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ABSTRACT 

Distributed shared memory has been recognized as an alternative programming model to 
exploit the parallelism in distributed memory systems because it provides a higher level of 
abstraction than simple message passing. DSM combines the simple programming model of 
shared memory with the scalability of distributed memory machines. This article presents 
DSMPI, a parallel library that runs atop of MPI and provides a DSM abstraction. It provides 
an easy-to-use programming interface, is fully, portable, and supports heterogeneity. For the 
sake of flexibility, it supports different coherence protocols and models of consistency. We 
present some performance results taken in a network of workstations and in a Cray T3D which 
show that DSMPI can be competitive with MPI for some applications. © 1997 John Wiley & Sons, Inc. 

1 INTRODUCTION 

Distributed shared memory (DSM) systems provide 
tht> shared memory programming model on top of 
distributed memory systt~ms (i.e .. distributed memory 
multiprocessors or networks of workstations). DSM is 
appealing because it combines the performance and 
scalabilitY of distributed memory svstems with the . . . 
ease of programming of shared memory machines. In 
the DS~1 paradigm. processes communicate with each 
other through shared variablt>s that are placed some­
where in the system, but tht> programmer does not 
have to worry about wht>re the data are. With mt>ssage 
passing. the programmer has to be aware of the data 
movements between processes, and each process has 
to know when to communicate. with whom to commu­
nicate, and what data should be sent in a message. 
There are many algorithms for which the message-
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passing implt>mentation is nontriviaL tedious. and er­
ror prorw. The DS~1 system hides the rt>mote commu­
nication from the application programmer and pro­
vides a simpler abstraction that the programmer 
understands well. As a consequence. the code written 
for DSM becomt>s more compact and t>asy to read than 
the same code writtf'n for message passing. ~1oreover. 
DSM facilitates the porting of existing st>qut>ntial codes 
based on concurrent programming to distributed 
memorv machines. 

DSM has received much attention in the past decade 
and several DSM systems have been presented in the 
literature [1-3]. Basically, they can be classified in 
four main approaches: 

1. Hardware implementations. where tlw cache co­
herency and DSM protocols are supported by 
the hardware. Examples include the DASH 
multiprocessor [4]. PLES [5]. and the KSR-1 
machine [6]. 

2. Operating system implementations. which ex­
tend the virtual memory-management mecha­
nisms to access remote data. Some relevant ex­
amplt>s are the IVY system [7]. Mirage [8]. and 
Clouds [9]. 
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:1. Compiler implementations. where all the data 
distribution and manaw~ment is implemented 
by the compiler and a run-time systt>m. interest­
ing examples of languages are Orca [ 10 J. Amber 
[11]. and COOL [12]. 

4. Library implementations. ln this approach, the 
DSM abstraction is completely implemt>ntcd by 
a run-time library that is linhd with the appli­
cation program. Systt>ms like Munin [13]. 
Tred\1arks [H], and ADSMITH [15] can be 
included in this category. 

DSMPI is also included in this latter class. It is a 
parallel library implernentt>d on top of MPI whose 
main aim is to provide an t>asy-to-ust> programming 
interface based on the abstraction of a globally ac­
cessed shared mernorv that can be read and/ or written 
by any process of an \1PI application. The most im­
portant guidelines that we took into account during 
the design of the library were to 

1. Assure full portability of DS\1PI program. 
2. Provide an easy-to-use and flexiblt> program­

ming interface. 
3. Support heterogeneous computing platforms. 
4. Optimize the DS\I implementation to allow ext>­

cution efficiencv. 

The library was implemented without using any 
special features of the underlying operating system. It 
does not require any special compileL preprocessor, 
or linker. This is a key feature to obtain portability. 
ln this point. we depart from the approach that was 
followed by other library-level implementations of 
DSM, like Munin [13] or Tread\1arks [14], because 
those systems make use of some memory-management 
facilities provided by the underlying operating system. 
Munin, for instance, requires a special preprocessor 
and a modified linker and uses the memory-manage­
ment support provided by the experimental system 
where it was implemented (V Kernel). Tread\farks 
offers more portability because it is a user-level library 
that runs on top of l;:\IX and uses a standard L::\IX 
compiler and linker. However, it still relics on the 
memory page protection mechanism of L~IX to detect 
accesses to the shared pages. Those features provided 
by U:\IX are not available in other native operating 
systems of multiprocessor machines. Those two sys­
tems have the nice advantage of providing transparent 
access to the shared data, but at the expense of some 
lack of portability. 

In our case, we sacrificed full transparency to 
achieve portability. This means that all shared data 
and the read/write operations should be declared ex-

plicitly by the application programmer. The sharing 
unit is a program variable or a data structure. For this 
reason. DSMPI can be classified as a structure-based 
DSM systt>m (like AD SMITH [15]) as oppost>d to other 
DSM systems that are implemented in a page basis 
and make use of the operating system virtual memory 
facilities. Page-based DS\1 systems (like IVY [7] and 
Mirage [3]) are prone to the problem of false sharing. 
When different processes want to write different vari­
ables that are located in the same page. the system 
has to send the page hack and forth between them 
resulting in unnecessary coherence traffic. Munin and 
Tread\1arks alleviate the problem of false sharing by 
allowing multiple writers to write to the same page. 
This was achieved through a complex scheme to merge 
the changes at the synchronization points. 

DS\1PI does not provide full transparency because 
it does not make use of any memory-management 
facility of the operating system. nor does it require tht> 
use of any special compiler. It does not incur in the 
problem of false sharing because the unit of shared 
data is complett>ly related to existing objects (or data 
structures) of the application. At the same timt>. it 
allows the use of heterogeneous computing platforms. 
Recently. it has been concluded by several researchers 
that it is highly desirable to integrate hett>rogeneous 
hosts into a coherent computing environment to sup­
port parallel applications. Hett>rogeneity is quit<' easy 
to support in structure-based (e.g., DS\IPI and 
ADSMITH [15]) or object-based DSM systems (e.g., 
Agora [16]). but rather mort> complicated in page­
based DS\1 systems. Mermaid [17] is an example of 
a system that supports heterogeneous DSM: Memory 
is shared in pages, but each page can only contain one 
type of data. This is a enormous drawback and seems 
to be the only way to support heterogeneity in page­
based DSM systems. 

DSMPI is a heterogeneous DSM system. whereas 
most of the other systems are limited to homogeneous 
platforms. This is in fact one of the most interesting 
features of our system. Because the library knows the 
exact format of each shared data object (data type 
and number of elements), it becomes quite straightfor­
ward to support heterogeneity by making usc of the 
MPI features to support heterogeneous computing. 

ADS\1TTH [15] is another DSM system that pro­
vides support for heterogeneity. It was implemented 
on top of PVM and has some similarities with our 
system. The main differences are that DSMPI provides 
more protocols of replication and different models of 
consistency and support for fault-tolerance. Finally. 
DSMPI allows the coexistence of both programming 
models (message passing and shared data) within the 
same application. This has been considered recently 



as a promising solution for parallel programming 
[13-20]. 

