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Professores Joel P. Arrais e Maryam Abbasi, pela tutela e compreensão nessa fase

de transição e aprendizado; sua orientação propiciou não apenas direção e conheci-

mento, mas também grande inspiração para desenvolver esse projeto.
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Tenho também grande apreciação pelos colegas do LARN, que propiciaram um ambi-

ente coleguismo e cordialidade, com interessantes reuniões e discussões. Em especial,

agradeço a Nelson Monteiro e a Tiago Pereira, pelas colaborações, contribuições e

sugestões.

Por fim, agradeço aos meus amigos e minha famı́lia, particularmente à minha par-
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Resumo

A descoberta de medicamentos é um processo altamente demorado, complexo e caro,

com baixas taxas de sucesso. Estimativas recentes apontam que para lançar um novo

medicamento são necessários, em média, US$ 1,8 mil milhões e doze anos de tra-

balho. Essa situação se deve em parte à alta dimensionalidade do espaço qúımico,

que estima-se incluir entre 1033 and 1060 moléculas sinteticamente acesśıveis [2].

Avaliar todo o espaço qúımico é proibitivamente caro, sendo portanto de extrema

importância encontrar maneiras de restringir o âmbito de busca. Para tal, a in-

teligência artificial foi recentemente de várias maneirasincorporada na descoberta

de medicamentos; dentre elas, modelos generativos profundos têm mostrado grande

potencial para produzir posśıveis candidatos a fármacos. Apesar disso, esta tecnolo-

gia ainda está em sua infância e possui algumas falhas fundamentais; por exemplo,

tais modelos dificilmente levam em conta informações sobre configurações tridimen-

sionais moleculares ou são validados por métodos realistas.

Este trabalho visa ajudar tal processo com proposto o sistema de validação baseado

em docking molecular para modelos generativos de aprendizado profundo, conectando

seu vasto potencial à pesquisa de medicamentos.

A metodologia de triagem foi testada por meio de análises de estudos de caso de

quatro alvos farmacológicos de alto interesse (A2aR, JAK2, KOR e USP7) e consis-

tiu em três etapas: avaliação de estruturas cristalográficas e ferramentas de docking,

e teste e aplicação de triagem de moléculas e validação por meio de simulação de

dinâmica molecular. Nesses experimentos, Autodock Fr e Vina demonstraram o

mais alto desempenho tanto na previsão precisa da interação molecular quanto no

cross-docking. Na segunda etapa, a técnica de consenso de pontuação exponencial foi

avaliada, comparada a outros padrões preditivos, e apresentou alta acuidade, posi-

cionando corretamente mais de 85% dos controles positivos dentro de margens muito

restritas (5%); a metodologia foi posteriormente aplicada a conjuntos de moléculas

produzidas por modelos generativos profundos para design de medicamentos. Na

validação, foi demonstrada uma clara diferença na estabilidade ligante-receptor entre

as moléculas de melhor e pior pontuação da etapa anterior, indicando a confiabili-

dade da metodologia proposta.

Observou-se também que, embora a configuração padrão possa ser um pouco de-

morada, os testes de modelos generativos subsequentes podem ser feitos em um in-

tervalo de tempo muito reduzido, pois os dados resultantes de várias etapas podem
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ser simplesmente reutilizados. Além disso, este método não é redundante quando

comparado a outras métricas tradicionais, incluindo logP e drug-likeness, e pode ser

usado em conjunto com estas para posterior avaliação. Os dados gerados por este

método podem também ser usados como feedback para modelos generativos, auxil-

iando potencialmente em seu treinamento e aumentando a qualidade das moléculas

geradas.

Palavras-Chave

Deep Learning, Avaliação de modelos, Redes Neurais Recorrentes, Desenho de

Fármacos, Criação de Fármacos, Docking Molecular, Simulação de Dinâmica Molec-

ular, GROMACS, Modelos Generativos Profundos, SMILES.
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Abstract

Drug discovery is a highly time-consuming, complex, and expensive process with

low success rates. Recent estimates point out that an average of $1.8 billion and

twelve years of work are required to launch a new drug. This state of affairs is partly

due to how high-dimensional the chemical space is, as it has been estimated to in-

clude between 1033 and 1060 synthetically accessible molecules [2]. Evaluating the

entire chemical space is prohibitively expensive, so it is of the utmost importance

to find ways of narrowing down the search space. To this goal, artificial intelli-

gence has recently been incorporated into drug discovery in many forms; among

them, deep generative models have shown great potential for producing putative

drug candidates. Even so, this technology is still in its infancy and possesses some

fundamental flaws; for instance, these models hardly ever account for tridimensional

molecular information or are validated through life-like methods.

This work aims to help this process with the provided molecular docking-based vali-

dation system for deep learning generative models, bridging their bountiful potential

with drug discovery.

The screening methodology was tested through analyses of case studies of four high-

interest pharmacologic targets (A2aR, JAK2, KOR, and USP7). It consisted of

three stages: crystal structures and docking tools assessment, molecule screening

testing and application, and validation through molecular dynamics simulation. In

these experiments, Autodock Fr and VINA demonstrated the highest performance

on both accurately predicting molecular interaction and cross-docking. In the second

stage, the exponential consensus scoring technique was evaluated, compared to other

predictive standards, and displayed high acuity, correctly placing over 85% of the

positive controls within very strict margins (5%); it was subsequently, applied to sets

of molecules produced by deep machine learning for computer-aided drug design. In

validation, a clear difference in ligand-receptor stability between the best and worst

scoring molecules of the previous stage was demonstrated, indicating the reliability

of the proposed methodology.

It was also observed that, although the standard setup can be somewhat lengthy,

the tests of subsequent generative models can be done in a far reduced time span,

as the resulting data of multiple steps can simply be reused. Moreover, this method

is non-redundant when compared to other traditional metrics, including logP and

drug-likeness, and can be used in conjunction with these for further evaluation. Also,

xii



the data generated by this method can be used as feedback for generative models,

potentially aiding in their training and increasing the quality of the molecules gen-

erated.

Keywords

Deep Learning, Benchmarking, Recurrent Neural Networks, Drug Design, Drug Gen-

eration, Molecular Docking, Molecular Dynamics Simulation, GROMACS, Deep

Generative models, SMILES.
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1

Introduction

1.1 Context and Motivation

Molecular docking (MD) is a tool that enables the simulation of binding between

two molecular structures into stable states based on interatomic affinities [3]. It

is frequently used in structure-based drug design due to its ability to predict the

binding-conformation of small molecule ligands to the appropriate target binding

site [4,5]. This is particularly useful since many pharmacologically active compounds

act by coupling with a target protein and either promoting its activation or inhibiting

it [6].

Docking enables the identification of novel compounds of therapeutic interest, pre-

dicting ligand-target interactions at a molecular level, or delineating structure-

activity relationships (SAR), without a priori knowledge of the chemical structure of

other target modulators. It is also a relatively fast tool, which makes it an interesting

tool for screening large libraries [7].

MD is now said to be in a mature state of development, with most docking software

being to indicate results with great accuracy 80% of the time, with many far sur-

passing that margin [8, 9]. Despite that, the technique is not without its faults; for

instance, the estimation of binding energy is still a challenge and, because of that,

is held as the most strict test of an MD tool’s capacity [10]. Other than that, two

other factors are known to commonly interfere with docking results:

• Ligand representations: since the recognition of interaction between ligand

and protein depends on polarization, 3D conformation, protonation state, and

electrostatic complementarity, the correct generation and treatment of the

structure of ligands are imperative [11, 12].

• Receptor representations: the primary source of protein structural files are

1



1. Introduction

X-ray crystallography and NMR, very accurate techniques, but that may

present problems under certain circumstances and, for instance, omit atoms.

Moreover, sometimes portions of these structures are artificially filled through

threading, homology modeling, and de novo methods, Which are not ideal and

may negatively impact model quality, reducing docking acuity [13–16].

Because of this, basic knowledge of the tools and applying strategies to minimize

such interferences are paramount. Usually, it is recommended to at least perform

cross-docking experiments and follow rigorous structure preparation practices in any

MD campaign [17,18].

As the cost of drug research is consistently increasing, the need for modernization

of tools and techniques for drug design is ever more present [19]. Recently, advance-

ments in computer hardware technology and software architecture made in silico

drug design approach tangible.

Among these, deep generative models (DGM) have promising potential. Unfortu-

nately, most DGMs are trained and benchmarked using extremely simplified param-

eters and hold little semblance to actual molecular characteristics or ligand-target

interaction. With the most commonly used being quantitative structure-activity

relationship (QSAR), octanol-water partition coefficient (logP), and quantitative

estimate of drug-likeness (QED) [20,21].

Moreover, the two most well-known evaluation frameworks, GuacaMol and MOSES

[22,23], primarily focus on distribution tasks [24,25], and present a set of tools unable

to assess the molecules’ chemical feasibility, stability, or target affinity [26,26–28].

MD, being a salient tool in structural molecular biology and computer-assisted drug

design, could assist in bringing DGMs to conditions that more closely resemble

experimental reality.

1.2 Objectives

The main goal of this thesis is to research, analyze and evaluate docking based

methods for the validation of the compounds that generated by the machine learning

and deep generative models. The objectives can be summarized as follows:

O1 - Overview MD techniques, molecular screening, DGM benchmarking,

and de novo drug design.
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A thorough review of these topics is to be performed, focusing on expounding their

capabilities, flaws, characteristics, and commonly employed techniques.

O2 - Assess a method for benchmarking MD tools conducive to the

project end goal.

Several evaluation methodologies exist for MD tools, each gauging these software

on different capabilities and characteristics. If possible, methods flexible enough to

not depend on fixed pre-established benchmarking sets should be selected to make

it possible to be applied with newer crystal structures. This is especially important

since ML de novo drug design focuses mainly on novel targets with few known active

pharmaceutical molecules.

O3 - Select protein targets currently relevant to pharmacologic research

and ML model development

Targeting proteins linked to a larger body of specific ML work and overall scientific

production would be advantageous. It would make it possible later to apply the

benchmark methodology to multiple models and also for it to be of interest to

researchers interested in developing new ones.

O4 - Determine the best-suited MD tools and crystal structures for the

experiments with each target protein.

Choosing MD tools and crystal structures are vital steps in molecular screening. As

such, a thorough selection of these software and files must be performed to maximize

the probability of success for this project.

O5 - Assess a molecular screening technique able to select molecules with

high affinity for their receptors and validate its capabilities.

Multiple molecular screening protocols for drug design have been devised since the

establishment of this technique; these vary in the tools used and the information

extracted from the molecules being evaluated. Ideally, techniques involving binding

affinity and with high predictive value must be found.

O6 - Create an easily reproducible MD-based protocol to evaluate and

compare de novo drug design ML models.

This work aims to produce a straightforward and flexible workflow focused on open-

source and free tools, capable of selecting the most accurate MD tools and ultimately
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assessing the capability of each DGM to produce molecules with good affinity for

their target protein.

1.3 Scientific Outcomes

The contributions were submitted to international journals. They are listed, in

chronological order, for each type of venue, together with reference to the contribu-

tion.

P1 - Nelson RC Monteiro, Carlos JV Simões, Henrique V. Ávila, Maryam Abbasi,

José L. Oliveira, and Joel P. Arrais. “Explainable deep drug–target represen-

tations for binding affinity prediction”, BMC bioinformatics 23, no. 1 (2022):

1-24. Published 17 June 2022.

(IF :3.169 (2020))

DOI: 10.1186/s12859-022-04767-y

P2 - Henrique V. Ávila, Maryam Abbasi, Joel P Arrais, Paula C. Veŕıssimo, Carlos

J. V. Simões,“Comparison and Benchmark of Molecular Docking Tools for

Drug Screening”, VIII EJIBCE (Encontro de Jovens Investigadores de Biologia

Computacional Estrutural), 20th of December 2021. (Poster presentation)

P3 - Henrique V. Ávila, Tiago Pereira, Joel P Arrais and Maryam Abbasi, “Docking

based strategy for the evaluation of deep models in de novo drug design”,

Computational Biology and Chemistry, 28th of July 2022. (Submitted)

During this work, there was also the opportunity of presenting and discussing the

main topics of this dissertation:

• Molecular Docking Tools and Screening, Department of Informatics Engineer-

ing, University of Coimbra, March 2021.

• Molecular Dynamics Simulation, Department of Informatics Engineering, Uni-

versity of Coimbra, April 2021.

• Application of Docking-based Molecular Screening into de novo drug design,

Department of Informatics Engineering, University of Coimbra, May, 2021.

• Validation and Evaluation of Deep Generative Models, Department of Infor-

matics Engineering, University of Coimbra, March 2022.
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1.4 Document Structure

The following reading is divided into six parts: state of the art, overview, methods,

results, conclusion, and appendices. As we developed this work, we observed it

pertains to a niche bridging two vastly different fields, biochemistry, and machine

learning. As the professionals of these areas tend to differ profoundly in their focus

of knowledge, we found it substantial to make a deeper delineation of the basis of

the techniques and concepts involved.

In modern drug design, an overview of the proceedings of drug research is given,

with a focus on the contribution of artificial intelligence to this field. There, an

explanation is also given on the characteristics and basis of artificial intelligence,

deep generative models, the state of the art, and the benchmark for these systems.

Molecular docking and dynamics simulation expound on the intricacies of these two

tools, which are the core of the work produced in the thesis. The different com-

ponent classes and their characteristics are explained, focusing on their strengths,

weaknesses, and applications. The last subsection outlines the state of the art in

docking-based molecular screening and how the two tools are applied.

In protein case studies, the characteristics of the selected protein targets and their

importance for current drug research are displayed. This section is divided into

two parts: Enzymes (containing the Janus Kinase 2 and Ubiquitin-Specific Protein

7) and G protein-coupled receptors (with the Adenosine 2a Receptor and Kappa

Opioid Receptor).

