. It is

clear that a compression of the captured PCs has to be employed to allow sustainable continuous

use of the LIDAR generated data.

1

(a) Example of a LIDAR point cloud captured by a drone. (b) Example of a static point cloud.

Figure 1.1: Point cloud examples.

So far, we have been comparing PCs with 2D images, however, that comparison only holds true

for static PCs. Akin to 2D video, PCs can also be dynamic. More specifically, a dynamic PC can

be described as a sequence of static PCs. That being said, the focus of this Dissertation will be on

the former, i. e., static PCs, like those represented in Figure 1.1. Unless otherwise stated, in this

Dissertation the term PC will mean static PC.

The Moving Picture Experts Group (MPEG) developed a coding standard known as Geometry-

based Point Cloud Compression (G-PCC) [26] designed to encode static and dynamic PCs. G-

PCC rate-distortion (RD) performance leaves much to be desired compared with other solutions

in the literature, like those based on deep learning (DL) approaches. Currently, state-of-the-art

compression of PCs uses machine learning-based solutions.

1.2 Objectives

DL-based coding is a common research topic in current times and its application to PC compression

is no exception. Various novel research works on this topic are being published with weekly new

contributions. The objective of this Dissertation is to also contribute to that research effort. In this

context, the main objectives of this Dissertation are as follows:

• Study the state-of-the-art in PC geometry compression and the latest advances in DL-based

2

PC coding.

• Study the latest advances in novel DL-based architectures in computer vision tasks.

• Develop novel DL-based static PC geometry (and attribute) compression with the aim to

achieve the best possible RD performance.

To evaluate all the developed static PC geometry compression solutions, their performance

will be compared with the MPEG G-PCC and Video-based Point Cloud Compression (V-PCC)

standards and with other relevant compression solutions found in the literature.

1.3 Scientific Contributions

Part of the work developed in this Dissertation has been presented as a conference communication:

• M. Marques and L. Cruz, “Explorations on 3D point clouds coding using transformers and

patches,” European Workshop on Visual Information Processing (EUVIP), Lisbon, Portugal,

September 2022.

1.4 Dissertation Outline

Considering the main objectives described in Section 1.2, this Dissertation is organized as follows:

• Chapter 1 (this chapter) presents the context and motivates the objectives for this Disser-

tation.

• Chapter 2 presents several core topics necessary for the understanding of the structure and

performance of the solutions proposed in the following chapter.

• Chapter 3 reviews the DL point cloud compression (PCC) works in the literature, describing

the state-of-the-art solutions.

• Chapter 4 proposes a geometry only PCC solution based on an end-to-end DL coding model

and studies its performance compared with relevant baselines.

• Chapter 5 proposes an extension to published DL-based geometry only PCC to also compress

PC color information and studies its performance compared with relevant baselines.

• Chapter 6 presents conclusions from the results of the developed solutions and proposes ideas

for future work.

• Annex A presents results from the proposed solutions in Chapter 4.

3

• Annex B presents color conversion transformations used in Chapter 5.

• Annex C presents the article indicated in Section 1.3.

4

2 Background Information

2.1 Point Cloud Acquisition

PC acquisition is generally classified into direct and indirect methodologies.

Direct acquisition refers to systems specifically designed to capture 3D information like sparse

points in 3D space or 2D images with pixel-per-pixel depth values. This definition includes the

previously mentioned LIDAR system as well as time-of-flight cameras, kinect cameras and RealSense

cameras. As an example, the LIDAR system obtains 3D information by sending several laser pulses

and measuring the structure and time profiles of the returning signals.

Indirect acquisition is defined by methodologies that do not directly measure 3D information.

The most common example are algorithms that extract depth information from a set of several

standard 2D images using triangulation techniques. Once depth information is generated, a PC

representation of the scene can be achieved given knowledge of the camera used in the capture

process.

2.1.1 Point Cloud Voxelization

Usually, either in direct or indirect acquisition, the PC data structure is represented as a set of

cartesian coordinates represented as real numbers, i.e., with x, y, z ∈ R. However, common PCC

applications require that the PC point coordinates are normalized to function correctly. In these

applications, the coordinates of the PC are represented as integers. To achieve this normalization,

a voxelization operation can be performed. A voxelization with a depth of d bits transforms the

interval of variation of the (x, y, z) coordinates of an input PC into the interval [0, 2d−1], with usual

voxelization depths d ∈ {9, 10, 11}. For example, with a voxelization of depth of 10, it is possible

to achieve a precision of approximately 1 millimeter in a 1 meter cube.

x′i =
xi −Nminx

Nmax −Nminx

; y′i =
yi −Nminy

Nmax −Nminy

; z′i =
zi −Nminz

Nmax −Nminz

(2.1)

Eq. 2.1 shows the three component normalization expressions where Nmini is the smallest value

of the i coordinate and Nmax is the largest value of all the coordinates. To finalize the voxelization,

the resulting coordinates of the min max operation are multiplied by 2d−1 (based on the bit depth

5

d) and rounded to the nearest integer. Lastly, duplicated points are removed. When also handling

color or other similar attributes, for each voxel with duplicated points, for example, the average

of the respective values can be used as the final attribute value for the point. An example of 1D

voxelization can be seen in Figure 2.1.

(255,0,0)

(0,255,0)

(0,0,255)(255,0,0)
(0,0,255)(255,0,0)

Voxelization

1

(128,128,0)

-0.08 3.56 0 2 3

Figure 2.1: Example of 1D voxelization with a bit depth of 4. The three values next to each point

are the RGB color components.

Voxelization a spatial quantization operation, where the coordinates are transformed from a

continuous space to a discrete set ([0, 2d − 1]) of 2d values. That is also why the removal of

duplicated points is necessary since they can be created by the quantization operation applied to

the point coordinates.

2.2 Point Cloud Quality Metrics

To compare two PCs, several metrics can be used. In terms of lossy PCC, metrics relative to its

geometry and color distortion are of utmost importance. Since the reconstructed (after compression)

PCs have differences/distortions relative to the original PC, it is important to be able to quantify this

distortion. In this Dissertation, several standard objective metrics will be presented, in particular,

those based on point-to-point and point-to-plane distances, also known as the D1 and D2 metrics

Figure 2.2: Point-to-point distance vs. point-to-plane distance. Source: [27]

6

[27], respectively. Figure 2.2 shows how these distances are measured, for a specific PC point.

These were the metrics chosen to assess the geometry distortion of two PCs in this work, but

other metrics could also be used, such as the plane-to-plane and haussdorf metrics. In terms of color

distortion, the standard point-to-point C1, C2 and C3 [25] will be presented. Finally, a metric that

combines both geometry and color distortion, denominated PCQM [18], will be presented. Ideally,

these objective metrics should have a strong correlation to subjective PC quality metrics to better

reflect the distortion perceived by human observers. More specifically, an increase in a subjective

metric should result in an increase in the objective metric. An example of this correlation can be

seen in Figure 2.3. In this case, objective metric 1 exhibits a strong correlation to the subjective

metric, while objective metric 2 displays a weak correlation to the subjective metric. Therefore, the

objective metric 1 would be more indicative of the distortion perceived by the general public.

Objective Metric 1

Su
bj

ec
tiv

e
M

et
ric

Objective Metric 2

Su
bj

ec
tiv

e
M

et
ric

Figure 2.3: Example of a strong and weak correlation between a subjective metric and a objective

metric.

As for subjective geometry and color distortion metrics, like the mean opinion score metric, no

study will be conducted. Usually, to obtain this type of metrics, a pool of several original versus

reconstructed PCs is created and a sample is presented to a general public audience. Each person

would then grade the reconstructed PC on a quality scale, like 1 to 5, of how much they think the

reconstructed PC resembles the original PC. Finally, a mean opinion score for a certain PC pair

(a) Original. (b) Reconstructed.

Figure 2.4: Example of a pair of original vs. reconstructed point clouds.

7

can be calculated. In Figure 2.4, an example of a subjective PCC test is shown. If given a scale of

1 (very annoying) to 5 (imperceptible) to grade the reconstructed PC [3], i would give this PC a

score of 1. The subjective metric for this pair would then be the average of all the observers scores.

Finally, graphs of the rate distortion performance for a certain codec will be compared by

calculating their Bjontegaard Deltas (BDs) [2] for the rate and distortion metric.

2.2.1 Point-to-Point Metrics

Considering a PC A and a PC B, the calculation of the D1 metric can be expressed as a mean

squared error (MSE) or a peak signal-to-noise ratio (PSNR). The D1 MSE metric, from which the

D1 PSNR metric is derived, measures the mean squared error of distances between the points in

PC A and the closest points in PC B. The D1 MSE metric is defined in eq. 2.2

D1MSE =
1

NA

∑

u∈PCA

min
v∈PCB

∥u− v∥2 (2.2)

where u and v are PC points and NA is the number of points in PC A. In Figure 2.5a, an example

of the application of the D1 metric can be observed, where red points are points of the original PC

and blue points are points in the reconstructed PC.

|u-v|

(a) D1 metric.

|u-v|C1 = |255 - 0|

(255,0,0) (0,0,255)

|u-v|C2 = |0 - 0|
|u-v|C3 = |0 - 255|

(b) Ci metric.

Figure 2.5: Point-to-point metrics.

In terms of the D1 PSNR metric, which is the version of the D1 metric used in this Dissertation,

it can be defined by eq. 2.3

D1PSNR = 10 log10

(
p2

D1MSE

)
(2.3)

where p = max(min(xmax − xmin),min(ymax − ymin),min(zmax − zmin)) is the peak value of the

geometry coordinates (for a voxelized PC, p = 2d − 1). Specifically, the D1 PSNR metric is the

logarithm of the peak value of the geometry over the mean squared error of distances between the

points in PC A and the closest points in PC B. This metric is asymmetric, that is, calculating the

8

D1 PSNR with PC A in relation to PC B is different to calculating the D1 PSNR with PC B in

relation to PC A. To obtain a symmetric metric, the worst value of the two is chosen as the final

metric.

For the C1, C2 and C3 color distortion metrics, the methodology is similar to the D1 metric.

The Ci MSE metric measures the mean squared error of distances between the i color component

of the points in PC A and the i color component of the closest points in PC B. The Ci MSE metric

is defined in eq. 2.4

CiMSE =
1

NA

∑

u∈PCA

min
v∈PCB

∥u− v∥2Ci (2.4)

where u and v are PC points, NA is the number of points in PC A and ∥u − v∥Ci is the distance

between the i color component of the u and v points. In Figure 2.5b, an example of the application

of the Ci metric can be observed, where red points are the original and blue points are reconstructed

with the three values over the points being the RGB components.

The Ci PSNR metric, which is the version of the Ci metric used in this Dissertation, is defined

by eq. 2.5

CiPSNR = 10 log10

(
p2Ci

CiMSE

)
(2.5)

where p = Cimax − Cimin is the peak value of the i color component (for the RGB color space,

pCi = 255). Specifically, the Ci PSNR metric is the logarithm of the peak value of the i color

component over the mean squared error of distances between the i color component of the points

in PC A and the i color component of the closest points in PC B. To obtain a symmetric metric,

the worst value of the Ci PSNR of PC A in relation to PC B and the Ci PSNR of PC B in relation

to PC A is considered as the final metric.

2.2.2 Point-to-Plane Metric

The previously mentioned point-to-plane D2 metric is calculated similarly to its point-to-point

counterpart. However, instead of measuring the distance between two points, this metric measures

the distance between a point and a plane defined by a point of the other PC and tangent to the

implicit surface of the PC. The D2 MSE metric is defined by eq. 2.6

D2MSE =
1

NA

∑

u∈PCA

min
v∈PCB

∥u− vplane∥2

∥u− vplane∥ = n⃗v · (v − u)

(2.6)

where u and v are PC points, NA is the number of points in PC A and ∥u− vplane∥ is the distance

between the point u and the plane tangent to point v. This point-to-plane distance can be expressed

9

by the dot product between the associated normal vector n⃗v and the vector v − u. If point normal

information is not present in the PC, it can be calculated by using information of the point in

question and its neighbors [23]. In Figure 2.6, an example of the application of the D2 metric can

be observed, where red points are the original and blue points are reconstructed.

|u-vplane|

normal

plane

u

v

Figure 2.6: Point-to-plane D2 metric.

In terms of the D2 PSNR metric, which is the version of the D2 metric used in this Dissertation,

it can be defined by eq. 2.7

D2PSNR = 10 log10

(
p2

D2MSE

)
(2.7)

where p = max(min(xmax − xmin),min(ymax − ymin),min(zmax − zmin)) is the peak signal of the

geometry (for a voxelized PC, p = 2d− 1). Specifically, the D2 PSNR metric is the logarithm of the

peak signal of the geometry over the mean squared error of distances between the points in PC A

and the planes of the closest points in PC B. To obtain a symmetric metric, the worst value of the

D2 PSNR of PC A in relation to PC B and the D2 PSNR of PC B in relation to PC A is considered

as the final metric.

2.2.3 PCQM Metric

The PCQM metric is a metric that evaluates the combined effects of both geometry and color

distortion. The metric is an optimally-weighted linear combination of PC geometry and color

features that attempts to mimic subjective PC metrics like the previously mentioned mean opinion

score.

In the D1 and D2 metrics, considering a reference PC A and a distorted PC B, points in PC

A were compared with the closest neighbor point in PC B. However, in PC B, the PCQM metric

considers a projected point result of a quadratic surface fitting computed on a set of points. The

points considered for the quadratic surface fitting belong to a spherical neighbourhood N(p̂, h) of

center p̂ and radius h. In this context, p̂ is the nearest neighbor in PC B of the point p in PC A.

An example of this projected point can be viewed in Figure 2.7.

10

Figure 2.7: Ilustration of the point-to-surface correspondence computation. Source: [18]

The quadratic fitting is achieved by a least squares fitting of the quadratic surface Q(x, y) =

ax2 + by2 + cxy + dx+ ey + f minimising

∑

i

∥zi −Q(xi, yi)∥2 (2.8)

where (xi, yi, zi) are points in the neighborhood N(p̂, h2).

Three geometry-based features, curvature comparison (f1), curvature contrast (f2) and curvature

structure (f3) are used. These features are based on the mean curvature information ρ that can be

directly computed from the coefficients of the fitted quadratic surfaces:

ρ =
a(1 + d2) + b(1 + e2)− 4abc

(1 + e2 + d2)
3
2

(2.9)

Two curvature values are calculated for each point p belonging to PC A: ρp, computed using a

quadratic fitted over the local neighborhood N(p, h2) ∈ PCA, and ρp̂, computed using a quadratic

fitted over the local neighborhood N(p̂, h2) ∈ PCB. Finally, the geometry features can be calculated:

fp
1 =

∥µρ
p − µρ

p̂∥
max(µρ

p, µ
ρ
p̂) + k1

fp
2 =

∥σρ
p − σρ

p̂∥
max(σρ

p , σ
ρ
p̂) + k2

fp
3 =

∥σρ
pσ

ρ
p̂ − σρ

pp̂∥
σρ
pσ

ρ
p̂ + k3

(2.10)

where ki are small constants used to avoid instability when denominators are close to zero, µρ
p

and µρ
p̂ are gaussian weighted averages of curvature over the 3D points belonging to neighborhoods

11

N(p, h) ∈ PCA and N(p̂, h) ∈ PCB, respectively, and σρ
p , σρ

p̂ and σρ
pp̂ are standard deviations and

covariance of curvature over these neighborhoods.

Color quality is estimated from five color-based features, lightness comparison (f4), lightness

contrast (f5), lightness structure (f6), chroma comparison (f7) and hue comparison (f8). The color

space of the PC is first converted to the LAB color space, associating each point p with a lightness

Lp and two chromatic values ap and bp. A chroma value cp =
√
a2p + b2p is also defined. Finally, the

color features can be calculated:

fp
4 =1− 1

k4(µL
p − µL

p̂)
2 + 1

fp
5 =1−

2σL
p σ

L
p̂ + k5

σL2

p + σL2

p̂ + k5

fp
6 =1−

σL
pp̂ + k6

σL
p σ

L
p̂ + k6

fp
7 =1− 1

k7(µc
p − µc

p̂)
2 + 1

fp
8 =1− 1

k8∆Hpp̂
2
+ 1

(2.11)

where ki are constants, ∆Hpp̂ =
√
(ap − ap̂)2 + (bp − bp̂)2 − (cp − cp̂)2 and ∆Hpp̂ is the gaussian

weighted average over N(p, h).

For each of these metrics, the mean over all the points in PC A is calculated according to

eq. 2.12, where NA is the number of points in the PC A and fp
i is the value of the feature i of the

p point in the PC A.

fi =
1

NA

∑

p∈PCA

fp
i (2.12)

Finally, the PCQM metric can be obtained as a weighted average of the individual features,

following eq. 2.13

PCQM =
∑

i∈S
wifi (2.13)

where S is the set of indices of the pertinent PC features, wi is the weight given to feature i

determined through cross-validation based on results from a subjective PCC metric, and fi is the

feature i.

2.2.4 Bjontegaard Deltas Metric

When comparing two encoders at multiple RD operation points, the BDs are important metrics to

consider. More specifically, in the context of compression, this metric will be used to compare the

performance of two encoders.

12

Both the BD-PSNR and BD-rate will be calculated. The BD-PSNR measures, on average, how

much higher in terms of the PSNR metric one RD curve is compared to the other. Considering a

comparison between an encoder 1 and an encoder 2, the BD-PSNR will be

BDPSNR =
A2 −A1

r2 − r1
(2.14)

where A1 is the area below the RD curve of encoder 1, A2 is the area below the RD curve of

encoder 2 and [r1, r2] is the interval where the two RD curves overlap. In Figure 2.8, an example of

the concept of the BD-PSNR application and computation is presented. The BD-PSNR is measured

in dBs.

Rate

D
is

to
rti

on

Encoder 1

Encoder 2

r1 r2

A1

A2

Figure 2.8: Example of the computation of the BD-PSNR metric. In this case, A2 − A1 will be

negative.

In contrast, the BD-rate measures, on average, how much higher in terms of the rate one RD

curve is compared to the other. The calculation of the BD-rate is similar to that of the BD-PSNR,

however, the areas and interval considered are measured with reference to the distortion axis (area

to the left of the RD curve).

BDrate =
A′

2 −A′
1

d2 − d1
(2.15)

In Figure 2.9, an example of BD-rate computation is presented.

Usually, in compression performance studies, the BD-rate is expressed in percentage, so that

will also be the methodology followed in this Dissertation.

Considering that the BDs are calculated based on RD curves, the RD points obtained from a

certain codec need to be curve fitted. Any curve fitting can be applied as long as it gives reasonable

results, however, since the RD curves usually follow a logarithmic curve, a third degree logarithmic

13

A'2

A'1

Rate

D
is

to
rti

on
Encoder 1

Encoder 2

d1

d2

Figure 2.9: Example of the application of the BD-rate metric. In this case, A′
2−A′

1 will be negative,

because, in the considered interval, the area to the left of the RD curve 2 is smaller than the area

to the left of the RD curve 1.

fit is often performed. Given a rate R and a distortion D, a least square polynomial fitting is applied

according to eq. 2.16.

D = a log3(R) + b log2(R) + c log(R) + d (2.16)

The BDs can then be calculated based on the fitted curves. Note that, since it is a third degree

fitting, at least four RD points are necessary to not incur overfitting. Finally, in terms of BD-rate,

to avoid calculating areas to the left of the RD curves, a least squares polynomial fitting is applied

following eq. 2.17.

log(R) = aD3 + bD2 + cD + d (2.17)

Consequently, the areas pertaining to the calculation of the BD-rate are now under the fitted

polynomial. Therefore, the BD-PSNR is calculated using the curves from eq. 2.16 and the BD-rate

is calculated using the curves from eq. 2.17.

2.3 Deep Learning Fundamentals

DL is a branch of machine learning that leverages multiple transformation layers, like convolutional

layers, with backpropagation [22] and gradient descent techniques to optimize a set of weights that

process an input to obtain a desired output. Usually, for 2D or 3D inputs, convolutional neural

networks (CNNs) are used. These networks have the objective of extracting features from the given

inputs by convolving them with arbitrary kernels. The weights of the kernels are learned when

training the network. In turn, the resulting features can be used, for example, to classify the input

14

into a set of different categories. The arrays of features from the different layers of the feature

extraction step are often referred to as latent representations. In Figure 2.10, a well known CNN

architecture to process 2D images called AlexNet [16] is presented.

Figure 2.10: Architecture of the AlexNet deep learning network. Its objective is to classify an input

image into one of 1000 classes. In this case, the final latent representation is the 1D tensor resultant

of the Pool 5 operation. Source: [21]

In the subsequent sections, a brief study of typical CNNs layers will be presented.

2.3.1 Convolutional Layer

The most important layer of CNNs is the convolutional layer. It applies convolutions operations

using a set of kernels that travel across the data, extracting feature maps. In computer vision

tasks, convolutional layers are used as a substitute for human vision, with the idea being that

scanning an input with a kernel is an approximation of the processing done by the human visual

system. Typically, several convolutional layers are stacked one after the other, forming a sequential

processing pipeline. Early convolutional layers are responsible for extracting low level features, while

later convolutional layers are responsible for extracting high level features. An example of this kind

of structure is presented in Figure 2.11. Each convolutional layer has a set of kernels/filters with

different weights, whose values determine what features the convolutional layer can detect. These

weights are learned during model training using the backpropagation algorithm.