Concerning absolute performance, we can expect 
applications that use DSM to perform worse than their 
message-passing counterparts. However, this is not 
always true. It really depends on the memory-access 
pattern of the application and on the way the DSM 
system manages the consistency of replicated data. 

We tried to optimize the accesses to shared data by 
introducing three different protocols of data replica­
tion and three different models of consistency that can 
be adapted to each particular application in order to 
exploit its semantics. With such facilities we expect 
DSM programs to be competitive with MPI programs 
in terms of performance. Some performance results 
collected so far corroborate this expectation. 

The rest of this article is organized as follows: Sec­
tion 2 describes the general organization of DSMPI. 
Section :3 presents the replication protocols provided 
by the library, whereas Section 4 describes the models 
of consistency that were implemented. The program­
ming interface is presented in Section 5. Section 6 
shows some performance results and Section 7 con­
cludes the article. 

2 DESIGN OVERVIEW 

In DSMPI there are two kinds of processes: application 
processes and daemon processes. The latter are re­
sponsible for the management of replicated data and 
the protocols of consistency. Because the current im­
plementations of MPI [21] are not thread safe, we 
had to implement the DSMPI daemons as separate 
processes. This is a limitation of the current version 
of DSMPI that will be relaxed as soon as there is some 
thread-safe implementation of MPI. All the communi­
cation between daemons and application processes is 
done by message passing. Each application process 
has access to a local cache that is located in its own 
address space and where it keeps the copies of repli­
cated data objects. The daemon processes maintain 
the master copies of the shared objects. DSMPI main­
tains a two-level memory hierarchy: a local cache and 
a remote shared memory that is located in and man­
aged by the daemons. 

The number of daemons used by an application is 
chosen by the programmer as well as their location, 
by using a configuration file ( dsmconf) that is read 
by the DSMPI initialization routine. In this way, the 
user has the freedom to choose the most convenient 
mapping of daemon processes according to the appli­
cation needs. In practice, there is a notion of virtual 
domains where each daemon is responsible for one or 
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more application processes. One of the daemons is 
elected as the master daemon and will be responsible 
for some operations that require some centralized re­
sponsibility. 

The ownership of the data objects is implemented 
through a static distributed scheme. While a central­
ized scheme would introduce a bottleneck, a dynamic 
distributed policy would require the use of broadcasts 
or forward messages to determine the current owner 
of a data object [22]. In the static distributed policy. 
the owner daemon of each object is chosen by the run­
time system during the startup of the application and 
remains fixed during the lifetime of the application. 
Each process maintains a local directory containing 
the location of each object in the system. This static 
distribution strategy requires less control messages 
than the dynamic strategy and does not introduce the 
congestion of a central server. 

The mapping of data objects to daemons must he 
chosen by the application programmer. When the pro­
cess creates a shared object, the assigned owner will 
he the associated daemon. When correctly used, this 
facility ean enhance the performance of the applica­
tions. However, if the mapping provided by the pro­
grammer is completely inadequate, it would certainly 
degrade the performance of the application. The next 
version of DSMPI will have an adaptive mapping strat­
egy based on run-time heuristics that will adapt the 
mapping of the data objects to daemon processes ac­
cording to the observed communication patterns of 
the application. Such facility could alleviate or adjust 
some wrong decision taken by the application pro­
grammer. The current version of DS.VlPI is still limited 
in this aspect. 

3 DATA REPLICATION PROTOCOLS 

The library allows the programmer to chose the repli­
cation strategy for each shared object among three 
possible choices: 

1. WRITE-MOSTLY 

2. READ-WRITE 

3. READ-MOSTLY 

The first class uses a single copy of the object, 
whereas the two other classes replicate the object. The 
replication of data is only effectively justified if the 
number of reads is higher than the number of writes. 
Data replication is one way of exploiting parallelism, 
because multiple reads can be executed in parallel. 

The first class (WRITE-MOSTLY) represents those 
objects that are frequently written. For these kinds of 
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objects it is not worthwhile to replicate them among 
the caches of the processes. Only one copy is main­
tained by one of the daemons. 

The second class (READ-WRITE) includes those 
objects that have roughly the same number of read 
and write requests. These objects are replicated among 
the caches of the processes that perform some read 
request on them. There is one daemon that keeps the 
primary copy of the object and maintains a copy-set 
list of all the processes that have a copy in its local 
cache. A process is included in that list when it issues 
a remote read request. After that and in the absence 
of write operations. the process reads the object from 
its local cache. That daemon is responsible for the 
consistency of the replicated object. and for this class 
of object the library uses a write-invalidation protocol. 
This means that on a write operation all the cached 
copies of the object are invalidated from the local 
caches. Only the process that writes to the object main­
tains an updated copy in its local cache. When another 
process wants to read or write that objecL it gets a 
cache-miss. and has to fetch the object remotely from 
the daemon that maintains the primary copy. 

The objects that belong to the third class 
(READ-MOSTLY) are also replicated among the caches 
of the processes that use them. These objects have a 
higher ratio of read over write requests. and in this 
case the library uses a write-update protocol. All the 
cached copies of the object are updated atomically 
after each write operation. This scheme does not incur 
in cache-misses as the write-invalidation protocol but 
in the case of large size objects it requires the sending 
of large size messages that carry the update notices. 

Both protocols have advantages and disadvantages 
[22. 23]. Invalidation-based protocols have the ad­
vantage of using smaller consistency-related messages 
than update-based protocols since they only specify 
the object that needs to be invalidated and not the 
data itself. The write-update protocols reduce the like­
lihood of a cache-miss. The choice between these pro­
tocols depends on some factors [23] like 

1. The ratio of read/write accesses to the shared 
object 

2. The size of the data object 
3. The overhead of the update messages 

The application programmer has the freedom to 
choose among those three classes when it creates a 
particular shared object. It has been argued in [22] 
that no single algorithm for DS.\1 will be suitable for 
most applications. Shared objects have different char­
acteristics, thus it is important to select the coherence 

protocols that best match the application character­
istics. 

The replication of data is an important feature to 
improve the efficiency of the application. DSMPI is 
not the only system that provides more than one class 
of objects. Munin [13] is another system that provides 
several classes of objects. Through the use of armota­
tions, the programmer can choose among seven differ­
ent coherence protocols tailored for different types of 
data. The type of the data objects remains static once 
specified. Munin cannot dynamically adjust the coher­
ence protocols to possible changes in the behavior of 
the application. The same happens with the current 
release of DSMPI. 

The study presented in [24 J considers multiple co­
herence protocols. It presents a self-adjusting scheme 
where the run-time system monitors the usage pattern 
of each data object and performs a protocol adjust­
ment to the objects that have a different behavior than 
was specified previously through the user annotations. 
It has been proved to be a very interesting technique 
with quite good results. 