The overview chapter provides explicit technical and specific knowledge upon which

this work is based in the form of a literature review. It was constructed to con-

tain the background information related to drug discovery, the tools used (molec-

ular docking, chemometric analyses, and molecular dynamics simulations), and the

datasets employed (protein targets, target-specific ligands, machine learning gener-

ated molecules, and decoys).

The remaining chapters present the experimental setup and results obtained in this

work, as well as the observations and conclusions we took from the analysis of the

resulting data.

We thank you for your time and consideration, and hope that the reading of this

document will be pleasant.
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2

Modern Drug Design and

Discovery

Drug discovery is the process through which molecules are tested to uncover their

therapeutical capabilities and application possibilities. This is a lengthy and costly

undertaking, with mean drug costs at 1.3 billion USD and taking 10 to 15 years

to clear all phases of clinical trials [29, 30]. On top of that, 90% of drug discovery

campaigns fail [31], and overall drug discovery costs seem to be steadily increasing

over the years [30].

One proposed means for reverting this trend is a change in the classical understand-

ing of drug design, the process of developing new medicaments based on biochemical

information of a target or of molecules with known pharmacological activity. Tra-

ditionally, drug design and discovery depended on compound libraries and wet-lab

experiments, which, despite innovation trends, are still responsible for a vast por-

tion of research costs. But now, the technological advancements of later years have

opened an array of possibilities in the camp of computer-aided drug design. Dig-

ital screening of far more extensive compound libraries can now be performed in

mere minutes, artificial intelligence-aided molecule generation has become a possi-

bility, and experiments that would be cost-intensive and time-consuming can often

be quickly performed in silico [32–34].

Consequently, bioinformatics has been steadily integrated into pharmaceutical re-

search, and not only for small molecules. For instance, drug delivery systems, bio-

pharmaceuticals, and antibodies can now be designed to have greater specificity,

affinity, and stability [35]. Structural analysis can provide insights on function and

properties, proteins and small molecules can be altered via specific software, and

tests for interaction and overall performance can be done through simulations that
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can be highly customized [36,37].

One of the latest technological improvements to pharmaceutics has been incorpo-

rating artificial intelligence. Deep learning models have shown inordinate promise

in the field, exemplified by AlphaFold’s impressive capability to predict the final

tridimensional structures based only on their amino acid sequences [38]. And also

by the disclosed interest of market giants such as Roche, Johnson & Johnson, Pfizer,

and others in their application into drug discovery [39,40]. Finally, there is the case

of Paxlovid, Pfizer’s COVID-19 oral drug, an example of a successful example for

machine learning generated pharmaceuticals. However, artificial intelligence models

haven’t yet developed a drug from scratch [40,41].

2.1 Artificial intelligence

Artificial intelligence (AI) is usually defined as the development of systems capable

of simulating behaviors commonly associated with humans, such as decision making

and judgement [42]. AI is a field with multiple subcategories (Figure2.1); it is also

one in fast expansion and displays extensive permeation in the contemporary world,

being found throughout several aspects of daily life. For instance, facial recognition,

many spell check and text prediction tools, google search, voice recognition in smart-

phones and appliances, banking systems, social media, and plagiarism checkers are

a few examples of AI being incorporated into our surroundings [43–45].

Machine learning (ML) is a division of artificial intelligence focused on algorithms

capable of improving themselves as it works through raw data, be it quantitative

or categorical, developing and enhancing their competence to perceive patterns and

make decisions. Mostly, these systems conduct classification, clustering, regression,

or pattern recognition tasks on large datasets [46–48]. ML is being used in the phar-

maceutical sector to create new drug molecules, investigate biological activities and

interactions, predict molecular characteristics, and many other applications [49–52].

Recently, there have been even discussions about using these systems in the devel-

opment of individualized medicine, where the molecular composition and dosage of

drugs would be tailored, taking into account the specific biochemical pathways of

each person [53–55].

ML algorithms can be classified according to the specificities of their learning ap-

proaches into three categories [56,57]:
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Figure 2.1: AI’s layered structure. Displayed here are the subdivision of AI dis-
cussed in this work, directed toward deep learning. The generative models’ division,
which possesses instances among all the represented groups, is indicated in purple.

• Supervised Learning, a method that employs labeled data, involving an

environment in which inputs correspond to corresponding outputs. A model

with this aspect will iteratively adjust its network parameters to match a given

ground truth. After successful training, they become capable of providing

solutions for external data.

• Semi-supervised Learning, which makes use of both labeled and unlabeled

data for training.

• Unsupervised Learning, represented by systems that are fed only unlabeled

information and which are able to uncover relationships and correlations from

said data, often availing of clustering, dimensionality reduction, and generative

techniques.

Additionally, some ML systems make use of a methodology called Reinforcement

Learning. Usually discussed under the purview of semi-supervised and unsupervised

learning, this is an approach employed for unknown environments [58], with the most

famous example being Google Deep Mind [59,60].

Some ML models are characterized by their inspiration from biological systems, fo-

cusing on emulating the brain’s structures. These are given the name of Neural

Networks (Figure2.2, and are usually represented as a set of multiple layers con-
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taining multiple sub-units called neurons, responsible for cross-processing input it

receives and producing an output [61, 62]. These are classified as input, hidden,

and output layers, and a system containing more than one hidden layer is classified

as a deep network, and the models employing it as being part of Deep Learning

(DL) [62]. This increase in architectural complexity in relation to other ML is justi-

fied by, amongst others, demonstrating improved performance in systems containing

a higher magnitude of information and better results for unlabeled data [?, 63, 64].

For the purposes of de novo drug design, scientific work seems to focus on the inter-

section of DL and generative models: Deep Generative Models (DGM).

Figure 2.2: NNs’ architecture. The figure shows a general representation of how
NNs are designed, with the neurons for input, hidden, and input layers represented
by red, blue and green circles, respectively.

2.2 Deep Generative Models

Generative models are a subset of machine learning algorithms developed to create

new data instances. They are able to detect characteristics present in elements of a

dataset and make predictions on what should be the next data point or produce a

new one based on similarity and probability. A straightforward example of these is

text completion tools, which can predict the next word a person will use in a sentence
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while typing. In chemistry, these are usually employed to design new molecules and

composites to integrate innovative materials and drugs [65–67]. An example of DGM

architecture can be seen in Figure2.3

Figure 2.3: Example of DGM design. This is a DGM system from Pereira 2021 [68]
containing two Generators sharing the same architecture, with an interconnected
Predictor by Reinforcement Learning.

Although these strategies have to be specifically designed for each application, the

following steps are common in creating and employing these models: data collection,

mathematical descriptors’ generation, search for the best subset of variables, model

training, and validation [69]. In drug discovery, the data collection step customarily

is acquiring a dataset of molecules with distinctive characteristics, such as affinity

for a specific target, low toxicity, ease of absorption and laboratory production,

and enough solubility to be distributed through the body [70]. These are usually

small molecules procured from public repositories, namely ZINC [71], ChEMBL [72],

PubChem [73] and others. Also, these models typically use simplified 1D formats

such as SMILES and FASTA to reduce the computational workload [74,75].

The last step, model validation, is usually one of the most critical for these DGMs.

This final part of the procedure consists of acuity tests based on the characteristics of

the molecules generated in these models. If statistically significant, this determines
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that the tool produced is an accurate predictive model. Unfortunately, most of these

tools are ultimately validated through tasks such as creating molecules with ideal

octanol-water partition coefficient [76] or the maximization of quantitative estimate

of drug-likeness [21]; Despite being compelling tests to assess the model’s capability

to produce molecules based on a set of tasks, these fail to account for the complexity

of realistic tridimensional models and environments [76–79].

2.3 State of the Art

Recently, DGMs have increasingly displayed potential for generating new molecules

for pharmaceutical and materials science applications. As the interest in these

systems rises, it is also essential to develop accurate benchmarking models that

are reproducible and reliably capable of selecting outputs that represent desirable

molecules. Regrettably, most of the models in use at the moment present flaws that

hinder DGM’s advancement.

In only a decade, the new generation of deep learning has redrawn the basis of

how we perceive the production of multiple data genres, with numerous examples of

systems capable of independently producing original images, music, and text [80].

Around 2012, deep neural networks began to displace other architectures in the

top positions of contests, such as the ImageNet image classification challenge. In

that year, a system by Ciresan et al. was able to perform handwritten character

recognition almost as well as a person [81]; another, by Dahl et al. was the best

placed in the ”Merck Molecular Activity Challenge” [82].

These achievements led to the development of deep systems intended for text, im-

age, and audio generation, in addition to the more traditional classification and

regression tasks. And in 2013 and 2014, respectively, the variational autoencoder

and generative adversarial network were established [83,84]. Then, in 2016, Gómez-

Bombarelli et al. published the first molecular autoencoder, opening the gates for

in silico research for drug molecules [85].

The popularity and success of modern machine learning models have arguably been

furthered by the availability of large datasets and standardized benchmarking mod-

els, providing a paradigm for model development [23, 86–88]. Regarding organic

molecules, the introduction of MoleculeNet [89] was an essential milestone for bench-

marking regression and classification tasks. After that, the evaluation framework

GuacaMol [25] was proposed with the concept that generative models should be
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evaluated based on goal-oriented and distribution learning tasks; this development

consequently led to the development of MOSES [24] platform.

GuacaMol and MOSES are two of the most prominent standardized benchmark

efforts available. Their vast set of metrics (Table2.1) can be observed to gain insight

into the state of the current DGM assessment tools [22,23]. For starters, both tools

rely heavily on distribution tasks [24,25]. Undeniably, these are fundamental for the

development of DGMs, but offer far too little on the side of weeding out chemically

unrealistic molecules and offer nothing on target affinity [26, 27]. Other than that,

a high score in these models doesn’t translate to stable or synthetically accessible

molecules, especially for goal-directed tasks [26, 28].

Table 2.1: GuacaMol and MOSES benchmark metrics.

Metric Delineation Type Model

Filters Fraction of generated molecules able to pass data construc-
tion filters.

Distribution MOSES,
GuacaMol

Unique
molecules

Analysis of the fraction of unique molecules Distribution MOSES,
GuacaMol

Valid
molecules

Analysis of the fraction of valid molecules Distribution MOSES,
GuacaMol

Fragment
similarity

BRICS fragment comparison assessing over or under-
representation

Distribution MOSES

Fréchet Dis-
tance

Analysis of Fréchet ChemNet chemical space coverage Distribution MOSES,
GuacaMol

Internal

diversity
Detection of model collapse through chemical diversity as-
sessment.

Distribution MOSES

KL

divergence
Kullback–Leibler divergence, a metrc related to diversity
between training set and generated molecules.

Distribution GuacaMol

Novelty Ratio of creation of molecules not found in the training
set

Distribution MOSES,
GuacaMol

Properties
distribution

Analysis of chemical properties of generated molecules. Distribution MOSES

Scaffold

similarity
Comparison of Bemis-Murcko scaffolds contained in train-
ing and generated sets.

Distribution MOSES

Nearest
neighbour
similarity

Tanimoto similarity between molecules and their nearest
neighbor molecules.

Distribution MOSES

Compound
quality

Analysis of molecular properties through Walters’
rd filters implementation.

Goal

Directed
GuacaMol

Isomers Assessment of the model’s capability of producing
molecules corresponding to a specific molecular formula.

Goal

Directed
GuacaMol

Median
Molecules

Conflict task involving maximizing the similarity to mul-
tiple molecules simultaneously.

Goal

Directed
GuacaMol

Rediscovery Assesment of the model’s capability of reproducing a spe-
cific molecule.

Goal

Directed
GuacaMol

Similarity Evaluation of the model’s competence in generating
molecules similar to a target.

Goal

Directed
GuacaMol
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DGMs are frequently tested on specific goal-oriented tasks, with a majority focusing

on maximizing QED and logP [20,90]. These carry little to no correlation to chemical

stability or ligand-target interaction and are increasingly seen as meaningless errands

[76, 91]. It is also important to note that a substantial decrease in scientific rigour

in recent DGM works has been reported [92].

Benchmarking sometimes incorporates estimations of target affinity, such as IC50

predictions. This method is a more directly correlated metric, with better applica-

bility to pharmacological molecule research [93, 94]. Although, this approach is not

without its hurdles, having reported low replicability difficulty of assessment [94–96].

Another pitfall of relying on affinity prediction methodologies is that, although

they can in certain circumstances be reasonably accurate, their principles usually

translate poorly to molecule construction [97, 98]. For instance, hydrogen bonds

are fundamental for protein-ligand interaction and usually heavily influence bind-

ing affinities in pharmacologically active molecules and ligands in general [97, 99].

Hence, adding hydrogen donors and acceptors may be perceived as a logical step for

affinity increase, albeit this assumption is frequently proven wrong in synthesized

molecules [100,101].

Another interesting element is that tridimensional molecular information is scarcely

incorporated in either DGMs or benchmarking [102,103]. It is well established that

the position of chemical groups in a binding site is paramount for agonist and antag-

onist action. And although it is somewhat more permissive for the latter, alterations

as simple as introducing a rigid bond can significantly impair the molecule’s activity

in both cases [104–106]. As a more practical example of the disparity between 3D

models and simpler systems, the same addition of a hydrogen donor that would

increase the molecule’s affinity, polar surface, and logP scoring can just as easily

create intramolecular interactions that would change its geometric conformation.

Furthermore, this kind of bond could also compete with amino acid residues in

the binding site; and that would be difficult for uni- or bi-dimensional models to

detect. [107–111].

In conclusion, we observe that DGMs are a budding field with vast promise and the

potential to reshape the molecular design and many other industries, but many flaws

have yet to be polished before that comes to pass. We are among those that are

especially concerned with the simplistic approach that leads programmers to assume

that molecules can be treated as text or collections of fragmented images through-

out the whole generative process, as this creates unrealistic models and unfeasible
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molecules that distance DGMs from the pragmatic pharmacologic application.
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3

Molecular Docking and Dynamics

Simulation

This chapter explains the fundaments of the main tools used in this thesis, MD and

MDS. It is divided into three parts: MD, MDS, and a brief review of the state of

the art.

