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O. Pereira, ao Tiago C. Pereira e à Filipa Carvalho pela disponibilidade facultada,

e ao Daniel Martins pela sua boa disposição.

Agradeço profundamente aos meus pais, Cristina e Walter, e aos meus irmãos, Ana
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Resumo

Os processos tradicionais de descoberta de fármacos são demorados, de elevado custo

e com uma reduzida taxa de aceitação entre as agências de regulamentação. Re-

centemente, abordagens in silico combinadas com metodologias de aprendizagem

profunda têm atráıdo cada vez mais atenção como abordagem de desenho de novo

medicamentos, levando à descoberta de pequenos compostos com interesse farma-

cológico num tempo eficiente.

Apesar dos recentes avanços computacionais na geração de moléculas para alvos

biológicos, as propriedades f́ısico-qúımicas essenciais, como a lipofilicidade, a per-

meabilidade e o peso molecular, são geralmente otimizadas individualmente. Por

conseguinte, os resultados ficam comprometidos, devido à eficiência farmacológica

ser influenciada por uma variedade de fatores simultâneos. Neste projeto, propo-

mos uma arquitetura baseada em Transformadores para gerar novas moléculas com

propriedades farmacológicas desejadas e atividade de ligação relevante contra um

alvo com interesse biológico. A arquitetura combina um Gerador de Transformador-

Descodificador para produzir novos compostos válidos, um Preditor de Transformador-

Codificador para estimar a atividade de ligação e um ciclo de Feedback baseado num

algoritmo de otimização multiobjetivo para otimizar o gerador de acordo com as pro-

priedades desejadas.

Os resultados demonstraram a eficácia da estratégia proposta para gerar compos-

tos qúımicos novos e sintetizáveis. O Gerador baseado em Transformador superou

os modelos do estado da arte na métrica novidade. A otimização do modelo não

enviesado resultou em 99.79% de moléculas válidas geradas com uma taxa de con-

formidade de 99.36% com a regra dos Cinco de Lipinski e uma elevada afinidade

de ligação ao recetor de adenosina A2A. Os resultados obtidos demonstraram a

capacidade do modelo em selecionar componentes cŕıticos no espaço qúımico para

melhorar o interesse biológico e propriedades farmacológicas das moléculas.
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Abstract

Traditional drug discovery processes are time-consuming, expensive, and have a low

acceptance rate among regulatory agencies. In recent years, in silico approaches

combined with deep learning methodologies have attracted increasing attention to

address the de novo drug design challenge, leading to the discovery of small com-

pounds with pharmacological interest in an efficient amount of time.

In spite of the recent computational advances for generating molecules for biological

targets, crucial physicochemical properties, such as lipophilicity, permeability, and

molecular weight, are usually individually optimized. On that account, the results

are compromised since the pharmacological efficacy is influenced by a variety of

simultaneous factors. In this study, we propose a Transformer-based architecture

to generate new molecules with desirable pharmacological properties and relevant

binding activity against a target with biological interest. The architecture combines

a Transformer-Decoder Generator to produce valid new compounds, a Transformer-

Encoder Predictor to estimate the binding activity, and a Feedback Loop based on

a multi-objective optimization algorithm to optimize the generator according to the

desired properties.

The results demonstrate the effectiveness of the proposed framework to generate

novel and synthesizable chemical compounds. The Transformer-based Generator

outperformed state-of-the-art baselines in the novelty metric. The optimization of

the unbiased model resulted in 99.79% generated valid molecules with a 99.36%

compliance rate with Lipinski’s Rule of Five and a high binding affinity to the A2A

adenosine receptor. Overall, these results demonstrated the model’s capacity to

select critical components in the chemical space in order to improve the biological

interest and pharmacological properties of the molecules.
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Introduction

1.1 Context

Drugs

Drugs play an important role in the overall health of the human race, enhancing the

quality of life through the treatment, prevention, and management of diseases and

other clinical conditions. The initial archaic drugs were based on mixtures of certain

plants, however, given the recent advances in technology, numerous possible sources

of drugs are now available, such as chemically synthesized, synthesized with the

extraction of active elements from natural substances, and originated by organisms

such as fungus [1].

There are currently a variety of medications available, including analgesics for pain

alleviation, antibiotics for treating bacterial infections, and antivirals for curing vi-

ral infections [2]. Most drugs’ therapeutic effects result from interactions between

pharmaceuticals and protein structures called receptors. Depending on the medica-

tion’s action modes, their interactions induce diverse biological responses. Hence,

drugs can be classified as receptor agonists or antagonists. An agonist is a molecule

that causes a functional response upon binding to a receptor, whereas an antagonist

inhibits or decreases a physiological reaction [3].

Drug Discovery and Design

The dug discovery process comprises several steps, including target identification,

target validation, lead identification, lead optimization, pre-clinical research, clinical

trials, and regulatory approval [4].

In target identification, studies are performed to discover targets (proteins or genes)

1



1. Introduction

that are directly or indirectly associated with a disease, whereas in target validation,

tests are conducted to evaluate the therapeutic effect and regulation of the discovered

targets [4, 5].

Lead identification corresponds to the identification of molecules potentially active

on desired targets. On the other hand, lead optimization aims to improve the effi-

ciency, selectivity, and absorption, distribution, metabolism and excretion properties

(ADME) of the lead compounds [4].

Pre-clinical in vivo and in vitro investigations are conducted prior to human ap-

plication to determine absorption, distribution, metabolism, excretion and toxicity

properties (ADMET), dosage, and efficacy [4, 6].

Clinical trials are conducted on humans and consist of three phases. In phase I, the

drug’s safety and dosage are tested on a small group of diseased and healthy people.

In phase II, the drug is administered to a larger group of patients with the disease to

assess its efficacy. In the final phase, a larger sample of patients is used to conduct

a more reliable statistical analysis of the drug’s effectiveness and adverse effects [7].

Finally, a document with the results of the drug’s tests is delivered to a regulatory

agency, such as the Food and Drug Administration (FDA) in the United States,

which decides whether or not to approve the drug. Pharmaceutical companies con-

tinue to conduct studies on drugs that are already on the market in order to check

for side effects and dosage modifications [5, 7].

Traditional drug discovery approaches include screening a large set of molecules to

identify a viable drug, but their percentage of success is low [8]. Thus, the advance-

ment of computational methods has revolutionized the identification of targets and

the design of novel compounds.

The drug design procedure corresponds to the design of molecules with a structure

capable of binding to the biological target and possessing properties that enable

them to reach the site of action and confer a therapeutic effect [9]. Computer-aided

drug design reduces the overall amount of time and cost necessary associated with

the lead identication and lead optimization stages. These in silico methods can be

categorized as either Structure-Based Drug Design (SBDD) or Ligand-Based Drug

Design (LBDD) [8]. SBDD uses structural information from a specific biological

target to create new molecules. The three-dimensional structure can be determined

by techniques such as nuclear magnetic resonance or X-ray crystallography. On
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the other hand, LBDD does not require structural information from targets since

it employs predictive in silico approaches to assess the affinity of compounds to

receptors by learning from the known affinities of similar molecules [8, 10].

De novo drug design is a computational methodology to generate new compounds

from blocks without a starting structure, i.e., without any preexisting connections

between the blocks. Furthermore, it can take into account or discard the information

of the target’s binding sites, i.e., it can be of the SBDD or LBDD type, respectively.

De novo drug design provides a vast opportunity for the discovery of drugs with

novel or enhanced medicinal benefits, in a more extensive chemical space [10].

1.2 Motivation

The rising prevalence of chronic diseases combined with an aging population has

increased the pressure on the pharmaceutical industry and the healthcare system to

perform more efficiently [11]. Furthermore, advanced technologies need to be used

to improve the drug discovery process in order to effectively prevent and treat new

diseases and potential future epidemics with fewer financial and time resources.

Discovering and developing a new drug and putting it on the market is time-

consuming, taking up to 15 years to achieve a potential drug [12], and expensive,

with estimates putting the cost of drug development at $2.6 billion [13]. Further-

more, this procedure has a low chance of approval since the drugs undergo extensive

testing to determine whether they are safe and efficient for public human consump-

tion. In recent years, Machine Learning (ML) and Deep Learning (DL) have made

significant contributions to drug discovery by identifying drug-target interactions

and generating novel compounds based on large amounts of available researched

data.

A potential drug should have an effective affinity for the biological target in order

to reduce the risk of unintended side effects as well as physicochemical and toxicity

properties that allow it to reach the target [14]. Characteristics that combined play a

key role in the success of a drug, such as lipophilicity, Molecular Weight (MW), and

Polar Surface Area (PSA), are usually considered individually. Since ignoring one of

the drug-like properties could make a drug less effective, this could be seen as a multi-

objective optimization problem where the goal is to optimize the most important

therapeutic properties. Using large biochemical databases and combining them with

computational approaches containing multi-objective optimization algorithms may
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lead to promising results in de novo drug design.

Functional groups (FGs) are sets of atoms that significantly influence the characteris-

tics of the molecules they integrate. Similar FGs often have identical attributes [15],

therefore, these atoms may be considered as a source of relevant information to be

used in computional models, especially for predicting molecular properties.

1.3 Objectives

The main purpose of this dissertation is to develop an end-to-end transformer-based

methodology capable of generating molecules using the Simplified Molecular Input

Line Entry System (SMILES) notation for a specific biological target and with de-

sired physicochemical properties. The objectives to be achieved are the following:

1. Implementation and pre-training of a Transformer-Encoder Predictor using

Masked-Learning Modeling (MLM) in order to learn the chemical context

present in the SMILES.

2. Fine-tuning of a predictor to estimate the binding activity of the compounds

towards a relevant biological target.

3. Evaluate and compare the predictive performance of the Transformer-Predictor

with other machine learning models.

4. Development of the Transformer-Decoder Generator deep neural network and

comparison of its effectiveness with other deep learning models.

5. Adjustment of the generator using a multi-objective optimization approach to

generate drug-like compounds.

6. Exploration of alternative molecular property combinations in the multi-objective

optimization algorithm to optimize the generator.

1.4 Workflow

Considering the increasing challenges of the health system, exploring computational

drug design models is crucial to efficiently produce drug-like and active compounds

for relevant targets. In this study, transformer-based models are employed for both

the generation of drugs in the SMILES format, and estimation of compounds’ bind-

ing activity to a biological target. Therefore, these deep neural networks learn short
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and long-term dependencies between units in a molecular sequence and apply this

knowledge in the respective model task. Moreover, the generative model is fine-

tuned in a feedback loop that shifts the generator toward the desired properties.

The feedback loop integrates a multi-objective optimization algorithm to sort and

choose the best molecules created to be used as input data. The production of drug-

like, target-selective, and synthesizable molecules accelerates lead identification and

lead optimization phases, reducing the number of experimental attempts. Further-

more, it achieves a more extensive chemical space of potential drugs than traditional

methods.

1.5 Document Structure

This document is organized into seven chapters. Chapter 2, Computational Tech-

niques in Drug Discovery, provides an overview and discussion of the principal com-

putational strategies used in drug discovery. It describes the most commonly con-

sidered molecular representations and physicochemical properties. In addition, it

mentions several studies related to the estimation of therapeutic properties and de-

sign of lead compounds. The Chapter 3, Models, presents the architectures of the

deep neural networks used to build the proposed framework. Chapter 4, Methods,

describes the methodologies employed in each submodel of the main framework and

the data preprocessing used. Chapter 5, Experimental Setup, specifies the datasets

employed along with the selected hyperparameters and the machine learning ap-

proaches used. Chapter 6 presents the results achieved by each model and its anal-

ysis as well as the limitations of the framework. In Chapter 7,the main conclusions

of this study are provided as well as potential future research suggestions.
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Computational Techniques in

Drug Discovery

Drug discovery is a complex and time-consuming process with numerous steps. The

identification of potential molecules that are pharmacological active for a given rel-

evant biological target remains one of the major challenges in drug discovery, espe-

cially due to the fact that conducting bioassays is not feasible for the vast chemical

space, compromising the effectiveness of these traditional approaches [4]. Therefore,

several computational approaches have been proposed to increase the efficacy and

capability of drug research. These methods use different molecular representations

as input and take into consideration multiple pharmacological properties for predic-

tion and generation tasks. This thesis explores two techniques: prediction of binding

activity and de novo drug design.

2.1 Molecular Representations

In order for the chemoinformatic algorithms to detect patterns and make predictions,

it is crucial to select proper molecular nomenclatures to represent the chemical com-

pounds. On that account, multiple chemical representations have been proposed and

used over time, such as molecular graphs, SMILES, and molecular descriptors. Thus,

a proper representation is crucial for the efficiency of chemoinformatic algorithms.

Molecular Graphs

Graphs define the atoms and bonds of chemical structures as nodes and edges,

respectively. However, matrix representations are necessary for computers to under-

stand atomic configurations. Therefore, the adjacency matrix, a binary matrix that

relates nodes and edges, represents the atomic connections. Furthermore, nodes and
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edges are represented by the node feature matrix and edge feature matrix, respec-

tively, where the columns contain chemical characteristics, such as atom and bond

types [16].

Simplified Molecular Input Line Entry System

SMILES strings adopt characters to describe the graphical molecular structure of

the compounds. Atoms are represented by their chemical symbols, where the first

letter is capitalized for non-aromatized atoms and lowercase for aromatized atoms.

Furthermore, the default is the hydrogen atom omission. The chemical single,

double, and triple bonds are denoted by the symbols -, =, and #, respectively, and

the branches are expressed by parenthesis. Moreover, the opening and closing of

rings in cyclic structures are indicated by numbers in the respective atoms [17]. It is

a non-unique notation, as multiple SMILES strings can represent the same molecule.

Nonetheless, several tools, such as the RDKit library [18], canonicalize SMILES to

standardize potential inconsistencies [16].

