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Abstract. In this work, we investigate the possibility of near-field transport
using an array of tilted metallic wires. It is demonstrated that consistent with the
results reported in Belov et al (2006 Phys. Rev. B 73 033108), which describes
subwavelength imaging by an array of metallic wires normal to the interface, the
setup considered here may enable the transport of the subwavelength details of
a given source through an oblique projection. The array of tilted wires permits
the transfer of the electric field component parallel to the wires at the image
plane, even when there is no electric field normal to interface, and thus the
manipulation of other near-field components (i.e. other wave polarizations) that
are not accessible with the usual setup of wires normal to the interface. The
emergence of negative refraction due to the extreme anisotropy of structured
material is also demonstrated.
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1. Introduction

The effects of diffraction imply that the resolution of classical imaging devices is restricted by
the wavelength of light. Conventional lenses cannot resolve two objects that are spaced by a
distance inferior to half-wavelength of radiation, because they only operate with the far field of
the source, formed by propagating spatial harmonics. The subwavelength information is related
to the near-field of the source and is inaccessible by conventional imaging systems, because it
is associated with evanescent spatial harmonics that decay exponentially in free space.

During this decade, several approaches were proposed to achieve subwavelength imaging
in different frequency regimes [1]–[7]. In particular, it was demonstrated that an array of
perfectly conducting wires (wire medium lens) may provide subwavelength resolution up to
infrared frequencies [8]–[14]. The operation of such a device is based on the transformation
of evanescent harmonics into propagating waves inside a metamaterial slab. This regime is
designated by canalization, and becomes possible if the crystal has a flat isofrequency contour
and its thickness is equal to an integer number of half-wavelengths (Fabry–Perot condition).

In this paper we study the near-field transport by a wire medium slab formed by tilted wires.
The motivation for tilting the wires is that the typical configuration of the wire medium lens
(with wires normal to the interface) is polarization sensitive and enables subwavelength imaging
of only p-polarized waves (magnetic field is parallel to the interface). Here, we demonstrate that
due to the increased degrees of freedom, an array of tilted wires may enhance the imaging
properties of s-polarized waves (electric field is parallel to interface), and thus may enable the
transport of electromagnetic field components inaccessible with the setup of [9]. It is suggested
that by mechanically rotating the proposed system, so that three different measurements are
made, it may be possible to reconstruct all the components of the electromagnetic field. Finally,
we show that due to the extreme anisotropy of the material the proposed structure may enable
the emergence of negative refraction for some angles of incidence.

The paper is organized as follows. In section 2 we describe a homogenization approach
that models the scattering of waves by the wire medium slab (formed by tilted wires). In
section 3, the transmission and reflection properties of the metamaterial slab are studied for two
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different configurations, using both homogenization theory and full-wave simulations. Next, in
section 4 we demonstrate that the proposed system may enable the transport of the near-field
components in different scenarios and for different source polarizations. In section 5, we discuss
the emergence of negative refraction. Finally, in section 6 the conclusions are drawn.

In this work the fields are assumed monochromatic with time dependence ejωt .

2. Homogenization model

The structure considered here consists of a set of parallel metallic wires with finite length
arranged in a square lattice with period a, as illustrated in figure 1(a). The wires have radius
rw and are oriented along the direction ûα = sin αûy + cos αûz (forming an angle α with the
z-direction) (figure 1(b)), where ûy and ûz are the unit vectors along the coordinate axes. The
wires are embedded in a dielectric with relative permittivity εh.

The wire medium is characterized by the following dielectric function [15]:

¯̄εeff = εh(ûx ûx + ûpûp + εeff,ααûαûα) , εeff,αα(ω, kα) = 1 −
β2

p

εh(ω/c)2 − k2
α

, (1)

where the unit vector ûp = cos αûy − sin αûz is normal to the wires (figure 1(b)), k0 = ω/c is
the wave number in free space and c is the speed of light in vacuum, kα = k · uα is the projection
of the wave vector k = (kx , ky, kz) onto the direction of the wires, and βp is the plasma wave
number, which only depends on the lattice period a and on the radius of the wires rw [15],

β2
p =

2π/a2

ln(a/2πrw) + 0.5275
. (2)

The wire medium supports three different electromagnetic modes (transverse electromagnetic
(TEM) mode, transverse electric (TE) mode and transverse magnetic (TM) mode) [15], in
contrast with the usual uniaxial crystals which only support two different plane waves (ordinary
and extraordinary waves) [16, 17]. This property is explained by the strong spatial dispersion
effects that characterize the wire medium at any frequency, particularly in the long-wavelength
limit. The dispersion characteristic for the electromagnetic modes can be found in [18, 19], and
the electric field polarization is as follows [18, 19]:

E ∼
k‖∣∣k‖

∣∣e−jk·r (TEM mode), (3)

E ∼
k‖ × ûα∣∣k‖ × ûα

∣∣e−jk·r (TE mode), (4)

E ∼

(
k‖

√
εh(ω/c)

