
Implementation and Performance of DSMPI

LUIS M. SILVA, 1 JOAO GABRIEL SILVA, 1 AND SIMON CHAPPLE2

1Departamento Engenharia Informatica, Universidade de Coimbra-POLO II, Vila Franca-3030 Coimbra, Portugal;
e-mail: luis@dei.uc.pt
'Quadstone Ltd., 16 Chester Street, Edinburgh, EH3 ?RA, Scotland; e-mail: src@quadstone.co.uk

ABSTRACT

Distributed shared memory has been recognized as an alternative programming model to
exploit the parallelism in distributed memory systems because it provides a higher level of
abstraction than simple message passing. DSM combines the simple programming model of
shared memory with the scalability of distributed memory machines. This article presents
DSMPI, a parallel library that runs atop of MPI and provides a DSM abstraction. It provides
an easy-to-use programming interface, is fully, portable, and supports heterogeneity. For the
sake of flexibility, it supports different coherence protocols and models of consistency. We
present some performance results taken in a network of workstations and in a Cray T3D which
show that DSMPI can be competitive with MPI for some applications. © 1997 John Wiley & Sons, Inc.

1 INTRODUCTION

Distributed shared memory (DSM) systems provide
tht> shared memory programming model on top of
distributed memory systt~ms (i.e .. distributed memory
multiprocessors or networks of workstations). DSM is
appealing because it combines the performance and
scalabilitY of distributed memory svstems with the . . .
ease of programming of shared memory machines. In
the DS~1 paradigm. processes communicate with each
other through shared variablt>s that are placed some­
where in the system, but tht> programmer does not
have to worry about wht>re the data are. With mt>ssage
passing. the programmer has to be aware of the data
movements between processes, and each process has
to know when to communicate. with whom to commu­
nicate, and what data should be sent in a message.
There are many algorithms for which the message-

RccPivPd St•ptPmlwr 1 <)();j

RPvisf'd .\larch 1996

© 1 ()()"' hy John \ViiPy & Sons. Inc.

Scientific Pro!(ramminf(. Vol. 6. pp. 201-2 J.t (19'!"7)

CCC 1 0.'>8-924'1/()7 /020201-1-t

passing implt>mentation is nontriviaL tedious. and er­
ror prorw. The DS~1 system hides the rt>mote commu­
nication from the application programmer and pro­
vides a simpler abstraction that the programmer
understands well. As a consequence. the code written
for DSM becomt>s more compact and t>asy to read than
the same code writtf'n for message passing. ~1oreover.
DSM facilitates the porting of existing st>qut>ntial codes
based on concurrent programming to distributed
memorv machines.

DSM has received much attention in the past decade
and several DSM systems have been presented in the
literature [1-3]. Basically, they can be classified in
four main approaches:

1. Hardware implementations. where tlw cache co­
herency and DSM protocols are supported by
the hardware. Examples include the DASH
multiprocessor [4]. PLES [5]. and the KSR-1
machine [6].

2. Operating system implementations. which ex­
tend the virtual memory-management mecha­
nisms to access remote data. Some relevant ex­
amplt>s are the IVY system [7]. Mirage [8]. and
Clouds [9].

202 SILVA. SILVA. A:\D CIJAPPLE

:1. Compiler implementations. where all the data
distribution and manaw~ment is implemented
by the compiler and a run-time systt>m. interest­
ing examples of languages are Orca [10 J. Amber
[11]. and COOL [12].

4. Library implementations. ln this approach, the
DSM abstraction is completely implemt>ntcd by
a run-time library that is linhd with the appli­
cation program. Systt>ms like Munin [13].
Tred\1arks [H], and ADSMITH [15] can be
included in this category.

DSMPI is also included in this latter class. It is a
parallel library implernentt>d on top of MPI whose
main aim is to provide an t>asy-to-ust> programming
interface based on the abstraction of a globally ac­
cessed shared mernorv that can be read and/ or written
by any process of an \1PI application. The most im­
portant guidelines that we took into account during
the design of the library were to

1. Assure full portability of DS\1PI program.
2. Provide an easy-to-use and flexiblt> program­

ming interface.
3. Support heterogeneous computing platforms.
4. Optimize the DS\I implementation to allow ext>­

cution efficiencv.

The library was implemented without using any
special features of the underlying operating system. It
does not require any special compileL preprocessor,
or linker. This is a key feature to obtain portability.
ln this point. we depart from the approach that was
followed by other library-level implementations of
DSM, like Munin [13] or Tread\1arks [14], because
those systems make use of some memory-management
facilities provided by the underlying operating system.
Munin, for instance, requires a special preprocessor
and a modified linker and uses the memory-manage­
ment support provided by the experimental system
where it was implemented (V Kernel). Tread\farks
offers more portability because it is a user-level library
that runs on top of l;:\IX and uses a standard L::\IX
compiler and linker. However, it still relics on the
memory page protection mechanism of L~IX to detect
accesses to the shared pages. Those features provided
by U:\IX are not available in other native operating
systems of multiprocessor machines. Those two sys­
tems have the nice advantage of providing transparent
access to the shared data, but at the expense of some
lack of portability.

In our case, we sacrificed full transparency to
achieve portability. This means that all shared data
and the read/write operations should be declared ex-

plicitly by the application programmer. The sharing
unit is a program variable or a data structure. For this
reason. DSMPI can be classified as a structure-based
DSM systt>m (like AD SMITH [15]) as oppost>d to other
DSM systems that are implemented in a page basis
and make use of the operating system virtual memory
facilities. Page-based DS\1 systems (like IVY [7] and
Mirage [3]) are prone to the problem of false sharing.
When different processes want to write different vari­
ables that are located in the same page. the system
has to send the page hack and forth between them
resulting in unnecessary coherence traffic. Munin and
Tread\1arks alleviate the problem of false sharing by
allowing multiple writers to write to the same page.
This was achieved through a complex scheme to merge
the changes at the synchronization points.

DS\1PI does not provide full transparency because
it does not make use of any memory-management
facility of the operating system. nor does it require tht>
use of any special compiler. It does not incur in the
problem of false sharing because the unit of shared
data is complett>ly related to existing objects (or data
structures) of the application. At the same timt>. it
allows the use of heterogeneous computing platforms.
Recently. it has been concluded by several researchers
that it is highly desirable to integrate hett>rogeneous
hosts into a coherent computing environment to sup­
port parallel applications. Hett>rogeneity is quit<' easy
to support in structure-based (e.g., DS\IPI and
ADSMITH [15]) or object-based DSM systems (e.g.,
Agora [16]). but rather mort> complicated in page­
based DS\1 systems. Mermaid [17] is an example of
a system that supports heterogeneous DSM: Memory
is shared in pages, but each page can only contain one
type of data. This is a enormous drawback and seems
to be the only way to support heterogeneity in page­
based DSM systems.

