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Abstract

The digitalization of healthcare has the potential to alleviate the burden on na-
tional health systems due to the aging challenge. However, users may abandon
a technological application or solution at any time due to a multitude of reasons,
which could reduce the effectiveness of the intervention, and even increase the
health problem or disease-associated risks. Therefore, it is of the utmost impor-
tance to identify users with higher risks of getting disengaged from a solution,
even predicting when the disengagement could happen. This creates the oppor-
tunity of applying tailored personalized intervention strategies aiming at recov-
ering from low adherence and prevention of dropout. In addition, this prediction
could also reveal insight into which factors are causing attrition to adherence,
which could allow for the implementation of more global strategies.

The main goal of this study is to research the factors, barriers and needs of ag-
ing users of healthcare technologies that may contribute to the early detection
of lack of motivation and consequent disengagement. In particular, the goal is
to research and develop models that 1) can detect early dropout patterns and 2)
provide an explanation of this lack of engagement that allows the introduction of
tailored interventions.

The study was supported by the ACTIVAGE Madrid Deployment Site database
currently available in the Universidad Politécnica de Madrid (UPM), which in-
cludes the data of about 800 participants in a pilot project on the use of technology
to promote healthy and active aging.

To achieve the proposed goal, a data science approach is used and three main
models were created: a Regression Model for the prediction of an adherence per-
centage and two Binary Classification Models for the prediction of an adherence
level (low or high), the second of which filtered for only when the period preced-
ing the prediction had a high adherence level.

The final classifier achieved a F1-score of 0.81126 using a Random Forest Classi-
fier and allowed for the inference of the most relevant features for the decrease of
adherence, using SHAP values.

Keywords

Adherence, eHealth, Aging, Data Science, Prediction, Classifiers, Machine Learn-
ing, Interpretability, Shapley

ix





Resumo

A digitalização dos cuidados de saúde tem o potencial de aliviar a carga sobre
sistemas nacionais de saúde causado pelo envelhecimento da população. No en-
tanto, os utilizadores podem abandonar uma aplicação ou solução tecnológica
a qualquer momento por uma variado número de razões, o que pode reduzir a
eficácia da intervenção e até mesmo aumentar o problema de saúde ou os riscos
associados à doença. Neste sentido, é de extrema importância identificar os uti-
lizadores com maiores riscos de deixarem de utilizar uma solução, e até mesmo
prever quando a quebra da adesão poderá acontecer. Esta previsão gera a opor-
tunidade de aplicar estratégias de intervenção personalizadas com o objetivo de
recuperação da baixa adesão e prevenção do abandono da solução. Além disso, a
previsão poderá ainda revelar insights sobre quais fatores que estão a criar atrito
à adesão, o que pode permitir a implementação de estratégias mais globais.

O objetivo principal deste trabalho é pesquisar os fatores, barreiras e necessidades
dos usuários de tecnologias de saúde que possam contribuir para a detecção pre-
coce da falta de motivação e consequente abandono. Em particular, o objetivo é
pesquisar e desenvolver modelos que 1) possam detectar padrões de abandono
precoce e 2) fornecer uma explicação para essa falta de motivação para uso da
solução que permita a introdução de intervenções personalizadas.

Este estudo foi apoiado pela base de dados ACTIVAGE Madrid Deployment Site
atualmente disponível na Universidad Politécnica de Madrid (UPM), que inclui
os dados de cerca de 800 participantes num projeto piloto sobre o uso da tecnolo-
gia para promover o envelhecimento saudável e ativo.

Para atingir o objetivo proposto, é utilizada uma abordagem de ciência de dados e
foram criados três modelos principais: um Modelo de Regressão para a previsão
de uma percentagem de adesão e dois Modelos de Classificação Binária para a
previsão de um nível de adesão (baixo ou alto), o segundo dos quais filtrado para
apenas quando o período anterior à previsão teve um nível de adesão alto.

O classificador final obteve um F1-score de 0,81126 usando um Random For-
est Classifier e permitiu a inferência das características mais relevantes para a
diminuição da adesão, usando valores SHAP.

Palavras-Chave

Adesão, eHealth, Envelhecimento, Ciência de Dados, Previsão, Classificadores,
Inteligência Artificial, Interpretabilidade, Shapley
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Chapter 1

Introduction

1.1 Context and Motivations

The digitalization of healthcare has the potential to alleviate the burden on na-
tional health systems due to the aging challenge. According to the World Health
Organization (WHO), more than a quarter of the world’s countries have a critical
healthcare workforce shortage [Hoque and Sorwar, 2017].

[Parra et al., 2014]

However, users may abandon a technological application or solution at any time
due to a multitude of reasons, which could reduce the effectiveness of the inter-
vention, and even increase the health problem or disease-associated risks. There-
fore, it is of the utmost importance to identify users with higher risks of getting
disengaged from a solution, even predicting when the disengagement could hap-
pen. This creates the opportunity of applying tailored personalized intervention
strategies aiming at recovering from low adherence and prevention of dropout. In
addition, this prediction could also reveal insight into which factors are causing
attrition to adherence, which could allow for the implementation of more global
strategies.

In this line, the main goal of this master thesis is to research the factors, barriers
and needs of aging users of healthcare technologies that may contribute to the
early detection of lack of motivation and consequent disengagement. In partic-
ular, the goal is to research and develop models that 1) can detect early dropout
patterns and 2) provide a profile-based explanation of this lack of engagement
that allows the introduction of tailored interventions.

The study will be supported by the ACTIVAGE Madrid Deployment Site database
currently available in the Universidad Politécnica de Madrid (UPM), which in-
cludes the data of about 800 participants in a pilot project on the use of technology
to promote healthy and active aging. [Fico et al., 2017]
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1.2 Objectives

The main overarching goals and objectives for this thesis are the following:

• Research and develop a model for detection of the early dropout patterns.

• Support better understanding of the medium and long-term digital health-
care solutions acceptance and providing evidence of the early dropout causes.

• Develop a set of recommendations to apply intervention strategies aiming
at recovering from disengagement.

1.3 Document Structure

The remainder of this document is structured as follows: Chapter 2 provides
some general insight on previous research on the concepts of adherence and
dropout and their use relating to technology, the current work on prediction of
adherence of electronic health (eHealth) solutions as well as an overview of tech-
nical aspects, including the data science pipeline stages and interpretability on
Machine Learning Models. Chapter 3 explains the context of the data acquisi-
tion, describes the dataset and describes the steps of the data science process that
will be followed. Chapter 4 describes the data preparation steps, including data
cleaning and feature engineering and presents the models that were built, along
with the obtained results. Finally, Chapter 5 draws some conclusions from the
project and presents suggestions of future work.

2
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State of the Art

2.1 Adherence and Dropout in Technology

2.1.1 Definitions of Adherence

The term adherence is strongly connected to the pharmaceutical industry (as in
"adherence to medication") but can, nonetheless, be used in a broader sense. Ac-
cording to the World Health Organization’s (WHO) definition, adherence to long-
term therapy can be defined as “the extent to which a person’s behaviour – tak-
ing medication, following a diet, and/or executing lifestyle changes, corresponds
with agreed recommendations from a health care provider” [Sabaté et al., 2003].