Another example is the ORCA language [2SJ that 
has an extended compiler which determines the access 
patterns of the processes to the shared objects and 
forwards that information to the run-time system. that 
decides which objects to replicate and where to store 
single copy objects. This has been proved to result in 
a better overall performance. 

We plan to incorporate in the next version of DSMPI 
a similar scheme based onlv on run-time heuristics. 
Besides. the frontier among those three class of objects 
is not always quite clear and the hints provided by 
the programmer can be far from the optimum decision. 
Such cases should be corrected bv the run-time svstem . . 
during the execution of the program. 

4 MODELS OF CONSISTENCY 

In order to further improve efficiency, we have imple­
mented three different models of consistency that 
apply only to READ-WRITE and READ-MOSTLY ob­
jects: 

1. Sequential consistency (SC) 
2. Release consistency (RC) 
.3. Lazy release consistency (LRC) 

The SC model was proposed in the IVY system [7]. 
where all the operations in shared data are performed 
as if they were following a sequential order. This is the 
normal model of consistency, which in some particular 



cases does not perform very well in DSM systems im­
plemented on nt'tworks like Ethernet. 

For such cases, the programmer can make use of 
the RC modeL which in our case implements the proto­
col of the DASH multiprocessor [ 4 J. In this modeL it 
is assumed that all the write accesses to shared objects 
are protected by synchronization primitives (acquire 
and release, corresponding to lock/ unlock operations). 
It attempts to mask the latency of write operations by 
allowing them to be performed in the background with 
the computation. The process is only stalled when 
executing a release. at which time it must wait for all 
its previous writes to perform. However, this model 
does not attempt to reduce the number of messages 
exchanged. Rather, it only tries to reduce the latency 
of write operations. 

Another RC model has been implemented in Munin 
[ 14], where all the write notices from a process are 
buffered and only sent when the processor reaches a 
synchronization release point. This does not introduce 
a significant improvement over the DASH release con­
sistency protocol, and by this reason we chose the 
previous one. 

To reduce the message traffic, the system can use 
the LRC model of consistency. DSYIPI implements a 
similar protocol as proposed in the T read~farks system 
[ 14]. This model relaxes the RC protocol by further 
postponing the sending of write notices until the next 
acquire. When a process writes into a replicated data 
object. rather than sending update/invalidate notices 
to all the processes that belong to the copy-set list, it 
keeps a record of the objects that it updated. Then 
the owner of the lock notifies the acquirer of which 
objects have been modified, causing the acquirer to 
invalidate its local copies of these objects. 

The LRC schemes keeps track of the causal depend­
encies between write operations, acquires and releases. 
allowing it to propagate the write notices lazily only 
when they are needed. To implement this scheme we 
have used the Vector Time mechanism, and the re­
sulting protocol, albeit complex. reduces mnsiderably 
the number of messages and the amount of data ex­
changed on behalf of the replication protocols [26, 27]. 

Another relaxed memory model- entry consistency 
(EC)- was proposed in the Midway system [28]. This 
model requires all shared data to be explicitly associ­
ated with some synchronization variable. As a result, 
when a process acquires a lock or semaphore. the EC­
based DSl\1 system only needs to propagate the updates 
to the shared data associated with that lock or sema­
phore. It requires more effort from the application 
programmer, but simplifies the implementation of the 
consistency protocol. 
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· DSMPI_Startup(MPI_Comm *comm); 
· DSMPI_Exit(void); 
· DSMPI_Decl_SO(char* name, int count, MPI_Datatype type, DSM_SO *shobj); 
· DSMPI_Create_SO(DSM_SO shobj, int access_type); 
· DSMPI_Read(DSM_SO shobj, void *buf, int model); 
· DSMPI_ Write(DSM_SO shobj, void *buf, int model); 
· DSMPI_ReadSome(DSM_SO shobj, void *buf, int count, int offset, int model); 
· DSMPI_ WriteSome(DSM_SO shobj, void *buf, int count, int offset, int model); 
· DSMPI_Init_Lock(int lock_id); 
· DSMPI_Lock(int lock_id); 
· DSMPI_UnLock(int lock_id); 
· DSMPI_Init_Sem(int sem_id, int value); 
· DSMPI_ Wait(int sem_id); 
· DSMPI_Signal(int sem_id, int N); 
· DSMPI_Barrier(int barrier_id, int N); 
· DSMPI_Restart(void); 
· DSMPI_pack_chkp(void *ptr, int count, MPI_Datatype dt_type); 
· DSMPI_Checkpoint(void); 

FIGURE 1 DSMPI primitives. 

5 PROGRAMMING INTERFACE 

The library provides a C interface and the programmer 
calls the DSMPI functions in the same way it calls 
any \fPI routine. The complete interface is shown in 
Figure 1. 

5.1 Initialization and Termination 

To start a DSMPI application. all the processes must 
invoke DSMPI_Startup () collectively. This func­
tion returns an MPI communicator that can be used 
by the application processes to communicate directly 
through message passing. To terminate correctly a 
DSMPI application, all the processes have to call 
DSMPLExi t ( ) . 

5.2 Declaration and Creation of Shared 
Objects 

The set of shared objects used by the application 
should be declared explicitly by all the processes at 
the beginning of the application through the routine 
DSMPI-Decl-SO ().With this routine, the program­
mer has to specify the data type of the object and 
the number of elements. It returns a shared object 
identifier that should be used in anv further reference 
to that object. To create one shared object. a process 
has to call the DSMPI-Create () primitive. In this 
calL the programmer has the freedom to choose the 
replication strategy for the shared objects by indicating 
the access type among the three options: WRITE_ 

MOSTLY. READ-WRITE, and READ-MOSTLY. 

5.3 Read and Write Operations 

Communication between processes is made by using 
explicit read and write operations on shared objects: 
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The programmer makes use of DSMPI-Read () or 
DSMPI-Wri te () and does not need to be aware of 
the object location. An object can be written/read lo­
cally from its own cache, or remotely from its primary 
copy. In the current version, the programmer has tht> 
freedom to specify the required model for data consis­
tency among three choices: DSM-SC, DSM-DRC, and 
DSM-LRC, where DSM_sc corresponds to sequential 
consistency, DSM-DRC to the dash release consistency 
protocoL and finally DSM-LRC corresponds to lazy 
release consistencv. 

To read or write only parts of some object. the 
programmer may find the following routines very 
useful: DSMPI_ReadSome () and DSMPI_Wri te 
Some ().The programmer has only to specify the off­
set within the object and the number of basic elements 
he wants to read (or write). These routines haw~ been 
proved to be very effective to operate in large size 
objects (like arrays and vectors) when the program 
only wants to read or update a small part of the object. 

5.4 Synchronization Primitives 

To control the concurrent access to shared variables, 
the programmer has to use some synchronization 
primitives. DSMPI provides locks DSMPI-Lock (), 
DSMPI-UnLock (), semaphores DSMPI-Wai t (). 
DSMPI-Signal (), and barriers DSMPI_ 
Barrier () . These are the usual synchronization 
primitives provided by most DSM systems. 