DSMPI is a heterogeneous DSM system. whereas
most of the other systems are limited to homogeneous
platforms. This is in fact one of the most interesting
features of our system. Because the library knows the
exact format of each shared data object (data type
and number of elements), it becomes quite straightfor­
ward to support heterogeneity by making usc of the
MPI features to support heterogeneous computing.

ADS\1TTH [15] is another DSM system that pro­
vides support for heterogeneity. It was implemented
on top of PVM and has some similarities with our
system. The main differences are that DSMPI provides
more protocols of replication and different models of
consistency and support for fault-tolerance. Finally.
DSMPI allows the coexistence of both programming
models (message passing and shared data) within the
same application. This has been considered recently

as a promising solution for parallel programming
[13-20].

Concerning absolute performance, we can expect
applications that use DSM to perform worse than their
message-passing counterparts. However, this is not
always true. It really depends on the memory-access
pattern of the application and on the way the DSM
system manages the consistency of replicated data.

We tried to optimize the accesses to shared data by
introducing three different protocols of data replica­
tion and three different models of consistency that can
be adapted to each particular application in order to
exploit its semantics. With such facilities we expect
DSM programs to be competitive with MPI programs
in terms of performance. Some performance results
collected so far corroborate this expectation.

The rest of this article is organized as follows: Sec­
tion 2 describes the general organization of DSMPI.
Section :3 presents the replication protocols provided
by the library, whereas Section 4 describes the models
of consistency that were implemented. The program­
ming interface is presented in Section 5. Section 6
shows some performance results and Section 7 con­
cludes the article.

2 DESIGN OVERVIEW

In DSMPI there are two kinds of processes: application
processes and daemon processes. The latter are re­
sponsible for the management of replicated data and
the protocols of consistency. Because the current im­
plementations of MPI [21] are not thread safe, we
had to implement the DSMPI daemons as separate
processes. This is a limitation of the current version
of DSMPI that will be relaxed as soon as there is some
thread-safe implementation of MPI. All the communi­
cation between daemons and application processes is
done by message passing. Each application process
has access to a local cache that is located in its own
address space and where it keeps the copies of repli­
cated data objects. The daemon processes maintain
the master copies of the shared objects. DSMPI main­
tains a two-level memory hierarchy: a local cache and
a remote shared memory that is located in and man­
aged by the daemons.

The number of daemons used by an application is
chosen by the programmer as well as their location,
by using a configuration file (dsmconf) that is read
by the DSMPI initialization routine. In this way, the
user has the freedom to choose the most convenient
mapping of daemon processes according to the appli­
cation needs. In practice, there is a notion of virtual
domains where each daemon is responsible for one or

TMPLEMENTATIO:\ OF DSMPI 203

more application processes. One of the daemons is
elected as the master daemon and will be responsible
for some operations that require some centralized re­
sponsibility.

The ownership of the data objects is implemented
through a static distributed scheme. While a central­
ized scheme would introduce a bottleneck, a dynamic
distributed policy would require the use of broadcasts
or forward messages to determine the current owner
of a data object [22]. In the static distributed policy.
the owner daemon of each object is chosen by the run­
time system during the startup of the application and
remains fixed during the lifetime of the application.
Each process maintains a local directory containing
the location of each object in the system. This static
distribution strategy requires less control messages
than the dynamic strategy and does not introduce the
congestion of a central server.

The mapping of data objects to daemons must he
chosen by the application programmer. When the pro­
cess creates a shared object, the assigned owner will
he the associated daemon. When correctly used, this
facility ean enhance the performance of the applica­
tions. However, if the mapping provided by the pro­
grammer is completely inadequate, it would certainly
degrade the performance of the application. The next
version of DSMPI will have an adaptive mapping strat­
egy based on run-time heuristics that will adapt the
mapping of the data objects to daemon processes ac­
cording to the observed communication patterns of
the application. Such facility could alleviate or adjust
some wrong decision taken by the application pro­
grammer. The current version of DS.VlPI is still limited
in this aspect.

3 DATA REPLICATION PROTOCOLS

The library allows the programmer to chose the repli­
cation strategy for each shared object among three
possible choices:

1. WRITE-MOSTLY

2. READ-WRITE

3. READ-MOSTLY

The first class uses a single copy of the object,
whereas the two other classes replicate the object. The
replication of data is only effectively justified if the
number of reads is higher than the number of writes.
Data replication is one way of exploiting parallelism,
because multiple reads can be executed in parallel.

The first class (WRITE-MOSTLY) represents those
objects that are frequently written. For these kinds of

204 SILVA. SILVA. A~D CI IAPPLE

objects it is not worthwhile to replicate them among
the caches of the processes. Only one copy is main­
tained by one of the daemons.

The second class (READ-WRITE) includes those
objects that have roughly the same number of read
and write requests. These objects are replicated among
the caches of the processes that perform some read
request on them. There is one daemon that keeps the
primary copy of the object and maintains a copy-set
list of all the processes that have a copy in its local
cache. A process is included in that list when it issues
a remote read request. After that and in the absence
of write operations. the process reads the object from
its local cache. That daemon is responsible for the
consistency of the replicated object. and for this class
of object the library uses a write-invalidation protocol.
This means that on a write operation all the cached
copies of the object are invalidated from the local
caches. Only the process that writes to the object main­
tains an updated copy in its local cache. When another
process wants to read or write that objecL it gets a
cache-miss. and has to fetch the object remotely from
the daemon that maintains the primary copy.

The objects that belong to the third class
(READ-MOSTLY) are also replicated among the caches
of the processes that use them. These objects have a
higher ratio of read over write requests. and in this
case the library uses a write-update protocol. All the
cached copies of the object are updated atomically
after each write operation. This scheme does not incur
in cache-misses as the write-invalidation protocol but
in the case of large size objects it requires the sending
of large size messages that carry the update notices.

Both protocols have advantages and disadvantages
[22. 23]. Invalidation-based protocols have the ad­
vantage of using smaller consistency-related messages
than update-based protocols since they only specify
the object that needs to be invalidated and not the
data itself. The write-update protocols reduce the like­
lihood of a cache-miss. The choice between these pro­
tocols depends on some factors [23] like

1. The ratio of read/write accesses to the shared
object

2. The size of the data object
3. The overhead of the update messages

The application programmer has the freedom to
choose among those three classes when it creates a
particular shared object. It has been argued in [22]
that no single algorithm for DS.\1 will be suitable for
most applications. Shared objects have different char­
acteristics, thus it is important to select the coherence

protocols that best match the application character­
istics.

The replication of data is an important feature to
improve the efficiency of the application. DSMPI is
not the only system that provides more than one class
of objects. Munin [13] is another system that provides
several classes of objects. Through the use of armota­
tions, the programmer can choose among seven differ­
ent coherence protocols tailored for different types of
data. The type of the data objects remains static once
specified. Munin cannot dynamically adjust the coher­
ence protocols to possible changes in the behavior of
the application. The same happens with the current
release of DSMPI.

