
            

PAPER

Uniaxial indefinite material formed by helical-
shaped wires
To cite this article: Tiago A Morgado et al 2012 New J. Phys. 14 063002

 

View the article online for updates and enhancements.

You may also like
Generalized additional boundary
conditions for wire media
Stanislav I Maslovski, Tiago A Morgado,
Mário G Silveirinha et al.

-

Boundary conditions for quadrupolar
metamaterials
Mário G Silveirinha

-

Additional boundary conditions for
nonconnected wire media
Mário G Silveirinha

-

This content was downloaded from IP address 193.137.201.233 on 10/10/2022 at 10:16

https://doi.org/10.1088/1367-2630/14/6/063002
https://iopscience.iop.org/article/10.1088/1367-2630/12/11/113047
https://iopscience.iop.org/article/10.1088/1367-2630/12/11/113047
https://iopscience.iop.org/article/10.1088/1367-2630/16/8/083042
https://iopscience.iop.org/article/10.1088/1367-2630/16/8/083042
https://iopscience.iop.org/article/10.1088/1367-2630/11/11/113016
https://iopscience.iop.org/article/10.1088/1367-2630/11/11/113016


T h e  o p e n – a c c e s s  j o u r n a l  f o r  p h y s i c s

New Journal of Physics

Uniaxial indefinite material formed by
helical-shaped wires

Tiago A Morgado, Stanislav I Maslovski and Mário G Silveirinha
Department of Electrical Engineering, Instituto de Telecomunicações,
University of Coimbra, 3030 Coimbra, Portugal
E-mail: tiago.morgado@co.it.pt, stas@co.it.pt and mario.silveirinha@co.it.pt

New Journal of Physics 14 (2012) 063002 (23pp)
Received 18 January 2012
Published 1 June 2012
Online at http://www.njp.org/
doi:10.1088/1367-2630/14/6/063002

Abstract. We demonstrate that a racemic array of helical-shaped metallic wires
may be regarded as a local uniaxial epsilon-negative (ENG) material even when
the metal conductivity is very large (e.g. in the microwave regime) and, as a
result, enables strong negative refraction over a wide frequency range. Based
on the negative refraction effect, we demonstrate partial focusing of p-polarized
electromagnetic radiation using a planar lens formed by such a composite
material. The results reported here are supported by full-wave simulations as
well as by analytical calculations based on effective medium theory.
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1. Introduction

The phenomenon of negative refraction continues to attract much interest in the scientific
community owing to its intriguing and counterintuitive properties. This unusual effect may be
observed, for example, when light is refracted at interfaces between conventional dielectrics
and materials with simultaneously negative permittivity and permeability (negative index
of refraction), and was described by Veselago in 1968 [1]. However, since there are no
naturally available materials with a negative isotropic index of refraction, Veselago’s work
was consigned to oblivion until the end of the last century, when a study published by
Pendry [2]—which resulted in the subsequent development of artificially designed materials
(metamaterials) [3]—brought it into the limelight. Since then, the negative refraction of
electromagnetic waves using artificially structured materials with negative index of refraction
has been experimentally verified for microwaves [4] and more recently in the optical
domain [5]. Nevertheless, this class of artificial media is strongly sensitive to losses and material
dispersion [6, 7], and hence, alternative possibilities to achieve negative refraction have been
studied, namely using photonic crystals [8, 9], non-local materials [10, 11], chiral media [12–14]
and even nonlinear phase-conjugating metamaterials [15–17].

Yet another robust solution for achieving negative refraction is through the use of
anisotropic indefinite media, such that the principal components of the permittivity and/or
permeability tensors have different signs [18–25]. In particular, the negative refraction effect
based on an indefinite anisotropic material was recently demonstrated in the optical domain
using an array of metallic nanorods [24, 25]. Due to the large kinetic inductance associated
with the electron plasma in metals in the optical regime, this structure may indeed behave as an
indefinite medium, such that the effective permittivity along the direction parallel to the wires is
negative, whereas the permittivity is positive along directions perpendicular to the wires. Hence,
such a configuration may provide broadband all-angle negative refraction and partial focusing
of p-polarized waves [24, 25]. However, at lower frequencies (microwave and low infrared
frequencies), the effect of kinetic inductance disappears owing to the large conductivity of the
metals, so that the array of nanowires acquires a strongly spatially dispersive response [26] and
behaves very differently from in the optical domain. Thus, negative refraction is hindered in the
indicated spectral range.