5.5 Support for Checkpointing 

The library also provides support for checkpointing 
through the use of three additional primitives: 
DSMPI-Restart (), DSMPI-Pack-chkp (), and 
DSMPI-Checkpoint (). The first routine should be 
placed inside the program after the initialization part. 
DSMPI-Pack-Chkp () is used by the programmer to 
specify which private data should be saved in each 
checkpoint operation. The programmer is also allowed 
to determine which shared data should be included or 
not in the checkpoint contents. Finally, the DSMPI_ 
Checkpoint () routine should be called periodically 
and be placed in some points that correspond to a 
global consistent state of the application. More details 
about the checkpointing scheme and some perfor­
mance results can be obtained in [29]. 

6 PERFORMANCE RESULTS 

The main question to be answered is: What is the price 
in terms of perfonnanee the users of DSMPl have to 

pay when compared with MPI? Applications that use 
any DS~1 system are expected to perform worse than 
if thev use message passing directly because DSM is 
implemeuted on top of message passing. However, 
there are some studies [:-W] which show that DS:\11 
can be competitive with message passing for many 
applications. We also present some results that corrob­
orate that study. 

Ideally, the number of messages exchanged in a 
software implementation of DSM should be equal to 
the number of messages exchanged in a message-pass­
ing implementation of the same application. This 
hardly happens, bnt the DS:\'1 system should be opti­
mizPd to ad1ieve a competitive level of performance. 
The performance of a DSM system is directly affected 
hv several factors. such as: 

1. The mernory-aeeess pattern of the application 
2. The replication of shared data and the protocol 

that assures its eonsistenry 
3. The implementation of relaxed models of consis­

temw 
4. Possible optimizations that try to rf'dnet' tlw ex­

change of DSM data through the communica­
tion network 

The performance results are presented in two differ­
ent sections: Section 6.1 presents a detailed study of 
the data replication protocols and the models of consis­
tency, whereas Section 6.2 presents a comparison be­
tween thf' performance of DSMPI and MPI. 

6.1 Performance of Data Replication 
Protocols and Models of Consistency 

In this section,. we present some perfonnance results 
that represent the behavior of data replication for dif­
ferent models of consistency and application charac­
teristics. The benchmark we used was a quite simple 
synthetic benchmark: It is represented by six processes 
that are continuously reading and writing into a shared 
object that is protected by a lock. It represents the 
worst-case benchmark because the procf'sses do not 
perform any computation at all. They are just in an 
iterative eyde reading and writing the shared object. 

Each slave process executes for /V iterations. We 
made s<>veral experiments by changing the ratio of 
read operations over write operations (R equal to 
1/1 and 3/1) and the size of the shared object (8 
equal to 10, 1K, lOOK integers). The performance 
results were taken on a network of Sun4 workstations 
connected by a 10 Mb/s Ethernet. All the execution 
times are given in seconds. 

To directly compare the invalidation with the up-
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FIGURE 2 Performmwc results for small-size objPcts (S = 10). 

date protocol. we condensed somt> of the results in the 
next four figures. For instance. Figurt> 2 presents tlw 
execution time to the benchmark when using a small­
size shared object (i.e .. S = 10 integers). It presents 
the performance of the three models of consistency 
(SC. DRC. and LRC) when considering two diffe-rent 
read/writt> ratios (1/1 and :3/1). 

From Figure 2 we can conclude that (i) when the 
ratio of read/write operations was .3/1 it was useful 
to use a rt>plication protocol (write-invalidate or write­
update) or the single-copy scheme (this is the case of 
write-mostly objects): (ii) when the number of reads 
is equal to the number of writes (ratio = 1/1) then 
the single-copy approach is more efficient: (ii) when 
the program uses small-sizt> objects. the sizt> of the 
update mt>ssages is also small and the difference be­
tween the two protocols (invalidate vs. update) is not 
quite visible. 

The difference became more clear when we used 
large-size objeets. As can be seen in Figure :3. the write­
invalidation protocol (used for READ-WRITE objects) 
dearly outperformed the write-update protocol 
(READ-MOSTLY objects). The writt>-invalidation pro-
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tocol is prone to cache-misses while the write-update 
protocol is not. 

I lowever. tht>re is an important difference between 
the sizt> of the invalidation messages and the messages 
used by the update protocol. This difference turns out 
to be relevant when the program uses large-size 
objects. 

In this case. if the user decides to use the writt>­
updatc protocol (i.e .. READ-.\fOSTLY) then it is im­
perative to use the LRC modeL lweause it is the only 
wav to reduce the exe<~ution time closer to the write­
invalidate protocol. 

After comparing write-invalidate versus write-up­
date. we want to state some conclusions about the 
rwrfonnance of tlw models of consistency: DRC versus 
LRC. For the sakt> of normalization with other authors 
[27]. Wf' now usc a mixf'd terminology: for instance. 
lazy-update means tht> system uses the LRC scht>me 
and a write-update protocol of consistency. while ea­
ger-update means the DRC scheme was used with a 
write-update protocol. 

From the data we collectt>d in our svstem we ob­
st>rved the following: 

•sc (IIIJ 

•sc (31IJ 

ElDRC (III) 

I!IDRC (311) 

.LRC (Ill) 

ll!ILRC (311) 

Write-Mostly Read-Write Read-Mostly 

FIGURE;~ Perfonnanc!' results for large-size objects (S = lOOK). 
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FIGURE 4 Performance of models of consistency for Read-Write ohjt>cts. 

1. Lazy-invalidate performs about the same as ea­
ger-invalidate. 

2. Lazy-update dearly outperforms eager-update. 
3. Eager-invalidate performs better than eager­

update. 
4. Lazy-update sends much less data than eager­

update. 

In Figure 4, we compare the three models of consis­
tency for different sizes of the object, when using a 
write-in invalidate replication protocol. We can see by 
Figure 4 that lazy-invalidate (LRC) performs about 
the same as eager-update (DRC), independently of the 
size of the object. 

The same does not happen when using a write­
update protocol. The results are depicted in Figure 
5, and we can see that in this case the performance 
difference between lazy-update and eager-update is 
quite clear. The difference becomes more evident when 
increasing the size of the shared object. While the 
LRC model effectively reduces the amount of data 
exchanged in update messages, the DRC scheme does 
not reduce the number of messages; it only tries to 
reduce the write latency, but it has been shown that 

400 
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c 300 
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" ~ 250 

200 
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this feature has almost no impact in the overall perfor­
mance. If we compare Figures 4 and 5 we can further 
condude that eager-invalidate performs better than 
eager-update. 

Finally, we compare tht> amount of data exchanged 
by the DSM system. and in Figure 6 is shown a direct 
comparison among the three models when considering 
a ratio of 3/1 and large-size objects (S = lOOK). The 
application executed for 10 iterations. and the amount 
of data is presented in Kilobytes. Figure 6 shows that 
a write-invalidate protocol exchanges less data than 
a single-copy approach or a write-update replication 
protocol. The only remarkable exception was observed 
for the lazy-update approach: We saw that LRC re­
duces the amount of data exchanged in update mes­
sages for about 80%. 