15

Figure 2.11: 2D example of stacked convolutional layers. Source: [14]

Convolutional layers also have parameters that modify their behaviour, such as the dimensions

and stride of the kernel, type of padding, number of filters, etc. Considering a 2D case as an

example, a convolutional layer with a kernel of size 3 × 3, zero padding of 1, stride 1 and 1 filter

will give an output of the same dimensions as the input. This convolution operation is presented in

Figure 2.12a. Changing the stride of the kernel to 2, as illustrated in Figure 2.12b, will reduce the

height and width of the input by a factor of 2. This is particularly useful when compressing data.

(a) Stride 1.
(b) Stride 2.

Figure 2.12: 2D example of a convolution operation with a 3× 3 kernel, zero padding of 1, 1 filter

and different strides. Source: [14]

While the presented examples only have one feature map as an output, typical convolutional

layers are composed of several stacked feature maps of the same dimensions (Figure 2.13), each

produced by different kernels. Thus, the number of features that a convolutional layer can detect

increases, increasing the capacity of the model to perform its designated task.

16

Figure 2.13: 2D example of a convolutional layer with multiple feature maps. Source: [14]

2.3.2 Pooling Layer

In conjunction with convolutional layers, pooling layers are frequently used as subsampling layers.

Three of their main characteristics are the kernel size, stride and pooling operation. In Figure 2.14,

a 2D pooling operation with a 2× 2 kernel and stride 2 is presented. In this case, the output value

of the pooling operation is the maximum value in the kernel window (max pooling).

Figure 2.14: 2D example of a max pooling operation with a 2× 2 kernel and stride 2. Source: [14]

This is an information destructive operation, i. e., three of the four values are discarded (in

the given example), so pooling layers need to be placed with care when constructing a CNN.

Furthermore, pooling can often be replaced by a larger stride step in the convolutional layers with

no decrease in performance.

17

2.3.3 Activation Layer

Generally, after a convolution layer, the resulting tensor is passed through an activation layer. The

purpose of this layer is to introduce non linearity into the model since most real world problems

are non linear in nature. To achieve this, every value of the input is passed through a non linear

function. The typical choice of function, presented in Figure 2.15, is the Rectified Linear Unit

(ReLU). Other functions can also be used, such as the sigmoid or hyperbolic tangent, however, the

best performing activation function is always extremely case sensitive.

Figure 2.15: Graphs for the ReLU, leaky ReLU and hyperbolic tangent activation functions.

2.3.4 Normalization Layer

Considering the ReLU activation function, if most of the input values are negative, then the output

tensor will be mostly comprised of zero values, losing almost all relevant feature information. To

minimize this effect, a normalization layer can be used. This layer will try to normalize the input

tensor to have approximately zero mean and standard deviation of one, as defined in eq. 2.18.

x′ =
x− µ

σ
(2.18)

Since this operation will technically hide the original distribution of the data, which is unde-

sirable, µ and σ are learned parameters. Consequently, the network will be able to decide the

degree of the applied normalization. In Figure 2.16, an example of a normalization layer operation

is presented.

18

Original data distribution Normalized data distribution

Normalization

σ

μ
0

1

Figure 2.16: Normalization layer operation.

2.3.5 Fully Connected Layer

The fully connected layer is a type of layer often used as a classifier. Each neuron in a layer is

connected to every other neuron in the previous layer through learned weights. In this context, a

neuron can be an input, hidden or output neuron. An input neuron is a value of the 1D input, a

hidden neuron is a value in an intermediate layer and an output neuron is a value in the output

layer. Both the hidden and output neurons result from the operation

y = b+

N∑

i=1

wixi (2.19)

where N is the number of inputs, wi is the weight attributed to input i, xi is the input i and b

is a bias. An example of a fully connected network is presented in Figure 2.17.

Figure 2.17: Example of a fully connected network. In this case, the bias is considered as a unit

value concatenated to the input and a step activation function is used after every layer. Source:

[14]

19

2.3.6 Dropout Layer

The final layer to be addressed is the dropout layer. Its main objective is to act as a regularization

layer that prevents the overfitting of the DL model. It achieves this by randomly dropping values

from its input. More specifically, each value of the input has a probability p, defined as a parameter,

of being set to zero. An example of the dropout operation is presented in Figure 2.18.

0.1 -0.3 0.6

0.8 -1.2 0.3

0.1 1.1

00.1 -0.3 1.0 0.6

0.8 -0.1 -1.2 0.3

0.1 1.1 0.7 -1.8

0

0 0

Dropout

Figure 2.18: Example of a dropout layer on a 3× 4 input. The red cells were dropped out.

2.4 Deep Learning Auto Encoder

In the context of DL-based compression, the auto encoder (AE) is the base DL architecture used in

many applications. This type of DL architecture was designed to try to map the identity function

given an input while simultaneously reducing its dimensionality. In Figure 2.19, the architecture

of the AE is presented. Its Analysis Transform is the block that encodes the input into a smaller

dimensional tensor, while the Synthesis Transform is the block that tries to decode the resulting

latent representation of the encoding step. Each one of these transforms can be implemented using

any desired architecture, for example, CNNs.

Input PC Reconstructed
PC

DL based
Synthesis Transform

DL based
Analysis Transform

Latent
Representation

Figure 2.19: Standard DL-based AE architecture in PCC.

2.4.1 Deep Learning Variational Auto Encoder

While the AE provides a good way of reducing the dimensionality of an input, its reconstruction

performance can vary widely. This is a commom phenomenon in AE architectures, as they tend to

overfit to a certain type of data very easily. To combat this, the Variational Auto Encoder (VAE)

was proposed [15]. The VAE is a probabilistic AE, more specifically, its output is partly generated

20

by probabilistic models. In Figure 2.20, a standard architecture for the VAE is presented.

Input PC Reconstructed
PC

DL based
Synthesis Transform

DL based
Analysis Transform

Latent
Representation

Latent
Distribution

μ

σ

N(μ,σ)

Sampling

Figure 2.20: Standard DL-based VAE architecture in PCC.

Instead of the Analysis Transform encoding directly the latent representation, it encodes a latent

distribution with mean µ and standard deviation σ. The latent representation is then randomly

sampled from that latent distribution.

Ideally, the latent distribution should be definable as a known distribution, for example, as a

gaussian distribution with mean µ and standard deviation σ. To achieve this, the loss used to train

the VAE has two terms. The first is the same loss term as in the AE that measures the distortion

between the input and output of the network. The second is a regularization term that pushes

the latent distribution into the shape of a known target distribution. To that end, the Kullback-

Leibler (KL) divergence [17] between the latent distribution and the target distribution is used.

The KL divergence is a relative entropy measure, where the lower its output is, the more similar

the distributions are to each other. In eq. 2.20, the standard loss of the VAE is presented.

loss = ∥PCinput − PCreconstructed∥+DKL(N(µ, σ), N(0, 1)) (2.20)

2.5 Deep Learning Hyperparameters

When training a DL model, there are several variables that need to be defined before the training

begins. These variables are denominated hyperparameters and their function is to control the

training process.

2.5.1 Learning Rate

The learning rate is an extremely important hyperparameter. It controls the step size when updating

the model’s weights based on the error between the generated results and the target results. Defining

a small learning rate could result in a long training process, with the network taking a long time

to reach an optimal solution. On the contrary, defining a large learning rate could lead to drastic

changes in the model’s weights, causing the network to become unstable and unable to reach an

optimal solution.

21

2.5.2 Batch Size

The batch size is the hyperparameter that defines the number of samples to be fed to the model in

between each weight update. Usually, this hyperparameter is constrained by the amount of memory

available in the system, as higher batch sizes tend to generate better results. However, the overall

performance of the DL model does not hang heavily on the batch size, so the trade off between

increasing the batch size and increasing the model’s performance is not a key point in machine

learning studies.

2.5.3 Number of Epochs

The final hyperparameter to explore is the number of epochs to execute during training. An epoch,

in the context of DL, is defined as the number of steps that batch size of samples are fed to the

model. For example, an epoch can be 20 batch sizes, i. e., 20 updates to the weights of the DL

model. The DL training considers a maximum number of epochs to use during training. Typically,

this number is very large, like one million epochs, however, trainings tend to not last that long

because of early stopping mechanisms. Early stopping is the action of stopping training because

the loss function stops improving after a certain number of epochs, indicating that the model has

reached an optimal solution. This mechanism is used to avoid training unnecessarily because the

model has already reached an convergence point in its loss value and to avoid overfitting.

22

3 Overview of DL-based

Point Cloud Compression

3.1 Auto Encoder-based Point Cloud Compression

In the first DL-based PCC solutions, and considering the work [9] as an example, the AE was used

with simple 3D CNNs as its analysis and synthesis transforms. The input PC was first divided into

non-overlapping blocks, with each block encoded independently. Every block would produce a latent

representation, similar to transform coefficients in traditional coding, that would subsequently go

through a quantization step and end with entropy coding, a lossless data compression scheme. In

this work, the entropy coding step uses arithmetic coding [31]. Finally, energy filtering was also

applied to the latent representation to eliminate values with little energy. The compressed bitstream

was comprised of all the latent representations as well as side information necessary to reverse the

division of blocks of the input PC. The full pipeline can be observed in Figure 3.1.

Input PC

Reconstructed
PC

Block partition

DL based Analysis
Transform

DL based Synthesis
TransformBlock departition

Block bitstream

Quantization

Arithmetic
Encoding

Arithmetic
Decoding

Bitstream

Figure 3.1: Basic pipeline of AE-based PCC.

This basic approach already gave good results in terms of RD compared with its G-PCC coun-

terpart. However, the method showed there was still a lot of room for improvement, because the

quantization and entropy coding steps were never considered during training. This resulted in the

23

decoder having to decode latent representations that it was not trained to decode, which produced

a non-negligible increase in the reconstructed PC distortion. Furthermore, the only way for this ap-

proach to control the RD operation point was to choose a different quantization value during coding

time by changing the quantization parameter of the quantization step. Lastly, the model itself had

performance issues when it came to coding dense or sparse PCs, indicating that its generalization

was not very good. For example, in [9], the model had worse performance when compressing sparse

PCs for low bitrates compared to the Point Cloud Library [23] baseline.

3.2 Adaptive End-to-End Auto Encoder-based PCC

To solve the problems identified in the previous section, the previous approach was extended to an

adaptive end-to-end DL-based model [20, 10]. This time, both the quantization and entropy coding

steps were considered during training using a VAE to learn the context model of the entropy coding.

This context model is called an hyper prior and is, essentially, the prior distributions for the hyper

parameters of the entropy coding. Furthermore, the model considered a RD loss (eq. 3.1) using a

lagrangian multiplier to choose a specific RD trade-off at training time.

loss = λ · distortion+ rate (3.1)

Now, the compressed final bitstream is made up of three different bitstreams:

• The main bitstream comprised of the information of the encoded blocks.

• The side bitstream comprised of the information of the context model for the entropy coding.

• The block bitstream comprised of the information to reconstruct the PC based on the indi-

vidualy encoded blocks.

The full pipeline for the adaptive AE-based PCC can viewed in Figure 3.2.

Input PC

Reconstructed
PC

Block partition

DL based Analysis
Transform

DL based Synthesis
TransformBlock departition

Block bitstream

Quantization

Arithmetic
Encoding

Arithmetic
Decoding

Bitstream

DL based Hyper
Analysis Transform

DL based Hyper
Synthesis Transform

Context
Model

Quantization Arithmetic
Encoding

Arithmetic
Decoding

Side Info Bitstream

Figure 3.2: Basic pipeline of Adaptive AE-based PCC.

24

Finally, the adaptability of the model to different PCs was ensured by training multiple DL

models, each one optimized for a different type of PC. In the inference phase, considering a specific

PC, the best performing model was chosen (Figure 3.3).

Input PC

Reconstructed
PC

Select best model

EncodeDecode

B
I
T
S
T
R
E
A
M

DL-based model 1

DL-based model 2

DL-based model N

Figure 3.3: Adaptive DL-based PCC.

3.3 Neighborhood Adaptive Distortion Loss

One of the challenges in training a DL model is the choice of an appropriate loss function that can

capture the nature of the current problem. With a DL PCC model that uses 3D blocks as its PC

representation, the most popular choice of loss function for the distortion metric is the Focal Loss

(FL) (eq. 3.2).

FL(v, u) =

−α(1− v)γ log v, u = 1

−(1− α)vγ log(1− v), u = 0
(3.2)

More specifically, each block is a sparse 3D binary occupancy matrix. Therefore, the task ends

up being a binary classification between the classes zero and one. Because only 5− 10% of the 3D

block voxels are filled, the FL is preferred to the weighted Binary Cross Entropy (wBCE) loss as it is

better suited to situations where the data is very imbalanced. However, the FL fails to consider the

context surrounding each voxel, unlike the typical distance-based PC metrics used for the final RD

performance evaluation. To cope with this problem, the Neighborhood Adaptive Distortion Loss

was proposed [12]. This new distortion loss takes into consideration the neighborhood of each voxel

which more closely approaches the behavior of typical distance-based PC metrics. This solution

25

achieved a have more consistent RD performance across a range of different PCs for a single DL

model.

3.4 Further RD Control via Implicit and Explicit Quantization

If there’s a need to encode a PC for different RD trade-offs, then different models have to be trained

and stored, controlling their RD point by choosing a different lagrangian multiplier at training time.

In this case, implicit quantization is performed. More specifically, the quantization step at training

time is achieved by applying an integer rounding operation. On the other hand, a different degree

of quantization can be applied at coding time, allowing for a single DL model to have multiple RD

points. This is called explicit quantization. By utilizing these two techniques, fewer DL models

have to be trained to produce a wider range of RD trade-offs.

3.5 Scalable DL-based PCC

In compression, scalability refers to the capability to generate a bitstream that may be partially and

progressively decoded to obtain a set of PC representations with increasing quality or resolution.

In practice, the bitstream is typically organized into successively decodable layers, i.e. sub-streams,

which cumulatively add quality or more points to the PC reconstructions (Figure 3.4).

Sub-stream 1

Sub-stream 2

Sub-stream 3

Bitstream

Decoder

Decoder

Decoder

Figure 3.4: Example of progressively decoding a point cloud.

3.5.1 Resolution scalability

With a DL-based approach, the actual implementation of scalability in the model can vary. For

example, two ways of achieving resolution scalability are interlaced sampling of the input PC [11]

26

or multiscale reconstruction [30].

With interlaced sampling, the input PC is divided into interlaced blocks (Figure 3.5), similar

to interlaced image. Then, each group is individually encoded and added as a sub-stream. When

decoding, each group is progressively added to the overall reconstruction of the PC.

Figure 3.5: Example of interlaced sampling with a sampling factor of 2 in each 3D direction.

With a multiscale reconstruction approach, the model itself implicitly progressively reconstructs

the PC. By utilizing sparse convolutions instead of the regular dense convolutions, each convolutional

block of the encoder can downsample the PC into a desirable smaller resolution, with the decoder

doing the opposite operation (Figure 3.6).

Input PC DL-based Sparse
Convolutional Block

DL-based Sparse
Convolutional Block

DL-based Sparse
Convolutional Block

Bitstream

DL-based Sparse
Transposed

Convolutional Block

Reconstructed
PC

DL-based Sparse
Transposed

Convolutional Block

DL-based Sparse
Transposed

Convolutional Block

Figure 3.6: Example of a multiscale DL-based model. Each encoder block downsamples the input

by a factor of N and each decoder block upsamples the input by a factor of N .

3.5.2 Quality scalability

To achieve quality scalability, a different approach to resolution scalability has to be taken. One

such approach is the splitting of the latent feature map [13]. The main idea behind this quality

scalable solution is the division of the latent representation into multiple non-overlapping latent sets,

where each set is attributed to a scalable layer. Each layer is then independently quantized and

entropy coded. In contrast to the resolution scalable solutions mentioned previously, this approach

has the drawback of not being able to decode each sub-stream in an arbitrary order. Finally, on the

decoder side, the latent representation is progressively completed with each latent set, zero padding

missing sets (Figure 3.7).

27

Latent set 1

Latent set 2

Latent set 3

Latent set 4

Progressively more complete latent representation

Sub-streams

Latent set 1

Zero
padded

Latent set 1

Latent set 2

Zero
padded

Latent set 1

Latent set 2

Latent set 3

Zero
padded

Latent set 1

Latent set 2

Latent set 3

Latent set 4

Figure 3.7: Example of latent set grouping on the decoder side. As more latent sets are available,

the more complete the latent representation becomes and the higher quality the reconstructed PC

is.

3.6 Point-based End-to-End Auto Encoder-based PCC

In all of the DL architectures so far, the input PC has been represented as a big 3D binary occupancy

map. That is to say, its native representation of cartesian coordinates was transformed into a 3D

counterpart. In turn, this resulted in a voxel-based PCC, however, approaches to PCC were also

made maintaining the original representation of the PC, being mostly referred to as point-based

PCC [33]. The overall idea of the compression model is the same, but some changes had to be made

to accommodate the new representation:

1. Instead of a block partition, a subset of points uniformly distributed is found by utilizing an

iterative farthest point sampling method. This kind of approach is based on a well-known PC

architecture called PointNet [19].

2. The transform’s operations were changed to use 2D CNNs or multi-layer perceptrons (MLPs).

Additionally, for example, in the case of the PointNet architecture, a grouping operation of

features is also performed to better encompass spatial information.

3. In the case of [33], the distortion metric of the loss function was changed to the Chamfer

Distance (CD). For each input point, the closest point in the reconstructed PC is found and

its squared euclidean distance is calculated. Then, all the squared distances are summed. Since

this operation is not the same calculated with the original PC in relation to the reconstructed

PC versus the reconstructed PC in relation to the original PC, the CD is the sum of both (eq.

3.3).

CD (PC1, PC2) =
∑

u∈PC1

min
v∈PC2

∥u− v∥2 +
∑

v∈PC2

min
u∈PC1

∥u− v∥2 (3.3)

In subsequent sections, only voxel-based models and methods will be studied and presented.

28

4 Proposed End-to-End AE-based

Geometry Point Cloud Coding

4.1 The Transformer

Convolutional networks have been the dominant architecture in computer vision tasks for several

years, however, the Transformer [29] has shown to be a powerful alternative, most notably, in the

Vision Transformer [4] work. At its core, the Transformer is an architecture designed to exceed in

sequence transduction models, like natural language processing, that previously used recurrent, long

short-term memory or gated recurrent neural networks. The reason for the study of Transformers

in PCC is that the PC can be viewed as a sequence of patches (smaller PC blocks) if partitioned

correctly. Therefore, a sequence can be extrapolated from the PCs and the Transformer architecture

can be applied. The base architecture for the Transformer Encoder Layer (TEL) can be seen in

Figure 4.1.

Input Input Embedding Multi-Head Attention

Positional
Encoding

Batch
Normalization Feed Forward Batch

Normalization

Nx

Figure 4.1: Base architecture of the Transformer Encoder Layer.

The Transformer has several steps in its pipeline. Starting with the input embedding step, its

purpose is to transform the raw input into a 2D tensor of features where each set of features is one

element of a sequence. After this step, we are left with an S × F tensor where S is the sequence

length and F is the number of features of each element in the sequence. Next, positional encoding

is added to the tensor so that the model has information about the relative position of the data

points in their respective sequences. Any type of positional encoding can be applied in this step, for

example, by adding values that will also be learned by the model. The next step considers a block

of transformations that can be repeated N times. Besides additive residual and batch normalization

operations, this block applies multi-head attention and feed forward operations. The multi-head

29

attention pipeline can be observed in Figure 4.2. The pipeline considers three sequences: query (Q),

key (K) and value (V). In the case of self-attention, which is the only type of attention that will be

used in this Dissertation, the query, key and value tensors will all be the same and equal to the input

of the multi-head attention block. The transformations performed over the query, key and value

tensors are performed h times in parallel and the results are concatenated into a long sequence.

Multi-head attention also considers a scaled dot-product attention with the output matrix defined

by eq. 4.1. An optional masking operation before the softmax can also be performed.

Attention(Q,K, V) = softmax(
QKT

√
S

)V (4.1)

Finally, the feed forward block is just a generic DL block that contains any architecture to process

the input tensor, such as CNNs or MLPs.

Figure 4.2: Multi-Head Attention pipeline. In this context, linear refers to a fully connected layer

and matmul refers to matrix multiplication. Source: [29]

Even in the Vision Transformer, a DL approach to image classification, only the TEL is used,

with the decoding (classification task) being performed by a MLP. This makes sense, because the

images themselves do not have a proper sequence embedded in them. Therefore, it would not be

appropriate to decode them as sequences. Likewise, for PCC, only the TEL is used in the DL-based

encoder of the compression step [7].

One last important comment is the way the input embedding step is done. The most obvious

way, in images or PCs, is to consider patches of a certain size, having a dedicated layer of the

model learn the weight of every input value in a patch. However, like proposed in [28], at that

point, the reason for the good performance of our model might not be the use of the Transformer

architecture, but the use of patch-based representation of the inputs. Therefore, ConvMixers [28],

a patch-based but purely convolutional neural layer, will also be considered for the encoder step of

the compression.