Despite these difficulties, it has been proposed [27] that at microwave and terahertz
frequencies the spatial dispersion effects can be tamed simply by increasing either the
capacitance or the inductance of the wires, without resorting directly to the transport properties
of electrons in metals. The capacitance may be increased by attaching metallic plates to the
wires, whereas the inductance may be increased either by coating the wires with a magnetic
material or by loading the wires with bulk inductors. The first possibility was further developed
in several works [28–32], and a strong negative refraction effect in a wire medium with attached
metallic patches was numerically demonstrated in [33, 34]. Even though very effective, this
approach has a drawback: attaching plates to the wires may dramatically increase the transverse
permittivity of the medium, which is undesirable because it deteriorates the impedance matching
with the external medium and, consequently, reduces the available bandwidth. On the other
hand, the second approach based on wires coated with a magnetic material is impractical, due
to the difficulty in finding materials with the desired magnetic response.

Here, we suggest an alternative way to increase the inductance of the wires, and thereby
suppress the spatial dispersion effects, which is based on shaping the geometry of the wires: we
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Figure 1. Geometry of the non-bianisotropic (racemic) helical wire medium:
a periodic array of metallic helices arranged in a rectangular lattice (2a along
the x-direction and a along the y-direction). Each unit cell includes two helices
with opposite handedness, i.e. a right-handed helix and a left-handed helix. (a)
Perspective view. (b) Top view. R represents the radius of the helices and rw is
the wire radius. Without loss of generality, it is assumed that the helices stand in
free-space.

consider a metamaterial formed by a racemic mixture of left- and right-handed long metallic
helices. Such a solution may provide a smaller value for the transverse effective permittivity
compared with the approach based on attaching plates to the wires and consequently a broader
bandwidth of operation. In this work, we investigate in detail the macroscopic response of
an array of long metallic helices, and study the possibility of negative refraction and partial
focusing. It is shown that under certain conditions, the material may behave as an indefinite
uniaxial medium with a local response at microwave and low infrared frequencies.

This paper is organized as follows. In section 2, the geometry of the metamaterial is
described and a homogenization model that characterizes its electromagnetic response is
introduced. Then, in section 3 the scattering of electromagnetic waves by the metamaterial
is characterized using the developed homogenization model. In particular, the possibility of
suppressing the spatial dispersion effects is discussed. In section 4, the emergence of negative
refraction at the interface of the metamaterial with air is investigated. In section 5, we study
the focusing of the fields radiated by a magnetic line source by a flat slab of the metamaterial.
Finally, in section 6 conclusions are drawn.

In this work, we assume that the fields are monochromatic and that the time dependence
is ejωt .

2. Homogenization model of a racemic helical wire medium

We consider an array of long metallic helices with the axis along the z-direction (figure 1).
Related structures have been considered previously in the context of bianisotropic arrays [35],
broadband circular polarizers [36–38] and wave plates [39]. In contrast, here we study the
possibility of using helical wires to suppress the spatial dispersion effects that are inherent to
wire media at low frequencies (microwave and low infrared frequencies). Moreover, the helical
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wire medium considered here is different from that considered in [37–39]. Indeed, whereas
in [37–39] the helices have fixed handedness, here the helices are of two types: right-handed
and left-handed helices are alternately packed in a lattice, in such a manner that the unit cell is
rectangular (dimension 2a along the x-direction and a along the y-direction) and includes two
helices with opposite handedness within the same cell (figure 1). In other words, this structure
is a racemic mixture of left- and right-handed inclusions. The radius of the helices is R and
the wire’s radius is rw. The metamaterial is obtained by a periodic repetition of the unit cell
defined by the primitive vectors a1 = 2a ûx , a2 = aûy and a3 = |p| ûz, where p represents the
helix pitch. Since the unit cell has inversion symmetry, the response of the metamaterial is non-
bianisotropic.

In what follows, we obtain an effective medium model for the metamaterial of figure 1. Our
derivation is based on the results of [40], wherein the effective response of the artificial medium
formed by an array of perfectly electrical conducting (PEC) helical-shaped wires (helices) with
a fixed handedness was characterized. The model of [40] is based on a non-local (spatially
dispersive) dielectric function ε(ω, k), where ω is the frequency and k is the wave vector, that
fully characterizes the macroscopic response of the metamaterial [41]. In the same work [40],
analytical expressions for the conventional material parameters (effective permittivity, effective
permeability and magnetoelectric coupling parameters) are also derived. These parameters are
linked to the dielectric function ε(ω, k) as follows [40, 41]:
¯̄ε

ε0
(ω, k) = εr − ξ · µr

−1
· ζ +

(
ξ · µr

−1
×

k
k0

−
k
k0

× µr
−1

· ζ

)
+

k
k0

×

(
µr

−1
− I

)
×

k
k0

, (1)

where εr is the relative permittivity tensor, µr is the relative permeability tensor, ξ and ζ are
dimensionless parameters that characterize the magnetoelectric coupling, k0 = ω

√
ε0µ0 is the

free-space wave number, and I is the identity dyadic. Explicit formulae for these material
parameters can be found in [40] (the formulae for the permittivity and permeability are also
provided below).