The study presented in [24 J considers multiple co­
herence protocols. It presents a self-adjusting scheme
where the run-time system monitors the usage pattern
of each data object and performs a protocol adjust­
ment to the objects that have a different behavior than
was specified previously through the user annotations.
It has been proved to be a very interesting technique
with quite good results.

Another example is the ORCA language [2SJ that
has an extended compiler which determines the access
patterns of the processes to the shared objects and
forwards that information to the run-time system. that
decides which objects to replicate and where to store
single copy objects. This has been proved to result in
a better overall performance.

We plan to incorporate in the next version of DSMPI
a similar scheme based onlv on run-time heuristics.
Besides. the frontier among those three class of objects
is not always quite clear and the hints provided by
the programmer can be far from the optimum decision.
Such cases should be corrected bv the run-time svstem . .
during the execution of the program.

4 MODELS OF CONSISTENCY

In order to further improve efficiency, we have imple­
mented three different models of consistency that
apply only to READ-WRITE and READ-MOSTLY ob­
jects:

1. Sequential consistency (SC)
2. Release consistency (RC)
.3. Lazy release consistency (LRC)

The SC model was proposed in the IVY system [7].
where all the operations in shared data are performed
as if they were following a sequential order. This is the
normal model of consistency, which in some particular

cases does not perform very well in DSM systems im­
plemented on nt'tworks like Ethernet.

For such cases, the programmer can make use of
the RC modeL which in our case implements the proto­
col of the DASH multiprocessor [4 J. In this modeL it
is assumed that all the write accesses to shared objects
are protected by synchronization primitives (acquire
and release, corresponding to lock/ unlock operations).
It attempts to mask the latency of write operations by
allowing them to be performed in the background with
the computation. The process is only stalled when
executing a release. at which time it must wait for all
its previous writes to perform. However, this model
does not attempt to reduce the number of messages
exchanged. Rather, it only tries to reduce the latency
of write operations.

Another RC model has been implemented in Munin
[14], where all the write notices from a process are
buffered and only sent when the processor reaches a
synchronization release point. This does not introduce
a significant improvement over the DASH release con­
sistency protocol, and by this reason we chose the
previous one.

To reduce the message traffic, the system can use
the LRC model of consistency. DSYIPI implements a
similar protocol as proposed in the T read~farks system
[14]. This model relaxes the RC protocol by further
postponing the sending of write notices until the next
acquire. When a process writes into a replicated data
object. rather than sending update/invalidate notices
to all the processes that belong to the copy-set list, it
keeps a record of the objects that it updated. Then
the owner of the lock notifies the acquirer of which
objects have been modified, causing the acquirer to
invalidate its local copies of these objects.

The LRC schemes keeps track of the causal depend­
encies between write operations, acquires and releases.
allowing it to propagate the write notices lazily only
when they are needed. To implement this scheme we
have used the Vector Time mechanism, and the re­
sulting protocol, albeit complex. reduces mnsiderably
the number of messages and the amount of data ex­
changed on behalf of the replication protocols [26, 27].

Another relaxed memory model- entry consistency
(EC)- was proposed in the Midway system [28]. This
model requires all shared data to be explicitly associ­
ated with some synchronization variable. As a result,
when a process acquires a lock or semaphore. the EC­
based DSl\1 system only needs to propagate the updates
to the shared data associated with that lock or sema­
phore. It requires more effort from the application
programmer, but simplifies the implementation of the
consistency protocol.

IMPLEYfEl\TATIO:\ OF DSMPI 205

· DSMPI_Startup(MPI_Comm *comm);
· DSMPI_Exit(void);
· DSMPI_Decl_SO(char* name, int count, MPI_Datatype type, DSM_SO *shobj);
· DSMPI_Create_SO(DSM_SO shobj, int access_type);
· DSMPI_Read(DSM_SO shobj, void *buf, int model);
· DSMPI_ Write(DSM_SO shobj, void *buf, int model);
· DSMPI_ReadSome(DSM_SO shobj, void *buf, int count, int offset, int model);
· DSMPI_ WriteSome(DSM_SO shobj, void *buf, int count, int offset, int model);
· DSMPI_Init_Lock(int lock_id);
· DSMPI_Lock(int lock_id);
· DSMPI_UnLock(int lock_id);
· DSMPI_Init_Sem(int sem_id, int value);
· DSMPI_ Wait(int sem_id);
· DSMPI_Signal(int sem_id, int N);
· DSMPI_Barrier(int barrier_id, int N);
· DSMPI_Restart(void);
· DSMPI_pack_chkp(void *ptr, int count, MPI_Datatype dt_type);
· DSMPI_Checkpoint(void);

FIGURE 1 DSMPI primitives.

5 PROGRAMMING INTERFACE

The library provides a C interface and the programmer
calls the DSMPI functions in the same way it calls
any \fPI routine. The complete interface is shown in
Figure 1.

5.1 Initialization and Termination

To start a DSMPI application. all the processes must
invoke DSMPI_Startup () collectively. This func­
tion returns an MPI communicator that can be used
by the application processes to communicate directly
through message passing. To terminate correctly a
DSMPI application, all the processes have to call
DSMPLExi t () .

5.2 Declaration and Creation of Shared
Objects

The set of shared objects used by the application
should be declared explicitly by all the processes at
the beginning of the application through the routine
DSMPI-Decl-SO ().With this routine, the program­
mer has to specify the data type of the object and
the number of elements. It returns a shared object
identifier that should be used in anv further reference
to that object. To create one shared object. a process
has to call the DSMPI-Create () primitive. In this
calL the programmer has the freedom to choose the
replication strategy for the shared objects by indicating
the access type among the three options: WRITE_

MOSTLY. READ-WRITE, and READ-MOSTLY.

5.3 Read and Write Operations

Communication between processes is made by using
explicit read and write operations on shared objects:

206 SILVA, SILVA, A:\D CHAPPLE

The programmer makes use of DSMPI-Read () or
DSMPI-Wri te () and does not need to be aware of
the object location. An object can be written/read lo­
cally from its own cache, or remotely from its primary
copy. In the current version, the programmer has tht>
freedom to specify the required model for data consis­
tency among three choices: DSM-SC, DSM-DRC, and
DSM-LRC, where DSM_sc corresponds to sequential
consistency, DSM-DRC to the dash release consistency
protocoL and finally DSM-LRC corresponds to lazy
release consistencv.

To read or write only parts of some object. the
programmer may find the following routines very
useful: DSMPI_ReadSome () and DSMPI_Wri te
Some ().The programmer has only to specify the off­
set within the object and the number of basic elements
he wants to read (or write). These routines haw~ been
proved to be very effective to operate in large size
objects (like arrays and vectors) when the program
only wants to read or update a small part of the object.