When it comes to technology, however, specifically to electronic health (eHealth),
there is not one single agreed upon definition, formula or way of measuring ad-
herence.

Some studies choose to focus on "adherence metrics" and try to correlate them
with the intended outcomes. [Donkin et al., 2011] captured the adherence data
that was used across several studies. The metrics included "reporting the number
of times the participant accessed or logged into the program, completed modules
or activities, visits made to forums, posts made to the forum, and pages viewed
and printed, as well as self-reported completion of activities away from the pro-
gram or offline". However, only half of the studies presented the adherence data
in relation to outcome measures. In [Horsch et al., 2015] some other metrics were
suggested, like "the usage time of the technology and reports by a spouse or re-
lated others". On the other hand, [Evans et al., 2016] simply used "the percentages
of data collected [which] were calculated by comparing the number of minutes,
or days, of that particular type of data divided by the number of minutes, or days,
that participants were involved in the study" to measure adherence.

[Sieverink et al., 2017] looked at several definitions of adherence relating to eHealth
technology in the existing literature. [Christensen et al., 2009] defined adherence
as “the degree to which individuals experience the content of the Internet inter-
vention”, which is missing the concept of "prescribed recommendations" from
the WHO definition. [Donkin et al., 2011] referred to adherence as “the degree to
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which the user followed the program as it was designed”. This definition encom-
passes the concept of intended use. [Sieverink et al., 2017] concluded, therefore,
that "the intended use is thus the minimum use to establish adherence". However,
even using this concept, it can still be a challenge to operationalize the intended
use for individual eHealth technologies.

Finally, and in conclusion, [Sieverink et al., 2017] suggest that the following three
elements are necessary to determine adherence to eHealth technology:

1. the ability to measure the usage behavior of individuals,

2. an operationalization of intended use, and

3. an empirical, theoretical, or rational justification of the intended use.

In terms of adherence operationalizations, they divide the analyzed literature into
three categories:

• Category A: When adherence was operationalized in terms of “the more
usage, the better.” This does not include an operationalization of intended
use, and therefore does not comply with Category B.

• Category B: Assigned when the intended use of a technology was provided
but no justification was attached (eg, “a user is adherent when logging in at
least once a week for three subsequent weeks”).

• Category C: Assigned when not only was the intended use of the technol-
ogy provided, but a justification was given using theory, evidence, or ratio-
nale (eg, “we know from previous research that users benefit the most from
the technology when finishing module 4, so a user is adherent once module
4 is completed”)."

About half of the analyzed operationalizations fall in Category A (under the as-
sumption of “the more use, the better”) and do not include a threshold for the
intended use. In some cases, especially when formulating a hypothesis, it is not
known in advance what the intended use of a technology is, or defining it might
not be a crucial part of the study. It is important to note that, according to the
definitions used, these operationalizations should therefore not be referred to as
adherence.

When the intended use for the technology was reported (Categories B and C),
only a minority of the included studies featured justified Category C operational-
izations. A reason for the lack of justifications for the intended use of eHealth
technologies might be that there is a lack of knowledge regarding the working
mechanisms of technology-based applications [Michie et al., 2017]. Moreover, the
intended use has also been operationalized by linking the (positive) outcomes of
individual users to their usage patterns to find the most effective patterns [Car-
olan et al., 2016], which can only be done a posteriori.

In conclusion, Category C operationalizations of adherence are preferable, but
might not always be possible to achieve. A minimum of Category B should be

4
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used when operationalizing eHealth adherence, taking into account the concept
of intended usage.

2.1.2 Dropout vs Adherence

[Christensen et al., 2009] uses the term "dropout" to "describe an individual who
fails to complete the research trial protocol associated with an Internet interven-
tion, and thus does not complete trial assessments".

If we use the definition of adherence as "the degree to which an individual fol-
lows the intended usage of a program" (adapted from [Donkin et al., 2011] with
the considerations in [Sieverink et al., 2017]), we can conclude that both terms
are interrelated but distinct (and not necessarily opposite) concepts. Individu-
als might have consistently low adherence rates, not reaching the full prescribed
usage, but still complete the protocol.

Dropout is therefore a permanent final state that can be predicted with different
rates of success from different points in time, whereas adherence is an evolving
metric that refers to a specific moment or time frame.

2.1.3 Predictors of Adherence and Dropout

Several studies were analyzed to find common predictors of dropout and low
adherence in technological health interventions. Many of the relevant predicting
features were study-specific (such as reaching a module in a certain time frame).
However, a few general predictors also emerged, such as:

• Longer time to complete earlier steps leads to higher dropout probability.
[Bremer et al., 2020]

• Dropout is usually not abrupt and will be preceded by decreased adherence
over time. [Pedersen et al., 2019]

• Dropout is most common at the beginning of the intervention. For example,
in a program 65% of dropouts occurred within the first 2 weeks. [Coa and
Patrick, 2016]

• In an intervention for depression, lower baseline rates of depression and
younger age were found to be associated with increased adherence. In one
for Post-traumatic stress disorder (PTSD), higher adherence was found in
women, older persons, those who lived with a partner, and those less expe-
rienced with a computer. [Christensen et al., 2009]

As for the models used, [Pedersen et al., 2019] applied logistic regression, de-
cision trees, and random forests, having found that the latter produced better
results. [Ramos et al., 2021] included two models, logistic regression and ran-
dom forests, having also obtained the best results using random forests. [Bremer
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et al., 2020] implemented logistic regression, linear regression, support vector ma-
chines, and boosted decision trees.

2.2 Technical Aspects

2.2.1 Data Processing Pipeline

There are several different tasks to be performed in order to solve a data-centric
problem. These tasks can be organized into stages (such as acquisition, clean-
ing/curation, modeling, and so on). The collection of data science stages can be
referred to as data science pipelines. [Biswas et al., 2022]

Even though following certain processing stages is essential, there is not one
"golden" data science pipeline. Different authors and data scientists use differ-
ent pipelines and might even adapt the pipeline according to the project at hand.
Not only can the stages not be the same, but each stage can also consist of dif-
ferent tasks according to different sources. It is, therefore, important to study the
common ground and variations when it comes to data science pipelines, in order
to create a pipeline suitable for the desired purpose.

According to [Biswas et al., 2022], in literature about the Data Science Process, the
following stages can be found among the various proposals of pipelines:

• Pre-Processing Layer:

– Data Acquisition: Data are collected from the available sources, ei-
ther manually or automatically. It is also in this stage that an effort
must be made in order to understand the context of the problem and
the project objectives and requirements from a business perspective.
This will facilitate the design of a preliminary plan to achieve the ob-
jectives [Chapman et al., 2000]. This step is commonly referred to as
"Business Understanding". Another important step is "Data Under-
standing", which entails exploring the data to become familiar with it
and its nature, as well as verifying its quality.

– Data Preparation: This stage involves further exploration of the data
and the subsequent transformation of the raw format into usable ma-
terial. Some common steps are Cleaning, Filtering, Organizing, and
Formatting.

– Storage: This stage, less often found in literature, encompasses the se-
lection of hardware and software most appropriate to the storage and
accessing of the data. For example, some types of databases might be
more advantageous than others depending on the type of data.