We want to make a connection between the effective medium parameters derived in [40]
and those associated with the geometry of figure 1 where the helices have no fixed handedness.
Our theory is based on the hypothesis that the parameters εr and µr have the same expression,
independent of the handedness of the helices in the array being fixed (as in [40]) or not fixed (as
in this work). Hence, from the theory of [40], equation (20), it is possible to write that

εr = εt

(
ûx ûx + ûyûy

)
+ εzzûzûz,

εzz = 1 −
1

k2
0

β2
p1

−
k2

z

β2
p2

+
A2k2

01 + A2k2
0

k2
0

β2
p1

−
k2
z

β2
p2

 (
k2

0

β2
p1

−
k2

z

β2
p2

)2

, (2)

µr = ûx ûx + ûyûy + µzzûzûz,

µzz =
1

1 + A2k2
0

k2
0

β2
p1

−
k2
z

β2
p2

. (3)
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where A = pR2/p and

εt = 1 +
(π R)2

Vcell

1

C1
, (4)

βp1 =

√
(2πp)2

C0 p2Vcell + 8C1π 2 R2Vcell
, (5)

βp2 =

√
(2π)2

C0Vcell
. (6)

Vcell = a2
|p| is the volume of the unit cell, and C0 and C1 are parameters that only depend on the

geometry of the artificial material and whose definitions may be found in [40]. The parameters
C0 and C1 need to be evaluated numerically [40].

On the other hand, because in reciprocal media the magnetoelectric coupling (gyrotropy)
can only be observed in structures without a center of symmetry [42], it should be clear that

ξ = −ζ
T

= 0 in the case that the helices have no fixed handedness, as assumed here.
As one can see, similar to the configuration with helices with a fixed handedness [40], the

permittivity and permeability tensors of the metamaterial with suppressed bianisotropic effects
are spatially dispersive. Indeed, equations (2) and (3) depend explicitly on kz (z-component of
the wave vector). Nevertheless, in the case that βp2 is much greater than kz (βp2 � kz), the term
k2

z /β
2
p2 may be discarded and hence εr and µr become exclusively frequency dependent, which

means that the electromagnetic response of the metamaterial is local. In particular, the dielectric
tensor is anisotropic and indefinite. This issue will be further discussed later in this paper.

3. Requirements for a quasi-local response

The goal of this section is to study the dispersion characteristics of the plane waves supported
by the racemic helical wire medium (figure 1). Since equations (2) and (3) establish that the
effective medium behaves as a uniaxial non-bianisotropic magneto-dielectric material with the
optical axis along the z-direction, it follows that the plane waves can be classified as either
transverse magnetic to z (TM-z)-polarized waves (or p-polarized waves) or transverse electric
to z (TE-z)-polarized incident waves (or s-polarized waves). As is well known, the dispersion of
the TM and TE waves in such a material is given by [43]

k2
0εt −

εt

εzz
k2

t − k2
z = 0 (TM waves) (7)

k2
0εt −

1

µzz
k2

t − k2
z = 0 (TE waves) (8)

where k2
t = k2

x + k2
y , εt is defined by equation (4) and εzz and µzz are given by equations (2)

and (3). It can be shown that due to the spatial dispersion effects both the characteristic
equations (7) and (8) reduce to a second-order degree polynomial in the variables k2

0 and k2
z .

Thus, the homogenization model predicts that the structured medium supports four independent
plane waves, i.e. for a fixed frequency it supports four independent eigenmodes: two associated
with TM-polarized waves and two associated with TE-polarized waves.
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Figure 2. βp2 as a function of the normalized helix pitch p for different
geometries, calculated using equation (6). (i) R = 0.4a and rw = 0.05a; (ii) R =

0.4a and rw = 0.01a; (iii) R = 0.2a and rw = 0.01a.