+
εh(ω/c)2

− k2

εh(ω/c)2εeff,αα − k2

kα
√

εh(ω/c)
ûα

)
e−jk·r (TM mode), (5)

where k‖ = k − k · ûαûα. The magnetic field is given by

H =
1

ηh

k
√

εh(ω/c)
× E, (6)

where ηh represents the impedance of the host medium.
Next, we briefly sketch the homogenization approach that is used to characterize the

reflection and transmission properties of the structure of figure 1 for two different configurations
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Figure 1. Panel (a) shows the tilted square array of metallic wires. Panels (b)
and (c) show the two different cuts of the wire medium substrate. The wires
lie in planes parallel to the yoz plane. Panel (b) Configuration I: plane of
incidence is the yoz plane and the incident wave has TM-z polarization [kinc

=

(0, ky, k inc
z ), Hinc

= H ûx ]. Panel (c) Configuration II: plane of incidence is
the xoz plane and the incident wave has TE-z polarization [kinc

=

(kx , 0, k inc
z ), Einc

= E ûy].

(figure 1(b) and (c)). The metamaterial slab is formed by wires with length L (the thickness of
the slab is T = L cos α). In the first configuration, it is assumed that the incident plane wave has
wave vector kinc

= (0, ky, k inc
z ) and that the magnetic field is parallel to the interface (the wave

is TM with respect to the z-direction). In the second configuration, the incoming wave
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propagates in the xoz plane with kinc
= (kx , 0, k inc

z ), and the incident electric field is parallel
to the interface (the wave is TE with respect to the z-direction).

The total electromagnetic fields for z < 0 are such that:

E = Eince−jkinc
·r +

(
ρcoEref

co + ρcrEref
cr

)
e−jkref

·r, (7a)

H = Hince−jkinc
·r +

(
ρcoHref

co + ρcrHref
cr

)
e−jkref

·r, (7b)

where ρco is the reflection coefficient for the co-polarized wave, ρcr is the reflection coefficient
for the cross-polarized wave and Einc, Hinc, Eref

co , Href
co , Eref

cr and Href
cr are the incident, reflected co-

polarized and reflected cross-polarized, electric and magnetic fields, respectively. The reflected
co-polarized and cross-polarized electric fields for each configuration are defined by the
following equations:

Eref
co,config.I = Eref

cr,config.II =
c

ω

(
ûz × kref

|ûz × kref|

)
× kref, (8a)

Eref
cr, config.I = Eref

co,config .II =
ûz × kref

|ûz × kref|
, (8b)

where kref is the wave vector associated with the reflected wave. The formulas for the co-
polarized and cross-polarized magnetic fields are readily obtained from the Maxwell equations.

Inside the wire medium slab, 0 < z < T , the fields can be written in terms of the TE, TM
and TEM modes supported by the bulk wire medium. Hence, we have the expansions

E = A+
TEE+

TEe−jk+
TE·r + A−

TEE−

TEe−jk−

TE·r + A+
TME+

TMe−jk+
TM·r + A−

TME−

TMe−jk−

TM·r

+ A+
TEME+

TEMe−jk+
TEM·r + A−

TEME−

TEMe−jk−

TEM·r, (9a)

H = A+
TEH+

TEe−jk+
TE·r + A−

TEH−

TEe−jk−

TE·r + A+
TMH+

TMe−jk+
TM·r + A−

TMH−

TMe−jk−

TM·r

+ A+
TEMH+

TEMe−jk+
TEM·r + A−

TEMH−

TEMe−jk−

TEM·r, (9b)

where A±

TE,TM,TEM are the unknown amplitudes of the excited modes, k±

TE,TM,TEM are the wave
vectors of the excited modes [18, 19], E±

TE,TM,TEM and H±

TE,TM,TEM are defined consistently with
equations (3)–(6).

Finally, for z > T , the transmitted fields are of the form

E =
(
tcoEtr

co + tcrEtr
cr

)
e−jktr

·r, (10a)

H =
(
tcoHtr

co + tcrHtr
cr

)
e−jktr

·r, (10b)

where tco is the transmission coefficient for the co-polarized wave, tcr is the transmission
coefficient for the cross-polarized wave, and Etr

co, Htr
co, Etr

cr and Htr
cr are the transmitted

co-polarized and transmitted cross-polarized electric and magnetic fields, respectively. The
transmitted co-polarized and cross-polarized electric fields are defined by expressions analogous
to equation (8), with kref replaced by ktr (the wave vector associated with the transmitted wave).

Due to the effects of spatial dispersion [20] (evidenced by the existence of three
electromagnetic modes), the usual boundary conditions (continuity of the tangential components
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of the electromagnetic field) are insufficient to determine the reflection coefficients ρco and
ρcr, the transmission coefficients tco and tcr and the six coefficients A±

TE,TM,TEM. An additional
boundary condition (ABC) is required at the interface between the homogenized wire medium
and the dielectric (z = 0 and T ). In [18, 19], it was proven that the normal component of the
electric field must be continuous at both interfaces, i.e.