Molecular Descriptors

Molecular descriptors describe molecules based on their physicochemical and struc-

tural characteristics. They are determined with software tools (e.g., Dragon [19],

RDKit [18]). Chemical descriptors are divided into structural keys and fingerprints.

Structural keys use bits to represent the presence or absence of predefined chemi-

cal structures. Fingerprints are a type of representation widely used in Quantita-

tive Structure-Activity Relationship (QSAR) machine learning, which considers the

physical, chemical, and structural properties of compounds [16]. Extended Connec-

tivity Fingerprints is a popular circular fingerprint that uses a variant of the Morgan

algorithm to identify structures through neighboring circular atoms [20].

2.2 Molecular Properties

Appropriate physicochemical and biological properties are fundamental to a com-

pound’s therapeutic efficacy. Therefore, property identification in the early stages

of drug discovery is crucial to the efficiency of the investigation process, both from

a drug approval and financial perspective.
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Binding Affinity

Binding affinity quantifies the interaction of molecules with particular biological tar-

gets. This property is influenced by intermolecular forces such as hydrogen bonding,

Van der Waals and hydrophobic forces, and electrostatic interactions [21]. Moreover,

the environment in which the interaction occurs also affects biological interaction.

After a ligand-receptor pair is formed the conformation of the target is modified.

Binding affinity can be assessed using parameters such as equilibrium dissociation

constant (Kd), inhibition constant (Ki), and half-maximal inhibitory concentration

(IC50). Therefore, a high value of any of these metrics means a weak interaction.

Kd is the proportion between the dissociation and association ratio constants of the

chemical reaction caused by the biological binding at equilibrium. Ki represents the

dissociation caused by the interaction of an inhibitor to a biomolecule, which reduces

the target’s activity [22]. IC50 is the drug concentration required to inhibit 50% of a

receptor’s activity and is typically determined by bioassay. In drug discovery, IC50

is the most frequent method for measuring the potency and efficacy of a potential

antagonist drug.

IC50 has a wide range of possible values, from nanomolar to micromolar. Therefore

it is converted to the negative logarithm of the half-maximal inhibitory concentration

(pIC50) [23]. Thus, molecules with a high pIC50 exhibit a strong binding affinity

to their target.

Lipophilicity

The lipophilicity of a molecule describes its affinity for lipophilic regions. It is one

of the most crucial factors to consider in drug discovery, as it influences multiple

characteristics of drugs, including membrane permeability, solubility, toxicity, and

biological activity [24]. Lipophilicity is commonly defined by the logarithm of the

partitional coefficient between octanol and water, i.e., LogP. Several methods can

be used for calculating LogP. Wildman et al. (1999) provided a technique for deter-

mining this metric based on the LogP contributions of the constituent atoms of the

molecules [25].
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Molecular Weight

A large number of approved drugs are small molecules, i.e., compounds with a low

molecular weight. These molecules are an important key in drug discovery since

their reduced weight makes them more likely to be absorbed by the organism and

orally bioavailable [26]. Hence, small compounds can reach the specific biological

site of action more effectively.

Polar Surface Area

The polar surface area of molecules influences the passive transport of drugs into

membranes. PSA is calculated based on the summation of the surface areas of a

molecule’s polar atoms. However, its determination is time-consuming and complex,

requiring 3D structure and surface determination. Therefore, Ertl et al. (2000)

developed a technique known as Topological Polar Surface Area (TPSA). TPSA is

a faster method for determining polar surface area using the PSA tabulated values

of the molecules’ fragments [27].

Drug-Like Molecules and Lipinski’s Rule of Five

In drug discovery, the pharmacokinetic properties of molecules play a crucial role in

their selection as a potential drug and their therapeutic efficacy, as these properties

relate to the drug’s absorption, distribution, metabolism, and excretion. Drug-

like molecules are compounds that satisfy criteria based on the characteristics of

approved drugs [28].

Several approaches can be used to anticipate the drug-like properties of molecules

[29]. The popular Rule of Five method, developed by Lipinski et al. (1997) [30],

defines restrictions in physicochemical properties that may be associated with non-

bioavailability. The Rule of Five states that compounds with more than one of the

following characteristics are more likely to have low permeability and poor absorp-

tion: MW greater than 500Da, LogP higher than 5, more than 10 H-bond acceptors,

i.e., the sum of oxygen and nitrogen atoms, and the number of H-bond donors greater

than 5, i.e., the sum of O-H and N-H bonds [30]. There are numerous variants of

Lipinski’s Rule. Veber et al. (2002) [31] proposed that for a drug to be orally

bioavailable, it should also possess a PSA not higher than 140 Å2, rotatable bonds

less than or equal to 10, and the sum of H-donors and H-acceptors fewer than or

equal to 12.
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However, the Rule of Five has limitations, such as the fact that certain types of orally

active drugs, such as antibiotics, do not comply with the regulated qualities since

they probably have a structure that naturally enables them to cross the membrane

via transporter substrates [30]. Furthermore, focusing solely on orally administered

drugs limits the discovery of potentially effective pharmaceuticals.

Quantitative Estimate of Drug-Likeness (QED)

Bioavailability rules, such as Lipinski’s Rule of Five, indicate only whether or not a

molecule is likely to be drug-like but do not provide numerical values. The Quan-

titative Estimate of Druglikeness was developed to quantify drug-likeness based on

physicochemical properties using continuous numbers between 0 (all undesirable

properties) and 1 (all attractive characteristics). QED proves to be more realistic

than binary approaches since it considers tolerable molecules, even if they have one

undesirable property and other attributes near the ideal limits [32].

Synthetic Accessibility Score (SAS)

In de novo drug design, one of the factors to be considered is the ease of synthesizing

compounds in the laboratory. The Synthetic Accessibility Score, developed by Ertl

et al. (2009), [33] is one of the most widely used methods for assessing the value

of synthetic accessibility. It is calculated based on the structure of the fragments

that constitute the molecules and on penalty scores, which indicate the presence

of complex elements. The SAS values range between 1 (easily synthesized) and 10

(extremely difficult to produce) [33].

2.3 Prediction of Physicochemical Properties and Biological

Activity

Predictive models relate molecular characteristics to pharmacological or biological

activity. They are based on the principle that identical structural properties (physic-

ochemical and configurational) exhibit identical activities in Quantitative Structure-

Activity Relationship models and the same property in Quantitative Structure-

Property Relationship (QSPR) models [34].

These methods are appropriate for optimizing the molecules for a specific target

so that when administered to a patient, they bind to the element with sufficient
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affinity to avoid side effects. A biological target is a chemical structure that affects

the health of an organism directly or indirectly and, when combined with another

chemical structure, such as a drug, induces a biological reaction. The most promising

computational methods are those that employ Machine Learning and Deep Learning.

2.3.1 Machine Learning Approaches

Machine learning is composed of methods that enable computers to acquire knowl-

edge from available data. [35, 36] It consists of several types of learning, includ-

ing unsupervised, supervised, semi-supervised, and reinforcement. Unsupervised

learning utilizes relationships between data to group them without supervision, i.e.,

without knowing the labels. Supervised learning methods predict the labels based

on the learned relationships between the training features and the training outputs.

Semi-supervised learning is a combination of the two types of learning described pre-

viously, as it includes both labeled and unlabeled data [36]. Reinforcement learning

determines which actions are more beneficial to the environment through a trial-

and-error search for reward maximization [37].

In predicting molecular properties, supervised learning is the principal technique.

It is divided into two types of problems: classification, which forecasts a discrete

value, such as whether a molecule is active or inactive in a target, and regression,

which predicts a continuous numerical value of a molecular property [38].

Moreover, in this context, the most popular machine learning models are Random

Forest (RF) [39], Support Vector Machine (SVM) [40–42], and K-Nearest Neighbors

(KNN) [43,44]. RF [45] employs a set of decision trees, and the output is determined

based on all individual predictions. KNN [46] returns the prediction based on the

values of the K nearest neighbors according to a similarity criterion. SVM [47]

selects the hyperplane with the maximum margins to separate the classes, and for

non-linear separation problems, it employs kernel functions and soft-margin. The

models focus on the totality of the provided descriptors for prediction, although

some of it is redundant and may hinder performance. This requires the use of

feature selection techniques to determine the most relevant characteristics [44].

Xiao et al. (2002) [43] investigated the utilization of the KNN algorithm in the

context of QSAR by developing the variable selection K nearest neighbor quanti-

tative structure-activity relationship, KNN QSAR. This method combines feature

selection with the prediction of compounds’ anticancer potential.
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Svetnik et al. (2003) [39] used the random forest method in the domain of quantita-

tive structure-activity relationships to predict binding affinity in classification and

regression tasks. Besides the comparatively high predictive efficiency, the model is

able to determine the relevance of the features used by attending to a significant

decline in the performance of important descriptors when noise is introduced to

them.

Zhou et al. (2006) [42] proposed the boosting Support Vector Regression (SVR)

method, which predicts the toxicity and inhibitory activity of two chemical sub-

stances based on their structural properties. The training uses a series of SVRs,

where the data used in each model are predominantly the elements incorrectly pre-

dicted by the previous SVR model. Therefore, the final output is the weighted

average of individual predictions. The adoption of boosting suggests an increased

generalization capability comparable to a single SVR.

2.3.2 Deep Learning Approaches

Figure 2.1: Comparison of the structure of a biological neuron with an artifi-
cial neuron. Image adapted from ”https://commons.wikimedia.org/wiki/File:
Derived_Neuron_schema_with_no_labels.svg”

Artificial Neural Network (ANN) is a branch of machine learning inspired by bio-

logical neural networks. It was created to perform tasks that were previously only

possible for humans.

Biological neural networks are composed of massive interconnections of neurons,
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which are the basic unit of the brain and nervous system. The network’s information

exchange is triggered by signals and occurs through synapses, releasing neurotrans-

mitters. This process transports information to different types of cells, promoting

the execution of actions and learning ability [48].

ANN consists of a network of artificial neurons that simulate biological neurons

and are organized into an input layer, one or more hidden layers, and an output

layer. The input layer contains the elements supplied to the neural network without

transformation, whereas the hidden layers receive the output of the input layer and

transform based on the problem. In addition, the output layer employs an activation

function to the weighted sum of the outputs of the final hidden layer [48,49].

Each artificial neuron (Figure 2.1) contains an input, a bias, weights, an activation

function, and an output. Input corresponds to the data transmitted to the neuron.

Bias shifts the activation function to fit the data better. Weights adjust the relevance

of the input and bias. The activation function transforms the weighted sum based

on the context of the problem. The output of each neuron is the result obtained

from the activation function and is given by:

f

(
N∑
i=1

WiXi + b

)
(2.1)

considering f the activation function, W the weight, X the input, and b the bias.

The ANNs acquire knowledge by updating the weights based on the prediction

error between the true value and the predicted value, which is determined by a loss

function. Using an optimizer that calculates the gradient of the loss function via

backpropagation, the weights are modified [49]. This is an iterative process, known

as the training phase. However, during the testing phase, where the architecture’s

generality is evaluated, the weights remain static. One of the advantages of ANN is

the ability to select features without any previously employed technique, due to the

different importance given by the architecture’s weights [50].

Deep learning is composed of deeper neural networks, i.e., with multiple hidden lay-

ers. The number of hidden layers determines the degree of depth. DL is becoming

increasingly promising, achieving state-of-the-art performance in a wide variety of ar-

eas, including Natural Language Processing (NLP) and object recognition, and drug

discovery is no exception [50]. Furthermore, as data became more accessible, sev-
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eral QSAR and QSPR deep learning models outperformed popular machine-learning

approaches [51], demonstrating the ability to discover more complex patterns and

relationships between molecular features.

Dahl et al. (2014) [52] utilized a multi-tasking feedforward neural network method

to simultaneously predict multiple biological targets’ activity using the same set of

molecular descriptors generated by a fingerprinting tool. They assumed that various

pharmacological properties were interrelated. Duvenaud et al. (2015) [53] proposed

an architecture based on graph convolutional neural networks for descriptors extrac-

tion, followed by a Fully Connected Neural Network (FCNN) for predicting several

properties of compounds. Thus, the model produced fingerprints from the graph

model that received as input the molecules in graph format.

Popova et al. (2018) [54] developed an LSTM-based neural network predictor for es-

timating several physicochemical and bioactivity properties.The model represented

the molecules in SMILES format. Furthermore, its architecture demonstrated the

ability to identify relationships between SMILES string elements without using nu-

merical feature vectors.

Wang et al. (2019) proposed the SMILES-BERT model, an adaptation of Bidirec-

tional Encoder Representations from Transformers (BERT) for predicting molecu-

lar properties from the SMILES representation [55]. Implemented by Devlin et al.,

BERT [56] is a framework based on the Transformer Encoder from the Transformer

Model [57] and comprises two different stages: a) pre-training with Masked Learning

Model and Next Sentence Prediction to create a model with a general understanding

of the data language, and b) fine-tuning that leverages the pre-training parameters

for the downstream task. Due to molecular individualism, the pre-training phase

of SMILES-BERT does not consider the Next Sentence Prediction. Furthermore,

the fine-tuning phase employs molecular characteristic forecasting. The obtained

results demonstrate flexible pre-training with a large dataset of unlabeled data for

pharmacologic property prediction.

2.4 Molecular Generation

Generative modeling has gained prominence in diverse technological fields with the

evolution of DL, employing deep neural networks with increasing ability to solve

more complex challenges. These models learn the distribution of training data in

order to generate new elements with comparable distributions [58]. In drug design,
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generative models have revolutionized the generation of molecules with potentially

desirable therapeutic properties in a more efficient and cost-effective form.

Recurrent Neural Networks (RNNs) were integrated into several DL models in the

drug development field, inspired by the analogy of natural language processing prob-

lems with the generation of molecules in SMILES format. Seger et al. (2018) [59]

developed a model for generating molecules active toward a target based on RNNs.

