
João Pedro Chaves Castilho

ROS 2.0 – STUDY AND EVALUATION OF ROS 2
IN COMPARISON WITH ROS 1

Master’s Dissertation in Electrical and Computer Engineering, in the field of
Robotics, Control and Artificial Intelligence supervised by Professor Doctor Rui
Paulo Pinto da Rocha, co-supervised by Doctor David Bina Siassipour Portugal

and presented to the Department of Electrical and Computer Engineering of
Faculty of Sciences and Technology of University of Coimbra.

September of 2022

ROS 2.0 – Study and Evaluation of ROS

2 in comparison with ROS 1

João Pedro Chaves Castilho

Coimbra, September 2022

ROS 2.0 – Study and Evaluation of ROS

2 in comparison with ROS 1

Supervisor:

Prof. Doutor Rui Paulo Pinto da Rocha

Co-Supervisor:
Doutor David Bina Siassipour Portugal

Jury:

Prof. Doutor Jorge Manuel Moreira de Campos Pereira Batista

Prof. Doutor Lino José Forte Marques

Prof. Doutor Rui Paulo Pinto da Rocha

Dissertation submitted in partial fulfillment for the degree of Master of Science in

Electrical and Computer Engineering.

Coimbra, September 2022

Acknowledgements

I would like to thank my supervisor, Professor Rui Rocha, who provided me with the best

guidance I could have asked, for all the ideas and advices given throughout the development

of this work, for providing all the necessary material so I would feel comfortable in the

Laboratory and, most importantly, for the vast knowledge I acquired while working with

him.

To my co-supervisor, Dr. David Portugal, who was always ready to help me with any

problem or doubt. Thank you for showing me where to direct my work when I seemed lost

and did not know what was the best path to take. I would also like to thank you for giving

me the opportunity to participate as a teaching assistant in the 2022 edition of Robotics and

Machine Learning Summer Course.

I would also like to thank my family for their unconditional support and for always

motivating me to successfully complete this journey. A special thank you to my mother and

father for reminding me that I can accomplish anything I set my mind to.

To my girlfriend, Leonor, who was always there for me when I needed the most and for

reminding me to take the necessary breaks. Without your love and care this work would not

be possible.

Finally, I would like to thank my friends, Eletrões, for their support, their friendship,

and for all the night-outs and dinners we have had these past five years. A special thanks

to my housemates Duarte, Isidro, Gonçalo and Diogo for the friendship we built and for all

the moments we had together. I will cherish those moments forever.

ii

Resumo

O Robot Operating System (ROS) é um middleware robótico de código aberto bem estabele-

cido utilizado para a prototipagem rápida de aplicações robóticas. No entanto, o ROS tem

alguns pontos fracos, tais como a falta de suporte para sistemas de tempo real e limitações

significativas em sistemas de múltiplos robôs. Para resolver estes problemas, o ROS sofreu

uma importante atualização e, em 2015, foi lançada a primeira versão alfa do ROS 2.

A principal diferença no ROS 2 em relação ao ROS 1, é que a necessidade de um nó

central, ROS Master, já não está presente. Isto porque o ROS 2 utiliza Data Distribution

Service (DDS) como a principal camada de comunicação entre processos. Como o suporte

a longo prazo do ROS 1 chegará ao fim em maio de 2025, é mais importante do que nunca

analisar e explorar as características do ROS 2.

Este trabalho concentra-se na investigação do desempenho do ROS 2 em comparação

com o ROS 1, com foco em sistemas multi-robô (MRS). Para este fim, realizámos primeiro

um estudo dirigido à comunidade ROS para compreender as suas necessidades, determinar

o nível de adoção de ROS 2, e identificar o que está a impedir a comunidade de migrar as

suas aplicações de ROS 1 para ROS 2.

Subsequentemente, foi migrado para ROS 2 um software multi-robô desenvolvido em ROS

1 e são apresentadas neste estudo considerações importantes acerca desta migração. Final-

mente, para avaliar ambas as versões do ROS, foram realizadas experiências em ambiente

de simulação de forma a avaliar a eficiência de comunicação e utilização de recursos com-

putacionais. Os resultados demonstram um desempenho promissor para ROS 2 em termos

de escalabilidade no número de robôs e eficiência de comunicação.

Palavras-Chave: ROS 1, ROS 2, Data Distribution Service, Sistemas Multi-

Robô, Inquérito a Utilizadores, Latência, Consumo de recursos computacionais.

iii

Abstract

The Robot Operating System (ROS) is a well-established open-source robotics middleware

used for rapid prototyping of robotic applications. However, ROS has several weaknesses,

such as lack of support for real-time systems and significant limitations when working with

multiple robots. To address this issue, ROS underwent a major update and the first alpha

version of ROS 2 was released in 2015.

The main difference with ROS 2 is that the need for a central node, ROS Master, is no

longer present. This is because ROS 2 uses Data Distribution Service (DDS) as the main

communication layer between processes. As long-term support for ROS 1 will come to an

end on May 2025, it is more important than ever to analyze and explore the features of ROS

2.

This work focuses on studying the performance of ROS 2 compared to ROS 1 with

emphasis on multi-robot systems (MRS). To this end, we first conduct a user study targeting

the ROS community to understand their needs with respect to ROS 2, determine the level of

adoption of ROS 2, and identify what is holding the community back from migrating their

ROS 1 applications to ROS 2.

Subsequently, a ROS 1 multi-robot simulation software was migrated to ROS 2 and guide-

lines and considerations important to such a migration are given. Finally, experiments were

conducted in a simulation environment to evaluate both versions in terms of communication

efficiency and resource usage. The results showed promising performance of ROS 2 in terms

of scalability and communication efficiency.

Keywords: ROS 1, ROS 2, Data Distribution Service, Multi-Robot Systems,

User Study, Latency, Resource Usage.

iv

“I have not failed, but found 1000 ways to not make a light bulb."

— Thomas A. Edison

vi

Contents

Acknowledgements ii

Resumo iii

Abstract iv

List of Acronyms xi

List of Figures xii

List of Tables xv

1 Introduction 1

1.1 Main Aim and Contributions . 2

1.2 Document Outline . 3

2 Background and Related Work 4

2.1 Publish-Subscribe Design Pattern . 4

2.2 The Client-Server Model . 5

2.3 Robot Operating System . 6

2.3.1 ROS Computation Graph . 7

2.3.2 ROS File system . 9

2.4 Support for Multi-Robot Systems in ROS 1 10

2.5 Robot Operating System 2 . 12

2.5.1 Technical differences between ROS 1 and ROS 2 12

2.6 Support for Multi-Robot Systems in ROS 2 20

2.7 ROS 2 performance studies . 20

2.8 Summary . 22

3 ROS 2.0 Adoption User Study 24

3.1 User Study results . 25

viii

3.1.1 User Profile Characterization . 25

3.1.2 Robotics Middleware and ROS 1 strong/weak points 27

3.1.3 ROS 2 Awareness . 29

3.1.4 ROS 2 Adoption . 31

3.1.5 Migration from ROS 1 to ROS 2 . 38

3.1.6 ROS 2 features . 39

3.1.7 Support for Multi-Robot Systems in ROS 2 41

3.2 Summary . 42

4 Migrating from ROS 1 to ROS 2 44

4.1 Migrating the code base . 44

4.1.1 Package metadata files . 44

4.1.2 Conversion of launch files from XML to Python 46

4.1.3 Conversion of source code files from roscpp to rclcpp 47

4.2 Final remarks . 51

4.3 Summary . 53

5 Comparing performance of ROS 1

against ROS 2 54

5.1 Experimental Design . 54

5.2 Results and Discussion . 56

5.3 Summary . 58

6 Conclusion 59

6.1 Future work . 59

A ROS 2 Quality of Service Policies 66

B Adoption User Study Questions 69

B.1 User Profile Characterisation . 69

B.2 Robotics middleware and ROS 1 strong/weak points 69

B.3 ROS 2 Awareness . 69

B.4 ROS 2 Adoption . 70

B.5 ROS 1 to ROS 2 migration . 70

B.6 ROS 2 features . 70

B.7 ROS 1/2 and Multi-Robot Systems . 71

B.8 Screening question . 71

ix

C Adoption User Study Detailed Results 72

D Difference files from the migration to ROS 2 79

E Detailed results for Chapter 5 87

x

List of Acronyms

3D Three Dimensional

API Application Programming Interface

CPU Central Processing Unit

DDS Data Distribution Service

IP Internet Protocol

HTTP Hypertext Transfer Protocol

MAC Media Access Control

MRS Multi-Robot Systems

OS Operating System

RAM Random Access Memory

ROS Robot Operating System

RPC Remote Procedure Call

SLAM Simultaneous Localization and Mapping

TCP Transmission Control Protocol

URDF Unified Robot Description Format

VPN Virtual Private Network

XML Extensible Markup Language

xi

List of Figures

1.1 Relative maintenance of ROS distributions by commits to https://github.

com/ros/rosdistro. Taken from https://metrics.ros.org/ 2

2.1 Publish - Subscribe topic-based communication. 5

2.2 Client-Server model. 6

2.3 A typical ROS network configuration. Taken from [6]. 7

2.4 ROS nodes and topic of a simple ROS publisher-subscriber system. The

node talker is publishing messages to the /chatter topic and the node listener

subscribed to this topic. 8

2.5 Diagram with the steps of a topic connection. Adapted from [29]. 10

2.6 ROS 2 actions, topics and services. Taken from [41]. 14

2.7 ROS 2 client libraries diagram. Adapted from [47]. 16

2.8 ROS 2 architecture using Fast RTPS as the DDS implementation. Adapted

from [47]. 16

2.9 ROS2 lifecycle management state machine. Adapted from [48] 20

3.1 Results to question: What country are you from? 25

3.2 Results to question: For how many years have you been using ROS? 25

3.3 Results to question: What is the main context of the previous projects in

which you have used ROS? . 25

3.4 Results to question: What do you consider to be your level of proficiency with

ROS? . 25

3.5 For how many years have respondents been using ROS according to their level

of expertise . 26

3.6 Number of answers for each feature to the question: “What are the most

important features in a Robotics Middleware?”, “What makes ROS 1 a good

choice when developing robotics applications?” and “In what areas do you

think ROS 1 is not very strong?” . 27

xii

https://github.com/ros/rosdistro
https://github.com/ros/rosdistro
https://metrics.ros.org/

3.7 Mean scores for the question: How do you feel about ROS 1 Documentation

and Tutorials? . 29

3.8 Results to question: Have you heard about ROS 2? 29

3.9 Results to question: Have you heard about any negative aspects of ROS 2? . 29

3.10 Number of answers to the question: Which of these ROS 2 features have you

heard about before?. 30

3.11 Number of answers to the question: Specify the negative aspects you heard

about. 31

3.12 Results to the question: Have you ever used ROS 2? 32

3.13 ROS 2 adoption related to developers’ level of expertise in ROS. 33

3.14 ROS 2 adoption related to developers’ background. 33

3.15 Percentage of answers to the question: What is keeping you from adopting

ROS 2? . 34

3.16 Percentage of answers to the question: What is keeping you from adopting

ROS 2? (according to developers’ background). 34

3.17 Percentage of answers to the question: What is keeping you from adopting

ROS 2? (according to developers’ expertise). 35

3.18 Percentage of answers to the question: “What do you think is keeping other

developers from adopting ROS 2?” . 35

3.19 Results to question: “Why have you decided to fully adopt ROS 2?” 36

3.20 Percentage for each reason to adopt ROS 2 according to developers’ background. 37

3.21 Mean scores for the question: “How do you feel about ROS 2 Documentation

and Tutorials?” using a Likert scale ranging from 1 (bad) to 5 (good). 38

3.22 Mean scores for the question: How do you compare ROS 1 with ROS 2 in

terms of ...?. The scale used for this question was: 1 (ROS 1 is much better),

2 (ROS 1 is slightly better), 3 (ROS 1 and ROS 2 are on the same level), 4

(ROS 2 is slightly better), 5 (ROS 2 is much better). 38

3.23 Results to question: Have you ever migrated a ROS 1 package to ROS 2? . . 39

3.24 Results to question: How difficult did you find the process of migrating a ROS

1 package to ROS 2? . 39

3.25 Mean scores for the question: How essential/important/compelling/useful do

you find these ROS 2 features? . 40

3.26 Mean scores to the question: How relevant are the these new ROS 2 features

to Multi-Robot Systems? (1-Not at all; 5-Very much) 42

xiii

4.1 Patrolling Sim in the Stage Simulator (left) and RVIZ of two patrol robots

(right). 52

4.2 Patrolling Sim in the Gazebo Simulator (left) and RVIZ of two patrol robots

(right). 52

5.1 Experimental setup with wired and wireless connections for latency measure-

ments. 55

5.2 Network latency with different ROS versions while running the patrolling_sim

package. 57

5.3 CPU and RAM median values with different ROS versions while running the

patrolling_sim package. 58

xiv

List of Tables

2.1 Some examples of ROS CLI commands in ROS 1 and ROS 2. 16

2.2 ROS 2 Python and C++ generated files by ros2 pkg create. 17

2.3 Summary of key differences between ROS 1 and ROS 2. 23

3.1 Results to question: What difficulties did you face when migrating the pack-

age? . 40

3.2 Results to question: What main difficulties have you found when developing

Multi-Robot Systems with ROS1? . 41

4.1 Conversion of ROS 1 XML to ROS 2 Python launch files 47

5.1 Specifications of the machine used for resource usage measurements. 56

A.1 Comparative table between ROS2 QoS policies and ROS1 equivalent imple-

mentation . 68

C.1 What country are you from? . 72

C.2 For how many years have you been using ROS? 73

C.3 What is the main context of the previous projects in which you have used

ROS? Multiple answers were accepted. 73

C.4 What do you consider to be your level of proficiency with ROS? 73

C.5 “What are the most important features in a Robotics Middleware?”, “What

makes ROS 1 a good choice when developing robotics applications?” and “In

what areas do you think ROS 1 is not very strong?” 74

C.6 “What are the most important features in a Robotics Middleware?”, “What

makes ROS 1 a good choice when developing robotics applications?” and “In

what areas do you think ROS 1 is not very strong?”(only considering the 3

highest levels of expertise). 75

C.7 How do you feel about ROS 1 Documentation and Tutorials? 75

C.8 Which of these ROS 2 features have you heard about before?. 76

xv

C.9 What is keeping you from fully adopting ROS 2? 76

C.11 What do you think is keeping other developers from fully adopting ROS 2? . 76

C.10 Detailed results to What is keeping you from adopting ROS 2? (according to

developers’ expertise) . 77

C.12 How do you feel about ROS 2 Documentation and Tutorials? 77

C.13 How do you compare ROS 1 with ROS 2, in terms of its 77

C.14 Detailed results for the question: How essential/important/compelling/useful

do you find these ROS 2 features? (Mean scores 1-Not at all 5-Very much . . 78

C.15 Detailed to the question: How relevant are the these new ROS 2 features to

Multi-Robot Systems? (Mean scores 1-Not at all 5-Very much) 78

E.1 Detailed results for the ROS 1 Ethernet latency experiment. 87

E.2 Detailed results for the ROS 2 Ethernet experiment. 87

E.3 Detailed results for the ROS 1 WiFi experiment. 87

E.4 Detailed results for the ROS 2 WiFi experiment. 87

E.5 Detailed results for the ROS 1 resource usage experiment (CPU). 88

E.6 Detailed results for the ROS 2 resource usage experiment (CPU). 88

E.7 Detailed results for the ROS 1 resource usage experiment (RAM). 89

E.8 Detailed results for the ROS 2 resource usage experiment (RAM). 89

xvi

1 Introduction

Robots are very complex systems, often distributed through several machines and consisting

of many hardware components (sensors and actuators) and software modules (controllers).

All these components that make up a robot, need to work together in a seamless way to

perform a specific task, such as exploring an unknown environment, autonomous navigation,

human assistance, and more. As such, the need for frameworks that facilitate the devel-

opment of robotic software from the ground up has always been a constant requirement in

robotics research. Several robotic research groups have worked on developing such frame-

works. Some end products from these efforts include robotics middlewares such as: MIRO

[1], CARMEN [2], ORCA [3], Player [4], MOOS [5] and ROS [6, 7]. Most of these are

discontinued, and the most relevant is ROS, which is the main focus of this dissertation.

The Robot Operating System [6, 7], ROS for short, was first introduced in 2007 by a

team of engineers at Willow Garage who were working at the time with the PR2 robot. ROS

first challenge was to tackle the immense difficulty robotics engineers and researchers faced

when having to write software for robotic applications. For instance, not only was it needed

for a developer to write a proper path planning algorithm, one also had to write low level

drivers for sensor interfacing, a computer vision algorithm, and other features like perception

and reasoning. Thus, one had to spend time developing components that had most likely

been developed in the past by other researchers.

As the ROS community grew increasingly1, new use cases have emerged to meet ev-

eryone’s needs. The new use cases have focused on teams of multiple robots, support for

small embedded platforms, support for real-time control directly in ROS, production quality,

working on non-ideal networks, and prescribed design patterns for building and structuring

systems, such as life cycle management. As such, API changes have been made to the code

of ROS core and the first alpha version of ROS 2 [9] was released on August 2015. Two years

later, the first official distribution of ROS 2 was released on December 2017, named Ardent

Apalone. The current stable version of ROS 1, Noetic, is set to be the last version of ROS 1
1reaching a total of 600,660 packages on https://index.ros.org and, 40,203 users on https://answers.

ros.org/ according to the 2021 ROS Metrics report [8]

1

https://index.ros.org
https://answers.ros.org/
https://answers.ros.org/

ROS 2

ROS 1

Figure 1.1: Relative maintenance of ROS distributions by commits to https://github.com/ros/

rosdistro. Taken from https://metrics.ros.org/

[10] with support ending on May 2025 [11]. Therefore, as the support for ROS 1 is ending,

there is a need to evaluate the current state of ROS 2, compare it with the widely used ROS

1, learn how to migrate packages from ROS 1 to ROS 2 and how to build new packages with

ROS 2.

A clear indication of the end of support for ROS 1 distributions can be seen in Figure

1.1. This figure shows us the relative number of commits2 for each ROS distribution. It can

be seen that the relative number of commits for ROS 1 distributions has decreased, while

the relative number of commits for ROS 2 shows an upward trend with more than half the

percentage, as of early 2021.

1.1 Main Aim and Contributions

With the above considerations in mind, the main goal of this dissertation is to, in a first

stage, study the design of ROS 1 and ROS 2 in order to understand their differences and

compare them not only from a technical point of view, but also from a usability and user-

friendliness perspective. After consolidating this knowledge, a user study is conducted to

understand how widely ROS 2 is currently used and how ROS 2 is viewed by the robotics

community. Then, some ROS 2 use cases, such as ROS 2 for teams of robots are evaluated

and tested with practical cases. Note that from those use cases mentioned above, this work
2A commit in version control systems is an action that adds the most recent source code changes to the

repository, including them into the repository’s head revision.

2

https://github.com/ros/rosdistro
https://github.com/ros/rosdistro
https://metrics.ros.org/

provides deeper attention to ROS 2 for Multi-Robot Systems (MRS). For this purpose, we

turn to a MRS that the Institute for Systems and Robotics of University of Coimbra has

been working for about a decade [12]. Since this system is implemented in ROS 1, an effort

is going to be made to migrate the system to ROS 2. Then, both implementations will be

compared in terms of efficiency and scalability. With this, we expect that this work takes

a step towards the adoption of ROS 2 as the middleware of choice for the development of

robotic applications.

The contributions of this dissertation are:

1. Evaluation of ROS 2 performance when compared with ROS 1 in related case studies;

2. Evaluation of the process of migrating ROS 1 code to ROS 2 compatible code;

3. Evaluation of ROS 2 for developing robotic solutions for real-world applications;

4. Realization and post-evaluation of the a User Study, asserting the needs of the ROS

community regarding ROS 2, the current state of its adoption, and what is holding

back adoption;

5. Simulation and evaluation of ROS 2 on a MRS application

To the best of the author’s knowledge, there is no previous academic work that evaluates

ROS 2 in comparison with ROS 1, in terms of scalability and efficiency, in the scope of MRS.

1.2 Document Outline

The outline of the document is as follows. Chapter 2 studies the design of ROS 1 and ROS

2 and identifies their differences. Current efforts and limitations in supporting MRS in ROS

1 is also introduced in this chapter, as well as an analysis of related work made on the

evaluation of ROS 1 and ROS 2.

In Chapter 3, the “ROS 2 Adoption” User Study is presented and analyzed in order to

understand the necessities of the ROS community regarding ROS 2 and its new features.

In Chapter 4, a look into the steps required to migrate a ROS 1 package to ROS 2 is taken

including important considerations when doing so. Specifically, the patrolling_sim package

[13], a multi-robot patrolling software developed in ROS, is first migrated from ROS 1 Noetic

to ROS 2 Galactic.

In Chapter 5, a detailed comparison is made between the ROS 2 version and the ROS 1

version, of the patrolling_sim package, in terms of efficiency and scalability.

Finally, the last chapter summarizes the work of this dissertation and draws some con-

clusions. Suggestions for where to steer future research is also given in the last chapter.

3

2 Background and Related Work

The Robot Operating System (ROS) is defined as a framework/middleware for robotics

development. It is thought of as a meta operating system (OS) because it provides all the

services that a common OS provides, such as hardware abstraction, low-level device control,

implementation of commonly used functionality, message-passing and package management.

All these features make ROS a safe choice when developing robotics software, as it provides

a fast and stable prototyping infrastructure [6].