E · ûz

∣∣
air side

= εhE · ûz

∣∣
wire medium side

. (11)

Imposing this ABC and the classical boundary conditions, we obtain a 10 × 10 linear system
that can be solved numerically with respect to the unknowns.

When the metallic wires are densely packed (limit a/L → 0 with rw/a fixed, a being the
lattice constant and L the length of the wires) it is possible to use an alternative model to
characterize the electromagnetic response of the wire medium. It was shown in [19] that in such
circumstances the effect of the TM mode is negligible because its attenuation constant is very
large. Thus, the wave propagation in the metamaterial slab can be described solely in terms of
the TE and of the TEM modes. Specifically, it was proven in [19] that in the limit a/L → 0
the wire medium behaves as a material with extreme anisotropy with dielectric function of the
form [19]

¯̄εeff = εh(ûx ûx + ûpûp + ∞ûαûα), (12)

i.e. the permittivity along the direction of the wire axes is infinitely large. Within the framework
of model (12), the material may be regarded as a local material (spatial dispersion effects are
negligible when a/L → 0), and thus ABCs are not required.

In the next section, we will compare the transmission and reflection characteristics obtained
by using the spatially dispersive homogenization model, with those obtained by using the less
rigorous extreme anisotropy model (12), and also with full-wave simulations.

3. Reflection and transmission characteristics

It was shown in previous works [8]–[10] that an array of metallic wires normal to the interface
enables the transport of the subwavelength details associated with the component of electric field
parallel to the wires (i.e. normal to the interface). The subwavelength information associated
with the remaining Cartesian components of the field is not imaged. Consequently, the setup
introduced in [9] is polarization sensitive, being transparent to the s-polarized waves (electric
field parallel to the interface). Our objective is to study if by tilting the wires it is still possible
to capture and propagate the component of the electric field parallel to the wires. In particular,
we want to show that by tilting the wires along a suitable direction of space (so that the electric
field has a nontrivial projection onto the wires), it is possible to transport the subwavelength
information associated with s-polarized waves.

In order to analyze the response of a metamaterial slab when illuminated by p-polarized
waves (figure 1(b)) and s-polarized-waves (figure 1(c)), we define the reflection and
transmission coefficients relative to the direction parallel to the wires ûα:

ρeff =

(
ρcoEref

co + ρcrEref
cr

)
· ûα

Einc · ûα

, (13)

teff =

(
tcoEtr

co + tcrEtr
cr

)
· ûα

Einc · ûα

. (14)
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Next, for the two configurations of figure 1, we study the dependence of the reflection and
transmission coefficients on the direction of the incoming wave, using both the homogenization
model and full-wave simulations obtained with the electromagnetic simulator CST Studio
SuiteTM 2008 [21].

3.1. Configuration I

First we consider configuration I (figure 1(b)) for which the incoming wave propagates in the
yoz plane and is TM-z polarized (p-polarization). It is simple to verify that in this case the
cross-polarized fields vanish and consequently the cross-polarized coefficients are zero. Hence,
equations (13) and (14) reduce to

ρeff =

(
ρcoEref

co

)
· ûα

Einc · ûα

, (15)

teff =

(
tcoEtr

co

)
· ûα

Einc · ûα

. (16)

In figure 2 the amplitudes of the reflection and transmission coefficients are depicted as
a function of the (normalized) transverse component of the wave vector ky (ky = k0 sin θi for a
propagating incoming plane wave, θi being the angle of incidence). The solid lines are associated
with the nonlocal homogenization model, the dashed lines with the extreme anisotropy model,
whereas the discrete symbols were obtained with CST Microwave Studio. Clearly, the results
for the reflection and transmission coefficients obtained using the three different approaches
concur relatively well.

Similar to the case of a slab with wires normal to interface [10], it is seen that when
k0L = π , i.e. when the Fabry–Perot condition is verified, the absolute value of the transmission
coefficient in the direction parallel to the wires (teff) is very close to unity (even for evanescent
waves), confirming that the tilted wire medium (figure 1) operates in a canalization regime and
is capable of transporting the electric field component parallel to wires, even when the wires are
tilted. The extreme anisotropy condition corresponds to the ideal situation: at the Fabry–Perot
resonance the effective reflection coefficient vanishes, whereas the amplitude of the transmission
coefficient is unity for all spatial harmonics (including evanescent waves).

It should be noted that the Fabry–Perot resonance is determined by the length of the wires
L , and not by the thickness of the slab T (T = L cos α). For grazing incidence, i.e. when ky ≈ k0,
the effective transmission coefficient exhibits an abrupt decay, and the canalization effect is not
observed. It is also interesting to note that when the length of the slab is slightly larger than the
Fabry–Perot resonance length the effect of reflections is weaker.

Naturally, the behavior of the effective reflection and transmission coefficients is sensitive
to variations in the frequency of operation (or equivalently to variations in the electrical length of
the wires). In figure 3, the effective reflection and transmission coefficients are shown for wires
with length larger than half-wavelength. In the same manner, as for the usual configuration of the
wire medium slab [8]–[10], the transmission coefficient for evanescent waves becomes weaker,
except in the vicinity of the point ky = k0 where some resonance is visible.