Firstly, the architecture with three Long Short-Term Memory layers (LSTM) was

pre-trained for a larger dataset to acquire a general knowledge of SMILES rules, then

it was fine-tuned via transfer learning by retraining with a smaller dataset of active

molecules for a specific target. Fine-tuning was also retrained cyclically using the

best molecules selected by a predictor to optimize the model. Other studies, such

as Gupta et al. (2018) [60], also applied transfer learning to an RNN architecture to

produce molecules with the same properties as the training dataset for fine-tuning.

Popova et al. (2018) proposed an RNN model, the ReLeaSE (Reinforcement Learn-

ing for Structural Evolution) method, which includes a Stack-RNN generator for

molecular SMILES sequence synthesis and an LSTM predictor for assessing its prop-

erties, such as binding affinity to a target and LogP. First, the two models are trained

separately, then joined by reinforcement learning. Hence, the predictor evaluates the

new molecules and gives a numerical reward based on their physicochemical prop-

erties, and the generator learns to maximize the rewards, becoming optimized [54].

Furthermore, Yasonik (2020) employed an evolutionary multi-objective algorithm

on the RNN for drug design. By transferring learning, the model was retrained

with the best molecules chosen by the non-dominated sorting algorithm based on

the optimization of the characteristics present in an extension of the Rule of Five.

He showed that his model could be effective both in optimizing the compounds’

properties and in generating different molecules with the same distribution as the

training dataset [61].

Gomez-Bombarelli et al. (2018) designed molecules based on the Variational Au-

toencoder architecture (VAE). The VAE integrated an RNN encoder to convert the

SMILES notation into a continuous representation (the latent vector), a predictor

to evaluate the properties of molecules in the latent space, and an RNN decoder to

perform the reverse task, i.e., transforming continuous values into SMILES strings.

The purpose of this study was to produce compounds with enhanced characteristics;

hence, the training process focused on the optimization of generation based on the

predictor’s estimations of the molecules’ properties in continuous space [62].

16



2. Computational Techniques in Drug Discovery

Generative Adversarial Autoencoder is a modified version of VAE that includes an

additional block corresponding to the discriminator, whose function is to distinguish

whether an element is a part of the latent space or a prior distribution. Polykovskiy

et al. (2018) applied Adversarial Autoencoder (AAE) to produce molecules with par-

ticular properties [63]. Jin et al. (2018) proposed the Junction Tree Variational Au-

toencoder Model, JT-VAE, an application of VAE for developing molecular graphs.

This model built junction trees, which correspond to subgraph valid structures, and

combined them to produce molecules. Therefore, validity was maintained across the

entire procedure [64].

Several studies in the design of novel chemical compounds have used Generative

Adversarial Networks (GANs), an architecture that includes a generator to pro-

duce realistic and high-quality representations to fool the discriminator, which in

turn has the function of distinguishing between real and generated representations.

Objective-Reinforced Generative Adversarial Networks (ORGAN) [65] and Rein-

forced Adversarial Neural Computer (RANC) [66] are based on the combination of

GAN architecture with reinforcement learning. The training proceeded to maximize

rewards both for the discriminator’s prediction ability and the generated molecules’

drug-like qualities. ORGAN optimized QED, synthetic accessibility, and LogP prop-

erties, whereas RANC enhanced LogP, TPSA, and QED. Prykhodko et al. (2019)

developed LatentGAN, a model that incorporates an autoencoder and a GAN to

generate compounds with identical drug-like properties to the training dataset. The

main innovation of this model compared to ORGAN and RANC is that its genera-

tor and discriminator used the autoencoder’s latent vector as input instead of being

trained directly with SMILES [67].

LigGPT, developed by Bagal et al. (2021), is a generative model based on the

transformer-decoder that generates molecules based on conditions. Its input con-

sists of SMILES strings concatenated with the criteria represented by a vector, which

specifies the desired characteristics of the compounds, including synthetic accessibil-

ity score, LogP, TPSA, QED and chemical structure. During training, the datasets

required a variety of attributes so that the model could learn to associate them with

the conditions [68]. This model demonstrated the versatility and potential of the

Transformers in drug design by yielding promising results.
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Models

3.1 Embedding Layer

The molecules are represented in the SMILES notation, however, in order for the

deep learning models to understand raw characters, it is necessary to convert these

characters into numerical values. On that account, each SMILES string was trans-

formed into a set of non-negative unique integers, i.e., categorical variables without

order or relationship (Section 4.2). Higher categorical values, however, can have

more influence than the others in the learning stage, resulting in inaccurate perfor-

mances and hindering the training process. Thus, encoding methods to normalize

the importance of each categorical value need to be explored and employed. There

are many types of encoding, e.g., one-hot encoding turns each variable into a nor-

malized binary vector, where ’1’ is assigned to the corresponding integer and ’0’ to

the rest of the elements in the vector. However, this type of approach is inefficient

in the case of large sets of integers, thus, it was necessary to apply an embedding

layer that has the same purpose, and additionally, the new vector provides more

information and can have a fixed reduction length.

The embedding layer converts each categorical data into a floating vector of a speci-

fied dimension, mapping each element into an embedding geometric space, where the

similarity between sequence elements is represented [69]. The learnable embedding

matrix is randomly initialized during training and updated through backpropagation

at each learning step.

Figure 3.1 depicts the output of the embedding layer applied to the molecule Edar-

avone (C10H10N2O).
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Figure 3.1: A five-dimensional embedding layer applied to the molecule Edaravone.

3.2 Sinusoidal Positional Encoding

The localization of each element in the sentence is crucial for context and meaning,

where a change in the order could result in a different interpretation. Considering

that SMILES is a type of chemical language, it is crucial for the deep learning models

to have information about the relative or absolute position of each element in the

string.

Contrarily to the LSTM architecture, Transformer-based architectures do not con-

tain hidden states that keep the information about the relative position of each ele-

ment. Therefore, it is necessary to consider methods that provide this information,

which can be static or learned. In this case, the sinusoidal positional encoding, which

is a static strategy, was employed. The sinusoidal positional encoding proposed by

Vaswani et al. [57] is based on sine and cosine functions of different frequencies,

resulting in a unique encoding for each position of the sequence, i.e., the resulting

values are fixed and unique, and the sequence length does not influence these values

since it is based on relative positions.

The positional encoding for the kth token of the sequence and ith position of the

embedding vector can be given by:

PE(k, 2i) = sin

(
k

10000
2i
d

)
PE(k, 2i+ 1) = cos

(
k

10000
2i
d

) (3.1)

where k ∈ [0,L−1] is the position of the token in the sentence (L is the length of the

sentence), i ∈ [0,d
2
− 1] is the position on the embedding vector, d is the dimension

of the encoding input, 10000 is a pre-defined constant value that can be changed
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e.g. for longer sequences, and PE ∈ RLxd.

This embedding is based on relative positions, which can be demonstrated by lin-

early transforming PE(k,d′) (d′ = {2i, 2i + 1}) with a rotation matrix M ∈ R2x2 ,

resulting in the identification of any PE(k + x,d′). The mathematical justification

that expression 3.2 is valid, i.e., that the position in the sentence (k) does not affect

the matrix M (3.3) is provided in appendix A (A.2) [70].

PE(k + x,d′) = MPE(k,d′) (3.2)

with

M(i) =

 cos
(

x

10000
2i
d

)
sin
(

x

10000
2i
d

)
− sin

(
x

10000
2i
d

)
cos
(

x

10000
2i
d

) (3.3)

(a)

(b) (c)

Figure 3.2: Positional Encoding Heatmaps for a sentence with a length of 72 and
an encoding dimension of 512. a) Sinusoidal positional encoding. b) Sine function.
c) Cosine function.

Figure 3.2 shows a sinusoidal positional encoding matrix (given by 3.1), where it is

possible to observe that increasing the dimension (d′) leads to less variation of the
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heatmap, i.e., the positional encoding has more influence on smaller d′.

3.3 Transformer-Encoder

Figure 3.3: Transformer Encoder architecture, with N encoder blocks.

The Transformer-Encoder neural network transforms the input sequence into a rep-

resentation vector that reflects the interdependence of its elements through self-

attention. In this work, it was used to learn the chemical context of SMILES strings

and their short and long-term context dependencies for the prediction of a drug’s

biological target affinity.

The Transformer-Encoder architecture is composed of a stack of N identical encoder

blocks, where each block contains two different layers: Multi-Head Self-Attention

(MHSA) and Position-Wise Feed-Forward Network (PWFFN). Furthermore, resid-

ual connections are applied after each block to preserve the information of the old

token representation, followed by Layer Normalization (LN) to aid in the learning

task of the model. Additionally, dropout layers were added before the residual con-
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nections of each MHSA and PWFFN, and after each dense layer of the PWFFN,

to avoid model overfitting. Considering x1 and x2, the outputs of the MHSA layer

and the PWFFN layer, respectively, the output of the ith encoder block can be

expressed as:

x1 = LN(Dropout(MHSA(x2i−1)) + x2i−1)

x2 = LN(Dropout(PWFFN(x1i )) + x1i )
(3.4)

, where i ∈ {1,...,N} (x0 represents the input of the initial block obtained through

embedding), x1 ∈ RLxd and x2 ∈ RLxd (L is the number of elements and d the

dimension of x0). The Transformer-Encoder architecture is illustrated in Figure 3.3.

3.3.1 Multi-Head Self-Attention

The MHSA applies self-attention multiple times in parallel to the input sequence in

order to learn the inter-dependencies between the elements of the input sequence,

resulting in a contextual and more robust representation of each token of the se-

quence.

This layer receives the input in the format of three parameters—Query (Q), Key

(K), and Value (V) — all of which are derived from the same input sequence (self-

attention). The query is used to search for self-related elements,the keys are the

query-related elements that are used to calculate attention, and the values are a

representation of the keys. The queries, keys, and values are linearly projected and

split over several heads of attention. Multi-heads can learn different representations

of attention with fewer encoders compared to single-heads, improving the learning

process of the architecture and the stability of the training [71].

Each head employs scaled-dot product attention to transform a query and a set of

key-value pairs into an output,which is expressed as the weighted sum of the values.

The attention weights applied to each Value are computed by employing a softmax

function to the
√
dK divided dot product between the queries and keys. Furthermore,

a masking matrix is also considered to hide specific elements so that the model does

not consider them. This masking matrix is obtained by assigning an extremely

negative value (close to minus infinite) to the positions of the padding tokens since

in the softmax −∞ tends to 0. The MHSA output is the linear projection of the
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concatenation of all heads’ outputs.

Attent(QWQ
i ,KW

K
i ,V W

V
i ) = Softmax

(
QWQ

i (KWK
i )T√

dK
+Mask

)
VW V

i (3.5)

MHSA(Q,K,V ) = Concat[Attent(QWQ
1 ,KW

K
1 ,V W

V
1 ),...,

Attent(QWQ
h ,KW

K
h ,V W

V
h )]W 0

(3.6)

, where Q,K,V ∈ RNxd. WQ
i ∈ RdxdQ , WK

i ∈ RdxdK and W V
i ∈ RdxdV are the

projection matrices of the Query, Key and Value respectively. W 0 ∈ Rhxdvxd is the

final projection matrix, and h is the number of head attentions. Mask ∈ RNxN , and

dK = dQ = dV = d
h
. The Multi-Head Self-Attention architecture is shown in Figure

3.4.

Figure 3.4: Multi-Head Self-Attention architecture, with h head attention.
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3.3.2 Dropout Layer

Deep neural networks use the dropout method between their layers to prevent over-

fitting since neurons may overly adapt to each other during training, leading to

increased noise. Dropout is a regularization technique that promotes the learning

independence of each unit and increases the model generalization. During the train-

ing stage, this method deactivated a percentage (p) of randomly selected neurons

and their connections, whereas, in testing, the weights are multiplied by the training

forgetting rate (p). Figure 3.5 shows the dropout method applied to a FCNN.

Figure 3.5: Dropout method applied to a FCNN.

3.3.3 Layer Normalization

Training deep neural networks is time-consuming due to the vast number of param-

eters and gradients updates. This can be improved using techniques such as layer

normalization. LN [72] prevents an accentuated disparity in the values of the neu-

rons in each layer’s input by distributing the values to a mean of approximately 0

and a standard deviation of 1.

The mean (µi) and standard deviation (σi) of the outputs of neurons connected to

layer i are given by :

µi =
1

Hi

H∑
j=1

xij

σi =

√√√√ 1

Hi

H∑
j=1

(xij − µi)2
(3.7)

where xij is the inputs of neuron with j ∈ {1,..Hi} of layer i, and H is the number

of hidden units.
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These two statistical measures are used to normalize xij according to expression 3.8,

where σ2
i represents the variance and ε is a stability factor. This transformation

is applied to every neuron in the layer and is independent of the batch size. In

addition, this mechanism performs identically for training and testing.

x′ij =
xij − µi√
σ2
i + ε

(3.8)

3.3.4 Position-Wise Fully Connected Feed-Forward Network

FCNNs have a simple architecture and are identical to the traditional neural net-

works, where all neurons are interlinked and each individual output is determined

by applying an activation function to the weighted sum of the outputs of all previ-

ous neurons. The activation function contextualizes the data for a specific problem.

The information in this architecture flows in one direction, from the input layers to

the end of the networks, i.e., they do not employ feedback mechanisms [73]

Figure 3.6: Fully Connected Feed-Forward Network Architecture.

The PWFFN aims to create a more robust representation of the output of MHSA

layer by employing two dense layers separated by a dropout layer. These layers

are applied to the last dimension of the MHSA output, position-wise, with the first

dense layer projecting it to a higher dimension and the second returning it to the

original last dimension. Besides, this neural network enhances the learning ability

of the Transformer-Encoder.

Considering x ∈ RNxd the FCNN input, f the activation function of the first dense

layer with dimension dff , W2 ∈ Rdffxd and b2 ∈ Rd, PWFFN is expressed as:

PWFFN(x) = f(x)W2 + b2 (3.9)
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3.4 Transformer-Decoder

The Transformer-Decoder uses self-attention to generate new output sequences token

by token. This architecture was initially proposed in the NLP domain in order to

translate sentences. However, in the context of this study, it is used to generate

valid and diverse molecules by learning the context and syntax of SMILES.