Other similar experimental studies also present 
some related conclusions: For instance, [31] presents 
an LRC protocol for hardwart> coherent multiproces­
sors that outpt>rforrns an eager release consistency pro­
tocol (DASH protocol) by up to 17% on a variety of 
applications. It was also concluded that delaying the 
write notices until the acquire points is beneficiaL but 
delaying their posting until a synchronization release 

•sc (1/1) 

•sc (311) 

CDRC (111) 

I!IDRC (3/1) 

.LRC (111) 

IIIILRC (3/1) 

Size=100K 

FIGURE 5 Performance of models of consistency for Read-.\1ostly objects. 
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.3/1 and 

point tends to move the coherence operations into the 
critical path of the application, resulting in even more 
synchronization overhead. This confirms our results. 

Another interesting study presented in [27] also 
corroborates most of our conclusions with only a small 
difference: In their case, lazy-invalidate protocols out­
perform eager-invalidate protocols. This is not visible 
in our case. It probably has to do with some possible 
differences in the protocol implementations. However, 
in the overall, we all agree that lazy protocols can be 
beneficial: The basic advantage of the lazy protocols 
during lock transfers is that communication is limited 
to the two synchronizing processes. A release in an 
eager protocol often requires invalidate/update mes­
sages to be sent to several processes not involved in 
the synchronization transfer. 

6.2 Comparing DSMPI with MPI Programs 

In this subsection, we evaluate the overhead of using 
DSMPI against message passing. For that, we have 
implemented two versions of the following six applica­
tions: 

TSP 

TSP solves the traveling salesman problem using a 
branch-and-bound algorithm. The program follows 
the master/worker programming paradigm. The mas­
ter generates the partial routes for the first three cities 
and places, them in a task queue that is a shared object 
globally accessed to the slave processes. After that 
step, the master behaves like a slave process and works 
on the problem cooperatively. Each slave grabs a task 
from that queue and computes all possible full routes 
based on those partial paths. There are two other 
shared objects which are replicated among the slave 
processes: One that keeps the minimum path and an­
other that maintains the best route. The minimum 
value is frequently read and is used to prune part of 
the search tree. When a slaves finds a new solution it 
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updates these two variables. The DSMPI version used 
locks to protect the access to the shared objects. We 
present results for the problem with 18 cities. 

NQUEENS 

NQuEE~S solves the placement problem of l\ queens 
in an l\-size chessboard. It also follows the master/ 
worker programming model. Initially, one of the pro­
cesses creates a bunch of tasks through the placement 
of the first two queens. Those tasks are placed in a 
task queue which is a shared data structure globally 
accessed to all the processes. The DSMPI version made 
use of locks to protect the task queue structure and 
other shared objects that keep the number of solutions 
achieved. In the network of workstations we executed 
the application for 13 queens, whereas for the Cray 
T3D we increased the problem to 14 queens. 

SOR 

Successive overrelaxation is an iterative method to 
solve Laplace's equation on a regular grid. The grid 
is partitioned into regions, each containing a band of 
rows of the global grid. Each region is assigned to a 
process. The update of the points in the grid is done 
by a red/black scheme. This requires two phases per 
iteration: One for black points and the other for red 
points. At the end of each iteration, the slave processes 
have to exchange the boundaries of their data blocks 
with two other neighbors. The DSYIPI program uses 
a set of shared objects to exchange the row boundaries. 
At the end of each iteration, all the processes perform 
a global synchronization and evaluate a global test of 
convergence. This application used only barriers as 
synchronization variables. In the network of work­
stations, we executed the SOR application during 200 
iterations in a grid of 1024 X 1024 (double precision), 
while in the Cray T3D the number of iterations was 
500 and for the size of the grid 2048 X 2048. 

GAUSS 

GAUSS solves a system of linear equations using the 
method of Gauss elimination. The algorithm uses par­
tial pivoting and distributes the columns of the input 
matrix among the processes in an interleaved way to 
avoid imbalance problems. At each iteration of the 
algorithm, one of the processes finds the pivot element 
and sends the pivot column to all the other processes. 
The DSMPI version used a shared object to store the 
pivot column and its index. A semaphore is used to 
protect the access to those shared objects. At the end 
of each iteration, all the processes have to execute 
a barrier synchronization. We executed the GAUSS 
application in a system of 2048 equations. 
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Table 1. Performance Results in a Network of Workstations 

Application \IP! Version 

TSP (18) ;) min 09 s 9-t 1 
:\QLEE:\S (13) :2 min 57 s 12-± 
SO R ( 1024.200!) (> min 21 ~ .'););") 
GALSS (20411) 15 min 28 s .:y7<) 

ASP (1024) I 0 min 0:3 s ;}()2 
:\BODY (-tOOO) 10 tuin OS s 632 

ASP 
ASP solves the all-pairs shortest paths problem. i.e .. 
it finds the length of the shortest path from any node 
i to any other node j in a given graph with :\ nodes 
using Floyd's algorithm. The distances between the 
nodes of the graph are represt>nted in a matrix and 
each slave computes part of the matrix. It is an iterativf' 
algorithm. where in each iteration. one of the slaves 
keeps the pivot row. It bruadca~t its value by writing 
it to a shared object that is read by the otht>r slaves. 
The DSMPI program uses locks to protect the access 
to th:n object and a barrier at the end of each iteration. 
In both environments, we executed the ASP applica­
tion with a graph of 1024 nodes. 

NBODY 

This program simulates the evolution of a system of 
bodies under the influence of gravitational forces. Ev­
ery body is modeled as a point mass that exerts forces 
on all other bodies in the system and the algorithm 
calculates the forces in a thret>-dimensional dimension. 
TI1is computation is the kernel of particle simulation 
codes to simulate the gravitational forces between gal­
axies. We executed this application during 10 itera­
tions for 4000 particles. The original algorithm ust>d 
a ring structure for communication and at the end of 
eaeh iteration it used a collective operation to calculate 
a minimum value among the processes. The DS:YIPI 
version makes use of semaphores to synchronize the 
communicating objects and a barrit>r at the end of 
each iteration. 

First, we measured the performance in a network 
of workstations composed by four Sun4 machines con­
neeted by a 10 megabit/see Ethernet. The overhead 
is represt>nted in Table 1. 

For some of the applications (TSP. NQUEE:\S, and 
~BODY), the overhead of the DS.\1PI version is almost 
negligible (0.91 %, 1.:17%, and 0.11 %, respectively). 
The DSMPI version of SOR and ASP still has an ac­
ceptable overhead (.5.89% and .5.60% ), but the over­
head for the GACSS application was already considt>r­
able (18.90%). The reason for that difference is due 

DS\IPI V rrsion DS.\1PI I \!PI 

5 min 12 s 780 1.0091 
2 min 59 s 558 1. 01 :p 
6 min 44 s 0-±3 l.OS89 

18 min 2:3 s 996 1.1890 
10 min ;p s :376 1.05(J0 
10 min 06 s :H2 1.0011 

to the exknsivP use of semaphores and large-size 
shared objects. 