5.4 Synchronization Primitives

To control the concurrent access to shared variables,
the programmer has to use some synchronization
primitives. DSMPI provides locks DSMPI-Lock (),
DSMPI-UnLock (), semaphores DSMPI-Wai t ().
DSMPI-Signal (), and barriers DSMPI_
Barrier () . These are the usual synchronization
primitives provided by most DSM systems.

5.5 Support for Checkpointing

The library also provides support for checkpointing
through the use of three additional primitives:
DSMPI-Restart (), DSMPI-Pack-chkp (), and
DSMPI-Checkpoint (). The first routine should be
placed inside the program after the initialization part.
DSMPI-Pack-Chkp () is used by the programmer to
specify which private data should be saved in each
checkpoint operation. The programmer is also allowed
to determine which shared data should be included or
not in the checkpoint contents. Finally, the DSMPI_
Checkpoint () routine should be called periodically
and be placed in some points that correspond to a
global consistent state of the application. More details
about the checkpointing scheme and some perfor­
mance results can be obtained in [29].

6 PERFORMANCE RESULTS

The main question to be answered is: What is the price
in terms of perfonnanee the users of DSMPl have to

pay when compared with MPI? Applications that use
any DS~1 system are expected to perform worse than
if thev use message passing directly because DSM is
implemeuted on top of message passing. However,
there are some studies [:-W] which show that DS:\11
can be competitive with message passing for many
applications. We also present some results that corrob­
orate that study.

Ideally, the number of messages exchanged in a
software implementation of DSM should be equal to
the number of messages exchanged in a message-pass­
ing implementation of the same application. This
hardly happens, bnt the DS:\'1 system should be opti­
mizPd to ad1ieve a competitive level of performance.
The performance of a DSM system is directly affected
hv several factors. such as:

1. The mernory-aeeess pattern of the application
2. The replication of shared data and the protocol

that assures its eonsistenry
3. The implementation of relaxed models of consis­

temw
4. Possible optimizations that try to rf'dnet' tlw ex­

change of DSM data through the communica­
tion network

The performance results are presented in two differ­
ent sections: Section 6.1 presents a detailed study of
the data replication protocols and the models of consis­
tency, whereas Section 6.2 presents a comparison be­
tween thf' performance of DSMPI and MPI.

6.1 Performance of Data Replication
Protocols and Models of Consistency

In this section,. we present some perfonnance results
that represent the behavior of data replication for dif­
ferent models of consistency and application charac­
teristics. The benchmark we used was a quite simple
synthetic benchmark: It is represented by six processes
that are continuously reading and writing into a shared
object that is protected by a lock. It represents the
worst-case benchmark because the procf'sses do not
perform any computation at all. They are just in an
iterative eyde reading and writing the shared object.

Each slave process executes for /V iterations. We
made s<>veral experiments by changing the ratio of
read operations over write operations (R equal to
1/1 and 3/1) and the size of the shared object (8
equal to 10, 1K, lOOK integers). The performance
results were taken on a network of Sun4 workstations
connected by a 10 Mb/s Ethernet. All the execution
times are given in seconds.

To directly compare the invalidation with the up-

I 60

~ 50
i=
c
.E 40

j
30

20

10

0

Write-Mostly Read-Write

1.\lPLEl\IE:\TATIO\ OF DS.\IPI 207

Read-Mostly

•sc (!Ill

•sc (31Il

[]DRC (III)

[]DRC (3/1)

.LRC (III)

EILRC (31I)

FIGURE 2 Performmwc results for small-size objPcts (S = 10).

date protocol. we condensed somt> of the results in the
next four figures. For instance. Figurt> 2 presents tlw
execution time to the benchmark when using a small­
size shared object (i.e .. S = 10 integers). It presents
the performance of the three models of consistency
(SC. DRC. and LRC) when considering two diffe-rent
read/writt> ratios (1/1 and :3/1).

From Figure 2 we can conclude that (i) when the
ratio of read/write operations was .3/1 it was useful
to use a rt>plication protocol (write-invalidate or write­
update) or the single-copy scheme (this is the case of
write-mostly objects): (ii) when the number of reads
is equal to the number of writes (ratio = 1/1) then
the single-copy approach is more efficient: (ii) when
the program uses small-sizt> objects. the sizt> of the
update mt>ssages is also small and the difference be­
tween the two protocols (invalidate vs. update) is not
quite visible.

The difference became more clear when we used
large-size objeets. As can be seen in Figure :3. the write­
invalidation protocol (used for READ-WRITE objects)
dearly outperformed the write-update protocol
(READ-MOSTLY objects). The writt>-invalidation pro-

'U 400 ..
.!!. .. 350
E
i= 300 c
0

'5 250 u

= w 200

150

100

50

0

tocol is prone to cache-misses while the write-update
protocol is not.

I lowever. tht>re is an important difference between
the sizt> of the invalidation messages and the messages
used by the update protocol. This difference turns out
to be relevant when the program uses large-size
objects.

In this case. if the user decides to use the writt>­
updatc protocol (i.e .. READ-.\fOSTLY) then it is im­
perative to use the LRC modeL lweause it is the only
wav to reduce the exe<~ution time closer to the write­
invalidate protocol.

After comparing write-invalidate versus write-up­
date. we want to state some conclusions about the
rwrfonnance of tlw models of consistency: DRC versus
LRC. For the sakt> of normalization with other authors
[27]. Wf' now usc a mixf'd terminology: for instance.
lazy-update means tht> system uses the LRC scht>me
and a write-update protocol of consistency. while ea­
ger-update means the DRC scheme was used with a
write-update protocol.

From the data we collectt>d in our svstem we ob­
st>rved the following:

•sc (IIIJ

•sc (31IJ

ElDRC (III)

I!IDRC (311)

.LRC (Ill)

ll!ILRC (311)

Write-Mostly Read-Write Read-Mostly

FIGURE;~ Perfonnanc!' results for large-size objects (S = lOOK).

208 SILVA. SILVA. AND CHAPP I ~E

~
120

~ 100
c
0

80 .,
~
"' 60

40

20

0

Size=10 Size=1K Size=100K

•sc (1/1)

•sc (3/1)

CIDRC (111)

I!IDRC (311)

.LRC (Ill)

IIIILRC (3/1)

FIGURE 4 Performance of models of consistency for Read-Write ohjt>cts.

1. Lazy-invalidate performs about the same as ea­
ger-invalidate.

2. Lazy-update dearly outperforms eager-update.
3. Eager-invalidate performs better than eager­

update.
4. Lazy-update sends much less data than eager­

update.

In Figure 4, we compare the three models of consis­
tency for different sizes of the object, when using a
write-in invalidate replication protocol. We can see by
Figure 4 that lazy-invalidate (LRC) performs about
the same as eager-update (DRC), independently of the
size of the object.