Before introducing ROS, it is important to clarify and explain some concepts underlying

the existence of ROS. One of these concepts is the publish-subscribe design pattern.

2.1 Publish-Subscribe Design Pattern

The publish-subscribe design pattern, first described in [14], is a messaging pattern in soft-

ware architecture where processes exchange messages asynchronously, which means that

none of the processes participating in the exchange block while waiting for new messages.

In this architecture, there are two types of processes: the publishers who publish messages,

and the subscribers who receive those messages. The uniqueness of this design pattern is

that publishers are not aware about what subscribers they send the messages to, and there

can even be no subscribers that receive the messages. Publishers send their messages in a

categorized way, and subscribers can subscribe to those categories and receive the messages.

As such, a subscriber can be interested in receiving data of a category that no other process

is publishing to.

There are two main methods to exchange messages. One is called topic-based where

messages are published to topics - they can be thought as channels - and subscribers receive

every message that is published to the topic that they are subscribed to. This approach

is similar to the one used by the ROS middleware, and this specific implementation of the

publish-subscribe communication pattern is studied later in this dissertation. The other

approach to serialize messages of interest to a specific subscriber is called content-based and,

as the name suggests, subscribers receive messages that contain attributes specifically defined

4

Message broker

Topic 1

Topic 2

Publisher 1

Publisher 2

Subscriber 1

Subscriber 2

Figure 2.1: Publish - Subscribe topic-based communication.

by the subscriber.

Typically, these systems contain what is called a message broker who acts as a “middle

man” for the messaging system. Publishers send the messages to the message broker and the

subscribers register with the broker their subscription interests. The message broker then

routes the messages from the publishers to the subscribers that manifest their interest.

The benefit of using a publish-subscribe design in a system is that it is easily scalable,

and the processes are decoupled from one another, allowing one to change how a publisher

behaves without impacting the entire system, thus making it increasingly flexible.

The ROS middleware also includes a publish-subscribe design implementation, which is

discussed later in this dissertation when we examine ROS topics (Section 2.3.1).

2.2 The Client-Server Model

The client-server model [15] is also fundamental to revisit before diving into the ROS mid-

dleware. In a client-server architecture, there are two types of processes: the processes

that provide a resource or service are called servers, and the processes that request those

resources or services are called clients.

A client starts a communication with a server in order to request a service and the server

awaits a communication request from the client and sends a response back to the client,

thus making the exchange of messages synchronous. This message exchange requires both

processes present in the exchange to agree on what to expect from the request and response.

This is defined in the communication protocol.

A form of client-server interaction that is important to address is a remote procedure

call (RPC) [16]. Just like the architecture described above, a RPC consists of a computer

program requesting a service or resource from a different program located in a different

address space in a shared network. This request is coded as if it were a normal local procedure

call. The requester does not need to know the network’s details to execute the remote

5

Client Server
request

response

Figure 2.2: Client-Server model.

procedure call.

A specific type of RPC, called XMLRPC [17], is essential to the ROS middleware. It uses

XML to encode its calls and HTTP as a transport protocol. A typical XMLRPC interaction

between a client and a server proceeds as follows:

• A client makes a procedure call using the XMLRPC client; the call includes a method

name, parameters, and a target server.

• The client packages the method name and parameters in XML format and issues an

HTTP POST request to the target server.

• An HTTP server on the server side receives the HTML POST request and the XML

content is passed to an XMLRPC listener.

• The XMLRPC listener parses the XML to get the method name and parameters and

calls the appropriate method.

• The method is executed and returns a response to the XMLRPC process that packages

the response in XML format.

• The HTML server sends the HTTP POST request to the HTML server in the client

side.

• The XMLRPC client parses the XML to extract the returned value and passes the

value to the client.

Client-server models are widely used in computer applications like email and the World

Wide Web. An implementation of the client-server model is also present in ROS, and it is

addressed later in this dissertation when we look into ROS services (Section 2.3).

2.3 Robot Operating System

Despite its name, ROS does not replace an operating system, it usually runs on top of UNIX-

based operating systems, and it is centered on 4 principal concepts - nodes, topics, services,

and master - all of which will be described in the following subsections.

In the remainder of this chapter, ROS 1 will be introduced and some core concepts will

be explained.

6

2.3.1 ROS Computation Graph

Nodes

A typical ROS system is composed of several nodes [18], which can be thought of as processes

with ROS capabilities that perform computations. For example, a ROS system integrated

in a robot that is doing a navigation task might have a node that controls the motors of

the wheels, a node to run the driver of the laser scanner and publish its data, a node that

implements the path planning algorithm, and many more depending on the robot and the

tasks itself. ROS nodes do not have to be running all in the same machine; some nodes can be

running on different computers connected to the same network. For example, a service robot

is typically composed of several onboard computers that perform lighter tasks like reading

the sensors and controlling actuators, all connected via Ethernet, and it can also have some

other nodes that compute more demanding tasks like Deep Learning models located in a

high-power off-board machine, as illustrated in Fig. 2.3.

Figure 2.3: A typical ROS network configuration. Taken from [6].

ROS supports two main programming languages for its nodes: Python through the

rospy [19] client library, and C++ through the roscpp [20] client library.

ROS nodes communicate with each other by passing messages and using a communi-

cation model, either using topics or services, thus abiding to the asynchronous publish-

subscribe paradigm or to a synchronous client-server model, respectively.

Topics

ROS topics [21] are named buses over which ROS nodes communicate. Nodes can publish

messages to topics or subscribe to topics. Communication using topics is nothing more than

a publish-subscribe architecture such as the one introduced in Section 2.1.

Topics are used for unidirectional streaming communication, the data flow only occurs

from the publisher nodes to the subscriber nodes, not vice versa. Each topic can only contain

7

talker listener/chatter

Figure 2.4: ROS nodes and topic of a simple ROS publisher-subscriber system. The node talker

is publishing messages to the /chatter topic and the node listener subscribed to this topic.

one message type that is tied to the messages that are being published to it.

ROS supports two transport protocols for topics: a TCP/IP based protocol, known as

TCPROS [22] and a UDP-based protocol, named UDPROS [23]. The common protocol used

by ROS is TCPROS [22], while UDPROS [23] is less used and also less developed.

Services

ROS services [24] are used when a node needs to execute a remote procedure call, (cf.

Section 2.2). Services are defined in a .srv file and must contain a pair of messages, one

for the request and one for the reply. The ROS node that “hosts” the server for the service,

declares the service name with a string. The ROS node that requests the service sends

the request message, defined in the corresponding .srv file, and waits for the response. It

is important to note that when a client calls a service, it becomes blocked until the server

either responds or fails its execution, meaning that it is a synchronous type of communication

between processes.

Messages

A message is a simple data structure that can contain fields of different data types, e.g.

integers, doubles, floats, booleans, arrays, and strings. Message files are created with the

extension .msg and are stored in a corresponding subdirectory, named msg. Messages can

even contain other ROS messages in its data structure, creating a nested message variable.

Bag files

Bag files [25], are ROS files that store ROS message data. With tools like rosbag, all the

messages published to one or more topics can be recorded along timestamps and then played

back at runtime to the same topics, or even remapped to other topics. There is no difference

between playing back a ROS bag file or running a node that publishes on the recorded topics.

Therefore, bag files are the ROS way to record, save and play datasets.

Bag files are typically used to reproduce the environment recorded by an experimental

setup or a simulation in a ROS-compatible simulator like Gazebo [26] or CoppeliaSim [27].

This way, different approaches can be tested with the same input data without having to

run an infield testing session every time.

8

Master

The ROS Master [28] is an essential component of ROS 1. The ROS Master is what enables

nodes to find each other and communicate. The ROS Master works with an XMLRPC-

based API used by ROS client libraries to store and retrieve information about what nodes

are running, what topics exist, what services are available, and more. The ROS Master

has a Uniform Resource Identifier (URI), and it is stored in the ROS_MASTER_URI

environmental variable. The XMLRPC server enables nodes in other machines to connect

to this ROS Master, which makes the ROS system able to be distributed through different

machines.

Establishing a topic connection between two nodes

To illustrate the role of the ROS Master, the following example enumerates the steps required

to establish a topic-based communication between nodes.

1. The subscriber (listener node) starts and registers with the Master, informing it that

it wants to subscribe to the topic /chatter.

2. The publisher (talker node) starts and registers with the Master, informing it that it

will publish a String message to the topic /chatter.

3. The Master informs the subscriber of a new publisher publishing to the topic /chatter.

4. The subscriber sends a connection request to the publisher.

5. The publisher returns the call with the selected protocol (i.e. TCPROS) and the TCP

server for the data.

6. The subscriber proceeds with the connection to the TCP server given by the publisher

and starts getting data.

2.3.2 ROS File system

Packages

ROS software is divided into packages [30]. A package can contain the necessary files that

make sense to the usage of the package, such as ROS nodes source files, documentation files,

configuration files, a msg directory to store message files, a srv directory to store .srv files,

or a bags directory to store bag files. With the use of ROS packages, ROS software modules

can easily be reused and distributed in an easy-to-consume manner.

To create packages, developers typically use tools, like catkin_create_pkg for the catkin

build system of ROS 1, based on CMake.

9

ROS Master

talker
XML/RPC: host:1234

TCP server: host:4321

listener

XML/RPC: host5678

re
gis

te
rP

ub
lis

he
r(t

alk
er

, /
ch

at
te

r,

std
_m

sg
s/S

tri
ng

, h
os

t:1
23

4) publisherUpdate(talker,

/chatter, host:1234)

registerSubscriber(listener, /chatter,

std_m
sgs/String, host:5678)

TCP server host:4321

connect(host:4321)

std_msgs/String messages

requestTopic(/listener, /chatter,

TCPROS)

XML/RPC

TCP

Figure 2.5: Diagram with the steps of a topic connection. Adapted from [29].

CMakeLists.txt

The CMakeLists.txt is a file required by every ROS package used by the CMake build

system. This file contains a set of instructions that describe how the package should be

built, specifying the targets (executables and libraries) to be compiled and where to install

them to.

Package manifest

Every package has a package manifest [31], which is a XML file named package.xml. This

file defines the package name, version number, authors, maintainers, a description, licenses,

and dependencies on other packages.

Launch files

Launch files are the solution to start many nodes that need to be run for a specific application.

Launch files have a .launch extension and use a specific XML format. They are placed within

a package directory, inside a launch folder.

2.4 Support for Multi-Robot Systems in ROS 1

As stated before, the ROS Master is a fundamental piece of the ROS 1 computational graph,

meaning that no ROS 1 system can run without the ROS Master node being launched

through the roscore command in one of the machines composing the system. Because ROS

nodes could not lose connection to the ROS Master node, this creates a central point of

10

failure and a bottleneck for all ROS applications, which is not suitable for Multi-Robot

Systems (MRS) that need to be scalable, distributed and have no central point of failure.

With the interest in MRS, efforts have been made to make ROS support multi-master

systems1. Multi-master systems are communicating systems that have two or more ROS

Masters running simultaneously, each ROS Master in a different machine. This is useful for

MRS since, if one has a ROS Master node running on every robot that is part of a MRS,

the system has no central point of failure, thus becoming fault tolerant. Also, it allows us to

minimize, or at least control, the amount of data exchanged within the network of robots.

ROS does not support multi-master communication out-of-the-box, therefore, in the last

several years, some packages have been developed that enable this type of communication.

One of these packages is wifi_comm2. This package enables multi-master communication

by mirroring the topics of interest in every ROS system. This means that, if a robot sends

a message to a topic that is being mirrored to the other ROS systems, other robots that

take part in the team, will also receive the published message by the sending robot. This

solution is not scalable for large teams of robots, since it creates a lot of unnecessary traffic

in the network for each robot. This package is based on foreign_relay3 to register the topics

and services on the other ROS masters. It uses the Optimized Link State Routing (OLSR)

in order to monitor which ROS masters connect and disconnect the network. This ROS

package has been used in [32] to develop a multi-robot SLAM package.

Another solution used for MRS communication in ROS is a package called tcp_interface4.

This package uses a ROS node to translate ROS messages into strings sent by TCP to other

ROS masters in the network with known IP address. Multiple robots (each with its own

ROS Master) exchange messages via a topic, which is automatically converted to a string

and transmitted over TCP using tcp_interface. This package has been used in [33] with the

Multi-Robot Patrolling package patrolling_sim5.

More recent efforts have been put into the development of what is considered the most ver-

sitile multi-master communication, the multimaster_fkie6 ROS package [34]. With only two

nodes, it is possible to establish and manage multi-master networks, requiring minimal con-

figuration. The two nodes are: master_discovery and master_sync. The master_discovery

node is responsible for periodically sending multicast messages to notify about available ROS

masters in the network. This node is also responsible for notifying other ROS masters when

a change in the local roscore occurs. The master_sync node is responsible for synchronizing
1wiki.ros.org/sig/Multimaster
2wiki.ros.org/wifi_comm
3wiki.ros.org/foreign_relay
4github.com/gennari/tcp_interface
5wiki.ros.org/patrolling_sim
6wiki.ros.org/multimaster_fkie

11

wiki.ros.org/sig/Multimaster
wiki.ros.org/wifi_comm
wiki.ros.org/foreign_relay
github.com/gennari/tcp_interface
wiki.ros.org/patrolling_sim
wiki.ros.org/multimaster_fkie

all the ROS masters in the network. This package has been used in the STOP R&D project,

whose goal was to deploy a commercial security system of cooperative patrolling robots [35].

Since ROS has been developed from the ground up for a single robot use case, it is not

optimized for MRS. The interest in MRS support in ROS is high, and the fact that there

is no native support for MRS in ROS 1 certainly has significant shortcomings. Running

multiple ROS masters leads to more computational load and more communication overhead

on the whole network.

2.5 Robot Operating System 2

The ROS 2 API changes have been thought of with the objective of leveraging the positive

points of ROS 1 and improving the negative ones [36]. One of the drawbacks in ROS 1 is

not being able to natively support MRS and in a completely decentralized and fault-tolerant

manner. This problem is on of the main focus of this dissertation. Other problems like not

being natively secure [37], not supporting real-time systems nor small embedded platforms

and performance drop on nonideal networks, are all downsides that the ROS 2 distribution

aims to solve.

2.5.1 Technical differences between ROS 1 and ROS 2

We now look into the major differences between ROS 1 and ROS 2.

Platforms

Having ROS middleware supported on different platforms is highly desirable. Despite many

large corporations opting to use Linux-based platforms like Ubuntu, a significant part of the

industry also uses Windows as its developing platform.

Ubuntu [38] is the only Operating System officially supported by ROS 1. Windows is only

supported through an experimental version, or through the Windows Subsystem for Linux

[39]. ROS 2, on the other hand, is currently officially supported and tested on Ubuntu,

Windows and macOS.

ROS 2 services

In ROS 1, services are synchronous, meaning that when a client requests upon a service

server, that client waits until it receives the response, or the service execution fails. This

type of interaction may be inappropriate in critical systems because it can cause a deadlock,

meaning that the client waits for a long time for a response.

12

On the other hand, in ROS 2, services can be either synchronous or asynchronous. When

a service client is asynchronous, it does not block when waiting for a server response, which

prevents deadlocks. Synchronous services are only available in ROS 2 Python Client Library,

rclpy.

ROS 2 Parameters

In ROS 1, the parameters are all hosted on the Parameter Server managed by the ROS

Master node. This server is visible by all nodes in the system and every node can use this

server to store and retrieve parameters in runtime.

In ROS 2, since there is no ROS Master node, each parameter is stored in the node itself.

This implies that parameter naming also suffer changes. Each parameter has associated with

it the name of the node that stores the parameter and the name of the parameter, such as,

/<node_name>/<parameter_name>. The node is also responsible for accepting or denying

changes to its parameters, and the lifetime of the parameter is entirely tied to the lifetime

of the node.

ROS 2 actions

Actions had never been integrated in the core functionalities of the ROS graph before ROS

2. They were available through an external community-made package named actionlib [40].

Actions have been created to solve the need to have asynchronous service communications

and get feedback from the server while the client is waiting for the response.

ROS 2 actions are now part of the ROS 2 client library, instead of being implemented in

a separate library, as before. Another difference from ROS 1 actions is that, because ROS

1 services are a type of synchronous communication, ROS 1 actions had to be implemented

on top of topics under a namespace taken from the action name, in order to make actions

asynchronous. On the other hand, because ROS 2 services are asynchronous by default, ROS

2 actions use a combination of topics and services, as can be seen in Figure 2.6.

To sum it up, ROS actions can be thought as a group of services and topics used for

long-running service-client interactions.

ROS 2 interface definition

The way one creates ROS messages, services, and actions in ROS 2 is the same as in ROS 1.

Message definition files go inside a msg folder, services inside a srv folder and actions inside

a action folder. The difference comes after compiling these files. In ROS 2, a namespace

is inserted in the name of such interfaces to create separate namespaces for messages and

13

Action Client Action Server

service

topic

send goal

cancel goal

get result

feedback

status

Figure 2.6: ROS 2 actions, topics and services. Taken from [41].

services defined in a package. For example, in ROS 1, after compilation we can have the

following names:

• my_package/MyMessage

• my_package/MyService

In ROS 2, a namespace is inserted before the interface’s actual name, as shown below:

• my_package/msg/MyMessage

• my_package/srv/MyService

ROS 2 client libraries

Client libraries are application programming interfaces (APIs) that allow developers to write

their ROS code. With client libraries, developers have access to the fundamental pieces of

the ROS Graph like nodes, topics, and services.

In ROS 1, the officially supported languages are C++ and Python. For the Python version,

the supported versions are Python3 as of ROS Noetic, and Python2 for ROS Melodic and

previous distributions.

ROS 2 uses more recent C++ standards, C++11 and C++14. As for Python support, ROS 2

only supports versions greater or equal to Python 3.5. The C++ ROS 2 client library is named

rclcpp and the Python client library is named rclpy. There are other supported languages for

ROS 2 maintained by the community like: Java (rcljava), Objective C (rclobjc), C# (rclcs),

Node.js (rclnodejs), Ada (rclada), and Rust (rclrs).

The main difference between ROS 2 and ROS 1 client libraries is that ROS 1 client

libraries like roscpp and rospy are both implemented from the ground up, meaning that

they are completely independent, and they do not share any common code. In ROS 2, both

rclpy and rclcpp utilize common functionality from the ROS 2 client library, or rcl. Client

libraries in ROS 2 are built on top of rcl and each client library only needs to wrap the

14

common functionalities of rcl, such as logic and behavior of ROS core concepts that are not

programming language specific. The rcl is written in the C language because it is typically

the easiest for other languages to wrap its foreigner functions interfaces.

This use of a common interface enables client libraries to be lighter and with less code

to maintain. Another strong point is that, client libraries become more consistent. If any

changes are made to the ROS core functionality in the rcl API, all client libraries will reflect

the changes without having to fix anything that is language specific.

ROS 2 Middleware Interface and DDS

In ROS 1, communication concepts are built on top of custom protocols (e.g. TCPROS and

UDPROS). In ROS 2, these communication concepts are built on top of the Data Distribution

Service (DDS) [42], an existing and well-established middleware solution. DDS is defined

as a middleware protocol and API standard for data-centric connectivity [43]. DDS, much

like the ROS middleware, provides a reliable publish-subscribe transport protocol. Using

DDS, ROS 2 can benefit from a different discovery system used by DDS, which completely

replaces the ROS Master of ROS 1 in the ROS 2 computational graph. This makes ROS

2 applications completely distributed and fault tolerant, having no central point of failure.

An additional benefit from adopting DDS is that ROS 2 supports various Quality of Service

Policies, which provide more options when developing ROS 2 applications over different

networks.

Because ROS 2 supports various DDS implementations, it includes the ROS middle-

ware interface, which defines the API between the ROS client library and any specific DDS

implementation. Below the ROS middleware interface, there is a middleware implementation

that is DDS specific, meaning that different DDS vendors have their own middleware im-

plementation layer. For example, eProsima’s Fast DDS middleware uses rmw_fastrtps_cpp

[44], while Eclipse Cyclone DDS uses rmw_cyclonedds_cpp [45], and RTI Connext uses

rmw_connext_cpp [46]. As of ROS 2 Galactic, the default middleware implementation is

Eclipse’s Cyclone DDS.

Before being sent to the DDS implementation, the middleware layer transforms the ROS

messages arriving from the client library into a unique data format, specific to the DDS

implementation. The opposite situation is also implemented at the middleware layer, where

DDS messages are transformed into ROS data objects and then delivered to the ROS 2 client

library.

15

rclcpp rclpy

rcl

node.cpp node.py

Figure 2.7: ROS 2 client libraries dia-

gram. Adapted from [47].

rclcpp rclpy

rcl

node.cpp node.py

rmw

rmw_fastrtps_cpp

Fast RTPS

Figure 2.8: ROS 2 architecture using Fast RTPS as

the DDS implementation. Adapted from [47].

Quality of Service Policies

Having DDS as the underlying middleware between different nodes enables ROS 2 developers

to tune the communication between nodes with different Quality of Service (QoS) policies.

With carefully picked QoS policies, developers can have best-effort communication like UDP,

or reliable transport like TCP, or every point in between. More information on ROS 2 QoS

policies and their compatibility can be found in Appendix A.

ROS 2 CLI tools

The use of command line interface (CLI) tools is extremely useful for developing and running

ROS application. All the CLI tools important to ROS 1 migrated to ROS 2, but with

some changes. In ROS 1, the commands followed the following structure: ros[command]

[argument]. In ROS 2, there is a subtle change: ros2 [command] [argument].