Tablt> 2 presents tlw munlwr of locks, s(~maphores, 
and barriers used by each application when executed 
on four processors. The GALSS application was the 
application that used more synchronization mecha­
nisms (semaphores and barriers). The ASP application 
was the second one on the list. 

However. that number is not the only factor that 
interferes with the performance of DSMPI. Other im­
portant factors are the number of messages and the 
amount of data exchanged. Table 3 presents such val­
ues. In those figures, we did not take into account the 
data t>xchanged during the initialization part of the 
applications. The first column represents the number 
of read and write requests performed during the whole 
computation: the second column includes the amount 
of data sent in read or write requests; and finally the 
third column shows the amount of transmitted data 
per second. 

We ean see that the GAUSS application was the 
one that exchanged more data and sent the highest 
number of read/write requests. These two factors, to­
gPther with the extensive use of semaphores and bani­
PI'S. represent the reasons why the GAUSS application 
did not pt>rform so well in DSYIPI. 

The application that transmitted more data per sec­
ond was the SOR benchmark. Ylost of that data were 
sent in large-size messages. 

At the Pnd of the list there are the TSP, ~QCEEJ\"S, 
and NBODY applications. These applications have a 
high computation to communication ratio: They per-

Tablt> 2. Numht>r of Synchronization Operations 

Application Locks Semaphores Barriers 

TSP (18) 1124 2 
:\QCEEI\S (13) 5:36 2 
SOR (1024.2001) 402 
GACSS (2048) 8162 2050 
ASP (1024) 4096 1026 
1\BODY ( 4000) 240 12 
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Table 3. Amount of Data Exchanged in the DSMPI Version 

'lumlwr of 
Application Read+ \!;'rite 

TSP (18) 844 
'IQCEE~S (1:1) (>67 
SOH (1024.2001) 4.800 
CAt :ss (2048) 16.:384 
ASP (1024) 4.096 
"JBODY ( 4000) 240 

formed the smallest number of read and write requests 
and transmitted the smallest amount of data per sec­
ond. Maybe this is why the DSMPI versions of those 
applications performed as well as the MPI counter­
parts. The results presented in Table 1 are similar to 
the onPs obtained in the implemPntation of the Munin 
system [ 13 J: Those authors achieved performance 
within 90-9S% of the hand-coded message-passing 
implementations of the same application. 

Another study presented in [32] compared the per­
formance of TreadMarks [14] with PVM [33] and 
eonduded that TreadMarks performed nearly identi­
cal to PVM for programs with high computation I com­
munication ratio and large granularity of sharing. For 
programs with little access, locality and a large amount 
of shared data TreadMarks performed within 50% of 
PVM. For the remaining applications it performed 
within 75% of PVM. 

The study presented in [27] shows that with current 
processors, the bandwidth of the 10 megabit/ s 
Ethernet becomes a bottleneck, limiting the speedup 
and the efficiency of the applications. With 100 
megabit/ s A TM networks, which are now appearing 
on the market. those authors achieved considerable 
improvements in the performance of their DSM 
system . 
. To corroborate the idea that the bandwidth of the 

communication network is a feature of paramount 
importance, we conducted a similar experiment in the 
Cray T3D machine of the EPCC.* The results are 
shown in Table 4. The first two applications used eight 
processors: The DSMPI version used seven workers 
and one daemon process, whereas the MPI counterpart 
used seven workers and one master process. The re­
maining applications used 16 workers. The corre­
sponding DSMPI version used four additional proces­
sors to run the daemon processes. Additional 
processors were required because the operating system 

* Edinburgh Parallel Computinl( CPntrP. Scotland. 

Comm. Data 
(Kilobvtes) Kilobvtes/ s 

297 0.9 
7:3 0.4 

~~8.400 95.0 
6;).600 59.4 
16.:384 25.7 
7.500 12.:3 

(lJl\ICOS) of the Cray only permits one process per 
processor. 

Surprisingly, three of the applications (TSP, 
'JQCEE'JS, and 'JBODY) performed better when us­
ing DSMPI than using MPI: 0.26%, 0.47%, and 
16.53% .. respectively. Reasons to explain such im­
provement include the replication of data through the 
local caches, the reduction of synchronization that ex­
ists in message passing, and the correct mapping of 
the shared objects. Nevertheless, as was seen pre­
viously. they represent the applications with the high­
est computation to communication ratio. 

This set of results in the T3D suggest that when 
the underlying communication system is fast we can 
expect DSMPI to be directly competitive with message 
passing (at least for some applications). Table 5 pres­
ents the amount of data exchanged by the DSMPI 
versions, and if we compare these values with the 
ones presented in Table 3 we can observe that the 
communication throughput increased substantially in 
the Cray T3D. The amount of data transmitted is 
higher in the T3D because we executed the applica­
tions with more processors, as explained previously. 

However, there is a point of concern in the DSMPI 
version that runs on the T3D which is the wasting of 
resources. As was said before, the L~ICOS operating 
system only allows one process per processor and all 
the processors are loaded with the same binary. This 
implies that (i) each DSMPI daemon requires the ex­
clusive use of one processor and (ii) the application 
code has to be gathered together with the daemon code 
in the same executable. 

With such limitation, we can raise an obvious ques­
tion: Assuming we have a fixed number of computing 
processors to be used by the whole application, what 
would be the optimum number of daemons? 

Every DSMPI daemon is a data repository and is 
responsible for a certain number of application pro­
cesses. This means that if we use only a small number 
of daemons for a large number of application pro­
cesses, it may result in some daemon congestion. On 
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Table 4. Performance Results in the Cray T3D 

Application \lPI Version 

TSP 1 min 46 s +t;) 
NQCEENS ( 14) 7 min 43 s 86:3 
SOR (2048.1001) I min 57 s 803 
GACSS (2048) 1 min :37 s 946 
ASP (1024) 1 min 33 s 068 
:\BODY ( 4000) ;)2 s 498 

the other side, we know that if we deeide to use more 
daemons we have to take some processors from the ap­
plication. 

We foresee that this decision is not verv easv to 
take because it really depends on the characteristics 
of each application. However, to have a brief irlea 
about the number of daemons we have to choose we 
have conducted an experiment using the !\;BODY ap­
plication and a partition of 128 processors of the Cray 
T:3D. The message-passing version made use of all 
processors, whereas the DSMPI version had to distrib­
ute the 128 processors between the application and 
the daemons. Figure 7 shows the measured execution 
time for different DSMPI configurations: The number 
of daemons goes from 2 to 28 (right to left in Figure 
7). As can he seen, using only two or four daemons 
results in some congestion. Consequently, the DSMPI 
version performs worse than the MPI version. lJsing 
only two daemons really represents a dear bottleneck 
for the application. We had to increase the number of 
daemons and we found that the optimum number is 
118 application processes and 10 daemons. In fact, 
some DS~PI configurations (120/8 till 116/12) pre­
sented a similar execution time to the MPI version that 
used all 128 processors for the application. 