• Model Building Layer:

– Feature Engineering: Because not all features of the dataset will be
relevant (or even beneficial) to the modeling stage, the appropriate
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features must be identified and selected. Furthermore, some features
which can come to be of considerable value might not be present in the
dataset but can be constructed from the raw data, sometimes with the
aid of external data sources.

– Modeling: The next stage, once data is prepared and ready, is the
building of the model (or, most often, models). The model building
stage requires model planning, model selection, mining, and deriving
important properties of data [Biswas et al., 2022]. In order to create
a suitable model, different algorithms and strategies are selected, ac-
cording to the specific problem and domain (classification, clustering,
etc).

– Training: In this stage, each model is trained with a subset of the la-
beled data (the training dataset). In order to improve the outcome,
models and optimized and tuned with different parameters.

– Evaluation: After training each model, a subset of the data which was
previously not used (the validation dataset) is used to determine the
performance of the model when encountering new data. Appropriate
metrics are selected depending on the problem and the balance of the
dataset.

– Prediction: Finally, the best model is selected and used with another
previously unused subset of the data: the test dataset. Final perfor-
mance metrics are calculated.

• Post-Processing Layer:

– Interpretation: Predicting a certain outcome is often not enough. Rather,
it is frequently vital to explain why such a prediction was made and
to translate it into knowledge that can be transformed into actionable
guidance. In many cases, visualizations can be helpful in the decision-
making process.

– Communication: Because the data science process has a clear objec-
tive and does not exist in a vacuum, the following stage is naturally to
share the acquired knowledge and information with the appropriate
stakeholders or even with the scientific community.

– Deployment: Lastly, the solution is deployed and the new knowledge
is put into practice. If new data is acquired, the performance of the
model is monitored and the model might even be altered using this
data to adapt to new circumstances.

As previously mentioned, these stages (and their names) vary according to the
source. It is interesting to note that the post-processing stages are less frequently
found, as well as the stage referred to as "Storage". Looking at projects found
in Kaggle (a platform where data scientists and students can publish and explore
data sets, build models and participate in competitions), rather than to the litera-
ture, [Biswas et al., 2022] found the same lack of post-processing stages.

Finally, it is important to bear in mind that the data science pipeline is not lin-
ear. Rather, most stages have feedback loops to different parts of the pipeline.
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Furthermore, stages do not have firm boundaries and it is possible to jump to
another stage at several points in order to refine the project.

Certain tasks, such as hyperparameter choice and feature selection, naturally re-
quire the jump between multiple stages. Some of the most common feedback
loops are evaluation to preparation, evaluation to modeling, and prediction to
modeling. Feedback loops within the same layer are more common than feed-
back loops from one layer to another.

While these loops and jumps make the process rather complex, they are also cru-
cial for the success of the process.

2.2.2 Explainable AI

More than simply being able to predict if and when dropout and low adher-
ence occur, being able to understand the factors behind a prediction is of enor-
mous value. Knowing the most probable causes for disengagement allows for
the implementation of tailored interventions, more suited to each specific situ-
ation. Thus, being able to interpret and explain the reasons behind a model’s
prediction becomes crucial in this context.

Machine learning is a branch of Artificial Intelligence (AI) and computer science
that uses methods and algorithms to make predictions based on data. In a way, it
tries to imitate the way that humans learn when exposed to new information.

As machine learning and AI become more widely utilized and decisions that were
previously made by humans are now made by machines, it becomes necessary for
these mechanisms to explain themselves [Gilpin et al., 2018].

Interpretability can be defined as "the degree to which a human can understand
the cause of a decision" [Miller, 2019] or "the degree to which a human can con-
sistently predict the model’s result" [Kim et al., 2016]. Therefore, "interpretable
machine learning" is a term that signifies the “extraction of relevant knowledge
from a machine-learning model concerning relationships either contained in data
or learned by the model” [Murdoch et al., 2019].

Methods for machine learning interpretability can be classified as intrinsic or post
hoc [Molnar, 2019].

Intrinsic methods achieve interpretability by restricting the complexity of the
machine learning model. They refer to models that are considered interpretable
due to their simple structure, such as short decision trees. The simplest way to
achieve interpretability is therefore to restrict the chosen algorithms to only those
that create interpretable models. These include:

• Linear Regression

• Logistic Regression

• Decision Tree

8



State of the Art

• Decision Rules

• RuleFit

• Naive Bayes Classifier

• K-Nearest Neighbors

Post hoc interpretability refers to the application of interpretation methods after
model training. These methods can also be applied to intrinsically interpretable
models. Model-agnostic interpretation methods (in contrast with model-specific
ones) are those that can be applied to any model. This flexibility makes them
easier to work with when testing several different models and comparing them
in terms of interpretability. Model-agnostic methods can be either global or local.

Global methods describe the average behavior of a machine learning model and
are often expressed as expected values based on the distribution of the data.
These methods are particularly useful, for instance, when the modeler wants
to understand the general mechanisms in the data. They can be used to make
general decisions and interventions based on the data as a whole. Some model-
agnostic global interpretation techniques are:

• The partial dependence plot (a feature effect method)

• Accumulated local effect plots (another feature effect method that works
when features are dependent)

• Feature interaction (H-statistic) (quantifies to what extent the prediction is
the result of joint effects of the features)

• Functional decomposition (a technique that decomposes the complex pre-
diction function into smaller parts)

• Permutation feature importance (which measures the importance of a fea-
ture as an increase in loss when the feature is permuted)

• Global surrogate models (replaces the original model with a simpler model
for interpretation)

• Prototypes and criticisms (representative data point of a distribution that
can be used to enhance interpretability)

Local model-agnostic methods explain individual predictions. They can be used
to make specific decisions and interventions based on a specific data point. Some
model-agnostic local explanation methods are:

• Individual conditional expectation curves (the starting point for partial de-
pendence plots, describe how changing a feature changes the prediction)

• Local surrogate models (LIME) (explain a prediction by replacing the com-
plex model with a locally interpretable surrogate model)
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• Scoped rules (anchors) (generate rules that describe which feature values
anchor a prediction, i.e. lock the prediction)

• Counterfactual explanations (describe the smallest change to a feature value
that changes the prediction to a predefined output)

• Shapley values (are a method from coalitional game theory that fairly as-
signs the prediction to individual features by calculating the average marginal
contribution of a feature value across all possible coalitions)

• SHAP (another computation method for Shapley values that also proposes
global interpretation methods based on combinations of Shapley values
across the data)
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Methodology

This chapter describes the steps taken in order to build the machine learning
models. There were three different approaches, in accordance with the project
goals:

1. Regression: Predicting the adherence percentage of a user in a period with
the information of the preceding window of similar length.

2. Binary Classification: Predicting the adherence level of a user in a period
(high vs low), looking at a preceding period of similar length.

3. Filtered Classification: Similar to the previous approach but only when
there is significant usage in the preceding period.

3.1 Dataset

3.1.1 Context

ACTIVAGE is a Large Scale Pilot project funded by the European Commission,
which aims to demonstrate that Internet of Things (IoT) is essential in the use of
Smart Living solutions that have a positive effect on Active and Healthy Ageing
(AHA). This pilot was executed in several different cities across Europe, known
as Deployment Sites (DS). One of them was the Madrid DS.