On the other hand, for wire lengths smaller than half-wavelength (or equivalently for
frequencies below the Fabry–Perot resonance), the transmission and reflection coefficients are
greatly enhanced by the excitation of guided modes propagating along the y-direction of the
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Figure 2. Amplitude of the reflection (panel (a)) and transmission (panel
(b)) coefficients as a function of the normalized transverse wave vector ky

for configuration I (figure 1(b)), for a fixed normalized frequency k0a = 0.1
and different wire lengths L . The permittivity of the dielectric substrate is
εh = 1, the radius of the wires rw = 0.05a and the tilt angle is α = 45◦. Solid
lines: nonlocal homogenization model. Dashed lines: extreme anisotropy model.
Discrete symbols: numerical results obtained with CST Microwave Studio [21].
Notice that the reflection coefficient calculated using the extreme anisotropy
model is exactly zero at the Fabry–Perot resonance (k0L = π), and thus the
corresponding curve in panel (a) is coincident with the horizontal axis.

slab, as can be seen in figure 4, consistent with the results of [10]. It may be noticed in
figures 2–4 that the effective reflection coefficient exhibits resonant behavior at ky = 0.7k0,
more specifically when the direction of the incoming wave is parallel to the wires. In this case
it is clear that Einc

· ûα = 0 and thus the co-polarized reflection coefficient vanishes ρco = 0.
However, ρeff is different from zero because both the numerator and denominator of formula (15)
vanish. This explains the abrupt variations in ρeff seen in figures 2–4 around ky = 0.7k0, which
evidently have little physical meaning since the actual reflected electric field is negligible.
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Figure 3. Amplitude of the reflection (green) and transmission (blue) coefficients
as a function of the normalized transverse component of the wave vector ky

for configuration I, for a fixed normalized frequency k0a = 0.1a and different
wire lengths L . The permittivity of the dielectric substrate is εh = 1, the radius
of the wires is rw = 0.05a and the tilt angle is α = 45◦. Solid lines: nonlocal
homogenization model. Discrete symbols: numerical results obtained with CST
Microwave Studio [21].
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Figure 4. Similar to figure 3 but for length of wires below the Fabry–Perot
condition.

An interesting property of the system under study is that the phase of the transmission
coefficient may vary significantly with the angle of incidence. This is shown in figure 5, where
the phase of the transmission coefficient is depicted for different tilt angles α. For straight
wires, α = 0◦, the phase is practically equal to −180◦ for the whole range of ky . However,
when α is decreased and the wires are tilted, the phase of the effective transmission coefficient
varies linearly with ky/k0, with a slope k0L sin α (assuming without loss of generality that
the host material is air). This property can be understood by noting that the metallic wires
perform pixel-to-pixel imaging, and therefore the transfer function of the system (determined
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Figure 5. Phase of the transmission coefficient as a function of the
normalized transverse component of the wave vector ky for different tilt angles.
Configuration I, with permittivity of the dielectric substrate εh = 1, radius of
the wires rw = 0.05a and L = λ/2. Solid lines: nonlocal homogenization model.
Discrete symbols: numerical results obtained with CST Microwave Studio [21].
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Figure 6. Pixel-to-pixel imaging by a generic wire.

by the transmission coefficient) should correspond to a spatial shift of the image at the output
plane f (y) → f (y − y0) (see figure 6), with y0 = L sin α. But a spatial shift corresponds in the
spectral (Fourier) domain to a phase shift,

f (y − y0)
F

→ f̃
(
ky

)
ejky y0 (17)

and this justifies the results of figure 5, and the fact that the phase of the transfer function
strongly depends on ky .

3.2. Configuration II

Next, we study the reflection and transmission properties of the tilted wire medium for
configuration II (figure 1(c)). Now the incoming wave propagates in the xoz plane and is
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Figure 7. Amplitude of the reflection (panel (a)) and transmission (panel
(b)) coefficients as a function of the normalized transverse wave vector kx

for configuration II (figure 1(c)), for a fixed normalized frequency k0a = 0.1
and different wire lengths L . The permittivity of the dielectric substrate is
εh = 1, the radius of the wires is rw = 0.05a and the tilt angle is α = 45◦.
Solid lines: nonlocal homogenization model. Dashed lines: extreme anisotropy
model. Discrete symbols: numerical results obtained with CST Microwave
Studio [21]. Notice that the reflection coefficient calculated using the extreme
anisotropy model is exactly zero at the Fabry–Perot resonance (k0L = π) and
thus the corresponding curve in panel (a) is coincident with the horizontal axis.

TE-z polarized (s-polarization). In this configuration the cross components of the reflection
and transmission coefficients (ρcr and tcr, respectively) may be different from zero.