In this paper, we are only interested in the case of propagation in the xoz-plane (ky = 0)
with the magnetic field along the y-direction (TM-z polarized wave). In such circumstances,
the dispersion characteristic of the plane waves supported by the effective medium reduces to a
polynomial equation of second degree in the variable k2

0

−
(

A2β2
p1β

2
p2εt + β2

p2εt

)
k4

0 +
(

A2k2
xβ

2
p1β

2
p2εt + A2k2

z β
2
p1β

2
p2 + k2

xβ
2
p2εt

(9)
+k2

z β
2
p1εt + k2

z β
2
p2 + β2

p1β
2
p2εt

)
k2

0 − k2
z β

2
p1β

2
p2 − k2

xk2
z β

2
p1εt − k4

z β
2
p1 = 0.

Hence, in agreement with equation (7), the above equation predicts that the metamaterial
supports two distinct plane wave modes with magnetic field along the y-direction. The
emergence of an additional eigenwave is a consequence of the spatially dispersive response.
Note that in conventional local materials each fixed polarization is associated with a single
plane wave mode. Nevertheless, it is expected that for large values of βp2 the contribution of the
high-frequency mode may be discarded, and the medium may have a quasi-local response.

How can one get large values for βp2 in practice? Equation (6) shows that the parameter
βp2 is inversely proportional to C0 and Vcell. Thus, in order that βp2 is large we are interested
in geometries for which C0 and Vcell are as small as possible. For a fixed lattice constant a, one
can get small values for Vcell by considering helices with short pitch p. On the other hand, as
one can see from figure 2 of [40], a small value for the constant C0 requires larger values of the
radius R of the helices. Thus, the relevant geometries are such that the helices have a short pitch
and a large radius.

In these conditions, the spatial dispersion term k2
z /β

2
p2 in the analytical expression of εzz

may be discarded and the macroscopic response of the structured material becomes solely
frequency dependent and is characterized by the following expression:

εloc
zz = 1 −

β2
p,eff

k2
0

, (10)
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where βp,eff is the plasma wave number of the effective medium and is given by

βp,eff = βp1/

√
1 + A2β2

p1. (11)

It is interesting to establish a parallelism with the quasistatic homogenization model for
general wire media introduced in [28], where the spatial dispersion effects were shown to be
dependent on a slow-wave factor n =

√
LC/(ε0µ0), where L and C represent the effective

inductance and capacitance per unit length of the wires, respectively. As discussed in [28],
the spatial dispersion effects become negligible when the slow-wave factor is much larger than
unity. A straightforward analysis shows that in our material formed by helical shaped wires, the
slow-wave factor is equal to βp2/βp1. In the racemic helical wire medium large values of the
slow-wave factor are achieved mainly due to an increase of the effective inductance of the wires,
as a result of the current flowing along the helices that creates a magnetic field and, consequently,
a magnetic flux. However, the effective capacitance per unit length of the helical wires may also
increase, simply because the wire surface area where the electric charge accumulates is larger
per unit length of a helix than per unit length of a straight wire, and hence it may also contribute
to the suppression of the spatial dispersion effects.

In the standard wire medium formed by straight metallic wires the spatial dispersion effects
emerge because the wires span the entire unit cell, and as a consequence the response of the
wires is strongly sensitive to gradients (d/dz) of the electric field across the unit cell [44]. This
is so because each inclusion can strongly interact with the z-component of the microscopic
electric field in the entire unit cell. On the other hand, if we consider helical-shaped wires
instead of straight wires, the interaction with the z-component of the electric field is somewhat
weakened because the wires are no longer directed along the z-direction. This is especially true
when |p| /(2π R) � 1 for which the vector tangent to the helices is almost parallel to the xoy-
plane, and hence the wires’ response is not so sensitive to gradients of the electric field along z.
This may explain in simple physical terms the reduction of the spatial dispersion in the helical
wire medium.

To demonstrate the reduction of the spatial dispersion effects, we have calculated the
dispersion diagrams for propagation along the z-direction. In figures 3(a) and (b), we depict
the dispersion characteristics of the racemic helical wire medium (figure 1) with helices
with radius R = 0.4a and wire radius rw = 0.05a for two configurations with distinct values
of helix pitch p: (a) |p| = 0.3a and (b) |p| = 0.9a. In addition, in order that we have a
benchmark for these results, we have also computed the dispersion characteristic of the
standard wire medium formed by the straight wires (figure 3(c)). The dispersion curves
predicted by the non-local homogenization model (equation (2)) (solid lines) and by the
local homogenization model (equation (10)) (dashed lines) are compared with the full-wave
results calculated using the numerical method reported in [45] (star symbols). It is seen in
figure 3 that the results obtained with the three different methods predict two dispersion
branches: a transverse mode or quasi-TEM mode (blue curves) and a longitudinal mode (green
curves).