The Transformer-Decoder is composed of a stack of identical blocks, where each

block contains an MHSA and a PWFFN, similar to the Transformer-Encoder. How-

ever, instead of the input sequence attending to all of its elements, it only takes into

consideration the elements at the previous time step (similar to the LSTM archi-

tecture) using a look-ahead mask, i.e., this architecture is auto-regressive at each

step. This look-ahead mask is employed to mask future tokens (right-sided) using

an upper triangle matrix, where the diagonal values are not considered and the

remaining elements are set to close to minus infinite. Therefore, the transformer

decoder mask considers a look-ahead and a padding mask, which is illustrated in

Figure 3.7. Figure 3.8 illustrates the Transformer-Decoder architecture.

Figure 3.7: Transformer-Decoder Masking, where a look-a-head mask is combined
with a padding mask.

3.5 Multi-Objective Optimization

Multi-Objective Optimization Problem (MOP) is a field with numerous applications.

MOP is responsible for identifying a set of variables that simultaneously optimizes

two or more objective functions, i.e., determining which variables best achieve all

the desired goals.

A solution integrates the Pareto optimal set if it is not worse than the others and

is strictly better in at least one function [74]. Considering a minimization problem

with vectors ~a = (a1, a2,..,aq)
T and ~b = (b1, b2,..,bq)

T ∈ Rq and N objective functions
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Figure 3.8: Transformer-Decoder architecture, with N decoder blocks.

(f1,...fN):

fi(~a) ≤ fi(~b),∀i ∈ {1,...N} ∧ ∃i′ ∈ {1,...N} : fi′(~a) < fi′(~b) (3.10)

this means ~a dominants ~b (~a � ~b). Hence, ~a is Pareto optimal if no solution domi-

nates it (~a is non-dominated). Consequently, it does not improve the performance of

an objective function without affecting the performance of at least one of the others.

The set of all non-dominated solutions constitutes the Pareto optimal set (p∗), and

the image of each (fi(p
∗) with i ∈ {1,..N}) is on the Pareto front.

Non-Dominated Sorting is a type of multi-objective optimization that puts elements

into different Pareto Fronts based on how dominant they are. This method was

applied in our framework to optimize the transformer-decoder generator to produce

SMILES molecules with the best physicochemical and biological properties. This

was accomplished by sorting the new chemical compounds into Pareto Fronts based

on their properties (the objective functions), followed by a feedback loop where
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the unsatisfactory generator input compounds were replaced iteratively with the

preferable new ones.

The non-dominated sorting algorithm is implemented using external and internal

loops. The external loop stores the solutions in different Pareto Fronts, whereas

the internal loops determine whether an element is dominant in the space solution.

If an element dominates at least one, the loop breaks and the program then looks

for the next solution. Furthermore, when the internal cycle finishes, it adds the

non-dominant solution to the current Pareto Front, which is no longer used to verify

the dominance.

Considering a set of s molecules, from which two properties are extracted and added

in the non-dominated sorting method. This yields K Pareto Fronts (F1,...,FK),

where F1 contains the dominated s1 elements in s and F2 contains the dominated

molecules in space s− s1, thus FK are the non-dominated. This process is repeated

until all the elements are distributed across K Pareto Fronts. Figure 3.9 shows the

non-dominated sorting with K equal to three, and f1 and f2 being the properties

of the molecules to be optimized.

Figure 3.9: Ordering of solutions by dominance, considering two objective func-
tions, f1 and f2
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Methods

4.1 Framework Overview

Figure 4.1: End-to-End Transformer-based Framework for Optimized De Novo
Drug Design

The main objective of this research is the development of molecules with optimized

biological and pharmaceutical properties.

The proposed framework contains a feedback loop combining a transformer decoder

generator to create chemical compounds, a transformer encoder predictor to evaluate
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their biological affinity (pIC50) to a certain target with pharmacological interest, and

a multi-objective optimization algorithm to sort the drugs based on their properties:

biological affinity, SAS, MW, LogP, and TPSA. This end-to-end transformer-based

framework is illustrated in Figure 4.1.

Initially, the models are trained from scratch separately, then incorporated into

the feedback loop to optimize the generative model for the desired pharmaceutical

standards. Furthermore, the training of the predictor is similar to the one used in

the BERT architecture [56], comprising two phases: pre-training or MLM, where

the model gains knowledge about the molecule representation and its context, and

fine-tuning, which leverages the pre-training parameters for the downstream task.

4.1.1 Predictor

Pre-Training

In Masked Learning Modeling, the model acquires molecular context by learning to

identify the elements of the input sentence that are masked based on the unaltered

sentence units.

The architecture used in pre-train includes both an Embedding Layer and a Po-

sitional Encoding to provide a vector representation of the similarity and relative

position of the elements. Furthermore, the Transformer-Encoder converts this vector

to a new representation including the token’s relevance, also its output is projected

to a dimension equal to the size of the SMILES token dictionary via a dense linear

layer. The Softmax function then transforms the dense output into a normalized

probability distribution, indicating the likelihood of each token in the vocabulary

having been replaced with the mask token. The pre-training stage is illustrated in

Figure 4.2.

Masked Learning Modeling randomly selects 7.5% of the SMILES functional groups

and another 7.5% of the remaining elements, excluding the [CLS], [STEP], and

[PAD] tokens, to be masked, or 15% if the number of elements belonging to the

molecule’s functional groups is less than a threshold of 6. In those selected tokens,

80% are replaced with a [MASK] token, 10% are replaced with another randomly

selected valid SMILES token and 10% are kept unchanged.

These percentage values are the defaults proposed by BERT [56] in order to not hin-

der model knowledge and optimize performance on subsequent tasks. Furthermore,
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Figure 4.2: Masked-Learning Modeling based on Transformer-Encoder. Prediction
of N and c tokens that were hidden by masking tokens.

the masking approach does not consider only the mask token since the [MASK] to-

ken does not appear in the fine-tuning, which could result in inconsistencies in the

model during the fine-tuning. Moreover, the random selection of masked elements

increases the model’s capacity for learning and decreases the risk of overfitting.

In this study, functional group elements are incorporated into the traditional pre-

training of the predictor for the potential addition of extra chemical information.

FG is a group of atoms that give molecules similar reactivity and characteristics (e.g.

polarity, solubility, structure) [75]. Initially, only the atoms that compose functional

groups (15%) were selected for masking. Due to the lack of diversity of these atoms,

the model was incapable of achieving generalized learning. Therefore, the strategy

was also applied to the non-function group atoms (7.5%/7.5%). Furthermore, the

molecules used for training contained diverse amounts of atoms belonging to func-
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tional groups. Therefore, to prevent compounds with fewer FGs constituents from

having a lower percentage of masked components, a threshold of 6 FGs tokens was

defined.

During training, the model learns to predict hidden tokens based on others that

remain unchanged. Although this learning strategy requires a larger dataset in

order to properly learn the context of the language, it only needs unlabeled data,

i.e., without a target vector, which is highly available. During testing, the masks

are applied identically to training, and the model’s capability to predict the tokens

is scored.

Fine-Tuning

Figure 4.3: The Predictor Network to forecast the binding affinity of compounds
that interact with a biological target.

In the fine-tuning phase, the predictor model’s parameters are initialized with the

ones learned during the MLM stage, and the model is retrained to predict the affinity

of a particular biological target using a different labeled dataset. The pre-trained

model already contains generalized chemical information that is not dependent on

the potentially limited size of the labeled dataset. Hence, the training procedure is
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simplified and speeded up.

The fine-tuning incorporates the embedding and positional encoding and the trans-

former-encoder model of the MLM. However, it only considers the model output of

the start token [CLS], also known as the classification token, since it is a robust

representation that takes into account all the short and long-term dependencies

amongst the tokens of the sentence. The average of all elements’ output is not

assumed because the end and padding elements are not informative to the classifi-

cation task and are only used to facilitate model implementation. The architecture

then integrates a dropout layer to reduce the risk of poor generalization, followed

by a dense linear layer with one unit to provide the predicted number. All of the

parameters that comprise the predictor model are updated during training. Figure

4.3 demonstrates the architecture of this classifier model.

4.1.2 Generator

Figure 4.4: Generator architecture based on a transformer-decoder backbone.

The unconditional generator’s purpose is to learn the chemical syntax required to
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generate neutral compounds, that is, compounds with no specific properties.

Its architecture combines an Embedding Layer with a Positional Encoding, analo-

gous to that used in MLM (section 4.1.1). Then, a Transformer-Decoder is incor-

porated, which outputs a self-attention representation containing the relevance and

dependencies of the elements to predict the next sequence entity. The output of the

Transformer-Decoder is sent to a dense linear layer and a Softmax activation func-

tion, which projects it to a dimension equal to the size of the SMILES vocabulary

and turns it into token probabilities, respectively. The generator neural network is

shown in Figure 4.4.

The model is auto-regressive, i.e., for the generation of molecules, each token is

predicted based on previous predictions [76]. Therefore, the model’s input sequence

is shifted to the left, and the output sequence is shifted to the right, i.e., the input

sequence begins with the start token ([CLS]) and ends with the last molecule’s token,

whereas the output sequence starts with the first molecule’s token and terminates

with the end token ([SEP]). For example, for the Edaravone molecule, the model

input is [CLS]NCc1ccc2cnccc2c1O, and the output NCc1ccc2cnccc2c1O[SEP].

During the training, the Transformer-Decoder applies the Teacher-Forcing method,

in which the generation process is based on the previous token of the original se-

quence and is not influenced by the model prediction performance [77]. Figure

4.5 depicts this methodology. The input data is presented all at once on the

Transformer-Decoder, however, due to the look-ahead mask in the MHSA (sub-

section 3.3.1), it is possible to employ Teacher-Forcing.

Figure 4.5: The training process for the SMILES molecule NCc1ccc2cnccc2c1O
using the Teacher-Forcing method.

During the generation process, the model synthesizes novel compounds token by
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Figure 4.6: The generation of SMILES strings token by token using a trained
model.

token, with the predicted one being included in the next input. Furthermore, the

softmax function has a distinction: the inclusion of the sample temperature pa-

rameter (T ), which provides a random factor to produce diverse drugs. Employ-

ing low-temperature parameters results in more confident predictions, on the other

hand, high-temperature parameters cause more variable predictions [78], resulting

in a greater diversity of produced compounds.

Softmax(x) =
e

xi
T∑n

j=1 e
xj
T

(4.1)

4.1.3 Optimized Generator

The optimized generator is the Transformer-Decoder-based generator enhanced to

design drugs with the desired characteristics, specifically biological activity and

physicochemical properties that allow the drug to reach its target.

The framework training is composed of a feedback loop that includes a generator,

a predictor, and a multi-objective optimization algorithm. First, the Transformer-

Decoder generator is retrained to learn the syntax of the input molecules. Subse-

quently, the generator designs molecules, and the Transformer-Encoder predictor

determines their affinity for the relevant pharmacological target. Furthermore, the

RDKit library [18] is employed to determine the characteristics of compounds to be

optimized: SAS, LogP, MW, and TPSA. The reason for their choice is given in sec-

tion 4.3.3. Then, the multi-objective optimization algorithm receives the drugs and

the values of their respective five properties (the objective functions to optimize).
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Figure 4.7: The multi-objective optimization framework for the generator. Op-
timization of SMILES generation based on several characteristics using a feedback
loop that uses the best newly generated molecules as input.

The molecules are sorted into Pareto Fronts such that the preferable ones have the

lowest values of SAS, LogP, MW, and TPSA, and the highest pIC50 (to inhibit the

target). The best molecules, i.e., the ones on the top Pareto Fronts of the optimiza-

tion algorithm, are added to the input replacing previous input compounds with less

desirable properties. This method has a limited number of input substitutions per

iteration to bias the model.

In the process of generating molecules, the Softmax function with a temperature

parameter was used, analogous to Section 4.1.2. Hence, the generation was not

based solely on the softmax’s maximum probability, since it would result in repetitive

compounds.

During the testing phase, only the Transformer-Decoder generator is used, without

the feedback loop or other components, since the framework is a methodology used

to improve the generator’s parameters.

This strategy considered for optimizing the generator has the benefit of not requiring
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a specific dataset with the desired property distributions of the molecule, which could

be extremely scarce. Moreover, it could optimize other characteristics in a relatively

efficient training period.

4.2 Data Preparation

4.2.1 Data Preprocessing

The molecules used as input for the models are all represented in the SMILES

notation as sequences of characters [17]. After removing duplicate strings in the

dataset, each element of the sequence was used as a feature. Tokenization was

necessary to convert the chemical structure into a set of word pieces, known as

tokens, based on dictionary tokens containing the existing atoms, bonds, branches,

and rings.

Due to the fact that each SMILES string is unique for a given molecule, there are

molecules with varying lengths and, consequently, a different number of tokens. A

threshold was added to standardize the number of features to be considered. The

cutoff was established based on the percentage of molecules with fewer or equal

tokens than the limit (not their length size because an atom can be represented

with more than one character). While the larger structures are discarded, padding

tokens [PAD] are added to the smaller ones until they reach the threshold. This

filtration is necessary because a discrepancy in the length of the token set could

generate noise due to excessive padding.

In addition, two special tokens, [CLS] and [SEP], have been added to the beginning

and end of the sequence, respectively. The [CLS] is used in the classification task to

represent the context and interdependencies of the input, and it indicates the start of

production in the generation task. Furthermore, the [SEP] denotes the termination

of molecule synthesis, i.e., the generation process ends when the model predicts this

token.

4.2.2 SMILES Encoding

Due to the fact the models use SMILES strings as input, it was vital to convert each

character into a numerical value capable of being used by the models.