The Madrid DS had three main objectives: 1) to prevent the decrease in cognitive
performance using brain training exercises and reminders, 2) to prevent falls by
using physical training and exercises, and 3) to prevent social isolation by encour-
aging users to establish and maintain social interactions. [Fico et al., 2017]

In order to fulfill these objectives, participants were divided into four Use Cases
(UC), according to their profiles and needs:

• UC 3 - Proactive users
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• UC 5 - Fragile users

• UC 6 - Active users

• UC 7 - Isolated users

All participants were given access to the same mobile applications and, if nec-
essary, were provided with devices on which to access these apps. However,
participants from different UC were given different tasks regarding which apps
to use and how often they should interact with them, in order to address specific
problems of their aging profile (cognitive, physical, socialization, or depressive).

The data consists of the logs from the usage of these apps, as well as the partici-
pants’ answers to several questionnaires and socio-demographic information.

Figure 3.1: App Home

3.1.2 Sociodemographic Information and Questionnaires

Sociodemographic Information Contains information on the sociodemographic
characteristics of each participant, as well as basic information about the inter-
vention they are receiving. This information gives a snapshot of the user at the
moment of enrollment. Contains fields such as "Gender", "Year of birth", "Educa-
tional level", "Technology Level", and "Living Environment", among others.

UT-AUT Questionnaire The Unified Theory of Acceptance and Use of Technol-
ogy (UT-AUT) is a technology acceptance model proposed by [Venkatesh et al.,
2003]. The questionnaire aims to evaluate four constructs that play a significant
role as determinants of user acceptance and usage behavior: performance ex-
pectancy, effort expectancy, social influence, and facilitating conditions.

EQ-5D-3L Questionnaire The EQ-5D-3L is a standard questionnaire for Quality
of Life self-assessment provided by euroqol.org. The EQ-5D-3L descriptive sys-
tem comprises the following five dimensions: mobility, self-care, usual activities,
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pain/discomfort, and anxiety/depression. Each dimension has 3 levels: no prob-
lems, some problems, and extreme problems. The patient is asked to indicate
his/her health state by ticking the box next to the most appropriate statement in
each of the five dimensions.

UCLA Loneliness Scale Questionnaire Developed by psychologist Daniel Rus-
sell (1996), the UCLA Loneliness Scale (Version 3) is a 20-item measure that as-
sesses how often a person feels disconnected from others. Each possible answer
ranges between 1 and 4, from "I never feel this way" to "I often feel this way".

Self Perception Questionnaire (SPQ) The Self Perception Questionnaire eval-
uates the overall self-perception of the participants on four instruments: qual-
ity of life, physical activity, social life and the provided IoT solution. Each an-
swer ranges from 0 (Extreme problems/very negative) to 10 (Very good/no prob-
lems/very positive).

3.1.3 App Usage Data

Brain Games Brain games is an app composed of a set of different cognitive
games oriented to train specific cognitive abilities (i.e memory, calculation, per-
ception, reasoning, etc). The table contains an entry for every time a user at-
tempted to solve a game, including a timestamp, the difficulty of the level, dura-
tion, if the game was completed and which specific cognitive game was played.

Figure 3.2: Brain Games App

Physical Activity Similar game data as the Brain Games, but for the physical
activity app, with balance and coordination exercises results.

Finger Tapping A subset of the physical activity games, tests coordination, rhythm
and reaction time. Has specific fields, such as the number of taps, number of er-
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rors, and the minimum, maximum, mean and standard deviation for the reaction
time.

Figure 3.3: Physical Activity and Finger Tapping Apps

Mindfulness Contains the results from logged sessions of the mindfulness app,
with a timestamp, duration and whether the session was completed.

Figure 3.4: Mindfulness and Diviértete Apps

Digital Phenotyping This table contains all the logged information of actions
taken by the user of the different apps from the Madrid DS. It includes all the
pressed buttons and actions performed during the interaction with the app menus.
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3.2 Pre-Processing

3.2.1 Data Acquisition & Data Preparation

The first step in the data processing pipeline is the transformation of the raw data
from different sources into a unified dataset. In the case of data of user activity
in an intervention (such as is the case) it might be necessary to aggregate obser-
vations, specifying the time window or interval for which points are aggregated.
[Bremer et al., 2020]

In addition, it is necessary to handle missing data. This can be done in several
different ways, such as:

• Ignoring and Discarding Data - either complete case analysis or discarding
instances and/or attributes. Both should only be applied when the missing
data is classified as Missing Completely At Random.

• Parameter Estimation - using maximum likelihood procedures to estimate
the parameters of a model defined for the complete data.

• Imputation - filling in the missing values with estimated ones.

Imputation can be made through various methods, like replacing the missing
data for a given attribute by the mean or mode of all known values of that at-
tribute, or by developing statistical models that can predict the missing values
based on other features. [Batista and Monard, 2003]

In order to clean this dataset, it was necessary to use two of the previous ap-
proaches: discarding data (both records and variables) and imputation.

3.2.2 Exploratory Data Analysis

Exploratory Data Analysis (EDA) refers to the process of performing initial inves-
tigations on data so as to discover patterns, to spot anomalies, to test hypothesis
and to check assumptions with the help of summary statistics and graphical rep-
resentations. [Patil, 2022]

This step, which can occur in conjunction with data preparation, is crucial in
order to make sense of the data.

To explore the data of this project the following methods were used, among oth-
ers: missing data density visualizations, feature correlation analysis, outliers de-
tection using boxplots, and value distributions. The main takeaways from this
stage of data processing can be found in the next chapter.
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3.3 Model Building

3.3.1 Feature Engineering and Selection

Adding new features can very often lead to achieving better predictive perfor-
mance and is a key step in the machine learning process. [Domingos, 2012] This
can be done by two main approaches: handcrafted feature engineering, and au-
tomated or ad-hoc feature engineering.

Handcrafted feature engineering requires deep knowledge about the problem do-
main and can be a challenging (but important) task. Automated feature engineer-
ing is done by automatically generating a large number of candidate features and
selecting the best by evaluating their predictive performance. One example, inter-
action features, can be the product of two other features and can lead to additional
knowledge about their relationships. [Bremer et al., 2020]

Lastly, time window–based aggregation methods can be useful in the context of
digital health interventions. [Bremer et al., 2020] In this case aggregations are per-
formed on the original features for a specified time window (for example using
the sum of the number of levels completed in a day or the average of the number
of errors per level in that day).

A large number of features (which will be described in the next chapter) were
created using a combination of the methods above. A large number required
time window–based aggregation due to the nature of the data.

3.3.2 Target

The target for the models was the adherence level of the window in question.
This measure was generated following the literature from the State of the Art and
taking into account the concept of "intended use". Because users from distinct
UCs were given different instructions, the formula for the adherence level had to
take the users’ UC into consideration.