3.1 Molecular Docking

Although laboratory means, such as IC50 essays and x-ray crystallography, can be

helpful in molecular interaction evaluation, these approaches demand multiple spe-

cialized equipments, know-how, and a vast amount of time and resources. Other

than that, the success of these techniques is by no means simple to achieve or guar-

anteed. If the synthesis of any molecule (proteins or small molecules) fails, or if the

crystallization process is flawed, the whole process may be wasted. As such, wet

experimental models are unsuited for large screening jobs and can heavily impact

the cost and duration of drug research efforts. For this reason, computational tech-

niques are often the tools of choice when large screening campaigns are involved,

with molecular docking (MD) having a steadfast growth in popularity in later years.

It can also be beneficial when crystallographic means fail to determine the confor-

mation or structure of bound ligands, as the results of MD may help formulate a

hypothesis on the position of the obscured parts of the small molecule.

MD is dependent on 3D structure files of proteins and ligands. Ligand files can be

easily generated through multiple computational means. On the other hand, protein

structural files are mainly created through crystallography, but once these are solved

and available, MD opens an ample array of possibilities for biochemical research.

Most docking software generates multiple poses for the ligand in a predetermined
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Table 3.1: Overview of the tested docking software with scoring functions and
sampling algorithms.

Software Sampling Algorithm Scoring Function

Autodock 4 Lamarckian Genetic algorithm Empirical Physics-based

Autodock FR Random perturbation, local optimization Empirical Knowledge-based

Autodock Vina Random perturbation (Metropolis-Hastings), local opti-
mization (BFGS)

Empirical Knowledge-based

LeDock simulated annealing evolutionary optimization Empirical Physics-based

PLANTS Ant colony optimization Empirical

rDock Genetic Algorithm, simulated annealing, simplex mini-
mization

Empirical

search space and evaluates their binding affinity (scoring) to the protein. This

capability is conferred by their structure, containing two essential parts: a sample

algorithm and a scoring function. Table 3.1 shows the multiple scoring functions

and sample algorithms of the docking tools used in this work, and both concepts

will be more broadly explained in their respective subsections.

Of course, MD is not a flawless technique and relies on simplifications, and, in this

sense, MD is inferior to molecular dynamic simulations (MDS, discussed in a fur-

ther section). Designed to account for all atomic interactions in a given system,

MDS produces results that are arguably very close to real systems but may take

more than a day to calculate protein-ligand interactions, even in modern computers

with an advanced GPU. Because of this, MDS is rendered impractical for molecular

screenings that can search multiple thousands of ligands. Most docking programs

currently in use work through semi-flexible docking, that is, an approach in which

ligands are treated as flexible structures while the protein conformation is main-

tained as rigid. Also, water molecules and ions are commonly excluded. These

abridgments promote a massive decrease in docking experiments’ complexity and

computational cost. But, although MD is still far more reliable than the most pop-

ularly used methods for protein-ligand and protein-protein interaction evaluation,

these two shortcuts are believed to be the most significant culprits in most cases in

which docking fails to accurately predict binding.

Fortunately, the field of MD keeps developing at an ever-increasing pace, and many

studies report advancements on an array of methods to correct these deficiencies;

including flexibility trees, ensemble docking, and elastic potential grids, with multi-

ple reviews on means to manage protein flexibility also being published. These are

progressively being incorporated into MD software and screening pipelines. Also
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Figure 3.1: Re- and Cross-docking. Re-docking is displayed as a schematic in (a),
and the cells with blue background in (b), a schematic of cross-docking. The proce-
dure is often performed with multiple repetitions (c) to eliminate variability. After
MD procedures are finished, the RMSD of the resulting poses is measured against
the original ligands, and the group result for each crystal structure is aggregated as
a mean (d). These scores can then be compared with those achieved by the other
MD tools (e)

and multiple strategies have been developed to remedy such flaws. For instance, re-

and cross-docking, exponential consensus screening, ensemble docking, and decoy

enrichment are strategies that improve docking results.

3.1.1 Re-Docking and Cross-Docking

The processes of re- and cross-docking are commonly used to evaluate MD tools’

accuracy and offer insight into whether a specific crystal structure is suitable for

docking experiments. Re-docking consists of separating a protein and its cognate

ligand from a coordinate file and performing docking of the two structures. Cross-

docking works similarly, albeit involving the docking of multiple pre-aligned protein

structures to all of their ligands (Figure3.1).

The acuity measurement of these proceedings is given by determining the root-mean-

square deviation (RMSD) between the original pose of the co-crystallized ligand and

the resulting docked pose, calculated by

RMSD =

√√√√ 1

N

N∑
i=1

δ2
i
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Figure 3.2: Visual examples for molecule RMSD. Various poses for the A2aR
ligands Adenosine, ZMA and UKA are displayed in poses that resulted in good
(under 2Å), acceptable (between 2 and 3Å) and poor (over 3Å) solutions.

in which δi represents the distance between atoms (in Å) of a given i pair, averaged

over the N pairs contained in both molecules [112]. A lower RMSD indicates a pose

closer to the reference, with values under 2Å being taken as good scores and values

between 2Å and 3Å as acceptable, as shown in Figure 3.2. There are many software

available that can calculate RMSD, but most cannot take into account ring flip on

molecules presenting that display such characteristic [113,114].

3.1.2 Sampling Algorithms

The search through the conformational space is a complex task, as molecules not

only present six degrees of freedom (three translational and three rotational) but

also many of them display torsional potential through bond rotation [115]. In fact,

performing an exhaustive exploration of any binding site, including all possible con-

formations of a single molecule, without a massive investment of time and compu-

tational resources. For this reason, efficient methodologies for conformational space

sampling are of utmost importance in MD [116].

The first attempts to overcome this problem treated both ligands and proteins as

rigid bodies, reducing computational cost by excluding bond rotation. This is a
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simplistic model that represented both ligand and binding site as multiple phar-

macophore spheres, with the search algorithm then trying multiple orientations and

performing a least-squares fitting of atoms to the center of the spheres [117,118]. Al-

though this approach surely reduces search time, tools employing this strategy also

significantly reduce their capacity to find the optimal bind solution, which often

causes a decrease in acuity [116].

Since the optimal binding conformation involves the interaction between ligand and

protein, taking into account displacements in both structures, this flaw is even more

pronounced in predictive docking. As isolated molecules often display conformations

different from their bound form, this limitation can result in effective molecules

suffering heavy scoring penalties [119].

Hence, most modern docking software work on a compromise: treating ligands as

flexible and considering receptor flexibility only for the binding site or regarding

the whole protein as rigid. The reasoning for this selection is that since ligands are

smaller molecules, not only they are more likely to suffer changes in their conforma-

tion, but also, performing calculations for structures of this scale is far more viable.

The conformations displayed by the ligand can be assessed by either stochastic or

systematic methods [120,121].

Stochastic methods rely on generating ligand conformations and orientations based

on one or multiple values randomly generated every step. The algorithm then dis-

cards or adopts the change based on predefined criteria [122,123]. These techniques

usually have a higher computational cost than systematic methods. Still, they

have the advantage of generating a vast array of molecular conformation group-

ings, increasing the probability of locating the pose representing the global energy

minim [122, 124]. Ant colony optimization, genetic algorithm, Monte Carlo, and

tabu search algorithms are examples of this approach [125].

On the other hand, systematic methods are deterministic and execute sampling at

predetermined intervals. They are subdivided into three subcategories: fragmen-

tation, conformational ensemble, and exhaustive methods, the principal difference

between them being how these handle ligand flexibility. Fragmentation methods

divide the molecules into parts, one of these is attached to the protein, and the con-

formation grows incrementally from that point. Conformational ensemble methods

pre-generate multiple ligand poses and perform rigid docking of each of them, and

exhaustive methods rotate mobile bonds progressively at a given interval [126–128].
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3.1.3 Scoring Functions

Scoring functions are responsible for MD tools’ capability of gauging the physical

interaction (binding affinity) between ligand and protein. Classical scoring func-

tions are usually classified into three types: force field-based, knowledge-based, and

empirical, with the latter being the most commonly used. Other than those, a few

docking software also employ machine learning-based functions.

Empirical scoring functions are based on the idea that standard free energy change

(∆G0) can be split by molecular interaction type and using the information gener-

ated by those groups to estimate binding affinity [129]. This can be better exempli-

fied by a simplification of GOLD’s Chemscore scoring function [130]:

∆Gbinding = ∆G0 + ∆GH−bond + ∆Gmetal + ∆Glipo + ∆GrotHrot

in which the binding free energy ∆Gbinding is estimated through the contributions

from non-specific molecular interactions ∆G0, hydrogen bonds ∆GH−bond metal in-

teractions ∆Gmetal lipophilic interactions∆Glipo and rotatable bonds ∆GrotHrot,

with ∆G terms generated through multiple linear regression analysis over dozens

of protein-ligand complexes. As such, this method is heavily reliant on the quality

of the experiments that generate this training set.

Force field (also known as physics-based) methods focus on calculating Van der

Waals and electrostatic energies through the molecular mechanics force field to assess

binding energy. This method determines molecular interaction information through

experimental means and quantum mechanics calculations. Also, every atom is han-

dled as an indivisible particle. It is a known issue that this method presents two

primary biases: that polar interactions may be treated with too much weight on the

calculations and that they tend to fail to apply enough entropic penalties to large

non-polar structures. The following equation represents these functions:

Ebind =
∑
i

∑
j

(
Aij
r12
ij

− Bij

r6
ij

+
qiqj

ε (rij) rij

)
where Aij and Bij represent van der Waals parameters for a given atom pair ij,

dij the distance between these atoms, partial charges shown as qi and qj, and the

distance-dependent dielectric function as ε (rij) [131].
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Knowledge-based methods are fundamented on the large and continually growing

databases of protein-ligands ligand complexes. In this model, atom pairings are

evaluated through statistical analyses based on bond type frequency, employing

the Boltzmann law to transform pairwise preferences into potentials translatable

to atomic distancing. On docking, the binding score is given by adding the values

of each atom pairing between protein and ligand, as illustrated by the following

equation:

wij (r) = kBT ln

(
ρij (r)

ρ∗ (r)

)
Where kB represents the Boltzmann constant, T stands for the system’s absolute

temperature, ρij(r) is the number density of the group comprising a given protein-

ligand atom pair at an r distance in the training set, and ρ∗(r) represents the pair

density in a stable condition where interatomic forces are at a zero-sum state. The

major downside of this method is that interactions that are more rarely found may

have poorer characterization [132,133]. These scoring functions offer a balanced ap-

proach concerning speed and accuracy when compared with force field and empirical

scoring methods. The reason for this is that knowledge-based functions don’t have

to perform a range of computationally intensive analyses (ab initio calculations for

force-field, binding affinities’ reproduction for empirical methods) [134].

Machine-learning-based solutions comprise the most recent approach for scoring

functions. Unlike the others, which are based on a classical functional form, these ap-

ply machine-learning algorithms, for instance, random forest, support vector, neural

networks, and deep learning. Even though they usually outperform classical scoring

functions, they are rarely incorporated into docking systems, the reason being that

they are very dependent on their training datasets [135–137]

3.1.4 Exponential Consensus Scoring and decoys

Consensus scoring is a filtering technique based on combining two or more scoring

functions on screening. The concept behind this is that focusing only on molecules

with high binding scores can exclude false positives caused by particularities found

in either. This approach has been employed in multiple MD screening campaigns

and frequently promotes overall performance increases. [138,139].

Standard consensus scoring is performed by arranging molecules by ranking the
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docking scores generated by each MD tool and averaging the arrays generated and

is often performed with ligand enrichment of the dataset [139,140].

Ligand enrichment is considered a key metric for the assessment of MD. The tech-

nique is based on including, along with the ligand test set, multiple decoy molecules

and performing docking with all. These decoys are either known non-binders or

structures similar to the ligands but with minor alterations, making them hard

for MD tools to discriminate while having topological differences designed to de-

crease binding chance sharply. Usually, enrichment is at least ten times the num-

ber of the test molecules, with a 10% general cut-off based on docking perfor-

mance [4, 16, 141,142].

Furthermore, exponential distribution has been combined with traditional consen-

sus systems to great effect. This takes advantage of probability density function

characteristics to maximize the difference between good and poor scores [143–145].

This method is better exemplified by the following:

P (i) =
∑
j

p(rji ) =
1

σjx%

∑
j

exp(− rji
σjx%

)

Where the rank of a given i molecule is determined by the sum of scores produced

after processing the rank rji given by each j MD software. In this system, σjx% is

an adjustable parameter that can be set independently for each docking software to

filter x% of the molecules [143,146].

3.2 Molecular Dynamics Simulation

Simply put, MDS’s foundation is that given an atom system with known positions

and types, it is possible to calculate the force exerted on each of them by all other

atoms. The atomic interactions are then used to determine the trajectories of all

molecules, and the procedure is repeated through multiple steps, each on the order of

femtoseconds. This process generates a three-dimensional simulation of the system,

detailed to the atomic level and spanning through all the simulated time.

This generates a large amount of data that can be easily extracted and is helpful

for research in multiple ways. In the realm of biochemistry, two of these come with

heightened interest. First, capturing the coordinates and velocities of every atom at

every point in time would be extremely difficult with any experimental technique,
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if not outright impossible. And second, all simulated parameters can be perfectly

controlled and all conditions known, for instance, the original protein conforma-

tion, its exact sequence, if any mutation is present, if there are any ligands bound,

what molecules can be found in the environment, protonation states, pressure, tem-

perature, and so forth. This specificity and this richness of information permits

performing various similar assays under slightly different conditions, which can help

perceive the influence of a vast array of selected variables that would otherwise be

unfeasible.