The same does not happen when using a write­
update protocol. The results are depicted in Figure
5, and we can see that in this case the performance
difference between lazy-update and eager-update is
quite clear. The difference becomes more evident when
increasing the size of the shared object. While the
LRC model effectively reduces the amount of data
exchanged in update messages, the DRC scheme does
not reduce the number of messages; it only tries to
reduce the write latency, but it has been shown that

400

~ 350
~
c 300
0 .,
" ~ 250

200

150

100

50

0

Size=10 Size=1K

this feature has almost no impact in the overall perfor­
mance. If we compare Figures 4 and 5 we can further
condude that eager-invalidate performs better than
eager-update.

Finally, we compare tht> amount of data exchanged
by the DSM system. and in Figure 6 is shown a direct
comparison among the three models when considering
a ratio of 3/1 and large-size objects (S = lOOK). The
application executed for 10 iterations. and the amount
of data is presented in Kilobytes. Figure 6 shows that
a write-invalidate protocol exchanges less data than
a single-copy approach or a write-update replication
protocol. The only remarkable exception was observed
for the lazy-update approach: We saw that LRC re­
duces the amount of data exchanged in update mes­
sages for about 80%.

Other similar experimental studies also present
some related conclusions: For instance, [31] presents
an LRC protocol for hardwart> coherent multiproces­
sors that outpt>rforrns an eager release consistency pro­
tocol (DASH protocol) by up to 17% on a variety of
applications. It was also concluded that delaying the
write notices until the acquire points is beneficiaL but
delaying their posting until a synchronization release

•sc (1/1)

•sc (311)

CDRC (111)

I!IDRC (3/1)

.LRC (111)

IIIILRC (3/1)

Size=100K

FIGURE 5 Performance of models of consistency for Read-.\1ostly objects.

Single­
Copy

IDvalidate·
Protocol

Update­
Protocol

FIGURE 6 Amount of data ~xchanged (R
S = lOOK).

.3/1 and

point tends to move the coherence operations into the
critical path of the application, resulting in even more
synchronization overhead. This confirms our results.

Another interesting study presented in [27] also
corroborates most of our conclusions with only a small
difference: In their case, lazy-invalidate protocols out­
perform eager-invalidate protocols. This is not visible
in our case. It probably has to do with some possible
differences in the protocol implementations. However,
in the overall, we all agree that lazy protocols can be
beneficial: The basic advantage of the lazy protocols
during lock transfers is that communication is limited
to the two synchronizing processes. A release in an
eager protocol often requires invalidate/update mes­
sages to be sent to several processes not involved in
the synchronization transfer.

6.2 Comparing DSMPI with MPI Programs

In this subsection, we evaluate the overhead of using
DSMPI against message passing. For that, we have
implemented two versions of the following six applica­
tions:

TSP

TSP solves the traveling salesman problem using a
branch-and-bound algorithm. The program follows
the master/worker programming paradigm. The mas­
ter generates the partial routes for the first three cities
and places, them in a task queue that is a shared object
globally accessed to the slave processes. After that
step, the master behaves like a slave process and works
on the problem cooperatively. Each slave grabs a task
from that queue and computes all possible full routes
based on those partial paths. There are two other
shared objects which are replicated among the slave
processes: One that keeps the minimum path and an­
other that maintains the best route. The minimum
value is frequently read and is used to prune part of
the search tree. When a slaves finds a new solution it

IMPLEME:\'TATIOI\ OF DSMPI 209

updates these two variables. The DSMPI version used
locks to protect the access to the shared objects. We
present results for the problem with 18 cities.

NQUEENS

NQuEE~S solves the placement problem of l\ queens
in an l\-size chessboard. It also follows the master/
worker programming model. Initially, one of the pro­
cesses creates a bunch of tasks through the placement
of the first two queens. Those tasks are placed in a
task queue which is a shared data structure globally
accessed to all the processes. The DSMPI version made
use of locks to protect the task queue structure and
other shared objects that keep the number of solutions
achieved. In the network of workstations we executed
the application for 13 queens, whereas for the Cray
T3D we increased the problem to 14 queens.

SOR

Successive overrelaxation is an iterative method to
solve Laplace's equation on a regular grid. The grid
is partitioned into regions, each containing a band of
rows of the global grid. Each region is assigned to a
process. The update of the points in the grid is done
by a red/black scheme. This requires two phases per
iteration: One for black points and the other for red
points. At the end of each iteration, the slave processes
have to exchange the boundaries of their data blocks
with two other neighbors. The DSYIPI program uses
a set of shared objects to exchange the row boundaries.
At the end of each iteration, all the processes perform
a global synchronization and evaluate a global test of
convergence. This application used only barriers as
synchronization variables. In the network of work­
stations, we executed the SOR application during 200
iterations in a grid of 1024 X 1024 (double precision),
while in the Cray T3D the number of iterations was
500 and for the size of the grid 2048 X 2048.

GAUSS

GAUSS solves a system of linear equations using the
method of Gauss elimination. The algorithm uses par­
tial pivoting and distributes the columns of the input
matrix among the processes in an interleaved way to
avoid imbalance problems. At each iteration of the
algorithm, one of the processes finds the pivot element
and sends the pivot column to all the other processes.
The DSMPI version used a shared object to store the
pivot column and its index. A semaphore is used to
protect the access to those shared objects. At the end
of each iteration, all the processes have to execute
a barrier synchronization. We executed the GAUSS
application in a system of 2048 equations.

210 S!L VA. SILVA. A:\D CHAPPLE

Table 1. Performance Results in a Network of Workstations

Application \IP! Version

TSP (18) ;) min 09 s 9-t 1
:\QLEE:\S (13) :2 min 57 s 12-±
SO R (1024.200!) (> min 21 ~ .'););")
GALSS (20411) 15 min 28 s .:y7<)

ASP (1024) I 0 min 0:3 s ;}()2
:\BODY (-tOOO) 10 tuin OS s 632

ASP
ASP solves the all-pairs shortest paths problem. i.e ..
it finds the length of the shortest path from any node
i to any other node j in a given graph with :\ nodes
using Floyd's algorithm. The distances between the
nodes of the graph are represt>nted in a matrix and
each slave computes part of the matrix. It is an iterativf'
algorithm. where in each iteration. one of the slaves
keeps the pivot row. It bruadca~t its value by writing
it to a shared object that is read by the otht>r slaves.
The DSMPI program uses locks to protect the access
to th:n object and a barrier at the end of each iteration.
In both environments, we executed the ASP applica­
tion with a graph of 1024 nodes.

NBODY

This program simulates the evolution of a system of
bodies under the influence of gravitational forces. Ev­
ery body is modeled as a point mass that exerts forces
on all other bodies in the system and the algorithm
calculates the forces in a thret>-dimensional dimension.
TI1is computation is the kernel of particle simulation
codes to simulate the gravitational forces between gal­
axies. We executed this application during 10 itera­
tions for 4000 particles. The original algorithm ust>d
a ring structure for communication and at the end of
eaeh iteration it used a collective operation to calculate
a minimum value among the processes. The DS:YIPI
version makes use of semaphores to synchronize the
communicating objects and a barrit>r at the end of
each iteration.