In figures 3(a) and (b), the agreement between the non-local homogenization model and
the numerical method is particularly good for relatively low frequencies (roughly, k0a < 0.8).
For higher frequencies, there is a slight lack of agreement, which is a consequence of the
approximations made in the derivation of the analytical model [40]. On the other hand,
there is excellent agreement between the non-local homogenization results and the full-wave
results for the standard wire medium formed by straight wires, even for high frequencies
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Figure 3. Dispersion diagrams for three different geometries of wire arrays
(helical-shaped wires and straight wires). (a) Racemic helical medium with R =

0.4a, rw = 0.05a and |p| = 0.3a. (b) The same as in (b) but for |p| = 0.9a. (c)
Standard wire medium with rw = 0.05a. Solid lines: non-local homogenization
results (equation (2)); dashed lines: local homogenization results (equation (10));
star symbols: full-wave numerical results. (i) Transverse mode or quasi-TEM
mode and (ii) longitudinal mode. It should be noted that in the case of panel (c)
(straight metallic wires), the low-frequency mode is exactly TEM.

(figure 3(c)). Regarding the local homogenization model results, they concur well with non-
local model results and the full-wave simulations only for the case of helical-shaped wires
with short helix pitch p (figure 3(a)). In contrast, for helices with a longer helix pitch p
(figure 3(b)), and even more pronounced for the case of straight wires (|p| = ∞) (figure 3(c)),
the dispersionless (flat) band predicted by the local homogenization model fails to accurately
describe the behavior of the longitudinal mode. These results confirm that by decreasing
the helix pitch p, it is indeed possible to nearly suppress the spatial dispersion effects and
mimic the response of an ideal continuous indefinite medium. In particular, it is seen in
figure 3(a) that the dispersion of the longitudinal mode becomes almost independent of kz,
and thus the group velocity vg = d ω/d kz is nearly zero. In such circumstances, the non-
bianisotropic helical wire medium may be regarded as a local uniaxial epsilon-negative (ENG)
material.

To further demonstrate this, the effective permittivity components εxx = εyy and εzz are
depicted in figure 4 as a function of the frequency. The accuracy of the analytical results
calculated from equations (4) and (10) is checked against results obtained with the full-wave
homogenization method proposed in [41]. As seen in figure 4, there is very good agreement
between the two approaches. Moreover, it is evident that for ωa/c < 0.4, the structured material
is a uniaxial indefinite material with εzz < 0 and εxx > 0.

4. Negative refraction

Next, we investigate the negative refraction effect at the interface of the proposed structured
material with air. As shown in figure 4, for low frequencies the artificial medium has εzz < 0
and εxx > 0, and hence one may expect that the metamaterial may negatively refract p- (TM-z)-
polarized waves [19].
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Figure 4. Effective permittivity components as a function of the normalized
frequency for a racemic helical wire medium (figure 1) with R = 0.4a, rw =

0.05a and |p| = 0.3a. The solid lines correspond to the analytical results and are
obtained using equations (2) and (4) discarding the term k2

z /β
2
p2 (or equivalently

using equation (10)), whereas the discrete symbols are obtained using the full-
wave homogenization approach reported in [41].

Figure 5. Geometry of the metamaterial slab formed by metallic helical-shaped
wires. The radius of the helices is R and the radius of the wires is rw. The plane
of incidence is the xoz-plane and the wave is TM-z-polarized (kinc

= (kx , 0, k inc
z ),

Hinc
= H incûy).

4.1. The fundamental electromagnetic mode

In order to characterize the electromagnetic fields scattered by a metamaterial slab under TM-z
excitation (figure 5), it is useful to study first the properties of the plane wave modes supported
by the material.

As discussed in section 3, in general, as a consequence of spatial dispersion, for a fixed
frequency the metamaterial supports two independent plane waves with magnetic field along the
y-direction. However, the contribution of the high-frequency mode (second TM mode) may be
negligible for metamaterial geometries such that the helix pitch p is short. Moreover, the second
TM mode is cut off for low frequencies, and typically starts propagating close to the plasma
frequency ω/c = βp,eff, for which εzz = 0. Here, we are chiefly interested in the frequency band
wherein εzz < 0, since it is in this range of frequencies that we expect to obtain a negative
refraction effect. Thus, next we concentrate our attention on the study of the properties of the
fundamental mode.
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Figure 6. Isofrequency contours of the fundamental plane wave mode supported
by the racemic helical wire medium for propagation in the xoz-plane with
magnetic field perpendicular to this plane (figure 5). (a) R = 0.4a, rw = 0.05a
and |p| = 0.3a; (b) R = 0.4a, rw = 0.05a and |p| = 0.5a. Panel (c) depicts the
isofrequency contour of the fundamental mode supported by the metamaterial
(blue curves) for the normalized frequency ωa/c = 0.45 and for the same
configuration as in (b), as well as the isofrequency contour in the air region
(brown circle). The transmitted wave vector kt (green arrow) is determined by
the conservation of the tangential component of the wave vector kx , whereas
the Poynting vector St (red arrow) is normal to the isofrequency curves and is
oriented toward increasing frequencies.