For the calculation of forces present in MDSs, molecular mechanics force fields are

used. These are tuned explicitly for quantum mechanics calculations and experi-

mental quantification, with a typical force field being exemplified by the following

expression:

U =
∑
intra

+
∑
RV w

where the first term is composed by:

∑
intra

=
∑
bonds

1

2
kb(r−r0)2+

∑
angles

1

2
ka(Θ−Θ0)+

∑
torsions

Vn
2

[1+cos(nΦ−δ)]+
∑

improper

Vimp

representing intramolecular and local contributions of bond stretching, angle bend-

ing, and dihedral and improper torsion; and the second term is formed by:

∑
RV w

=
∑
LJ

4εij(
σ12
ij

r12
ij

−
σ6
ij

r6
ij

) +
∑
elec

qiqj
rij

Where terms refer to repulsive and Van der Waals forces(represented by 12-6 Lennard-

Jones potential) and Coulombic interactions [147, 148]. It’s also noteworthy that

comparisons between multiple simulations using different force fields show that these

have significantly improved in the last decades [149, 150], although some imperfec-

tions persist. Such is the case of covalent bond development, as MDS still cannot

reproduce their formation or breakage, with covalent bonds observed at the be-

ginning of the simulation remaining unaltered until the end [151, 152]. Therefore,

such imperfections must be considered when designing and interpreting an exper-
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iment. For instance, when the need to observe covalent bond changes is present

in an experiment, quantum mechanics/molecular mechanics simulations must be

considered [153].

The duration of a time step is also pivotal for numeric stability in an experiment

and usually is around a few femtoseconds each. Since the biochemical interactions

usually observed develop in nanoseconds, microseconds, or longer, this kind of sim-

ulation usually contains millions or billions of steps. And considering the millions of

interatomic interactions involved, this causes these MDSs analyses to be very com-

putationally intensive. As such, the technological development observed in computer

hardware, as well as overall software and specific MDS algorithms, has been piv-

otal for the accessibility and increase in the practicality of MDS simulations [154].

Among these, advancements in GPU technology have been especially remarkable for

the field, making it possible for a personal computer to perform MDSs faster than

what was previously achieved by supercomputers, causing an expressive increase in

MDS experiments’ utility and viability [155].

3.3 State of the Art

Docking-Based Molecular Screening (MS) is a well-defined and prominent technique

based on the generation of affinity scores from structural information [6,156]. With

multiple successful screening campaigns found throughout the literature and the

promise of a low-cost process with quick and high reward, the strategy has be-

come very popular in the pharmaceutical industry, fostering much improvement

and knowledge in the field [157–160].

The first virtual screening based on tridimensional chemical structures took place in

1990; it targeted the dopamine D2 receptor and was able to identify an agonist with

a pKi of 6.8. After that, multiple drugs, such as Gefitinib [161], Amprenavir [162],

Epalrestat [163], and others, have been discovered through structure-Based MS [164].

And with the introduction of large public compound databases and the evolution

of computer hardware, MS has become ever so broadly available, and MD tools are

developed and improved with increasing speed and frequency [165,166].

The technique is not without its complexities and flaws; for instance, frequently

using a single MD tool is not enough to warrant enough specificity, and the analysis

of binding energies and docking poses may provide conflicting information in some

cases [167,168]. Still, solutions and discussions on these topics abound, and MS has

26



3. Molecular Docking and Dynamics Simulation

a long and successful history, making it a prime choice for small molecule analysis

[169–171].

MS has evolved into a multivariate approach, encompassing chemometrics analysis,

and is grounded on the use of search algorithms and scoring functions (further

discussed in the overview chapter). Recently, artificial intelligence has been applied

to allow massive searches of the chemical space, encompassing tens of billions of

molecules [164,169,172].
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4

Proteins Case Studies

This study focused on four human proteins with known pharmacological potential

and which currently have substantial research importance described in the following

sections. Our test set was divided into two G protein-coupled receptors (GPCRs)

Adenosine 2a Receptor (A2aR) and Kappa Opioid Receptor (KOR) and two enzymes

Janus Kinase 2 (JAK2) and Ubiquitin-Specific Protease 7(USP7).

4.1 G protein-coupled receptors

GPCRs are a large family of proteins comprising hundreds of different representa-

tives, present in every known animal species. The vast majority of signaling path-

ways pertaining to physiological functions, and many pathologies, present mediation

by GPCRs. For this reason, roughly a third of all clinically approved drugs target

this class of receptors.

The proteins of this family present a highly preserved structure common to all of

its constituents, with seven transmembrane α-helices linked in line starting from

an extracellular N-terminus, forming a channel with three linking loops in the ex-

tracellular medium and the remaining three, alongside with the C-terminus- in the

intracellular. As its name suggests, these receptors are also found coupled by its

C-terminus to a G protein, which fractures in half when an agonist ligand promotes

their activation. This split G-protein is then responsible for the next step of signal

conduction, as shown in Figure4.1 [173–175].

The A2aR is part of the P1 class of purinergic receptors and the GPCRs superfam-

ily, possessing seven transmembrane alpha-helixes, an extracellular N terminus, and

an intracellular C-terminus, and capable of transmembrane signaling. The adeno-

sine receptors group has four subdivisions, A1, A2A, A2B, and A3, all of which

have adenosine as their primary ligand and mediate their activation. They have
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Figure 4.1: GPCR structure and activation. The activation of GPCRS (b) by cou-
pling with their agonist ligands (a) results in conformational changes that activate
their coupled G-protein (c), which is responsible for modulatory action and signal
transduction (d) [176].

a crucial role in mediating multiple fundamental physiological processes such as

immunomodulation, cardiac regulation, angiogenesis, vasocompression, and sleep

and mood adjustment. This makes adenosine receptors interesting targets for the

regulation of multiple ailments, namely arrhythmias, cardiac hypertrophy, type 2

diabetes, depression and other neurological disorders, asthma, cancer, inflammatory

disorders, Parkinson’s disease, pain, renal failure, and glaucoma.

The production of accurate models of GPCRs is a well-known problem since their

poor stability and variable conformation, but advances in technologies and strategies

such as fusion proteins and conformational thermostabilization have generated good

results in analyzing such receptors. In the last decade, the A2aR has been placed

amongst the most well-characterized GPCRs, as molecular studies of this receptor

resulted in the publication of over 30 crystal structures of the human version of

the receptor. Also, the recent solving of A1R structure has been very important

for structural comparisons for docking sites and understanding ligand specificity

between the multiple adenosine receptors.
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Figure 4.2: A2aR structure and binding site. (a) shows A2aR’s binding site in
dark blue,(b) the tridimensional representation of adenosine bound to A2aR’s bind-
ing site, and (c) its 2D representation showing residue interactions. A2aR-caffeine
interactions are displayed in 3D in (d) and in 2D with residue interactions in (e).

4.1.1 Adenosine 2a Receptor

The A2aR primary binding site, as shown in Figure 4.2, is determined by the residues

associated with interaction with adenosine, its primary agonist, and caffeine, a nat-

urally occurring antagonist. These bind themselves by creating van der Waals in-

teractions with M177, M270 and I274, and π-stacking with F168, precisely by its

aromatic ring. Caffeine forms hydrogen bonds with O11 or O13, while adenosine’s

hydrogen bonds are held with N253. Adenosine also produces Van der Waals inter-

actions with V84, L85, T88, W246, and L249, which interact similarly with various

antagonists.

As previously stated, GPCRs can display various conformational states, divided

by energy boundaries, with active and inactive states being highly similar among

representatives of this receptor family; the interaction between an agonist and its

binding site being the fundamental event to surpass said barrier and activate the

receptor. Furthermore, it’s observed that sodium ions promote negative modulation

for multiple GPCRs, and this can be observed in the A2aR by interactions mediated

by water molecules with the residues D52, S91, T88, W246, N280, and S281, and
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Figure 4.3: KOR structure and binding site. (a) shows KOR’s structure (green)
with it’s binding site (red volume). (b) is a representation of the binding site on a
frontal view (from outside of the cell) with the protein (green), binding site residues
(cyan) and its ligand (CVV, in orange). In (c), a 2d representation of the primary
interactions between CVV and the binding site is provided.

directly with D52 and S91.

4.1.2 Kappa Opioid Receptor

The κOR is one of five known opioid receptors, namely, κ, δ, µ, ζ and noci-

ceptin opioid receptors (κOR, δOR, µOR, ζOR and NOR) , their primary ago-

nists being endogenous peptides (endomorphins, endorphins, enkephalins and dynor-

phins) [177, 178]. Although the structure of this receptor isn’t yet perfectly under-

stood, kappaOR’s primary binding site is defined it’s interactions with dynorphin,

its primary agonist, and other strong agonists such as MP1104 (Figure4.3 [179–181].

All known opioid receptors promote pain modulation, and opioids, in general, are

capable of promoting analgesia without loss of touch, proprioception, or conscious-

ness as side effects. [177, 182] For this reason, these molecules have been highly

sought after throughout history and are still extremely important in medical appli-

cations [183]. With opioids being widely prescripted worldwide to treat acute and

chronic pain [184,185].

Controversially, many opioids are highly addictive, and from the half-million world-

wide deaths attributed to drug abuse, more than 70% are related to opioids [186,187].

In part, illegal drugs such as fentanyl, heroin and desomorphine, but overprescription

also contributes to the problem [188–190]. The issue arises as µOR and molecules

that primarily target this receptor are far more studied [191], but the targeting of
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this receptor is linked to not only itch, respiratory depression, and constipation but,

more importantly, opioid tolerance and addiction [191,192].

In this regard, κOR presents advantageous qualities: as just as µOR, it is a ubiq-

uitous nociceptive transmission modulator, but its signaling is also connected to

reducing pruritis, stress, depression, anxiety, and substance use disorder [191–195].

Compared to other opioid receptors, signaling by kappaOR’s main agonist has a

stronger correlation with negative affect and the stress response generated by drug

use [191,196], making the receptor an attractive target for the research of novel pain

modulators with limited side effects.

Also, these signaling pathways can attract attention for the opposite reasons, as

κOR novel antagonists have been linked to the reduction of substance abuse and

attenuation of withdrawal effects of alcohol and cocaine [197,198].

4.2 Enzymes

4.2.1 Janus Kinase 2

JAK2 is a member of the Janus Kinase (JAK) family of non-receptor tyrosine ki-

nases. These proteins associate with cytokines receptors and are fundamental for

signal transduction between the extracellular medium to the nucleus. This commu-

nication chain ends with the production and activation of the signal transducer and

activator of transcription proteins (STATs), being dubbed the JAK/STAT pathway

(Figure4.4), and is related to cell growth and proliferation. This signaling chain is

particularly important in controlling blood cell production, and disruptions of it are

related to Crohn’s disease, essential thrombocythemia, polycythemia vera, primary

myelofibrosis, and myeloid disorders and malignancies.

Structurally, all members of the JAK family are composed of seven distinct domains:

JAK homology domains 1 to 7 (JH1-7). For the purpose of studying JAK2 inhibitors,

the groups which carry the most significance are JH1, and JH2 (tyrosine kinase and

pseudokinase domains, respectively) [199–201].

JH1 is the main promoter of the phosphoryl transfer action of JAK family’s enzymes

and may even be the sole direct contributor. Notably, it’s responsible for trans-

phosphorylation of JAK2’s Tyr1007 and Tyr1008, present in the kinase activation

loop (Figure4.5), stabilizing the enzyme’s active state. Once it’s active, JH1 also

phosphorylates specific tyrosine residues present in its correlated cytokine receptor,
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Figure 4.4: OR structure and binding site. (a) shows KOR’s binding site
in red,(b) N-[(5alpha,6beta)-17-(cyclopropylmethyl)-3-hydroxy-7,8-didehydro-4,5-
epoxymorphinan-6-yl]-3-iodobenzamide bound to KOR’s binding site, and (c) is
the 2D representation showing residue interactions.

STATs, and in JAK molecules [199, 202–204]. JH2 is a negative regulator for JAK

enzymes, with JH2 deletion resulting in STATs activation in the absence of ligands

for the correlated interferon receptors. This modulation is promoted by the interac-

tion between JH2’s N lobe and JH1’s N lobe and hinge region [199,201–203,205].

The surface of the cleft between these two domains is not only the targets of most

JAK2 inhibitors;as it contains the ATP, activation loop, and helix C pockets, as

shown in Figure4.5; but also, the interface between both of them is the site for most

known activating mutations of this enzyme (e.g., C618R, H606Q, H608Y, R683G,

and V617F) [206–208].

4.2.2 Ubiquitin-Specific Protease 7

USP7 (also known as HAUSP) is a protease that possesses a fundamental role in

the stability of proteins involved in DNA regulation and repair, epigenetics, tumor

suppression, immune response, viral replication, and multiple signaling pathways.
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Figure 4.5: JAK2 structure and binding pockets. The homology domain JH1 is
presented in teal, and JH2 in blue, with the activation loop, highlighted in orange.
In (a), a detailed view of the enzyme structure is presented, with the binding pocket
used in this work displayed in grey. In (b), the protein surface is shown, and the
ATP, Helix C, and Activation-loop pocket is indicated.

This extensive role gives this enzyme great importance over many cellular processes,

from normal metabolism to pathology progression. Table 4.1 shows a list of putative

binding partners and substrates linked to USP7 for more straightforward observa-

tion.

Its function is that of promoting protein post-translational modifications, more

specifically, the deubiquitination of its targets. As ubiquitin acts as a biomarker

for, amongst others, protein activation, mobilization to different cellular locations,

processing, and degradation, USP7 action can display a multitude of outcomes fun-

damental to cellular regulation [232–234].

Recently, USP7 was pushed into the spotlight as it’s been linked to a seemingly

paradoxical role in p53, MDM2, and MDMX regulation. P53 acts as a tumor sup-

pressor, halting cell multiplication by binding to regulatory sites of the DNA or even

through initiating apoptosis, whereas MDM2 and MDMX regulate p53 cellular con-

centration. As cancer cells frequently overcome p53 action by overexpressing MDM2,

USP7 inhibition has shown promising results as a cancer treatment [235–237].
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Table 4.1: Examples of substrates of USP7 related to carcinomas.