Each unique char token was converted into an integer, as an index, using SMILES
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Figure 4.8: The processing applied to drugs in SMILES strings based on tokeniza-
tion, filtration by the number of tokens per sequence, and the addition of special
tokens.

encoding, Figure 4.9. This is accomplished through the use of a SMILES char-integer

dictionary (Table 4.1), which also includes the key-value pairs [CLS], [MASK],

[PAD], and [SEP]. This encoding method is straightforward and preserves the struc-

ture and order of the chemical compounds.

Table 4.1: Char-Integer dictionary

Char Token Integer

C 1
c 2
... ...

[MASK] 34

Figure 4.9: SMILES Encoding, to transform tokens into categorical values.

4.2.3 Additional Predictor data processing

Masked Learning Modeling

MLM was trained using molecules preprocessed with the methodology defined in the

previous subsections and masked with the strategy described in 4.1.1, which covers

up a percentage of functional groups and remaining tokens. Masking is achieved by

replacing the SMILES token with the [MASK] char.
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To determine the tokens that compose the FGs of each molecule (Figure 4.10), the

function implemented by Hall et al. [79], which is based on the algorithm proposed

by Ertl [80], was adapted.

This method identifies the FGs of a molecule based on the localization of heteroatoms

and their environments, discarding other structural characteristics. Heteroatoms

are non-carbon or hydrogen atoms that compose organic molecules. They affect the

reactivity of the chemical compounds they are present in. Oxygen (O), nitrogen (N),

sulfur (S), and phosphorus (P) are examples of elements [81]. The Ertl algorithm [80]

is processed by marking the heteroatoms and halogens of the molecules as well as the

following types of carbon atoms: those connected by non-aromatic double and triple

bonds to heteroatoms or other carbon; those connected by single bonds to more than

one oxygen, nitrogen, or sulfur (acetal carbons); and those integrated into the rings

of aziridine, oxirane, and thiirane. Furthermore, all neighboring marked atoms are

considered a single FG. In addition, the unmarked carbon connected to the FG is

considered its environment. Therefore, it is a simple and automatic method, and

the outcomes are compatible with the software tool Checkmol [82]. Additionally, it

can be applied to determine complex FGs.

Figure 4.10: Identification of the atoms that compose the functional groups of the
chemical compound NCc1ccc2cnccc2c1O.

Fine-Tuning

Before training, the labels are normalized to compress the data so that the value

disparity does not affect the model’s performance. Hence, the model predicts a

normalized biological affinity, taking into account the maximum and minimum values

of the training set. Therefore, the testing’s final output is the denormalization of
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the predictions.

Two types of normalization applied to the biological affinity data were employed:

the Min-Max Scaler (4.2) and the Robust Scaler (4.3). The Robust Scaler is more

robust to outliers than the Min-Max Scaler since it normalizes based on the quartile

range, the minimum and maximum values (xmin and xmax, respectively) are replaced

by the first quartile (Q1(x)) and third quartile (Q3(x)) of vector x

xi − xmin
xmax − xmin

(4.2)

xi −Q1(x)

Q3(x)−Q1(x)
(4.3)

4.3 Hyperparameter Optimization

4.3.1 Predictor hyperparameters

Masked Learning Modeling

For the model to achieve its best performance, the hyperparameters that affect the

learning process should be configured as optimally as possible. Hyperparameter

optimization is the process of determining the optimal set of parameters. Grid

search with cross-validation is one of the most popular techniques, where the model

is trained considering a grid of hyperparameters and the data is divided into training

for the model’s learning, validation to evaluate the performance of the selected

parameters, and testing to evaluate the model’s generalization.

In this stage, grid search with holdout cross-validation was applied instead of k-fold

cross-validation since the MLM uses a large dataset and the model has a wide range

of hyperparameters: the dimension of the embedding vector, the PWFFN dimension

projection, the number of heads, the number of encoder blocks, the optimizer and the

learning rate. Hence, the data is divided statically into training to train the model

and testing to analyze the performance with new data, as opposed to running the

training k times with different splits,which would require considerable resources.

The type of data partitioning used is adequate because the sets are independent,

devoid of duplicated data, and the selection of tokens to be masked for prediction

is random.
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The optimizer is the algorithm used to update the training weights at a defined

learning rate. The Transformer-encoder is a memory-intensive architecture, so the

search space for the number of heads and encoder blocks is restricted by the ca-

pabilities of the computer used. The architecture requires extensive computational

resources, however, it only needed 10 epochs in the grid search to converge to a local

minimum.

The grid search with cross-validation was used in conjunction with early stopping

and model checkpoint to find the optimal model. Early stopping terminates model

training if the performance does not improve over a predetermined number of it-

erations, and the model checkpoint saves the model at the epoch with improved

performance.

Fine-Tuning

The hyperparameter optimization approach in the Fine-Tuning stage was a grid

search with 5-fold cross-validation. Although more computationally expensive, it is

more suitable for small data sets, as it prevents instability between the split sets.

Since the fine-tuning uses pre-trained weights, the training is faster and it is possible

to apply this type of cross-validation. The dataset is randomly divided into training

and testing sets. The training data is split into five subsets - the folds. Therefore, for

each combination of parameters in the grid search, the model is trained five times,

each time with four folds, and validated on the remaining one. The folds in training

and validation are rotational.

Figure 4.11: 5-fold cross-validation. Image from ”https://scikit-learn.org/
stable/modules/cross_validation.html”.
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The hyperparameters to be optimized include: the dropout rate of the layer preceding

the dense linear with 1 unit, the dimension and function of additional hidden layers,

the batch size, number of epochs, optimizer function, and learning rate. Moreover,

the number of epochs corresponds to the number of iterations that the entire dataset

was used to train the model, and within each epoch, the dataset was divided into

multiple batches to reduce memory requirements.

Furthermore, similar to MLM, early stopping and the model checkpoint were used

to determine the best model.

4.3.2 Generator Hyperparameters

Grid search was used with a large training set to determine the most suitable pa-

rameters for the generator. Since the objective of the model is to generate valid and

diverse drugs, a testing set was unnecessary. Early stopping and model checkpoint

were considered in the training stage. Furthermore, to select the best model, 500

molecules were created and scored using metrics that assess their validity, diversity,

and novelty.

Due to the vast number of combinations in the search space, the temperature pa-

rameter of the softmax function in the generation task was manually tested with

the same hyperparameters.

The hyperparameters of the transformer-decoder based generator to be optimized

are the dimension of the embedding vector, the PWFFN dimension projection, the

number of heads, the number of decoder blocks, the optimizer, and the learning rate.

For the same reason stated in MLM, the number of grid search training epochs was

ten.

4.3.3 Optimized Generator Hyperparameters

The best-optimized model is determined using both a grid search and manual meth-

ods. Since this is a generation task, only training data was used, as was the case

with the unbiased generator. Early stopping and model checkpoints assist model

training.

The optimizer, learning rate, batch size, and number of epochs were the hyperpa-

rameters optimized via grid search.

To optimize the compounds in the feedback loop, the following groups of chemical
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properties were explored manually: pIC50; pIC50 with SAS; pIC50 with SAS and

LogP or MW or TPSA; and all five metrics (pIC50, SAS, LogP, MW, and TPSA).

All property combinations considered the molecular binding affinity to a biological

target, as represented by pIC50 since one of the primary goals of the work was to

generate active compounds for a biomolecule. The SAS property is also considered

in the majority of sets, as it is essential that novel molecules can be synthesized

easily in the laboratory. The remaining selected properties, LogP, MW, and TPSA,

are employed most frequently in computational models for drug design.

Also, the threshold of input molecules to be replaced in each epoch was manually

adjusted. The evaluation was carried out by generating 500 molecules and analyzing

their characteristics.
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Experimental Setup

5.1 Datasets

The datasets used in the Unbiased Generator and all stages of the Predictor were

collected from the ChEMBL database, which is an open-access and manually cu-

rated drug discovery database with a vast amount of compounds with drug-like

characteristics (including their bioactivities for certain targets) [83].

The SMILES strings were fixed to the maximum length of 72 characters, which

corresponds to almost 95% of the information present in the dataset. Molecules

that included more than 72 elements were removed, those with less were padded

to fit the criteria, and those that contained exactly the threshold value of elements

were maintained.

In both the unbiased generator and the masked learning model, the dataset consists

solely of preprocessed SMILES strings. Nonetheless, the extracted dataset for fine-

tuning contains compounds and their biological affinities (pIC50) for the Adenosine

A2A Receptor (AA2AR) with the ChEMBL ID of CHEMBL251.

The unbiased generator was also trained with the MOSES dataset [84] in order to

compare its efficiency with state-of-the-art models. MOSES is a platform used as

a benchmark for generative models. It includes training and test datasets, met-

rics, and implemented models to standardize the frameworks’ outcomes, facilitating

their comparison. The MOSES data is derived from ZINC Clean Leads [85], where

charged atoms, atoms that are not H, C, N, S, O, F, Cl, or Br, and larger cycles

were excluded. Moreover, all the molecules possess drug-like properties.

The training input of the optimized generator was comprised of valid and unique

molecules produced by the unbiased generator,which were not optimized for any

specific and relevant pharmacological property. The input sizes used were 8500 and
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20000. Selecting which is preferable is a matter of trade-off based on metrics and

attributes that are more essential to the problem.

Predictor - Masked Learning Modeling

Figure 5.1 illustrates the distributions of the training and testing sets in terms of

the number of tokens and functional groups present in the SMILES strings. The

distributions of the two sets are identical, and there is no duplication of molecules

between them. Table 5.1 provides a summary of the number of molecules comprising

each set.

Table 5.1: Distribution of data in training and testing in the predictor MLM stage.

Number of SMILES

Training 1000000
Testing 46964

(a) (b)

(c) (d)

Figure 5.1: Distribution of the number of tokens and functional groups present in
the SMILES strings associated with the ChEMBL dataset [83]. (a) SMILES training
dataset. (b) SMILES testing dataset. (c) SMILES FGs for training. (d) SMILES
FGs for testing.
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(a) (b)

Figure 5.2: Distribution of interquartile pIC50 values in the training and testing.
(a) Training set. (b) Testing set.

Predictor - Fine-Tuning

For the fine-tuning of the predictor, the dataset collected from the ChEMBL included

4562 molecules (Table 5.2), and some SMILES were not present in the pre-training

dataset. However, the pre-trained model had generalized learning, allowing it to

use the context for the prediction task. Figure 5.2 depicts the distribution of non-

normalized pIC50 values for Adenosine A2A Receptor in the training and test sets,

with an equivalent interquartile range. Therefore, the best-trained model should

theoretically also fit the test data.

Table 5.2: Distribution of data in training and testing in the predictor fine-tuning.

Number of SMILES

Training 3877
Testing 685

The design of drugs capable of inhibiting the AA2AR is one of the primary goals of

this research. This biological target is widely studied in drug discovery due to its

potential therapeutic effects.

The Adenosine A2A Receptor is part of the Adenosine Receptors, which are G-

protein coupled receptors. GPCRs are a family of membrane proteins responsible

for transmitting extracellular signals into the cellular interior, resulting in physiolog-

ical responses [86]. The development of AA2AR antagonist drugs focuses mainly on

treating neurodegenerative diseases such as Parkinson’s, Alzheimer’s, and depres-

sion. Furthermore, AA2AR inhibition can also potentially be considered in cancer

immunotherapy [87]. On the contrary, AA2AR agonist molecules are commonly used
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(a) (b)

Figure 5.3: Distribution of tokens per sequence in the training with ChEMBL and
MOSES datasets. (a) ChEMBL dataset. (b) MOSES dataset.

to treat inflammatory diseases such as asthma and to promote wound healing [87].

Generator

The generator was trained using the datasets from ChEMBL and MOSES. The

first dataset contains chemical compounds without specified features, whereas the

second dataset is more restricted since it has been considered in several state-of-the-

art models to replicate the input distribution. Table 5.3 summarizes the number of

drugs contained in each dataset.

Table 5.3: Datasets for unbiased generator training.

Dataset Number of SMILES

ChEMBL 1046964
MOSES 1584663

5.2 Predictors

5.2.1 Transformer-Encoder Predictor

The neural network predictor is used to identify the affinity to inhibit the adenosine

A2A receptor, moreover, its development is based on two stages: MLM and fine-

tuning. As described in Section 4.3, their strategies for selecting the most suitable

models with optimal parameters differ.

Grid search is employed in MLM to optimize the model based on a range of prede-

fined values. The dropout rate of the transformer-encoder, the number of epochs,
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and the batch size of training, on the other hand, had fixed values. Similar to the

BERT [56] and SMILES-BERT models [55], which were the referenced works in this

stage, the dropout rate was 0.1. Even though grid search has a reduced number of

epochs, the training of the best model has been extended to 50 epochs in order to

improve performance. This restriction on iterations is coupled with early stopping

for computational efficiency. Furthermore, the batch size was 256 because 32 and 64

values were insufficient for convergence due to the model’s large input; 128 required

more time to train, and computer memory was not available for larger batch sizes.

In fine-tuning, a grid search with 5-fold cross-validation was used to determine the

optimal hyperparameter values. The insertion of hidden layers in the output of

the transformer-encoder was also analyzed. With the information learned during

the pre-training, adding more layers did not significantly improve the predictor’s

performance. Therefore, it was decided not to employ them and instead use just a

dense output layer to turn into the regression task of predicting the pIC50 value.

The training of the models is directly affected by the activation function, optimizer

algorithm, and loss function. The activation function, also known as the transfer

function, maps the weighted sum of a neuron’s inputs to an output value within the

prediction problem’s range of values. There are both linear and nonlinear activation

functions. Rectified Linear Unit (ReLU), Sigmoid, and Hyperbolic tangent (Tanh)

are examples of the latter category.

The linear function does not perform any transformation to the input, hence the

output is equal to the input. This is a simple function, and due to the lack of

back-propagation, it is incapable of learning complex predictions. The linear func-

tion output range of values extends from negative infinity to positive infinity [88].