30

4.2 DL-based Encoder for Point Cloud Compression

Adapting the TEL into a DL-based encoder for PCC can be done in many different ways. Follow-

ing the architecture in Figure 3.2, what we’re concerned about is defining the DL-based Analysis

Transform. Therefore, four different encoders are proposed:

• Full Transformer Encoder (FTE), which can be seen in Figure 4.3a.

• Progressive Transformer Encoder (PTE), which can be seen in Figure 4.3b.

• Full ConvMixer Encoder (FCME), which can be seen in Figure 4.3c.

• Progressive ConvMixer Encoder (PCME), which can be seen in Figure 4.3d.

The objective of all the architectures in Figure 4.3 is to process an incoming M ×M ×M tensor

into an M/8×M/8×M/8 with H channels tensor. In the case of the full variant of the encoders,

the patch embedding layer, that is to say, the first convolutional layer, generates an N channel

tensor from the input block’s patches. In this case, a patch is considered to be an 8 × 8 × 8 block

of the input block, however, the weights of each input voxel to that patch are learned by the model

during training. The resulting tensor is then processed by the TEL or ConvMixer Encoder Layer

(CMEL) and the final convolutional layer is only there to bring the number of channels back to

the desired H. In this variant, the encoders combine the Transformer/ConvMixer architecture with

patch-based inputs.

In the progressive variant of the encoders, the M ×M ×M input tensor is progressively com-

pressed by the convolutinal layers with stride 2, while also gaining more and more channels. Before

a new convolutional layer, the tensor is processed in a TEL or CMEL.

One other detail is that there is no positional encoding taking place in the Transformer-based

encoders. The reason is that, in the experiments conducted, adding positional encoding did not

have a notable impact on final performance. In fact, usually, the simpler the encoder model, the

better the model performed.

Lastly, both the TEL and the CMEL need to be defined (Figures 4.4 and 4.5, respectively). The

final implementation is similar to their original works, but adapted to 3D input data. Of note, in

the TEL, the multi-head attention block of the Transformer architecture was replaced with a 3D

multi-head attention block which is just multi-head attention performed over 3 axis of data instead

of 1 axis of data. In the experiments conducted, the use of batch normalization layers or dropout

layers significantly reduced performance. Therefore, none of them were used. Given the complex

nature of PCC, in some architectures, altering the original distribution of the data by means of

normalization/dropout layers may just confuse the DL model. However, some works do use batch

normalization/dropout, like [7].

31

Channels = 64

Stride 1

Conv-3D

1 x 1 x 1

KernelInput
Block

Channels = N

Conv-3D

8 x 8 x 8

Kernel ReLU

Stride 8

Patch Embedding

Transformer
Encoder

LayerM x M x M M/8 x M/8 x M/8 M/8 x M/8 x M/8 M/8 x M/8 x M/8

(a) FTE architecture.

Channels = 32

Conv-3D

3 x 3 x 3

KernelInput
Block

Channels = 16

Conv-3D

3 x 3 x 3

Kernel ReLU

Stride 2
Transformer

Encoder
Layer

ReLU

Stride 2

Channels = 64

Conv-3D

3 x 3 x 3

Kernel
Transformer

Encoder
Layer

Stride 2

M x M x M M/2 x M/2 x M/2 M/2 x M/2 x M/2 M/4 x M/4 x M/4 M/4 x M/4 x M/4 M/8 x M/8 x M/8

(b) PTE architecture.

Channels = 64

Stride 1

Conv-3D

1 x 1 x 1

KernelInput
Block

Channels = N

Conv-3D

8 x 8 x 8

Kernel ReLU

Stride 8

Patch Embedding

ConvMixer
Encoder

LayerM x M x M M/8 x M/8 x M/8 M/8 x M/8 x M/8 M/8 x M/8 x M/8

(c) FCME architecture.

Channels = 32

Conv-3D

3 x 3 x 3

KernelInput
Block

Channels = 16

Conv-3D

3 x 3 x 3

Kernel ReLU

Stride 2
ConvMixer
Encoder

Layer

ReLU

Stride 2

Channels = 64

Conv-3D

3 x 3 x 3

Kernel
ConvMixer
Encoder

Layer

Stride 2

M x M x M M/2 x M/2 x M/2 M/2 x M/2 x M/2 M/4 x M/4 x M/4 M/4 x M/4 x M/4 M/8 x M/8 x M/8

(d) PCME architecture.

Figure 4.3: Proposed Transformer-based and ConvMixer-based PCC encoders.

32

Channels = N x f

ReLU

Stride 1

Channels = N

Stride 1

Conv-3D

D x D x D

Kernel

Conv-3D

D x D x D

Kernel

3D Multi-Head
Attention

Figure 4.4: Final implementation of the Transformer Encoder Layer. In testing, D = 3 for the kernel

size and f = 4/3 for the number of channels of the first convolutional layer were set empirically. In

this iteration, the feed forward network is implemented as two convolutional layers.

Channels = N
Groups = N

ReLU

Stride 1

Channels = N

Stride 1

Depthwise Conv-3D

D x D x D

Kernel

Conv-3D

1 x 1 x 1

Kernel
ReLU

Figure 4.5: Final implementation of the ConvMixer Encoder Layer. In testing, D = 3 for the kernel

size was set empirically.

4.3 DL-based Decoder for Point Cloud Compression

To complement the encoders previously presented, a decoder has to follow to allow the model to

recover the original block. In this case, the decoder would be the DL-based Synthesis Transform.

While other works use MLPs to decode the information generated by the Transformer, the compu-

tational complexity and the 3D nature of the problem make them unsuitable for that task. Thus,

the 3D Synthesis Transform CNN from [20] was used (Figure 4.6) since it already proved to be a

good DL decoder architecture for PCC in its work. With more time, other DL architectures could

be studied for the use in PCC.

Di x Di x Di

Channels = Ni

ReLU

Stride 2

Channels = Ni

ReLU

Stride 1

Channels = Ni

Stride 1

ReLU

64 x 64 x 64
Channels = 1

ReLU

Stride 1

x3
i=1,2,3

Conv-3D

3 x 3 x 3

Kernel

Transposed Conv-3D

3 x 3 x 3

Kernel

Transposed Conv-3D

3 x 3 x 3

Kernel

Transposed Conv-3D

3 x 3 x 3

Kernel

Figure 4.6: Synthesis Transform of the DL-based PCC model. Both the number of channels and

dimensions of the blocks progressively increase with Di = {8, 16, 32} and Ni = {16, 32, 64}.

33

4.4 DL-based Hyper Transform for Point Cloud Compression

To improve the flexibility and performance of the entropy coding step in the PCC pipeline, a context

model is learned by the DL model using a VAE. This context model is called an hyper prior and is,

essentially, the prior distributions for the hyper parameters of the entropy coding. Since the context

model will also need to be saved alongside the information from the 3D block, it will be compressed

by the model by a hyper analysis transform and decompressed by a hyper synthesis transform. The

architectures used for these transforms are presented below.

4.4.1 Hyper Analysis Transform

In Figure 3.2, the hyper analysis transform is responsible for compressing the context model to

be used in the entropy coding step of the block compression. To achieve this, the 3D Hyper

Analysis Transform CNN from [20] was used (Figure 4.7) since it already proved to be a good DL

hyper encoder architecture for PCC in its work. This architecture is considerably simpler than the

analysis and synthesis transforms because the considered context model is a much less complex

structure than the input PC block.

8 x 8 x 8
Channels = N

ReLU

Stride 1

8 x 8 x 8
Channels = N

ReLU

Stride 2

4 x 4 x 4
Channels = N

Stride 1

Conv-3D

3 x 3 x 3

Kernel

Conv-3D

3 x 3 x 3

Kernel

Conv-3D

3 x 3 x 3

Kernel

Figure 4.7: Hyper Analysis Transform of the DL-based PCC model.

4.4.2 Hyper Synthesis Transform

In Figure 3.2, the hyper synthesis transform is responsible for decompressing the context model

to be used in the entropy coding step of the block compression. To achieve this, the 3D Hyper

Synthesis Transform CNN from [20] was used (Figure 4.8) since it already proved to be a good

DL hyper decoder architecture for PCC in its work. This architecture is considerably simpler than

the analysis and synthesis transforms because the considered context model is a much less complex

structure than the input PC block.

34

4 x 4 x 4
Channels = N

ReLU

Stride 1

4 x 4 x 4
Channels = N

ReLU

Stride 2

8 x 8 x 8
Channels = N

Stride 1

ReLU

Transposed Conv-3D

3 x 3 x 3

Kernel

Transposed Conv-3D

3 x 3 x 3

Kernel

Transposed Conv-3D

3 x 3 x 3

Kernel

Figure 4.8: Hyper Synthesis Transform of the DL-based PCC model.

4.5 DL Model Training and Testing

Now that the general model pipeline has been designed, it’s necessary to indicate, specifically, the

hyper parameters and methods used. The subsequent sections will present the:

• Block partition method;

• Training dataset;

• Loss function and its parameters;

• Experimental conditions (testing dataset, performance metrics and benchmarking);

• Experimental results.

4.5.1 Block partition method

Block partitioning can be done in a variety of ways. However, like the standard G-PCC, the octree

partition method [24] was adopted. This method involves a recursive algorithm that subpartitions

3D space. To achieve this partition, all the input point clouds dimensions have to be normalized,

more specifically, they have to be voxelized. A voxelization with a depth of d bits transforms the

Input PC

Reconstructed
PC

Octree partition

DL based Analysis
Transform

DL based Synthesis
TransformOctree departition

Octree bitstream

Quantization

Arithmetic
Encoding

Arithmetic
Decoding

Bitstream

DL based Hyper
Analysis Transform

DL based Hyper
Synthesis Transform

Context
Model

Quantization Arithmetic
Encoding

Arithmetic
Decoding

Side Info Bitstream

Figure 4.9: Full final pipeline of the experimental PCC model.

35

interval of the (x, y, z) coordinates of an input PC into the interval [0, 2d − 1]. The actual precision

of the voxelization will be mentioned later with the presentation of the PCs used. Lastly, the size

of the blocks was set empirically to 64 in all the experiments. The full final pipeline of the model

can be seen in Figure 4.9.

4.5.2 Training dataset

For the training dataset, the ModelNet40 dataset [32] was used, a mesh dataset of 40 different

classes. To transform the dataset into usable 3D blocks, first, a random sampling was done of the

meshes, followed by a voxelization with a depth of 9 bits. Then, the 200 largest PCs in terms of

point counts were partitioned using an octree of depth 3, leading to 64× 64× 64 3D blocks. Since,

by nature, most of those blocks have only 5−10% filled voxels, only the 4000 blocks with the largest

number of points were used for training.

4.5.3 Loss function

As stated previously, the loss function in eq. 3.1 is a combination of a distortion metric and a coding

rate with a lagrangian multiplier to control the RD trade-off. The implementation is the same as

in work [20], and is explained below.

Since at the heart of the compression problem there is a heavily imbalanced binary classification

problem, the FL was used

FL(v, u) =

−α(1− v)γ log v, u = 1

−(1− α)vγ log(1− v), u = 0
(4.2)

where u is the original voxel value and v is the reconstructed voxel value. The FL has two hyper

parameters that need to be specified before training. The γ parameter controls the relevance of

voxels that are hard to classify by downplaying the loss impact of the easy ones. The higher

the parameter is, the more relevant the hard voxels are. The α ∈ [0, 1] parameter controls the

importance of filled voxels. The higher the parameter is, the more important the filled voxels are.

In the experiments conducted, the two parameters were set empirically to α = 0.75 and γ = 2.

As for the coding rate, more specifically, the expected number of bits per input point, an approx-

imation was used. This is necessary because the actual entropy coding is not done at training time

due to differentiability issues. Therefore, the training coding rate is calculated using the quantized

latent representation, defined as qlr, and the quantized hyper latent representation, defined as qhlr.

coding rate =

∑
ln(pqlr(qlr)) +

∑
ln(pqhlr(qhlr))

ln
(
1
2

)
×N

(4.3)

In eq. 4.3, pqlr(qlr) and pqhlr(qhlr) represent the probability distributions of qlr and qhlr,

respectively, and N corresponds to the number of the block’s input points.

36

Table 4.1: Model hyper parameters: learning rate (LR), batchsize (B), kernel size (KS), f , N and

λ.

LR B KS f N λ

10−4 32 3× 3× 3 4
3 {64, 128, 256, 512} {5e−6, 2e−5, 5e−5, 1e−4, 3e−4}

In terms of model-related hyper parameters (Table 4.1), a kernel size of 3× 3× 3 for the TELs

and CMELs was used and, in the case of the TELs, a factor f of 4/3 was used. In this context, f is

a factor that multiplies the number of channels in the first convolutional layer of the TELs (see the

TEL in Figure 4.4). These values were chosen empirically. In the case of the full variant encoders,

when it came to studying the impact of N (number of channels in the first convolutional layer of

its encoder) on the encoding performance, four values were used: 64, 128, 256 and 512.

Finally, as for the lagrangian multiplier λ in the loss function that controls the RD point, five

values were used: 3e−4, 1e−4, 5e−5, 2e−5 and 5e−6. In the testing phase, the five values selected

lead to five different values of RD performance, one for each DL model.

All the models were implemented and trained in Tensorflow [1], version 2.5.2. The Adam

optimizer was used to minimize the training loss with a learning rate of 10−4 and a batch size of

32 blocks. Regarding batch size, experiments were conducted to infer its best value. To that end,

trainings were conducted with batch size B ∈ {8, 16, 32, 64, 128}. As batch size increased, so did

the quality performance of the model, however, the size of the compressed bitstream would also

increase. A batch size of 16 or 32 offered good model performance without a notable increase in

bitstream size (4% lower D1 PSNR at 54% decrease in bitstream size compared with a batchsize

of 128). In contrast, a batch size of 8 had worse performance (6% lower D1 PSNR at 6% increase

in bitstream size compared with a batchsize of 32). Since the 32 batch size model was marginally

better than the 16 batch size one, a batch size of 32 was chosen.

4.6 Experimental conditions

4.6.1 Testing dataset

For testing, some PCs from the 8iVFB V2 [5] dataset was used, namely, the Long Dress 1300, Loot

1200, Red and Black 1550 and Soldier 690 PCs. In addition, three more popular PCs were used,

namely, Queen, Statue Klimt and House without Roof. All the PCs were voxelized to have a depth

of 10 bits, with an octree division of depth 4 to obtain 64× 64× 64 3D blocks. Figure 4.10 shows

2D views of these PCs and Table 4.2 shows the PCs characteristics.

37

(a) Long Dress. (b) Loot. (c) Red and Black. (d) Soldier.

(e) Queen. (f) Statue Klimt. (g) House without Roof.

Figure 4.10: Test point clouds.

38

Table 4.2: Test PCs characteristics. The sparsity of the PCs was measured by calculating, for

all points in a PC, the average of the euclidean distance between the point and their 20 closest

neighbors and averaging these distances over all points of the PC.

Point Cloud Number of points Attributes Normals Sparsity

Long Dress 857966 RGB color yes 1.73

Loot 805285 RGB color yes 1.73

Red and Black 757691 RGB color yes 1.73

Soldier 1089091 RGB color yes 1.73

Queen 1000993 RGB color yes 1.63

Statue Klimt 482955 RGB color yes 2.38

House without Roof 1722782 RGB color yes 1.78

4.6.2 Performance Metrics

To compare the RD performance of the various DL PCC models and the relevant baselines, both

the rate and the geometry distortion were measured and represented in a RD graph. The rate was

calculated as the number of bits on disk needed to store all the necessary bitstreams to reconstruct

the PC divided by the total number of points in the original PC. This metric is called bits-per-point

(bpp), similar to bits-per-pixel in images.

As for the geometry distortion, the point-to-point and point-to-plane distances described in

sections 2.2.1 and 2.2.2 were used, namely the D1 PSNR and D2 PSNR metrics. Both of them

are asymmetric metrics, more specifically, calculating the metric with PC A in relation to PC B is

different to calculating the metric with PC B in relation to PC A. Usually, the worst value is chosen

as the final value, therefore, that methodology was also adopted for this study. To calculate these

metrics, the software mpeg-pcc-dmetric [8], version 0.13.4, was used.

Finally, for all the encodings done, the BDs for the rate and PSNR were calculated.

4.6.3 Benchmarking

For benchmarking purposes, the G-PCC (in octree mode) and V-PCC with the VVC video encoder

(in intra mode with only one frame) were used as a baseline, compressing the relevant PC with

various RD trade-offs. Furthermore, the PCC GEO V2 work [20], another DL-based PCC model,

was also included in the comparisons, since it was the encoder on which this study was based.

One last thing to note is that, like it was proposed in PCC GEO V2, an optimal threshold value

is used in the compression of the PCs. In the inference phase, when classifying voxels as occupied

or not, a fixed 0.5 threshold can be used for values in the interval [0, 1]. However, the PCC GEO

V2 work showed that, by testing different thresholds, an optimal threshold can be found which

39

significantly improves the final quality of the reconstruction. This comes at the cost of saving all

the necessary thresholds for all the PC’s blocks in a separate bitstream. However, the rate increase

introduced by storing these thresholds is negligible compared to the quality increase. In practice,

the interval [0, 1] is separated into 255 thresholds from 0 to 1. The PC block is then compressed

and decompressed using all 256 thresholds and the D1 PSNR quality metric is recorded for each

threshold, comparing reconstructed blocks with their original counterparts. The threshold that

obtains the higher D1 PSNR metric is the one that is saved in the bitstream to later reconstruct

the block.

4.7 Experimental results

RD performance is the most important criterion when measuring compression efficiency. Therefore,

for each encoder proposed, the RD graphs for the D1 and D2 metrics and a table with the BD will

be presented, comparing their performance with the G-PCC, V-PCC and PCC GEO V2 models.

At the end, a table listing all the BDs will be presented to facilitate results analysis. Because of

space constraints, only results of two PCs from the testing dataset will be presented in the following

sections, but the full results can be viewed in Annex A. These PCs were chosen based on their

sparsity score to represent the dense PCs and the sparse PCs. To represent the dense PCs, the

Long Dress was chosen because it had a sparsity of 1.73, indicating a dense PC (sparsity less than

2). To represent the sparse PCs, the Statue Klimt was chosen because it had a sparsity of 2.38,

indicating a sparse PC (sparsity greater than 2). The threshold of 2 to distinguish dense and sparse

PCs was set arbitrarily as a threshold that made intuitive sense.

4.7.1 Full Transformer Encoder

In Figures 4.11 and 4.12 and Tables 4.3, 4.4 and 4.5, the RD performance for the FTE can be ob-

served. In the full variant of the encoders, experiments were conducted with N = {64, 128, 256, 512}
feature channel models to study the effect of N on performance.

(a) Long Dress. (b) Statue Klimt.

Figure 4.11: D1 PSNR RD performance graphs for the FTE.

40

(a) Long Dress. (b) Statue Klimt.

Figure 4.12: D2 PSNR RD performance graphs for the FTE.

Table 4.3: BD metrics for the FTE with N feature map channels compared to the G-PCC encoder.

The BD-rate is in percentage and the BD-PSNR is in dB. The best value is in bold.

N

Point Cloud Metric BD 512 256 128 64

Long Dress

D1
rate -250.36 -181.14 -229.17 -267.91

PSNR 5.48 5.43 5.43 5.27

D2
rate -129.21 -87.66 -109.64 -120.64

PSNR 3.96 3.83 3.85 3.63

Statue Klimt

D1
rate -106.11 -110.38 -127.03 -139.80

PSNR 1.39 1.43 2.38 2.33

D2
rate -45.06 -44.31 -50.37 -59.61

PSNR 0.31 0.31 1.08 0.96

As is the case with other DL-based PCC solutions, the FTE significantly outperforms the G-

PCC encoder. More so in the case of dense PCs (Long Dress, Loot, Red and Black, Soldier and

Queen) than with the sparse and noisy PCs (Statue Klimt and House without Roof). In fact, as

one can observe in the Figures 4.11b and 4.12b, the DL-based FTE and PCC GEO V2 have clearly

inferior performance compared to the G-PCC encoder at high bitrates for sparse PCs. This can

be caused by a multitude of reasons, but two of the strongest ones are the feature extraction of

the encoder being more suited for dense PCs and the fact that the training dataset ModelNet40 is

comprised of almost exclusively dense PCs. Therefore, it’s no surprise that the final model has a

bias towards dense PCs which are then better compressed. One way to mitigate this problem might

be to consider a bigger patch size when doing the patch embedding, thus increasing the spatial

awareness for each patch.

In terms of the impact of the capacity of the model with N channels, once more, the results are

mixed between dense PCs and sparse PCs. For dense PCs, more channels have a marginal increase

41

in performance. For sparse PCs, fewer channels see an increase in performance. An intuitive reason

for this change is that, with fewer channels, the model has less capacity to overfit to dense PCs,

leading to a more general DL-based encoder.

Table 4.4: BD metrics for the FTE with N feature map channels compared to the V-PCC encoder.

The BD-rate is in percentage and the BD-PSNR is in dB. The best value is in bold.