USP7 substrates Related cancer reference

Beclin-1 Multiplemyeloma [209]

CCDC6 Lungneuroendocrinecancer [210]

CCDC6 Hormone-sensitiveprostatecancer [211]

CCDC6 Non-smallcelllungcancer [212]

CHFR Multiplesolidtumors [213]

CHK1 Acutemyeloidleukemia [214]

CHK1 Breastcancer [215]

ER-α Breastcancer [216]

Foxp3 Non-smallcelllungcancer [217]

HDM2 Multiplemyeloma [218]

HDM2 Coloncarcinoma [219]

HDM2 Neuroblastoma [220]

hnRNPA1 Gastriccancer [221]

MDC1 Cervicalcancer [222]

MDM2 Gliomas [223]

MDMX Multiplemyeloma [218]

NEK2 Multiplemyeloma [224]

PHF8 Breastcancer [225]

PIM2 Multipletypes [226]

PLK1 Lungcancer [227]

PTEN HER2-positivebreastcarcinomas [228]

RAD18 Chroniclymphocyticleukemia [229]

TRIM27 Cervicalcancer [230]

β-catenin Colorectalcancer [231]

This enzyme presents a multi-domain architecture, likely to contribute to the com-

plex role it exerts (Figure4.6). It possesses an N-terminal tumor necrosis factor

receptor-associated factor related to the binding of its substrate peptides and five

ubiquitin-like C-terminal domains, with compounds with USP7 inhibition capabili-

ties typically binding to its active site and impeding ubiquitin coupling [238,239].

Although many molecules can inhibit USP7, most of these either are unspecific,

promote toxicity or bind covalently to their targets, making them poor choices for

pharmaceutical applications [235,238,240].
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Figure 4.6: USP7 structure. This image was generated by aligning pdb structures
2f1z, 4z97 and 5fwi. Ubl 1 to 5 are represented in hues of green and blue, TRAF is
shown in yellow, the catalytic domain (containing the catalytic cletf, palm, thumb
and fingers) in orange and an ubiquitin molecule in docked position is appears in
red.
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5

Materials and Methods

This chapter is separated into three main parts. In the first section, the general

proposed workflow has been illustrated. It is divided into three main portions:

I-Docking tools and crystal structures assessment, II-Consensus screening, and III-

Screening validation, delineating step by step the processes observed in this study.

The second is focused on the datasets used in the production of this work; it con-

tains information on the selected protein crystal structures, selected ligands, and

molecules produced by DGM. The third part provides a quick overview of the tools

employed and the parameters used for the experiments. The final portion of this

section expounds on the tools used for molecular screening and validation.

5.1 The Proposed Workflow

For the MD tool assessment process (Figure 5.1:I), two input datasets are used:

the protein crystallographic structures from the PDB database and ligands with a

known measure of affinity (pIC50, in our case) for the selected proteins that are then

taken from ChEMBL catalogs(Figure 5.1 1a), both sets are prepared as previously

discussed.

For the docking experiments, we selected software known for performing well ac-

cording to the literature and that are also free and accessible to the public; those

were: AutoDock 4, AutoDock FR, AutoDock Vina, LeDock, PLANTS, and rDock

(Figure 5.1:1b). Cross-docking experiments were performed for each of the four sets

of protein structures (Figure 5.1:1c) to determine the crystal structures best suited

for the docking of various ligands; these results also produced information on how

capable of reproducing experimental data these software are.

The proteins selected with the best overall ligand RMSE scores for each set are used

in docking experiments with the ligands with determined experimental intermolec-
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Figure 5.1: General workflow. The diagram shows an overview of the proposed
methodology, with block I standing for the MD tools selection process, II demon-
strates the screening of deep learning generated molecules and III shows the valida-
tion of the selected molecules through MDS.

ular energy. These results are plotted on linear regression models using Spearman’s

and Pearson’s correlations between docking scores and experimental affinities to de-

termine the fidelity of the results for each software (Figure 5.1:1d). The molecules

found outside the confidence interval for these regressions are classified as under or

over-scored. Molecular fragments based on these molecules are generated by the

Monte Carlo technique using RDKit and tabled alongside the original molecule and

its classification. This data is then used to train a Random Forest model to de-

termine a correlation between docking bias and chemical and structural properties

of the molecules. This information is then used alongside cross-docking data to

determine the best choices of docking software to proceed.

After this step, molecule screening by MD (Figure 5.1:II) starts. The set of ligands

generated by deep learning techniques (Figure 5.1:2a) is then used in docking ex-

periments to assess their affinity for their according proteins (Figure 5.1:2b), and

the docking scores are processed in a consensus score protocol (Figure 5.1:2c).

As a last validation step, the molecules selected in consensus scoring as having the

highest affinity in each protein set were assessed by MDS using the GROMACS

software (Figure 5.1:III).
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5.2 Datasets

5.2.1 Protein structures and preparation

The present work focuses on four proteins found recently to be linked to important

conditions and that are currently highly sought after in pharmacologic research:

A2aR, JAK2, KOR, and USP7.

Binding pocket information was generated by using DoGSiteScorer [241].

All the crystal structures used in this work and their cognate ligands can be found

in Table 5.1. All files were retrieved from the protein data bank website [242].

Table 5.1: List of the PDB structures used and cognate ligands.

Protein PDB code Ligand Reference

A2aR 2YDO Adenosine [243]
A2aR 3EML ZM241385 [244]
A2aR 3PWH ZM241385 [245]
A2aR 4UG2 CGS21680 [246]
A2aR 4UHR CGS21680 [246]
A2aR 5G53 NEC [247]
A2aR 5IU4 ZM241385 [248]
A2aR 5IU8 ZM241385 [248]
A2aR 5UIG 8D1 [249]
A2aR 6AQF ZM241385 [243]
JAK2 6VGL Ruxolitinib [250]
JAK2 6VN8 Barictinib [250]
JAK2 6VNE 2TA [250]
JAK2 6VNJ PN4-014 [250]
JAK2 6VNK Ruxolitinib [250]
JAK2 6VNL 5W2 [250]
JAK2 6VS3 BL2-057 [250]
JAK2 7Q7I 9I8 [251]
JAK2 7Q7K 9I5 [251]
JAK2 7Q7L 9I2 [251]
KOR 4DJH JDTic [252]
KOR 6B73 CVV [179]
KOR 6VI4 JDC [253]
USP7 5NGE FT671 [238]
USP7 5NGF FT827 [238]
USP7 5UQV GNE6640 [226]
USP7 5UQX GNE6776 [226]
USP7 6M1K EZF [254]
USP7 6VN2 R44 [255]
USP7 6VN3 R3Y [255]
USP7 6VN4 R4D [255]
USP7 6VN5 R41 [255]
USP7 6VN6 R4J [255]

5.2.2 Ligands with known binding affinity

To test the docking software’s scoring acuity, four sets of 50 molecules with known

pIC50 or pKI were downloaded from the ChEMBL database [256], one for each of
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the proteins used in this work; all of which are shown in Appendix A.1.

5.2.3 Deep learning generated molecules

The generation of compounds using deep learning methodologies was performed

following the procedures implemented in the work of Pereira et al. [257]. In practice,

it was trained a model that generates molecules with bespoken properties based

on neural networks containing recurrent architectures, namely Long Short-Term

Memory layers. This model uses SMILES notation to represent molecules so that

the chemical information is perceptible by the computational algorithms. In the first

training phase of the Generator, we used a general dataset taken from ChEMBL

(chembl identifier 22) so that the model could learn the basic rules of SMILES

notation to encode valid and synthesizable molecules. Afterwards, the Generator

was re-trained through Reinforcement Learning (RL) to generate compounds with

desired biological properties. In this case, it was intended to generate compounds

that would bind to Adenosine A2A and USP7 targets. To implement this dynamic, it

was necessary to build and train regressor models that assess the ability of molecules

to interact with the respective targets through supervised learning. Thus, the RL

process was guided by these evaluators, forcing the Generator to explore the regions

of the chemical space that favoured the desired interactions. After applying this

deep molecular generation framework for the two tasks, the biased generators were

used to sample the sets of new molecules with a high probability of inhibiting the

Adenosine A2A and USP7 targets.

5.3 Bioinformatic tools

5.3.1 Docking software and structure preparation

Autodock 4 (AD4) [258], Autodock FR (ADFR) [259], Autodock Vina (VINA) [260],

LeDock [261], PLANTS [262]

and rDock [263] were used in these experiments.

The search space was defined as a 20x20x20 Å (v = 8,000 Å³) box to encompass all

the biding pocket residues. Re-docking experiments were performed in sets of 10 as

this sample size has previously produced accurate models. Using Discovery Studio

Visualizer, polar hydrogens were added, and all water molecules, ions, and ligands

were removed. Cognate ligands were preserved in a separate file for cross-docking.
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For AD4, ADFR, Vina, and LeDock, the protein, and ligand files were prepared

using AutoDockTools 1.5.6., converted from PDB to PDBQT format, and Gasteiger

charges and hydrogens were added. For AD4, grid points were set to 60 and spacing

to 0,375 Å. The parameters for the Lamarckian genetic algorithm and the scoring

function were left as default. For ADFR, Vina and LeDock, exhaustiveness was set

to 8, and additional parameters were left as default.

For plants, proteins and ligands were prepared using spores, and input files were used

without alteration. Exhaustiveness was set to 8, and additional parameters were left

as default. And for rDock, Maestro was used for processing the used structures. The

geometric center of the original ligand was set as the spheres for the two spheres

method (radius set as 3.0 Å and 12.0 Å, respectively), defining the cavity.

5.3.2 Fragment analysis, consensus scoring, and drug-likeness

prediction

Fragment analysis was performed using Python 3.10’s Scikit-learn library to build a

Random Forest classifier model and trained on the Morgan fingerprint vectors gen-

erated by RDkit 2021.03.1 for each ligand in the data, according to their respective

receptors.

Consensus scoring was performed according to the Exponential Consensus Ranking

[143] for the results of the deep learning molecules’ screening of all the MD tools

used. In addition, Screen Explorer [264] was used to generate a ROC curve to

evaluate the strategy’s acuity.

The online version of the Molsoft software [265] was used to assess the Drug-likeness

score of the putative ligand molecules.

5.3.3 Molecular dynamics simulation

GROMACS v2021.4 [266] was used to run MDS for ligands selected after cross-

docking at a timeframe of 50 nanoseconds to assess the stability of the docked ligand-

protein complexes. These were solvated in a cubical box, respecting a minimum

distance of 10 Å from the edges to the ligands. The GROMOS96 53a6 force field

was used to prepare these ligand-protein complexes, and Na+/Cl ions were added for

charge balancing and neutralizing the system. The system’s initial energy reduction

was carried out using the steepest descent algorithm (5000 steps). The whole system

43



5. Materials and Methods

was equilibrated for five nanoseconds at 300 K and 1 bar pressure using NVT and

NPT ensembles after the first minimization was finished. A Berendsen thermostat

was selected, and a temperature coupling of 300K was selected. Parrinello-Rahman

was used to set a 1.0 bar pressure and Lennard-Jones and Coulomb interactions for

periodic boundary conditions, and PME was used to handle long-range interactions.

The chosen time step was 2 femtoseconds, storing coordinates every 10fs, and the

final MDS ran for 50 ns. Furthermore, we used Visual Molecular Dynamics 1.9.3 for

the calculation of protein-ligand distance and of RMSD throughout the simulation

[267].
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Results and Discussion

This chapter contains the experimental analysis and results produced throughout

this work. It comprises three parts: docking tools assessment, model-generated

molecules screening, and validation through molecular dynamics simulations.

6.1 Docking Tools Assessment

Firstly, the six docking tools used were evaluated according to their performance to

reproduce the native poses of the ligands found bound to protein’s crystal structures

used in this work. For this purpose, we used PyMol to align the protein structures

and DoGSiteScorer to determine their binding sites, as presented in figure 6.1.

Figure 6.1: Binding pockets. DoGSiteScorer generated binding pockets for
A2aR(a) JAK2(b), KOR(c) and USP7(d)

Each software’s docking boxes were positioned according to the geometric centre of

the binding pocket, and each ligand was docked to every protein structure. At the

moment of these experiments, there are only three KOR crystal structures available;

so both of the co-crystalized proteins in each file were used. For all other proteins,

ten of each kind were selected. The results were gauged by the docked ligand’s
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RMSD (Å) against the original pose, with the cutoff mark set as 2Å. The MD tools

expressed varying degrees of success in this task, and the mean RMSD values for

the poses generated by each software are displayed in the heatmaps of Figure 6.2,

boxplots of these values are shown in Figure 6.3 for ease of visualization.

Figure 6.2: RMSD heatmaps. Heatmaps expressing the RMSD scores for the cross-
docked ligands of the four proteins. (a) represents A2aR, (b) JAK2’s, (c) KOR and
(d) USP7 structures.

The tools from the Autodock family consistently presented good results, with RMSDs

under 2Å. ADFR was able to find good solutions 91.7% of the time and mean RMSD

of 1.26Å, VINA 86.1% and 1.05Å, and AD4 75% and 1.36Å. LeDock produced inter-
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Figure 6.3: RMSD results presented in the form of box plots.

mediate results (58,3% under 2Å and mean RMSD of 2.06; with the worst performers

being PLANTS (38.9% and 2.25Å) and rDock(27.8% and 3.06Å), already a sign that

these two tools are likely, not adequate for screening campaigns.

The primary analysis results also provided information about the best structures

crystal to be used in this experiment. The following selection was made: 5IU8 for

A2aR (mean RMSD of 1.23Å), 4DJH-A for KOR (0.65Å), 6VNJ for (0.72Å), and

6VN3 for USP7 (1.45Å).

In sequence, we performed docking of four sets of 50 ligands with known binding

affinity, one for each protein, with every MD tool. This is a more nuanced evalua-

tion of their competencies, and the specific capability of providing accurate binding

affinities can be of great use in assessing putative ligands. We plotted the docking

results against the specific affinity values and performed linear regressions to verify

the accuracy of each tool. The three best results and global outcome for each protein

can be seen in Figure 6.4 (complete analysis in Appendix Figures A.1 to A.4).