The isofrequency contours of the fundamental plane wave mode, calculated from
equation (9), are depicted in figure 6 for two different metamaterial configurations.

As one can see from figures 6(a) and (b), the fundamental mode is characterized by
hyperbolic-shaped isofrequency contours. Hence, as illustrated in figure 6(c), the Poynting
vector (the energy density flux) is always negatively refracted for any angle of incidence
(assuming incidence from the air side), since it must be normal to the isofrequency contours.
Therefore, a TM-polarized wave is negatively refracted at the interface between air and the
racemic helical wire medium.

To further characterize the negative refraction effect, we calculated the angle of refraction θt

for the energy density flux (determined by the Poynting vector of the transmitted wave St) using
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Figure 7. Angle of transmission of the energy density flux (the Poynting vector)
as a function of the angle of incidence for different frequencies of operation and
configurations. (i) R = 0.4a, rw = 0.05a, |p| = 0.3a and ωa/c = 0.25; (ii) R =

0.4a, rw = 0.05a, |p| = 0.3a and ωa/c = 0.3; (iii) R = 0.4a, rw = 0.05a, |p| =

0.3a and ωa/c = 0.35; (iv) R = 0.4a, rw = 0.05a, |p| = 0.5a and ωa/c = 0.45;
(v) R = 0.4a, rw = 0.05a, |p| = 0.5a and ωa/c = 0.55. The inset represents
the geometry of the problem showing the incident, reflected and refracted
waves.

the relation vg = ∇kω(k) and taking into account that the projection of the wave vector onto
the interface, i.e. the x-component of the wave vector kx , must be preserved [8]. The incoming
plane wave is characterized by the wave vector ki = ω/c(sin θi, 0, − cos θi), as depicted in the
inset of figure 7.

Figure 7 confirms that the angle of transmission is negative for positive angles of incidence.
Therefore, consistent with the hyperbolic shaped isofrequency contours (figure 6), the Poynting
vector of the transmitted wave St undergoes, indeed, negative refraction at the interface of the
metamaterial with air. The negative refraction is particularly strong when the metamaterial is
operated close to the plasma frequency ω/c = βp,eff (i.e. when ezz = 0) (curves (iii) and (v) in
figure 7 for two different metamaterial configurations).

4.2. Transmission characteristics

Next, the transmission properties of the metamaterial slab are studied under plane wave
incidence, and the negative refraction effect is characterized from the obtained transmission
properties.

To begin with, we study the plane wave scattering problem using the non-local
homogenization model of section 2. The metamaterial slab is assumed as infinite and periodic
along the x- and y-directions with lattice periods 2a and a, respectively, and finite with thickness
L along the z-direction (figure 5). The direction of propagation of the incident wave is in the
xoz-plane (ky = 0) and the magnetic field is polarized along the y-direction. Thus, the magnetic
field in the three regions of space can be written as follows (the x-dependence of the fields is
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omitted):

H (1)
y = H inc

y (eγ0z + ρ e−γ0z), z > 0

H (2)
y = A+

1 e−jk(1)
z z + A−

1 e+jk(1)
z z + A+

2 e−jk(2)
z z + A−

2 e+jk(2)
z z, −L < z < 0, (12)

H (3)
y = H inc

y t eγ0(z+L), z < −L ,

where H inc
y is the incident magnetic field, γ0 =

√
k2

x − ω2ε0µ0 is the free-space propagation
constant, kx = ω

√
ε0µ0 sin θi, and ρ and t are the reflection and transmission coefficients,

respectively. The propagation constants k(1,2)
z (calculated by solving equation (9) with respect

to kz) and the amplitudes A±

1,2 are associated with the two distinct modes excited inside the
metamaterial slab. For each plane wave with magnetic field of the form H = H0 e−jk.rûy , the
corresponding electric field is given by

E =
η0 H0

k0

(
kz

εt
ûx −

kx

εzz
ûz

)
e−jk.r. (13)