N

Point Cloud Metric BD 512 256 128 64

Long Dress

D1
rate 54.28 57.22 55.56 54.52

PSNR -2.14 -2.57 -2.36 -2.50

D2
rate 56.13 58.57 57.18 56.45

PSNR -2.93 -3.49 -3.22 -3.39

Statue Klimt

D1
rate 21.98 17.87 19.07 15.64

PSNR -0.46 -0.30 -0.29 -0.27

D2
rate -42.49 -44.28 -44.96 -50.54

PSNR 0.60 0.64 0.98 0.90

In Table 4.4, contrasting with the G-PCC encoder, the V-PCC encoder drastically outperforms

the DL-based solutions. However, this increase in performance is only felt when compressing denser

PCs. As one can observe in the Figures 4.11b and 4.12b, the V-PCC encoder has similar performance

to the DL-based encoders. Furthermore, as the rate increases, the lesser the gain in performance

compared to the other encoders. In fact, the V-PCC encoder is, by far, the most complex encoder

tested. Fine-tuning its multitude of parameters to a certain PC can yield noticeable gains in

performance, however, that fine-tuning is non-intuitive, requiring a lot of trial and error. Therefore,

similar parameters were used in all the test PCs. The V-PCC parameters used in all the encodings

were the default common test conditions provided by the V-PCC github repository1.

Finally, in terms of the impact of the capacity of the model with N channels, the conclusions

are similar to those of the G-PCC encoder. More channels benefit denser PCs and fewer channels

usually benefit sparser PCs.
1https://github.com/MPEGGroup/mpeg-pcc-tmc2.git

42

https://github.com/MPEGGroup/mpeg-pcc-tmc2.git

Table 4.5: BD metrics for the FTE with N feature map channels compared to the PCC GEO V2

encoder. The BD-rate is in percentage and the BD-PSNR is in dB. The best value is in bold.

N

Point Cloud Metric BD 512 256 128 64

Long Dress

D1
rate -1.02 -0.84 -1.95 -3.57

PSNR -0.22 -0.14 -0.24 -0.40

D2
rate -2.43 -1.35 -2.82 -3.24

PSNR -0.24 -0.17 -0.28 -0.48

Statue Klimt

D1
rate -27.88 -29.13 -25.97 -34.70

PSNR 0.27 0.49 0.35 0.38

D2
rate -10.92 -11.23 -9.24 -12.83

PSNR 0.11 0.27 0.07 0.04

Observing Table 4.5, the PCC GEO V2 encoder marginally outperforms the FTE in the case of

dense PCs, most of the time, with a reduction in rate. However, with sparse PCs, the FTE comes

out on top, even with a reduction in rate. In fact, the PCC GEO V2 encoder has a bias towards

better compressing dense PCs, as will be shown in subsequent analysis. It does not mean that it’s

overall better or worse than, for example, the FTE. It just means that, for general purpose use

PCC, the FTE, for example, might be more appealing in more applications.

Concentrating now on the influence of N in the RD performance, the results in Table 4.5 do

not follow the same trend as when comparing with the G-PCC and V-PCC encoders. In terms

of the BD-PSNR gain, the 256 channel model dominates the results in all PCs (see Annex A

Table A.3 for more results). In terms of BD-rate, the 64 channel model outperforms the other

models. Given the black box nature of DL, the explanation for these results can be hard to grasp.

One likely explanation might just be that the number of channels in question were accidental optimal

parameters considering all the other test conditions.

4.7.2 Progressive Transformer Encoder

In Figures 4.13 and 4.14 and Table 4.6, the RD performance for the PTE can be observed.

43

(a) Long Dress. (b) Statue Klimt.

Figure 4.13: D1 PSNR RD performance graphs for the PTE.

(a) Long Dress. (b) Statue Klimt.

Figure 4.14: D2 PSNR RD performance graphs for the PTE.

Table 4.6: BD metrics for the PTE compared to the G-PCC, V-PCC and PCC GEO V2 encoders.

The BD-rate is in percentage and the BD-PSNR is in dB.

Encoder

Point Cloud Metric BD G-PCC V-PCC PCC GEO V2

Long Dress

D1
rate -141.91 58.39 -3.40

PSNR 5.13 -3.40 -0.25

D2
rate -51.17 59.61 -2.32

PSNR 3.43 -4.51 -0.22

Statue Klimt

D1
rate -105.06 33.75 -7.95

PSNR 1.70 -0.75 0.00

D2
rate -32.33 -21.76 -9.30

PSNR 0.65 0.66 0.06

As was the case with the FTE, the PTE outperforms the G-PCC encoder in a similar fashion,

being more biased towards dense PCs. Also, analogous to the FTE, the V-PCC encoder outperforms

the PTE in a similar manner, being more biased towards dense PCs. On the other hand, the PCC

44

GEO V2 encoder outperforms the PTE on almost all test PCs (see Annex A Table A.4 for more

results) in terms of D1 PSNR and D2 PSNR. However, this comes at the cost of a slight increase

in rate, so the two encoders come out as similar in performance. It seems that the patch-based

inputs may have had more of an impact on performance than the Transformer’s attention-based

architecture since the PTE, which uses the Transformer architecture but not patch-based inputs,

had worse overall performance compared with the FTE, which uses the Transformer architecture and

patch-based inputs. This loss of performance for the PTE compared to the FTE can be observed

comparing Tables 4.5 and 4.6. While there is similar performance for dense PCs, the PTE has

around equal performance to the PCC GEO V2 encoder for sparse PCs as opposed to the FTE

which surpasses the PCC GEO V2 encoder for sparse PCs.

4.7.3 Full ConvMixer Encoder

In Figures 4.15 and 4.16 and Tables 4.7, 4.8 and 4.9, the RD performance for the FCME can be

observed.

(a) Long Dress. (b) Statue Klimt.

Figure 4.15: D1 PSNR RD performance graphs for the FCME.

(a) Long Dress. (b) Statue Klimt.

Figure 4.16: D2 PSNR RD performance graphs for the FCME.

45

Table 4.7: BD metrics for the FCME with N feature map channels compared to the G-PCC encoder.

The BD-rate is in percentage and the BD-PSNR is in dB. The best value is in bold.

N

Point Cloud Metric BD 512 256 128 64

Long Dress

D1
rate -225.81 -178.78 -251.17 -232.35

PSNR 5.77 5.67 5.54 5.07

D2
rate -110.53 -82.91 -112.26 -101.92

PSNR 4.27 4.13 3.97 3.42

Statue Klimt

D1
rate -107.56 -115.87 -123.65 -126.42

PSNR 1.93 2.09 2.09 2.26

D2
rate -34.27 -38.63 -33.40 -35.18

PSNR 0.67 0.77 0.61 0.76

As can be seen in Table 4.7, the FCME clearly outperforms the G-PCC encoder by, at least, 0.5

dB in terms of BD-PSNR while also experiencing a reduction of 33% in terms of BD-rate. Similar

to previous encoders, it also has a bias towards dense PCs and underperforms the G-PCC encoder

for high bitrates on sparse PCs.

In terms of the impact of N , the 512 and 256 channel models have better BD-PSNR gains in

almost all the PCs, with some sparse PCs also seeing the best performance in the 64 channel model.

In contrast, the 128 channel model has better BD-rate reductions on the dense PCs, with the sparse

PCs being more split between the 512, 256 and 64 channel models for the best BD-rate performance

(see Annex A Table A.5 for more results).

Table 4.8: BD metrics for the FCME with N feature map channels compared to the V-PCC encoder.

The BD-rate is in percentage and the BD-PSNR is in dB. The best value is in bold.

N

Point Cloud Metric BD 512 256 128 64

Long Dress

D1
rate 53.06 56.16 51.83 57.45

PSNR -2.17 -2.48 -2.35 -2.62

D2
rate 54.60 57.10 53.79 58.97

PSNR -2.98 -3.34 -3.20 -3.53

Statue Klimt

D1
rate 13.67 13.50 16.42 22.32

PSNR -0.19 -0.13 -0.28 -0.39

D2
rate -35.77 -38.43 -28.55 -25.90

PSNR 0.83 0.88 0.65 0.67

As can be seen in Table 4.8, in the case of the V-PCC encoder, once again, it outperforms the

DL-based solutions for denser PCs, struggling to keep up on sparser PCs.

46

In terms of the impact of N , the 512 and 256 channel models have better BD-PSNR gains in

almost all the PCs. In contrast, the 128 channel model has better BD-rates on the dense PCs. In

the sparse PCs, the 512 and 256 channel models have better BD-rates.

Table 4.9: BD metrics for the FCME with N feature map channels compared to the PCC GEO V2

encoder. The BD-rate is in percentage and the BD-PSNR is in dB. The best value is in bold.

N

Point Cloud Metric BD 512 256 128 64

Long Dress

D1
rate -12.60 -9.25 -13.79 2.49

PSNR 0.26 0.24 -0.06 -0.59

D2
rate -12.75 -9.62 -13.30 2.27

PSNR 0.31 0.29 -0.05 -0.71

Statue Klimt

D1
rate -32.41 -31.01 -35.32 -26.27

PSNR 0.55 0.59 0.44 0.29

D2
rate -10.63 -9.88 -4.61 -1.23

PSNR 0.25 0.24 -0.05 -0.17

Observing the values in Table 4.9, the FCME outperforms the PCC GEO V2 encoder in every

test PC. In terms of BD-PSNR gain, either the 512 or 256 channel models see an improvement

in performance. The same can be said for the 512 or 128 channel models for an improvement in

BD-rate. In this case, increasing the capacity of the model usually increases its overall performance,

albeit marginally and with an impact on model complexity.

So, is the increase in performance mainly contributed by the patch-based input representation

after all? To answer this question, we have to conduct an analysis of the final encoder, the PCME.

4.7.4 Progressive ConvMixer Encoder

In Figures 4.17 and 4.18 and Table 4.10, the RD performance for the PCME can be observed.

(a) Long Dress. (b) Statue Klimt.

Figure 4.17: D1 PSNR RD performance graphs for the PCME.

47

(a) Long Dress. (b) Statue Klimt.

Figure 4.18: D2 PSNR RD performance graphs for the PCME.

Table 4.10: BD metrics for the PCME compared to the G-PCC, V-PCC and PCC GEO V2 encoders.

The BD-rate is in percentage and the BD-PSNR is in dB.

Encoder

Point Cloud Metric BD G-PCC V-PCC PCC GEO V2

Long Dress

D1
rate -227.08 53.58 -12.59

PSNR 5.60 -2.42 0.16

D2
rate -103.96 55.01 -12.60

PSNR 4.01 -3.29 0.19

Statue Klimt

D1
rate -118.40 11.65 -36.07

PSNR 2.16 -0.20 0.56

D2
rate -39.08 -37.58 -15.40

PSNR 0.89 0.95 0.33

As was the case with the FCME, the PCME outperforms the G-PCC encoder in a similar fashion,

being more biased towards dense PCs. Meanwhile, the V-PCC encoder outperforms the PCME at

lower rates, being more biased towards dense PCs. On the other hand, the PCME outperforms

the PCC GEO V2 encoder on all test PCs. This improvement in performance is translated into an

increase in PSNR with a significant reduction in rate. On the other hand, looking at Figures 4.17

and 4.18, this gain in performance is not general. It mostly occurs at lower and higher bitrates.

With medium bitrates, the PCC GEO V2 encoder is slightly better.

On another note, the PSNR gains of the PCME are, usually, not as high as its full variant

counterpart. This fact makes it clear that patch-based inputs have a positive impact on performance.

4.7.5 Qualitative study

While it is very important to use objective metrics when evaluating codec’s RD performance, sub-

jective quality is equally, if not more important. While no full subjective quality comparisons were

48

done involving the results of this study, we present in Figure 4.19 some images showing the difference

between the original test PCs and the reconstructed PCs. An edge case for each PC is presented,

more specifically, the reconstructed PC with the highest bitrate model for the PCME and PCC

GEO V2 encoder were chosen for this part of the study. Both models have similar bitrates for the

encoded PCs (less than 10% difference), so a qualitative study is possible. This was also the bitrate

model where the most obvious visual difference between the original and reconstructed PC could

be perceived.

(a) PCC GEO V2 vs original. (b) PCME vs original.

(c) PCC GEO V2 vs original. (d) PCME vs original.

Figure 4.19: Difference between the original test PCs and the reconstructed PCs. Points in blue

mean that the reconstructed point is close (closer than, on average, four voxels) to the original, while

points in green mean that the reconstructed point is far (farther than, on average, four voxels) from

the original.

In the case of the Long Dress test PC, it is clear from Figure 4.19a that the PCC GEO V2 encoder

is more inaccurate when reconstructing the woman’s hair than the PCME. On the other hand, the

sparse Statue Klimt PC is not very accurately reconstructed by any of the codecs (Figures 4.19c

and 4.19d). However, there are a lot more green points (inaccurate predictions) in the reconstructed

PC from the PCC GEO V2 encoder than the PCME. Overall, visually, the highest bitrate model

of the PCME has better performance than the highest bitrate model of the PCC GEO V2 encoder.

49

4.7.6 Final experiment remarks

The previous sections explained the overall training and testing process of the DL-based PCC

models, comparing the performance of all the encoders presented with the G-PCC, V-PCC and

PCC GEO V2 encoders. In conclusion, attention-based TELs did not seem to contribute much to

the overall performance of the model. What made the biggest difference was the depthwise and

pointwise convolutions of the CMELs accompanied by patch-based inputs. These operations enabled

more efficient feature extraction, which ultimately resulted in more efficient PC compression. In the

end, the better encoders were the ConvMixer-based ones, with the Transformer-based ones lacking

behind. A summary of the best metrics for each test PC is displayed in Table 4.11.

Table 4.11: Summary of BD metrics for the proposed encoders compared to the PCC GEO V2

encoder. The BD-rate is in percentage and the BD-PSNR is in dB with the best values in bold.

For the FTE, the 256 channel model was chosen as its overall best. For the FCME, the 512 channel

model was chosen as its overall best.

Encoder

Point Cloud Metric BD FTE PTE FCME PCME

Long Dress

D1
rate -0.84 -3.40 -12.60 -12.59

PSNR -0.14 -0.25 0.26 0.16

D2
rate -1.35 -2.32 -12.75 -12.60

PSNR -0.17 -0.22 0.31 0.19

Statue Klimt

D1
rate -29.13 -7.95 -32.41 -36.07

PSNR 0.49 0.00 0.55 0.56

D2
rate -11.23 -9.30 -10.63 -15.40

PSNR 0.27 0.06 0.25 0.33

Finally, an important characteristic of PCC encoders is their complexity. In Table 4.12, the

complexity of the proposed encoders compared to the PCC GEO V2 is presented. The complexity

is calculated as a percentage of the time to encode and decode a PC with the proposed encoders

(tproposed) over the time to encode and decode a PC with PCC GEO V2 (tgeo) and is defined by

eq. 4.4.

complexity = 100 ·
(tproposed

tgeo
− 1

)
(4.4)

Table 4.12: Complexity of the proposed encoders compared to the PCC GEO V2 encoder.

FTE PTE FCME PCME

N 64 128 256 512 - 64 128 256 512 -

Complexity −5% −2% −5% 30% 42% −13% −4% −8% −6% −7%

50

5 Extending DL-based Geometry PCC to in-

clude color information

Many PCC solutions, like the one proposed, focus in compressing the geometry of PCs. While

geometry is a very important feature of PCs, most of them have other attributes, most notable,

color information. Therefore, it is desirable that, besides compressing the geometry information, the

codec also compresses attribute information. In fact, the MPEG PCC codecs, G-PCC and V-PCC,

support this functionality. To allow all DL PCC solutions to also compress attribute information,

an extension to DL-based geometry PCC is proposed.

In the following sections, changes to the geometry PCC pipeline will be presented, most no-

tably, DL architectural and training loss function changes. Additionally, an experiment testing and

studying the proposed implementation will be presented that also studies the impact of different

encoding color spaces.

5.1 Overall DL-based Geometry PCC Pipeline Changes

5.1.1 Architectural changes

As shown in Figure 3.2, most current state-of-the-art PCC employs a 3D block-based representation

for the input PC (binary occupancy map). More specifically, the PC is first divided into 3D blocks

where each voxel occupancy bit is either a 0 representing an empty voxel, or a 1 representing

an occupied voxel. Then, each block is compressed independently, with the final main bitstream

comprised of the information of the encoded blocks. On a more technical level, what is processed

is a one channel 3D block containing the geometry information of the PC represented by a binary

occupancy map. To extend this approach to include color information, instead of a one channel 3D

block, a four channel 3D block can be used.

The approach is similar to that used in representing the geometry information in a 3D block.

For each of the extra three channels, each one would have a value with the color component where

there was a point and a 0 where there was no point.

This color encoding method implies architectural changes in the DL model, not very complex

or extensive. Instead of outputting only one channel of 3D block information, the model needs to

51

output four channels of 3D block information. In practice, the number of output channels in the

Synthesis Transform of Figure 3.2 needs to be set to four. Given the abstract nature of machine

learning, the model would then learn to compress geometry and color information simultaneously.

For example, the altered Synthesis Transform from the PCC GEO V2 work can be observed in

Figure 5.1.

Di x Di x Di

Channels = Ni

ReLU

Stride 2

Channels = Ni

ReLU

Stride 1

Channels = Ni

Stride 1

ReLU

64 x 64 x 64
Channels = 4

ReLU

Stride 1

x3
i=1,2,3

Conv-3D

3 x 3 x 3

Kernel

Transposed Conv-3D

3 x 3 x 3

Kernel

Transposed Conv-3D

3 x 3 x 3

Kernel

Transposed Conv-3D

3 x 3 x 3

Kernel

Figure 5.1: Altered Synthesis Transform from the PCC GEO V2 work to also process color infor-

mation.

5.1.2 Model loss modification

Now that the model outputs color information, a color distortion loss component is now needed for

use in the training of the model. In practice, the distortion component of the eq. 3.1 would have

to contain two terms: one for geometry distortion and one for color distortion. Finally, a factor β

is needed to control the trade-off between geometry and color distortion (eq. 5.1).

loss = λ · (geometry distortion+ β · color distortion) + rate (5.1)

5.2 Color PCC DL Model Training and Testing

Now that the general model pipeline has been designed, it’s necessary to indicate, specifically, the

hyper parameters and methods used. The subsequent sections will present the:

• Block partition method (same as described in Section 4.5.1);

• Training dataset;

• Loss function and its parameters;

• Experimental conditions (testing dataset, performance metrics and benchmarking);

• Experimental results.

Furthermore, the study will be focused on extending two state-of-the-art published works, PCC

GEO V2 [20] and PCC GEO SLICING [6], to also compress PC color information.

52

5.2.1 Training dataset

For the training dataset, PCs in the Joint Photographic Experts Group (JPEG) Point Cloud Coding

Common Training and Testing Conditions were used, voxalized with a depth of 10 bits. To transform

the dataset into usable 3D blocks, first, the PCs suffered an octree partition of depth 4, leading into

64× 64× 64 3D blocks. Since, by nature, most of those blocks have only 5− 10% filled voxels, only

the 4000 blocks with the greastest number of points were used for training. This means that many

blocks from the partitioned PCs were not used in the training of the model.

5.2.2 Loss function

The geometry distortion and rate terms of the loss function, they are similar to the terms described

in Section 4.5.3, repeated here for easier reading.

FL(v, u) =

−α(1− v)γ log v, u = 1

−(1− α)vγ log(1− v), u = 0
(5.2)

coding rate =

∑
ln(pqlr(qlr)) +

∑
ln(pqhlr(qhlr))

ln
(
1
2

)
×N

(5.3)

For the color distortion metric, since color is a continuous value, the mean squared error loss

was used (eq. 5.4).

MSE =
1

N

∑
(colororiginal − colorreconstructed)

2 (5.4)

While colorreconstructed is the color of the reconstructed voxel, colororiginal can have different

values depending on the context. In standard PC distortion evaluation applications, colororiginal

is the color of the point in the original PC closest to the reconstructed point. Although this loss

can be implemented and used in training, not only is it very expensive computationally, but it did

not offer any obvious gains in performance. Therefore, two other color distortion losses were used,

denominated colorV1 loss and colorV2 loss and presented in Figure 5.2.

In the colorV1 loss, the colororiginal portion of the loss is the same as the input block color

component, but colorreconstructed are the reconstructed colors only for the voxels that had points in

the original block, even if the model did not evaluate that voxel as having a point. This leads to a

more independent color loss function such that the color reconstruction process does not depend as

much on a good model geometry reconstruction.

In the colorV2 loss, the colorreconstructed are the reconstructed colors only for the voxels that

the model evaluated as having a point, but colororiginal is the average of the color component in

the original block with a window of size m × m × m (for each color component) centered in the

reconstructed point voxel. This leads to a more lenient color loss function placing more emphasis on

53

Original block

Reconstructed block

Geometry Information

100

0

0

40

250

0

0 140 0

70

0

20

40

200

40

10 90 100

Color Information

100

0

0

40

250

0

0 140 0

70

0

0

40

200

0

0 90 0

Color Information in colorV1 loss

0

0

65

59

0

72

0 30 45

0

0

20

40

0

40

0 90 100

Color Information in colorV2 loss

Figure 5.2: Illustration of the application of the colorV1 loss and colorV2 loss in the 2D case with

only one color component. Blue cubes refer to filled voxels, green cubes refer to filled voxels in the

geometry information, red cubes refer to color values in the colorV1 loss and orange cubes refer to

color values in the colorV2 loss considering a 3× 3 window.

reconstructing color voxels with values close to their nearest neighbors in the original block in case

of an incorrect geometry reconstruction. In the conducted experiments, m = 7 was set empirically.