The top two performers for the first experiment, VINA, and ADFR, displayed higher

accuracy, with correlations statistically significant. Interestingly, despite being able

to position ligands on re-docking adequately, AD4 was not as precise for evaluating

intermolecular forces, presenting results close to random chance. An outcome like

this is not wholly unexpected, since the accurate estimation of binding energy is a

far more stringent test for an MD tool than ligand posing. Still, the software may be

focused on accurately posing ligands or present specificities that negatively impact

accurate energy estimations.

VINA and ADFR were the best performers in both tests, so these two software were

selected for the ensuing screenings.
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6. Results and Discussion

Figure 6.4: Binding energy regression plots. The plots display linear regression
between the docking score of the three best MD tools and experimentally determined
ligand pIC50 or pKi. (a) A2aR, (b) USP7, (c) JAK2, (d) KOR.

Furthermore, Morgan fingerprint was used to observe tool bias. To this end, molecules

that fell outside the confidence interval were classified as under or over-scored and a

Random Forest model was produced and trained using python 3’s sckit-learn pack-

age to determine the correlation between specific molecular fragments and scoring,

the results of which can be seen in table6.1

These results indicate that both Vina and ADFR present a positive bias toward

large non-polar structures and against small polar ones, as it is known for some

docking tools. Fortunately, The molecules found in these groups were different for

either of the two MD tools, which suggests that consensus scoring strategies would

be enough to eliminate false positives [166,268].

6.2 DGM Molecules Screening

To assess the molecules produced by the DGM, we chose to use the exponential

consensus method for MD. As a primary probe into the technique’s acuity, we tested

the process for the four proteins used in this work using known ligands. Four test

groups were created, each comprising one hundred known ligands and three thousand
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Table 6.1: Morgan fingerprint fragments. The table show the correlation weights
as related to over- or underprediction of the Morgan fragments displaying higher
relevance.

Group Bit Weight

Overpredicted
0.0352

0.0227

0.0146

Group Bit Weight

Underpredicted
0.0230

0.0185

0.0095

specific DUD-E decoys. The resulting scores were used to create ROC curves for each

category. We also took the opportunity to compare one of the most commonly used

benchmarking and goals for DGM, and have found out that a very poor performance

when applied into discerning drugs from decoys. Figure6.5 shows the results for

A2aR and USP7.

As all the sets performed well, we moved to the docking of all the generated putative

ligands against their respective target proteins. The resulting scores of both MD

tools were ranked and processed according to the exponential scoring methodology;

accordingly, four thousand decoys were also docked and ranked alongside the test

molecules. Sample drugs with known affinity for these proteins were also included

in each group to provide an extra layer of scrutiny.

To assess structures produced by the DGM, we processed these putative ligands

according to exponential consensus methodology. Hence, for each target protein, a

group of two thousand specific decoys, the test molecules, and a sample of drugs with

known affinity were docked, scored, and processed. The pharmaceutical molecules

were added as an extra layer of scrutiny to confirm if the methodology could detect

valuable molecules. The results of these screenings can be seen in Figure 6.6

Almost all the drug molecules in this test were placed among the top-scoring ones,

indicating that the system can capture molecules of interest. We also observed that

a reasonable number of test molecules ranked among the fifth percentile for the
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Figure 6.5: A2aR and USP7 ROC curves. (a) represent the ROC curve For A2aR
MD results, and (b) that of USP7. The graphs display the performance of ADFR
(in red), VINA (in green), exponential consensus scoring (in black) and QED (in
purple)

A2aR and USP7 groups. JAK2 and KOR groups presented only 8 and 4 structures

with passing scores.

6.3 Validation Through Molecular Dynamics Simulations

The best ten molecules for each of these two groups, as well as the worst five, were

selected for validation through MDS in 50ns protein-ligand simulations in GRO-

MACS, the results of which can be seen in Table6.2. Figures 6.7 and 6.8 display

stability results for A2aR and USP7, respectively. The complete Stability results

can be seen in Appendix Figure A.5.

Even in the case of the KOR set, in which not many DGM molecules were found

among the upper five percent screened molecules, MDS results for the best ten

structures were clearly better than the worst five. Also, almost all molecules above

this cut-out mark presented ligand-protein RMSD under 2Å, which in this technique

indicates relative stability.

6.4 Additional Chemometric Analyses

With the intent of a simple comparison between the above-presented screening meth-

ods and some of the most used metrics for DGMs, all test molecules had their
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Table 6.2: MDS results for (a) A2aR, (b) JAK2 , (c) KOR (d) USP7 ligands.
Carbon H bond (CHb), Conventional H bond (CoHb), Distance (Dist.), Unfavorable
Donor-Donor (Unf. D-D)
(a) A2aR

Rank Label RMSD Closest Dist.

amino acid Å

1 71 1.4 Tyr 271 - CoHb 2.56

2 29 1.1
Glu 168 - CoHb

Glu 169 - CoHb

2.25

2.16

3 41 1.5 Glu 169 - CoHb 2.43

4 68 1.8 Tyr 271 - CoHb 2.14

5 70 1.7
Glu 169 - CoHb

Tyr 271 - CoHb

2.16

2.11

6 46 1.4 Phe 168 - CoHb 2.18

7 16 2.3
Val 84 - Pi-Sigma

Ile 264 - Pi-Sigma

3.54

3.62

8 42 1.3 Phe 168 - CoHb 2.39

9 1 1.1
Phe 168 - CoHb

Glu 169 - CoHb

1.62

2.11

10 21 1.5 Tyr 271 - CoHb 1.64

96 44 3.6
Ala 63 - CoHb

Val 84 - CoHb

3.8

3.46

97 60 8.4
Phe 168 - Pi-Sigma

Glu 169 - Pi-Sigma

2.98

1.87

98 48 6.9
Lys 153 - CoHb

Tyr 271 - CoHb

2.30

2.13

99 70 5.4
Glu 169 - CoHb

Tyr 271 - CoHb

1.70

1.96

100 12 4.7 His 278 - CoHb 2.07

(b) JAK2

Rank Label RMSD Closest Dist.

amino acid Å

1 12 1.6

Lys 882 - CoHb

Asp 994 - CoHb

Asn 981 Unf. D-D

2.75

2.27

1.41

2 11 1.7
Asp 976 - CoHb

Tyr 465 - CoHb

2.51

2.95

3 24 1.3
Leu 855 - CoHb

Ser 936 - CoHb

2.33

2.08

4 53 3.1

Leu 855 - Alkyl

Val 863 - Alkyl

Leu 983 - Alkyl

5.06

4.10

4.70

5 28 1.9 Lys 587 - CoHb 1.98

6 5 1.2
Lys 882 - CoHb

Gly 858 - CoHb

2.83

2.6

7 23 1.6
Asn 859 - CoHb

Asn 981 - CoHb

2.29

2.71

8 9 2.3 Lys 857 - CoHb 2.04

9 6 1.7 Asp 939 - CoHb 2.70

10 3 1.2 Gly 858 - CoHb 2.24

67 27 2.9 Asp 994 - CoHb 3.23

68 6 5.2 Phe 860 - CoHb 2.70

69 39 9.2 Asp 994 - CoHb 2.89

70 4 6.3
Arg 980 - CoHb

Asn 981 - CoHb

2.01

2.36

71 2 4.9
Phe 860 - CoHb

Asp 976 - CoHb

1.83

2.52

(c) KOR

Rank Label RMSD Closest Dist.

amino acid Å

1 53 1.2
Asp 138 - CoHb

Tyr 139 - CoHb

2.37

1.95

2 11 1.1

Gln 115 - CoHb

Asp 138 - CoHb

Tyr 139 - CoHb

3.01

2.23

2.39

3 50 1.9 Gln 115 - CoHb 2.38

4 27 1.5
Tyr 312 - CoHb

Tyr 320 - CoHb

2.16

1.99

5 71 1.8

Asp 138 - CoHb

Tyr 139 - CoHb

Tyr 312 - CoHb

1.97

2.17

1.96

6 68 3.4 Tyr 312 - CoHb 2.6

7 11 1.8
Asp 138 - CoHb

His 291 - CoHb

2.16

2.01

8 10 1.8
Val 134 - CoHb

Asp 138 - CoHb

2.81

1.90

9 60 4.2 Tyr 312 - CoHb
2.29

2.32

10 4 1.2 Tyr 312 - CoHb 2.89

75 2 4.5 Trp 287 Pi-Sigma 3.99

76 60 9.8 Tyr 320 - Pi-Sigma 3.62

77 78 5.7
Gln 115 - CoHb

Tyr 320 - Unf. D-D

2.62

2.86

78 33 4.3
Gln 115 - CoHb

Tyr 320 - Unf. D-D

2.63

2.86

79 35 3.6
Gln 115 - CoHb

Val 134 - CoHb

2.87

2.36

(d) USP7

Rank Label RMSD Closest Dist.

amino acid Å

1 53 1.2
Val 296 - CoHb

Tyr 465- CoHb

2.98

2.72

2 72 1.3
Asp 295 - CoHb

Tyr 465 - CoHb

2.51

2.95

3 18 1.4
Asp 295 - CoHb

Tyr 465 - CoHb

2.53

2.72

4 28 1.4 Val 296 - CoHb 2.91

5 34 1.8
Arg 408 - CoHb

Phe 409 - CoHb

2.35

2.86

6 4 1.2
Asp 295 - CoHb

Tyr 465 - CoHb

2.08

2.98

7 11 1.3
His 294 - CoHb

Ile 264 - CoHb

2.16

2.43

8 9 1.7 Gln 297 - CoHb 2.89

9 60 1.3 Tyr 465 - CoHb 1.62

10 3 1.2 Leu 406 - CoHb 1.74

96 2 5.2
His 456 - CoHb

Tyr 465 - CoHb

2.78

2.30

97 13 4.2 Asn 512 - CoHb 2.39

98 41 5.1 Val 296 - CoHb 2.30

99 59 6.3 Val 296 - CoHb 2.06

100 2 7.1
Asn 418 - CoHb

Tyr 465 - CoHb

2.16

2.40
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Figure 6.6: Consensus scoring plots. This distribution shows the MD scoring
ranking with ADFR (x-axis) and VINA (y-axis); in this methodology, the closer to
zero a molecule is placed, the higher its score. The blue lines indicate the cut-off
mark, set as 5% for a more strict evaluation. Molecules have been separated by type
as decoy, target or known binder.

drug-likeness score, total polar surface area (TPSA), and partition coefficient (logP)

calculated, with the results for A2aR displayed in Figure 6.9.

With the outcome of these analyses, no meaningful correlation was present be-

tween these metrics, making them non-redundant. Furthermore, these seem to be

good additional filters, enabling the selection of molecules with better pharmaco-

logical properties. For instance, we observed that for A2aR, one-third of the DGM

molecules, including some with high consensus scores, are unlikely to be able to

transpose the blood-brain barrier, a feature fundamental for drugs targeting this

receptor.
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Figure 6.7: A2aR MDS results. The MDS results for the best and worst five
molecules are displayed in a and b, respectively. In c the 2d representation of the
final pose and interaction of the best consensus scoring molecule with the receptor,
d represent the same, but for the worst.

Figure 6.8: USP7 MDS results. The MDS results for the best and worst five
molecules are displayed in a and b, respectively. In c the 2d representation of the
final pose and interaction of the best consensus scoring molecule with the receptor,
d represent the same, but for the worst.

53



6. Results and Discussion

Figure 6.9: Chemometric analyses. (a) Shows a graph used to estimate
compartment-specific absorption, with TPSA at the x-axis and LogP in y, with
A2aR data. The consensus scoring is represented in a hue going from blue to yel-
low, and the zone where blood-brain barrier transposing molecules are expected to
fall is delineated by the large green circle. (b) shows the A2aR exponential consen-
sus graph with QED values shown as the dot’s hue, with good values (0 and over) in
green, intermediate values (between -0.5 and 0) in yellow, and poor results (under
-0.5) in red
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Conclusion

7.1 Conclusions

In this study, comprehensive studies on small molecule screening and ML models

for de novo drug design were performed, focusing on the intersection between both

techniques and model validation. This assessment concluded that, despite ML’s

displayed potential in de novo drug design, a glaring flaw is found in model develop-

ment and benchmarking: tridimensional molecular information is rarely accounted

for. This situation is likely to impact development, as the research community fo-

cuses on models lacking adequate validation and that may focus on the production

of information not transferable to actual biochemical conditions.

As a solution for this, a validation including MD tools was proposed since this tech-

nique has a relatively low computational cost and is able to encompass the use of

more realistic molecular calculations. Since the choice of MD software and base

crystal structures is a momentous step of molecular screening, a more flexible ap-

proach encompassing the assessment of each MD tool was preferred. To this means,

multiple methodologies for accuracy testing were studied, with cross-docking anal-

ysis and linear regression between docking score and binding energy being selected

in the end. The former was incorporated as it is a well-established methodology for

software acuity and crystal structure evaluation, and the latter was added since bind-

ing energy estimations are a more direct means to assess protein-ligand interaction.

Considering the importance of accessibility in benchmarking, we opted for using

freeware and open source software, with a selection of six of the best well-known

MD tools (AD4, ADFR, LeDock, PLANTS, rDOCK, and VINA) being tested for

acuity in the end. ADFR and VINA displayed great results overall, outperforming

the other applications by large margins.
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Exponential consensus scoring was incorporated to better evaluate the molecules

generated by the ML models into the molecular screening. The effectiveness of this

technique was gauged through the generation of ROC curves and the use of known

binder molecules as positive controls, and DUD-E-generated decoys were used for

sample enrichment. In this, a significant increase in predictive performance was

observed when applying exponential consensus scoring, and the control molecules

were displayed inside the cutoff mark, even when very strict margins (5%) were used.

As a final validation step, MDS of the systems containing the best ten and worst

five scoring molecules of each set and their respective target protein were performed,

making use of parameters found in well-established protocols. The resulting data

pointed to a clear divide between groups, with the overwhelming majority of the

best molecules displaying displacement under 2Åand the worst with much higher

RMSD, indicating that the model is able to select molecules with high affinity for

their specific binding sites.