In order to calculate the reflection and transmission coefficients, we impose that the
tangential components of the electromagnetic fields (Ex and Hy) are continuous at the interfaces
x = 0 and x = −L . As a consequence of the emergence of two plane wave modes with the same
polarization, these classical boundary conditions are insufficient to determine all the unknowns
of the scattering problem (equation (12)). To remove the extra degrees of freedom, the classical
boundary conditions must be complemented with an additional boundary condition (ABC) at
both interfaces. In particular, it is necessary to impose that the normal component of the electric
field (Ez) be continuous at the interfaces x = 0 and x = −L (assuming that the helices stand in
air) [47, 48]. Such an ABC guarantees that the microscopic electric current that flows along each
helical-shaped wire vanishes at both interfaces. Imposing the ABC and the classical boundary
conditions, we obtain a 6 × 6 linear system which can be easily solved numerically with respect
to the unknowns.

Using the outlined formalism it is possible to calculate analytically the transmission
coefficient for plane wave incidence. The negative refraction at the interfaces between the slab
of helical-shaped wires and air can be investigated using the approach proposed in [10], which
is based on the variation in the phase of t (ω, k) = |t | ejφ (φ = arg t) with kx . It was proven
in [10] that the spatial shift 1 suffered by an incoming beam when it crosses an arbitrary slab
(see figure 8(a)) is equal to the slope of φ, i.e. 1 = dφ/dkx . In particular, negative refraction
occurs when 1 is negative or, equivalently, when φ decreases with kx . It is worth noting that
such a method is completely general, and the only assumption is that the amplitude of the
transmission coefficient varies slowly with kx within the band of spatial frequencies of the
incoming beam [10].

In figures 8(b) and (c), we plot the amplitude and phase of the transmission coefficient as
a function of the normalized transverse component of the wave vector kx , obtained with the
non-local homogenization model (solid lines), local homogenization model (dashed lines) and
full-wave simulations (discrete symbols) [46]. It is important to highlight the good agreement
between the results obtained from the three different calculation methods, especially for the
example where the helix pitch p is the shortest one and the frequency of operation is not
excessively close to plasma frequency βp,effa ≈ 0.418 [figures 8(b) and (c)(i)]. At frequencies
close to βp,eff the local homogenization results become less accurate, as can be seen from
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Figure 8. (a) Illustration of the spatial shift 1 suffered by a beam that illuminates
an arbitrary slab. (b) Amplitude and (c) phase of the transmission coefficient
as a function of the normalized kx for different metamaterial configurations.
Solid lines: non-local homogenization results (equation (2)); dashed lines: local
homogenization results (equation (10)); discrete symbols: full-wave results [46].
(d) Spatial shift 1 as a function of the angle of incidence θi for different
configurations calculated using the analytical model based on the non-local
homogenization theory. (i) R = 0.4a, rw = 0.05a, |p| = 0.3a, ωa/c = 0.35
and L = 7a; (ii) R = 0.4a, rw = 0.05a, |p| = 0.3a, ωa/c = 0.4 and L = 7a;
(iii) R = 0.4a, rw = 0.05a, |p| = 0.5a, ωa/c = 0.55 and L = 10a.

figures 8(b) and (c)(ii). Similarly, the results predicted by the local homogenization model for
configurations with longer helix pitch p are also less accurate (figures 8(b) and (c)(iii)). This
is entirely consistent with the fact that the spatial dispersion effects are only suppressed when
|p| /(2π R) � 1, as already discussed in section 3.

On the other hand, figure 8(b) shows that the amplitude of the transmission coefficient
varies slowly with kx and is close to unity for all propagating waves, satisfying in this manner
the requirement of [10], besides indicating that the effective medium is well matched to free
space, even for wide incident angles. In addition, one can see in figure 8(c) that the phase
of the transmission coefficient φ decreases steadily with kx , which undoubtedly proves the
emergence of negative refraction at the interfaces of the considered metamaterial slab. This
is further substantiated by figure 8(d), which depicts the spatial shift 1 as a function of θi

obtained using our analytical model. It can be seen that 1 is indeed always negative for
any positive angle of incidence θi. In fact, the negative refraction effect in the metamaterial
slab formed by helical-shaped wires may be quite strong, particularly for frequencies slightly
below the plasma frequency βp,eff (equation (11)), as discussed previously. For instance, for
ωa/c = 0.4, an incoming beam with θi = 33◦ undergoes a spatial shift 1 = −1.35k0 when
it crosses a metamaterial slab with a thickness of only L = 0.45k0 (figure 8(d)(ii)). As
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Figure 9. Amplitude of the transmission coefficient as a function of the
normalized frequency for (i) a racemic helical wire medium and for (ii) a
mushroom-type metamaterial [33], under plane-wave incidence with θi = 30◦.
Solid lines: homogenization results (based on equation (2) for the helical
wire medium, and based on equation (11) of [34] for the mushroom-type
metamaterial); discrete symbols: full-wave results [46]. (i) R = 0.4a, rw =