Therefore, it is employed in the predictor, in the second dense layer of the PWFFN

in the Transformer-Encoder architecture to project the vector to its original di-

mension, and in the output layer of the fine-tuning to predict the affinity without

restrictions.

f(x) = x (5.1)

ReLU is one of the most commonly used functions in deep learning neural networks

[88]. It is computationally efficient and simple, identical to the linear function

except for negative inputs that return zero, and it can learn complex patterns in
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data. Similar to the Transformer architecture [57], ReLU function was employed in

the PWFFN’s first layer.

f(x) = max(0,x) (5.2)

Optimizers are algorithms responsible for adjusting the architecture’s parameters

based on minimizing the error, calculated by the loss function, between the predic-

tions and the true values via gradient backpropagation (from the output layer to

the input layers) [89]. The rate at which parameters are updated throughout each

iteration in order to obtain the minimum error is known as the learning rate. When

training models, there may be two opposing problems with the gradient that impede

the learning process: the vanishing gradient, in which the gradient is so small that

it varies the parameters to update insignificantly, affecting model training conver-

gence; and the exploding gradient, in which the gradient increases excessively and

causes the model to diverge [90]. Adaptive Moment Estimation (Adam) and Rec-

tified Adaptive Moment Estimation (RAdam) were selected as the main optimizers

given their capacity to obtain high performances.

The Adam optimizer algorithm estimates appropriate learning rates for each neural

network weight in order to converge faster to the local minimum error. It combines

the first and second-order moments (mean and uncentered variance, respectively)

[91]. Additionally, weight decay regularization was applied in the Adam algorithm

in order to reduce the weight values to minimize the risk of overfitting.

θt = θt−1 − α
mt

1−βt
1√

vt
1−βt

2
+ ε

(5.3)

, where θt represents the weights of a model at time step t, α is a defined learning

rate, m and v are the first and second order moments, β1 and β2 are the exponential

decay of the respective moments, and ε is a constant that prevents division by zero.

In this study, the values of Adam’s hyperparameters were equal to those established

in SMILES-BERT [55].

RAdam [92] is an optimizer that attempts to enhance Adam by automating the

learning rate adaptation. Adam and the majority of algorithms need to define the

appropriate warmup parameter, which is based on a very low learning rate in the

initial epochs to compensate for the large variance and limited data that exist in
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these training steps and can influence the location of the minimum prediction error.

RAdam adjusts the learning rate dynamically by assessing variance divergence using

a variance rectification term without requiring the specification of extra parameters.

The loss function is crucial to the training of deep learning models since it allows to

compute the calculation of the prediction error at each iteration. Due to the SMILES

input representation being a multi-integer vector, Sparse Categorical Cross Entropy

was used in MLM. This loss function can be expressed as:

scce = − 1

n

n∑
i=1

[
yi log ŷi + (1− yi) log(1− ŷi)

]
(5.4)

, where n is the output size, y is the true label, and ŷ is the predicted one.

Furthermore, the Mean Squared Error (MSE) was used as the loss function across

the phase of fine-tuning since it is for a regression task.

mse =
1

n

n∑
i=1

(yi − ŷi)2 (5.5)

Tables 5.4 and 5.5 summarize the hyperparameters selected to obtain the best MLM

and pIC50 predictor models, respectively.

The performance of the transformer-encoder predictor was compared to the most

popular machine learning models, KNN, RF, and SVM, using the same dataset

containing compounds and their pIC50 for AA2AR, with 85% of the data used

for training and 15% for testing. Also, to explore the effect of functional groups on

masking, two predictors were trained using the same sets but two distinct approaches

for masking in MLM: the one used in this study containing FGs and the one applied

in SMILES-BERT.

All the models of the framework were implemented and trained on AMD Ryzen 9

3900X and GeForce RTX 3070 8GB with Python 3.9.6, Keras [93], and Tensorflow

2.5 [94], and on Google Colab.
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Table 5.4: Optimized hyperparameters used in Masked Learning Modeling. *Early
stopping with a patience of 5 and model Checkpoint were used in the training
process.

Hyperparameters Value

D model (dimensional embedding vector) 512
Dff (feed forward projection size) 1024
Activation function of the PWFFN ReLU
Number of Encoders 4
Number of heads 4
Epochs* 50
Batch Size 256
Dropout Rate 0.1
Optimizer Rectified Adam
Learning Rate 0.001
β1 0.9
β2 0.999
Weight Decay 0.1
Loss Function Sparse Categorical Cross Entropy

Table 5.5: Parameter settings for the AA2AR predictor. *Early stopping with a
patience of 50 and model Checkpoint were used in the training process.

Hyperparameters Value

Activation Function Linear
Epochs* 200
Batch Size 32
Optimizer Rectified Adam
Learning Rate 1e-5
Loss Function Mean Squared Error

5.2.2 Machine Learning Predictors

K-Nearest Neighbors

KNN is a simple algorithm that assumes that elements with similar features belong

to the same class or have identical values, depending on the problem type (classifi-

cation or regression, respectively).

In this case study, the method begins by calculating the distance between the

molecules, followed by the selection of the K nearest neighbors. The predicted

binding affinity is the average of the K neighbor values. It is considered a lazy-
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learning algorithm since data is stored and training occurs only when a predictable

element is received.

Figure 5.4: K-Nearest Neighbors.

The 5-fold cross-validation technique (Figure 4.11) was used to optimize the pa-

rameters n neighbors, which refers to the number of neighbors to consider (odd

numbers are preferred to avoid ties), and metric, which identifies the mathematical

algorithm used to calculate the distances between compounds. All the employed

machine-learning approaches were developed using Scikit-Learn [95].

Table 5.6: Hyperparameters of the KNN model.

Hyperparameter Value

metric manhattan
n neighbors 3

Random Forest Regression

RF is a machine learning model efficient in classification and regression tasks. This

approach employs an ensemble of uncorrelated decision trees, with the final output

being the mean of each prediction in the case of regression or the most predicted

class in the case of classification. Decision trees contain multiple nodes, and each

node divides the dataset into subsets based on a splitting method (e.g., variance

minimization for continuous data) applied to one feature. The process of data di-

vision continues until the predicted value is determined. Each decision tree was

created using bootstrapping for randomly selected training data to ensure noncor-

relation. However, the non-sampled data (out-of-the-bag) is used to evaluate the
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performance. Moreover, each tree considers a random assortment of features. Due

to its ensemble learning and bootstrapping, the model is appropriate for different

data types and produces precise results.

The optimized hyperparameters (Table 5.7) were identified using 5-fold cross-validation

(Figure 4.11). The parameter n estimators is the number of decision trees included

in the model, max features represents the number of features used in the split, and

the other parameters are Scikit-learn defaults [95].

Figure 5.5: Random Forest Regression.

Table 5.7: Hyperparameters of the Random Forest Regression model.

Hyperparameter Value

max features sqrt
n estimators 500

Support Vector Regression

SVR is an adaptation of the SVM algorithm for predicting continuous values in

regression tasks. The objective of SVM is to correctly classify the data by identifying

an optimal hyperplane that separates the classes with maximum margins. It is

applied to both linearly separable and non-linear data, with soft margins and kernel

functions in the latter case. Soft-margins permit classes to be misclassified, i.e.,

data points that pass the hyperplane, within or outside the margins. Furthermore,

Kernel functions map data to higher dimensions so that it can be separated linearly

(e.g., Radial Basis Function, Polynomial).
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Figure 5.6: Support Vector Regression.

SVR is identical to SVM in terms of the hyperplane concept (regression function

in SVR), Kernels, and soft-margin. However, it differs primarily by its objective,

which is to minimize the amount of data out of the ”tube”. The regression line is

in the middle of the ”tube” whose width is set by the parameter epsilon (ε).

Table 5.8: Hyperparameters of the SVR model.

Hyperparameter Value

C 1.0
metric rbf
gamma scale

Moreover, SVR is a flexible method whose performance is highly dependent on

the parameters. The following parameters were achieved using the 5-fold cross-

validation method: C (regularizes the margins), the kernel function, and gamma

(the kernel function coefficient).

5.3 Transformer-Decoder Generator

The grid search methodology and the majority of training hyperparameters used

by the generator were identical to Masking Learning model. Since the transformer-

decoder and transformer-encoder behave similarly (the look-ahead mask is the pri-

mary architectural difference), the dropout rate, number of epochs (in grid search

and training of the best model), and batch size have the same values as MLM. The

optimized hyperparameters are presented in Table 5.9.
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Table 5.9: Optimized hyperparameters used in the generator model. *Early stop-
ping with a patience of 5 and model Checkpoint were considered.

Hyperparameters Value

D model (dimensional embedding vector) 512
Dff (feed forward projection size) 1024
Activation function of the PWFFN ReLU
Number of Encoders 8
Number of heads 4
Epochs* 50
Batch Size 256
Dropout Rate 0.1
Optimizer Rectified Adam
Learning Rate 0.001
β1 0.9
β2 0.999
Weight Decay 0.1
Loss Function Sparse Categorical Cross Entropy
Temperature 0.9

5.4 Optimized Transformer-Decoder Generator

The hyperparameters of the best model to produce molecules with optimized desired

properties are summarized in Table 5.10. Furthermore, the number of epochs is

related to the number of molecules that are given as input, as well as those that are

generated and replaced. After a certain epoch, the pharmacological properties of

the generated molecules begin to deteriorate.

The efficiency of the optimization process is dependent on the molecules with the

best properties. Consequently, the input substitution thresholds studied were signif-

icantly lower than the number of molecules generated in order to make a better selec-

tion of molecules with superior qualities. Moreover, a smaller number of molecules

were substituted from the input in order to avoid instability in the generator, which

could occur if a large proportion of compounds were replaced, causing difficulty

in the model convergence. Furthermore, the batch size used was 128, due to an

insufficiency of computational resources.
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Table 5.10: Optimized hyperparameters used in optimized generator. *Early stop-
ping with a patience of 20 and model Checkpoint were used in the training process.

Parameters Value

Epochs* 60
Batch Size 128
Optimizer Rectified Adam
Learning Rate 0.001
Loss Function Sparse Categorical Cross Entropy
Number of Input Molecules 8500
Number of Generated Molecules 1200
Number of New Input 450
Temperature 0.9
Pharmacological properties to be optimized pIC50, SAS, LogP, MW, TPSA

5.5 Evaluation Metrics

5.5.1 Predictor

Metrics permit the measurement of a model’s capacity to perform a certain task. In

this case, the objective of the metrics is to measure, during pre-training, the model’s

ability to predict the masked tokens from the context and, during fine-tuning, the

model’s efficiency in determining the affinity of medicines to AA2AR. Overall, the

predictor metrics do make comparisons between predicted and true values. However,

each one focuses on a certain aspect, and selecting the most appropriate one enables

a more objective and reliable evaluation.

Since MLM is a classification problem, accuracy was used along with sparse cate-

gorical cross-entropy (5.4).

• Accuracy: proportion of correctly predicted classes.

acc =
number of correct predictions

total number of predictions
(5.6)

Accuracy is a metric that performs better for balanced data, as it can provide

incorrectly good accuracy for imbalanced datasets if it correctly predicts solely the

class with the most representations, for example. The accuracy of this work is

calculated based on the hidden tokens, which were selected randomly. Furthermore,

the sparse categorical cross entropy determined the difference between the predicted
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token and the original in tokens where the mask was applied.

The following regression metrics were applied to the fine-tuned predictor:

• Mean Squared Error (expression 5.5)

• Coefficient of Determination

R2 = 1−
∑n

i=1(yi − ŷi)2∑n
i=1(yi − ȳ)2

(5.7)

• Concordance Correlation Coefficient (CCC) [96]

CCC =
2syŷ

s2y + s2ŷ + (ȳ − ¯̂y)2
(5.8)

with

ȳ =
1

n

n∑
i=1

yi

s2y =
1

n

n∑
i=1

(yi − ȳ)2

syŷ =
1

n

n∑
i=1

(yi − ȳ)(ŷi − ¯̂y)

, where n is the number of samples, y is the true value, ŷ is the predicted value and
¯̂y is its average. The MSE metric measures the prediction error of the regression.

R2 indicates how well the model fits the test dataset, although it does not provide

enough information about the prediction performance. So, CCC was used to eval-

uate the outcomes’ proximity to the optimal line ytrue = ypredicted, taking precision

and accuracy into account, i.e., how closely the predicted values are to the regres-

sion line and how far the regression line deviates from the optimal reference line,

respectively.

5.5.2 Generator and Optimized Generator

There are an increasing number of computational algorithms in drug design, so it is

necessary to use appropriate metrics to compare their performance. In this study,

the following metrics were used to determine the quality of the molecules produced
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by the generator and the optimized generator:

• Validity: percentage of chemically valid generated compounds. Validity was

determined using a RDKit [18] function that converts SMILES strings to

molecules and checks the chemical syntax, bonds, and valence atoms.

• Novelty: percentage of valid unique molecules that are novel, i.e., not part of

the training dataset. If this metric is too low, the model is overfitted.

• Uniqueness: percentage of valid molecules produced uniquely. If this measure

is too low, the model repeatedly creates the same sequences. Unique@10000

is used in MOSES benchmarks to estimate the uniqueness of the first 10000

molecules.

• Internal diversity (IntDivp): diversity of unique and valid generated molecules

(M). Since it uses the Tanimoto similarity (Ts), the SMILES strings need to

be transformed into fingerprints. The value range between 0 and 1, and the

higher it is, the more diverse the molecules are.

IntDivp = 1− p

√
1

|M |2
∑

m1,m2∈M

Ts(m1,m2)p (5.9)

with p ∈ {1,2}

For the optimized generator, the respective pharmacological characteristics were also

determined: pIC50 of AA2AR, SAS, LogP, MW, TPSA, QED and the percentage

of molecules that follow strictly Lipinski’s Rule of Five [30]. The SAS, LogP, MW,

TPSA properties were estimated using the RDKit library [18].
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Results and Discussion

6.1 Predictor

The predictor plays a crucial role in the proposed framework for the design of novel

AA2AR-active compounds. Hence, it is essential that the model effectively predicts

the binding affinity of the molecules for the Adenosine A2A Receptor.