Table 2.1: Some examples of ROS CLI commands in ROS 1 and ROS 2.

ROS 1 ROS 2

rosnode ros2 node

rostopic ros2 topic

rosmsg ros2 interface

rosparam ros2 param

rosservice ros2 service

not implemented ros2 action

not implemented ros2 lifecycle

not implemented ros2 multicast

ROS 1 ROS 2

roslaunch ros2 launch

rosrun ros2 run

rosbag ros2 bag

rospkg ros2 pkg

roswtf ros2 doctor (ros2 wtf)

not implemented ros2 component

not implemented ros2 daemon

not implemented ros2 security

16

ROS 2 package creation and build system

The current build system used in ROS 1 distributions is catkin, which is a combination of

CMake macros and Python scripts. ROS 1 developers can use catkin to create new packages

and to build the catkin workspace. ROS 2 uses a different build tool called: colcon. Colcon is

considered an universal build tool because it can be used to build and test multiple software

packages, including different build systems. The decision behind using colcon is that when

ROS 2 was released, new features for catkin were needed such as, supporting additional

package types (pure python packages), supporting Windows or supporting building ROS 1

packages. The ROS 2 equivalent of catkin_make is colcon build. To create a ROS 2 package,

one should use: ros2 pkg create [package_name]. When using this command, one can use the

–build_type argument to specify what build system is going to be utilized for the created

package. Currently, ROS 2 supports three build types: cmake, which uses standard CMake,

ament_cmake, which is similar to plain CMake but provides several helping functions to

make it easier to build C++ ROS 2 packages, and ament_python, that is used to build

Python ROS 2 packages.

Table 2.2 summarizes the files needed for C++ and Python packages.

Table 2.2: ROS 2 Python and C++ generated files by ros2 pkg create.

Python C++ Description

package.xml meta information about the package

setup.py × instructions how to install package

setup.cfg × python package executables

/<package_name> × directory used by ROS 2 tools to find your package

CMakeLists.txt × how to build the code in the package

ROS 2 Launch files

Another major change from ROS 1 to ROS 2 is the addition of Python-based launch files.

In ROS 1, launch files are exclusively written in XML. In ROS 2, launch files can be written

in Python, XML, or YAML. The addition of Python launch files became an improvement in

the ROS Graph because it allows embedding more complex logic and routines.

A simple ROS 2 Python launch file is presented in Listing 2.1:

17

Listing 2.1: Python launch file.

1 from launch import LaunchDescription
2 from launch_ros.actions import Node
3

4 def generate_launch_description():
5 return LaunchDescription([
6 Node(
7 package='turtlesim',
8 executable='turtlesim_node',
9 name = 'turtle1',

10 namespace = 'my_turtle',
11 parameters=[
12 {"background_r": 255}
13],
14 remappings=[
15 ("/my_turtle/turtle1/cmd_vel", "/cmd_vel"),
16]
17)
18])

In this Python launch file, we launch a node from the package turtlesim. The node

executable is turtlesim_node, and we change its node name to turtle1. We also create

a namespace for the node, /my_turtle, set a parameter background_r and remap the

/my_turtle/turtle1/cmd_vel topic to /cmd_vel.

When developing a ROS 2 package, one can still use XML format launch files, however

one should be aware that some XML tags changed 7. A ROS 2 XML launch file can be view

in Listing 2.2:

Listing 2.2: XML launch file.

1 <launch>
2 <node pkg="turtlesim" exec="turtlesim_node" name="turtle1"

namespace="my_turtle">↪→

3 <param name="background_r" value="255"/>
4 <remap from="/my_turtle/turtle1/cmd_vel" to="/cmd_vel"/>
5 </node>
6 </launch>

An example of the same launch file, but written in YAML format, can be view in Listing

2.3:
7https://docs.ros.org/en/foxy/How-To-Guides/Launch-files-migration-guide.html#

migrating-tags-from-ros-1-to-ros-2

18

https://docs.ros.org/en/foxy/How-To-Guides/Launch-files-migration-guide.html#migrating-tags-from-ros-1-to-ros-2
https://docs.ros.org/en/foxy/How-To-Guides/Launch-files-migration-guide.html#migrating-tags-from-ros-1-to-ros-2

Listing 2.3: YAML launch file.

1 launch:
2 - node:
3 pkg: "turtlesim"
4 exec: "turtlesim_node"
5 name: "turlte1"
6 namespace: "my_turtle"
7

8 param:
9 -

10 name: "background_r"
11 value: 255
12

13 remap:
14 -
15 from: "/my_turtle/turtle1/cmd_vel"
16 to: "/cmd_vel"

ROS 2 Bag Files

ROS 2 bag files, changed their file extension from .bag to .db3, which is associated with

sqlite3. Because of this, ROS 1 bag files do not work out-of-the-box in a ROS 2 system.

There is, however, a way to convert ROS 1 bag files to ROS 2 compatible bag files using the

community made rosbags pure Python library 8.

Lifecycle nodes

ROS 2 introduces a new concept that does not exist in ROS 1, which is lifecycle nodes.

Lifecycle nodes work just like a standard ROS node, but with more options on what to

execute in each node state. Lifecycle nodes are scoped within a state machine of a finite

amount of states (see Figure 2.9). A lifecycle node has 4 states, which are: Unconfigured,

Inactive, Active, and Finalized. There are also 5 transition states, or intermediate: con-

figuring, activating, deactivating, cleaningup, and shuttingdown. To change states, 5

state transitions are available: configure, activate, deactivate, cleanup, and shutdown.

These state transitions are available through callback functions of the a LifecycleNode class,

and in these callbacks the behavior of the node in different state transitions can be changed.

This change gives the ROS developers more options when developing a node. For ex-

ample, if we want to develop a node for a sensor, we might want to allocate memory for

the publishers and subscribers, and start the communication, and only after that, start

publishing the data. With the help of Lifecycle nodes these stages are clearly separated.
8https://gitlab.com/ternaris/rosbags

19

https://gitlab.com/ternaris/rosbags

Unconfigured
create

Inactive

configuringcleaning up

Active
(processing
callbacks)

deactivating activating

Finalized
shutdown destroy

shutdown

shutdown

Figure 2.9: ROS2 lifecycle management state machine. Adapted from [48]

2.6 Support for Multi-Robot Systems in ROS 2

As stated before, one of the main changes from ROS 1 to ROS 2 is the absence of the ROS

Master node invoked by the roscore call. This is one of the major changes in ROS 2, and

therefore MRS are inherently supported in ROS through seamless distributed communica-

tion. With this change, multi-master communication, which was a workaround used in ROS

1 to deploy truly distributed MRS, is no longer needed in ROS 2.

2.7 ROS 2 performance studies

Since the creation of ROS 2, relevant academic work has been done exploring the capabil-

ities of ROS 2 and also comparing it with ROS 1.

In [49], published in 2016, the authors evaluate the performance of ROS 2, focusing

mainly on DDS and various DDS vendors. This work reports experiments that have been

conducted to measure the latency, throughput, number of threads in use, and memory usage

in the connection between a publisher node to a subscriber node. They have run experiments

with ROS 1 communication (local and remote), ROS 2 communication (local and remote),

and also communication between a ROS 1 node and a ROS 2 node using ros1_bridge pack-

age9. The authors also tested different DDS vendors, namely Connext, OpenSplice and

FastRTPS. Authors found out that, when the ROS connection is local, end-to-end latencies

vary according to message size. When the message size is lower than 64KB the latency is

constant, however when the message size is higher than 64KB the end-to-end latency in-
9https://github.com/ros2/ros1_bridge

20

https://github.com/ros2/ros1_bridge

creases, when compared to ROS 1 local scenario. This is due to the message being divided

into serveral packets. Also regarding the local case, the authors found that the OpenSplice

implementation of DDS processes messages much faster than the other implementations,

due to the high number of threads it utilizes. Therefore, the authors recommended using

OpenSplice when working with local connections. For the remote case, the authors recom-

mend using the Connext DDS implementation due to the higher throughput. For embedded

systems, the recommended DDS implementation is FastRTPS, since it outperforms the other

implementations in terms of thread and memory use.

In [50], researchers examine the security of ROS 2 and its impact on general performance.

Experiments have been conducted on a wired and wireless network, with three different

scenarios: using no security, using SROS210, which is a package that provides the tools

and instructions required to secure DDS communications, and using a VPN. The study

found that using a VPN to secure a ROS 2 system is better than using SROS2 in terms

of latency and throughput. In both wireless and wired scenarios, it was found that using a

VPN affects the latency of the system, but using SROS2 more significantly affects latency,

sometimes almost doubling it when compared to the not secured system. However, it is to

note that using a VPN is not desirable in most situations as it creates a central point of

failure for communications. Therefore, for distributed applications, one can use SROS2 as

it still provides secure communication.

In [51], the authors investigate the end-to-end latency of ROS 2 for distributed systems,

and have found that when increasing the number of nodes in the system, from 3 to 23, the

latency increased linearly. The authors also found that the largest contribution to latency is

the delay between message notification and message retrieval by ROS 2.

Some previous works address real applications and use cases in ROS 2, specifically its

real-time capabilities. In [52], a new software architecture for autonomous driving based

on ROS 2 is presented and discussed. The researchers conclude that appropriate real-time

behavior of a ROS 2 system is possible, but only if all special real-time coding requirements

are taken into account in the implementation. In [53], real-time requirements are in a ROS 2

multiagent robot system. A comparison between ROS 1 and ROS 2 is made in a multi-node

application, and the authors have verified that the nodes met real-time requirements in ROS

2, contrary to ROS 1. To further verify ROS 2 real-time capabilities, the authors implement

a MRS composed by two robots, and verified that ROS 2 can meet the real-time constraints.

Despite ROS 2 being of an early age, there are already some relevant works on multi-

robot systems using ROS 2. In [54] and [55], ROS 2 is used to develop multi-robot swarm

applications. In both works, the authors refer that the main reason for using ROS 2 in swarm
10https://github.com/ros2/sros2

21

https://github.com/ros2/sros2

applications is the replacement of ROS Master by DDS, thus removing the need to run ROS

Master and making the system run without a central point of failure. In [56], researchers

developed a toolbox for distributed cooperative robotics based on ROS 2. The authors also

refer in this paper that the absence of a ROS Master node is the main feature of ROS 2 that

made them adopt ROS 2 as the robotics framework for this work.

In [9], the authors enumerate five use cases in which ROS 2 is used in commercial appli-

cations. In one of those five works, the authors explain how ROS 2 was used by the OTTO

Motors company, a Clearpath Robotics spin-off that sells land research platforms in factory

facilities. OTTO Motors reported that when using ROS 1, they were not able to deploy more

than 25 robots on the same shared ROS 1 network. When OTTO changed from ROS 1 to

ROS 2, they were able to deploy more than 100 robots in a single facility. OTTO claims that

this boost in scalability was due to ROS 2 using DDS and therefore having a more scalable

network topology.

In 2018 a questionnaire on the needs of the ROS 2 community was conducted by Pick-

Nik [57], a robotics company. The report consisted of 25 participants of several robotics

companies and were divided into two groups: ROS users and non ROS users. The authors

came to the conclusion that although most ROS 2 features were considered to be in a ready

state, these have not been exhaustively tested in real scenarios, and that is something that

concerned the respondents.

Overall, these recent studies have all found promising results in the performance of ROS

2. However, none of these research papers document the process of migrating a package to

ROS 2, nor do they explicitly state the benefits associated with the migration for a ROS 1

package that has gone through the migration process. With this dissertation, we hope to

provide the robotics community with more reasons to go through the migration process, by

providing them with results from a wider user study about ROS 2 adoption showing what

current ROS 2 users and non-users think about ROS 2, and also by describing a real use

case of migrating a ROS 1 package to ROS 2, showing the performance improvement that

can be expected when a package is migrated to ROS 2.

2.8 Summary

In this chapter, we started by looking into the publish-subscribe design pattern and the

client-server model as the foundation for several important aspects regarding ROS, such as

ROS Topics and ROS Services. Afterwards, we have revisited general ROS 1 concepts, e.g.

nodes, topics, services, messages, the ROS Master node and the ROS File system, which are

important to grasp before elaborating on ROS 2. A study has also been made regarding the

22

current known methods for supporting MRS in ROS 1, especially regarding multi-master

communication.

Finally, the main differences between ROS 1 and ROS 2 (see Table 2.3) were addressed,

as well as new features of ROS 2 that are not available in ROS 1. This provides us with

the necessary knowledge to proceed with the next chapter, in which we carefully design,

implement and evaluate a ROS 2 Adoption User Study and draw useful conclusions from it.

Table 2.3: Summary of key differences between ROS 1 and ROS 2.

ROS 1 ROS 2

Supported Operating Systems Linux
Linux, Windows,

and macOS

Network transport protocol TCPROS/UDPROS DDS (UDP)

Node discovery ROS Master
DDS Dynamic Discovery

(Peer-to-peer discovery)

Client libraries Written independently
Client libraries are built on

top of a common C library (rcl)

Launch files XML XML, Python, and YAML

Building packages catkin_make colcon_build

Parameters
Stored in Parameter

Server (ROS Master)

Stored and managed by

the node

Actions Implemented with topics
Implemented with

topic and services

Non ideal networks
Not possible because

of the use of TCP/IP

Possible because of DDS

and QoS Policies

Security None
DDS security standard and

SROS2

Manage Lifecycle of a node None Lifecycle Nodes

23

3 ROS 2.0 Adoption User Study

In order to have a broader perspective of the current adoption of ROS 2, a user study has

been designed, targeted at ROS users and developers, both with ROS 2 experience and

without any ROS 2 experience or knowledge.

This user study aims to understand what the current state of ROS 2 adoption is and what

are the biggest challenges that prevent ROS developers from migrating their applications

from ROS 1 to ROS 2.

The user study also aims to clarify what most excites developers about the new ROS 2

features and to what extent these novel features impact the development and deployment of

MRS based on the ROS middleware.

The user study was made available publicly between the 16th of March and 8th of June

2022 and was hosted on Google Forms. The questions that were present in the User Study

are included in Appendix B. The user study was posted on several national and international

mailing lists (e.g. robotics-worldwide) and on forum websites such as the ROS Discourse,

Reddit (r/ROS), Facebook ROS Developer groups, and ROS Discord server.

In total, 116 responses were collected. However, only 103 were considered valid answers.

The criteria for validating an answer were: 1) the respondent having used ROS before; and

2) having correctly answered the screening question ’What is ROS?’.

It is noteworthy that, despite the existence of another user study made in 2018, already

mentioned in Section 2.7, this user study [57] presented some limitations. Firstly, the men-

tioned questionnaire is already considered outdated, with 5 ROS 2 distributions having been

released since its creation. So, it is useful to see if the ROS community has shifted its

opinion on ROS 2 since then. Secondly, the small number of participants and low diversity

of different backgrounds represented in the study are also limitations which our user study

attempts to eliminate. All the participants from the mentioned report are from an industrial

background, meaning that there was not a representation from the academic background

ROS developers, which, as we will see, still represents the majority of the ROS community.

Finally, the report from 2018 only slightly addresses the problem of migrating from ROS

1 to ROS 2 giving insight on what is holding back developers, leaving questions, such as,

24

“Who is migrating to ROS 2?”, “How difficult is the migration?” and “Why did you decide to

migrate to ROS 2?”, unanswered. Therefore, we consider our user study to be more broad

and inclusive.

3.1 User Study results

In this section, we discuss the results from the user study. With this purpose, we go through

each section of the user study, present the results, analyze them and draw conclusions from

those results.

3.1.1 User Profile Characterization

In this section, the aim of the questions was to characterize the respondent profile in order

to have some geographical information, his/her level of expertise in working with the ROS

middleware, and also some information about in which context they use ROS.

The results for the questions from this section are presented in Figures 3.1 - 3.4.

Other
33.0%

France
3.6%

Brazil
3.6%

India
7.1%

Portugal
22.3%

United States
17.9%

Germany
12.5%

Figure 3.1: Results to question: What

country are you from?

More than 10 years
13.6%

5 - 10 years
24.3%

3 - 5 years
22.3%

Less than 1 year
18.4%

1 - 3 years
21.4%

Figure 3.2: Results to question: For how

many years have you been using ROS?

Academic Industrial

54 (52%) 16 (16%)33 (32%)

Figure 3.3: Results to question: What is

the main context of the previous projects in

which you have used ROS?

Expert
10.7%

Proficient developer
34.0%

Beginner
7.8%

Limited experience
21.4%

Experient user
26.2%

Figure 3.4: Results to question: What do

you consider to be your level of proficiency

with ROS?

25

As we can see from Figure 3.1 and Table C.1, the User Study reached worldwide adoption,

with respondentes from 6 out of the 7 continents in the world. We can also see that ROS is

mostly used in European countries and in the United States of America, which is expected

since these countries are considered highly industrialized, thus the interest in robotics is also

higher. An observation that has to be made about the geographical distribution of our data is

that Portugal attained a high percentage of replies since this work was disseminated from in

a Portuguese university, and the User Study was also distributed in internal communication

channels.

We can also see from Figures 3.2 and 3.4 that the level of expertise of the respondents

is balanced going from “beginner” up to “limited experience”, “experient user”, “proficient

developers” and finally “expert”. However, when we look at Figure 3.3, we can see that ROS

is mostly used in academic projects with 52% of the respondents working exclusively in robot

deployments for academic purposes. It is important to note that the answers to this question

are not mutually exclusive, meaning that a respondent could choose both options if he/she

had previously worked in both fields. Respondents who have only worked with ROS in an

industrial setting are a minority (16%). However, since 48% of respondents have worked or

are still working in an industrial setting, we can still consider that the industrial background

is well represented in our data.

Figure 3.5: For how many years have respondents been using ROS according to their level of

expertise

Figure 3.5 shows us for how many years have respondents been using ROS according

to their level of expertise. It can be seen that, as expected, beginner users have higher

percentages in groups of users who have not used for a long time (less than a year). On

the other hand, proficient developers and expert users are more represented in the groups of

26

0

10

20

30

40

50

60

70
Open source

Reliability

Modularity

Good documentation
resources

Good integration with robotic
simulators

Good integration with
visualization tools

Out-of-the-box driver support
for commonly used sensors

Easy to use

RobustnessDistributed Architecture

Command Line Interface tools

Support for Multi-Robot
Systems

Easy to understand

Support for different platforms

Multi-language support

Security

Good integration with web
tools

Important in Robotics Middleware ROS 1 is strong ROS 1 is weak

Figure 3.6: Number of answers for each feature to the question: “What are the most important

features in a Robotics Middleware?”, “What makes ROS 1 a good choice when developing robotics

applications?” and “In what areas do you think ROS 1 is not very strong?”

respondent who have been using ROS for more than 5 years.

With these results, we can successfully categorize our respondents according to a geo-

graphic, background, and expertise level.

3.1.2 Robotics Middleware and ROS 1 strong/weak points

In this section, the objective is to extract information about what features users find im-

portant in a general-purpose Robotics Middleware and also, which of these features does

ROS excel and, in contrast, is not very strong. Note that for answering these questions,

respondents are assumed to have used ROS in the past.

The results relevant to this section are presented in Figures 3.6 and 3.7.

In Figure 3.6, we can point out some aspects that developers find important in Robotics

Middleware that are also really strong in ROS 1, such as, being open source, modular,

having proper documentation resources, and integration with visualization tools.

On the other hand, there are also features that developers find important in Robotics Mid-

dleware, that are not very strong in ROS 1, namely, being reliable and robust.

Another aspect we can observe from Figure 3.6 is in what aspects does ROS 1 excel and

that developers do not find that important in a Robotics Middleware. These are: having

support for commonly used sensors and integration with robotic simulators. Both

27

these features are essential when using ROS to deploy robots in real-world applications

and in earlier stages of projects based on ROS. Therefore, these features can generally be

considered to be in a mature state in ROS 1, while reliability and robustness can be improved

on. Interestingly, these aspects are tackled by ROS 2, since it claims to be more robust and

reliable than ROS 1 due to the use of the already tested and industry-proven DDS.

Another important observation from Figure 3.6 are the features where ROS 1 is consid-

ered weak. These features can be reduced to two, which are security and support for

Multi-Robot Systems. Looking at security, we can see that it ranks surprisingly low on

the importance for robotics middleware, perhaps because most of the respondents have an

academic background and security is not a priority for academic projects. In addition, none

of the respondents indicated that ROS 1 has strong security features. This is foreseeable

since ROS 1 has no security implementation in its network stack and is generally not con-

sidered secure. This is also something that ROS 2 aims to combat with the help of DDS

Security Specification and SROS2.

Support for multi-robot systems is something that ROS 1 struggles in. As already ex-

plained in Section 2.4, this is corroborated by many respondents who point out that support

for multi-robot systems is weak. This is also a weakness that ROS 2 claims to fix with the

use of DDS and its peer-to-peer discovery system for node discovery.

More results regarding this question are available in Table C.6, where we only take into

consideration responses from respondents from the 3 highest expertise level (experient user,

proficient developers and experts). The reasons behind making this distinction is because

these respondents are naturally more capable of answering these questions than users with

limited experience or beginners. These results are not much different from the ones presented

above where we take all responses into consideration.

If we look at Figure 3.71, we can draw deeper conclusions into the state of ROS 1 docu-

mentation and tutorial resources. The chart scores each of the 7 aspects from 1 to 5, (1 being

not at all and 5 being very much). It can be seen that ROS 1 documentation scored high in

aspects such as informative, helpful, and not confusing, which means that documentation

resources are considered useful to ROS 1 developers.