We calculated the reflection and transmission coefficients as a function of the transverse
component of the wave vector, kx (kx = k0 sin θi for a propagating incoming plane wave) using
the nonlocal homogenization model, the extreme anisotropy model (equation (12)), and full-
wave simulations [21]. The obtained results for the amplitude of the reflection and transmission
coefficients are represented in figure 7(a) and (b), respectively, for configurations where the
length of the wires is close to the Fabry–Perot resonance length (L = λ0/2). As in section 3.1,

New Journal of Physics 11 (2009) 083023 (http://www.njp.org/)

http://www.njp.org/


12

fo
edutil p

m
A

ffe
dna

t
ffe

0/xk k

0 1.12k L

0 1.16k L

0 1.08k L

0 1.12k L

0 1.08k L

Figure 8. Amplitude of the reflection (green) and transmission (blue) coefficients
as a function of the normalized transverse component of the wave vector kx

for configuration II, for a fixed normalized frequency k0a = 0.1 and different
wire lengths L . The permittivity of the dielectric substrate is εh = 1, the radius
of the wires is rw = 0.05a and the tilt angle is α = 45◦. Solid lines: nonlocal
homogenization model. Discrete symbols: numerical results obtained with CST
Microwave Studio [21].

also here the agreement between the coefficients calculated using the three different methods is
very reasonable.

In figure 7 it is seen that the behavior of the reflection and transmission coefficients
for this configuration is similar to that of configuration I (see figure 2). In particular, when
the Fabry–Perot condition is verified (k0L = π), the amplitude of the transmission coefficient
(for the electric field component parallel to the wires) is still close to unity for all spatial
harmonics (including evanescent harmonics). Thus, these results confirm, indeed, that even
though for this configuration there is only electric field parallel to interface, it is still possible to
operate the tilted wire medium in the canalization regime [8], and transport the component of
the electric near-field parallel to the wires.

As in configuration I, the extreme anisotropy condition (achievable in the limit of very
densely packed wires, a/L → 0) corresponds to the ideal situation where at the Fabry–Perot
resonance |teff| = 1 and ρeff ≈ 0 for all spatial harmonics.

As in section 3.1, the response of the system may change when the wires length (or
the frequency of operation) is altered. For k0L > π (figure 8) the amplitude of the effective
reflection coefficient tends to increase with frequency, whereas the amplitude of the effective
transmission coefficient tends to decrease. In the vicinity of ky ≈ k0 resonances arise due to
the propagation of guided modes along the x-direction of the slab [10].

The effect of guided modes in the reflection and transmission characteristics is particularly
important for wire lengths below half-wavelength (k0L < π), originating sharp resonances in
the transfer functions (figure 9), and causing the selective amplification of spatial harmonics.
As discussed in [10] the effect of these guided modes in imaging applications may be critical
since they tend to distort the image created by the source with high-frequency noise.
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Figure 9. Similar to figure 8 but for length of wires below the Fabry–Perot
condition.

4. Near-field transport

In order to verify the results discussed in the previous section and evaluate the potentials of
near-field transport by the tilted wire medium, several numerical simulations of the structure
were performed for both configurations (figure 1(b) and (c)). These results are presented and
discussed next.

4.1. Configuration I

In the first example, we consider a setup based on configuration I (figure 1(b)), and formed
by an array of 20 × 20 metallic wires tilted by an angle of 45◦. This structure was illuminated
by the wave diffracted by a perfectly conducting screen with two narrow slits (figure 10)
under plane wave incidence (Einc

= E ûy, Hinc
= H ûx ). The wave diffracted by each slit mimics

closely the field radiated by a magnetic line current directed along the direction of the slit [13],
and thus the polarization of the wave that impinges on the wire medium slab is predominantly
transverse magnetic (TM-z; p-polarization). Using CST Microwave Studio [21] we have
calculated the y- and z-components of the electric field (i.e. the components with nontrivial
projections along the wires direction), at the input and output planes. The x-component of the
electric field is negligible for this configuration.

The length of the wires (L = 15 cm) is tuned so that the first Fabry–Perot condition occurs
at 1 GHz. By scaling the structure, it is possible to obtain similar results at terahertz and
infrared frequencies [13]. The results of the simulation at the design frequency are presented
in figure 11.

It is clear from figure 11(a) and (b) that the imaging properties of the y-component of the
electric field are excellent and that the two slits are perfectly resolved in the image plane. An
identical situation occurs with the z-component of the electric field as can be seen in figure 11(c)
and (d). Therefore, consistently with the homogenization model, the tilted wire medium enables,
indeed, the transfer of the subwavelength details of the image from the front interface to the back
interface, through an oblique projection.
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Figure 10. Geometry of the finite-sized slab of tilted wires. The image is created
by a metallic screen with two narrow slits that is illuminated by a plane wave:
(a) perspective view, and (b) top view. The wires stand in free space (εh = 1),
the length of the wires L = 15 cm and are tilted by an angle α = 45◦, the period
of the lattice a = 1 cm, and the radius of the wires rw = 0.5 mm. The screen is
at a distance of h = 8 mm from the front interface of the slab, and the slits have
dimensions l1 = 10 cm and l2 = 2 mm. The slits are separated by ds = 7.07 cm.