Therefore, the adherence level was calculated as a percentage of the intended use
as shown below:

• UC 3 - diviertete app once every 2 weeks

• UC 5 - physical activity or finger tapping app 5 times per week = 10 times
over 2 week period

• UC 6 - brain games app 2 times per week = 4 times over 2 week period

• UC 7 - 4 complete mindfulness sessions per week = 8 complete sessions over
2 week period

The adherence percentage was capped at 100%, even if the actual use was supe-
rior than the intended used.
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For percentages below 50% the adherence level was considered "low" and for
percentages of 50% or above the adherence level was considered "high". The ad-
herence percentage was used as the target in the first approach, while the binary
adherence level was used as the target in the 2nd and 3rd approaches.

The adherence percentage was also calculated for the preceding window and
used as a feature.

3.3.3 Modeling

For each of the 3 approaches, several models were built using a variety of algo-
rithms. The chosen algorithms are diversified, which allows us to understand
which are better suited to the problem, while using algorithms with different de-
grees of interpretability.

For the first approach (regression) the following algorithms were chosen:

• Logistic Regression (LR)

• LASSO Regression

• Random Forest Regressor (RF)

• Support Vector Regressor (SVM)

• Decision Tree Regressor

For the second and third approaches (classification) the following algorithms
were chosen:

• K-Neighbors Classifier (KNN)

• Gaussian Naive Bayes (NB)

• Decision Tree

• Random Forest Classifier (RF)

• Support Vector Classifier (SVM)

• Multi-Layer Perceptron (MLP)

3.3.4 Training and Optimization

The models were initially trained using the Scikit-Learn default values provided
for each one, in order to allow for a preliminary comparison. Each model was
also trained using a combination of lengths for the prediction and provided time
windows. Both windows were tested for 1, 2 and 4 weeks, creating a total of 9
combinations of window durations.

17



Chapter 3

Based on the results obtained some models were selected to undergo further tun-
ing and hyperparameterization.

Model Validation

In order to test the generated model’s prediction capabilities data is usually split
into training data and test data. Additionally, an extra split of the training data
and the creation of a validation set can be used to compare different models and
when experimenting with different features or tuning hyperparameters. This is
called holdout validation. Another option for validation is to use cross-validation.
In the most common scenario, k-fold cross-validation, the data is divided into k
equally sized segments or folds. Subsequently, k iterations of training and vali-
dation are performed so that a different fold of the data is held out for validation
in each iteration, while the remaining k—1 folds are used for training the model.
[Refaeilzadeh et al., 2009]

For comparison of the trained models, 5-fold cross-validation was used on the
training split of the dataset.

Scoring Function

The F-score or F-measure was chosen as the scoring function for the classifica-
tion tasks because it is a combination of precision and recall into a single metric
and our generated dataset is unbalanced, as there are many more low adherence
windows than high adherence windows.

For the regression task, the scoring function was the Root Mean Square Error
(RMSE).
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Results and Discussion

4.1 Data Preparation and Exploratory Data Analysis

While looking at the Sociodemographic data, a number of characteristics can be
easily noted. There are 266 participants present in the data set (186 women and 80
men) who were on average born in 1944 (S.D.=7.4) (average 75 years old in 2019),
with the birth year ranging from 1924 (95 years old in 2019) to 1961 (58 years old
in 2019). Further sociodemographic information can be found in the table below:

Table 4.1: Sociodemographic information

Experimental group
Gender (F) 186 (69.9%)
Year of Birth (m±SD) 1943.82±7.42
Educational level
ISCED 0-2 124 (46.6%)
ISCED 3-5 80 (24.9%)
ISCED 6-8 62 (28.5%)
Technological Level
Basic 141 (53.0%)
Intermediate 81 (30.5%)
Advanced 44 (16.5%)
Living Environment (Urban) 232 (87,3%)
Living Conditions (Home) 262 (98,5%)
Living Status (Alone) 91 (34.2%)

An important detail to note is that the distribution of the users among the Use
Cases is not equal, as can be seen in Figure 4.1.

Further exploration reveals several instances of missing data, most of which in
the SPQ questionnaire answers.

A number of outliers can also be found, particularly in the duration of the mind-
fulness and brain games activities, as can be seen in Figures 4.5 and 4.5.
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Figure 4.1: Users by use case

Figure 4.2: Missing values density analysis of the Sociodemo table features

Figure 4.3: Missing values density analysis of the SPQ table features
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Figure 4.4: Missing values density analysis of the SPQ table features only with
instance 1

Figure 4.5: Boxplots and distribution analysis of the Mindfulness table features

Figure 4.6: Boxplots and distribution analysis of the Brain Games table features
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After merging the data from the sociodemographic and questionnaires tables,
more missing data becomes visible. A large number of users did not respond to
the UCLA questionnaire. It is also interesting to note that the biggest correlations
between features occur within features of the same questionnaire.

Figure 4.7: Missing values density analysis of the Users table features

Figure 4.8: Correlation analysis between the Users table features
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Table 4.2: Activities information

brain
games

physical
activity

finger
tapping

mindful-
ness

digital
pheno-
type

Total number
of records

61614 1421 805 1145 135089

Total number
of users

174.000 86.000 94.000 157.000 198.000

Nº of sessions
per user (mean
(SD))

354.103
(563.248)

16.523
(25.753)

8.564
(10.450)

7.293
(7.684)

682.267
(1227.898)

Duration per
session (mean
(SD))

1543.969
(12579.900)

578.878
(671.643)

Figure 4.9: Number of sessions per user for each activity boxplots

Figure 4.10: UCLA sum distribution
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Data Preparation

After some initial data analysis of the 10 tables, several actions were performed.
Firstly the dataset was divided into a train and a test sets, separating by user. All
the basic following steps were repeated across both sets.

The next step was data cleaning. In the first place, the connecting field was
renamed to match across all tables and its content was parsed into lowercase
in order to allow for filtering (sometimes the field was called "uid" and some-
times "record_id" and the capitalization was not uniform). Then, all the dates
were parsed into the same format and some numerical values were parsed from
strings. Some fields that had one single value across all records were removed
(for example, the "Questionnaire" column on the "Sociodemo" and "EQ5D3L" ta-
bles). The "log" field on the "digital phenotyping" table was fixed to correct a text
parsing error that had resulted in foreign characters.

Because the objective of the model will be the prediction of adherence and/or
dropout, all the data that was collected a posteriori was discarded. This included
all the questionnaires that were administered at any point other than the initial
interview (several instances of the "UCLA", "EQ5D3L" and "SPQ" questionnaires
as well as the "UTAUT" questionnaire, which was only administered at the date of
termination). The fields "status" and "date of finalization" from the "Sociodemo"
table were discarded for the same reason.

Missing values were dealt with in several different ways. On the "digital pheno-
typing" and "finger tapping" tables the whole row was removed because missing
values, when present, spanned across all fields. On the "Sociodemo" table, miss-
ing "living status" was replaced with the most common value for the same "living
environment" and "living conditions". Missing answers on the "UCLA Loneliness
Scale Questionnaire" were substituted by the mean answer for each question (cal-
culated on the train set).

Feature Engineering

Using the data from the "digital phenotyping", a new table was created with the
information of the usage of the "diviertete" app (which was prescribed to the UC
3).