As for the β factor, it is highly dependent on the implementation of the geometry distortion loss

and color distortion loss. However, in the conducted experiments, changing this value did not have

an obvious impact on performance, with the biggest bottleneck being the capacity of the DL model

itself and the difficulty of optimizing a continuous value variable. Nevertheless, a value of 1000 was

set empirically for the PCC GEO V2 encoder and a value of 40 was set empirically for the PCC

GEO SLICING encoder.

5.3 Experimental conditions

5.3.1 Testing dataset

Testing was done using two PCs, Long Dress 1300 (Figure 4.10a), to represent dense PCs, and

Statue Klimt (Figure 4.10f), to represent sparse PCs, were used. The sparsity of the PCs was

measured by calculating, for all points in a PC, the average of the euclidean distance between the

point and their 20 closest neighbors and averaging these distances over all points of the PC. The

Long Dress PC had a mean distance of 1.73, indicating a dense PC (mean distance less than 2),

and the Statue Klimt had a mean distance of 2.38, indicating a sparse PC (mean distance greater

than 2). The threshold of 2 to distinguish dense and sparse PCs was set arbitrarily as a threshold

that made intuitive sense. All the PCs were voxelized to have a depth of 10 bits, with an octree

division of depth 4 to obtain 64× 64× 64 3D blocks.

54

5.3.2 Performance Metrics

To compare the RD performance of the various DL PCC models and the baseline codecs, the rate,

geometry distortion and color distortion were measured. The rate and geometry distortion metric

are the same as described in Section 4.6.2. Using the same software to calculate the geometry

distortion, the color distortion is also calculated similarly to the D1 PSNR metric, except that

instead of using the geometry coordinates, it uses the color components.

Finally, an overall geometry and color distortion will be presented, the PCQM metric.

5.3.3 Benchmarking

For benchmarking purposes, the V-PCC with the VVC video encoder (in intra mode with only one

frame) was used as a baseline, compressing the test PCs with a similar RD trade-off to the DL

models. The V-PCC parameters used in all the encodings were the default common test conditions

provided by the V-PCC github repository1. This time, the G-PCC encoder was not used as a baseline

because it was shown previously to have a much inferior performance to the V-PCC encoder.

5.4 Experimental results

RD performance is an important criterion when targeting compression efficiency. The DL PCC

encoders proposed and the benchmarking encoders will be compared based on the rate and distortion

operation points reached when encoding the test PCs, i.e., based on their RD performance. Also,

for each DL model, both proposed color distortion losses will be evaluated. In the subsequent study,

CL1 refers to the colorV 1 loss and CL2 refers to the colorV 2 loss. A cursory analysis will include

only one RD point for the V-PCC, PCC GEO V2 and PCC GEO SLICING codecs, but graphs

detailing the behavior over a wide range of RD points will be presented at the end.

Input PC
(RGB)

Input PC
(LAB)

Reconstructed PC
(LAB)

Reconstructed PC
(RGB)

Conversion to new
color space

PC encoding and
reconstruction

Conversion to RGB
color space

Save PC
Calculate distortion metrics

...

Figure 5.3: Example of the pipeline when encoding and decoding a PC in the LAB color space.

Finally, the DL models were also trained to compress color information in four different color

spaces: RGB, YCbCr, LAB and HSV. Performance differences between them will also be studied.

Since all the test PCs have RGB information, it will be necessary to convert RGB color to other
1https://github.com/MPEGGroup/mpeg-pcc-tmc2.git

55

https://github.com/MPEGGroup/mpeg-pcc-tmc2.git

color spaces and vice-versa. Figure 5.3 shows an example of this pipeline. The new color space

is only used when encoding and decoding the PC. In the case of the V-PCC encoder, only its

default coding color space will be used. Distortion metric calculation is always processed in the

RGB color space, however, [8] converts the RGB color space to the YUV color space, so the C1,

C2 and C3 metrics in the subsequent sections will refer to the color distortions in the Y, U and V

color components, respectively. The YUV color space defines three color components: luminance

(Y), blue projection (U) and red projection (V). The equations defining the color conversion from

RGB to YUV can be found in Annex B.1.

5.4.1 RGB color space

The RGB color space defines three color components: red (R), green (G) and blue (Cr). All the

test PCs have their color information in the RGB color space, so there will be no need for color

conversions.

Table 5.1: Performance metrics and bpp for the different encoders with the Long Dress PC. The

C1, C2 and C3 metrics refer to the three color components. The D1, D2, C1, C2 and C3 metrics

are in dB. The PCQM values listed have been multiplied by 1000. The best value for all the metrics

is in bold.

Encoder BPP D1 D2 C1 C2 C3 PCQM

V-PCC 0.70 72.1 76.0 33.3 36.2 35.3 5.3

PCC GEO V2 - CL1 1.09 71.0 74.4 25.4 30.6 28.9 12.3

PCC GEO V2 - CL2 0.95 73.5 77.5 24.9 32.0 30.2 11.0

PCC GEO SLICING - CL1 0.98 73.9 78.0 27.3 33.0 30.9 7.6

PCC GEO SLICING - CL2 0.80 74.0 78.1 25.1 32.7 30.8 9.8

In Table 5.1, it’s possible to see a trend that will be observed also with other color spaces. For

the dense PC Long Dress, the V-PCC encoder dominates in the bpp used and in the metrics C1,

C2, C3 and PCQM. However, it struggles to keep up in the D1 and D2 geometry distortion metrics

(see Figure 5.4).

In terms of the DL-based encoders, the PCC GEO SLICING encoder has superior overall per-

formance over the PCC GEO V2 encoder. That is to be expected because the PCC GEO SLICING

work builds upon and improves the PCC GEO V2 work.

In terms of the color distortion loss, the DL encoders have different behaviors. When using the

colorV 2 loss over the colorV 1 loss, both of them manage to achieve a reduction in overall encoding

bpp and an increase in D1 and D2 metrics (not so much in the case of the PCC GEO SLICING

encoder). However, that behaviour is not observed in the case of the color distortion metrics. The

PCC GEO SLICING encoder sees a reduction in the color distortion when using the colorV 2 loss,

56

while the PCC GEO V2 encoder is the opposite, with the exception of the first color component.

In conclusion, with respect to the RGB color space and a denser PC, the V-PCC encoder is the

clear winner (see Figure 5.4c), as complemented by the PCQM values presented, followed by the

PCC GEO SLICING encoder and finally the PCC GEO V2 encoder.

Table 5.2: Performance metrics and bpp for the different encoders with the Statue Klimt PC. The

C1, C2 and C3 metrics refer to the three color components. The D1, D2, C1, C2 and C3 metrics

are in dB. The PCQM values listed have been multiplied by 1000. The best value for all the metrics

is in bold.

Encoder BPP D1 D2 C1 C2 C3 PCQM

V-PCC 2.56 65.4 69.8 29.0 34.4 35.9 7.2

PCC GEO V2 - CL1 1.81 64.8 68.9 23.7 29.5 32.0 17.2

PCC GEO V2 - CL2 1.54 65.5 69.7 22.9 31.3 32.8 15.0

PCC GEO SLICING - CL1 1.82 65.6 70.0 25.5 32.5 34.1 11.2

PCC GEO SLICING - CL2 1.45 65.5 69.9 23.2 32.0 34.1 13.9

With respect to the sparse PC Statue Klimt, as one can observe in Table 5.2, it is not clear

which encoder is the best. The conclusions are similar to the previous dense PC study, however,

there are a few differences. Besides the encoders not being able to achieve performances as high as

those of the dense PC, the V-PCC encoder uses a much higher bpp when compressing the sparse

PC.

One other remark is that the PCC GEO SLICING encoder achieves similar performance in the

D1 and D2 metrics when using either of the color losses. In practice, this indicates that this encoder

sees less of an impact on the geometry distortion metrics when using different color distortion losses.

In conclusion, with respect to the RGB color space and a sparser PC, the V-PCC encoder is the

winner in terms of overall distortion metrics (see Figure 5.5c), however, the PCC GEO SLICING

encoder achieves a much lower bpp with similar geometry distortion metrics but somewhat lower

color distortion metrics.

57

5.4.2 YCbCr color space

The YCbCr color space defines three color components: luminance (Y), chroma blue-difference (Cb)

and chroma red-difference (Cr). The equations defining the color conversion from RGB to YCbCr

and vice-versa can be found in Annex B.2.

Table 5.3: Performance metrics and bpp for the different encoders with the Long Dress PC. The

C1, C2 and C3 metrics refer to the three color components. The D1, D2, C1, C2 and C3 metrics

are in dB. The PCQM values listed have been multiplied by 1000. The best value for all the metrics

is in bold.

Encoder BPP D1 D2 C1 C2 C3 PCQM

V-PCC 0.70 72.1 76.0 33.3 36.2 35.3 5.3

PCC GEO V2 - CL1 0.81 71.2 74.7 24.5 28.8 28.4 14.8

PCC GEO V2 - CL2 0.76 72.6 76.5 24.2 30.5 29.1 14.2

PCC GEO SLICING - CL1 0.81 74.2 78.3 26.2 31.5 30.0 9.4

PCC GEO SLICING - CL2 0.75 73.6 77.9 24.8 30.9 29.7 11.2

As one can observe in Table 5.3, encoding in the YCbCr color space results in an overall reduc-

tion in all the presented color distortion metrics comparing to encoding in the RGB color space.

Meanwhile, the geometry distortion metrics are similar to those of the RGB color space. One remark

is that, in the case of the dense PC, the PCC GEO SLICING encoder shows a significant increase in

the D1 and D2 geometry metrics when using the colorV 1 loss. Finally, the overall encoding bpp is

also lower compared to the RGB color space. That being said, the V-PCC encoder still dominates

in terms of the overall quality of the reconstructed PC.

Table 5.4: Performance metrics and bpp for the different encoders with the Statue Klimt PC. The

C1, C2 and C3 metrics refer to the three color components. The D1, D2, C1, C2 and C3 metrics

are in dB. The PCQM values listed have been multiplied by 1000. The best value for all the metrics

is in bold.

Encoder BPP D1 D2 C1 C2 C3 PCQM

V-PCC 2.56 65.4 69.8 29.0 34.4 35.9 7.2

PCC GEO V2 - CL1 1.38 64.8 68.9 22.4 27.1 31.4 22.8

PCC GEO V2 - CL2 1.31 65.3 69.6 22.2 28.4 32.0 19.5

PCC GEO SLICING - CL1 1.51 65.7 70.1 24.8 30.8 33.6 13.1

PCC GEO SLICING - CL2 1.34 65.4 69.7 23.0 30.1 33.3 15.5

As for the sparse PC, the conclusions are similar to the dense PC when using the YCbCr color

space.

58

5.4.3 LAB color space

The LAB color space defines three color components: lightness (L), red to green (A) and yellow

to blue (B). The equations defining the color conversion from RGB to LAB and vice-versa can be

found in Annex B.3.

Table 5.5: Performance metrics and bpp for the different encoders with the Long Dress PC. The

C1, C2 and C3 metrics refer to the three color components. The D1, D2, C1, C2 and C3 metrics

are in dB. The PCQM values listed have been multiplied by 1000. The best value for all the metrics

is in bold.

Encoder BPP D1 D2 C1 C2 C3 PCQM

V-PCC 0.70 72.1 76.0 33.3 36.2 35.3 5.3

PCC GEO V2 - CL1 0.87 69.3 72.2 23.7 30.3 27.0 18.8

PCC GEO V2 - CL2 0.79 72.0 75.7 23.9 31.5 28.6 15.0

PCC GEO SLICING - CL1 0.87 74.4 78.6 26.3 32.7 29.8 8.2

PCC GEO SLICING - CL2 0.77 74.2 78.4 24.6 32.4 29.7 10.8

Table 5.6: Performance metrics and bpp for the different encoders with the Statue Klimt PC. The

C1, C2 and C3 metrics refer to the three color components. The D1, D2, C1, C2 and C3 metrics

are in dB. The PCQM values listed have been multiplied by 1000. The best value for all the metrics

is in bold.

Encoder BPP D1 D2 C1 C2 C3 PCQM

V-PCC 2.56 65.4 69.8 29.0 34.4 35.9 7.2

PCC GEO V2 - CL1 1.42 64.4 68.4 21.5 27.8 31.0 29.6

PCC GEO V2 - CL2 1.33 65.1 69.1 21.8 29.8 32.1 24.0

PCC GEO SLICING - CL1 1.64 65.9 70.3 25.0 32.4 33.4 11.8

PCC GEO SLICING - CL2 1.40 65.7 70.1 23.0 31.8 33.2 14.9

When encoding in the LAB color space, the conclusions for the dense and sparse PC are similar

to the conclusions of the YCbCr color space with respect to the RGB color space.

59

5.4.4 HSV color space

The HSV color space defines three color components: hue (H), saturation (S) and value (V). The

equations defining the color conversion from RGB to HSV and vice-versa can be found in Annex B.4.

Table 5.7: Performance metrics and bpp for the different encoders with the Long Dress PC. The

C1, C2 and C3 metrics refer to the three color components. The D1, D2, C1, C2 and C3 metrics

are in dB. The PCQM values listed have been multiplied by 1000. The best value for all the metrics

is in bold.

Encoder BPP D1 D2 C1 C2 C3 PCQM

V-PCC 0.70 72.1 76.0 33.3 36.2 35.3 5.3

PCC GEO V2 - CL1 1.48 70.0 73.2 22.7 29.5 26.5 28.2

PCC GEO V2 - CL2 1.22 71.5 75.1 22.8 28.4 24.7 27.6

PCC GEO SLICING - CL1 1.28 73.5 77.5 24.4 30.6 28.5 13.6

PCC GEO SLICING - CL2 0.91 73.8 77.9 23.5 28.8 25.0 19.9

When encoding with the HSV color space, with regards to the dense PC, overall, all the distortion

metrics and bpp values are worse than the values when using the previous color spaces. Furthermore,

the DL-based encoders, with respect to the color distortion metrics, prefer using the colorV 1 loss.

In the case of dense PCs, encoding with the HSV color space seems to be an incorrect approach

(see Figure 5.4).

Table 5.8: Performance metrics and bpp for the different encoders with the Statue Klimt PC. The

C1, C2 and C3 metrics refer to the three color components. The D1, D2, C1, C2 and C3 metrics

are in dB. The PCQM values listed have been multiplied by 1000. The best value for all the metrics

is in bold.

Encoder BPP D1 D2 C1 C2 C3 PCQM

V-PCC 2.56 65.4 69.8 29.0 34.4 35.9 7.2

PCC GEO V2 - CL1 1.70 64.5 68.6 20.7 31.0 29.9 37.4

PCC GEO V2 - CL2 1.74 65.0 69.2 21.1 31.2 29.5 30.8

PCC GEO SLICING - CL1 1.99 65.6 69.9 23.7 32.9 32.1 15.3

PCC GEO SLICING - CL2 1.56 65.6 69.9 22.4 32.3 30.1 19.5

In the case of the sparse PC, the reduction in quality of the reconstructed PC, when comparing

with previous color spaces, is not as bad in terms of the geometry distortion metrics. Still, using the

HSV color space does not offer a meaningful increase in performance in any of the metrics presented

(see Figure 5.5).

60

5.4.5 Final experiment remarks

After analyzing the performance in encoding the PCs in four different color spaces, a superior

encoding color space may not be as obvious as it seems. Based purely on the metrics presented,

the RGB color space might be a good candidate for the best. However, one cannot focus only

on numbers when selecting the best of something, because general public opinion is also a very

important metric, especially in evaluating compression solutions. Therefore, we end this study by

presenting images of all the best reconstructed PCs. For all the color spaces, as for the DL-based

encoders, only the best PC in terms of the PCQM metric will be presented. Finally, graphs of the

RD performance for the V-PCC and PCC GEO SLICING encoders for the relevant metrics are

shown in Figures 5.4 and 5.5. In terms of the DL-based solution, all the color spaces and color

loss functions RD curves are presented. The PCC GEO V2 encoder is not included because it was

shown to have overall inferior performance to the PCC GEO SLICING encoder.

(a) D1 PSNR. (b) D2 PSNR. (c) PCQM.

(d) C1 PSNR (Y channel). (e) C2 PSNR (U channel). (f) C3 PSNR (V channel).

Figure 5.4: RD graphs for the relevant metrics on the Long Dress test PC.

61

(a) D1 PSNR. (b) D2 PSNR. (c) PCQM.

(d) C1 PSNR (Y channel). (e) C2 PSNR (U channel). (f) C3 PSNR (V channel).

Figure 5.5: RD graphs for the relevant metrics on the Statue Klimt test PC

62

(a) Original. (b) V-PCC. (c) RGB.

(d) YCbCr. (e) LAB. (f) HSV.

Figure 5.6: Best of the reconstructed Long Dress PCs. For every color space, the reconstructed PC

using the PCC GEO SLICING encoder with the colorV 1 loss is shown.

63

(a) Original. (b) V-PCC. (c) RGB.

(d) YCbCr. (e) LAB. (f) HSV.

Figure 5.7: Best of the reconstructed Statue Klimt PCs. For every color space, the reconstructed

PC using the PCC GEO SLICING encoder with the colorV 1 loss is shown.

64

6 Conclusion

6.1 Final Dissertation remarks

This Dissertation presented two topics that pertained to advances in 3D PCC using DL: the proposal

of new DL-based encoders with the objective of efficient PCC and the extension of state-of-the-art

DL-based PC codecs to also compress color information.

In terms of the proposed encoders, four were presented based on the DL Transformer architecture

and patch inputs. Trained with the Tensorflow framework, the best encoders achieved an increase

in RD performance compared with the DL-based PCC benchmark and other relevant codecs, like

G-PCC and V-PCC. The performance of these encoders was measured using the geometry PC

distortion metrics D1 PSNR and D2 PSNR and the rate of the compressed PC. More specifically,

considering the best of the proposed encoders, a decrease of up to 30% in rate and an increase of

up to 0.59 and 0.56 for the D1 PSNR and D2 PSNR metrics, respectively, was observed.

Regarding the extension of DL-based PCC to also include color information, a study was con-

ducted in four color spaces to determine the best color space to use in coding time. Furthermore,

two loss functions for the color component were proposed to measure the color distortion in training

time. While being a naive approach to compressing PC color information, it gave reasonable results

compared with the V-PCC baseline, with the proposed solutions lacking behind in color distortion

performance, but overcoming V-PCC in geometry distortion performance. The color distortion

was measured using the C1 PSNR, C2 PSNR, C3 PSNR and PCQM metrics. More specifically,

compared with the V-PCC baseline, the best of the proposed solutions achieved a reduction of up

to 6 dB in terms of the C1 PSNR, C2 PSNR and C3 PSNR metrics and a reduction of up to 3

units in terms of the PCQM metric. In contrast, an increase of up to 2 dB was achieved regarding

the D1 PSNR and D2 PSNR metrics. Considering these results and the implementation details of

compressing PC color information, all future DL-based PCC solutions in the literature should strive

to be able to perform both geometry and color PCC.

65

6.2 Future work

For future work, all the proposed solutions can be improved by performing several changes and

studies, which are listed below:

• Regarding the black box nature of DL, a fine tuning of the models’ hyperparameters can be

performed to maximize the RD performance for a certain RD point. Furthermore, a study of

other DL-based architectures can be conducted to understand their impact and performance

in PCC, like extending the proposed AE architecture to a VAE variant.

• Regarding the training of the DL-based models, more sophisticated geometry and color loss

functions can be used, like the neighborhood adaptive distortion loss. Furthermore, a reduc-

tion in training time can possibly be achieved by reducing the precision of the weights in the

network. In terms of PC color compression, compacting the input of the network from four

channels to three channels by mapping the geometry information to the color information can

also achieve a reduction in training and inference time.

• Conduct a study of the proposed PCC solutions considering subjective PCC metrics, with the

objective of better understanding their real world performance.

• Regarding the compression of both geometry and color PC information, the proposed solutions

perform the compression of these two attributes simultaneously. Instead, the model can be

separated into two models, where one is optimized to compress PC geometry information and

the other is optimized to compress PC color information.

66

7 Bibliography

[1] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro,

Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Good-

fellow, Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz

Kaiser, Manjunath Kudlur, Josh Levenberg, Dandelion Mané, Rajat Monga, Sherry Moore,

Derek Murray, Chris Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever,

Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol

Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng.

TensorFlow: Large-scale machine learning on heterogeneous systems, 2015. Software available

from https://www.tensorflow.org/.

[2] Gisle Bjontegaard. Calculation of average psnr differences between rd-curves. VCEG-M33,

2001.

[3] RECOMMENDATION ITU-R BT. Methodology for the subjective assessment of the quality

of television pictures. International Telecommunication Union, 2002.

[4] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,

Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly,

et al. An image is worth 16x16 words: Transformers for image recognition at scale. arXiv

preprint arXiv:2010.11929, 2020.

[5] Eugene d’Eon, Bob Harrison, Taos Myers, and Philip A Chou. 8i voxelized full bodies-a

voxelized point cloud dataset. ISO/IEC JTC1/SC29 Joint WG11/WG1 (MPEG/JPEG) input

document WG11M40059/WG1M74006, 7:8, 2017.