At frequencies lower than the design frequency (figure 11(e) and (f) for 0.95 GHz), and
consistent with the results of [10], the imaging properties are deteriorated, and the two slits
are hardly discernible, even at the front interface (figure 11(e)). This happens due to strong
reflections that occur for frequencies below the design frequency, mainly due to the excitation
of guided modes (see figure 4).

At higher frequencies, e.g. 1.05 GHz (figure 11(g) and (h)), the imaging properties are
still very good and subwavelength imaging is still achieved. This could be expected from the
results of figures 2 and 3. For frequencies higher than 1.05 GHz it is expected that the imaging
properties will be progressively deteriorated due to the decrease of the transmission coefficient
for high-frequency spatial harmonics (figure 3).

4.2. Configuration II

In the second example, we consider a setup related to configuration II (figure 1(c)), with a
source that radiates s-polarized waves (electric field perpendicular to the plane of incidence).
Specifically, we study a problem where two electric line sources fed by currents in opposition
of phase (and infinitely extended along the y-direction) are placed at a distance d1 from the
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Figure 11. Distribution of electric field (V m−1): (a), (c), (e), (g) at the source
plane, at distance h/2 = 0.4a from both the front interface and source; (b), (d),
(f), (h) at the image plane, at distance h/2 = 0.4a from the back interface; (a) and
(b) absolute value of the y-component of the electric field |Ey| at 1 GHz; (c) and
(d) absolute value of the z-component of the electric field |Ez| at 1 GHz; (e) and
(f) absolute value of the y-component of the electric field |Ey| at 0.95 GHz; (g)
and (h) absolute value of the y-component of the electric field |Ey| at 1.05 GHz.

front interface (see the inset of figure 12). The electric field radiated by the line sources is of the
form Ey = E0

1
4j(H (2)

0 (k0ρ1) − H (2)

0 (k0ρ2)), where E0 is some constant that depends on the line

current, ρ1 and ρ2 are the radial distances relative to the sources, and H (2)

0 is the Hankel function
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Figure 12. Amplitude of the normalized electric field component parallel to the
metallic wires at the image and source planes. The inset represents the geometry
of the problem: two electric line sources are fed by currents in opposition
of phase. The line sources are placed at a distance d1 above the tilted wire
medium slab and are separated by a distance ds . The source and image planes
are located at a distance d1/2 from the front and back interfaces, respectively.
The width of the structure in the x-direction is W . Parameters of the problem:
(i) (left-hand side panel, x < 0) L = λ0/2, a = L/(10π), rw = 0.05a, εh = 1,
α = 45◦, d1 = 0.016λ0, ds = 0.2λ0 and W ≈ 0.8λ0 (50 rows of wires in the
x-direction); (ii) (right-hand side panel, x > 0) L = λ0/2, a = L/(5π), rw =

0.05a, εh = 1, α = 45◦, d1 = 0.032λ0, ds = 0.2λ0 and W ≈ 0.95λ0 (30 rows of
wires in the x-direction). Solid black line: perfect imaging (i.e. field profile at
the source plane when the array of wires is removed); dashed lines: field profile
at the source plane; solid colored lines: field profile at the image plane. The
vertical black dashed lines represent the position of the sources.

of second kind and order zero. Using the method of moments (MoM), taking into account in
this manner all the fine details of the microstructure of the artificial material, we have calculated
the electric field profile along the direction of the wires, at the source and image planes. In the
MoM simulation the artificial material slab was assumed periodic along the y-direction, and
finite along the x-direction with width W .

In figure 12 the amplitude of the normalized electric field along the direction of the wires
(Eα) is represented at the source and image planes for a metamaterial slab formed by tilted
wires (α = 45

◦

) with length L = λ0/2 (Fabry–Perot resonance), and different lattice constants.
In both simulations ((i) and (ii)) we only show the field profiles for one of the sources, since it is
obvious that by symmetry |Eα| is an even function of x . The field profiles on the left-hand side
panel of figure 12 (x < 0) correspond to a simulation with a = L/(10π). It is seen that, despite
the distance between the sources being as small as ds = 0.2λ0, the field profiles at image plane
(solid line) and source plane (dashed line) are similar except in the close vicinity of the line
sources, where the field amplitude has a steep variation. Such abrupt variations of the near-field
are associated with very high-frequency spatial harmonics. It is expected that if the density of
wires is increased the transported field will mimic more closely the field at the source plane.
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Figure 13. Amplitude of the normalized electric field component parallel to the
metallic wires at the image and source planes. Parameters of the problem: (i)
(left-hand side panel, x < 0) L = 0.54λ0, a = L/(10.8π), rw = 0.05a, εh = 1,
α = 45◦, d1 = 0.016λ0, ds = 0.2λ0 and W ≈ 0.8λ0 (50 rows of wires in the
x-direction); (ii) (right-hand side panel, x > 0) L = 0.45λ0, a = L/(9π), rw =

0.05a, εh = 1, α = 45◦, d1 = 0.016λ0, ds = 0.2λ0 and W ≈ 0.8λ0 (50 rows of
wires in the x-direction). The legend is as in figure 12.