In order to create the models capable of predicting the adherence percentage or
level of a user in a 1, 2 or 4 week period with the information of the preceding 1,
2 or 4 week window, an aggregated dataset with several features was generated.
For each user, a period of one year after entering the study was considered. The
following features were calculated:

• days since entering the trial until the start of the window

• days since the beginning of the civil year (to account for time of year)

• working days in the preceding period

• working days in the target period

• number days with sessions on the physical activity app
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• number of days with sessions on the finger tapping app

• number of days with sessions on the brain games app

• number of days with sessions on the mindfulness app

• number of days with sessions on the diviertete app

• total number of days with sessions across all apps

• number of sessions on the physical activity app

• number of sessions on the finger tapping app

• number of sessions on the brain games app

• number of sessions on the mindfulness app

• number of sessions on the diviertete app

• total number of sessions across all apps

• total duration of brain games app sessions

• average duration of brain games app sessions

• total duration of mindfulness app sessions

• average duration of mindfulness app sessions

• number of solved sessions on the physical activity app

• percentage of solved sessions on the physical activity app

• number of solved sessions on the finger tapping app

• percentage of solved sessions on the finger tapping app

• number of solved sessions on the brain games app

• percentage of solved sessions on the brain games app

• number of completed sessions on the mindfulness app

• percentage of completed sessions on the mindfulness app

• total number of completed/solved sessions across all apps

• total percentage of completed/solved sessions across all apps

• average number of fingertapping taps

• average number of fingertapping errors

• other fingertapping measures’ averages

• number of unique physical activity games played
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• number of unique fingertapping games played

• number of unique brain games types played

• number and percentage of easy, medium and hard brain games sessions
played

In addition, the socio-demographic information and questionnaire answers were
also used, including the total score of the UCLA questionnaire answers.

4.2 Approach 1

The first approach was a regression task to predict the adherence percentage of a
user in a period with the information of the preceding window of similar length.
To do this, 3 different windows for each period were used, as described before,
for a total of 9 combinations and the 5 algorithms described in Section 3.3.3 were
trained.

The results (as can be seen in Table C.1 ) appear very promising. However, it is
important to note that, due to the imbalanced nature of the dataset, predicting an
adherence percentage of 0% is a fairly easy task when the preceding period also
has no engagement.

4.3 Approach 2

The second approach was the stepstone in trying to solve the data imbalance
problem and the hope of obtaining some future actionable insights.

This approach was a binary classification task that tried to predict the adherence
level of a user in a period (high vs low), looking at a preceding period of similar
length. Once again, a plethora of algorithms were tested and the results were
very good (see Table C.2). Random Forests reached better scores, even though
all models achieved scores close to 0.9. However, the problem of the previous
approach persists.

4.4 Approach 3

Lastly, the third approach tried to mitigate the imbalance created by permanent
user dropout. This approach is similar to the previous one but the dataset was
filtered to instances where the adherence level was high in the preceding period.
The situations that require prediction for a possible intervention are exactly the
unexpected ones, when the user is engaged with the solution right before dimin-
ishing interaction.
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Figure 4.11: Adherence percentage distribution

Figure 4.12: Adherence percentage distribution after filtering

Once again, the models were trained with the algorithms described previously
and for the 9 combinations of window size. As expected, the score was inferior
to the one from the previous approach.

The four algorithms that provided the best scores were then selected for fine-
tuning using Grid Search of the model’s hyperparameters, again for all window
sizes. These algorithms were a Decision Tree, KNN and Random Forest and MLP.
The results can be found in Tables C.3 to C.7. The parameters selected can be
found in Table B.1.

Finally, two algorithms were selected to undergo Forward Feature Selection (FFS)
with hyperparameter fine-tuning, using the same parameters as before. The se-
lected algorithms were Random Forest (which provided the best results) and De-
cision Tree (due to its intrinsic interpretability, as well as good results).

This time, a fixed 2-week window length was selected both for the preceding
period and the target period. These window lengths were selected for 2 reasons:

1. The best overall result was found with these lengths, using the Random
Forest Classifier.

2. These lengths of time make the most sense to calculate the adherence met-
rics due to the intended use that the users were expected to follow.
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Table 4.3: Approach 3 best results (Average 5-Fold F1-score)

Decision
Tree

Random
Forest

Default Parameters 0.684 0.774
After Hyperparemeter
Grid Search

0.738 0.810

After FFS with Hyper-
paremeter Grid Search

0.793 0.811

Decision Tree

The results after the last step were very satisfactory. In the Decision Tree, the best
model returned an average F1-score of 0.793 (having selected 4 features and using
the following hyperparameters: {’criterion’: ’gini’, ’max depth’: 4} ).

The selected features after FFS were

• The total number of solved or completed activities,

• The total duration of mindfulness sessions,

• Gender, and

• Question 11 of the UCLA questionnaire

The results from this step can be found in Appendix C, along with the generated
Decision Tree.

Even though the Decision tree is an intrinsically interpretable model, we can use
SHAP values to quicky visualize the importance of each feature:

Figure 4.13: Decision Tree SHAP values

Random Forest

In the Random Forest, the best model returned an average F1-score of 0.81126
(having selected 18 features and using the following hyperparameters: {’crite-
rion’: ’entropy’, ’max features’: ’auto’, ’min samples leaf’: 2, ’min samples split’: 2, ’n
estimators’: 25} ).
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The selected features after FFS were

• number of days with brain games sessions,

• EQ5D3L questionnaire Anxiety score,

• percentage of solved physical activity sessions,

• number of solved physical activity sessions,

• living environment,

• living status,

• number of medium difficulty brain games sessions,

• average duration of brain games sessions,

• UCLA questionnaire Question 7,

• UCLA questionnaire Question 9,

• number of working days in target period,

• adherence trend within the preceding window,

• total percentage of solved or completed sessions,

• percentage of completed mindfulness sessions,

• percentage of solved fingertapping sessions,

• number of days with any sessions,

• UCLA questionnaire Question 20,

• average of mean rt in fingertapping sessions.

The results from this step can also be found in Appendix C.

In order to make sense of the results and the importance of each feature, SHAP
values were used and produced the following results:
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Figure 4.14: Random Forest SHAP values
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Figure 4.15: Random Forest SHAP values
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4.5 Discussion: insights and recommendations

The final approach was capable of producing a model with good prediction ca-
pabilities of detecting a drop in user adherence. However, the most interesting
results might be the insights gainned from the analysis of the impact of each fea-
ture on the model output. Specifically, we can infer the following:

• A good predictor of sustaining high adherence is the number of days in
which the user interacted with the solution by completing a session. This
is more relevant than the total number of sessions in the period. Therefore,
the users should be encouraged to complete a smaller number of sessions
consistently throughout the week rather than a larger number of sessions in
a single day.

• Both the total number and the percentage of solved or completed sessions
have a positive impact on high adherence. It is important to understand
why a user is failing to solve the games or complete the sessions because this
will lead to disengagement in the near future. It might be because the games
are too hard or because the user is having difficulty with the technology.

• Similarly, a longer average duration of the brain games activities could lead
to a drop in adherence. The longer duration could signal difficulty solving
the activity as well and an effort should be made to understand the reason
and assist the user.