[6] Nicolas Frank, Davi Lazzarotto, and Touradj Ebrahimi. Latent space slicing for en-

hanced entropy modeling in learning-based point cloud geometry compression. In ICASSP

2022-2022 IEEE International Conference on Acoustics, Speech and Signal Processing

(ICASSP), pages 4878–4882. IEEE, 2022. Software available from https://github.com/

mmspg/pcc-geo-slicing.git.

67

https://www.tensorflow.org/
https://github.com/mmspg/pcc-geo-slicing.git
https://github.com/mmspg/pcc-geo-slicing.git

[7] Chunyang Fu, Ge Li, Rui Song, Wei Gao, and Shan Liu. Octattention: Octree-based large-scale

contexts model for point cloud compression. arXiv preprint arXiv:2202.06028, 2022.

[8] Moving Picture Experts Group. Mpeg point cloud compression distortion metric. Software

available from http://mpegx.int-evry.fr/software/MPEG/PCC/mpeg-pcc-dmetric.

[9] André FR Guarda, Nuno MM Rodrigues, and Fernando Pereira. Point cloud coding: Adopting

a deep learning-based approach. In 2019 Picture Coding Symposium (PCS), pages 1–5. IEEE,

2019.

[10] André FR Guarda, Nuno MM Rodrigues, and Fernando Pereira. Adaptive deep learning-based

point cloud geometry coding. IEEE Journal of Selected Topics in Signal Processing, 15(2):415–

430, 2020. Software available from https://github.com/aguarda/ADLPCC.git.

[11] André FR Guarda, Nuno MM Rodrigues, and Fernando Pereira. Deep learning-based point

cloud geometry coding with resolution scalability. In 2020 IEEE 22nd International Workshop

on Multimedia Signal Processing (MMSP), pages 1–6. IEEE, 2020.

[12] André FR Guarda, Nuno MM Rodrigues, and Fernando Pereira. Neighborhood adaptive loss

function for deep learning-based point cloud coding with implicit and explicit quantization.

IEEE MultiMedia, 28(3):107–116, 2020.

[13] André FR Guarda, Nuno MM Rodrigues, and Fernando Pereira. Point cloud geometry scalable

coding with a single end-to-end deep learning model. In 2020 IEEE International Conference

on Image Processing (ICIP), pages 3354–3358. IEEE, 2020.

[14] Aurélien Géron. Hands-On Machine Learning with Scikit-Learn, Keras and Tensorflow.

O’Reilly Media, 2019.

[15] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint

arXiv:1312.6114, 2013.

[16] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep

convolutional neural networks. Advances in neural information processing systems, 25, 2012.

[17] Solomon Kullback and Richard A Leibler. On information and sufficiency. The annals of

mathematical statistics, 22(1):79–86, 1951.

[18] Gabriel Meynet, Yana Nehmé, Julie Digne, and Guillaume Lavoué. Pcqm: A full-reference

quality metric for colored 3d point clouds. In 2020 Twelfth International Conference on Quality

of Multimedia Experience (QoMEX), pages 1–6. IEEE, 2020.

68

http://mpegx.int-evry.fr/software/MPEG/PCC/mpeg-pcc-dmetric
https://github.com/aguarda/ADLPCC.git

[19] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J Guibas. Pointnet++: Deep hierarchical

feature learning on point sets in a metric space. Advances in neural information processing

systems, 30, 2017.

[20] Maurice Quach, Giuseppe Valenzise, and Frederic Dufaux. Improved deep point cloud geometry

compression, 2020. Software available from https://github.com/mauriceqch/pcc_geo_cnn_

v2.git.

[21] Anh H. Reynolds. Large-scale image recognition: Alexnet. Blog. Available from https:

//anhreynolds.com/blogs/alexnet.html.

[22] Raul Rojas. The backpropagation algorithm. In Neural networks, pages 149–182. Springer,

1996.

[23] Radu Bogdan Rusu and Steve Cousins. 3d is here: Point cloud library (pcl). In 2011 IEEE

international conference on robotics and automation, pages 1–4. IEEE, 2011.

[24] Ruwen Schnabel and Reinhard Klein. Octree-based Point-Cloud Compression. In Mario Botsch,

Baoquan Chen, Mark Pauly, and Matthias Zwicker, editors, Symposium on Point-Based Graph-

ics. The Eurographics Association, 2006.

[25] Sebastian Schwarz, Gaëlle Martin-Cocher, David Flynn, and Madhukar Budagavi. Common

test conditions for point cloud compression. Document ISO/IEC JTC1/SC29/WG11 w17766,

Ljubljana, Slovenia, 2018.

[26] Sebastian Schwarz, Marius Preda, Vittorio Baroncini, Madhukar Budagavi, Pablo Cesar,

Philip A. Chou, Robert A. Cohen, Maja Krivokuća, Sébastien Lasserre, Zhu Li, Joan

Llach, Khaled Mammou, Rufael Mekuria, Ohji Nakagami, Ernestasia Siahaan, Ali Tabatabai,

Alexis M. Tourapis, and Vladyslav Zakharchenko. Emerging mpeg standards for point cloud

compression. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 9(1):133–

148, 2019.

[27] Dong Tian, Hideaki Ochimizu, Chen Feng, Robert Cohen, and Anthony Vetro. Geometric

distortion metrics for point cloud compression. In 2017 IEEE International Conference on

Image Processing (ICIP), pages 3460–3464. IEEE, 2017.

[28] Asher Trockman and J Zico Kolter. Patches are all you need? arXiv preprint arXiv:2201.09792,

2022.

[29] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,

Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information

processing systems, 30, 2017.

69

https://github.com/mauriceqch/pcc_geo_cnn_v2.git
https://github.com/mauriceqch/pcc_geo_cnn_v2.git
https://anhreynolds.com/blogs/alexnet.html
https://anhreynolds.com/blogs/alexnet.html

[30] Jianqiang Wang, Dandan Ding, Zhu Li, and Zhan Ma. Multiscale point cloud geometry com-

pression. In 2021 Data Compression Conference (DCC), pages 73–82. IEEE, 2021.

[31] Ian H Witten, Radford M Neal, and John G Cleary. Arithmetic coding for data compression.

Communications of the ACM, 30(6):520–540, 1987.

[32] Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Linguang Zhang, Xiaoou Tang, and

Jianxiong Xiao. 3d shapenets: A deep representation for volumetric shapes. In Proceedings of

the IEEE conference on computer vision and pattern recognition, pages 1912–1920, 2015.

[33] Wei Yan, Shan Liu, Thomas H Li, Zhu Li, Ge Li, et al. Deep autoencoder-based lossy geometry

compression for point clouds. arXiv preprint arXiv:1905.03691, 2019.

70

Appendix A

Proposed End-to-End AE-based

PC Geometry Coding Results

In Appendix A, the results for the proposed FTE, PTE, FCME and PCME are presented. They

include RD performance graphs with the relevant metrics for every test PC and tables that present

the BD gains compared to the relevant baselines.

71

(a) Long Dress. (b) Loot.

(c) Red and Black. (d) Soldier.

(e) Queen. (f) Statue Klimt.

(g) House without Roof.

Figure A.1: D1 PSNR RD performance graphs for the FTE.

72

(a) Long Dress. (b) Loot.

(c) Red and Black. (d) Soldier.

(e) Queen. (f) Statue Klimt.

(g) House without Roof.

Figure A.2: D2 PSNR RD performance graphs for the FTE.

73

Table A.1: BD metrics for the FTE with N feature map channels compared to the G-PCC encoder.

The BD-rate is in percentage and the BD-PSNR is in dB, with the best values in bold.

N

Point Cloud Metric BD 512 256 128 64

Long Dress

D1
rate -250.36 -181.14 -229.17 -267.91

PSNR 5.48 5.43 5.43 5.27

D2
rate -129.21 -87.66 -109.64 -120.64

PSNR 3.96 3.83 3.85 3.63

Loot

D1
rate -216.44 -154.80 -203.50 -240.34

PSNR 5.36 5.41 5.34 5.14

D2
rate -99.28 -66.78 -86.51 -97.53

PSNR 3.70 3.71 3.62 3.34

Red and

Black

D1
rate -218.98 -165.77 -191.79 -225.94

PSNR 4.87 4.90 4.79 4.66

D2
rate -115.18 -79.44 -86.33 -103.31

PSNR 3.50 3.45 3.29 3.12

Soldier

D1
rate -223.38 -158.25 -191.63 -211.60

PSNR 5.30 5.30 5.17 4.88

D2
rate -109.67 -71.97 -82.58 -83.40

PSNR 3.79 3.74 3.58 3.10

Queen

D1
rate -287.70 -235.65 -274.75 -351.03

PSNR 5.76 5.95 5.80 5.86

D2
rate -161.88 -128.53 -145.34 -172.70

PSNR 4.38 4.55 4.38 4.46

Statue Klimt

D1
rate -106.11 -110.38 -127.03 -139.80

PSNR 1.39 1.43 2.38 2.33

D2
rate -45.06 -44.31 -50.37 -59.61

PSNR 0.31 0.31 1.08 0.96

House

without Roof

D1
rate -167.64 -184.14 -187.31 -183.19

PSNR 3.30 3.46 3.69 3.32

D2
rate -101.28 -96.71 -97.33 -92.60

PSNR 1.97 2.11 2.27 2.04

74

Table A.2: BD metrics for the FTE with N feature map channels compared to the V-PCC encoder.

The BD-rate is in percentage and the BD-PSNR is in dB, with the best values in bold.

N

Point Cloud Metric BD 512 256 128 64

Long Dress

D1
rate 54.28 57.22 55.56 54.52

PSNR -2.14 -2.57 -2.36 -2.50

D2
rate 56.13 58.57 57.18 56.45

PSNR -2.93 -3.49 -3.22 -3.39

Loot

D1
rate 58.55 59.84 58.75 57.47

PSNR -2.54 -2.89 -2.74 -2.91

D2
rate 59.55 60.50 59.52 58.44

PSNR -3.39 -3.82 -3.65 -3.87

Red and

Black

D1
rate 39.59 42.61 42.01 39.32

PSNR -1.43 -1.59 -1.64 -1.76

D2
rate 41.38 44.34 44.54 41.39

PSNR -1.93 -2.20 -2.26 -2.40

Soldier

D1
rate 47.11 51.01 49.72 50.49

PSNR -1.76 -2.09 -2.07 -2.38

D2
rate 50.56 53.01 52.43 54.42

PSNR -2.65 -3.05 -3.05 -3.56

Queen

D1
rate 53.14 52.25 53.30 49.49

PSNR -1.86 -1.87 -1.89 -1.81

D2
rate 49.12 50.11 50.79 47.53

PSNR -1.90 -1.98 -1.99 -1.91

Statue Klimt

D1
rate 21.98 17.87 19.07 15.64

PSNR -0.46 -0.30 -0.29 -0.27

D2
rate -42.49 -44.28 -44.96 -50.54

PSNR 0.60 0.64 0.98 0.90

House

without Roof

D1
rate 20.65 38.60 39.88 35.25

PSNR 0.42 0.51 0.38 0.48

D2
rate -63.03 -3.66 -2.63 -4.06

PSNR 1.79 1.82 1.64 1.81

75

Table A.3: BD metrics for the FTE with N feature map channels compared to the PCC GEO V2

encoder. The BD-rate is in percentage and the BD-PSNR is in dB, with the best values in bold.

N

Point Cloud Metric BD 512 256 128 64

Long Dress

D1
rate -1.02 -0.84 -1.95 -3.57

PSNR -0.22 -0.14 -0.24 -0.40

D2
rate -2.43 -1.35 -2.82 -3.24

PSNR -0.24 -0.17 -0.28 -0.48

Loot

D1
rate 2.62 2.31 0.16 -3.07

PSNR -0.33 -0.11 -0.28 -0.43

D2
rate 2.26 2.17 0.09 -2.78

PSNR -0.39 -0.12 -0.33 -0.54

Red and

Black

D1
rate 1.57 1.42 1.26 -2.75

PSNR -0.23 -0.08 -0.26 -0.37

D2
rate 0.66 2.06 2.94 -2.05

PSNR -0.25 -0.13 -0.38 -0.51

Soldier

D1
rate 4.33 4.47 4.22 6.57

PSNR -0.37 -0.21 -0.40 -0.63

D2
rate 3.64 4.29 4.19 8.64

PSNR -0.42 -0.25 -0.47 -0.83

Queen

D1
rate 5.59 0.99 2.14 -6.82

PSNR -0.36 -0.11 -0.30 -0.26

D2
rate 5.04 1.14 2.13 -5.71

PSNR -0.41 -0.15 -0.36 -0.28

Statue Klimt

D1
rate -27.88 -29.13 -25.97 -34.70

PSNR 0.27 0.49 0.35 0.38

D2
rate -10.92 -11.23 -9.24 -12.83

PSNR 0.11 0.27 0.07 0.04

House

without Roof

D1
rate -19.43 -18.14 -19.51 -20.84

PSNR 0.27 0.44 0.34 0.22

D2
rate -15.97 -12.77 -15.91 -20.90

PSNR 0.28 0.43 0.29 0.29

76

(a) Long Dress. (b) Loot.

(c) Red and Black. (d) Soldier.

(e) Queen. (f) Statue Klimt.

(g) House without Roof.

Figure A.3: D1 PSNR RD performance graphs for the PTE.

77

(a) Long Dress. (b) Loot.

(c) Red and Black. (d) Soldier.

(e) Queen. (f) Statue Klimt.

(g) House without Roof.

Figure A.4: D2 PSNR RD performance graphs for the PTE.

78

Table A.4: BD metrics for the PTE compared to the G-PCC, V-PCC and PCC GEO V2 encoders.

The BD-rate is in percentage and the BD-PSNR is in dB.

Encoder

Point Cloud Metric BD G-PCC V-PCC PCC GEO V2

Long Dress

D1
rate -141.91 58.39 -3.40

PSNR 5.13 -3.40 -0.25

D2
rate -51.17 59.61 -2.32

PSNR 3.43 -4.51 -0.22

Loot

D1
rate -93.29 61.02 2.02

PSNR 4.81 -4.10 -0.30

D2
rate -20.88 61.77 3.73

PSNR 2.96 -5.30 -0.25

Red and

Black

D1
rate -117.10 43.70 -2.17

PSNR 4.52 -2.27 -0.23

D2
rate -38.16 44.91 -1.27

PSNR 2.91 -3.00 -0.29

Soldier

D1
rate -117.00 52.95 5.24

PSNR 4.92 -3.06 -0.24

D2
rate -34.27 55.01 6.45

PSNR 3.22 -4.25 -0.23

Queen

D1
rate -138.53 58.10 -6.09

PSNR 5.32 -2.91 -0.50

D2
rate -49.57 55.73 -5.81

PSNR 3.71 -3.31 -0.54

Statue Klimt

D1
rate -105.06 33.75 -7.95

PSNR 1.70 -0.75 0.00

D2
rate -32.33 -21.76 -9.30

PSNR 0.65 0.66 0.06

House

without Roof

D1
rate -100.66 49.37 -0.63

PSNR 2.72 -0.85 -0.26

D2
rate -13.86 37.11 -1.77

PSNR 1.15 0.18 -0.34

79

(a) Long Dress. (b) Loot.

(c) Red and Black. (d) Soldier.

(e) Queen. (f) Statue Klimt.

(g) House without Roof.

Figure A.5: D1 PSNR RD performance graphs for the FCME.

80

(a) Long Dress. (b) Loot.

(c) Red and Black. (d) Soldier.

(e) Queen. (f) Statue Klimt.

(g) House without Roof.

Figure A.6: D2 PSNR RD performance graphs for the FCME.

81

Table A.5: BD metrics for the FCME with N feature map channels compared to the G-PCC

encoder. The BD-rate is in percentage and the BD-PSNR is in dB, with the best values in bold.,

with the best values in bold.

N

Point Cloud Metric BD 512 256 128 64

Long Dress

D1
rate -225.81 -178.78 -251.17 -232.35

PSNR 5.77 5.67 5.54 5.07

D2
rate -110.53 -82.91 -112.26 -101.92

PSNR 4.27 4.13 3.97 3.42

Loot

D1
rate -193.40 -135.82 -203.54 -175.68

PSNR 5.65 5.53 5.34 4.70

D2
rate -81.08 -50.99 -77.32 -59.68

PSNR 4.00 3.85 3.63 2.77

Red and

Black

D1
rate -201.88 -163.50 -222.83 -195.00

PSNR 5.17 5.16 4.90 4.34

D2
rate -97.92 -75.94 -97.62 -84.15

PSNR 3.73 3.69 3.39 2.86

Soldier

D1
rate -211.29 -150.20 -219.29 -198.18

PSNR 5.61 5.32 5.28 4.54

D2
rate -99.86 -62.78 -91.50 -75.93

PSNR 4.12 3.70 3.71 2.76

Queen

D1
rate -268.51 -190.06 -282.82 -282.37

PSNR 6.25 6.27 6.04 5.74

D2
rate -139.73 -92.50 -127.48 -126.59

PSNR 4.85 4.88 4.67 4.33

Statue Klimt

D1
rate -107.56 -115.87 -123.65 -126.42

PSNR 1.93 2.09 2.09 2.26

D2
rate -34.27 -38.63 -33.40 -35.18

PSNR 0.67 0.77 0.61 0.76

House

without Roof

D1
rate -210.02 -194.37 -184.84 -169.33

PSNR 3.62 3.58 3.34 3.31

D2
rate -96.19 -89.47 -79.41 -80.41

PSNR 2.25 2.32 1.96 2.04

82

Table A.6: BD metrics for the FCME with N feature map channels compared to the V-PCC encoder.

The BD-rate is in percentage and the BD-PSNR is in dB, with the best values in bold.

N

Point Cloud Metric BD 512 256 128 64

Long Dress

D1
rate 53.06 56.16 51.83 57.45

PSNR -2.17 -2.48 -2.35 -2.62

D2
rate 54.60 57.10 53.79 58.97

PSNR -2.98 -3.34 -3.20 -3.53

Loot

D1
rate 56.48 59.58 55.36 62.73

PSNR -2.63 -2.99 -2.86 -3.33

D2
rate 57.30 59.89 56.32 63.71

PSNR -3.53 -3.95 -3.79 -4.48

Red and

Black

D1
rate 37.48 40.77 35.08 44.42

PSNR -1.32 -1.44 -1.52 -1.99

D2
rate 39.28 42.07 37.74 45.43

PSNR -1.90 -2.05 -2.15 -2.59

Soldier

D1
rate 45.63 51.71 44.74 52.65

PSNR -1.72 -2.30 -1.97 -2.50

D2
rate 48.37 53.33 47.80 55.67

PSNR -2.62 -3.37 -2.92 -3.64

Queen

D1
rate 49.20 53.13 49.46 53.40

PSNR -1.70 -1.74 -1.68 -1.82

D2
rate 47.95 52.72 49.02 52.43

PSNR -1.81 -1.87 -1.75 -1.94

Statue Klimt

D1
rate 13.67 13.50 16.42 22.32

PSNR -0.19 -0.13 -0.28 -0.39

D2
rate -35.77 -38.43 -28.55 -25.90

PSNR 0.83 0.88 0.65 0.67

House

without Roof

D1
rate 36.10 43.71 42.51 43.68

PSNR 0.55 0.60 0.43 0.44

D2
rate -15.12 17.59 15.16 17.01

PSNR 1.82 1.85 1.71 1.72

83

Table A.7: BD metrics for the FCME with N feature map channels compared to the PCC GEO V2

encoder. The BD-rate is in percentage and the BD-PSNR is in dB, with the best values in bold.

N

Point Cloud Metric BD 512 256 128 64

Long Dress

D1
rate -12.60 -9.25 -13.79 2.49

PSNR 0.26 0.24 -0.06 -0.59

D2
rate -12.75 -9.62 -13.30 2.27

PSNR 0.31 0.29 -0.05 -0.71

Loot

D1
rate -8.11 -3.84 -9.14 9.67

PSNR 0.24 0.28 -0.13 -0.83

D2
rate -7.83 -3.82 -8.94 10.57

PSNR 0.30 0.35 -0.13 -1.09

Red and

Black

D1
rate -9.86 -6.88 -11.85 6.18

PSNR 0.25 0.32 -0.11 -0.70

D2
rate -8.82 -5.60 -9.34 4.99

PSNR 0.21 0.29 -0.22 -0.81

Soldier

D1
rate -6.16 1.02 -7.30 12.02

PSNR 0.17 0.08 -0.25 -1.05

D2
rate -5.90 1.57 -6.65 12.59

PSNR 0.21 0.06 -0.28 -1.34

Queen

D1
rate -12.71 -9.47 -12.05 -0.47

PSNR 0.30 0.34 -0.07 -0.42

D2
rate -11.46 -7.78 -10.35 0.56

PSNR 0.30 0.34 -0.08 -0.49

Statue Klimt

D1
rate -32.41 -31.01 -35.32 -26.27

PSNR 0.55 0.59 0.44 0.29

D2
rate -10.63 -9.88 -4.61 -1.23

PSNR 0.25 0.24 -0.05 -0.17

House

without Roof

D1
rate -31.18 -23.13 -26.50 -15.44

PSNR 0.59 0.56 0.33 0.12

D2
rate -31.77 -19.23 -22.81 -14.54

PSNR 0.56 0.62 0.29 0.19

84

(a) Long Dress. (b) Loot.