On the other hand, it did not score that well in the detailed and organized category,

which seems to reveal that sometimes ROS developers find that the documentation available

is not thorough and organized enough to fully understand some concepts regarding packages

or ROS itself.
1The scores in Fig. 3.7 are the mean of every respondents’ score for each category.

28

3.88

3.81

3.57

3.35

3.07

2.80

2.70

Mean score: 1 (Not at all) - 5 (Very much)

Helpful

Informative

Not confusing

Easy to understand

Broad

Well organized

Detailed

1 2 3 4 5

Figure 3.7: Mean scores for the question: How do you feel about ROS 1 Documentation and

Tutorials?

3.1.3 ROS 2 Awareness

In this section, we can have a sense of whether ROS 2 is well marketed and what are the

first impressions of the respondents about ROS 2. These are important questions, to realize

if the apparent lack of ROS 2 adoption is due to users not knowing that it even exists or if

it is due to other, more specific, problems.

If we look at Figure 3.8, we can see that 95.1% of the respondents have heard about

ROS 2. This means that ROS 2 is well-marketed in the ROS community and that

developers are at least aware about its existence. It should also be noted that of the five

respondents who had never heard of ROS 2, only one had a level of ROS expertise higher

than “Limited experience”.

98 (95.1%)

Yes

No

Figure 3.8: Results to question: Have you

heard about ROS 2?

55 (56.1%)

43 (43.9%)

Yes

No

Figure 3.9: Results to question: Have you

heard about any negative aspects of ROS 2?

From Figure 3.10 we can observe which ROS 2 features are the most well known. From

the features that we found fitting to be part of the list, the ones that stand out from being

29

the most popular are use of DDS and absence of ROS Master, both of which were

selected in 78% of the responses. This is actually a strong point in favor of ROS 2, since, as

we have discussed, one of the biggest flaws of the ROS 1 architecture is the fact that it relies

on a central node (the ROS Master). Since ROS 2 does not have this issue, for developers,

it seems to be a strong point in favor of its adoption.

In Figure 3.9, the results of the question “Have you heard about any negative aspects of

ROS 2?” are presented. It can be seen that a large percentage (56.1%) of the respondents

answered “yes”, which requires an appropriate analysis. A chart with the specific issues

developers heard about is presented in Figure 3.11. The most mentioned issue is the lack

of ROS 1 packages migrated to ROS 2. Unfortunately, we have no way of knowing

exactly the number of ROS 1 packages that have already been migrated to ROS 2, so we

cannot further assess this issue.

Nr. of answers

Data Distribution Service
(DDS)

Absence of ROS master

Python Launch files

Support for real-time
systems

Support for Windows and
macOS

Quality of Service Policies

Security enabled by DDS

Support for small embedded
platforms

Lifecycle Nodes

0 20 40 60 80

Figure 3.10: Number of answers to the question: Which of these ROS 2 features have you heard

about before?.

30

19 (35%)

14 (25%)

11 (20%)

6 (11%)

6 (11%)

5 (9%)

3 (5%)

3 (5%)

3 (5%)

3 (5%)

2 (4%)

Nr. of answers

Lack of ROS 1 packages migrated to ROS 2

Harder to learn

Lack of documentation

Lack of support for robots and sensors

DDS is hard to configure

Poor DDS performance

Still in development

Less reliable

Colcon build system usability

Not compatible with ROS 1

Smaller community

0 5 10 15 20

Figure 3.11: Number of answers to the question: Specify the negative aspects you heard about.

The second most mentioned issue is that ROS 2 is more complex and harder to

learn. This tends to be true for a number of reasons. First, as already mentioned, ROS 2

relies on DDS, which, although more robust and reliable, is also more complex and difficult

to configure. Some respondents mentioned that often the default DDS settings

are not suitable and require significant tuning effort to work as intended for their specific

robotics application. The fact that there are several implementations of DDS available is also

another layer of complexity that the developer has to consider, since they do not have the

same performance. We can conclude that this reduces to a problem that engineers typically

face, which is: one cannot add robustness, performance, and reliability without

often adding more complex features and harder-to-understand concepts.

Another feature that adds to the complexity of ROS 2 are Python launch files. Despite

enabling more complex logic to launch the nodes of the system, that logic is not necessary

in most cases, as mentioned by some respondents. Another fact is that the Python API

for launch files is harder to learn than the XML launch files, especially because there is no

documentation available for the Python API at the time of writing this dissertation. This

is also closely related to the third most mentioned issue, which is lack of documentation.

3.1.4 ROS 2 Adoption

In this section, an analysis of the results from the ROS 2 Adoption section of the user study

is made, so that we can understand what the current level of ROS 2 adoption is, what are

the reasons behind users not using ROS 2, and also, if the user is currently using ROS 2,

31

41 (41.8%)

22 (22.4%)

35 (35.7%)

I have never used ROS 2

I have used ROS 2 before,
but I amnot currently using
it

I am currently working with
ROS 2

Figure 3.12: Results to the question: Have you ever used ROS 2?

and what the reasons are behind that option as well.

In analyzing these questions, only data from respondents who had heard of ROS 2 were

considered. If we look into Figure 3.12, we can see that the majority of the respondents have

already used ROS 2 (22.4%) or are currently using it (35.7%). However, there is still a large

percentage of developers (41.8%) who have never attempted to use ROS 2.

Looking further into our data (Figure 3.13), we can say that the proficiency levels with

the highest percentage of current ROS 2 users are Proficient Developer (45%) and

Expert (36%). It should also be noted that, a minimal percentage of Expert users (9%)

have never tried ROS 2, which shows interest by these users on what ROS 2 promises to

offer. In contrast, developers who have never used ROS 2 have higher percentages in the

proficiency levels of Beginner (80%), Limited Experience (52%) and Experient User

(58%). We can also see that expert users tend to be more hesitant to migrate than proficient

developers, with 55% of expert users having tried ROS 2, but only 36% currently using it.

On the other hand, 26% of proficient developers have tried ROS 2 and 46% are currently

using it. This means that the percentage of Proficient developers who have tried ROS 2

and end up using it daily is higher than that of expert users. Based on these results, we

tend to infer that ROS 2 is receiving more attention from experienced developers and that

less experienced developers are sticking to ROS 1 to gain more experience before eventually

deciding to adopt the more complex ROS 2.

In Figure 3.14, we can asses the state of ROS 2 adoption according to different back-

grounds (academic and industrial). We can see that the ROS 2 adoption is happening faster

in the industry, with 41% of developers with industrial background saying that they are

currently using ROS 2. In contrast, the percentage of developers who have never tried ROS

2 is higher in academy, with 47%.

32

0%

25%

50%

75%

100%

Beginner Limited
experience

Experient
user

Proficient
developer

Expert

Using ROS 2 Has tried ROS 2 Never used ROS 2

Figure 3.13: ROS 2 adoption related to devel-

opers’ level of expertise in ROS.

0%

25%

50%

75%

100%

Academic Both Industrial

Using ROS 2 Has tried ROS 2 Never used ROS 2

Figure 3.14: ROS 2 adoption related to devel-

opers’ background.

In Figures 3.15 and 3.18, we can understand what is keeping ROS developers, who are not

currently using ROS 2, from fully adopting ROS 2. Figure 3.15 makes a distinction between

ROS developers who have never used ROS 2, and developers who have tried ROS 2. For

developers who have never used ROS 2, we can see that the main reason for not migrating

is that they do not feel the urgency in migrating. Interestingly, for developers who

have already used ROS 2, the sense of urgency did not reach as high a percentage as in the

previous case. For these developers, the main reasons for not fully migrating are related to

dependency on ROS 1 packages and lack of ROS 1 packages migrated to ROS

1. Despite having lower percentages, the availability of ROS 1 packages in ROS 2 is also

a reason stated by developers who never used ROS 2. We hypothesize that many of these

developers might have considered using ROS 2, more specifically migrating their ROS 1

project to ROS 2, but may have been held back by a package dependency problem of a ROS

1 package that is still not available in ROS 2.

In Figure 3.16 the different reasons for not adopting ROS 2, with respect to different

developers’ background (academic and industrial) are presented. We can see that, in general,

between developers with different background there is not much difference, meaning that the

reasons to not adopt ROS 2 are not necessarily related to developers’ background. Despite

this, there is one result we would like to point out, which is that 0% of users with exclusively

industrial backgrounds chose “Waiting for the end of life of ROS 1 Noetic” as a reason for

not migrating to ROS 2. This means that in the industrial sector, the fact that support for

ROS 1 is ending is not by itself a reason to migrate to ROS 2.

33

0%

20%

40%

60%

80%

Dependency on
ROS 1

packages

Not urgent Lack of ROS 1
packages

migrated to
ROS 2

I don't think
ROS 2 is in a
"ready" state

Conformism Waiting for the
End of life of
ROS 1 Noetic

Lack of
resources / time

to migrate

Never used ROS 2 Has used ROS 2

Figure 3.15: Percentage of answers to the question: What is keeping you from adopting ROS 2?

P
er

ce
nt

ag
e

of
 a

ns
w

er
s

0%

25%

50%

75%

Dependency
on ROS 1
packages

Not urgent Lack of ROS 1
packages

migrated to
ROS 2

I don't think
ROS 2 is in a
"ready" state

Conformism Waiting for the
End of life of
ROS 1 Noetic

Academic Both Industrial

Figure 3.16: Percentage of answers to the question: What is keeping you from adopting ROS 2?

(according to developers’ background).

In Figure 3.17, we can observe whether developers with different levels of expertise have

different reasons for not adopting ROS 2. It can be seen that the level of expertise generally

does not have an influence on the reasons for not adopting ROS 2, except for the reason “I

don’t think ROS 2 is in a ready state”, which had a noticeable high percentage of answers

by expert developers. This might be because expert developers need concrete evidence to

believe that it is worth to adopt ROS 2 before committing to it. Therefore the need to have

convincing case studies of how ROS 2 improved a ROS 1 project is of extreme necessity.

34

Pe
rc

e
n
ta

g
e
 o

f
a
n
sw

e
rs

0%

25%

50%

75%

100%

Waiting for
the End of life

of ROS 1
Noetic

Not urgent Lack of ROS 1
packages

migrated to
ROS 2

I don't think
ROS 2 is in a
"ready" state

Conformism Dependency
on ROS 1
packages

Beginner Limited Experience Experient user Proficient developer Expert

Figure 3.17: Percentage of answers to the question: What is keeping you from adopting ROS 2?

(according to developers’ expertise).

On the same note, when asked what keeps other developers from adopting ROS 2 (see Figure

3.18), the most common answers are related to dependency on ROS 1 packages.

0%

25%

50%

75%

100%

Dependency on
ROS 1 packages

Lack of ROS 1
packages

migrated to ROS
2

They don't think
ROS 2 is in a
"ready" state

Not urgent Waiting for the
End of life of

ROS 1 Noetic

Conformism Lack of
documentation

Never used ROS 2 Has used ROS 2 Using ROS 2

Figure 3.18: Percentage of answers to the question: “What do you think is keeping other developers

from adopting ROS 2?”

In Figure 3.19, the main reasons as for why developers have adopted ROS 2 are presented.

Two reasons seem to stand out. The first reason is thatROS 2 is designed for production

and has industry stakeholders behind its development. The design of ROS 2 is more

in line with what developers expect from a robotics middleware, as we have seen in Figure

3.6 and Table C.5, with a focus on reliability and robustness. Having large companies, such

as Bosch, Amazon, Microsoft, Samsung, Sony, and others, be part of the Technical Steering

35

Committee (TSC), whose main objective is to steer the direction of ROS 2, are a strong

reason to adopt ROS 2.

The second most mentioned reason is the integration with DDS. As seen from the

answers to other questions, the use of DDS as the middleware of choice for ROS 2 seems

to be popular amongst ROS developers and, as seen in Figure 3.19, it is one of the main

reasons developers start using ROS 2. Also related to DDS is the third most mentioned

reason, which is that ROS 2 enables fully distributed systems.

On the down side, there are some reasons that do not seem to impact adoption, such as

support for different Operating Systems like Windows and macOS, which means that

most developers still prefer to use Linux-based operating systems to work with ROS, in this

case, ROS 2.

Designed for production and has
industry stakeholders behind.

Integration with DDS.

Enables fully distributed systems.

Is the future of ROS

Supports Real-Time Systems

Institutional policy

Recommended by a peer.

It is secure by design.

Supports Windows

Supports macOS

0 5 10 15 20

Figure 3.19: Results to question: “Why have you decided to fully adopt ROS 2?”

In Figure 3.20, we can inspect the reasons why developers from different backgrounds are

adopting ROS 2. The reason most mentioned in Figure 3.19 holds for both academic and

industrial backgrounds. However, we can see great differences between both groups in two

reasons. The first is integration with DDS, which is mentioned by 62% of the industrial

developers and by 40% of the academic developers. Secondly, the fact that ROS 2 is the

future of the ROS middleware does not make developers from an industrial background

particularly adopt ROS 2, only being mentioned by 15% of industrial developers, while 53%

of the academic developers mentioned this as a strong reason for using ROS 2.

36

0%

20%

40%

60%

80%

Designed for
production and
has big industry

stakeholders
behind.

Integration with
DDS.

Enables fully
distributed
systems

Is the future of
ROS

Supports Real-
Time Systems

Institutional
policy

Recommended
by a peer

It is secure by
design

Support for
Windows

Support for
macOS

% Academic % Both % Industrial

Figure 3.20: Percentage for each reason to adopt ROS 2 according to developers’ background.

In Figure 3.21, we look into the current state of the documentation resources of ROS 2

when compared with ROS 1. We can see that, as in the case of ROS 1, the documentation

resources are considered poor, achieving a mean score near 3 in almost all assessment criteria.

The documentation resources of ROS 2 received an inferior score when com-

pared with its ROS 1 equivalent, meaning that ROS 1 documentation is considered to

be in a more stable state than ROS 2 documentation, especially in categories such as “Not

confusing” and “Broad”. The lower score in the “Broad” category means that there are still

some features of ROS 2, or even ROS 2 packages, that are missing documentation. This can

be due to ROS 2 being of early age. The lower score in the “Not confusing” category means

that the available documentation is not always clear. This is inherently connected to the

fact that ROS 2 is more complex than ROS 1, so it should also be harder to write adequate

documentation and tutorials.

Further discussion about usability in ROS 2 compared to ROS 1 can be raised if we

look at Figure 3.22. We can see that ROS 1 beats ROS 2 in 4 out of 6 categories. In

terms of learning curve and ease of development, by analyzing these results, we can see that

ROS 1 has a smother learning curve than ROS 2 and is also easier to develop. This, as

stated before can be explained due to ROS 2 being more complex and having a complex

underlying middleware (DDS). This result is also in accordance with Figures. 3.7 and 3.21,

since ROS 1 obtained superior results in terms of documentation and tutorials. The two

categories in which ROS 2 is considered better than ROS 1 are Features and Capabilities

for production use.

37

Mean score

Informative

Helpful

Not confusing

Well organized

Broad

Detailed

Easy to
understand

1 2 3 4 5

ROS 2 Documentation ROS 1 Documentation

Figure 3.21: Mean scores for the question: “How do you feel about ROS 2 Documentation and

Tutorials?” using a Likert scale ranging from 1 (bad) to 5 (good).

2.37 (ROS 1 is better)

2.59 (ROS 1 is better)

3.98 (ROS 2 is better)

3.40 (ROS 2 is better)

2.69 (ROS 1 is better)

Mean score

Learning curve

Ease of development

Features

Capabilities for production use

Documentation

Tutorials

1 2 3 4 5

2.51 (ROS 1 is better)

Figure 3.22: Mean scores for the question: How do you compare ROS 1 with ROS 2 in terms of

...?. The scale used for this question was: 1 (ROS 1 is much better), 2 (ROS 1 is slightly better), 3

(ROS 1 and ROS 2 are on the same level), 4 (ROS 2 is slightly better), 5 (ROS 2 is much better).

3.1.5 Migration from ROS 1 to ROS 2

In this section, a closer look is taken at how developers feel about the process of migrating

a ROS 1 package to ROS 2. From Figure 3.23, we can see that 52.6% of the developers who

have used ROS 2 or are using it at the moment have migrated a ROS 1 package before. From

our data, another interesting result is that, out of these developers who have gone through a

migration process, there is no developer with an expertise level lower than Experient User,

38

Figure 3.23: Results to question: Have you

ever migrated a ROS 1 package to ROS 2?

(1 - Extremely easy, 5 - Extremely hard)

0

5

10

15

1 2 3 4 5

Figure 3.24: Results to question: How dif-

ficult did you find the process of migrating a

ROS 1 package to ROS 2?

which means that migrating a ROS 1 package is a challenge only being taken by developers

with considerable ROS expertise.

Looking at Figure 3.24 we can see that developers do not find the process of migrating

a ROS 1 package to be a straightforward task, with 43% saying that the process is not easy

nor hard, and one third (33%) saying that the process is hard.

When asked about what difficulties in specific did they face (see Table 3.1) the most men-

tioned issue was dependency on packages that were not available in ROS 2 (90%). Another

issue, already mentioned in the analysis of other questions, is the lack of API documentation

for the two main client libraries, rclcpp and rclpy, and for the Python Launch API as well,

when migrating ROS launch files from XML to Python.

The lack of tutorials and adequate documentation on how to migrate a ROS 1 package to

ROS 2 is also an issue mentioned by 46% of developers. In fact, on the ROS 2 documentation

website, there is only one guide that covers how to migrate to ROS 2 a basic example of a

publish-subscribe ROS 1 package 2.

3.1.6 ROS 2 features

In this section of the user study, the intent is to find out how respondents feel about certain

ROS 2 features. Each feature was rated in 4 different categories (Essential, Important,

Compelling, Useful) using a Likert scale ranging from 1 (Not at all) to 5 (Very Much). This

scale allows us to distinguish between essential features, which are considered "must-have"

requirements, and important features, which are considered important but not urgent. It

also allows us to inquire whether a feature is useful but not important or essential.

The results are presented in Figure 3.25 for each category. From our data we can see
2https://docs.ros.org/en/foxy/The-ROS2-Project/Contributing/Migration-Guide.html

39

https://docs.ros.org/en/foxy/The-ROS2-Project/Contributing/Migration-Guide.html

Table 3.1: Results to question: What difficulties did you face when migrating the package?

Nr. of answers

Dependency on packages that were not available in ROS 2 27 (90%)

Lack of API documentation for rclcpp or rclpy 19 (63%)

Not enough documentation for the Python Launch API 17 (57%)

There is no standard to follow when migrating a package 14 (46%)

Significant changes in core packages (e.g. ROS1: move_base to ROS2: Navigation2) 13 (43%)

Not enough tutorials to follow that teach you how to migrate a package 12 (40%)

Migrating from roscpp/rospy to rclcpp/rclpy 7 (23%)

that the majority of the features are rated above 3 points (mid point) in every category. The

two features that do not follow this trend are ROS 2 support on Windows and ROS 2

support on macOS, with low mean scores in the Essential and Important categories.

From these features, there are two that stand out from the rest with an average score of

over 4 points, namely ROS 1 bags in a ROS 2 environment and ROS 2 support for

real-time systems. The former is particularly important for development teams that have

created significant large databases of bag files in ROS 1 and understandably do not want to

stop using them, but are considering a move to ROS 2. As explained in Section 2.5.1, ROS

1 bag files can be converted to ROS 2 compatible bag files. The latter is consistent with the

need to make ROS a viable product in an industrial environment.

1

1.5

2

2.5

3

3.5

4

4.5

5
DDS

DDS Security

Quality of Service Policies

Absence of ROS master

Python launch files

Lifecycle Nodes

ROS 2 support for real-time
systems

Embedded systems

ROS 2 on Windows

ROS 2 on macOS

ROS 1 bags in a ROS 2
environment

ROS 1 and ROS 2 nodes
running simultaneously

Important Compelling Useful Essential

Figure 3.25: Mean scores for the question: How essential/important/compelling/useful do you

find these ROS 2 features?

40

3.1.7 Support for Multi-Robot Systems in ROS 2

The main goal of this section is to evaluate the relevance of the new ROS 2 features for

Multi-Robot Systems. First, developers were asked if they were interested in working with

Multi-Robot Systems, to which 68% of 103 developers answered yes.

Table 3.2: Results to question: What main difficulties have you found when developing Multi-Robot

Systems with ROS1?

Nr. of answers

Multimaster communication when working with real robots 44 (63%)

Managing the complexity of the TF tree with different robots 34 (49%)

Namespace management 33 (47%)

No available standard to develop Multi-Robot Systems 30 (43%)

Not enough debugging tools designed specifically for Multi-Robot Systems 29 (41%)

Next, this subset of respondents was asked what difficulties they encountered in devel-

oping Multi-Robot Systems in ROS 1. The intent with this question was to find out if

ROS 2 and its new features could solve some of those difficulties. Looking at Table 3.2,

we see that the most common difficulty found was Multimaster communication when

working with real robots. This difficulty is indeed solved by ROS 2 and the use of DDS

and its Dynamic Discovery, which is a strong argument for using ROS 2 one wants to work

with Multi-Robot Systems. All other difficulties mentioned in Table 3.2 are still difficulties

considered to be present in ROS 2.

In Figure 3.26, we can understand how ROS 2 features stand in terms of relevance of

Multi-Robot Systems. Not surprisingly, the results are generally not very different from the

results of Section 3.1.6. However, there is one feature that stands out in the case of Multi-

Robot Systems, which is the Absence of ROS Master (4.27). This feature and the use

of DDS (3.97) is the main reason as to why developers interested in Multi-Robot Systems

should consider migrating their applications to ROS 2.