Additionally, we observe that, although the first implementation of this process

may take a while to execute, much of the process can be skipped on subsequent

tests for the same binding sites. For instance, it is not necessary to repeat the MD

tools evaluation. The information stored from the experiments can also be directly

compared with new data if other MD software is tested. Also, the scores of decoy

molecules for each MD tool can be re-introduced against new ligands for consensus

score ranking.

We expect that this system can bridge the impressive potential of DGMs and the

representational metrics provided by MD and MDS. Although, it is essential to

observe that this system was developed as an additional implement to, and not a

substitute for, other chemometric evaluations and does not account for molecular

properties other than structural affinity. Thus, qualities such as chemical stability,

toxicity, and biodisponibility, among others, must still be assessed through other

means.

7.2 Future Work

To better place the methodology suggested in this work, testing multiple de novo

drug design DL models and comparing their outcomes would be useful. Other than

that, although the fraction of molecules displayed inside the cutoff mark is a useful

metric, developing other means for comparison between models would be an inter-
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esting proposal, which could perhaps incorporate multiple molecular characteristics

and encompass the use of chemometrics.

Using the results’ high-ranking molecules selected by the screening process as feed-

back for DGMs training and comparing their performance with similar systems or

previous iterations of the same model would also be of interest. It could perhaps

demonstrate the method’s capability as not only a benchmarking tool but also a

means of directly improving DGMs.

Another important step would be directly comparing the performance of the method

conceived in this work with evaluation frameworks such as GuacaMol and MOSES,

since those bestride the benchmark of DL-based de novo drug design models. Thus,

allowing for the analysis of weak points and bestowing insight on areas of interest

for improvement.

Furthermore, as the knowledge needed to accurately employ MD and MDS tools

represents a significant barrier to performing the techniques described in this work,

this project was originally planned to produce a program able to automate most of

its processes and with an interface that would simplify its usage.

Lastly, even though MDS is a well-established technique with high predictive perfor-

mance, chemically synthesizing and in vitro testing of high-scoring molecules would

impart information paramount for the validation of this model. Perhaps even pro-

ducing a molecule candidate for drug test trials.
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Appendix

A.1 Appendix A

Lists containing all the ligands used in docking experiments for each target protein.

Table A.1: List of A2aR ligands

Nº ChEMBL ID pIC50 AD4 ADFR LeDock PLANTS rDock VINA

1 CHEMBL1081334 -8 -7.34 -7.7 -138.77 -30.4 -6.1 6.1
2 CHEMBL1081335 -8 -7.23 -5.5 -99.93 -26.1 -8.8 8.8
3 CHEMBL1076503 -8.8 -6.99 -8.9 -126.14 -7.8 -8.1 8.1
4 CHEMBL1076504 -8.3 -8.06 -5.2 -149.04 -20.5 -8.5 8.5
5 CHEMBL1077749 -8.1 -9.05 -7.3 -114.13 -12.3 -7.7 7.7
6 CHEMBL1077750 -8.4 -7.46 -8.7 -118.84 -11.8 -8.3 8.3
7 CHEMBL1077751 -8.7 -7.1 -7.8 -107.57 -18.1 -10.9 10.9
8 CHEMBL1077752 -9.1 -8.04 -9.3 -140.5 -9.9 -10.1 10.1
9 CHEMBL1077902 -9.2 -7.53 -7.4 -112.13 -21 -10.1 10.1
10 CHEMBL1077915 -9.5 -8.97 -6.5 -126.38 -30.5 -9.5 9.5
11 CHEMBL1077943 -9.1 -8.16 -8.1 -138.05 -14.6 -8.5 8.5
12 CHEMBL2398483 -8.7 -8.15 -5.5 -133.67 -33.1 -10.5 10.5
13 CHEMBL1077985 -7.1 -8.46 -9.8 -97.86 -8.1 -5.7 5.7
14 CHEMBL1078001 -9.9 -9.37 -9.9 -121.02 -28.3 -10.6 10.6
15 CHEMBL1078030 -7.5 -7.79 -7.6 -93.26 -10.6 -5 5
16 CHEMBL1078085 -9.9 -7.9 -6.8 -117.75 -27.5 -10 10
17 CHEMBL1078086 -9.6 -7.84 -7.2 -147.93 -13.2 -9.5 9.5
18 CHEMBL1078087 -7.4 -8.43 -5.1 -91.81 -14.8 -10 10
19 CHEMBL1078347 -7.9 -8.47 -7.7 -149.81 -25.8 -8 8
20 CHEMBL1078348 -9.3 -9.16 -7.1 -130.28 -12.8 -5.4 5.4
21 CHEMBL1078349 -9.5 -7.87 -8 -112.38 -23.5 -7.2 7.2
22 CHEMBL1079043 -9.2 -8.46 -8.3 -139.53 -7 -6.2 6.2
23 CHEMBL1079044 -8.3 -6.92 -5.9 -129.32 -21.4 -7.2 7.2
24 CHEMBL1079059 -8.6 -8.25 -8.4 -92.98 -17.3 -5.5 5.5
25 CHEMBL1079115 -9.5 -8.42 -5.6 -112.39 -27.2 -9.4 9.4
26 CHEMBL1079116 -7.5 -9.16 -6.9 -109.79 -6.2 -5.3 5.3
27 CHEMBL1079117 -9 -7.84 -6.4 -142.19 -24.1 -7.2 7.2
28 CHEMBL1079118 -9.4 -9.68 -9.3 -146.77 -7.2 -9.3 9.3
29 CHEMBL1079132 -7.8 -8.42 -9.7 -141.35 -24.3 -9.8 9.8
30 CHEMBL1079141 -7.8 -8.41 -5.5 -142.39 -13.3 -9.7 9.7
31 CHEMBL1079142 -9.7 -8.83 -5.2 -121.6 -18.2 -9.5 9.5
32 CHEMBL1079232 -8.1 -8 -6.3 -114.62 -14.1 -9.5 9.5
33 CHEMBL1079894 -9.6 -9.47 -8.7 -133.82 -11.1 -9.3 9.3
34 CHEMBL4167557 -9.5 -9.43 -9.9 -122.64 -19.8 -8.8 8.8
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35 CHEMBL1080067 -8.5 -8.17 -9.8 -101.49 -22.2 -7.6 7.6
36 CHEMBL1080068 -9.1 -9.19 -5.5 -147.26 -28.7 -9.8 9.8
37 CHEMBL1081873 -8 -9.87 -6.2 -146.93 -13.7 -6.5 6.5
38 CHEMBL1082063 -8.4 -8.06 -6.2 -105.18 -16.6 -9.4 9.4
39 CHEMBL1080421 -8.8 -7.68 -5 -141.52 -24.6 -9.3 9.3
40 CHEMBL1081160 -9.1 -6.6 -9.8 -121.54 -26.3 -9.4 9.4
41 CHEMBL290106 -9.3 -8.14 -7 -98.76 -13.5 -9.5 9.5
42 CHEMBL113142 -9.2 -8.15 -9.2 -117.91 -29.6 -9.7 9.7
43 CHEMBL4064795 -8.4 -6.73 -9.7 -102.98 -24 -9.4 9.4
44 CHEMBL2381758 -7.1 -6.75 -7.6 -129.2 -5.5 -6.2 6.2
45 CHEMBL1258397 -9.8 -7.94 -8.8 -128.02 -17.2 -10.3 10.3
46 CHEMBL2024116 -9.7 -7.59 -6.1 -147.7 -30.2 -10.7 10.7
47 CHEMBL4741609 -10 -9.06 -9.3 -147.28 -32.1 -10 10
48 CHEMBL2381760 -8.6 -7.73 -9.9 -136.81 -32.5 -10.1 10.1
49 CHEMBL2381761 -10 -7.61 -9.1 -136.92 -19.2 -10.1 10.1
50 CHEMBL21572 -10.3 -8.17 -6.4 -132.52 -12.8 -9.5 9.5

Table A.2: Listo of JAK2 ligands

Nº ChEMBL ID pKi AD4 ADFR LeDock PLANTS rDock VINA

1 CHEMBL445332 8.21 -6.4 -7.8 -5.9 -128.1 -50.4 -7.2

2 CHEMBL573214 9.72 -9.9 -8 -8.9 -103.9 -42.1 -8.9

3 CHEMBL19019 9.05 -7.8 -8.1 -6 -104.5 -47.6 -7.3

4 CHEMBL267495 9.64 -7.7 -9.3 -8.6 -106.1 -37.5 -8.4

5 CHEMBL70 7.07 -7.3 -6.1 -6.3 -107.8 -49.5 -7.3

6 CHEMBL281786 9.43 -7 -8.3 -8.4 -128.4 -32.4 -7.7

7 CHEMBL301160 10.1 -7.2 -8.2 -5.3 -123.4 -38.2 -7.2

8 CHEMBL508112 6.3 -8.6 -8.1 -7.7 -103.3 -35.8 -8.1

9 CHEMBL322717 5.54 -7.3 -7.6 -10 -125.5 -49.6 -8.7

10 CHEMBL322717 9.77 -6.4 -10.1 -12.1 -148.5 -38.6 -10.8

11 CHEMBL267495 7.66 -8.7 -9 -10.6 -127.2 -49.1 -9.6

12 CHEMBL1081093 7.28 -7.6 -8.5 -9.6 -96.0 -38.1 -8

13 CHEMBL127463 9.52 -8.2 -11.1 -10.9 -111.2 -31.1 -10.9

14 CHEMBL127969 9.24 -8.6 -9.6 -9.7 -126.9 -49.8 -9.4

15 CHEMBL136421 5.89 -7.1 -9.6 -8.9 -110.5 -30.5 -9.5

16 CHEMBL1642760 9.03 -9.1 -9.2 -11.2 -112.4 -48.2 -9.9

17 CHEMBL1814705 7.29 -6.7 -6.7 -5.6 -123.5 -28.4 -6.8

18 CHEMBL1921841 9 -8 -9 -10.8 -142.9 -49.7 -9.7

19 CHEMBL2022296 7.4 -8.4 -9.4 -9.3 -124.0 -48.3 -9.2

20 CHEMBL2048776 7.6 -6.1 -9.8 -10.2 -101.6 -36.4 -8.6
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21 CHEMBL2112345 6.51 -9.2 -9 -6.9 -91.7 -30 -8.7

22 CHEMBL216640 10.23 -4 -8 -8.3 -109.2 -33.9 -8.6

23 CHEMBL219319 7.75 -9.5 -7.8 -9 -148.8 -30.5 -7.9

24 CHEMBL2386901 7.8 -6.8 -8.3 -9.8 -102.5 -35.6 -8.1

25 CHEMBL2387196 7.08 -7.2 -9.2 -6.1 -116.9 -27.5 -8

26 CHEMBL3086747 9.8 -8.8 -7.8 -9 -92.5 -28.3 -8

27 CHEMBL240657 6.86 -7.9 -9.2 -10 -99.1 -30.7 -9.4

28 CHEMBL514662 7.89 -7.5 -9.4 -9.8 -141.7 -42.8 -8.2

29 CHEMBL261024 7.16 -5 -9.5 -9.5 -97.9 -44.5 -8.8

30 CHEMBL266314 7.38 -8.6 -10.7 -8.4 -99.8 -41.1 -10

31 CHEMBL271797 10.4 -7.5 -7.4 -8 -142.7 -26.8 -8.5

32 CHEMBL286411 5.21 -8.1 -5.1 -5.1 -102.8 -36.4 -6.3

33 CHEMBL3084634 6.29 -9.5 -6.7 -6.1 -121.4 -41.4 -7.9

34 CHEMBL3262089 9.31 -7.9 -9.3 -7.2 -129.4 -29.7 -8.8

35 CHEMBL3262367 10 -8.6 -10.8 -10.1 -143.9 -50.7 -9.6

36 CHEMBL3264441 8.62 -8.6 -8.6 -7.4 -131 -40.1 -9.4

37 CHEMBL328411 7.13 -10.7 -8.6 -9.6 -114 -40.9 -9.4

38 CHEMBL593583 7.09 -7.5 -7.3 -8.5 -144 -41.4 -6.8

39 CHEMBL58646 10.22 -7.3 -9.1 -10.6 -150.5 -25.8 -10.2

40 CHEMBL3581754 10.3 -3.1 -8.4 -8.8 -97 -41.4 -8.3

41 CHEMBL3639941 6.15 -8.4 -3.6 -10.4 -113.2 -43.5 -4.7

42 CHEMBL3647958 5.64 -7.2 -6.6 -5.5 -145.8 -42.5 -5.8

43 CHEMBL3698904 6.19 -7 -6.9 -5 -108.8 -48.2 -6.9

44 CHEMBL3665419 6.78 -6.7 -7.2 -6.6 -103.5 -46.5 -7.3

45 CHEMBL3665424 5.16 -6.2 -4.9 -4.8 -128.6 -26.1 -5.1

46 CHEMBL3665425 6.45 -6.7 -4.5 -9.1 -120.9 -39.2 -5.7

47 CHEMBL3678965 9.11 -8 -10.1 -8.3 -139.4 -25.9 -9.1

48 CHEMBL3678975 9.7 -5.3 -7.2 -9.8 -139.5 -43.3 -8.1

49 CHEMBL3678977 9.54 -7.8 -8.3 -8.8 -126 -27.9 -8.7

50 CHEMBL3678981 9.72 -6.2 -9.2 -8.4 -123.4 -40.4 -8.4
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Table A.3: List of KOR ligands