Indeed, it is well known that the resolution of the considered system is approximately equal to
the lattice constant [10, 13].

The field profiles on the right-hand side panel of figure 12 correspond to a metamaterial
slab with a lower density of wires (a = L/(5π)) (the distance between the two sources and
the front interface is also doubled as compared to the first scenario). As could be expected, the
imaging quality is slightly deteriorated, consistent with the fact that a is increased, and thus the
resolution of the system is worsened.

The described full-wave results confirm the findings of section 3, and further demonstrate
that a tilted wires slab (figure 1) can indeed transfer the subwavelength details of the source,
restoring the component of the electric field parallel to the wires at the image plane, even when
there is no electric field normal to the input interface. Notice that in the present configuration
the sources radiate s-polarized waves.

At the source plane, it is possible to detect a slight decrease of the amplitude of the electric
field Eα in comparison to the situation in which the array of tilted wires is removed. This is
completely consistent with the results of section 3 (figure 7(a)), and is explained by the fact that
the amplitude of the reflection coefficient ρeff may be significant at the considered frequency
(k0L = π ⇒ L = λ0/2), while its phase is equal to π for the evanescent spatial harmonics,
which causes the incident and reflected fields to interact destructively.

In figure 13 we represent the profile of Eα for the situations where the dimensions of the
tilted wire medium slab are not tuned according to the Fabry–Perot resonance, i.e. the length
of wires is slightly larger (left-hand side panel) and smaller (right-hand side panel) than half-
wavelength.

When L = 0.54λ0 (x < 0) the sources become more difficult to distinguish at the image
plane, consistent with the results of figure 8, which predict a decrease in the amplitude of the
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Figure 14. |Eα|
2 for an array of tilted wires with the same geometry as in

figure 12: (a) same parameters as figure 12(i) and (b) same parameters as
figure 13(ii).

transmission coefficient. As discussed before, if the length of the wires is further increased it is
expected that the imaging properties are progressively deteriorated and eventually the sources
may become indistinguishable. At the source plane, the amplitude of the electric field is higher
than at L = 0.5λ0 (figure 12(i)). This is also consistent with reflection characteristic of the
system (see figures 7(a) and (8)), given that the amplitude of ρeff for L = 0.54λ0 is lower than
for L = 0.5λ0.

When L = 0.45λ0 (x > 0) the imaging properties are very poor, and the sources are hardly
perceptible. Clearly, the field profile is completely corrupted by high-frequency noise. As
discussed in section 3, the reason for this phenomenon is related to the excitation of the guided
modes propagating along the x-direction of the slab, which cause the amplification of some
spatial harmonics (see figure 9).

In order to further characterize the imaging properties of the system, we depict in figure 14
density plots of |Eα|

2 in the xoz plane, for the same configurations as in figure 12(i) (left-hand
side panel) and figure 13(ii) (right-hand side panel). Notice that inside the metamaterial slab
the component of the electric field parallel to the metallic wires practically vanishes, Eα ≈ 0,
consistent with the boundary condition observed by the electric field on the surface of a good
conductor.

Figure 14(a) shows that when the wire length is tuned according to the Fabry–Perot
condition, L = 0.5λ0, the two sources are clearly resolved at the image plane. On the other
hand, when L = 0.45λ0 (figure 14(b)), the near-field has many secondary peaks, associated
with guided modes, as discussed before.

The results of this section suggest a very interesting possibility [22]. Indeed, since for a
fixed orientation of the metallic wires it is possible to transport and restore the electric field
component parallel to the wires (i.e. the component Eα = E · ûα), then by rotating the wire
medium lens along the z-axis it is possible to change the orientation of the wires (ûα), and
consequently we can capture the projection of the electric field along a different direction of
space. In particular, if the slab of tilted wires is sequentially rotated three times by 120◦ around
the z-axis, we can measure the projections of the electric field along three directions of space that
are not coplanar. Since the three-dimensional space is completely determined by three linearly
independent vectors, it is possible to reconstruct all the near-field Cartesian components of the
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electric field at the image plane by making only three measurements [22]. The magnetic field
may then be easily computed from the electric field using the Stratton–Chu formulas [23]. This
approach clearly requires that the wires are tilted with respect to the interface, and cannot be
implemented using the standard configuration of [9].

5. Negative refraction

One interesting feature of the studied metamaterial is that it may enable an unusual and peculiar
form of negative refraction for certain angles of incidence. Indeed, since the array of metallic
wires performs pixel-to-pixel imaging, it follows that for any angle of incidence θi the angle
of transmission inside the metamaterial slab is invariant and equal to θt = α. Such a property
should be clear from the geometry of the metamaterial slab (figure 1(b)), and may also be shown
to be fully consistent with the extreme anisotropy model (12), as detailed below. The property
θt = α clearly implies that for a certain range of incident angles, the group velocity (which is
parallel to the Poynting vector) will suffer negative refraction. In fact, it is well known that
negative refraction does not require a negative index [1], [24]–[27] and may be obtained using
anisotropic materials [28].