After that, we conducted another experiment with 
the NBODY application by running it on different 
partition sizes of the machine and comparing with the 

DS\1PI V l.'rsion DSMPT/\IPI 

1 min 46 s 176 0.9974 
7min41 s685 0.9953 
2 min 02 s :32:1 1.0383 
1 min 38 s 791 1.0036 
1 min 44 s :369 1.0642 

4:3 s 821 0.8:347 

MPI counterpart. Table 6 shows the res"Qlts of such 
an experiment. This time the number of simulated 
particles was 10,000. We executed the application in 
different partition sizes (8,16,32,64,128) and with a 
different number of DSMPl daemons: 1,2,2,4,10. As 
can be seen, DSMPI outperforms the MPI version of 
the :\BODY program for most of the cases. Only when 
using 128 processors is there marginal overhead of 
the DS~1PI version. We can also observe from Table 
6 that this application scales very well with the in­
crease in the number of processors. 

7 CONCLUSIONS AND FUTURE WORK 

DSMPI is a parallel library that supports the DSM 
abstraction in a portable way. It does not require any 
special feature from the operating system, uses a stan­
dard compiler, and assures full portability across all 
the platforms that support ~PI. It is guaranteed that 
DSMPI programs can be executed in almost of the 
MPI-supported systems, without changing a line in 
the source code. The library provides different schemes 
of replication, and three different models of consis­
tency. It has been shown that this feature offers in­
creased flexibility to the DSM applications. The library 
also supports two additional but important features: 
fault-tolerance and heterogeneity. 

Table 5. Amount of Data Exchanged in the DSMPI Version (Cray T3D) 

Number of Communication Data 
Application Head+ Write (Kilobytes) Kilobytes/ s 

TSP (18) 855 601 5.6 
NQUEE\'S (14) 790 204 0.4 
SOR (2048.1001) 12.000 192.000 1569.6 
GACSS (2043) 98 . .'304 .'39.'3,792 .3986.1 
ASP (1024} 16 . .'384 131.072 1255.8 
:\BODY (4000) 4,800 :17.500 356.0 
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Table 6. Performance Results for Different Partition Sizes (NBODY 10.000) 

Time YIPI 
Version 

11 min :10 s 800 
S min 45 s 890 
2 min 46 s 821 
1 min 21 s .506 

41 s 749 

Processes 
MPI/DSMPI 

8wl7w 
16w/14w 
32w/:10w 
64w/60w 

128w/118w 

Heterogeneity is quite easy to support in a strm> 
ture-based DSM svstem: The library knows about the 
format of each shared data object. and it makes use 
of the heterogeneous support provided by YIPI. In our 
opinion, the support for heterogeneity is one of the 
most appealing features of DSMPI. 

DSMPI has some facilities for application check­
pointing that can be very useful for the case of long­
running computations. For more details about the 
mechanism, the interested reader is referred to [29]. 

However, the current version of DSMPI presents 
some drawbacks: 

1. DSMPI does not automatically distribute the 
data (this is still the responsibility of the pro­
grammer). For the time being, although there 
is no automatic data distribution, we encourage 
programmers to use message passing during the 
initial data distribution phase, and then to use 
DSM for the rest of the computation. 

2. DSMPI daemons are separate processes leading 
to a wasting of resources and some inefficiency, 
but this is a problem specific to the MPI impl~­
mentations. 

3. The current implementation uses static coher­
ence protocols, i.e., the type of data objects re­
mains fixed once specified. A self-adjusting 
scheme like the one presented in [24 J would be 
an interesting scheme to provide. 

00 .,. 0 ~ "' 0 't ~ :t C:' 

§ C:' C:' 

"' ;c ;::: 00 a- .,. ~ 

§ 00 = ~ ~ s: = = = = -
WorkersfDaemons 

FIGURE 7 Changing the number of daemons for .'\BODY 
in 128 processors. 

Time DS:\1PI 
Version Difference 

10 min 48 ,; 621 -6.10% 
5 min 2'± s 888 -6.07 % 
2 min .31 s 098 -9.42% 
1 min 1;) s 480 -7.:39% 

41 s 863 +0.27% 

4. The ownership protocol implemented is based 
on a static distributed scheme. The implementa­
tion of a dynamic distributed scheme and the 
direct comparison between both would give 
some interesting results. 

We plan to overcome some of these drawbacks in 
the next release that will be implemented on MPI-2. 
We look forward to a thread-safe implementation in 
order to redesign the DSMPI daemons that will be 
implemented as multithreaded servers. When possible 
we will use shared memory to communicate with the 
application process( es) that are located in the same 
host. 

Despite these limitations, we consider that DSMPI 
is an easy-to-use and flexible library that presents an 
interesting level of efficiency and can be effectively 
used together with MPI. We do not support the ide~ 
that DSMPI is a replacement to MPI and message 
passing. DSMPI should be seen as a complement to 
MPI, allowing MPI programmers to share data within 
their applications. The possibility of integrating 
shared data and message passing is probably the most 
interesting feature of our system. The mixture of both 
programming models can be a very effective solution 
for parallel programming. 

ACKNOWLEDGMENTS 

This work herein presented was made when the first author 
was a visitor at EPCC. The visit was made possible due to 
the TRACS program. The first author thanks the TRACS 
team for their support, especially Andy SanwelL Elspeth 
Ylinty, and Brian Fletcher. The first author is supported by 
Jl\ICT on behalf of the ''Progriuna Ciencia'' (BD-2083-92-
IA). Finally. we thank the anonymous referees for their 
thoughtful comments in an earlier version of this article. 

REFERENCES 

[1] M. R. Eskicioglu, .. A comprehensive bibliography of 
distributed shared memorv." Cniversitv of 1\ew 
Orleans, Tech. Rep. TR-95-iH, Ylay 1995-. 



214 SILVA, SILVk A:\"D C:HAPPLE 

[2] S. Raina. "'Virtual shared memory: A survey of tech­
niques and systems." Lniversity of BristoL Tech Rep. 
CSTR-92-::36, Dec. 1992. 

[.3] B. :\"itzberg, V. Lo, ··Distributed shared memory: A 
survey of issues and algorithms," IEEE Comput.. vol. 
24, pp. 52-6(). August 1991. 

[4] D. Lenoski, J. Laudon. K. Gharac:horloo. A. Gupta, 
and .J. I Ienessy. "The diret:tory-based cache coherence 
protocol for the DASH multiprocessor.'· in Proc. 17th 
Annual Tnt. Symp. Computer Architecture, 1990, 
pp. 148-159. 