The Transformer-Encoder predictor was first pre-trained using MLM. At this stage,

the objective is for the model to gain a general knowledge of the SMILES syntax

by learning to identify the randomly masked tokens, which can belong to FGs or

not. Table 6.1 summarizes the results obtained in the MLM phase in terms of the

metrics described in Section 5.5.1.

Table 6.1: Pre-training prediction results in training and testing datasets.

Dataset Loss Accuracy

Training 0.1087 0.9612
Testing 0.1096 0.9611

There is no significant difference between the identified performance of the masked

tokens in the training and testing datasets, with both sets presenting promising re-

sults with approximately 0.11 of loss and 0.96 of accuracy. The results show the

model’s ability to determine the elements that were masked using the context of un-

changed tokens. Furthermore, the results demonstrated the method’s generalization

capability, as the testing set’s evaluation outcome is similar to the training set’s.

Then the model with the pre-trained MLM weights was shifted via fine-tuning to

predict the affinity of molecules to the Adenosine A2A receptor. Min-Max Scaler

and Robust Scaler were the two types of normalization applied to the pIC50 values
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of the dataset used for fine-tuning. The table 6.2 shows the results obtained for the

fine-tuned predictor using the two types of normalization.

Table 6.2: Evaluation of predictor efficacy using different normalization techniques.

Scaling MSE R2 CCC

Min-Max Scaler 0.012 0.589 0.801
Robust Scale 0.037 0.650 0.820

Normalization helps the model’s convergence, with different types of normalization

producing different results. The Robust Scaler outperformed the Min-Max Scaler

in the R2 and CCC metrics, with 0.65 and 0.82, respectively, demonstrating better

precision and accuracy. The Min-Max Scaler has the lower MSE; however, this

measure is heavily influenced by the distribution of pIC50 values. The difference in

performance between the two types of normalization can be explained by the Robust

Scaler (equation 4.3) being better suited to this dataset since it employs quartile

measures that are less sensitive to outliers compared to the mean.

The framework’s predictor forecast normalized values of pIC50 by Robust Scaler, as

shown in Figure 6.1. However, the normalized values have no biological significance

because they are dependent on the Q1 and Q3 values of the training data distri-

bution. Thus, it is necessary to apply de-normalization to obtain the real pIC50 of

AA2AR compounds.

To validate the Transformer-Encoder predictor’s efficacy in estimating compounds’

affinity for AA2AR, its performance was compared to the most popular ML models.

Table 6.3 demonstrates the effectiveness of machine learning models based on the

MSE, R2, and CCC metrics with data normalized by RobustScaler.

Table 6.3: Predictive test data results for machine learning models.

ML Model MSE R2 CCC

KNN 0.059 0.447 0.668
RF 0.045 0.579 0.712
SVR 0.059 0.446 0.618

The machine-learning approach that performed the best across all metrics was RF,

which is typically the most robust for all the variety of data inputs and the least vul-

nerable to overfitting. Nevertheless, the proposed predictor outperformed Random
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Figure 6.1: Predictions against true values for the binding affinity testing set [83],
where the diagonal line is the reference (predicted = true value).

Forest in all three criteria: MSE (0.037), R2 (0.650), and CCC (0.820). Thus, it

demonstrates the effectiveness of the Transformer-Encoder in predicting the binding

affinity for the specific target.

In this study, the MLM used differs from its conventional method by applying masks

to a percentage of FGs atoms. In order to assess the usefulness of this innovation,

two predictors were compared, one with the MLM used in BERT [56] and SMILES-

BERT [55] and the other with the MLM employed in this study. The pre-training

and fine-tuning results obtained by the models are summarized in Tables 6.4 and

6.5, respectively.

Table 6.4: Hidden token prediction results in training and testing datasets, con-
sidering two different masking approaches in MLM with 10 epoch training.

Masked FGs in MLM? Dataset Loss Accuracy

Yes Training 0.161 0.943
Yes Testing 0.161 0.944
No Training 0.149 0.948
No Testing 0.146 0.949

The results of MLM show that the model that did not mask FGs (used in BERT [56]

and SMILES-BERT [55]) appears to learn the SMILES semantics better than the
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Table 6.5: Comparison of the Fine-tuning prediction results over the testing set
based on two different MLM approaches.

Masked FGs in MLM? MSE R2 CCC

Yes 0.0382 0.6413 0.8254
No 0.0429 0.5983 0.8106

one proposed in this work, which selects 7% of the tokens belonging to functional

groups to mask and 7% of the remaining elements. Due to the limited diversity of

functional group atoms, the proposed model learns context based on identical atoms.

Nevertheless, the fine-tuned predictor used in the framework outperformed the other

model in every metric: MSE (0.038 compared to 0.0429), R2 (0.64 compared to

nearly 0.60), and CCC (0.83 compared to 0.81). The outcomes are consistent with

the notion that information from the functional groups contributes to the prediction

since they affect the properties of the compounds, and molecules with similar FGs

usually exhibit identical properties.

Furthermore, the pre-trained predictor with 50 training epochs exhibits a slight

improvement over the one with 10 training epochs in MSE and R2 but is lower for

CCC (MSE: 0.037, R2: 0.65, CCC: 0.82 and MSE: 0.038, R2: 0.64, CCC: 0.83,

respectively).

Based on the obtained results, we can infer that the developed Transformer-Encoder

predictor performed efficiently in the application of self-attention mechanisms for the

identification of masked tokens. In addition, it was demonstrated that adding the

information related to functional groups in the pre-training stage was advantageous

for fine-tuning the model.

6.2 Generator

The unbiased generator is the basis of the proposed framework, as it is the model

responsible for the development of novel chemical compounds. Therefore, it is es-

sential that the generator be able to produce valid and distinct molecules.

In order to evaluate the performance of the unbiased generator trained with the

ChEMBL dataset [83] that was used as a starting point in the framework, 10 000

molecules were generated. This number was chosen because it provided a more stable

evaluation while complying with the computational resources. Table 6.6 shows the
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results of the evaluation metrics mentioned in section 5.5.2 for the 10 000 SMILES

molecules produced by the unbiased generator.

Table 6.6: Evaluation of the efficiency of the unbiased generator trained on the
ChEMBL dataset [83] relatively to the internal diversity, uniqueness, novelty, and
validity.

IntDiv 1 IntDiv 2 Novelty (%) Unique (%) Validity (%)

0.871 0.863 95.96 99.85 93.52

The results indicate that the model is effective at generating valid and unique com-

pounds (93.5% and almost 100%, respectively), with synthesis variability exceeding

0.86. Furthermore, it has a high degree of novelty, nearly 96% of the unique valid

molecules were not present in the training set.

To compare the generation capacity of the Transformer-Decoder with the state-of-

the-art generative models, 30000 molecules were generated from the model trained

with the MOSES dataset [84]. This number of compounds produced is the minimum

amount needed for an appropriate comparison between models, as suggested on the

MOSES platform. Table 6.7 demonstrates the outcomes of the comparison between

unconditional Transformer-Decoder and the baseline models implemented in the

MOSES benchmark [84].

Table 6.7: Comparison of the effectiveness of multiple deep learning models trained
on the MOSES dataset [84].

Generator IntDiv 1 IntDiv 2 Novelty (%) Unique@10k (%) Validity (%)

Transformer-Decoder 0.855 0.849 97.38 99.92 91.15
CharRNN 0.856 0.850 84.19 99.94 97.48
AAE 0.856 0.850 79.31 99.73 93.68
VAE 0.856 0.850 69.49 99.84 97.67
JTN-VAE 0.855 0.849 91.43 99.96 100.0
LatentGAN 0.857 0.850 94.98 99.68 89.66

The proposed generator has the highest novelty metric value, exceeding 97%, in-

dicating that the Transformer-Decoder is the least susceptible to overfitting when

generating novel lead compounds.In other metrics except for validity, the proposed

model’s performance is comparable to that of models with better results. The va-

lidity is not so high; however, this generator was not trained to produce molecules

with specific properties, unlike the other models.
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The six deep neural networks exhibits similar internal diversity and uniqueness

metric values, indicating that they all possess a comparable capacity to generate

with reduced redundancy. In JTN-VAE, where molecules are represented by sub-

graphs, the validity is 100% because this metric is controlled during the model exe-

cution. The AAE, VAE, and CharRNN also have a higher validity measure than the

Transformer-Decoder, but their performance in the novelty domain is relatively low

when compared. Based on the results, the Transformer-Decoder and LatentGAN

are the SMILES-based models with the most balanced performance across all five

metrics. However, the Transformer-Decoder outperforms LatentGAN in validity,

uniqueness, and novelty.

From the acquired results, the unbiased generator, which uses the knowledge of

long-short term dependencies between the tokens of the SMILES strings, produces

promising unconditional molecules. Moreover, the dataset used (ChEMBL and

MOSES) has a visible effect on the performance of the model, evidenced by vari-

ations in all evaluation measures of the proposed generator (Tables 6.6 and 6.7).

Nevertheless, the proposed model was efficient in both sets.

6.3 Optimized Generator

The generation of compounds with therapeutic properties is essential to the discov-

ery of potential drugs. The primary focus of this study is the optimization of the

generator, which needs to be capable of producing drug-like molecules.

Table 6.8 shows the results of training the model to optimize different properties

with a training set of 8500 molecules created by the unbiased generator. Each set of

10 000 generated molecules is evaluated for validity, uniqueness, internal distance,

novelty, mean value of biological affinity, and the number of molecules in agreement

with Lipinski’s Rule of Five [30].

Table 6.8: Performance results of the set of biased models trained on the 8500
molecules generated by the unbiased generator.

Type IntDiv 1 IntDiv 2 Novelty (%) Unique (%) Validity (%) Mean pIC50 % Rule of Five

Unbiased 0.871 0.863 95.76 99.86 93.46 5.86 77.36
pIC50 0.820 0.811 100.0 76.08 96.62 7.64 50.74
pIC50+SAS 0.780 0.771 99.93 82.70 99.37 7.27 69.19
pIC50+SAS+LogP 0.788 0.778 99.94 78.98 99.68 7.04 86.63
pIC50+SAS+MW 0.799 0.790 99.91 80.88 99.88 7.07 91.19
pIC50+SAS+TPSA 0.797 0.787 99.96 76.34 99.84 7.08 69.69
pIC50+SAS+LogP+MW+TPSA 0.826 0.817 99.28 75.41 99.79 6.81 99.36

In terms of novelty, validity, and pIC50, all the optimization approaches outper-
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formed the unbiased generator. This can be explained by the feedback-loop opti-

mization, which, during training in each iteration, replaces its input with the gen-

erated valid, unique, and new molecules with high affinity. The training dataset is

smaller than the one used by the unbiased generator, allowing for more emphasis on

enhancing the SMILES grammatical rules. However, the process of optimizing the

Transformer-Decoder led to a reduction in uniqueness and diversity, probably as a

result of the lower training data sample size.

On the biased models, pIC50+SAS+LogP+MW+TPSA has the highest percentage

of molecules that follow Lipinski’s Rule, with 99% of the molecules produced be-

ing potentially orally bioactive. The optimization of pIC50+SAS+MW obtained

the second best value in this metric, followed by pIC50+SAS+LogP. Optimiz-

ing pIC50, pIC50+SAS and pIC50+SAS+TPSA produced molecules with inferior

physicochemical properties than the unconditional generation. Therefore, molecular

weight and LogP had a considerable influence on the Lipinski Rule violation in this

study.

Increasing the number of attributes to be improved has a negative impact on the

enhancement of pIC50. This is due to the fact that the multiobjective optimization

algorithm gives equal weight to all characteristics.

The pIC50+SAS+LogP+MW+TPSA generator was selected as the best-biased

model because of its superior ability to produce compounds with pharmacologi-

cal properties. Even though its average pIC50 is not the highest, it significantly

outperforms the unbiased. Figure 6.2 depicts the evolution of the biological affinity

for AA2AR over several training epochs.

The ability of the optimization framework was analyzed by graphically comparing

the distributions of 10000 molecules created by the unconditional generator and

biased pIC50+SAS+LogP+MW+TPSA model. Figure 6.3 illustrates the compar-

isons. There is an increase in the affinity for AA2AR. Furthermore, virtually all

physicochemical properties are within the desired range. Besides the drug-like effec-

tiveness of the produced molecules, as demonstrated by the maximization of QED,

they are also potentially synthesizable (SAS values lower than 5).

The optimized generator was also trained on a larger dataset, including 20000

molecules, to expand its variability since using a shortened dataset to optimize

pharmacological qualities could be the cause of reduced diversity and uniqueness of

biased molecules compared to unbiased. Table 6.9 summarizes the results obtained
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Figure 6.2: Distribution of the predicted pIC50 values in molecules synthesized
by the optimized generator (pIC50+SAS+LogP+MW+TPSA) at multiple training
epochs.

from the pIC50+SAS+LogP+MW+TPSA model with 20000 compounds.

Table 6.9: Evaluation of the optimized model trained with 20 000 molecules gen-
erated by the unconditional generator.

Type IntDiv 1 IntDiv 2 Novelty (%) Unique (%) Validity (%) Mean pIC50 % Rule of five
pIC50+SAS
+LogP+MW
+TPSA

0.841 0.830 99.47 89.22 99.78 6.42 96.37

The larger dataset improved the diversity and uniqueness of the generator (from

75% to 89% uniqueness). However, the drug-likeness and biological affinity values

deteriorated slightly, which may have been caused by the inappropriate number of

epochs or quantity of molecules to replace (which was the same proportion as used

in the 8500 compounds).