(c) Red and Black. (d) Soldier.

(e) Queen. (f) Statue Klimt.

(g) House without Roof.

Figure A.7: D1 PSNR RD performance graphs for the PCME.

85

(a) Long Dress. (b) Loot.

(c) Red and Black. (d) Soldier.

(e) Queen. (f) Statue Klimt.

(g) House without Roof.

Figure A.8: D2 PSNR RD performance graphs for the PCME.

86

Table A.8: BD metrics for the PCME compared to the G-PCC, V-PCC and PCC GEO V2 encoders.

The BD-rate is in percentage and the BD-PSNR is in dB.

Encoder

Point Cloud Metric BD G-PCC V-PCC PCC GEO V2

Long Dress

D1
rate -227.08 53.58 -12.59

PSNR 5.60 -2.42 0.16

D2
rate -103.96 55.01 -12.60

PSNR 4.01 -3.29 0.19

Loot

D1
rate -182.65 56.81 -7.76

PSNR 5.41 -2.94 0.09

D2
rate -70.26 57.37 -7.69

PSNR 3.67 -3.90 0.10

Red and

Black

D1
rate -201.02 36.99 -11.32

PSNR 5.09 -1.48 0.27

D2
rate -92.28 38.90 -9.69

PSNR 3.59 -2.11 0.23

Soldier

D1
rate -218.21 44.73 -8.98

PSNR 5.52 -1.88 0.15

D2
rate -98.97 47.20 -8.88

PSNR 3.98 -2.79 0.17

Queen

D1
rate -257.78 51.59 -7.93

PSNR 6.00 -1.97 0.09

D2
rate -121.56 51.02 -6.08

PSNR 4.51 -2.20 0.04

Statue Klimt

D1
rate -118.40 11.65 -36.07

PSNR 2.16 -0.20 0.56

D2
rate -39.08 -37.58 -15.40

PSNR 0.89 0.95 0.33

House

without Roof

D1
rate -190.49 44.18 -28.01

PSNR 3.65 0.41 0.50

D2
rate -80.16 25.53 -24.56

PSNR 2.25 1.62 0.47

87

Table A.9: Summary of BD metrics for the proposed encoders compared to the PCC GEO V2

encoder. The BD-rate is in percentage and the BD-PSNR is in dB with the best values in bold.

For the FTE, the 256 channel model was chosen as its overall best. For the FCME, the 512 channel

model was chosen as its overall best.

Encoder

Point Cloud Metric BD FTE PTE FCME PCME

Long Dress

D1
rate -0.84 -3.40 -12.60 -12.59

PSNR -0.14 -0.25 0.26 0.16

D2
rate -1.35 -2.32 -12.75 -12.60

PSNR -0.17 -0.22 0.31 0.19

Loot

D1
rate 2.31 2.02 -8.11 -7.76

PSNR -0.11 -0.30 0.24 0.09

D2
rate 2.17 3.73 -7.83 -7.69

PSNR -0.12 -0.25 0.30 0.10

Red and

Black

D1
rate 1.42 -2.17 -9.86 -11.32

PSNR -0.08 -0.23 0.25 0.27

D2
rate 2.06 -1.27 -8.82 -9.69

PSNR -0.13 -0.29 0.21 0.23

Soldier

D1
rate 4.47 5.24 -6.16 -8.98

PSNR -0.21 -0.24 0.17 0.15

D2
rate 4.29 6.45 -5.90 -8.88

PSNR -0.25 -0.23 0.21 0.17

Queen

D1
rate 0.99 -6.09 -12.71 -7.93

PSNR -0.11 -0.50 0.30 0.09

D2
rate 1.14 -5.81 -11.46 -6.08

PSNR -0.15 -0.54 0.30 0.04

Statue Klimt

D1
rate -29.13 -7.95 -32.41 -36.07

PSNR 0.49 0.00 0.55 0.56

D2
rate -11.23 -9.30 -10.63 -15.40

PSNR 0.27 0.06 0.25 0.33

House

without Roof

D1
rate -18.14 -0.63 -31.18 -28.01

PSNR 0.44 -0.26 0.59 0.50

D2
rate -12.77 -1.77 -31.77 -24.56

PSNR 0.43 -0.34 0.56 0.47

88

Appendix B

Color conversion transformations

B.1 YUV

From the RGB color space, the YUV color space is defined by eq. B.1.

Y =
0.21260 ·R

255
+

0.71520 ·G
255

+
0.07220 ·B

255

U = −0.09991 ·R
255

− 0.33609 ·G
255

+
0.43600 ·B

255

V =
0.61500 ·R

255
− 0.55861 ·G

255
− 0.05639 ·B

255

(B.1)

B.2 YCbCr

From the RGB color space, the YCbCr color space is defined by eq. B.2. The inverse transformation

is defined by eq. B.3.

Y = 16 +
65.738 ·R

256
+

129.057 ·G
256

+
25.064 ·B

256

Cb = 128− 37.945 ·R
256

− 74.494 ·G
256

+
112.439 ·B

256

Cr = 128 +
112.439 ·R

256
− 94.154 ·G

256
− 18.285 ·B

256

(B.2)

R =
298.082 · Y

256
+

408.583 · Cr

256
− 222.921

G =
298.082 · Y

256
− 100.291 · Cb

256
− 208.120 · Cr

256
+ 135.576

B =
298.082 · Y

256
+

516.412 · Cb

256
− 276.836

(B.3)

89

B.3 LAB

Typical RGB to LAB conversions use the intermediate XYZ color space to facilitate the conversion.

From the RGB color space, the XYZ color space is defined by eq.B.6 with equations B.4 and B.5

presenting intermediate steps.

R′ =
R

255

G′ =
G

255

B′ =
B

255

(B.4)

R′′ =

(R
′+0.055
1.055)2.4 , R′ > 0.04045

R′

12.92 , otherwise

G′′ =

(G
′+0.055
1.055)2.4 , G′ > 0.04045

G′

12.92 , otherwise

B′′ =

(B
′+0.055
1.055)2.4 , B′ > 0.04045

B′

12.92 , otherwise

(B.5)

X = 41.24 ·R′′ + 35.76 ·G′′ + 18.05 ·B′′

Y = 21.26 ·R′′ + 71.52 ·G′′ + 7.22 ·B′′

Z = 1.93 ·R′′ + 11.92 ·G′′ + 95.05 ·B′′

(B.6)

From the XYZ color space, the LAB color space is defined by eq.B.9 with equations B.7 and

B.8 presenting intermediate steps.

X ′ =
X

95.047

Y ′ =
Y

100.000

Z ′ =
Z

108.883

(B.7)

X ′′ =

3
√
X ′ , X ′ > 0.008856

7.787 ·X ′ + 4
29 , otherwise

Y ′′ =

3
√
Y ′ , Y ′ > 0.008856

7.787 · Y ′ + 4
29 , otherwise

Z ′′ =

3
√
Z ′ , Z ′ > 0.008856

7.787 · Z ′ + 4
29 , otherwise

(B.8)

90

L = 116 · Y ′′ − 16

A = 500 · (X ′′ − Y ′′)

B = 200 · (Y ′′ − Z ′′)

(B.9)

The conversion from the LAB color space to the RGB color space also uses the intermediate

XYZ color space to facilitate the conversion. From the LAB color space, the XYZ color space is

defined by eq.B.12 with equations B.10 and B.11 presenting intermediate steps.

X ′′ =
L+ 16

116
+

A

500

Y ′′ =
L+ 16

116

Z ′′ =
L+ 16

116
− B

200

(B.10)

X ′ =

3
√
X ′′ , X ′′ > 0.206897

X′′− 4
29

7.787 , otherwise

Y ′ =

3
√
Y ′′ , Y ′′ > 0.206897

Y ′′− 4
29

7.787 , otherwise

Z ′ =

3
√
Z ′′ , Z ′′ > 0.206897

Z′′− 4
29

7.787 , otherwise

(B.11)

X = 95.047 ·X ′

Y = 100.000 · Y ′

Z = 108.883 · Z ′

(B.12)

From the XYZ color space, the RGB color space is defined by eq.B.15 with equations B.13 and

B.14 presenting intermediate steps.

R′′ = 0.032406 ·X − 0.015372 · Y − 0.004986 · Z

G′′ = −0.009689 ·X + 0.018758 · Y + 0.000415 · Z

B′′ = 0.000557 ·X − 0.002040 · Y + 0.010570 · Z

(B.13)

R′ =

1.055 ·R′′ 1
2.4 − 0.055 , R′′ > 0.0031308

12.92 ·R′′ , otherwise

G′ =

1.055 ·G′′ 1
2.4 − 0.055 , G′′ > 0.0031308

12.92 ·G′′ , otherwise

B′ =

1.055 ·B′′ 1
2.4 − 0.055 , B′′ > 0.0031308

12.92 ·B′′ , otherwise

(B.14)

91

R = 255 ·R′

G = 255 ·G′

B = 255 ·B′

(B.15)

B.4 HSV

Assuming hue in degrees, the conversion from the RGB color space to the HSV color space is defined

by eq.B.16.

H =

360− arccos (R−0.5·G−0.5·B√
R2+G2+B2−R·G−R·B−G·B) , B > G

arccos (R−0.5·G−0.5·B√
R2+G2+B2−R·G−R·B−G·B) , otherwise

S =

1− min (R,G,B)
max (R,G,B) ,max (R,G,B) > 0

0 , otherwise

V =
max (R,G,B)

255

(B.16)

To convert the HSV color space to the RGB color space, three auxiliary values must first be

defined (eq.B.17). Depending on the value of hue, the conversion to the RGB color space is then

defined in eq. B.18.

M = 255 · V

m = M · (1− S)

z = (M −m) · (1− |H
60

(mod 2)− 1|)

(B.17)

92

0 ≤ H < 60 −→

R = M

G = z +m

B = m

60 ≤ H < 120 −→

R = z +m

G = M

B = m

120 ≤ H < 180 −→

R = m

G = M

B = z +m

180 ≤ H < 240 −→

R = m

G = z +m

B = M

240 ≤ H < 300 −→

R = z +m

G = m

B = M

300 ≤ H < 360 −→

R = M

G = m

B = z +m

(B.18)

93

Appendix C

Article - EUVIP 2022

94

Explorations on 3D point clouds coding using
transformers and patches

Miguel Marques, Luı́s A. da Silva Cruz
University of Coimbra, Department of Electrical and Computer Engineering and Instituto de Telecomunicações

Coimbra, Portugal
miguel.marques@co.it.pt, lcruz@deec.uc.pt

Abstract—As 3D point clouds become more common as a
representation of 3D visual content, the need to efficiently
compress these data grows ever stronger. Research has shown
that deep learning based approaches to point cloud coding see
an increase in performance when compared with competing
encoders like those developed by MPEG. This article examines
and evaluates the use of the Transformer architectures and patch-
based inputs combined with well developed deep learning static
point cloud compression solutions described in the literature.
To that end, we propose four new deep learning encoders. The
obtained results show an improvement over an octree based
encoder proposed by MPEG and the baseline PCC Geo v2 codec
in terms of a geometry fidelity metric. The article also presents
an ablation study conducted to analyze the impact of several
encoder related parameters and structures that can guide future
research in deep learning point cloud compression.

Index Terms—Point cloud, compression, deep learning

I. INTRODUCTION

Point clouds (PCs) are a data structure recognized as being
of great importance to represent 3D visual content. They’re
used in several applications, such as the representation of
LIDAR signals, the preservation of cultural artifacts and
augmented and virtual reality. In a way, PCs are the 3D
extension of 2D images. Put simply, they can be represented
by a group of unordered 3D points, each one represented by
their cartesian coordinates (x, y, z). Moreover, each one of
these points can have multiple different attributes such as RGB
color, transparency, normal vectors and/or other application
relevant characteristics. However, the push to achieve realistic
and immersive scenes leads to PCs having millions or tens of
million of points. As such, their file size can become very large
very quickly, leading to the need to efficiently compress these
data structures. One class of PC coding methods is based on
the use of deep convolutional processing structures designed
using machine learning techniques. Recently, Transformer-
based models have seen a surge in applications to computer
vision tasks [1] due to their inherently more powerful archi-
tecture. It is then only natural to explore the application of
this type of architecture to deep learning (DL) based point
cloud compression [2] algorithms. However, as pointed by
[3], a lot of the works that adapt the Transformer architecture
to their desired application tend to feed a patch-based input

This research was funded by the Portuguese research funding
agency Fundação para a Ciência e a Tecnologia (FCT) under Projects
UIDB/EEA/50008/2020 and LA/P/0109/2020.

to the network. While they achieve better results, not a lot
of research has been made in deciphering exactly where this
performance gain comes from. Is it due to the Transformer
architecture, or to the use of patch-based inputs? In this work,
we will present several experiments in DL-based point cloud
compression (PCC) that try to answer this question while also
proposing a model that combines both approaches.

II. RELATED WORK

Current state-of-the-art DL-based PC codecs employ an
end-to-end compression AE-like model [4] [5]. Both the
quantization and entropy coding steps are considered during
training using a variational auto encoder (AE) to learn the
context model of the entropy coding. Furthermore, the model
considers a rate distortion (RD) loss, L = λ · D + R, using
a lagrangian multiplier to choose a specific RD trade-off at
training time. An example of a basic pipeline of an end-to-
end PCC model can be seen in Fig. 1. While [4] [5] use a
binary map to represent the occupancy state of the individual
voxels of the PC to be encoded, there are other methods that
operate directly on point coordinates [6]. This work will use
the former representation as the input of the DL model. There
exist other non-DL based PCs encoding methods with very
good performance, with relevance to those developed by the
the Moving Picture Experts Group (MPEG). Recently MPEG
finished two standards for PC coding [7]: the Geometry-based
Point Cloud Compression (G-PCC) and the Video-based Point
Cloud Compression (V-PCC). The G-PCC encoder leverages
octree structures [8] that partition the PC into blocks, encoding
the occupancy as nodes in a tree. The V-PCC encoder projects
the PC into different 2D views and then uses a video codec to
encode the 2D projections. This encoder can handle dynamic
PCs and achieves very good encoding performance, even when
encoding a single PC.

III. PROPOSED METHODS

A. Model Architecture

The proposed base model consists in a 3D AE archi-
tecture featuring latent entropy modeling with the objective
of compressing PC geometry. The general pipeline is the
same as previously mentioned and represented in Fig. 1. The
processing flow starts with the division of input PC into octree
blocks, so that each block will be encoded separately. The
input of the DL model is then a n × n × n 3D block of

978-1-6654-6623-3/22/$31.00 © 2022 IEEE

Input PC

Reconstructed
PC

Block partition DL-based Analysis
Transform

DL-based Synthesis
Transform

Block departition

Block bitstream

Quantization

Arithmetic
Encoding

Arithmetic
Decoding

Bitstream

DL-based Hyper
Analysis Transform

DL-based Hyper
Synthesis Transform

Context
Model

Quantization Arithmetic
Encoding

Arithmetic
Decoding

Side Info Bitstream

Fig. 1: End-to-end point cloud compression model based on [4].

voxel occupancy flags with a 1 when that voxel contains a
point and a 0 otherwise. A latent representation of the input
block is then computed by the DL-based multi-layer Analysis
Transform which is then quantized and coded by an adaptive
entropy coder. The entropy coder modelling is based on
hyperprior concepts, where the latent representation is passed
to a DL-based Hyper Analysis Transform that updates and
encodes the entropy model used in the entropy encoding of the
block’s latent representation. This operation generates a side
bitstream that is also stored or transmitted alongside the main
bitstream. On the decoder side, the DL-based Hyper Synthesis
Transform recovers the entropy model used to entropy decode
the main bitstream and obtain an approximation to the encode-
side latent representation, which then gets passed to the DL-
based Synthesis Transform to recover an approximation to the
original block. Finally, an octree-based PC rebuilding step is
applied to all the reconstructed blocks. This last step relies
on information describing the octree partitioning (first step of
processing) which is also stored as a bitstream. In the end,
the compressed final bitstream is made up of three different
bitstreams:

• The main bitstream comprised of the information repre-
senting the encoded blocks.

• The side bitstream comprising the information of the
context model for the entropy coding.

• The block bitstream describing the octree structure result-
ing from the initial block partitioning of the input point
cloud.

The focus of this work will be on alternative processing
structures for the DL-based Analysis Transform. Four differ-
ent encoders will be proposed, based on different Analysis
Transform structures:

• Full Transformer Encoder (FTE).
• Progressive Transformer Encoder (PTE).
• Full ConvMixer Encoder (FCME).
• Progressive ConvMixer Encoder (PCME).

The Transformer-based encoders are based on the architecture
proposed in [9], but adapted to process 3D information. Sim-
ilarly, the ConvMixer encoders are 3D adaptations of existing
structures, in this case of the architecture described in [3].
Graphical representations of the basic processing structures
and the analysis transform structures can be seen in Fig. 2.
The objective of all the architectures is to process an incoming

M ×M ×M tensor into an M/8×M/8×M/8 H-channels
tensor. In the case of the full variant of the encoders, the patch
embedding layer, that is to say, the first convolutional layer,
generates an N channel tensor from the input block’s patches.
In this case, a patch is considered to be an 8× 8× 8 block of
the input block, however, the weights that consider the value
of each input voxel to that patch are learned by the model
during training. The resulting tensor is then processed by
the Transformer Encoder Layer (TEL) or ConvMixer Encoder
Layer (CMEL) and the final convolutional layer brings the
number of channels back to the desired H . In this variant,
the encoders combine the Transformer/ConvMixer architecture
with patch-based inputs. In the progressive variant of the
encoders, the M × M × M input tensor is progressively
compressed by the convolutinal layers with stride 2, while also
gaining more and more channels. Before a new convolutional
layer, the tensor is processed in a TEL or CMEL layer. As
for the training loss function, the previously mentioned RD
function, L = λ · D + R, was used. The chosen distortion
metric, given the great imbalance of filled voxels and empty
voxels in a block, was the focal loss [10], defined by eqn. (1),
where u is the original voxel value and v is the reconstructed
voxel value and γ and α are two hyper parameters.

FL(v, u) =

{
−α(1− v)γ log v, u = 1

−(1− α)vγ log(1− v), u = 0
(1)

The γ parameter controls the relevance of hard to classify
voxels by downplaying the loss impact of the easy ones. The
higher the parameter is, the more relevant the hard voxels are.
The α ∈ [0, 1] parameter controls the importance of occupied
voxels. The higher the parameter is, the more important the
occupied voxels are. In this work those two parameters were
set empirically to α = 0.75 and γ = 2. The final classification
of a voxel as filled or not-filled is done using adaptive
thresholding of the network outputs, as proposed in [4].

B. Training Configuration and Dataset

All the models were implemented and trained in Tensorflow
[11], version 2.5.2 on a Ubuntu 20.4 server with an NVIDIA
RTX3090 GPU.

For training, the ModelNet40 dataset [12] was used, a mesh
dataset of 40 different object classes. To transform the dataset
into usable 3D point clouds, first, each mesh surface was

N, 8x8x8, 8, ReLU

Transformer Encoder Layer

64, 1x1x1, 1, None

N, 8x8x8, 8, ReLU

ConvMixer Encoder Layer

64, 1x1x1, 1, None

16, 3x3x3, 2, ReLU

Transformer Encoder Layer

32, 3x3x3, 2, ReLU

Transformer Encoder Layer

64, 3x3x3, 2, None

16, 3x3x3, 2, ReLU

ConvMixer Encoder Layer

32, 3x3x3, 2, ReLU

ConvMixer Encoder Layer

64, 3x3x3, 2, None

FTE PTE FCME PCME

3D Multi-Head Attention

C x f, DxDxD, 1, ReLU

C, DxDxD, 1, None

Transformer Encoder Layer

C, C, DxDxD, 1, ReLU

C, DxDxD, 1, ReLU

ConvMixer Encoder Layer

Basic blocks Analysis Transforms / Encoders

Fig. 2: Overview of the four proposed encoders. Grey blocks represent 3D convolutional layers and green blocks depthwise 3D
convolutional layers. Text inside the convolutional blocks lists “Channels, Kernel Size, Stride, Activation Function” parameters.
Text inside the depthwise convolutional blocks lists “Channels, Groups, Kernel Size, Stride, Activation Function” parameters.

sampled randomly, followed by a 9 bit voxelization of the
sampled point cloud. Then, the 200 largest PCs in terms of
point counts were partitioned using an octree decomposition
of depth 3, leading to 64 × 64 × 64 3D blocks. Since most
of those blocks have only 5 − 10% filled voxels, only the
4000 blocks with the greatest number of points were used for
training. In terms of model-related hyper parameters, a kernel
size of 3 × 3 × 3 for the TELs and CMELs was used and,
in the case of the TELs, a factor f of 4/3 was used. In this
context, f is a factor that multiplies the number of channels
in the first convolutional layer of the TELs (see the TEL in
Fig. 2). These values were chosen empirically. In the case of
the full variant encoders, when it came to studying the impact
of N (number of channels in the first convolutional layer of its
encoder) on the encoding performance, four values were used:
64, 128, 256 and 512. Finally, the lagrangian multiplier λ used
in the loss function to control the RD tradeoff, five values
were used: 3e−4, 1e−4, 5e−5, 2e−5 and 5e−6. In the testing
phase, the five values selected lead to five different values of
RD performance, one for each DL model.The Adam optimizer
was used to minimize the training loss with a learning rate of
10−4. After some preliminary tests the batch size was fixed
at 32 blocks. A similar experiment was performed with 10
bit voxelized PCs for the training dataset without significantly
different results.