First, we measured the performance in a network
of workstations composed by four Sun4 machines con­
neeted by a 10 megabit/see Ethernet. The overhead
is represt>nted in Table 1.

For some of the applications (TSP. NQUEE:\S, and
~BODY), the overhead of the DS.\1PI version is almost
negligible (0.91 %, 1.:17%, and 0.11 %, respectively).
The DSMPI version of SOR and ASP still has an ac­
ceptable overhead (.5.89% and .5.60%), but the over­
head for the GACSS application was already considt>r­
able (18.90%). The reason for that difference is due

DS\IPI V rrsion DS.\1PI I \!PI

5 min 12 s 780 1.0091
2 min 59 s 558 1. 01 :p
6 min 44 s 0-±3 l.OS89

18 min 2:3 s 996 1.1890
10 min ;p s :376 1.05(J0
10 min 06 s :H2 1.0011

to the exknsivP use of semaphores and large-size
shared objects.

Tablt> 2 presents tlw munlwr of locks, s(~maphores,
and barriers used by each application when executed
on four processors. The GALSS application was the
application that used more synchronization mecha­
nisms (semaphores and barriers). The ASP application
was the second one on the list.

However. that number is not the only factor that
interferes with the performance of DSMPI. Other im­
portant factors are the number of messages and the
amount of data exchanged. Table 3 presents such val­
ues. In those figures, we did not take into account the
data t>xchanged during the initialization part of the
applications. The first column represents the number
of read and write requests performed during the whole
computation: the second column includes the amount
of data sent in read or write requests; and finally the
third column shows the amount of transmitted data
per second.

We ean see that the GAUSS application was the
one that exchanged more data and sent the highest
number of read/write requests. These two factors, to­
gPther with the extensive use of semaphores and bani­
PI'S. represent the reasons why the GAUSS application
did not pt>rform so well in DSYIPI.

The application that transmitted more data per sec­
ond was the SOR benchmark. Ylost of that data were
sent in large-size messages.

At the Pnd of the list there are the TSP, ~QCEEJ\"S,
and NBODY applications. These applications have a
high computation to communication ratio: They per-

Tablt> 2. Numht>r of Synchronization Operations

Application Locks Semaphores Barriers

TSP (18) 1124 2
:\QCEEI\S (13) 5:36 2
SOR (1024.2001) 402
GACSS (2048) 8162 2050
ASP (1024) 4096 1026
1\BODY (4000) 240 12

1\IPLEME:\TATIO\' OF DS\IPI 211

Table 3. Amount of Data Exchanged in the DSMPI Version

'lumlwr of
Application Read+ \!;'rite

TSP (18) 844
'IQCEE~S (1:1) (>67
SOH (1024.2001) 4.800
CAt :ss (2048) 16.:384
ASP (1024) 4.096
"JBODY (4000) 240

formed the smallest number of read and write requests
and transmitted the smallest amount of data per sec­
ond. Maybe this is why the DSMPI versions of those
applications performed as well as the MPI counter­
parts. The results presented in Table 1 are similar to
the onPs obtained in the implemPntation of the Munin
system [13 J: Those authors achieved performance
within 90-9S% of the hand-coded message-passing
implementations of the same application.

Another study presented in [32] compared the per­
formance of TreadMarks [14] with PVM [33] and
eonduded that TreadMarks performed nearly identi­
cal to PVM for programs with high computation I com­
munication ratio and large granularity of sharing. For
programs with little access, locality and a large amount
of shared data TreadMarks performed within 50% of
PVM. For the remaining applications it performed
within 75% of PVM.

The study presented in [27] shows that with current
processors, the bandwidth of the 10 megabit/ s
Ethernet becomes a bottleneck, limiting the speedup
and the efficiency of the applications. With 100
megabit/ s A TM networks, which are now appearing
on the market. those authors achieved considerable
improvements in the performance of their DSM
system .
. To corroborate the idea that the bandwidth of the

communication network is a feature of paramount
importance, we conducted a similar experiment in the
Cray T3D machine of the EPCC.* The results are
shown in Table 4. The first two applications used eight
processors: The DSMPI version used seven workers
and one daemon process, whereas the MPI counterpart
used seven workers and one master process. The re­
maining applications used 16 workers. The corre­
sponding DSMPI version used four additional proces­
sors to run the daemon processes. Additional
processors were required because the operating system

* Edinburgh Parallel Computinl(CPntrP. Scotland.

Comm. Data
(Kilobvtes) Kilobvtes/ s

297 0.9
7:3 0.4

~~8.400 95.0
6;).600 59.4
16.:384 25.7
7.500 12.:3

(lJl\ICOS) of the Cray only permits one process per
processor.

Surprisingly, three of the applications (TSP,
'JQCEE'JS, and 'JBODY) performed better when us­
ing DSMPI than using MPI: 0.26%, 0.47%, and
16.53% .. respectively. Reasons to explain such im­
provement include the replication of data through the
local caches, the reduction of synchronization that ex­
ists in message passing, and the correct mapping of
the shared objects. Nevertheless, as was seen pre­
viously. they represent the applications with the high­
est computation to communication ratio.

This set of results in the T3D suggest that when
the underlying communication system is fast we can
expect DSMPI to be directly competitive with message
passing (at least for some applications). Table 5 pres­
ents the amount of data exchanged by the DSMPI
versions, and if we compare these values with the
ones presented in Table 3 we can observe that the
communication throughput increased substantially in
the Cray T3D. The amount of data transmitted is
higher in the T3D because we executed the applica­
tions with more processors, as explained previously.

However, there is a point of concern in the DSMPI
version that runs on the T3D which is the wasting of
resources. As was said before, the L~ICOS operating
system only allows one process per processor and all
the processors are loaded with the same binary. This
implies that (i) each DSMPI daemon requires the ex­
clusive use of one processor and (ii) the application
code has to be gathered together with the daemon code
in the same executable.

With such limitation, we can raise an obvious ques­
tion: Assuming we have a fixed number of computing
processors to be used by the whole application, what
would be the optimum number of daemons?

Every DSMPI daemon is a data repository and is
responsible for a certain number of application pro­
cesses. This means that if we use only a small number
of daemons for a large number of application pro­
cesses, it may result in some daemon congestion. On

212 SILVA. SILVA. A:\D CHAPPLE

Table 4. Performance Results in the Cray T3D

Application \lPI Version

TSP 1 min 46 s +t;)
NQCEENS (14) 7 min 43 s 86:3
SOR (2048.1001) I min 57 s 803
GACSS (2048) 1 min :37 s 946
ASP (1024) 1 min 33 s 068
:\BODY (4000) ;)2 s 498

the other side, we know that if we deeide to use more
daemons we have to take some processors from the ap­
plication.