• UCLA Loneliness questionnaire’s questions 7 ("I am no longer close to any-
one") and 9 ("I am an outgoing person") are also good predictors. Users
with a better supporting system and more outgoing users are more likely to
remain engaged with the solution. Perhaps an extra effort could be made to
remain in more close contact with the users that score higher in the loneli-
ness scale.

• Users with a lower anxiety score in the EQ5D3L questionnaire were more
prone to staying adherent to the study. As with the above case, a more
hands-on approach with more contact and regular check-ins might benefit
these users.
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Conclusion

5.1 Reflection and Future Work

The main obstacles of the first part of the project were the definition of adherence
and the operationalization of this measure, and the understanding of the prob-
lem, its context, and the data, with its features and acquisition process. The pro-
cess of data cleaning was significant and represented a large chunk of the prepa-
ration phase, which will be very useful for the development of further models.

Creating a model that can identify and predict a decrease in adherence rather
than an absolute measure of adherence, while leading to slightly worse results,
can have a more practical effect and contribute to its usability. It would be inter-
esting to implement the recommendations from the insights generated from the
models and to study the results of these interventions in order to better access the
usefulness of this project.

A next step could also be to test the usefulness of building different models for
the different Use Cases (UC), due to how distinct they are in terms of the intended
usage. However, for some of the UCs some more data could be needed in order
to build satisfactory predictors, namely a larger number of in certain UCs.

Finally, in a real-time scenario it could be possible to understand the features
behind a prediction of drop in adherence for a specific user in a certain date and
foster tailored interventions even before this decrease in adherence occurs.
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Appendix A

Exploratory Data Analysis

Figure A.1: Missing values density analysis of the Sociodemo table features

Figure A.2: Correlation analysis between the Sociodemo table features
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Figure A.3: Boxplots of the Sociodemo table features

Figure A.4: Distribution analysis of the Sociodemo table features
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Exploratory Data Analysis

Figure A.5: Missing values density analysis of the UTAUT table features

Figure A.6: Correlation analysis between the UTAUT table features
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Figure A.7: Boxplots of the UTAUT table features
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Exploratory Data Analysis

Figure A.8: Distribution analysis of the UTAUT table features
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Figure A.9: Missing values density analysis of the EQ5D3L table features

Figure A.10: Correlation analysis between the EQ5D3L table features
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Exploratory Data Analysis

Figure A.11: Boxplots of the EQ5D3L table features

Figure A.12: Distribution analysis of the EQ5D3L table features

Figure A.13: Missing values density analysis of the SPQ table features
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Figure A.14: Correlation analysis between the SPQ table features

Figure A.15: Boxplots of the SPQ table features

Figure A.16: Distribution analysis of the SPQ table features
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Exploratory Data Analysis

Figure A.17: Missing values density analysis of the UCLA table features

Figure A.18: Correlation analysis between the UCLA table features
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Figure A.19: Boxplots of the UCLA table features
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Exploratory Data Analysis

Figure A.20: Distribution analysis of the UCLA table features

Figure A.21: Missing values density analysis of the Physical Activity table fea-
tures

51



Appendix A

Figure A.22: Missing values density analysis of the Mindfulness table features

Figure A.23: Boxplots of the Mindfulness table features
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Exploratory Data Analysis

Figure A.24: Distribution analysis of the Mindfulness table features

Figure A.25: Missing values density analysis of the Finger tapping table features
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Figure A.26: Correlation analysis between the Finger tapping table features

Figure A.27: Boxplots of the Finger tapping table features
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Exploratory Data Analysis

Figure A.28: Distribution analysis of the Finger tapping table features

Figure A.29: Missing values density analysis of the Brain Games table features

Figure A.30: Correlation analysis between the Brain Games table features
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Figure A.31: Boxplots of the Brain Games table features

Figure A.32: Distribution analysis of the Brain Games table features

Figure A.33: Missing values density analysis of the Digital Phenotype table fea-
tures
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Exploratory Data Analysis

Figure A.34: Missing values density analysis of the Users table features

Figure A.35: Correlation analysis between the Users table features
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Figure A.36: Boxplots of the Users table features
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Exploratory Data Analysis

Figure A.37: Distribution analysis of the Users table features
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Optimization Parameters

Table B.1: Parameters tested for each algorithm during Model Optimization.

Algorithm Parametres Values
n_neighbors list(range(1, 35, 2))

kNN weights [’uniform’, ’distance’]
leaf_size list(range(1, 11, 2))
metric [’euclidean’, ’manhattan’]

Decision Tree criterion [’gini’, ’entropy’]
max_depth [2,3,4,5,10,15]
n_estimators list(range(5, 35, 5))

Random Forest criterion [’gini’, ’entropy’]
min_samples_leaf [1,2,3]
min_samples_split [2,3,4,5,10,15]
max_features [’auto’, ’log2’]
max iter [100, 200]

MLP activation [’tanh’, ’relu’]
solver [’sgd’, ’adam’]
alpha [0.0001, 0.01, 0.05]
learning_rate [’constant’,’adaptive’]

61





Appendix C

Results

Table C.1: Approach 1 results (Average RMSE ± SD)

Linear
Regres-
sion

Lasso Re-
gression

Random
Forest Re-
gressor

Decision
Tree Regres-
sor

SVM

1 / 1 0.0 ± 0.0 0.038 ± 0.011 0.093 ± 0.093 0.0 ± 0.0 26.137 ±
7.215

1 / 2 0.0 ± 0.0 0.035 ± 0.011 0.256 ± 0.309 0.247 ± 0.315 29.918 ±
6.145

1 / 4 0.0 ± 0.0 0.034 ± 0.01 0.276 ± 0.217 0.411 ± 0.261 31.717 ±
7.916

2 / 1 0.0 ± 0.0 0.04 ± 0.021 0.168 ± 0.18 0.0 ± 0.0 28.273 ±
5.943

2 / 2 0.0 ± 0.0 0.037 ± 0.015 0.22 ± 0.195 0.233 ± 0.282 29.379 ±
9.516

2 / 4 0.0 ± 0.0 0.035 ± 0.02 0.291 ± 0.182 0.338 ± 0.271 32.026 ±
13.154

4 / 1 0.0 ± 0.0 0.039 ± 0.008 0.741 ± 0.688 0.751 ± 0.977 27.195 ±
5.92

4 / 2 0.0 ± 0.0 0.039 ± 0.026 0.382 ± 0.365 0.444 ± 0.453 30.673 ±
13.305

4 / 4 0.0 ± 0.0 0.038 ± 0.025 0.417 ± 0.295 0.51 ± 0.45 31.59 ±
10.945
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Table C.2: Approach 2 results (Average F1-score ± SD)