[5] H. Bisiani and \t Ravishankar, ·'PU_;S: A distributed 
shared-memory system .. ' ' in Proc. 17th Int. Symp. 
Computer Architecture, 1990, pp. 115-124. 

[6) J. Rothnie. ·•Overview of the KSR-1 computer system.·· 
Kendal Square Research, Waltham, MA, Tech. Rep. 
TR-9202001. 1992. 

[7] K. Li and P. Hudak, ·'Memory coherence in shared 
virtual memory systems;· ACM Trans. Comput. $ys­
tems, vol. 7. pp. 321-.359, Nov. 1989. 

[8] B. Fleish and G. Popek, "Mirage: A coherent distrib­
uted shared memory design,'' in Proc. 14th ACM 
Symp. Operating System Principles, 1989. pp. 
211-223. 

[9] L. Ramachnadran and .\1. Y. Khalidi, ''An implemen­
tation of distributed shared memory." Software Prac­
tice E:rp., vol. 21, pp. 443-464, May 1991. 

[10] M. Kaashoek, H. Bal, and A. Tanenbaum. "Orca: A 
language for parallel programming of distributed sys­
tems;' IEEE Trans. Software Eng., vol. 18. pp. 190-
205, .\-larch 1992. 

[11] J. Chase, F. Amador, E. Lazowska, H. Levy, and R. 
Littlefield, ·'The Amber system: Parallel programming 
on a network of multiprocessors," in Proc. 12th AC¥1 
Symp. Operating System Principles, Dec. 1989, pp. 
147-152. 

[12] R. Chandra, A. Gupta, and J. L. Hennessy. ''COOL: 
An object-based language for parallel programming." 
1£'EE Comput., pp. 13-26. Aug. 1994. 

[1:3] J. Carter, J. Bennet, and W. ZwaenepoeL "'Implemen­
tation and performance of Munin," in ACM Symp. 
Operating System Principles, 1991, pp. 152-164. 

[14] P. Keleher. A. Cox,S. Dwarkadas, and W. Zwaenepoel. 
"TreadMarks: Distributed shared memory on stan­
dard workstations and operating systems," in Proc. 
Winter 94 USl.N!X Conf., 1994, pp. 115-131. 

[15] W. Y. Liang, '·ADS'\IIITH: A structure-based heteroge­
neous distributed shared memory on PV'\1;' Institute 
of Computer Science 1\"ational Tsing Hua University. 
Taiwan, Tech. Rep., June 1994. 

[16] R. Bisiani and A. Forin, "Multilingual parallel pro­
gramming of heterogeneous machines,'' IEEE Trans. 
Comput., vol. pp. 930-945, August 1988. 

[17] S. Zhu, M. Stumm, K. Li, and D. Wortman, ·'Heteroge-­
neous distributed shared memory," IEEE Trans. Par­
allel Distrib. Systems, vol. 3, pp. 540-554, Sept. 1992. 

[18] R. J. Harrison, "Moving beyond message passing: Ex­
periments with a distributed-data modeL'' Argonne 
:\ational Laboratory, Argonne, IL, Tech. Rep., 1991. 

[19] D. Kranz, K. Johnson, and A. Agarwal, "Integrating 

message-passing and shared memory: Early experi­
ence,'' in Proc. 5th ACM S!GPLAV $ymp. Principles 
and Practice of Parallel Programming, 199.3. pp. 
54-(>4. 

[20] A. Cox, S. Dwarkadas, P. Keleher, and W. ZwaenepocL 
--An integrated approach to distributed shared mem­
ory;· in Proc. lst India 'Workshop on Parallel Com­
puting, 1994. 

[21] MPI Forum, '"A message passing interface standard .... 
'\1ay 1994 (available on netlib). 

[22] \1. Stumm and S. Zhou. "Algorithms implementing 
distributed shared memory," IEE'A' Comput., vol. 2::1. 
pp. 54-64, ~fay 1990. 

[23] H. Bal. \1. F. Kaashoek, and A. Tanenbaum. ''Replica­
tion techniques for speeding up parallrl applications 
on distributed systems, .. Concurrency Practice E:rp., 
vol. 4, pp. 337-355, Aug. 1992. 

[24] H. II. Wang and R. C. Chang. '"A distributed shared 
memory system with self-adjusting coherence 
scheme:· Parallel Comput., vol. 20. pp. 1007-
1025. 1994. 

[25] H. Bal and \1. F. Kaashoek. '"Object distribution in 
Orr:a using compile-time and run-time heuristics.'' in 
Proc. Con.f. Object-Oriented Programming ,~ystems, 
Languages and Applications ( OOPSLA '9.'3), 1993, 
pp. 162-177. 

[26] P. Keleher. A. Cox, and W. Zwaenepoel, "Lazy release 
consistency for software distributed shared memory." 
in Proc. 19th Annuallnt. $ymp. Computer Architec-
tures, 1992, pp. 1:3-21. , 

[27] S. Dwarkadas, P. Keleher, A. Cox, ami W. ZwaenepoeL 
"Evaluation of release consistent software distributed 
shared memory of emerging network technology," 
AOH Comput. Architecture ,Vews, vol. 21, pp. 144-
155, \hy 1993. 

[28] B. N. Bershad and \1. J. Zekauskas. '"\.fidway: Shared 
memory parallel programming with entry consistency 
for distributed memory multiprot'essors,'' Carnegi~>­
Mellon Lniversity, Pittsburgh, Tech. Rep. G\HJ-CS-
91-170, Sept. 1991. 

[29] L. \f. Silva and J. G. Silva, ··A checkpointing facility 
for an heterogeneous DSM system." Proc. ISCA Inter­
national Conference on Parallel and Distributed Com­
puting Systems, Dijon, France, pp. 554-559. Sept. 
1996. 

[30) S. Chandra, J_ Larus, and A. Rogers, "Where is time 
spent in message-passing and shared-memory pro­
grams?", in Proc. ACH ASPLOS Vi, 1994. 

[31] L. I. Kontothanassis. M. L. Scott, and R. Bianchini. 
"Lazy release consistency for hardware-coherent 
multiprocessors," Department of Computer Science. 
Cniversity of Rochester, Rochester, NY, Tech. Rep .. 
Dec. 1994. 

(:32] H. Lu, ·'Message passing versus distributed shared 
memory on networks of workstations,., Master Thesis, 
Department of Computer Science, Rice Lniversity, 
:VIay 1995. 

[33] G. A. Geist and V. S. Sunderam. ":\etwork-based con­
current computing on the PVM system, Concurrency 
Practice Exp., vol. 4, pp. 29.'~<31 1, June 1992. 



Submit your manuscripts at
http://www.hindawi.com

Computer Games 
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed 
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied 
Computational 
Intelligence and Soft 
Computing

 Advances in 

Artificial 
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in
Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer 
Engineering

Journal of

Journal of

Computer Networks 
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in 

Multimedia

 International Journal of 

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational 
Intelligence and 
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling & 
Simulation 
in Engineering
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014