We foresee that this decision is not verv easv to
take because it really depends on the characteristics
of each application. However, to have a brief irlea
about the number of daemons we have to choose we
have conducted an experiment using the !\;BODY ap­
plication and a partition of 128 processors of the Cray
T:3D. The message-passing version made use of all
processors, whereas the DSMPI version had to distrib­
ute the 128 processors between the application and
the daemons. Figure 7 shows the measured execution
time for different DSMPI configurations: The number
of daemons goes from 2 to 28 (right to left in Figure
7). As can he seen, using only two or four daemons
results in some congestion. Consequently, the DSMPI
version performs worse than the MPI version. lJsing
only two daemons really represents a dear bottleneck
for the application. We had to increase the number of
daemons and we found that the optimum number is
118 application processes and 10 daemons. In fact,
some DS~PI configurations (120/8 till 116/12) pre­
sented a similar execution time to the MPI version that
used all 128 processors for the application.

After that, we conducted another experiment with
the NBODY application by running it on different
partition sizes of the machine and comparing with the

DS\1PI V l.'rsion DSMPT/\IPI

1 min 46 s 176 0.9974
7min41 s685 0.9953
2 min 02 s :32:1 1.0383
1 min 38 s 791 1.0036
1 min 44 s :369 1.0642

4:3 s 821 0.8:347

MPI counterpart. Table 6 shows the res"Qlts of such
an experiment. This time the number of simulated
particles was 10,000. We executed the application in
different partition sizes (8,16,32,64,128) and with a
different number of DSMPl daemons: 1,2,2,4,10. As
can be seen, DSMPI outperforms the MPI version of
the :\BODY program for most of the cases. Only when
using 128 processors is there marginal overhead of
the DS~1PI version. We can also observe from Table
6 that this application scales very well with the in­
crease in the number of processors.

7 CONCLUSIONS AND FUTURE WORK

DSMPI is a parallel library that supports the DSM
abstraction in a portable way. It does not require any
special feature from the operating system, uses a stan­
dard compiler, and assures full portability across all
the platforms that support ~PI. It is guaranteed that
DSMPI programs can be executed in almost of the
MPI-supported systems, without changing a line in
the source code. The library provides different schemes
of replication, and three different models of consis­
tency. It has been shown that this feature offers in­
creased flexibility to the DSM applications. The library
also supports two additional but important features:
fault-tolerance and heterogeneity.

Table 5. Amount of Data Exchanged in the DSMPI Version (Cray T3D)

Number of Communication Data
Application Head+ Write (Kilobytes) Kilobytes/ s

TSP (18) 855 601 5.6
NQUEE\'S (14) 790 204 0.4
SOR (2048.1001) 12.000 192.000 1569.6
GACSS (2043) 98 . .'304 .'39.'3,792 .3986.1
ASP (1024} 16 . .'384 131.072 1255.8
:\BODY (4000) 4,800 :17.500 356.0

L\1PLEYIK\T ATI01\ OF DSMPI 213

Table 6. Performance Results for Different Partition Sizes (NBODY 10.000)

Time YIPI
Version

11 min :10 s 800
S min 45 s 890
2 min 46 s 821
1 min 21 s .506

41 s 749

Processes
MPI/DSMPI

8wl7w
16w/14w
32w/:10w
64w/60w

128w/118w

Heterogeneity is quite easy to support in a strm>
ture-based DSM svstem: The library knows about the
format of each shared data object. and it makes use
of the heterogeneous support provided by YIPI. In our
opinion, the support for heterogeneity is one of the
most appealing features of DSMPI.

DSMPI has some facilities for application check­
pointing that can be very useful for the case of long­
running computations. For more details about the
mechanism, the interested reader is referred to [29].

However, the current version of DSMPI presents
some drawbacks:

1. DSMPI does not automatically distribute the
data (this is still the responsibility of the pro­
grammer). For the time being, although there
is no automatic data distribution, we encourage
programmers to use message passing during the
initial data distribution phase, and then to use
DSM for the rest of the computation.

2. DSMPI daemons are separate processes leading
to a wasting of resources and some inefficiency,
but this is a problem specific to the MPI impl~­
mentations.

3. The current implementation uses static coher­
ence protocols, i.e., the type of data objects re­
mains fixed once specified. A self-adjusting
scheme like the one presented in [24 J would be
an interesting scheme to provide.

00 .,. 0 ~ "' 0 't ~ :t C:'

§ C:' C:'

"' ;c ;::: 00 a- .,. ~

§ 00 = ~ ~ s: = = = = -
WorkersfDaemons

FIGURE 7 Changing the number of daemons for .'\BODY
in 128 processors.

Time DS:\1PI
Version Difference

10 min 48 ,; 621 -6.10%
5 min 2'± s 888 -6.07 %
2 min .31 s 098 -9.42%
1 min 1;) s 480 -7.:39%

41 s 863 +0.27%

4. The ownership protocol implemented is based
on a static distributed scheme. The implementa­
tion of a dynamic distributed scheme and the
direct comparison between both would give
some interesting results.

We plan to overcome some of these drawbacks in
the next release that will be implemented on MPI-2.
We look forward to a thread-safe implementation in
order to redesign the DSMPI daemons that will be
implemented as multithreaded servers. When possible
we will use shared memory to communicate with the
application process(es) that are located in the same
host.

Despite these limitations, we consider that DSMPI
is an easy-to-use and flexible library that presents an
interesting level of efficiency and can be effectively
used together with MPI. We do not support the ide~
that DSMPI is a replacement to MPI and message
passing. DSMPI should be seen as a complement to
MPI, allowing MPI programmers to share data within
their applications. The possibility of integrating
shared data and message passing is probably the most
interesting feature of our system. The mixture of both
programming models can be a very effective solution
for parallel programming.

ACKNOWLEDGMENTS

This work herein presented was made when the first author
was a visitor at EPCC. The visit was made possible due to
the TRACS program. The first author thanks the TRACS
team for their support, especially Andy SanwelL Elspeth
Ylinty, and Brian Fletcher. The first author is supported by
Jl\ICT on behalf of the ''Progriuna Ciencia'' (BD-2083-92-
IA). Finally. we thank the anonymous referees for their
thoughtful comments in an earlier version of this article.

REFERENCES

[1] M. R. Eskicioglu, .. A comprehensive bibliography of
distributed shared memorv." Cniversitv of 1\ew
Orleans, Tech. Rep. TR-95-iH, Ylay 1995-.

214 SILVA, SILVk A:\"D C:HAPPLE

[2] S. Raina. "'Virtual shared memory: A survey of tech­
niques and systems." Lniversity of BristoL Tech Rep.
CSTR-92-::36, Dec. 1992.