Decision
Tree

Gaussian
Naive
Bayes

kNN Random
Forest

SVM MLP

1 / 1 0.925 ±
0.009

0.921 ±
0.007

0.907 ±
0.009

0.94 ±
0.005

0.906 ±
0.01

0.915 ±
0.019

1 / 2 0.911 ±
0.002

0.901 ±
0.009

0.888 ±
0.007

0.93 ±
0.007

0.886 ±
0.011

0.894 ±
0.04

1 / 4 0.9 ±
0.011

0.885 ±
0.007

0.892 ±
0.013

0.923 ±
0.014

0.876 ±
0.008

0.875 ±
0.019

2 / 1 0.921 ±
0.009

0.915 ±
0.008

0.902 ±
0.005

0.942 ±
0.005

0.885 ±
0.006

0.899 ±
0.016

2 / 2 0.909 ±
0.014

0.911 ±
0.004

0.89 ±
0.009

0.937 ±
0.011

0.887 ±
0.018

0.895 ±
0.028

2 / 4 0.887 ±
0.028

0.893 ±
0.027

0.883 ±
0.031

0.915 ±
0.024

0.874 ±
0.037

0.869 ±
0.031

4 / 1 0.926 ±
0.01

0.918 ±
0.007

0.902 ±
0.011

0.942 ±
0.014

0.903 ±
0.016

0.898 ±
0.019

4 / 2 0.914 ±
0.018

0.9 ±
0.021

0.877 ±
0.03

0.929 ±
0.015

0.869 ±
0.035

0.865 ±
0.044

4 / 4 0.91 ±
0.011

0.893 ±
0.015

0.871 ±
0.008

0.925 ±
0.016

0.861 ±
0.016

0.867 ±
0.029
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Table C.3: Approach 3 results (Average F1-score ± SD)

Decision
Tree

Gaussian
Naive
Bayes

kNN Random
Forest

SVM MLP

1 / 1 0.682 ±
0.057

0.623 ±
0.07

0.693 ±
0.025

0.694 ±
0.035

0.552 ±
0.015

0.678 ±
0.073

1 / 2 0.712 ±
0.036

0.574 ±
0.067

0.695 ±
0.04

0.73 ±
0.046

0.632 ±
0.047

0.627 ±
0.078

1 / 4 0.687 ±
0.059

0.568 ±
0.068

0.736 ±
0.046

0.759 ±
0.042

0.553 ±
0.052

0.549 ±
0.172

2 / 1 0.66 ±
0.079

0.536 ±
0.039

0.595 ±
0.058

0.723 ±
0.064

0.468 ±
0.061

0.525 ±
0.129

2 / 2 0.684 ±
0.021

0.614 ±
0.06

0.673 ±
0.036

0.774 ±
0.061

0.519 ±
0.056

0.644 ±
0.079

2 / 4 0.739 ±
0.028

0.583 ±
0.039

0.71 ±
0.082

0.723 ±
0.036

0.522 ±
0.064

0.622 ±
0.029

4 / 1 0.72 ±
0.028

0.616 ±
0.078

0.686 ±
0.04

0.749 ±
0.022

0.642 ±
0.038

0.593 ±
0.108

4 / 2 0.714 ±
0.04

0.556 ±
0.098

0.613 ±
0.095

0.728 ±
0.044

0.43 ±
0.045

0.624 ±
0.09

4 / 4 0.645 ±
0.068

0.536 ±
0.074

0.595 ±
0.01

0.697 ±
0.048

0.438 ±
0.092

0.459 ±
0.181

65



Appendix C

Table C.4: Approach 3 MLP hyperparameter search results (Average F1-score)

Window Lengths Score Parametres Values
1 / 1 0.7250 max iter 200

activation tanh
solver adam
alpha 0.05
learning_rate adaptive

1 / 2 0.7337 max iter 200
activation tanh
solver adam
alpha 0.01
learning_rate adaptive

1 / 4 0.7564 max iter 100
activation tanh
solver adam
alpha 0.05
learning_rate adaptive

2 / 1 0.6693 max iter 100
activation tanh
solver adam
alpha 0.05
learning_rate adaptive

2 / 2 0.7380 max iter 100
activation tanh
solver adam
alpha 0.05
learning_rate adaptive

2 / 4 0.7449 max iter 200
activation tanh
solver adam
alpha 0.0001
learning_rate adaptive

4 / 1 0.6893 max iter 200
activation tanh
solver adam
alpha 0.05
learning_rate adaptive

4 / 2 0.6494 max iter 100
activation tanh
solver adam
alpha 0.05
learning_rate adaptive

4 / 4 0.6565 max iter 200
activation tanh
solver sgd
alpha 0.01
learning_rate adaptive
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Table C.5: Approach 3 kNN hyperparameter search results (Average F1-score)

Window Lengths Score Parametres Values
1 / 1 0.7321 n_neighbors 29

weights uniform
leaf_size 1
metric manhattan

1 / 2 0.7523 n_neighbors 21
weights uniform
leaf_size 1
metric euclidean

1 / 4 0.7807 n_neighbors 23
weights distance
leaf_size 1
metric manhattan

2 / 1 0.6456 n_neighbors 13
weights uniform
leaf_size 1
metric manhattan

2 / 2 0.7141 n_neighbors 17
weights uniform
leaf_size 1
metric euclidean

2 / 4 0.7291 n_neighbors 9
weights distance
leaf_size 1
metric manhattan

4 / 1 0.7027 n_neighbors 5
weights uniform
leaf_size 1
metric manhattan

4 / 2 0.6396 n_neighbors 11
weights distance
leaf_size 1
metric manhattan

4 / 4 0.6629 n_neighbors 17
weights uniform
leaf_size 1
metric manhattan
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Table C.6: Approach 3 Decision Tree hyperparameter search results (Average F1-
score)

Window Lengths Score Parametres Values
1 / 1 0.7066 criterion gini

max_depth 5
1 / 2 0.7669 criterion gini

max_depth 2
1 / 4 0.7254 criterion gini

max_depth 15
2 / 1 0.7160 criterion entropy

max_depth 20
2 / 2 0.7383 criterion entropy

max_depth 2
2 / 4 0.7490 criterion gini

max_depth 3
4 / 1 0.7266 criterion entropy

max_depth 2
4 / 2 0.7405 criterion gini

max_depth 2
4 / 4 0.6840 criterion gini

max_depth 20
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Table C.7: Approach 3 Random Forest hyperparameter search results (Average
F1-score)

Window Lengths Score Parametres Values
1 / 1 0.7139 n_estimators 5

criterion entropy
min_samples_leaf 1
min_samples_split 15
max_features auto

1 / 2 0.7806 n_estimators 20
criterion gini
min_samples_leaf 1
min_samples_split 2
max_features auto

1 / 4 0.7918 n_estimators 25
criterion entropy
min_samples_leaf 2
min_samples_split 5
max_features log2

2 / 1 0.7542 n_estimators 30
criterion entropy
min_samples_leaf 1
min_samples_split 2
max_features auto

2 / 2 0.8104 n_estimators 25
criterion gini
min_samples_leaf 1
min_samples_split 5
max_features auto

2 / 4 0.7605 n_estimators 5
criterion gini
min_samples_leaf 1
min_samples_split 4
max_features log2

4 / 1 0.7823 n_estimators 20
criterion entropy
min_samples_leaf 1
min_samples_split 5
max_features log2

4 / 2 0.7829 n_estimators 30
criterion entropy
min_samples_leaf 1
min_samples_split 10
max_features auto

4 / 4 0.7632 n_estimators 25
criterion gini
min_samples_leaf 2
min_samples_split 15
max_features log2
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Figure C.1: Decision Tree Feature Selection with Hyperparameterization

Figure C.2: Random Forest Feature Selection with Hyperparameterization

70



Results

Figure C.3: Decision Tree
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