IV. RESULTS

A. Testing configuration

Two PCs were used to test the models and compute
their average encoding performance, namely longdress [13]
a relatively dense PC, and Statue Klimt [14] a more sparse
PC. Figure 3 shows two views of these point clouds. These
PCs were voxelized with 10 bit voxel precision, and then
partitioned using an octree with depth 4 to obtain 64×64×64
3D blocks. To compare the RD performance of the various
DL PCC models and the benchmarks, both the rate and the
geometry distortion were measured and represented in a RD

(a) Longdress original. (b) Klimt original.

Fig. 3: Point clouds used to evaluate models.

graph. The number of bits needed to store all the bitstreams
necessary to reconstruct the PC, was divided by the total
number of points in the original PC to obtain the coding
rate expressed in bits-per-point (bpp). As for the geometry
distortion, the logarithmic versions of the common point-to-
point and point-to-plane distances were used, i.e. D1 PSNR
and D2 PSNR metrics, respectively, as defined in [15] and im-
plemented in mpeg-pcc-dmetric, version 0.13.5 [16]. Finally,
the Bjontegaard Deltas (BD) [17] were calculated using the
PSNRs and bitrates of the proposed and some of the baseline
encoders. For benchmarking purposes, the G-PCC (in octree
mode) and V-PCC with the VVC video codec (in intra mode
with default settings) MPEG codecs were used as baselines,
compressing the test PCs at various rates. Furthermore, PCC
GEO V2 [4], another DL-based PCC model was used as
another baseline, since it was the work that this study was
based on. The ADLPCC codec [5] was also included in the
tests since it is a recent DL-based PC coder. It should be noted
that the coding experiments listed in [5] are based on a 9-bit
precision version of Statue Klimt, whereas in this paper a 10-

bit version was used.

B. Experimental results

1) FTE: As is the case with other DL-based PCC solutions,
FTE significantly outperforms the G-PCC encoder. More so
in the dense longdress PC than in the more sparse and noisy
Statue Klimt PC. In fact, as one can observe in the graphs of
Fig. 4a, the DL-based FTE and PCC GEO V2 have clearly
inferior performance compared to the G-PCC encoder at high
bitrates for the sparse PC. This can be caused by a multitude
of reasons, but one of the strongest ones is the fact that the
training dataset, ModelNet40, comprises almost exclusively
dense PCs. Therefore, it is not surprising that the final model
has a bias towards better compressing dense PCs. On the
other hand, supported by the fact that the G-PCC and V-PCC
encoders require higher bitrates for the sparse PC to be able to
achieve a closer D1 PSNR value to the dense PC, compressing
a sparse PC is inherently a much harder task. In terms of
the impact of the capacity of the model N , comparing to the
V-PCC encoder (Table I), the results are mixed between the
dense and sparse PCs. For the dense PC, more channels have
a marginal increase in performance. For the sparse PC, fewer
channels see an increase in performance. An intuitive reason
for this change is that, with fewer channels, the model has less
capacity to overfit to dense PCs, leading to a more general DL-
based encoder. Nevertheless, the V-PCC encoder outperforms
the FTE in both testing PCs overall.

Comparing the FTE to the PCC GEO V2 encoder, the PCC
GEO V2 encoder marginally outperforms the FTE in the case
of the dense PC, with a slight increase in rate. However,
with the sparse PC, the FTE comes out on top, even with
a reduction in rate. In fact, the PCC GEO V2 encoder has a
bias towards better compressing dense PCs, as will be the case
in subsequent analysis. Concentrating now on the influence of
N in the RD performance, the results in Table I are strange. In
terms of the BD-PSNR gain, the 256 channel model dominates
the results in all PCs. In terms of BD-rate, the 64 channel
model outperforms the other models. Given the black box
nature of DL, the explanation for these results can be hard
to grasp. Considering the results in comparing with the V-
PCC (and G-PCC) encoder, one likely explanation might just
be that the number of channels in question were sweet spots
considering all the other test conditions.

2) PTE: Analysing Table III, as was the case with the FTE,
the PTE outperforms the G-PCC encoder in a similar fashion,
being more biased towards dense PCs. Also, analogous to the
FTE, the V-PCC encoder outperforms the PTE in a similar
manner, being more biased towards dense PCs. On the other
hand, the PCC GEO V2 encoder outperforms the PTE on
the dense PC while falling slightly behind on the sparse
PC. However, this comes at the cost of a slight increase in
rate, so the two encoders come out similar in performance.
It seems that the patch-based inputs may have had more of
an impact on performance than the Transformer’s attention-
based architecture. Nonetheless, this hypothesis leads us into
the ConvMixer-based encoders.

3) FCME: As can be seen in Fig. 4c, the FCME clearly
outperforms the G-PCC encoder. Similar to previous encoders,
it also has a bias towards dense PCs and underperforms the
G-PCC encoder for high bitrates on sparse PCs.

In the case of the V-PCC encoder, as can be seen in Table II,
once again, it outperforms the DL-based solutions for denser
PCs, struggling to keep up on the sparse PC. In terms of the
impact of N , the 512 channel model has better BD-PSNR
gains on the dense PC, while the 128 channel model has better
BD-rates. In the sparse PC, the 256 channel model is better
overall.

Comparing the FCME to the PCC GEO V2 encoder, the
FCME outperforms the PCC GEO V2 encoder on every test
PC. In terms of BD-PSNR gain, either the 512 or 256 channel
models see an improvement in performance. The same can be
said for the 512 or 128 channel models for an improvement
in BD-rate. In this case, increasing the capacity of the model
usually increases its overall performance, albeit marginally and
with an impact on model complexity.

So, is the increase in performance mainly contributed by
the patch-based input representation after all? To answer this
question, we have to conduct an analysis of the final encoder,
the PCME.

4) PCME: As was the case with the FCME, the PCME
outperforms the G-PCC encoder in a similar fashion, being
more biased towards dense PCs. Meanwhile, the V-PCC en-
coder outperforms the PCME at lower rates, being more biased
towards dense PCs. On the other hand, the PCME outperforms
the PCC GEO V2 encoder on all test PCs. This improvement
in performance is translated by an increase in PSNR with a
significant reduction in rate. On the other hand, looking at
Fig. 4d, this gain in performance is not general. It mostly
occurs at lower and higher bitrates. With medium bitrates, the
PCC GEO V2 encoder is slightly better.

On another note, comparing Table II and Table IV, the
PSNR gains of the PCME are, on the dense PC, not as high as
its full variant counterpart. This fact makes it clear that patch-
based inputs can have a positive impact on performance.

C. Qualitative study

While it is very important to use objective metrics when
evaluating codec’s RD performance, subjective quality is
equally, if not more important. While no full subjective quality
comparisons were done involving the results of this study, we
present in Fig. 5 some images showing the difference between
the original test PCs and the reconstructed PCs. An edge case
for each PC is presented, that is to say, the reconstructed PC
with the highest bitrate model for the PCME and PCC GEO
V2 encoder were chosen for this part of the study. This was
also the bitrate model where the most obvious visual difference
between the original and reconstructed PC could be perceived.

In the case of the longdress test PC, it is clear from Fig. 5a
that the PCC GEO V2 encoder struggles more to reconstruct
the woman’s hair than the PCME. On the other hand, the
sparse Statue Klimt PC is not a great sight to behold in any
of the reconstructed PCs. That being said, there are a lot more

(a) FTE. (b) PTE.

(c) FCME. (d) PCME.

Fig. 4: Testing PCs D1 PSNR RD performance graphs for the proposed encoders.

TABLE I: BD metrics for the FTE with N feature map channels compared to the V-PCC encoder (left table) and the PCC
GEO V2 encoder (right table). The BD-rate is in percentage and the BD-PSNR is in dB. The best value is in bold.

N
Point Cloud Metric BD 512 256 128 64

longdress
D1 rate 54.28 57.22 55.56 54.52

PSNR -2.14 -2.57 -2.36 -2.50

D2 rate 56.13 58.57 57.18 56.45
PSNR -2.93 -3.49 -3.22 -3.39

Statue Klimt
D1 rate 21.98 17.87 19.07 15.64

PSNR -0.46 -0.30 -0.29 -0.27

D2 rate -42.49 -44.28 -44.96 -50.54
PSNR 0.60 0.64 0.98 0.90

N
Point Cloud Metric BD 512 256 128 64

longdress
D1 rate -1.02 -0.84 -1.95 -3.57

PSNR -0.22 -0.14 -0.24 -0.40

D2 rate -2.43 -1.35 -2.82 -3.24
PSNR -0.24 -0.17 -0.28 -0.48

Statue Klimt
D1 rate -27.88 -29.13 -25.97 -34.70

PSNR 0.27 0.49 0.35 0.38

D2 rate -10.92 -11.23 -9.24 -12.83
PSNR 0.11 0.27 0.07 0.04

TABLE II: BD metrics for the FCME with N feature map channels compared to the V-PCC encoder (left table) and the PCC
GEO V2 encoder (right table). The BD-rate is in percentage and the BD-PSNR is in dB. The best value is in bold.

N
Point Cloud Metric BD 512 256 128 64

longdress
D1 rate 53.06 56.16 51.83 57.45

PSNR -2.17 -2.48 -2.35 -2.62

D2 rate 54.60 57.10 53.79 58.97
PSNR -2.98 -3.34 -3.20 -3.53

Statue Klimt
D1 rate 13.67 13.50 16.42 22.32

PSNR -0.19 -0.13 -0.28 -0.39

D2 rate -35.77 -38.43 -28.55 -25.90
PSNR 0.83 0.88 0.65 0.67

N
Point Cloud Metric BD 512 256 128 64

longdress
D1 rate -12.60 -9.25 -13.79 2.49

PSNR 0.26 0.24 -0.06 -0.59

D2 rate -12.75 -9.62 -13.30 2.27
PSNR 0.31 0.29 -0.05 -0.71

Statue Klimt
D1 rate -32.41 -31.01 -35.32 -26.27

PSNR 0.55 0.59 0.44 0.29

D2 rate -10.63 -9.88 -4.61 -1.23
PSNR 0.25 0.24 -0.05 -0.17

TABLE III: BD metrics for the PTE compared to the G-
PCC, V-PCC and PCC GEO V2 encoders. The BD-rate is
in percentage and the BD-PSNR is in dB.

Encoder
Point Cloud Metric BD G-PCC V-PCC PCC GEO V2

longdress
D1 rate -141.91 58.39 -3.40

PSNR 5.13 -3.40 -0.25

D2 rate -51.17 59.61 -2.32
PSNR 3.43 -4.51 -0.22

Statue Klimt
D1 rate -105.06 33.75 -7.95

PSNR 1.70 -0.75 0.00

D2 rate -32.33 -21.76 -9.30
PSNR 0.65 0.66 0.06

TABLE IV: BD metrics for the PCME compared to the G-
PCC, V-PCC and PCC GEO V2 encoders. The BD-rate is in
percentage and the BD-PSNR is in dB.

Encoder
Point Cloud Metric BD G-PCC V-PCC PCC GEO V2

longdress
D1 rate -227.08 53.58 -12.59

PSNR 5.60 -2.42 0.16

D2 rate -103.96 55.01 -12.60
PSNR 4.01 -3.29 0.19

Statue Klimt
D1 rate -118.40 11.65 -36.07

PSNR 2.16 -0.20 0.56

D2 rate -39.08 -37.58 -15.40
PSNR 0.89 0.95 0.33

(a) PCC GEO V2 vs original. (b) PCME vs original.

(c) PCC GEO V2 vs original. (d) PCME vs original.

Fig. 5: Difference between the original test PCs and the
reconstructed PCs. Points in blue mean that the reconstructed
point is close (closer than, on average, four voxels) to the
original, while points in green mean that the reconstructed
point is far (farther than, on average, four voxels) from the
original.

green points (inaccurate predictions) in the reconstructed PC
from the PCC GEO V2 encoder than the PCME. Overall,
visually, the highest bitrate model of the PCME has better
performance than the highest bitrate model of the PCC GEO
V2 encoder.

V. CONCLUSION

This paper introduced four new encoders for DL-based
PCC. All of them encompassed the Transformer and Con-
vMixer architectures with the objective of studying their
impact on PCC performance, as well as the impact of input-
based representations when utilized in conjunction with these
DL architectures. Overall, an improvement over G-PCC and
[4] was obtained in terms of BD-PSNR and BD-rate. In
conclusion, attention-based TELs did not seem to contribute
much to the overall performance of the model. What made the
biggest difference was the depthwise and pointwise convolu-
tions of the CMELs accompanied by patch-based inputs. These
operations enabled more efficient feature extraction, which
ultimately resulted in more efficient PC compression. In the
end, the better encoders were the ConvMixer-based ones, with
the Transformer-based ones lacking behind. A summary of the
best metrics for each test PC is displayed in the following
Table V.

REFERENCES

[1] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai,
T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly et al.,
“An image is worth 16x16 words: Transformers for image recognition
at scale,” arXiv preprint arXiv:2010.11929, 2020.

TABLE V: Summary of BD metrics for the proposed encoders
compared to the PCC GEO V2 encoder. The BD-rate is in
percentage and the BD-PSNR is in dB with the best value
in bold. For the FTE, the 256 channel model was chosen as
its overall best. For the FCME, the 512 channel model was
chosen as its overall best.

Encoder
Point Cloud Metric BD FTE PTE FCME PCME

longdress
D1 rate -0.84 -3.40 -12.60 -12.59

PSNR -0.14 -0.25 0.26 0.16

D2 rate -1.35 -2.32 -12.75 -12.60
PSNR -0.17 -0.22 0.31 0.19

Statue Klimt
D1 rate -29.13 -7.95 -32.41 -36.07

PSNR 0.49 0.00 0.55 0.56

D2 rate -11.23 -9.30 -10.63 -15.40
PSNR 0.27 0.06 0.25 0.33

[2] M.-H. Guo, J.-X. Cai, Z.-N. Liu, T.-J. Mu, R. R. Martin, and S.-M.
Hu, “Pct: Point cloud transformer,” Computational Visual Media, vol. 7,
no. 2, pp. 187–199, 2021.

[3] A. Trockman and J. Z. Kolter, “Patches are all you need?” arXiv preprint
arXiv:2201.09792, 2022.

[4] M. Quach, G. Valenzise, and F. Dufaux, “Improved deep
point cloud geometry compression,” 2020. [Online]. Available:
https://github.com/mauriceqch/pcc geo cnn v2.git

[5] A. F. Guarda, N. M. Rodrigues, and F. Pereira, “Adaptive deep
learning-based point cloud geometry coding,” IEEE Journal of Selected
Topics in Signal Processing, vol. 15, no. 2, pp. 415–430, 2020.
[Online]. Available: https://github.com/aguarda/ADLPCC.git

[6] W. Yan, S. Liu, T. H. Li, Z. Li, G. Li et al., “Deep autoencoder-
based lossy geometry compression for point clouds,” arXiv preprint
arXiv:1905.03691, 2019.

[7] S. Schwarz, M. Preda, V. Baroncini, M. Budagavi, P. Cesar, P. A.
Chou, R. A. Cohen, M. Krivokuća, S. Lasserre, Z. Li, J. Llach,
K. Mammou, R. Mekuria, O. Nakagami, E. Siahaan, A. Tabatabai, A. M.
Tourapis, and V. Zakharchenko, “Emerging mpeg standards for point
cloud compression,” IEEE Journal on Emerging and Selected Topics in
Circuits and Systems, vol. 9, no. 1, pp. 133–148, 2019.

[8] R. Schnabel and R. Klein, “Octree-based Point-Cloud Compression,” in
Symposium on Point-Based Graphics, M. Botsch, B. Chen, M. Pauly,
and M. Zwicker, Eds. The Eurographics Association, 2006.

[9] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in
neural information processing systems, vol. 30, 2017.

[10] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár, “Focal loss
for dense object detection,” in Proceedings of the IEEE international
conference on computer vision, 2017, pp. 2980–2988.

[11] M. A. et al., “TensorFlow: Large-scale machine learning on
heterogeneous systems,” 2015, software available from tensorflow.org.
[Online]. Available: https://www.tensorflow.org/

[12] Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang, and J. Xiao, “3d
shapenets: A deep representation for volumetric shapes,” in Proceedings
of the IEEE conference on computer vision and pattern recognition,
2015, pp. 1912–1920.

[13] E. d’Eon, B. Harrison, T. Myers, and P. A. Chou, “8i
voxelized full bodies-a voxelized point cloud dataset,” ISO/IEC
JTC1/SC29 Joint WG11/WG1 (MPEG/JPEG) input document
WG11M40059/WG1M74006, vol. 7, p. 8, 2017.

[14] “Mpeg point cloud datasets.” [Online]. Available: http://mpegfs.int-
evry.fr/MPEG/PCC/DataSets/pointCloud/CfP

[15] D. Tian, H. Ochimizu, C. Feng, R. Cohen, and A. Vetro, “Geometric
distortion metrics for point cloud compression,” in 2017 IEEE Inter-
national Conference on Image Processing (ICIP). IEEE, 2017, pp.
3460–3464.

[16] “Mpeg point cloud compression distortion metric.” [Online]. Available:
http://mpegx.int-evry.fr/software/MPEG/PCC/mpeg-pcc-dmetric

[17] G. Bjontegaard, “Calculation of average psnr differences between rd-
curves,” VCEG-M33, 2001.

	Acknowledgements
	Abstract
	Resumo
	List of Acronyms
	List of Figures
	List of Tables
	1 Introduction
	1.1 Context and Motivation
	1.2 Objectives
	1.3 Scientific Contributions
	1.4 Dissertation Outline

	2 Background Information
	2.1 Point Cloud Acquisition
	2.1.1 Point Cloud Voxelization

	2.2 Point Cloud Quality Metrics
	2.2.1 Point-to-Point Metrics
	2.2.2 Point-to-Plane Metric
	2.2.3 PCQM Metric
	2.2.4 Bjontegaard Deltas Metric

	2.3 Deep Learning Fundamentals
	2.3.1 Convolutional Layer
	2.3.2 Pooling Layer
	2.3.3 Activation Layer
	2.3.4 Normalization Layer
	2.3.5 Fully Connected Layer
	2.3.6 Dropout Layer

	2.4 Deep Learning Auto Encoder
	2.4.1 Deep Learning Variational Auto Encoder

	2.5 Deep Learning Hyperparameters
	2.5.1 Learning Rate
	2.5.2 Batch Size
	2.5.3 Number of Epochs

	3 Overview of DL-basedPoint Cloud Compression
	3.1 Auto Encoder-based Point Cloud Compression
	3.2 Adaptive End-to-End Auto Encoder-based PCC
	3.3 Neighborhood Adaptive Distortion Loss
	3.4 Further RD Control via Implicit and Explicit Quantization
	3.5 Scalable DL-based PCC
	3.5.1 Resolution scalability
	3.5.2 Quality scalability

	3.6 Point-based End-to-End Auto Encoder-based PCC

	4 Proposed End-to-End AE-basedGeometry Point Cloud Coding
	4.1 The Transformer
	4.2 DL-based Encoder for Point Cloud Compression
	4.3 DL-based Decoder for Point Cloud Compression
	4.4 DL-based Hyper Transform for Point Cloud Compression
	4.4.1 Hyper Analysis Transform
	4.4.2 Hyper Synthesis Transform

	4.5 DL Model Training and Testing
	4.5.1 Block partition method
	4.5.2 Training dataset
	4.5.3 Loss function

	4.6 Experimental conditions
	4.6.1 Testing dataset
	4.6.2 Performance Metrics
	4.6.3 Benchmarking

	4.7 Experimental results
	4.7.1 Full Transformer Encoder
	4.7.2 Progressive Transformer Encoder
	4.7.3 Full ConvMixer Encoder
	4.7.4 Progressive ConvMixer Encoder
	4.7.5 Qualitative study
	4.7.6 Final experiment remarks

	5 Extending DL-based Geometry PCC to include color information
	5.1 Overall DL-based Geometry PCC Pipeline Changes
	5.1.1 Architectural changes
	5.1.2 Model loss modification

	5.2 Color PCC DL Model Training and Testing
	5.2.1 Training dataset
	5.2.2 Loss function

	5.3 Experimental conditions
	5.3.1 Testing dataset
	5.3.2 Performance Metrics
	5.3.3 Benchmarking

	5.4 Experimental results
	5.4.1 RGB color space
	5.4.2 YCbCr color space
	5.4.3 LAB color space
	5.4.4 HSV color space
	5.4.5 Final experiment remarks

	6 Conclusion
	6.1 Final Dissertation remarks
	6.2 Future work

	7 Bibliography
	A Proposed End-to-End AE-basedPC Geometry Coding Results
	B Color conversion transformations
	B.1 YUV
	B.2 YCbCr
	B.3 LAB
	B.4 HSV

	C Article - EUVIP 2022