41

1

1.5

2

2.5

3
3.5

4

4.5

5
DDS

DDS Security.

QoS Policies.

Abscence of ROS Master

Python Launch files.

Lifecycle Nodes.

Real-Time systems.Embedded Systems.

ROS 2 on Windows.

ROS 2 on macOS.

Common core library (rcl).

ROS 1 bags in ROS 2.

ROS 1 and ROS 2 nodes
running simultaneously.

Relevancy

Figure 3.26: Mean scores to the question: How relevant are the these new ROS 2 features to

Multi-Robot Systems? (1-Not at all; 5-Very much)

3.2 Summary

The user study presented in this chapter allowed us to learn important aspects related to the

adoption of ROS 2, how it is viewed by the ROS community, and what prevents developers

from migrating from ROS 1 to ROS 2.

The first conclusion we can take from this user study is that ROS 2 is heading in the

right direction in terms of what developers expect from a robotics middleware, and to cover

the weaknesses of ROS 1. There are four features that were lacking in ROS 1 that are

directly addressed in ROS 2 through the use of DDS. These four features are: reliability,

robustness, security, and support for multi-robot systems.

Regarding the awareness of ROS 2, we can conclude that ROS 2 and its new features are

being well marketed, as the vast majority of respondents knew about the existence of ROS

2 and its new features. We can also conclude that the lack of adoption of ROS 2 is not due

to the fact that developers do not know about its existence.

By far, the major problem that developers see in ROS 2 is the lack of ROS 1 packages

migrated to ROS 2. The dependency on ROS 1 packages largely discourages developers from

doing the migration. This is a difficult problem to solve because the vast majority of the

community is waiting for the ROS 1 packages to be migrated, which in turn drastically slows

down the speed of adoption. Developers may not start migrating until ROS 1 Noetic reaches

its end of life (May 2025), and therefore this problem may persist until then.

42

Another issue that goes against the migration is the lack of documentation on how to

migrate a ROS 1 package, and also the lack of documentation in general. More tutorials are

needed, e.g. on how to migrate a service-client package or an action client-server ROS 1 pack-

age. Also related, there could also be a tutorial showing how to migrate from move_base3

to the ROS 2 navigation stack, Navigation2 [58]. Providing a simple example package, such

as, a robot traversing several fixed waypoints.

Creating real-world use cases about ROS 1 packages that benefit from migrating to ROS

2 may also be of great help to the ROS community. If there were such evidence showing

clear results of improvement, developers would be more convinced that ROS 2 is ready and

worth replacing ROS 1. From our results, some developers are concerned that the migration

requires too much effort and the benefits are not that great for their use case. Therefore,

examples like this one might be convincing for more skeptical users.

One limitation of this user study is that we did not distinguish between ROS 2 users who

have never used ROS 1 and users who have used it before. If we had made this distinction,

we would be able to know whether there is a difference in viewpoint between these two

groups of ROS 2 users. We could, for example, answer the question: “Is there a natural bias

of users who have used ROS 1 when they use ROS 2?”.

In the remaining chapters of this dissertation, we report on the technical challenges of

migrating from ROS 1 to ROS 2. We provide a real example of migrating a ROS 1 package,

patrolling_sim, to ROS 2 and make a performance comparison between the two versions of

the package in terms of network performance (latency) and computational resources usage.

3http://wiki.ros.org/move_base

43

http://wiki.ros.org/move_base

4 Migrating from ROS 1 to ROS 2

In this chapter, we go through the process of migrating a complex ROS 1 package to ROS

2. In particular, we go over the changes that must be made to a ROS 1 package to make

it compatible with ROS 2, namely package metadata files, source code, and launch

files. At the end of the chapter, we address the problems encountered during the migration

process.

4.1 Migrating the code base

The package selected for this demonstration is the patrolling_sim1 [13, 59] ROS package.

This package consists of a multi-robot patrolling simulation package based on the Stage

simulator [60] capable of performing patrolling tasks in a coordinated manner without the

need for a central computer. It uses all the 3 communication mechanisms provided by ROS,

which are: topics, services and actions, and intensively makes use of the ROS 1 navigation

stack. For those reasons, we consider it a useful and comprehensive use case for migrating a

ROS 1 package to ROS 2.

4.1.1 Package metadata files

CMakeLists.txt file

The first thing to change in any ROS 1 package that one wants to migrate to ROS 2 is in

the CMakeLists.txt file, which is the minimum version of CMake required. ROS 2 requires

that the minimum version of CMake is 3.5.

1 #cmake_minimum_required(VERSION 2.8.3)
2 cmake_minimum_required(VERSION 3.5)

As mentioned in Chapter 2, ROS 2 uses newer C++ versions such as C++11 and C++14,

so it is recommended to add the following code block to enable support for C++14:

1https://github.com/davidbsp/patrolling_sim

44

https://github.com/davidbsp/patrolling_sim

1 set(CMAKE_CXX_STANDARD 14)

The next changes that need to be made are related to the migration from catkin to

ament_cmake. Instead of a single call to the find_package function with all dependencies,

ament_cmake requires you to specify these dependencies one by one, as you can see in the

next code block.

1 # find_package(catkin REQUIRED COMPONENTS
2 # roscpp
3 # actionlib
4 # ...
5 # message_generation
6 #)
7
8 find_package(ament_cmake REQUIRED)
9 find_package(rclcpp REQUIRED)

10 find_package(rclcpp_action REQUIRED)
11 # ...
12 find_package(rosidl_default_generators REQUIRED)

An additional change made to CMakeLists.txt in ROS 2 is that every file that needs to

be accessed at runtime must be installed, i.e. these files are copied into the share directory

of the package, which is /<ros2_ws>/install/<package_name>/share/<package_name>.

This is done through the function call install(), in our case these files are maps, parameter

files, launch files and configuration files. This can be done following the guidelines below:

1 install(TARGETS <executables> DESTINATION lib/${PROJECT_NAME})
2 install(DIRECTORY <directory_name> DESTINATION share/${PROJECT_NAME})
3 # ...

Finally, at the end of the CMakeLists.txt file, one must replace catkin_package() and

its arguments with ament_package() to use ament_cmake instead of catkin.

Package manifest file

In the file packge.xml there are not many differences between ROS 1 and ROS 2.

The first change one needs to make to this file is to update the XML format version in

the tag <package format="">. ROS 2 does not support format version 1, only 2 or higher.

One change that results from updating the format version is to replace the <run_depend>

tag with <exec_depend>. Another change that needs to be made is to change the build tool

from catkin to ament_cmake. To do this, you need to change the tag <buildtool_depend>

from ROS 1, to <buildtool_depend> ament_cmake </buildtool_depend> for ROS 2.

In Appendix D, we show a difference file with all the changes made to the CMakeLists.

txt and the package.xml files.

45

4.1.2 Conversion of launch files from XML to Python

In ROS 2, one can use XML, YAML, or Python formats to conceive launch files. Since in

ROS 1 the launch files are written in XML, it is easier to port these launch files to ROS 2 by

keeping the language in XML. To do this, one can follow the official XML migration guide2.

However, to fully engage with ROS 2 and assess the difficulty of the process, we also look

into porting the launch files written in XML to Python. We are not going to analyze the

migration to YAML launch files, as they do not add any new logic nor complexity.

Before going further, it is important to clarify two definitions of this new ROS 2 launch

system, namely launch description and actions. A launch description is described

as an ordered set of actions or a group of actions, and an action is an instruction to do

something, such as launch a node or include another launch description. One can think of

actions as the former ROS 1 XML tags in the XML launch files, and a launch description as

the launch file itself.

Several ROS 1 XML tags are commonly used in launch files, such as: <group>, <include>,

<arg>, <rosparam>, and <param>, all of which were used in the context of the patrolling_sim

ROS package.

The <group> tag in ROS 1 is used to group a set of launch instructions, optionally, so

that they can all be executed under the same namespace (ns attribute) with <group ns=''>.

In Python launch files, this behavior is performed by the function GroupAction(), which

takes as argument a set of actions. In conjunction with PushRosNamespace() one can group

all actions under the same namespace.

The <include> tag is used to include other launch files in a launch file. This behavior

is reproduced in Python launch files with the functions IncludeLaunchDescription() and

PythonLaunchDescriptionSource(). With these two functions one can include a Python

launch file and use it as a launch description.

The <arg> tag is used to pass arguments to the launch file via the command line. In

ROS 2, this behavior is achieved by the DeclareLaunchArgument(), which is an action that

declares a new launch argument. Every launch argument has a name associated with it,

and the parameter value can be accessed with the LaunchConfiguration() function if the

launch argument name is given as an argument to the function call.

To load node parameters, there are two general ways one can do it. In XML launch files,

one can use the <param> tag to set a parameter value, or the <rosparam> tag to load a

YAML file with parameters. In ROS 2 Python launch files, to load parameters specific to

a node, you can pass an array of parameters (or the path to a YAML file containing the
2https://docs.ros.org/en/humble/How-To-Guides/Launch-files-migration-guide.html

46

https://docs.ros.org/en/humble/How-To-Guides/Launch-files-migration-guide.html

parameters) to the Node() action.

Table 4.1 presents a comparison between XML (ROS1) and Python (ROS2) launch files.

Table 4.1: Conversion of ROS 1 XML to ROS 2 Python launch files

XML Python

<node pkg="" type="" name=""/> Node(package='', executable='',
name='')↪→

<include file=""/> IncludeLaunchDescription(
PythonLaunchDescriptionSource(
launch_file_path=''))

↪→

↪→

<arg name="" default=""/> DeclareLaunchArgument(name='',
default_value='')↪→

<group ns="">
<node pkg="" type="" name=""/>
<node pkg="" type="" name=""/>

</group>

GroupAction(actions=[
PushRosNamespace(namespace=''),
Node(...),
Node(...)

])

<node pkg="" type="" name="">
<param name="" value=""/>

</node>

Node(package='', executable='',
parameters=[{"name": value}],
name='')

↪→

↪→

4.1.3 Conversion of source code files from roscpp to rclcpp

Most C++ source code is migrated by replacing the references to roscpp with rclcpp and

then adapting the functions to the newer C++ client library. In this subsection, we provide

additional details using the patrolling_sim package.

The source code of the patrolling_sim package consists mainly of creating subscriber/pub-

lishers, service clients and interfacing with the navigation stack, for that reason, we will focus

on giving examples on how to migrate those ROS communication behaviors/patterns.

We begin with the creation of a node. The way a node is created differs from ROS 1 to

ROS 2. In ROS 1, we initialize the node by passing the name of the node to the library’s

initialization call and then create a node handle. In ROS 2, we also initialize the node, but

then pass the name of the node to the constructor of the node object. Another aspect worth

highlighting is the use of C++ smart pointers, namely shared_ptr, to handle most of ROS

2’s objects, such as publishers, subscribers, node handles, service servers, and clients. This

is a significant change from ROS 1, where objects are stored by copy. When using the ROS

47

2 C++ client library, ownership of an object is managed by a smart pointer and its lifecycle

and memory usage are managed automatically, i.e. when the smart pointer is no longer used,

the memory it points to is freed.

1 // Creating a node in ROS 1
2 // ros::init(argc, argv, "patrol_agent");
3 // ros::NodeHandle nh;
4

5 //Creating a node in ROS 2
6 rclcpp::init(argc, argv);
7 std::shared_ptr<rclcpp::Node> n_ptr =

std::make_shared<rclcpp::Node>("patrol_agent");↪→

Moreover, in ROS 2, parameters work differently, as mentioned in Section 2.5.1. Since in

ROS 2 parameters exist only in the scope of a node, this affects how parameters are accessed

and how they are set in the code. In ROS 2, parameters must be declared in the code before

they are used. Optionally, they can also have a default value that is used if the parameter

cannot be read.

1 // Declaring ang retrieving a parameter in ROS 1
2 /*if (! ros::param::get("/goal_reached_wait", goal_reached_wait)) {
3 //goal_reached_wait = 0.0;
4 ROS_WARN("Cannot read parameter /goal_reached_wait. Using default

value!");↪→

5 //ros::param::set("/goal_reached_wait", goal_reached_wait);
6 }*/
7

8 // Declaring ang retrieving a parameter in ROS 2
9 n_ptr->declare_parameter<double>("goal_reached_wait",0.0);

10 if (!n_ptr->get_parameter("goal_reached_wait", goal_reached_wait)) {
11 goal_reached_wait = 0.0;
12 RCLCPP_WARN(n_ptr->get_logger(),"Cannot read parameter!");
13 }else{
14 RCLCPP_INFO(n_ptr->get_logger(),"Parameter set succesfully!");
15 }

In the example above, one can see the changes in console logging functions. Most of the

functions work the same way, the only changes are the name of the function and that these

new functions get a logger as an argument. Each node has a logger associated with it that

automatically contains the name and namespace of the node.

Another change that needs to be addressed is the included headers. As mentioned in

Section 2.5.1, the header files of the included interfaces have an additional namespace corre-

sponding to the type of interface. An example of the required changes can be found below.

48

1 // Including headers in ROS 1
2 // #include <nav_msgs/Odometry.h>
3 // #include <move_base_msgs/MoveBaseAction.h>
4

5 // Including headers in ROS 2
6 #include "nav_msgs/msg/odometry.hpp"
7 #include "nav2_msgs/action/navigate_to_pose.hpp"

The logic behind creating a publisher/subscriber has remained mostly the same. One

notable change can be seen in the code for creating a subscriber, as presented below. Due

to the transition to a newer version of C++, namely C++11, there is no longer a dependency

on the boost library, which is a set of libraries that provide support for additional data

structures and tasks, such as threads and smart pointers. Therefore, all references to this

library should be removed and replaced with the C++ standard library.

1 // Creating a publisher and a subscriber in ROS 1
2 // positions_pub = nh.advertise<nav_msgs::Odometry>("positions", 1);
3 // positions_sub = nh.subscribe<nav_msgs::Odometry>("positions", 10,

boost::bind(&PatrolAgent::positionsCB, this, _1));↪→

4

5 // Creating a publisher and a subscriber in ROS 2
6 positions_pub =

n_ptr->create_publisher<nav_msgs::msg::Odometry>("/positions",1);↪→

7 positions_sub =
n_ptr->create_subscription<nav_msgs::msg::Odometry>("/positions",10,
std::bind(&PatrolAgent::positionsCB,this,std::placeholders::_1));

↪→

↪→

When it comes to creating a service client and making a service request, e.g. to clear

the robot’s navigation costmap, the logic has changed a bit. In ROS 2 one has to create the

service client before making the request to the server, whereas in ROS 1 you simply call the

service with the name of the server and the request object.

After creating the service client, in ROS 2, one has to make an asynchronous request to

the server and then wait for the server to send the result with exec.spin_until_future_ c

complete(result).

Additionally, in ROS 1, the request and the response were part of the same data structure,

while in ROS 2 they are two different classes that share the same namespace, which is the

service name. This change can be seen in the code below when we create the request object

in the second line.

1 // std_srvs::Empty srv;
2 auto request =

std::make_shared<nav2_msgs::srv::ClearEntireCostmap::Request>();↪→

3

49

4 std::string mb_string = "local_costmap/clear_entirely_local_costmap";
5

6 // Making a service call in ROS 1
7 /* if (ros::service::call(mb_string.c_str(), srv)){
8 ROS_INFO("Costmap correctly cleared.");
9 }else{

10 ROS_WARN("Was not able to clear costmap");
11 }*/
12

13 // Making a service call in ROS 2
14 auto clear_client =

n_ptr->create_client<nav2_msgs::srv::ClearEntireCostmap>(
mb_string.c_str());

↪→

↪→

15

16 auto result = clear_client->async_send_request(request);
17 if (exec.spin_until_future_complete(result) ==

rclcpp::FutureReturnCode::SUCCESS) {↪→

18 RCLCPP_INFO(n_ptr->get_logger(), "Costmaps cleared.\n");
19 } else {
20 RCLCPP_ERROR(n_ptr->get_logger(), "Was not able to clear costmap");
21 }

When it comes to the action client, whose job in patrolling_sim it is to send navigation

goals to the Navigation2 NavigateToPose Action Server, the changes from the move_base

Action Client are shown below. As one can see, most of the logic for creating an action client

is still the same. However, one difference we would like to point out is the use of Time in the

ROS 2 implementation, namely the use of n_ptr-> now() to retrieve the current clock time

instead of ros::Time::now(). This is merely a sintax change, it still returns the system

time (wall_clock) or the current simulation time (sim_time) depending on the type of clock

that is being published to the /clock topic.

1 // Creating the navigation goal object in ROS 1
2 //move_base_msgs::MoveBaseGoal goal;
3

4 // Creating the navigation goal object in ROS 2
5 nav2_msgs::action::NavigateToPose::Goal goal;
6

7 //Send the goal to the robot (Global Map)
8 //geometry_msgs::Quaternion angle_quat =

tf::createQuaternionMsgFromYaw(0.0);↪→

9 tf2::Quaternion tf2_quat;
10 tf2_quat.setRPY(0.0,0.0,0.0);
11 geometry_msgs::msg::Quaternion angle_quat = tf2::toMsg(tf2_quat);
12 goal.pose.pose.orientation = angle_quat;
13

14 goal.pose.header.frame_id = "map";

50

15

16 //goal.target_pose.header.stamp = ros::Time::now();
17 goal.pose.header.stamp = n_ptr->now();
18

19 goal.pose.pose.position.x = target_x;
20 goal.pose.pose.position.y = target_y;
21 goal.pose.pose.orientation = angle_quat;
22

23 // Send an action goal to the action server in ROS 1
24 //ac->sendGoal(goal, boost::bind(&PatrolAgent::goalDoneCallback, this, _1,

_2),↪→

25 // boost::bind(&PatrolAgent::goalActiveCallback,this),
26 // boost::bind(&PatrolAgent::goalFeedbackCallback,

this,_1));↪→

27

28 // Send an action goal to the action server in ROS 2
29 auto send_goal_options =

rclcpp_action::Client<nav2_msgs::action::NavigateToPose>::
SendGoalOptions();

↪→

↪→

30 send_goal_options.goal_response_callback =
std::bind(&PatrolAgent::goalActiveCallback, this, _1);↪→

31 send_goal_options.feedback_callback =
std::bind(&PatrolAgent::goalFeedbackCallback,this,_1,_2);↪→

32 send_goal_options.result_callback =
std::bind(&PatrolAgent::goalDoneCallback,this,_1);↪→

33

34 auto goal_handle_future = ac->async_send_goal(goal,send_goal_options);

4.2 Final remarks

After the migration process, we had a working version of the patrolling_sim in ROS 23 using

a publicly available version of the Stage simulator for ROS 2 hosted on https://github.

com/woawo1213/stage_ros2.

Figure 4.1 shows a screenshot of patrolling_sim running with Rviz24. Rviz2 is the ROS

2 version of the ROS visualizer available in ROS 1. It is used to visualize data exchanged in

topics, such as laser scans, transformations (tf), navigation costmaps, etc.

A video of the ROS 2 patrolling_sim running with a team of 8 robots is also available

at https://youtu.be/B9R6FrFS5OA (without Rviz2) and https://youtu.be/fQpPshj2weI

(with Rviz2).

Since Stage is a rather limited simulation environment, i.e. it does not support 3D

simulations, we decided to also migrate patrolling_sim to support a more realistic and
3https://github.com/ccpjboss/patrolling_sim_ros2
4https://github.com/ros2/rviz

51

https://github.com/woawo1213/stage_ros2
https://github.com/woawo1213/stage_ros2
https://youtu.be/B9R6FrFS5OA
https://youtu.be/fQpPshj2weI
https://github.com/ccpjboss/patrolling_sim_ros2
https://github.com/ros2/rviz

Figure 4.1: Patrolling Sim in the Stage Simulator (left) and RVIZ of two patrol robots (right).

Figure 4.2: Patrolling Sim in the Gazebo Simulator (left) and RVIZ of two patrol robots (right).

powerful 3D simulator, Gazebo [26]. Another reason to go through the effort of having a

Gazebo version of patrolling_sim is that Gazebo is supported by the same company as ROS,

Open Robotics, unlike Stage for ROS 2, which is a community version, offering less long time

support. To migrate to Gazebo, we needed several prerequisites: 1) a 3D model of the maps

used in Stage; 2) a 3D model and URDF description file of the robots to be used.

The maps used for the Stage simulator are in bitmapped image format (.pgm) and Gazebo

needs a 3D model of the map for the simulation to work. For this, the 2D .pgm images have

been extruded into 3D models of the maps in .stl format. For the 3D model of the robots,

we used the 3D models available for the STOP project [35] and created the URDF file, which

consists of an XML format for representing the 3D model of a robot, including its joints and

sensors.

Figure 4.2 shows a screenshot of patrolling_sim running in a Gazebo simulation envi-

ronment with 2 robots. A video of the ROS 2 patrolling_sim running with Gazebo with a

team of 4 robots is also available at https://youtu.be/8UYlcr0yj0c.

In the course of working with ROS 2 compatible simulators, we also considered migrating

patrolling_sim to the CoppeliaSim 3D simulator [27], but the effort required to do so is be-

yond the goal of this dissertation, as it would not have added any benefit that Gazebo does

not have. Nevertheless, the author of this dissertation has contributed to the official repos-

52

https://youtu.be/8UYlcr0yj0c

itory5 of the interface CoppeliaSim ROS 2 to make the simulation environment compatible

with ROS 2 Galactic.