To demonstrate this property we have studied the transmission of a Gaussian beam
through a metamaterial slab. The plane of incidence is the yoz plane and the incoming wave
is TM-z polarized. In the simulations the artificial material slab is assumed periodic along
the x-direction, and finite along the y-direction (geometry is similar to that of figure 1(b)). The
width of the structure is taken equal to W ≈ 9λ0 (80 rows of wires spaced by

√
2a along the

y-direction). The Gaussian beam is characterized by the following magnetic field distribution

Hx ≈ H0 exp(−jk0z′) exp[−y′2/(w2
0 − 2jz′/k0)]/

√
1 − 2jz′/k0w

2
0, where k0 represents the wave

number, w0 is the beam waist and y′ and z′ are associated with a coordinate system such that z′

varies along the direction of propagation of the beam.
As explained in [19] and discussed in section 2, when the wires are densely packed

(a/L → 0) the TEM mode becomes the dominant propagating mode and the material is
characterized by extreme anisotropy. The dispersion characteristic for the TEM mode is given
by [19]:

k · ûα = ±
ω

c

√
εh, i.e kz cos α + ky sin α = ±

ω

c

√
εh. (18)

Thus, the isofrequency contours correspond to two planes normal to the direction of the wires
ûα, as represented in figure 15(a). The Poynting vector is normal to the isofrequency contours,
and thus it follows that the transmitted angle is necessarily such that θt = α, as anticipated in
the beginning of this section.

Using the method of moments, we have calculated the field transmitted across the
metamaterial slab for θi = 45◦ (figure 15(c)) and for θi = 60◦ (figure 15(d)), assuming that the
Gaussian beam is characterized by 2w0 = 4λ0. The density plots of the squared amplitude of
the electric field |E|

2 are depicted in figure 15(c) and (d), clearly demonstrating the emergence
of negative refraction. In figure 15(c) there is no reflected wave and consequently the system is
well matched to free space. Indeed, our simulations suggest that for incident beams propagating
along a direction perpendicular to ûα the system is always perfectly matched, even if the length
of the wires does not coincide with multiples of λ0/2 (Fabry–Perot condition). For other angles
of incidence the effects of reflection may not be negligible, as illustrated in figure 15(d).

New Journal of Physics 11 (2009) 083023 (http://www.njp.org/)

http://www.njp.org/


20

 

tk  

tS  

z  

y  x  

,i ik S  

t  

i 

,i ik S  

zk  

yk  

t  

i 

tk  
tS  

(a)                                  (b) 

(c)                                  (d)  0 0.25 0.5 0.75 1

0/y

0/z  

0 0.25 0.5 0.75 1

0/y  

0/z

Figure 15. (a) The isofrequency contour of the TEM mode supported by the tilted
wire medium with εh = 1, α = −45◦ and rw = 0.05a (green lines), as well as the
isofrequency contour in the air region (gray circle). The transmitted wave vector
kt (blue arrow) is determined by the conservation of the tangential component
of the wave vector ky , whereas the Poynting vector St (red solid arrow) is
normal to the isofrequency curves and oriented along the increasing frequencies.
(b) Schematic representation of negative refraction of a TM-z incident wave
incident on the tilted wire medium. (c) and (d) Plots of the squared amplitude
of the electric field. (c) The length of the wires is L = 2λ0, the lattice period is
a = L/(8π) and the Gaussian beam is incident in the slab with an angle θi = 45

◦

.
(d) The length of the wires is L = 1.875λ0, the lattice period is a = 2L/(15π)

and the Gaussian beam is incident in the slab with an angle θi = 60◦.

Obviously, the refraction properties depend on the orientation of the wires. Negative
refraction of the Poynting vector only occurs when the angle of incidence verifies θiα < 0,
otherwise the Poynting vector (group velocity) suffers positive refraction.

6. Conclusion

In this paper, we studied the potentials of near-field transport by an array of tilted wires. It was
shown, as a generalization of the results of [8]–[14], that the considered system may enable
the transport of the subwavelength details associated with electric field component parallel to
the wires through an oblique projection. Such property implies that it is possible to image the
fields created by s-polarized sources, for which the electric field is parallel to the interfaces
of the structure. This is an important advance since the standard configuration of [9] does not
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interact with s-polarized waves. It was suggested that by mechanically rotating the array of
metallic wires successively by 120◦, it may be possible to retrieve all the electric field Cartesian
components, independent of the wave polarization. Finally, it was discussed that due to the
extreme anisotropy of the wire medium, it may be possible to observe negative refraction in
some circumstances. It is expected that the described results may be useful in sensing and
imaging at terahertz and infrared frequencies, where metals may still behave as good conductors.
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