Nº ChEMBL ID pKi AD4 ADFR LeDock PLANTS rDock VINA

1 CHEMBL445332 8.21 -6.4 -7.8 -5.9 -128.1 -50.4 -7.2

2 CHEMBL573214 9.72 -9.9 -8 -8.9 -103.9 -42.1 -8.9

3 CHEMBL19019 9.05 -7.8 -8.1 -6 -104.5 -47.6 -7.3

4 CHEMBL267495 9.64 -7.7 -9.3 -8.6 -106.1 -37.5 -8.4

5 CHEMBL70 7.07 -7.3 -6.1 -6.3 -107.8 -49.5 -7.3

6 CHEMBL281786 9.43 -7 -8.3 -8.4 -128.4 -32.4 -7.7

7 CHEMBL301160 10.1 -7.2 -8.2 -5.3 -123.4 -38.2 -7.2

8 CHEMBL508112 6.3 -8.6 -8.1 -7.7 -103.3 -35.8 -8.1

9 CHEMBL322717 5.54 -7.3 -7.6 -10 -125.5 -49.6 -8.7

10 CHEMBL322717 9.77 -6.4 -10.1 -12.1 -148.5 -38.6 -10.8

11 CHEMBL267495 7.66 -8.7 -9 -10.6 -127.2 -49.1 -9.6

12 CHEMBL1081093 7.28 -7.6 -8.5 -9.6 -96 -38.1 -8

13 CHEMBL127463 9.52 -8.2 -11.1 -10.9 -111.2 -31.1 -10.9

14 CHEMBL127969 9.24 -8.6 -9.6 -9.7 -126.9 -49.8 -9.4

15 CHEMBL136421 5.89 -7.1 -9.6 -8.9 -110.5 -30.5 -9.5

16 CHEMBL1642760 9.03 -9.1 -9.2 -11.2 -112.4 -48.2 -9.9

17 CHEMBL1814705 7.29 -6.7 -6.7 -5.6 -123.5 -28.4 -6.8

18 CHEMBL1921841 9 -8 -9 -10.8 -142.9 -49.7 -9.7

19 CHEMBL2022296 7.4 -8.4 -9.4 -9.3 -124 -48.3 -9.2

20 CHEMBL2048776 7.6 -6.1 -9.8 -10.2 -101.6 -36.4 -8.6

21 CHEMBL2112345 6.51 -9.2 -9 -6.9 -91.7 -30 -8.7

22 CHEMBL216640 10.23 -4 -8 -8.3 -109.2 -33.9 -8.6

23 CHEMBL219319 7.75 -9.5 -7.8 -9 -148.8 -30.5 -7.9

24 CHEMBL2386901 7.8 -6.8 -8.3 -9.8 -102.5 -35.6 -8.1

25 CHEMBL2387196 7.08 -7.2 -9.2 -6.1 -116.9 -27.5 -8

26 CHEMBL3086747 9.8 -8.8 -7.8 -9 -92.5 -28.3 -8

27 CHEMBL240657 6.86 -7.9 -9.2 -10 -99.1 -30.7 -9.4

28 CHEMBL514662 7.89 -7.5 -9.4 -9.8 -141.7 -42.8 -8.2

29 CHEMBL261024 7.16 -5 -9.5 -9.5 -97.9 -44.5 -8.8

30 CHEMBL266314 7.38 -8.6 -10.7 -8.4 -99.8 -41.1 -10
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31 CHEMBL271797 10.4 -7.5 -7.4 -8 -142.7 -26.8 -8.5

32 CHEMBL286411 5.21 -8.1 -5.1 -5.1 -102.8 -36.4 -6.3

33 CHEMBL3084634 6.29 -9.5 -6.7 -6.1 -121.4 -41.4 -7.9

34 CHEMBL3262089 9.31 -7.9 -9.3 -7.2 -129.4 -29.7 -8.8

35 CHEMBL3262367 10 -8.6 -10.8 -10.1 -143.9 -50.7 -9.6

36 CHEMBL3264441 8.62 -8.6 -8.6 -7.4 -131 -40.1 -9.4

37 CHEMBL328411 7.13 -10.7 -8.6 -9.6 -114 -40.9 -9.4

38 CHEMBL593583 7.09 -7.5 -7.3 -8.5 -144 -41.4 -6.8

39 CHEMBL58646 10.22 -7.3 -9.1 -10.6 -150.5 -25.8 -10.2

40 CHEMBL3581754 10.3 -3.1 -8.4 -8.8 -97 -41.4 -8.3

41 CHEMBL3639941 6.15 -8.4 -3.6 -10.4 -113.2 -43.5 -4.7

42 CHEMBL3647958 5.64 -7.2 -6.6 -5.5 -145.8 -42.5 -5.8

43 CHEMBL3698904 6.19 -7 -6.9 -5 -108.8 -48.2 -6.9

44 CHEMBL3665419 6.78 -6.7 -7.2 -6.6 -103.5 -46.5 -7.3

45 CHEMBL3665424 5.16 -6.2 -4.9 -4.8 -128.6 -26.1 -5.1

46 CHEMBL3665425 6.45 -6.7 -4.5 -9.1 -120.9 -39.2 -5.7

47 CHEMBL3678965 9.11 -8 -10.1 -8.3 -139.4 -25.9 -9.1

48 CHEMBL3678975 9.7 -5.3 -7.2 -9.8 -139.5 -43.3 -8.1

49 CHEMBL3678977 9.54 -7.8 -8.3 -8.8 -126 -27.9 -8.7

50 CHEMBL3678981 9.72 -6.2 -9.2 -8.4 -123.4 -40.4 -8.4

Table A.4: List of USP7 ligands

Nº ChEMBL ID pIC50 AD4 ADFR LeDock PLANTS rDock VINA

1 CHEMBL1762621 4.85 -9.35 -9.4 -13.9 -148.99 -35 -7.9
2 CHEMBL2159495 5.38 -5.15 -7.1 -13.19 -145.45 -32.45 -7.4
3 CHEMBL2159497 5.16 -6.4 -7.1 -5.52 -107.07 -4.74 -7.6
4 CHEMBL2159498 5.1 -6.03 -6.6 -11.27 -135.86 -25.52 -7.6
5 CHEMBL2159498 4.71 -6.34 -6.3 -8.44 -121.72 -15.31 -7.6
6 CHEMBL2159498 5.1 -5.79 -6.6 -11.58 -137.37 -26.61 -7.6
7 CHEMBL2159499 5.66 -7 -7.1 -6.53 -112.12 -8.39 -7.2
8 CHEMBL2159501 5.77 -7.57 -8.5 -8.85 -123.74 -16.77 -7.5
9 CHEMBL2159502 5.11 -6.73 -8.1 -10.67 -132.83 -23.33 -7.5
10 CHEMBL2159503 6.42 -3.94 -8.3 -6.73 -113.13 -9.11 -8
11 CHEMBL2159504 6.37 -6.61 -7 -7.33 -116.16 -11.3 -7.9
12 CHEMBL2159505 6.4 -6.47 -8 -9.66 -127.78 -19.69 -8.3
13 CHEMBL2159506 4.72 -6.61 -7.5 -12.38 -141.41 -29.53 -7.2
14 CHEMBL2159507 6.42 -9.04 -9.1 -5.21 -105.56 -3.65 -8.5
15 CHEMBL2159508 6.38 -7.61 -9 -4.51 -102.02 -1.09 -8.6
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16 CHEMBL4061087 4.82 -7.96 -7.9 -4.4 -101.52 -5.73 -9.5
17 CHEMBL4062409 5.16 -5.58 -5.8 -8.24 -120.71 -14.58 -7
18 CHEMBL4063215 5.07 -6.45 -7 -10.26 -130.81 -21.88 -8.5
19 CHEMBL4064074 4.07 -7.14 -8.1 -10.77 -133.33 -23.7 -7.7
20 CHEMBL4065173 5.35 -5.12 -6.4 -10.36 -131.31 -22.24 -7.1
21 CHEMBL4065700 5.28 -6.66 -8.1 -12.38 -141.41 -29.53 -8.4
22 CHEMBL4069093 5.38 -5.89 -7.1 -10.57 -132.32 -22.97 -8.3
23 CHEMBL4069137 4.1 -6.69 -7.8 -12.08 -139.9 -28.44 -8
24 CHEMBL4070513 5 -6.96 -6.6 -9.76 -128.28 -20.05 -7.6
25 CHEMBL4070982 6.32 -8.27 -8.3 -6.53 -112.12 -8.39 -9.3
26 CHEMBL4073748 4.74 -5.5 -7.3 -12.99 -144.44 -31.72 -7.6
27 CHEMBL4074910 5.6 -6.5 -7.4 -10.46 -131.82 -22.6 -9
28 CHEMBL4074910 5.34 -7.15 -8.1 -5.62 -107.58 -5.1 -8.9
29 CHEMBL4076247 6.12 -8 -8.2 -7.13 -115.15 -10.57 -8.9
30 CHEMBL4076247 6.01 -7.59 -8.4 -5.92 -109.09 -6.2 -8.9
31 CHEMBL4076471 4.67 -8.71 -8.3 -8.24 -120.71 -14.58 -8.9
32 CHEMBL4079672 4.74 -7.04 -7.7 -4.61 -102.53 -1.46 -7.8
33 CHEMBL4079850 5.58 -5.52 -7.5 -6.12 -110.1 -6.93 -9
34 CHEMBL4081422 4.87 -6.14 -7.8 -7.74 -118.18 -12.76 -8.6
35 CHEMBL4081614 4.57 -6.01 -7.6 -5.52 -107.07 -4.74 -8.9
36 CHEMBL4081911 4.65 -6.93 -8.5 -9.96 -129.29 -20.78 -8.8
37 CHEMBL4087728 5.44 -6.91 -7.3 -9.56 -127.27 -19.32 -8.6
38 CHEMBL4090158 4.39 -5.41 -7.3 -11.98 -139.39 -28.07 -7.8
39 CHEMBL4090799 6.21 -7.69 -8.4 -4.2 -100.51 -5 -9.2
40 CHEMBL4091535 4.48 -6.99 -7.8 -13.19 -145.45 -32.45 -8.7
41 CHEMBL4092836 6.17 -5.54 -6.2 -6.83 -113.64 -9.48 -6.9
42 CHEMBL4092976 5.87 -6 -8 -5.92 -109.09 -6.2 -8.8
43 CHEMBL4092976 5.89 -6.56 -8.5 -7.84 -118.69 -13.13 -8.8
44 CHEMBL4092976 5.87 -8.3 -8.2 -8.95 -124.24 -17.14 -8.8
45 CHEMBL4094344 4.78 -5.38 -8 -5.72 -108.08 -5.47 -7.6
46 CHEMBL4097329 5.6 -6.75 -8.3 -5.11 -105.05 -3.28 -9.1
47 CHEMBL4097744 4.01 -7.77 -8.3 -13.9 -148.99 -35 -7.8
48 CHEMBL4097876 5.87 -5.47 -7.7 -10.46 -131.82 -22.6 -9
49 CHEMBL4098430 4.48 -7.5 -7.9 -6.32 -111.11 -7.66 -7.9
50 CHEMBL4100447 4.96 -6.28 -8 -11.98 -139.39 -28.07 -8.8

A.2 Appendix B

Graphs of regression plots of all docking experiments against binding affinity values

(pKi or pIC50) and MDS RMSD results.
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Figure A.1: A2aR regression plots. Results for binding affinity and docking scores.
(a) global, (b) AD4, (c) ADFR, (e) PLANTS, (f) rDock, (g) VINA.
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Figure A.2: JAK2 regression plots.Results for binding affinity and docking scores.
(a) global, (b) AD4, (c) ADFR, (e) PLANTS, (f) rDock, (g) VINA
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Figure A.3: KOR regression plots.Results for binding affinity and docking scores.
(a) global, (b) AD4, (c) ADFR, (e) PLANTS, (f) rDock, (g) VINA
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Figure A.4: USP7 regression plots.Results for binding affinity and docking scores.
(a) global, (b) AD4, (c) ADFR, (e) PLANTS, (f) rDock, (g) VINA
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Appendix C

Figure A.5: Ligand stability in MDS. Representation of the positional stability
of the best and worst exponential consensus ranking molecules in the MSD experi-
ments. Graphs of the RMSD (y axis) over time (x axis) for the top five, 6th to 10th,
and worst five molecules (in relation to target molecule consensus scoring) for (a)
A2aR, (b) JAK2, (c) KOR, (d) KOR. Lower values denote ligand positional stability
and, therefore, stronger coupling with the receptor.
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[85] R. Gómez-Bombarelli, J. N. Wei, D. Duvenaud, J. M. Hernández-Lobato,

B. Sánchez-Lengeling, D. Sheberla, J. Aguilera-Iparraguirre, T. D. Hirzel,

R. P. Adams, and A. Aspuru-Guzik, “Automatic chemical design using a data-

driven continuous representation of molecules,” ACS central science, vol. 4,

no. 2, pp. 268–276, 2018.

[86] Y. Bian and X.-Q. Xie, “Generative chemistry: drug discovery with deep

learning generative models,” Journal of Molecular Modeling, vol. 27, no. 3,

pp. 1–18, 2021.

[87] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet: A

large-scale hierarchical image database,” in 2009 IEEE conference on computer

vision and pattern recognition. Ieee, 2009, pp. 248–255.

79



Bibliography

[88] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning

applied to document recognition,” Proceedings of the IEEE, vol. 86, no. 11,

pp. 2278–2324, 1998.

[89] Z. Wu, B. Ramsundar, E. N. Feinberg, J. Gomes, C. Geniesse, A. S. Pappu,

K. Leswing, and V. Pande, “Moleculenet: a benchmark for molecular machine

learning,” Chemical science, vol. 9, no. 2, pp. 513–530, 2018.

[90] A. Jain, M. Heinonen, and S. Kaski, “Multi-target optimization for drug dis-

covery using generative models.”

[91] J. Boitreaud, V. Mallet, C. Oliver, and J. Waldispuhl, “Optimol: optimization

of binding affinities in chemical space for drug discovery,” Journal of Chemical

Information and Modeling, vol. 60, no. 12, pp. 5658–5666, 2020.

[92] D. Sculley, J. Snoek, A. Wiltschko, and A. Rahimi, “Winner’s curse? on pace,

progress, and empirical rigor,” 2018.

[93] F. Ahmadi Moughari and C. Eslahchi, “A computational method for drug sen-

sitivity prediction of cancer cell lines based on various molecular information,”

PloS one, vol. 16, no. 4, p. e0250620, 2021.
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