4.3 Summary

Despite the fact that every migration process is specific to the package being migrated, we

consider these these migration guidelines to be of essential importance and, by following

them, one should be able to achieve the objective of having a working version of a ROS 1

package in ROS 2 and be at the edge of robotics development.

In the next chapter, we compare the ROS 1 and ROS 2 version of the patrolling_sim

package in terms of network performance and resource usage.

5https://github.com/CoppeliaRobotics/simExtROS2/pull/11

53

https://github.com/CoppeliaRobotics/simExtROS2/pull/11

5 Comparing performance of ROS 1

against ROS 2

In this chapter, we describe the experiments conducted to compare the performance of ROS 1

and ROS 2 using the patrolling_sim package. The metrics evaluated were network latency

(wired and wireless) and cpu/memory usage. Firstly, details about the experimental

design and metrics used are described. Secondly, an in-depth analysis and discussion of the

results are provided.

5.1 Experimental Design

With these experiments, we aim to evaluate the robustness and reliability of a ROS system

when multiple roboitc agents with distributed ROS nodes operate in the same network. This

way, we can evaluate how the ROS network would behave under load when multiple robots

operate in the same network. As such, we will increase the number of robotic agents that

are part of the MRS in order to evaluate the scalability of the system.

To evaluate the network latency of the ROS system running patrolling_sim, twenty

different experiments were conducted in two different scenarios:

• Scenario 1 - Ethernet: where the patrol agents are connected to the network via

Ethernet.

• Scenario 2 - WiFi: where the patrol agents are connected to the network through

WiFi.

In these experiments, we had a computer running the Stage simulator and other PCs

connected to the same network running the patrolling_sim package. The latter are denoted

patrol agents. This way, we can measure the network latency of messages going from the

computer running the simulator to the patrol agents, and vice versa.

In the context of these experiments, we define latency as the interval of time between

sending the message (Tsend) and acknowledging it (Tack), i.e. the round-trip time, divided by

54

Patrol agentsPatrol agents

Stage
Patrol agentsPatrol agents

Stage

Experiment 1 - Ethernet Experiment 2 - Wifi

Figure 5.1: Experimental setup with wired and wireless connections for latency measurements.

two (see Equation 5.1). We have used the existing network in the Institute of Systems and

Robotics of University of Coimbra and conducted the experiments at a time when activity

on the network was at a minimum. Another important aspect to point out is that the ROS

2 experiments made use of the default DDS provider for ROS 2 Galactic: the Cyclone DDS

from Eclipse Foundation.

Latency =
Tack − Tsend

2
(5.1)

In our experiments, the total number of patrol agents is divided equally by two computers.

Thus, if the total number of patrol agents of the experiment is two, one patrol agent is run

on each computer.

To achieve results as similar as possible to a real-world scenario where each patrol agent

runs on a different machine, we run each patrol agent in an isolated Docker container1. Thus,

each patrol agent has its own unique MAC address and IP address, and similarly to a real

robot, each Docker container uses a macvlan network driver to mimic a physical network

interface which is directly connected to the physical network [61].

The Wireshark2 network tool is used to measure the network latency in the experiments.

With Wireshark, we could record all traffic on the network during the experiments and

analyze it afterwards. Latency was measured using a Wireshark filter that only displays

traffic related to a topic from ROS to which each patrol agent sends a message and the

central computer subscribes to that topic and receives that message.

To evaluate the resource utilization (CPU and RAM) of the two versions of the pa-

trolling_sim package (ROS 1 and ROS 2), a new scenario was created.

• Scenario 3 - Resource usage: the Stage simulator and the patrol agents are all run
1https://www.docker.com/resources/what-container/
2https://www.wireshark.org/

55

https://www.docker.com/resources/what-container/
https://www.wireshark.org/

in the same machine. CPU and RAM usage is measured.

The experiments conducted in this scenario were run on a single machine and, as in the

case of scenarios 1 and 2, with an increasing number of robotic agents. The specifications of

the machine used for this third experimental scenario can be found in Table 5.1. Resource

usage was logged to a csv file using a Python script and the psutil3 library.

Table 5.1: Specifications of the machine used for resource usage measurements.

Operating System Ubuntu 20.04

CPU Model Intel i7-7700 HQ (8 cores)

CPU Speed 3.8 GHz

RAM 15885 MiB

One aspect that affects the usage of CPU is how we parameterize the navigation stack.

During the migration, we made sure that all parameters remained the same by comparing

the documentation pages of both navigation stacks. To our favor, most parameters kept the

same name and also the same functionality. Since patrolling_sim has multiple patrolling

algorithms [59], this was also taken into account when performing the experiments, so we have

used the same method — the cyclic algorithm — in all trials to guarantee a fair comparison.

It is important to note that, for the scope of this dissertation, there was no benefit on

running these experiments with real robots on a real scenario, since our focus is on the

network performance of the middleware and the usage of computational resources.

5.2 Results and Discussion

In this section, we present and analyze the results obtained, drawing relevant observations

and conclusions.

Figure 5.1 shows that ROS 2 performs better than ROS 1 in terms of network latency.

In the Ethernet experiments, ROS 1 achieves similar results to ROS 2 only when there are 2

robotic agents in the network. When there are more than two, ROS 2 performs significantly

better than ROS 1, keeping the maximum latency below 0.57ms, while ROS 1 achieves higher

maximum latencies (up to 5.09 ms). Overall, these results show that the communication in

ROS 1 is more unstable compared to ROS 2 when using an Ethernet connection.

When the patrol agents are connected via WiFi, ROS 2 significantly outperforms ROS

1. For the case when 10 robotic agents were part of the system, the performance gained
3https://pypi.org/project/psutil/

56

https://pypi.org/project/psutil/

2 4 6 8 10
Nr. of Robots

0

1

2

3

4

5
La

te
nc

y
(m

s)
ROS 1 Ethernet Latency

2 4 6 8 10
Nr. of Robots

ROS 2 Ethernet Latency

2 4 6 8 10
Nr. of Robots

0

5

10

15

20

La
te

nc
y

(m
s)

ROS 1 Wifi Latency

2 4 6 8 10
Nr. of Robots

ROS 2 Wifi Latency

Figure 5.2: Network latency with different ROS versions while running the patrolling_sim package.

was around 317.74% (regarding mean values). We can also see that the median latencies

in ROS 2 (1.18 - 5.14 ms) are much lower than the median latencies in the ROS 1 network

(2.89 - 18.01 ms). This result confirms the selling point of ROS 2, proving that it has higher

performance and robustness than ROS 1 in less reliable networks like WiFi, and scales better

to more robotic agents.

The performance gains in ROS 2, both when using Ethernet and WiFi, can be explained

by the change in the communication middleware between ROS 1 and ROS 2, namely the

replacement of TCPROS/UDPROS with the industry-proven DDS. As already noted by

other researchers, cf. Section 2.7, and now by these results, ROS 2 has gained in reliability,

robustness and scalability by using DDS, compared to ROS 1.

Analyzing now Figure 5.3, it can be seen that the resource usage of ROS 2 is higher than

that of ROS 1, both in the case of CPU and RAM. When simulating 10 robots, CPU reaches

a median usage of 70% with ROS 2, while ROS 1 only uses about 40% of CPU (median

value). For memory usage, we can see that ROS 1 keeps an almost constant memory usage

(median value), while ROS 2 does not. This confirms the evidence reported in [49] , which

also mentions higher memory usage for ROS 2 when compared to ROS 1.

57

2 4 6 8 10
Nr. of robots

10

20

30

40

50

60

70

80

Pe
rc

en
ta

ge

% of CPU used

ROS 1
ROS 2

2 4 6 8 10
Nr. of robots

10

20

30

40

50

60

70

80

Pe
rc

en
ta

ge

% of memory used

ROS 1
ROS 2

Figure 5.3: CPU and RAM median values with different ROS versions while running the pa-

trolling_sim package.

Through our experiments, we found that the main reason for the ROS 2 higher CPU

usage comes from the navigation stack. It contributes to the higher ROS 2 CPU and

RAM utilization due to the number of nodes launched by the navigation stack specific to

each robot. For our use case, in ROS 1 the nodes launched per robot are less than in ROS

2. This, clearly shows that the ROS 2 navigation stack is more complex and uses more

resources. Detailed results about CPU and RAM utilization can be view in Appendix E.

5.3 Summary

The results of our experiments are useful for the development of MRS in ROS 2, as they

show the ways to improve a ROS 1 MRS and to achieve better network performance when

migrating to ROS 2. The results show that the performance and scalability of ROS 2 in

less reliable networks, such as WiFi, is much better than the performance in ROS 1. This

is extremely important for the deployment of MRS with a large number of robots. The

network performance, as well as the fact that there is no central failure point unlike ROS 1,

show that ROS 2 is an interesting robotics middleware to develop MRS.

58

6 Conclusion

The work covered in this dissertation focuses on the study of ROS 2 and the subsequent

comparison of its performance with ROS 1 in a MRS use case.

First and foremost, we start by studying ROS 1 and its design goals so that we can then

have a better understating of how and why ROS 2 was created. We also study the conception

of ROS 2, its main differences to ROS 1, as well as newly introduced features in the ROS 2

stack and how they improve the ROS robotics middleware.

With this, we were able to create a carefully designed user study that targeted the robotics

community. From this user study, we have found out what the community’s requirements

are for a robotics middleware, and how ROS 2 can closely meet the robotics community’s

requirements for a robotics middleware. We were also able to investigate the extent to

which ROS 2 is being adopted, who is adopting ROS 2, and what issues are keeping ROS

1 developers from switching to ROS 2. Overall, this user study has shown us what issues

persist in ROS 2, and which features of ROS 2 are most popular and well adopted in the

robotics community.

After documenting the migration process and ensuring that patrolling_sim in ROS 2

works as expected, we ran several experiments in Chapter 5 to compare ROS 1 and ROS

2 in terms of network performance (latency) and computational resources utilization (RAM

and CPU). The results found are promising, as ROS 2 can achieve lower latencies than ROS

1 for the same number of robotic agents in the network, in both Ethernet and WiFi scenarios.

We hope that the results presented in this dissertation will contribute to the adoption of

ROS 2 by showing the performance gains that can be expected when working with teams of

multiple robots in ROS 2.

6.1 Future work

The contributions of this dissertation are relevant for the future use of ROS 2 in robotics.

However, since ROS 2 introduces some new features that are out of this dissertation’s scope

there are some points that should receive attention on future research studies in the topic.

59

Security concerns are becoming more and more important in the current digitalization

age (e.g. Internet of Things, Industry 4.0, etc.), and so this also becomes a problem when

using MRS in the real world. ROS 2 security functions should be studied and researched to

evaluate the impact when a MRS is run in ROS 2 with security features enabled.

Another aspect that could not be covered in this dissertation was comparing ROS 1

(move_base) and ROS 2 (Navigation2) navigation stacks. Despite looking similar at a first

glance and achieving the same goals, their underlying concepts are much different. While

move_base uses a monolithic state machine, Navigation2 uses a Behavior Tree architecture,

enabling Navigation2 to be more modular and highly configurable by rearranging tasks of a

robot’s navigation behavior.

Another future work in the sequel of this dissertation is conducting a real-world exper-

iment with the ROS 2 package patrolling_sim. As far as the author is aware, the mobile

robots available at the Institute of Systems and Robotics have not yet been ported to ROS2.

This would allow to run patrolling_sim in a real scenario with multiple robots working as

team with better robustness and scalability to larger teams. Moreover, the same metrics used

in this dissertation could be measured to make the adequate observations and conclusions.

60

Bibliography

[1] Stefan Enderle, Hans Utz, Stefan Sablatnög, Steffen Simon, Gerhard Kraetzschmar,

and Günther Palm. “Miro: Middleware for Autonomous Mobile Robots”. In: IFAC

Proceedings Volumes (). doi: 10.1016/S1474-6670(17)41721-6. url: https://www.

sciencedirect.com/science/article/pii/S1474667017417216.

[2] CARMEN. url: http://carmen.sourceforge.net/intro.html (visited on 11/24/2021).

[3] Orca Robotics. url: http://orca-robotics.sourceforge.net/index.html (visited

on 11/24/2021).

[4] Brian P Gerkey, Richard T Vaughan, and Andrew Howard. “The Player/Stage Project:

Tools for Multi-Robot and Distributed Sensor Systems”. In: International Conference

on Advanced Robotics (ICAR 2003).

[5] Paul Newman. “MOOS -Mission Orientated Operating Suite”. In: Mass. Inst. Technol.

Tech. Rep. 2299 (Jan. 2006).

[6] Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust, Tully Foote, Jeremy Leibs,

Rob Wheeler, and Andrew Ng. “ROS: an open-source Robot Operating System”. In:

vol. 3. Jan. 2009.

[7] ROS: Home. url: https://www.ros.org/.

[8] 2021 ROS Metrics Report - General. Feb. 1, 2022. url: https://discourse.ros.

org/t/2021-ros-metrics-report/24130 (visited on 09/05/2022).

[9] Steven Macenski, Tully Foote, Brian Gerkey, Chris Lalancette, and William Woodall.

“Robot Operating System 2: Design, architecture, and uses in the wild”. In: Science

Robotics 7.66 (2022). doi: 10.1126/scirobotics.abm6074. url: https://www.

science.org/doi/abs/10.1126/scirobotics.abm6074.

[10] Planning future ROS 1 distribution(s) - General. ROS Discourse. Oct. 19, 2018. url:

https://discourse.ros.org/t/planning-future-ros-1-distribution-s/6538

(visited on 10/28/2021).

61

https://doi.org/10.1016/S1474-6670(17)41721-6
https://www.sciencedirect.com/science/article/pii/S1474667017417216
https://www.sciencedirect.com/science/article/pii/S1474667017417216
http://carmen.sourceforge.net/intro.html
http://orca-robotics.sourceforge.net/index.html
https://www.ros.org/
https://discourse.ros.org/t/2021-ros-metrics-report/24130
https://discourse.ros.org/t/2021-ros-metrics-report/24130
https://doi.org/10.1126/scirobotics.abm6074
https://www.science.org/doi/abs/10.1126/scirobotics.abm6074
https://www.science.org/doi/abs/10.1126/scirobotics.abm6074
https://discourse.ros.org/t/planning-future-ros-1-distribution-s/6538

[11] Distributions - ROS Wiki. url: http://wiki.ros.org/Distributions (visited on

10/28/2021).

[12] David Portugal. patrolling_sim v2.2.4 (Jan. 2022) ROS Package. original-date: 2014-

04-29T11:38:07Z. Jan. 30, 2022. url: https://github.com/davidbsp/patrolling_

sim (visited on 02/15/2022).

[13] David Portugal, Luca Iocchi, and Alessandro Farinelli. “A ROS-based framework for

simulation and benchmarking of multi-robot patrolling algorithms”. In: Robot Operat-

ing System (ROS). Springer, 2019, pp. 3–28.

[14] K. Birman and T. Joseph. “Exploiting virtual synchrony in distributed systems”. In:

Proceedings of the eleventh ACM Symposium on Operating systems principles. SOSP

’87. New York, NY, USA: Association for Computing Machinery, Nov. 1, 1987, pp. 123–

138. isbn: 978-0-89791-242-6. doi: 10.1145/41457.37515. url: https://doi.org/

10.1145/41457.37515 (visited on 04/14/2022).

[15] Jay E. Israel, J. G. Mitchell, and Howard E. Sturgis. “Separating data from function

in a distributed file system”. In: 1978.

[16] Bruce Jay Nelson. “Remote procedure call”. In: 1981.

[17] Simon St. Laurent, Joe Johnston, and Edd Dumbill. Programming Web services with

XML-RPC. 1st ed. OCLC: ocm47278976. Beijing ; Sebastopol, Calif: O’Reilly, 2001.

213 pp. isbn: 978-0-596-00119-3.

[18] Nodes - ROS Wiki. url: http://wiki.ros.org/Nodes?action=print (visited on

11/07/2021).

[19] rospy - ROS Wiki. url: http://wiki.ros.org/rospy?distro=noetic (visited on

11/08/2021).

[20] roscpp - ROS Wiki. url: http://wiki.ros.org/roscpp (visited on 11/08/2021).

[21] Topics - ROS Wiki. url: https://wiki.ros.org/Topics (visited on 11/08/2021).

[22] ROS/TCPROS - ROS Wiki. url: http://wiki.ros.org/ROS/TCPROS (visited on

10/28/2021).

[23] ROS/UDPROS - ROS Wiki. url: http://wiki.ros.org/ROS/UDPROS (visited on

10/28/2021).

[24] Services - ROS Wiki. url: https://wiki.ros.org/Services (visited on 11/08/2021).

[25] Bags - ROS Wiki. url: http://wiki.ros.org/Bags (visited on 11/16/2021).

[26] Gazebo. url: http://gazebosim.org/ (visited on 11/16/2021).

62

http://wiki.ros.org/Distributions
https://github.com/davidbsp/patrolling_sim
https://github.com/davidbsp/patrolling_sim
https://doi.org/10.1145/41457.37515
https://doi.org/10.1145/41457.37515
https://doi.org/10.1145/41457.37515
http://wiki.ros.org/Nodes?action=print
http://wiki.ros.org/rospy?distro=noetic
http://wiki.ros.org/roscpp
https://wiki.ros.org/Topics
http://wiki.ros.org/ROS/TCPROS
http://wiki.ros.org/ROS/UDPROS
https://wiki.ros.org/Services
http://wiki.ros.org/Bags
http://gazebosim.org/

[27] E. Rohmer, S. P. N. Singh, and M. Freese. “V-REP: A versatile and scalable robot

simulation framework”. In: 2013 IEEE/RSJ International Conference on Intelligent

Robots and Systems. 2013, pp. 1321–1326. doi: 10.1109/IROS.2013.6696520.

[28] Master - ROS Wiki. url: http://wiki.ros.org/Master (visited on 11/11/2021).

[29] ROS/Technical Overview - ROS Wiki. url: http://wiki.ros.org/ROS/Technical%

5C%20Overview?action=print (visited on 11/11/2021).

[30] Packages - ROS Wiki. url: http://wiki.ros.org/Packages (visited on 11/16/2021).

[31] Manifest - ROS Wiki. url: http://wiki.ros.org/Manifest (visited on 11/16/2021).

[32] Gonçalo S. Martins, David Portugal, and Rui P. Rocha. “mrgs: A Multi-Robot SLAM

Framework for ROS with Efficient Information Sharing”. In: Robot Operating Sys-

tem (ROS). Ed. by Anis Koubaa. Vol. 895. Series Title: Studies in Computational

Intelligence. Cham: Springer International Publishing, 2021, pp. 45–75. isbn: 978-3-

030-45955-0 978-3-030-45956-7. doi: 10.1007/978-3-030-45956-7_3. url: http:

//link.springer.com/10.1007/978-3-030-45956-7_3 (visited on 01/03/2022).

[33] Alessando Farinelli, Luca Iocchi, and Daniele Nardi. “Distributed on-line dynamic task

assignment for multi-robot patrolling”. In: Autonomous Robots 41 (Aug. 2017). doi:

10.1007/s10514-016-9579-8.

[34] Alexander Tiderko, Frank Hoeller, and Timo Röhling. “The ROS Multimaster Exten-

sion for Simplified Deployment of Multi-Robot Systems”. In: Jan. 2016. isbn: 978-3-

319-26052-5. doi: 10.1007/978-3-319-26054-9.

[35] David Portugal, André G Araújo, and Micael S Couceiro. “Improving the robust-

ness of a service robot for continuous indoor monitoring: An incremental approach”.

In: International Journal of Advanced Robotic Systems 18.3 (2021). doi: 10.1177/

17298814211012181. url: https://doi.org/10.1177/17298814211012181.

[36] Design. url: https://design.ros2.org/ (visited on 11/16/2021).

[37] Jarrod McClean, Christopher Stull, Charles Farrar, and David Mascareñas. “A pre-

liminary cyber-physical security assessment of the Robot Operating System (ROS)”.

In: SPIE Defense, Security, and Sensing. Ed. by Robert E. Karlsen, Douglas W.

Gage, Charles M. Shoemaker, and Grant R. Gerhart. Baltimore, Maryland, USA,

May 17, 2013, p. 874110. doi: 10.1117/12.2016189. url: http://proceedings.

spiedigitallibrary.org/proceeding.aspx?doi=10.1117/12.2016189 (visited on

11/16/2021).

[38] Enterprise Open Source and Linux. Ubuntu. url: https://ubuntu.com/ (visited on

04/14/2022).

63

https://doi.org/10.1109/IROS.2013.6696520
http://wiki.ros.org/Master
http://wiki.ros.org/ROS/Technical%5C%20Overview?action=print
http://wiki.ros.org/ROS/Technical%5C%20Overview?action=print
http://wiki.ros.org/Packages
http://wiki.ros.org/Manifest
https://doi.org/10.1007/978-3-030-45956-7_3
http://link.springer.com/10.1007/978-3-030-45956-7_3
http://link.springer.com/10.1007/978-3-030-45956-7_3
https://doi.org/10.1007/s10514-016-9579-8
https://doi.org/10.1007/978-3-319-26054-9
https://doi.org/10.1177/17298814211012181
https://doi.org/10.1177/17298814211012181
https://doi.org/10.1177/17298814211012181
https://design.ros2.org/
https://doi.org/10.1117/12.2016189
http://proceedings.spiedigitallibrary.org/proceeding.aspx?doi=10.1117/12.2016189
http://proceedings.spiedigitallibrary.org/proceeding.aspx?doi=10.1117/12.2016189
https://ubuntu.com/

[39] craigloewen-msft. What is Windows Subsystem for Linux. url: https : / / docs .

microsoft.com/en-us/windows/wsl/about (visited on 04/14/2022).