[.3] B. :\"itzberg, V. Lo, ··Distributed shared memory: A
survey of issues and algorithms," IEEE Comput.. vol.
24, pp. 52-6(). August 1991.

[4] D. Lenoski, J. Laudon. K. Gharac:horloo. A. Gupta,
and .J. I Ienessy. "The diret:tory-based cache coherence
protocol for the DASH multiprocessor.'· in Proc. 17th
Annual Tnt. Symp. Computer Architecture, 1990,
pp. 148-159.

[5] H. Bisiani and \t Ravishankar, ·'PU_;S: A distributed
shared-memory system .. ' ' in Proc. 17th Int. Symp.
Computer Architecture, 1990, pp. 115-124.

[6) J. Rothnie. ·•Overview of the KSR-1 computer system.··
Kendal Square Research, Waltham, MA, Tech. Rep.
TR-9202001. 1992.

[7] K. Li and P. Hudak, ·'Memory coherence in shared
virtual memory systems;· ACM Trans. Comput. $ys­
tems, vol. 7. pp. 321-.359, Nov. 1989.

[8] B. Fleish and G. Popek, "Mirage: A coherent distrib­
uted shared memory design,'' in Proc. 14th ACM
Symp. Operating System Principles, 1989. pp.
211-223.

[9] L. Ramachnadran and .\1. Y. Khalidi, ''An implemen­
tation of distributed shared memory." Software Prac­
tice E:rp., vol. 21, pp. 443-464, May 1991.

[10] M. Kaashoek, H. Bal, and A. Tanenbaum. "Orca: A
language for parallel programming of distributed sys­
tems;' IEEE Trans. Software Eng., vol. 18. pp. 190-
205, .\-larch 1992.

[11] J. Chase, F. Amador, E. Lazowska, H. Levy, and R.
Littlefield, ·'The Amber system: Parallel programming
on a network of multiprocessors," in Proc. 12th AC¥1
Symp. Operating System Principles, Dec. 1989, pp.
147-152.

[12] R. Chandra, A. Gupta, and J. L. Hennessy. ''COOL:
An object-based language for parallel programming."
1£'EE Comput., pp. 13-26. Aug. 1994.

[1:3] J. Carter, J. Bennet, and W. ZwaenepoeL "'Implemen­
tation and performance of Munin," in ACM Symp.
Operating System Principles, 1991, pp. 152-164.

[14] P. Keleher. A. Cox,S. Dwarkadas, and W. Zwaenepoel.
"TreadMarks: Distributed shared memory on stan­
dard workstations and operating systems," in Proc.
Winter 94 USl.N!X Conf., 1994, pp. 115-131.

[15] W. Y. Liang, '·ADS'\IIITH: A structure-based heteroge­
neous distributed shared memory on PV'\1;' Institute
of Computer Science 1\"ational Tsing Hua University.
Taiwan, Tech. Rep., June 1994.

[16] R. Bisiani and A. Forin, "Multilingual parallel pro­
gramming of heterogeneous machines,'' IEEE Trans.
Comput., vol. pp. 930-945, August 1988.

[17] S. Zhu, M. Stumm, K. Li, and D. Wortman, ·'Heteroge-­
neous distributed shared memory," IEEE Trans. Par­
allel Distrib. Systems, vol. 3, pp. 540-554, Sept. 1992.

[18] R. J. Harrison, "Moving beyond message passing: Ex­
periments with a distributed-data modeL'' Argonne
:\ational Laboratory, Argonne, IL, Tech. Rep., 1991.

[19] D. Kranz, K. Johnson, and A. Agarwal, "Integrating

message-passing and shared memory: Early experi­
ence,'' in Proc. 5th ACM S!GPLAV $ymp. Principles
and Practice of Parallel Programming, 199.3. pp.
54-(>4.

[20] A. Cox, S. Dwarkadas, P. Keleher, and W. ZwaenepocL
--An integrated approach to distributed shared mem­
ory;· in Proc. lst India 'Workshop on Parallel Com­
puting, 1994.

[21] MPI Forum, '"A message passing interface standard
'\1ay 1994 (available on netlib).

[22] \1. Stumm and S. Zhou. "Algorithms implementing
distributed shared memory," IEE'A' Comput., vol. 2::1.
pp. 54-64, ~fay 1990.

[23] H. Bal. \1. F. Kaashoek, and A. Tanenbaum. ''Replica­
tion techniques for speeding up parallrl applications
on distributed systems, .. Concurrency Practice E:rp.,
vol. 4, pp. 337-355, Aug. 1992.

[24] H. II. Wang and R. C. Chang. '"A distributed shared
memory system with self-adjusting coherence
scheme:· Parallel Comput., vol. 20. pp. 1007-
1025. 1994.

[25] H. Bal and \1. F. Kaashoek. '"Object distribution in
Orr:a using compile-time and run-time heuristics.'' in
Proc. Con.f. Object-Oriented Programming ,~ystems,
Languages and Applications (OOPSLA '9.'3), 1993,
pp. 162-177.

[26] P. Keleher. A. Cox, and W. Zwaenepoel, "Lazy release
consistency for software distributed shared memory."
in Proc. 19th Annuallnt. $ymp. Computer Architec-
tures, 1992, pp. 1:3-21. ,

[27] S. Dwarkadas, P. Keleher, A. Cox, ami W. ZwaenepoeL
"Evaluation of release consistent software distributed
shared memory of emerging network technology,"
AOH Comput. Architecture ,Vews, vol. 21, pp. 144-
155, \hy 1993.

[28] B. N. Bershad and \1. J. Zekauskas. '"\.fidway: Shared
memory parallel programming with entry consistency
for distributed memory multiprot'essors,'' Carnegi~>­
Mellon Lniversity, Pittsburgh, Tech. Rep. G\HJ-CS-
91-170, Sept. 1991.

[29] L. \f. Silva and J. G. Silva, ··A checkpointing facility
for an heterogeneous DSM system." Proc. ISCA Inter­
national Conference on Parallel and Distributed Com­
puting Systems, Dijon, France, pp. 554-559. Sept.
1996.

[30) S. Chandra, J_ Larus, and A. Rogers, "Where is time
spent in message-passing and shared-memory pro­
grams?", in Proc. ACH ASPLOS Vi, 1994.

[31] L. I. Kontothanassis. M. L. Scott, and R. Bianchini.
"Lazy release consistency for hardware-coherent
multiprocessors," Department of Computer Science.
Cniversity of Rochester, Rochester, NY, Tech. Rep ..
Dec. 1994.

(:32] H. Lu, ·'Message passing versus distributed shared
memory on networks of workstations,., Master Thesis,
Department of Computer Science, Rice Lniversity,
:VIay 1995.

[33] G. A. Geist and V. S. Sunderam. ":\etwork-based con­
current computing on the PVM system, Concurrency
Practice Exp., vol. 4, pp. 29.'~<31 1, June 1992.

Submit your manuscripts at
http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in
Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