Based on the results, the effectively optimized generator pIC50+SAS+LogP+MW+

TPSA trained with 8500 is shown to be potentially suitable for the generation of

small molecules with pharmacokinetic parameters, such as absorption by the organ-

ism and cell membrane permeability, that allow drugs to be biologically active for

the Adenosine A2A Receptor target. Figure 6.4 illustrates a few examples of these

SMILES strings. Furthermore, there is a trade-off between obtaining a wider variety

of molecules and their desired therapeutic characteristics.
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(a) (b)

(c) (d)

(e) (f)

Figure 6.3: Comparison of the property distributions of the molecules generated
by the unbiased model against the biased pIC50+SAS+LogP+MW+TPSA model.
(a) Biological affinity of AA2AR. (b) Synthetic accessibility score. (c) Molecular
lipophilicity. (d) Molecular weight. (e) Topological polar surface area. (f) Quanti-
tative Estimate of Drug-Likeness. The vertical black lines correspond to the upper
boundaries of the desired properties.
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Figure 6.4: Examples of novel compounds created by the best optimizing genera-
tor, along with their biological affinity for AA2AR and physicochemical properties.

6.4 Framework Limitations

The models incorporated into the proposed framework achieved remarkable out-

comes, despite having limitations.

This research focuses on de novo drug design using an optimization feedback loop

with a generator and a predictor. In the preprocessing of the molecule data, the

SMILES were inadvertently not standardized into a canonical format, which theo-

retically promotes semantic consistency by preventing the same structure from being

represented by multiple SMILES. Nevertheless, after detecting this flaw, the models

were also tested with data in the canonical form, and the models produced identical

results, not being confused by the token context.

Large datasets were used in the initial phase of training transformer-based mod-

els from scratch because they needed to learn generalized SMILES dependencies.

However, with more data available, all these deep neural networks could expand

their knowledge, specifically the fine-tuning of the predictor and the optimization

of the generator. As demonstrated by the results obtained, the amount of data and

its representation influence the efficiency. Despite the limited set sizes, the models
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perform effectively.

The success of feedback loop generator optimization is highly dependent on the size

of the training dataset, the number of training epochs, the number of molecules to

be substituted, and the attributes to be enhanced. Despite the difficulty of selecting

the appropriate parameters, this study reached a favorable balance. In terms of

property enhancement, the optimization algorithm only minimizes or maximizes.

Hence, it does not adjust the attributes for a particular range. Nevertheless, the

goal was to create active molecules for a target by maximizing affinity and drug-

likeness following the Rule of Five, i.e., by optimizing pharmacological properties to

avoid exceeding the boundaries.
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Conclusion

7.1 Final Remarks

In this study, an End-to-End Transformer-based Approach was proposed for the

generation of molecules capable of acting on a specific biological target, and pos-

sessing appropriate physical and chemical properties for therapeutic efficacy. The

strategy for optimizing the drug generation combines two transformer architectures

and a multi-objective optimization algorithm in a feedback loop.

We started by developing the predictor model responsible for assessing the affinity

of the drug-target complex. Its training was divided into two stages, pre-training

and fine-tuning. In pre-training, the MLM technique was implemented with the

masking innovation of focusing on functional groups. During fine-tuning, the model

learned to predict the binding affinity of drugs for a biological target. The dataset

used in fine-tuning required normalization, hence we analyzed the influence of two

types of normalization on the prediction efficiency. A significant performance im-

provement was verified when using the robust outlier method, demonstrating the

relevance of an adequate data representation. The performance of the Transformer-

Encoder predictor was compared with the ML models KNN, RF, and SVR, and with

the predictor with the same architecture but that applied conventional MLM. The

proposed predictor approach obtained better results than machine-learning models.

In addition, although the predictor’s pre-training performance was inferior to the

model with the standard MLM, its fine-tuning performance was superior across all

metrics. The outcomes demonstrate the viability of the transformer architecture

that considers short and long-term dependencies to create a vector representation.

Moreover, the significance of performing a pre-train to gain chemical context is

evidenced along with the informational potential provided by the functional groups.
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The second step was to implement a transformer-decoder generator, which was used

to generate molecules with no specific properties. The model was trained on two

datasets, one of which aimed to compare its performance with the state-of-the-art

generators. The results of the two datasets demonstrate that the generator can

generate valid SMILES strings that are nearly 100% unique and almost all non-

existent in the training set. The performance of the Transformer-Decoder compared

to state-of-the-art models revealed coherence in all metrics and the highest capacity

to produce novelty compounds, higher than 97%. The Transformer, which employs

self-attention mechanisms, demonstrated the capability to learn SMILES syntax and

generalization ability, and is less susceptible to overfitting due to its high novelty

rate.

The final phase was to build the generator optimization framework to generate po-

tential drug-like synthesizable compounds with higher activity for a target. It con-

tains a transformer-decoder and a transformer-encoder that were previously trained.

Furthermore, an optimization algorithm was used to rank the molecules based on

their properties and provide the best chemical compounds to the generator in a

feedback loop. Multiple models were trained with various combinations of charac-

teristics to be optimized. The method with the best performance was the one that

simultaneously improved pIC50, SAS, LogP, MW, and TPSA, containing 99.36%

chemical entities that strictly follow Lipinski’s rule of five, i.e. molecules that are

likely to be orally bioactive. Moreover, its validity and novelty metrics values are

nearly 100%, and the mean affinity to AA2AR measured by pIC50 is 6.81, compared

to 5.81 for the non-optimized approach. Since diversity and uniqueness deteriorated

throughout the process, we trained with a larger dataset, which improved these

measures while decreasing the affinity and proportion of drug-like compounds. The

experimental results reveal the framework’s flexibility to bias the generator’s output

and the considerable quality of drug-likeness produced, which is highly dependent

on the attributes analyzed in the multi-objective optimization algorithm.

The primary contribution of this dissertation was in the application of models based

on Transformer, an interpretable architecture, to design drugs for a biological target

while considering simultaneous multiple pharmacokinetic properties that influence

pharmacological effectiveness. Furthermore, the proposed framework does not re-

quire a training set of SMILES with the desired properties since it can identify the

most promising SMILES during training.
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7.2 Future Work

The performance of the predictor and generator models is affected by the quantity

of information provided. Hence, one of the following steps would be to use larger

datasets, especially during the phase of fine-tuning, which had a limited amount of

information for training. Therefore, providing additional information to the pro-

posed transformer-based approaches could improve their capacity to learn the rela-

tionships between the constituents of each compound in order to acquire a better

understanding of the SMILES syntax.

The results obtained by the framework demonstrate the significance of the properties

selected to be optimized in drug design. It would be interesting if the multi-objective

optimization algorithm included other biological targets and properties, such as

toxicity, which is a relevant factor in determining the acceptability of potential

drugs.

Molecules designed to bind to a specific biological target can also connect to other

targets (off-targets), typically with a lower affinity. In some cases, however, this can

result in adverse effects that lead to drug rejection in the preclinical and clinical

phases [97]. The consideration of this issue in future research could be beneficial to

the discovery of drug-like compounds.

This work used a multi-objective algorithm, although different non-dominated sort-

ing techniques could be employed to explore other outcomes. Furthermore, the

algorithm organized the molecules based on the minimization or maximization of

pharmacologic characteristics. This approach is not always valid, such as in the case

of drugs capable of crossing the blood-brain barrier, for which Hansch et. al. deter-

mined that the optimal LogP ranges between 1.5 and 2.7 [98]. In this circumstance,

the objective functions for ordering molecules across the different Pareto fronts could

have upper and lower limits based on the restriction values.

The predictor forecasts the activity of a molecular entity toward a single target.

However, the predictor could be modified to estimate the binding affinity for multiple

targets using multitasking fine-tuning. This method could be trained with only one

pre-training, followed by a fine-tuning stage where the model is trained to predict

various variables simultaneously using different losses. Since diseases may be affected

by multiple factors, it would be advantageous to include a multitasking predictor

into the framework for the production of potential drugs for multi-targets.
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Appendix

A.1 Sinusoidal Positional Encoding Demonstration

sin(α + β) = sinα cos β + cosα sin β

cos(α + β) = cosα cos β − sinα sin β
(A.1)
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Thereby, the matrix M in 3.2 is defined by:

(A.2)
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M(i) =

 cos
(

x

10000
2i
d

)
sin
(

x

10000
2i
d

)
− sin

(
x

10000
2i
d

)
cos
(

x

10000
2i
d

) (A.3)

80



A. Appendix

81



A. Appendix

82



Bibliography

[1] J. Drews, “Drug discovery: a historical perspective,” science, vol. 287, no. 5460,

pp. 1960–1964, 2000.

[2] “General drug categories.” [Online]. Available: https://www.fda.gov/drugs/

investigational-new-drug-ind-application/general-drug-categories

[3] R. M. Dick, “2 pharmacodynamics : The study of drug action.”

[4] V. S. Rao and K. Srinivas, “Modern drug discovery process: An in silico ap-

proach,” Journal of bioinformatics and sequence analysis, vol. 2, no. 5, pp.

89–94, 2011.

[5] A. Pandeyl, “Overview of all phases in drug development and discovery

process.” [Online]. Available: https://www.nebiolab.com/drug-discovery-and-

development-process/

[6] R. C. Mohs and N. H. Greig, “Drug discovery and development: Role of ba-

sic biological research,” Alzheimer’s & Dementia: Translational Research &

Clinical Interventions, vol. 3, no. 4, pp. 651–657, 2017.

[7] “The drug development process.” [Online]. Available: https://www.fda.gov/

patients/learn-about-drug-and-device-approvals/drug-development-process

[8] P. Aparoy, K. Kumar Reddy, and P. Reddanna, “Structure and ligand based

drug design strategies in the development of novel 5-lox inhibitors,” Current

medicinal chemistry, vol. 19, no. 22, pp. 3763–3778, 2012.

[9] S.-F. Zhou and W.-Z. Zhong, “Drug design and discovery: principles and ap-

plications,” p. 279, 2017.

[10] V. D. Mouchlis, A. Afantitis, A. Serra, M. Fratello, A. G. Papadiamantis, V. Ai-

dinis, I. Lynch, D. Greco, and G. Melagraki, “Advances in de novo drug de-

83

https://www.fda.gov/drugs/investigational-new-drug-ind-application/general-drug-categories
https://www.fda.gov/drugs/investigational-new-drug-ind-application/general-drug-categories
https://www.nebiolab.com/drug-discovery-and-development-process/
https://www.nebiolab.com/drug-discovery-and-development-process/
https://www.fda.gov/patients/learn-about-drug-and-device-approvals/drug-development-process
https://www.fda.gov/patients/learn-about-drug-and-device-approvals/drug-development-process


Bibliography

sign: From conventional to machine learning methods,” International journal

of molecular sciences, vol. 22, no. 4, p. 1676, 2021.

[11] ShareVault, “The biggest challenges for the pharmaceutical industry in 2022.”

[Online]. Available: https://www.sharevault.com/blog/life-sciences/biggest-

challenges-for-the-pharmaceutical-industry-in-2022

[12] H. Xue, J. Li, H. Xie, and Y. Wang, “Review of drug repositioning approaches

and resources,” International journal of biological sciences, vol. 14, no. 10, p.

1232, 2018.

[13] S. P. Leelananda and S. Lindert, “Computational methods in drug discovery,”

Beilstein journal of organic chemistry, vol. 12, no. 1, pp. 2694–2718, 2016.

[14] F. Mao, W. Ni, X. Xu, H. Wang, J. Wang, M. Ji, and J. Li, “Chemical structure-

related drug-like criteria of global approved drugs,” Molecules, vol. 21, no. 1,

p. 75, 2016.

[15] S. Maslehat, S. Sardari, and M. G. Arjenaki, “Frequency and importance of six

functional groups that play a role in drug discovery,” Biosciences Biotechnology

Research Asia, vol. 15, no. 3, pp. 541–548, 2018.

[16] L. David, A. Thakkar, R. Mercado, and O. Engkvist, “Molecular representa-

tions in ai-driven drug discovery: a review and practical guide,” Journal of

Cheminformatics, vol. 12, no. 1, pp. 1–22, 2020.

[17] D. Weininger, “Smiles, a chemical language and information system. 1. intro-

duction to methodology and encoding rules,” Journal of chemical information

and computer sciences, vol. 28, no. 1, pp. 31–36, 1988.

[18] G. Landrum et al., “RDKit: Open-source cheminformatics,” 2021.

[19] K. Chemoinformatics, “Dragon 7.0.” [Online]. Available: https://chm.kode-

solutions.net/pf/dragon-7-0/

[20] D. Rogers and M. Hahn, “Extended-connectivity fingerprints,” Journal of

chemical information and modeling, vol. 50, no. 5, pp. 742–754, 2010.

[21] M. Panalytical, “Binding affinity.” [Online]. Available: https://www.

malvernpanalytical.com/en/products/measurement-type/binding-affinity

[22] C. Yung-Chi and W. H. Prusoff, “Relationship between the inhibition constant

(ki) and the concentration of inhibitor which causes 50 per cent inhibition (i50)

84

https://www.sharevault.com/blog/life-sciences/biggest-challenges-for-the-pharmaceutical-industry-in-2022
https://www.sharevault.com/blog/life-sciences/biggest-challenges-for-the-pharmaceutical-industry-in-2022
https://chm.kode-solutions.net/pf/dragon-7-0/
https://chm.kode-solutions.net/pf/dragon-7-0/
https://www.malvernpanalytical.com/en/products/measurement-type/binding-affinity
https://www.malvernpanalytical.com/en/products/measurement-type/binding-affinity


Bibliography

of an enzymatic reaction,” Biochemical pharmacology, vol. 22, no. 23, pp. 3099–

3108, 1973.

[23] C. Selvaraj, S. K. Tripathi, K. K. Reddy, and S. K. Singh, “Tool development

for prediction of pic 50 values from the ic 50 values-a pic 50 value calculator.”

Current Trends in Biotechnology & Pharmacy, vol. 5, no. 2, 2011.
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