[40] Actionlib - ROS Wiki. http://wiki.ros.org/actionlib.

[41] Actions. http://design.ros2.org/articles/actions.html.

[42] DDS Portal – Data Distribution Services. url: https://www.dds-foundation.org/

(visited on 10/28/2021).

[43] What is DDS? url: https://www.dds-foundation.org/what-is-dds-3/ (visited

on 01/28/2022).

[44] ROS 2 Middleware Implementation for eProsima’s Fast DDS. original-date: 2015-05-

13T14:00:18Z. Nov. 19, 2021. url: https://github.com/ros2/rmw_fastrtps (visited

on 11/25/2021).

[45] ROS 2 RMW for Eclipse Cyclone DDS. original-date: 2018-07-09T11:19:43Z. Nov. 19,

2021. url: https://github.com/ros2/rmw_cyclonedds (visited on 11/25/2021).

[46] ROS 2 Middleware Layer for RTI Connext DDS. original-date: 2020-10-19T21:28:35Z.

Nov. 19, 2021. url: https : / / github . com / ros2 / rmw _ connextdds (visited on

11/25/2021).

[47] William Woodall (OSRF) Deanna Hood. “ROS 2 Update”. In: ROSCon Seoul 2016.

Open Robotics, Oct. 2016. doi: 10.36288/ROSCon2016-900775. url: https://doi.

org/10.36288/ROSCon2016-900775.

[48] Managed Nodes. https://design.ros2.org/articles/node_lifecycle.html.

[49] Yuya Maruyama, Shinpei Kato, and Takuya Azumi. “Exploring the performance of

ROS2”. In: doi: 10.1145/2968478.2968502. url: https://dl.acm.org/doi/10.

1145/2968478.2968502.

[50] Jongkil Kim, Jonathon M. Smereka, Calvin Cheung, Surya Nepal, and Marthie Grob-

ler. “Security and Performance Considerations in ROS 2: A Balancing Act”. In: arXiv:1809.09566

[cs] (Sept. 24, 2018). arXiv: 1809.09566. url: http://arxiv.org/abs/1809.09566

(visited on 10/28/2021).

[51] Tobias Kronauer, Joshwa Pohlmann, Maximilian Matthe, Till Smejkal, and Gerhard

Fettweis. “Latency Analysis of ROS2 Multi-Node Systems”. In: arXiv:2101.02074 [cs]

(June 11, 2021). arXiv: 2101.02074. url: http://arxiv.org/abs/2101.02074

(visited on 01/09/2022).

64

https://docs.microsoft.com/en-us/windows/wsl/about
https://docs.microsoft.com/en-us/windows/wsl/about
https://www.dds-foundation.org/
https://www.dds-foundation.org/what-is-dds-3/
https://github.com/ros2/rmw_fastrtps
https://github.com/ros2/rmw_cyclonedds
https://github.com/ros2/rmw_connextdds
https://doi.org/10.36288/ROSCon2016-900775
https://doi.org/10.36288/ROSCon2016-900775
https://doi.org/10.36288/ROSCon2016-900775
https://doi.org/10.1145/2968478.2968502
https://dl.acm.org/doi/10.1145/2968478.2968502
https://dl.acm.org/doi/10.1145/2968478.2968502
https://arxiv.org/abs/1809.09566
http://arxiv.org/abs/1809.09566
https://arxiv.org/abs/2101.02074
http://arxiv.org/abs/2101.02074

[52] Michael Reke, Daniel Peter, Joschua Schulte-Tigges, Stefan Schiffer, Alexander Ferrein,

Thomas Walter, and Dominik Matheis. “A Self-Driving Car Architecture in ROS2”. In:

IEEE, Jan. 2020. doi: 10.1109/SAUPEC/RobMech/PRASA48453.2020.9041020. url:

https://ieeexplore.ieee.org/document/9041020/.

[53] Jaeho Park, Raimarius Delgado, and Byoung Wook Choi. “Real-Time Characteristics

of ROS 2.0 in Multiagent Robot Systems: An Empirical Study”. In: (). url: https:

//ieeexplore.ieee.org/document/9172073/.

[54] Agata Barciś, Michał Barciś, and Christian Bettstetter. Robots that Sync and Swarm:

A Proof of Concept in ROS 2. Sept. 12, 2019. doi: 10.48550/arXiv.1903.06440.

url: http://arxiv.org/abs/1903.06440 (visited on 06/22/2022).

[55] Tanja Katharina Kaiser, Marian Johannes Begemann, Tavia Plattenteich, Lars Schilling,

Georg Schildbach, and Heiko Hamann. ROS2SWARM - A ROS 2 Package for Swarm

Robot Behaviors.

[56] Andrea Testa, Andrea Camisa, and Giuseppe Notarstefano. “ChoiRbot: A ROS 2 Tool-

box for Cooperative Robotics”. In: IEEE Robotics and Automation Letters 6.2 (Apr.

2021), pp. 2714–2720. issn: 2377-3766, 2377-3774. doi: 10.1109/LRA.2021.3061366.

url: http://arxiv.org/abs/2010.13431 (visited on 10/28/2021).

[57] Dave Coleman, Andy McEvoy, Stephen Brawner, and Mike Lautman. Customer Stories

- Report On Needs of the ROS 2 Community. 2019.

[58] Steve Macenski, Francisco Martín, Ruffin White, and Jonatan Ginés Clavero. “The

Marathon 2: A Navigation System”. In: 2020 IEEE/RSJ International Conference

on Intelligent Robots and Systems (IROS). 2020. url: https://github.com/ros-

planning/navigation2.

[59] David Portugal and Rui P Rocha. “Distributed multi-robot patrol: A scalable and fault-

tolerant framework”. In: Robotics and Autonomous Systems 61.12 (2013), pp. 1572–

1587.

[60] Richard Vaughan. “Massively multi-robot simulation in stage”. In: Swarm Intelligence

(Dec. 1, 2008). doi: 10.1007/s11721-008-0014-4. url: https://doi.org/10.

1007/s11721-008-0014-4.

[61] Use macvlan networks. Docker Documentation. Aug. 30, 2022. url: https://docs.

docker.com/network/macvlan/ (visited on 08/30/2022).

65

https://doi.org/10.1109/SAUPEC/RobMech/PRASA48453.2020.9041020
https://ieeexplore.ieee.org/document/9041020/
https://ieeexplore.ieee.org/document/9172073/
https://ieeexplore.ieee.org/document/9172073/
https://doi.org/10.48550/arXiv.1903.06440
http://arxiv.org/abs/1903.06440
https://doi.org/10.1109/LRA.2021.3061366
http://arxiv.org/abs/2010.13431
https://github.com/ros-planning/navigation2
https://github.com/ros-planning/navigation2
https://doi.org/10.1007/s11721-008-0014-4
https://doi.org/10.1007/s11721-008-0014-4
https://doi.org/10.1007/s11721-008-0014-4
https://docs.docker.com/network/macvlan/
https://docs.docker.com/network/macvlan/

Appendix A

ROS 2 Quality of Service Policies

• History:

– Keep last: only store up to N samples

– Keep all: stores all samples

• Depth:

– Set the N samples from the Keep last policy

• Reliability:

– Best effort: Data delivery is not guaranteed

– Reliable: Data delivery is guaranteed

• Durability:

– Transient local: Keep several samples for late joining subscribers

– Volatile: no effort is made to keep samples for late joining subscribers

• Deadline: maximum time allowed between messages published to a topic;

• Lifespan: maximum time allowed between the publishing and the reception of a mes-

sage. If the time is expired, then the message gets dropped

• Lease Duration: maximum period of time, a publisher that it is alive before the

system considers it to be dead

• Liveliness:

– Automatic: The system considers all publishers in a node to be alive for another

lease time duration when one of the publishers publishes a message to a given

topic

– Manual by topic: The system considers the publisher to be alive for another lease

time if it manually asserts that it is alive through a call to the publisher API

66

For all these options, except for durations, there is also the option to keep the default

from the underlying middleware "system default". For duration policies, there is an option

for unspecified durations, "default".

A set of QoS policies form a QoS profile, and ROS provides a set of predefined profiles

for different use cases (e.g., default, sensor data, services, parameters, and system default).

• Default:

– History: keep last queue size of 10

– Reliability: reliable

– Durability: volatile

– Liveliness: system default

– Deadline, lifespan, lease duration: default

• Services:

– History: keep last queue size of 10

– Reliability: reliable

– Durability: volatile

– Liveliness: system default

– Deadline, lifespan, lease duration: default

• Parameters:

– History: keep last queue size of 1000

– Reliability: reliable

– Durability: volatile

– Liveliness: system default

– Deadline, lifespan, lease duration: default

• Sensor data:

– History: keep last queue size of 5

– Reliability: best effort

– Durability: volatile

– Liveliness: system default

– Deadline, lifespan, lease duration: default

• System default:

– All QoS Polices are set to: system default

67

There might be a scenario where the two QoS profiles are not compatible. A connection

is only made between a publisher and a subscriber if all the QoS policies within two QoS

profiles are compatible. The compatibility of the two QoS profiles is evaluated as follows:

the subscriber requests a QoS profile that is its minimally accepted quality of policies. It

can be seen as the worst case scenario policies in which the communication must operate.

In contrast, the publisher offers a QoS profile that is its best case scenario, its maximum

quality QoS profile that the publisher is able to provide. A QoS policy is compatible if the

request is not stricter than what the publisher offers.

When comparing these features with already implemented features in ROS1, we can

clearly observe that ROS2 is more complete than ROS1, regarding giving more options on

the behavior of certain nodes and topics.

Table A.1: Comparative table between ROS2 QoS policies and ROS1 equivalent implementation

ROS2 ROS1

History + Depth Queue size when creating a publisher/subscriber

Reliability - Best effort UDPROS (only in roscpp)

Reliability - Reliable TCPROS

Durability - Transient local Latching publishers1

Durability - Volatile Not implemented

Deadline Not implemented

Lifespan Not implemented

Liveliness + Lease duration Not implemented

1When creating a publisher with advertise an option to latch the connection is given. When a connection

is latched, the last message published is saved and automatically sent to any future subscribers that connect.

68

Appendix B

Adoption User Study Questions

The questions included in the User Study are divided into 7 sections, as described bellow.

The user study can be view in the following link: https://forms.gle/PrvmUFxbRkhurT8q8

B.1 User Profile Characterisation

• What country are you from?

• For how many years have you been using ROS?

• What is the main context of the previous projects in which you have used ROS?

• What do you consider to be your level of proficiency with ROS?

B.2 Robotics middleware and ROS 1 strong/weak points

From this point on, only respondents who have already used ROS proceed to the next

questions.

• What are the most important features in a Robotics Middleware?

• What makes ROS 1 a good choice when developing robotics applications?

• In what areas do you think ROS 1 is not very strong?

• How do you feel about ROS 1 Documentation and Tutorials?

B.3 ROS 2 Awareness

• Have you heard about ROS 2?

• Which of these ROS 2 features have you heard about before?

• Have you heard about any negative aspects of ROS 2?

◦ Please specify the negative aspect(s) you’ve heard about.

69

https://forms.gle/PrvmUFxbRkhurT8q8

B.4 ROS 2 Adoption

• Have you used ROS 2?

• What is keeping you from fully adopting ROS 2?

• What do you think is keeping developers from fully adopting ROS 2?

• Why have you decided to fully adopt ROS 2? (only asked if the user is using ROS 2)

• How do you feel about ROS 2 Documentation and Tutorials?

• How do you compare ROS 1 with ROS 2, in terms of its . . .

◦ Learning curve

◦ Ease of development

◦ Features

◦ Capabilities for commercial and production use

◦ Documentation

◦ Tutorials

B.5 ROS 1 to ROS 2 migration

This section is only available to respondents who have already used ROS 2. Also note that

only respondents who answered "Yes" to the question “Have you ever migrated a ROS 1

package to ROS 2?" have access to the questions about migration difficulties.

• Have you ever migrated a ROS 1 package to ROS 2?

◦ How difficult did you find the process of migrating a ROS 1 package to ROS 2?

◦ What difficulties did you face when migrating the package?

B.6 ROS 2 features

• How essential/important/compelling/useful do you find these ROS 2 features?

◦ ROS 2 and Data Distribution Service (DDS)

◦ ROS 2 and DDS Security

◦ Using ROS 2 on low-quality of service networks with the use of different Quality of Service

Policies

◦ The absence of ROS master, therefore enabling fully distributed systems

◦ Python launch files instead of launch files written in XML

◦ Manage the life cycle of a node with Lifecycle Nodes

◦ ROS 2 support for real-time systems

◦ ROS 2 support for bare-metal microcontrollers (ESP32, Raspberry Pi Pico, Teensy 3.2, ...) with

micro-ROS

◦ Native support for ROS 2 on Windows

◦ Native support for ROS 2 on macOS

◦ Being able to reuse ROS 1 bags in a ROS 2 environment.

70

◦ Being able to deploy a system comprising both ROS 1 and ROS 2 nodes running simultaneously.

B.7 ROS 1/2 and Multi-Robot Systems

• Have you ever worked with or are interested in Multi-Robot Systems?

• What main difficulties have you found when developing Multi-Robot Systems with ROS1?

• Now we ask you to think about how relevant the new features announced for ROS 2 are, when

regarding Multi-Robot Systems:

◦ ROS 2 and Data Distribution Service (DDS)

◦ ROS 2 and DDS Security

◦ Using ROS 2 on low-quality of service networks with the use of different Quality of Service

Policies

◦ The absence of ROS master, therefore enabling fully distributed systems

◦ Python launch files instead of launch files written in XML

◦ Manage the life cycle of a node with Lifecycle Nodes

◦ Having a common core library rcl

◦ ROS 2 support for real-time systems

◦ ROS 2 support for bare-metal microcontrollers (ESP32, Raspberry Pi Pico, Teensy 3.2, ...) with

micro-ROS

◦ Native support for ROS 2 on Windows

◦ Native support for ROS 2 on macOS

◦ Being able to reuse ROS 1 bags in a ROS 2 environment.

◦ Being able to deploy a system comprising both ROS 1 and ROS 2 nodes running simultaneously.

B.8 Screening question

• What is ROS?

71

Appendix C

Adoption User Study Detailed Results

Table C.1: What country are you from?

Country Nr. of answers

Portugal 27 (22%)

United States 20 (18%)

Germany 14 (13%)

India 8 (7%)

Brazil 4 (4%)

France 4 (4%)

Canada 3 (3%)

Italy 3 (3%)

Poland 3 (3%)

United Kingdom 3 (3%)

Country Nr. of answers

Australia 2 (2%)

Colombia 2 (2%)

Finland 2 (2%)

Hungary 2 (2%)

Indonesia 2 (2%)

Luxembourg 2 (2%)

Spain 2 (2%)

Switzerland 2 (2%)

Czech Republic 1 (1%)

Country Nr. of answers

Denmark 1 (1%)

Japan 1 (1%)

Korea South 1 (1%)

New Zealand 1 (1%)

Singapore 1 (1%)

South Africa 1 (1%)

Sweden 1 (1%)

Tunisia 1 (1%)

Turkey 1 (1%)

72

Table C.2: For how many years have you

been using ROS?

Nr. of answers

Less than 1 year 19 (17%)

1 - 3 years 22 (20%)

3 - 5 years 23 (20%)

5 - 10 years 25 (22%)

More than 10 years 14 (12%)

Table C.3: What is the main context of

the previous projects in which you have

used ROS? Multiple answers were accepted.

Nr. of answers

Academic 84 (82%)

Industrial 49 (47%)

Hobbies 3 (3%)

Student competition 2 (2%)

Table C.4: What do you consider to be

your level of proficiency with ROS?

Nr. of answers

Beginner 8 (8%)

Limited experience 22 (21%)

Experient User 27 (26%)

Proficient Developer 35 (34%)

Expert 11 (11%)

73

Table C.5: “What are the most important features in a Robotics Middleware?”, “What makes ROS 1 a

good choice when developing robotics applications?” and “In what areas do you think ROS 1 is not very

strong?”

Important in

Robotics Middleware

ROS 1 is

strong in

ROS 1 is

weak in

Nr. of answers

Open source 65 (63%) 66 (64%) 2 (2%)

Reliability 60 (59%) 30 (29%) 28 (27%)

Modularity 58 (56%) 51 (49%) 14 (14%)

(Good) documentation resources 53 (51%) 50 (48%) 27 (26%)

Robustness 44 (43%) 20 (19%) 31 (30%)

(Good) integration with visualization tools 42 (41%) 58 (56%) 2 (2%)

Out-of-the-box driver support for commonly used sensors 37 (36%) 52 (50%) 7 (7%)

Easy to use 35 (34%) 43 (42%) 20 (19%)

(Good) integration with robotic simulators 34 (33%) 51 (49%) 5 (5%)

Distributed Architecture 21 (20%) 28 (27%) 22 (21%)

Command Line Interface tools 21 (20%) 38 (37%) 9 (9%)

Support for Multi-Robot Systems 19 (18%) 14 (14%) 45 (44%)

Easy to understand 18 (17%) 29 (28%) 18 (17%)

Support for different platforms 17 (16%) 15 (15%) 25 (24%)

Multi-language support 16 (15%) 28 (27%) 16 (15%)

Security 5 (5%) 0 59 (57%)

(Good) integration with web tools 4 (4%) 3 (3%) 19 (18%)

74

Table C.6: “What are the most important features in a Robotics Middleware?”, “What makes ROS 1 a

good choice when developing robotics applications?” and “In what areas do you think ROS 1 is not very

strong?”(only considering the 3 highest levels of expertise).

Important in

Robotics Middleware

ROS 1 is

strong in

ROS 1 is

weak in

Nr. of answers

Open source 45 (62%) 47 (64%) 1 (1%)

Reliability 45 (62%) 22 (30%) 19 (26%)

Modularity 44 (60%) 40 (55%) 8 (11%)

(Good) documentation resources 53 (51%) 38 (52%) 19 (26%)

Robustness 31 (42%) 14 (19%) 23 (32%)

(Good) integration with visualization tools 35 (48%) 43 (59%) 2 (3%)

Out-of-the-box driver support for commonly used sensors 30 (41%) 38 (52%) 6 (8%)

Easy to use 21 (29%) 33 (45%) 11 (15%)

(Good) integration with robotic simulators 22 (30%) 35 (48%) 3 (4%)

Distributed Architecture 16 (22%) 23 (32%) 16 (22%)

Command Line Interface tools 20 (27%) 32 (44%) 5 (7%)

Support for Multi-Robot Systems 11 (15%) 7 (10%) 36 (49%)

Easy to understand 10 (14%) 19 (26%) 10 (14%)

Support for different platforms 12 (16%) 9 (12%) 21 (29%)

Multi-language support 12 (26%) 22 (30%) 10 (14%)

Security 4 (5%) 0 48 (66%)

(Good) integration with web tools 3 (4%) 2 (3%) 15 (21%)

Table C.7: How do you feel about ROS 1 Documentation and Tutorials?

Mean score1 (Rating)

Helpful 3.88 (Good)

Informative 3.81 (Good)

Not confusing 3.57 (Good)

Easy to understand 3.35 (Neutral)

Broad 3.07 (Neutral)

Well organized 2.80 (Neutral)

Detailed 2.70 (Neutral)

75

Table C.8: Which of these ROS 2 features have you heard about before?.

Nr. of answers

Data Distribution Service (DDS) 76 (78%)

Absence of ROS master 76 (78%)

Python Launch files 67 (68%)

Support for real-time systems 65 (66%)

Support for Windows and macOS 62 (63%)

Quality of Service Policies 55 (56%)

Security enabled by DDS 47 (48%)

Support for small embedded platforms 46 (47%)

Lifecycle Nodes 43 (44%)

None 2 (2%)

Table C.9: What is keeping you from fully adopting ROS 2?

Never used ROS 2 Has used ROS 2 Total

Dependency on ROS 1 packages 23 (56%) 14 (64%) 37 (59%)

Not urgent 27 (66%) 8 (36%) 35 (56%)

Lack of ROS 1 packages migrated to ROS 2 19 (46%) 15 (68%) 34 (54%)

I don’t think ROS 2 is in a "ready" state 13 (32%) 6 (27%) 19 (30%)

Conformism 8 (19%) 2 (9%) 10 (16%)

Waiting for the End of life of ROS 1 Noetic 6 (15%) 3 (14%) 9 (14%)

Lack of resources / time to migrate 2 (5%) 2 (9%) 4 (6%)

Table C.11: What do you think is keeping other developers from fully adopting ROS 2?

Never used ROS 2 Has used ROS 2 Using ROS 2 Total

Dependency on ROS 1 packages 25 (60%) 16 (73%) 24 (69%) 65 (66%)

Lack of ROS 1 packages migrated to ROS 2 22 (54%) 16 (73%) 30 (86%) 68 (69%)

They don’t think ROS 2 is in a "ready" state 23 (56%) 12 (56%) 27 (77%) 62 (63%)

Not urgent 21 (51%) 10 (45%) 22 (63%) 53 (54%)

Waiting for the End of life of ROS 1 Noetic 15 (37%) 6 (27%) 4 (11%) 25 (26%)

Conformism 11 (27%) 6 (27%) 5 (14%) 22 (22%)

Lack of documentation - - 3 (9%) 3 (3%)

1[1 - 1.5] Not at all;]1.5 - 2.5] Not so good;]2.5 - 3.5] Neutral;]3.5 - 4.5] Good;]4.5 - 5] Very good.

76

Table C.10: Detailed results to What is keeping you from adopting ROS 2? (according to developers’

expertise)

Beginner
Limited

Experience

Experient

user

Proficient

developer
Expert

Waiting for the End of life of ROS 1 Noetic 1 (25%) 3 (16%) 2 (12%) 2 (11%) 1 (14%)

Not urgent 1 (25%) 8 (42%) 12 (71%) 9 (47%) 4 (57%)

Lack of ROS 1 packages migrated to ROS 2 1 (25%) 9 (47%) 8 (47%) 12 (63%) 4 (57%)

I don’t think ROS 2 is in a "ready" state 1 (25%) 4 (21%) 4 (24%) 5 (26%) 5 (71%)

Conformism 1 (25%) 1 (5%) 2 (12%) 3 (16%) 0%

Dependency on ROS 1 packages 1 (25%) 12 (63%) 10 (59%) 11 (58%) 4 (57%)

Table C.12: How do you feel about ROS 2 Doc-

umentation and Tutorials?

Mean score2 (Rating)

Helpful 3.38 (Neutral)

Informative 3.35 (Neutral)

Easy to understand 3.16 (Neutral)

Not Confusing 2.89 (Neutral)

Well organized 2.88 (Neutral)

Detailed 2.83 (Neutral)

Broad 2.30 (Not so good)

Table C.13: How do you compare ROS 1 with

ROS 2, in terms of its . . .

Mean score (Rating)

Capabilities for pro-

duction use

3.98 (ROS 2 is better)

Features 3.40 (ROS 2 is better)

Ease of development 2.69 (ROS 1 is better)

Documentation 2.59 (ROS 1 is better)

Learning curve 2.51 (ROS 1 is better)

Tutorials 2.37 (ROS 1 is better)

2[1 - 1.5] Not at all;]1.5 - 2.5] Not so good;]2.5 - 3.5] Neutral;]3.5 - 4.5] Good;]4.5 - 5] Very good.

77

Table C.14: Detailed results for the question: How essential/important/compelling/useful do you find

these ROS 2 features? (Mean scores 1-Not at all 5-Very much

Important Compelling Useful Essential

DDS 3.71 3.61 3.70 3.44

DDS Security 3.76 3.59 3.68 3.51

Quality of Service Policies 3.82 3.80 3.97 3.63

Absence of ROS master 3.88 4.06 3.99 3.62

Python launch files 3.34 3.77 3.99 3.07

Lifecycle Nodes 3.47 3.60 3.62 3.39

ROS 2 support for real-time systems 4.07 4.11 4.14 3.94

Embedded systems 3.77 3.96 4.01 3.66

ROS 2 on Windows 2.64 2.78 3.03 2.49

ROS 2 on macOS 2.48 2.66 2.92 2.40

ROS 1 bags in a ROS 2 environment 4.02 4.06 4.36 3.88

ROS 1 and ROS 2 nodes running simultaneously 3.78 3.88 4.06 3.65

Table C.15: Detailed to the question: How relevant are the these new ROS 2 features to Multi-Robot

Systems? (Mean scores 1-Not at all 5-Very much)

Relevancy

DDS 3.97

DDS Security. 3.55

QoS Policies. 4.00

Abscence of ROS Master 4.27

Python Launch files. 2.91

Lifecycle Nodes. 3.43

Real-Time systems. 3.43

Embedded Systems. 3.36

ROS 2 on Windows. 2.16

ROS 2 on macOS. 2.08

Common core library (rcl). 3.48

ROS 1 bags in ROS 2. 3.67

ROS 1 and ROS 2 nodes running simultaneously. 3.89

78

Appendix D

Difference files from the migration to ROS

2

In this appendix, we present difference files for package metadata files (CMakeLists.txt and

package.xml) that were migrated from ROS 1 to ROS 2. Red colored lines represent code

that was part of the ROS 1 version that is no longer used in the ROS 2 version. Green

colored lines, contrarily, represent code that was added in the ROS 2 version. Lastly, black

lines represent code that was left unchanged.

Listing D.1: CMakeLists.txt difference file

1 - cmake_minimum_required(VERSION 2.8.3)

2 - project(patrolling_sim)

3 + cmake_minimum_required(VERSION 3.5)

4 + project(patrolling_sim_ros2)

5 ---

6 - find_package(catkin REQUIRED COMPONENTS

7 - actionlib

8 - move_base_msgs

9 - nav_msgs

10 - roscpp

11 - roslib

12 - tf

13 - message_generation

14 -)

15 + find_package(ament_cmake REQUIRED)

16 + find_package(rclcpp REQUIRED)

17 + find_package(rclcpp_action REQUIRED)

18 + find_package(nav2_msgs REQUIRED)

79

19 + find_package(nav_msgs REQUIRED)

20 + find_package(tf2 REQUIRED)

21 + find_package(tf2_geometry_msgs REQUIRED)

22 + find_package(tf2_ros REQUIRED)

23 + find_package(ament_index_cpp REQUIRED)

24 + find_package(std_msgs REQUIRED)

25 + find_package(rosidl_default_generators REQUIRED)

26 ---

27 - include_directories(

28 - src

29 - ${catkin_INCLUDE_DIRS}

30 -)

31 + include_directories(src)

32

33 add_library(PatrolAgent

34 src/PatrolAgent.cpp

35 src/getgraph.cpp

36 src/algorithms.cpp

37 src/config.cpp)

38

39 add_library(SSIPatrolAgent

40 src/SSIPatrolAgent.cpp)

41

42 + ament_target_dependencies(PatrolAgent "rclcpp" "ament_index_cpp"

43 + "nav2_msgs" "rclcpp_action" "tf2_ros" "nav_msgs"

44 + "tf2_geometry_msgs" "tf2" "patrolling_sim_msgs ")

45 + ament_target_dependencies(SSIPatrolAgent "rclcpp" "nav2_msgs"

46 + "patrolling_sim_msgs ")

47 ---

48 add_executable(Conscientious_Reactive

49 src/Conscientious_Reactive.cpp)

50 - target_link_libraries(Conscientious_Reactive

51 - PatrolAgent ${catkin_LIBRARIES })

52 + ament_target_dependencies(Conscientious_Reactive rclcpp

53 + rclcpp_action nav2_msgs tf2_ros nav_msgs)

54 + target_link_libraries(Conscientious_Reactive PatrolAgent)

55

56 add_executable(Heuristic_Conscientious_Reactive

80

57 src/Heuristic_Conscientious_Reactive.cpp)

58 - target_link_libraries(Heuristic_Conscientious_Reactive

59 - PatrolAgent ${catkin_LIBRARIES })

60 + ament_target_dependencies(Heuristic_Conscientious_Reactive rclcpp

61 + rclcpp_action nav2_msgs tf2_ros nav_msgs)

62 + target_link_libraries(Heuristic_Conscientious_Reactive PatrolAgent)

63

64 add_executable(Conscientious_Cognitive

65 src/Conscientious_Cognitive.cpp)

66 - target_link_libraries(Conscientious_Cognitive

67 - PatrolAgent ${catkin_LIBRARIES })

68 + ament_target_dependencies(Conscientious_Cognitive rclcpp

69 + rclcpp_action nav2_msgs tf2_ros nav_msgs)

70 + target_link_libraries(Conscientious_Cognitive PatrolAgent)

71

72 add_executable(Cyclic

73 src/Cyclic.cpp)

74 - target_link_libraries(Cyclic

75 - PatrolAgent ${catkin_LIBRARIES })

76 + ament_target_dependencies(Cyclic rclcpp

77 + rclcpp_action nav2_msgs tf2_ros nav_msgs)

78 + target_link_libraries(Cyclic PatrolAgent)

79

80 add_executable(MSP

81 src/MSP.cpp)

82 - target_link_libraries(MSP

83 - PatrolAgent ${catkin_LIBRARIES })

84 + ament_target_dependencies(MSP rclcpp

85 + rclcpp_action nav2_msgs tf2_ros nav_msgs)

86 + target_link_libraries(MSP PatrolAgent)

87

88 add_executable(GBS

89 src/GBS.cpp)

90 - target_link_libraries(GBS

91 - PatrolAgent ${catkin_LIBRARIES })

92 + ament_target_dependencies(GBS rclcpp

93 + rclcpp_action nav2_msgs tf2_ros nav_msgs)

94 + target_link_libraries(GBS PatrolAgent)

81

95

96 add_executable(SEBS

97 src/SEBS.cpp)

98 - target_link_libraries(SEBS

99 - PatrolAgent ${catkin_LIBRARIES })

100 + ament_target_dependencies(SEBS rclcpp

101 + rclcpp_action nav2_msgs tf2_ros nav_msgs)

102 + target_link_libraries(SEBS PatrolAgent)

103

104 add_executable(CBLS

105 src/CBLS.cpp)

106 - target_link_libraries(CBLS

107 - PatrolAgent ${catkin_LIBRARIES })

108 + ament_target_dependencies(CBLS rclcpp

109 + rclcpp_action nav2_msgs tf2_ros nav_msgs)

110 + target_link_libraries(CBLS PatrolAgent)

111

112 add_executable(DTAGreedy

113 src/DTAGreedy.cpp)

114 - target_link_libraries(DTAGreedy

115 - PatrolAgent ${catkin_LIBRARIES })

116 + ament_target_dependencies(DTAGreedy rclcpp

117 + rclcpp_action nav2_msgs tf2_ros nav_msgs)

118 + target_link_libraries(DTAGreedy PatrolAgent)

119

120 add_executable(DTASSI

121 src/DTASSI.cpp)

122 - target_link_libraries(DTASSI

123 - SSIPatrolAgent ${catkin_LIBRARIES })

124 + ament_target_dependencies(DTASSI rclcpp

125 + rclcpp_action nav2_msgs tf2_ros nav_msgs)

126 + target_link_libraries(DTASSI PatrolAgent SSIPatrolAgent)

127

128 add_executable(DTASSIPart

129 src/DTASSIPart.cpp)

130 - target_link_libraries(DTASSIPart

131 - SSIPatrolAgent ${catkin_LIBRARIES })

132 + ament_target_dependencies(DTASSIPart rclcpp

82

133 + rclcpp_action nav2_msgs tf2_ros nav_msgs)

134 + target_link_libraries(DTASSIPart PatrolAgent SSIPatrolAgent)

135 ---

136 - catkin_package(

137 - INCLUDE_DIRS src

138 - LIBRARIES PatrolAgent SSIPatrolAgent

139 -)

140 + ament_export_dependencies(ament_cmake)

141 + ament_export_dependencies(rclcpp)

142 + ament_export_dependencies(rosidl_default_runtime)

143 + ament_export_dependencies(nav_msgs)

144 + ament_export_dependencies(rclcpp_action)

145 + ament_export_dependencies(nav2_msgs)

146 + ament_export_dependencies(tf2)

147 + ament_export_dependencies(tf2_ros)

148 + ament_export_dependencies(tf2_geometry_msgs)

149 + ament_export_dependencies(std_msgs)

150

151 + install(DIRECTORY launch DESTINATION share/${PROJECT_NAME })

152 + install(TARGETS monitor Conscientious_Reactive

153 + Heuristic_Conscientious_Reactive Conscientious_Cognitive

154 + Cyclic MSP GBS SEBS CBLS Random DTAGreedy DTASSI

155 + DTASSIPart GoToStartPos DESTINATION lib/${PROJECT_NAME })

156 + install(DIRECTORY params DESTINATION share/${PROJECT_NAME })

157 + install(DIRECTORY maps DESTINATION share/${PROJECT_NAME })

158 + install(DIRECTORY rviz DESTINATION share/${PROJECT_NAME })

159 + install(DIRECTORY worlds DESTINATION share/${PROJECT_NAME })

160 + install(DIRECTORY description DESTINATION share/${PROJECT_NAME })

161 + install(DIRECTORY MSP DESTINATION share/${PROJECT_NAME })

162

163 + ament_package ()

Listing D.2: package.xml difference file

1 - <?xml version ="1.0"? >

2 - <package >

3 - <name >patrolling_sim </name >

4 - <version >2.2.4 </ version >

5 - <description >Multi -Robot Patrolling Stage/ROS

83

6 - Simulation Package.</description >

7 + <package format ="3">

8 + <name >patrolling_sim_ros2 </name >

9 + <version >2.2.4 </ version >

10 + <description >Multi -Robot Patrolling Stage/ROS2 Simulation

11 + Package.</description >

12 <license >BSD </license >

13 - <buildtool_depend >catkin </ buildtool_depend >

14 + <buildtool_depend >ament_cmake </ buildtool_depend >

15

16 - <build_depend >actionlib </ build_depend >

17 - <build_depend >move_base_msgs </ build_depend >

18 - <build_depend >nav_msgs </ build_depend >

19 - <build_depend >roscpp </ build_depend >

20 - <build_depend >tf </ build_depend >

21 - <build_depend >stage_ros </ build_depend >

22 - <build_depend >roslib </ build_depend >

23 - <build_depend >message_generation </ build_depend >

24 + <build_depend >rclcpp_action </ build_depend >

25 + <build_depend >nav2_msgs </ build_depend >

26 + <build_depend >nav_msgs </ build_depend >

27 + <build_depend >rclcpp </ build_depend >

28 + <build_depend >tf2 </ build_depend >

29 + <build_depend >tf2_geometry_msgs </ build_depend >

30 + <build_depend >tf2_ros </ build_depend >

31 + <build_depend >stage_ros </ build_depend >

32

33 - <run_depend >actionlib </run_depend >

34 - <run_depend >move_base_msgs </run_depend >

35 - <run_depend >nav_msgs </ run_depend >

36 - <run_depend >roscpp </run_depend >

37 - <run_depend >tf </run_depend >

38 - <run_depend >stage_ros </run_depend >

39 - <run_depend >roslib </run_depend >

40 - <run_depend >message_runtime </run_depend >

41 + <exec_depend >rclcpp_action </ exec_depend >

42 + <exec_depend >nav2_msgs </ exec_depend >

43 + <exec_depend >nav_msgs </ exec_depend >

84

44 + <exec_depend >rclcpp </ exec_depend >

45 + <exec_depend >tf2 </ exec_depend >

46 + <exec_depend >tf2_geometry_msgs </ exec_depend >

47 + <exec_depend >tf2_ros </ exec_depend >

48 + <exec_depend >stage_ros </ exec_depend >

49

50 <export >

51 + <build_type >ament_cmake </build_type >

52 </export >

53 </package >

Bellow we present an example of a ROS 1 launch file written in XML, and its equivalent

in ROS 2 written with the Python launch API.

Listing D.1: ROS 1 XML launch file to launch the Stage simulator with a custom map.

1 <?xml version="1.0" encoding="UTF-8" ?>
2 <launch>
3 <arg name="map" default="grid" />
4 <node name="stageros" pkg="stage_ros" type="stageros" args="$(find

patrolling_sim)/maps/$(arg map)/$(arg map).world" output="screen" />↪→

5 </launch>

85

Listing D.2: ROS 2 Python launch file to launch the Stage simulator with a custom map.

1 import os
2 from launch_ros.actions import Node
3 from launch.actions import DeclareLaunchArgument, OpaqueFunction
4 from launch.substitutions import LaunchConfiguration
5 from launch import LaunchDescription
6 from ament_index_python.packages import get_package_share_directory
7

8 def launch_setup(context, *args, **kwargs):
9 package_path = get_package_share_directory('patrolling_sim_ros2')

10 map_name = LaunchConfiguration('map').perform(context)
11

12 stage_node = Node(package='stage_ros',
13 executable='stageros',
14 arguments =

[os.path.join(package_path,'maps',map_name,map_name+'.world')],↪→

15)
16

17 return [
18 stage_node,
19]
20

21 def generate_launch_description():
22 return LaunchDescription([
23 DeclareLaunchArgument('map',default_value="grid"),
24 OpaqueFunction(function=launch_setup)
25])
26

27 generate_launch_description()

86

Appendix E

Detailed results for Chapter 5

Table E.1: Detailed results for the ROS 1 Eth-

ernet latency experiment.

Nr.

robots

Latency (ms)

Min X̃ X ± σ Max

2 0.05 0.11 0.13±0.06 0.30

4 0.05 0.72 0.99±0.87 3.60

6 0.04 0.42 1.09±1.26 4.27

8 0.03 0.36 0.82±0.99 4.01

10 0.03 0.65 1.10±1.15 5.09

Table E.2: Detailed results for the ROS 2 Eth-

ernet experiment.

Nr.

robots

Latency (ms)

Min X̃ X ± σ Max

2 0.11 0.19 0.19±0.03 0.29

4 0.04 0.10 0.12±0.05 0.31

6 0.04 0.07 0.08±0.04 0.22

8 0.03 0.06 0.08±0.05 0.31

10 0.04 0.12 0.13±0.10 0.57

Table E.3: Detailed results for the ROS 1 WiFi

experiment.

Nr.

robots

Latency (ms)

Min X̃ X ± σ Max

2 2.11 2.89 2.92±0.31 3.76

4 4.62 5.87 5.83±0.55 7.29

6 7.58 9.25 9.30±0.74 11.42

8 10.87 13.35 13.32±0.92 15.72

10 14.77 18.01 18.07±1.36 21.71

Table E.4: Detailed results for the ROS 2 WiFi

experiment.

Nr.

robots

Latency (ms)

Min X̃ X ± σ Max

2 0.81 1.18 1.78±0.96 3.48

4 0.55 1.23 1.45±0.57 3.86

6 0.64 4.50 3.88±2.44 8.42

8 0.64 5.14 4.54±2.46 9.36

10 0.52 4.39 4.33±2.68 11.52

87

Table E.5: Detailed results for the ROS 1 resource usage experiment (CPU).

Nr.

robots

CPU Usage (%)

Min X̃ X ± σ Max

1 3.60 11.35 12.27±4.99 26.50

2 7.70 14.10 15.48±5.25 32.80

4 5.20 15.98 22.97±16.55 98.50

6 9.10 21.10 27.80±15.08 96.00

8 22.30 30.35 35.51±6.61 58.90

10 25.10 36.70 37.71±6.65 61.50

Table E.6: Detailed results for the ROS 2 resource usage experiment (CPU).

Nr.

robots

CPU Usage (%)

Min X̃ X ± σ Max

1 10.80 19.80 22.12±7.42 47.80

2 16.10 23.40 25.60±7.73 57.60

4 22.50 42.25 44.67±14.61 98.00

6 46.00 54.50 55.57±5.19 74.60

8 52.50 61.90 63.79±8.31 100.00

10 60.00 71.25 71.50±5.35 83.40

88

Table E.7: Detailed results for the ROS 1 resource usage experiment (RAM).

Nr.

robots

RAM Usage (%)

Min X̃ X ± σ Max

1 20.60 20.70 20.75±0.16 20.90

2 21.30 21.45 21.45±0.09 21.60

4 22.70 22.90 22.88±0.10 23.00

6 24.00 24.30 24.29±0.12 24.50

8 25.60 25.70 25.77±0.11 25.90

10 27.10 27.25 27.26±0.10 27.40

Table E.8: Detailed results for the ROS 2 resource usage experiment (RAM).

Nr.

robots

RAM Usage (%)

Min X̃ X ± σ Max

1 20.60 20.70 20.70±0.10 20.90

2 21.70 21.80 21.83±0.09 22.00

4 24.90 25.20 25.17±0.13 25.40

6 29.90 30.10 30.13±0.14 30.40

8 35.70 35.90 35.92±0.15 36.20

10 51.30 51.40 51.44±0.13 51.70

89

	Acknowledgements
	Resumo
	Abstract
	List of Acronyms
	List of Figures
	List of Tables
	1 Introduction
	1.1 Main Aim and Contributions
	1.2 Document Outline

	2 Background and Related Work
	2.1 Publish-Subscribe Design Pattern
	2.2 The Client-Server Model
	2.3 Robot Operating System
	2.3.1 ROS Computation Graph
	2.3.2 ROS File system

	2.4 Support for Multi-Robot Systems in ROS 1
	2.5 Robot Operating System 2
	2.5.1 Technical differences between ROS 1 and ROS 2

	2.6 Support for Multi-Robot Systems in ROS 2
	2.7 ROS 2 performance studies
	2.8 Summary

	3 ROS 2.0 Adoption User Study
	3.1 User Study results
	3.1.1 User Profile Characterization
	3.1.2 Robotics Middleware and ROS 1 strong/weak points
	3.1.3 ROS 2 Awareness
	3.1.4 ROS 2 Adoption
	3.1.5 Migration from ROS 1 to ROS 2
	3.1.6 ROS 2 features
	3.1.7 Support for Multi-Robot Systems in ROS 2

	3.2 Summary

	4 Migrating from ROS 1 to ROS 2
	4.1 Migrating the code base
	4.1.1 Package metadata files
	4.1.2 Conversion of launch files from XML to Python
	4.1.3 Conversion of source code files from roscpp to rclcpp

	4.2 Final remarks
	4.3 Summary

	5 Comparing performance of ROS 1 against ROS 2
	5.1 Experimental Design
	5.2 Results and Discussion
	5.3 Summary

	6 Conclusion
	6.1 Future work

	A ROS 2 Quality of Service Policies
	B Adoption User Study Questions
	B.1 User Profile Characterisation
	B.2 Robotics middleware and ROS 1 strong/weak points
	B.3 ROS 2 Awareness
	B.4 ROS 2 Adoption
	B.5 ROS 1 to ROS 2 migration
	B.6 ROS 2 features
	B.7 ROS 1/2 and Multi-Robot Systems
	B.8 Screening question

	C Adoption User Study Detailed Results
	D Difference files from the migration to ROS 2
	E Detailed results for Chapter 5