0.05a, |p| = 0.4a, L = 4a and εh = 1; (ii) g = 0.1a, rw = 0.025a, h = a, L = 4a
and εh = 10.2. The definition of the structural parameters of the multilayered
mushroom is as in [33].

expected, the negative refraction effect becomes progressively weaker away from the frequency
corresponding to εzz = 0. However, the negative refraction effect can be observed over a wide
frequency band within the range wherein ezz < 0. For example, for ωa/c = 0.35 an incoming
beam with θi = 33◦ still suffers a considerable spatial shift 1 = −0.59k0, even though the
thickness of the slab is only L = 0.39k0 (see figure 8(d)(i)). It can be verified (not shown here)
that the negative refraction is observed over nearly 60% of the frequency range below the plasma
frequency ω/c = βp,eff. Of course, for frequencies corresponding to εzz > 0 an incoming beam
is positively refracted.

As already mentioned in the introduction, the effects of spatial dispersion in the wire
medium can also be suppressed by loading the wires with metallic patches (mushroom-type
metamaterial [33]). It is thus interesting to compare the performance of the racemic helical
wire medium with the multilayered mushroom structure. To this end, in figure 9 we show the
amplitude of the transmission coefficient as a function of the frequency for both configurations
and an incidence angle θi = 30◦. The two metamaterial slabs were designed to have the same
physical thickness and similar plasma frequencies (βp,effa ≈ 0.5).

As one can see from figure 9, the transmission coefficient of the racemic helical wire
medium slab has amplitude very close to unity in the frequency range of interest (ωa/c <

βp,effa). In contrast, the level of transmission of the multilayered mushroom slab varies
considerably with the frequency. These results are clear proof that the metamaterial considered
in this work is much better matched to the air region, as compared to the multilayered mushroom
structure. This is a consequence of the fact that the transverse permittivity of the mushroom-type
medium may be quite large due to high-dielectric constant substrate and due to the presence of
the metallic patches.
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Figure 10. Full-wave calculation [46] of the amplitude (a) and phase (b) of the
transmission coefficient as a function of the normalized kx for a racemic medium
formed by cylindrical helices (solid lines) and for a modified structure formed
by segmented helices (discrete symbols). (i) R = 0.4a, rw = 0.05a, |p| = 0.3a,
ωa/c = 0.35 and L = 7a; (ii) R = 0.4a, rw = 0.05a, |p| = 0.3a, ωa/c = 0.4 and
L = 7a; (iii) R = 0.4a, rw = 0.05a, |p| = 0.5a, ωa/c = 0.55 and L = 10a. The
dot-dashed light blue curves in (i) are associated with a metamaterial formed
by Ag segmented helices with a = 2.5 µm, rw = 0.05a ≈ 125 nm, R = 0.4a =

1.0 µm, |p| = 0.3a ≈ 0.75 µm and a frequency of operation f = 6.68 THz. Note
that in the modified configuration (C2 in the inset of (a)) R and rw are replaced by
w1 =

√
πrw and w2 = w1 + (lp − |p|)/3, where lp =

√
(2π R)2 + |p|

2 represents
the length of a cylindrical helix turn.

Next, we consider a variant of the racemic helical wire medium that is formed by
‘segmented’ helices (see the inset of figure 10). The motivation for this alternative structure
is that it may be much easier to fabricate using printed circuit technology, based on a planar
design with several layers of dielectric boards with printed metallic strips interconnected by
vias, similar to mushroom structures [31, 32].
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In order that this modified structure (C2 in the inset of figure 10) may mimic closely the
electromagnetic response of the original structure (C1 in the inset of figure 10), the area of the
transverse cross-section of the metallic wires as well as the volume fraction of metal in the unit
cell are chosen to be the same as those in the configuration of cylindrical helices. As a result, we
define the following equivalent geometrical parameters for the modified geometry: w1 =

√
πrw

and w2 = w1 + (lp − |p|)/3 (see the inset of figure 10), where lp =

√
(2π R)2 + |p|

2 represents
the length of a cylindrical helix turn.

To verify the validity of the equivalent parameters for the segmented helices, the
transmission coefficients for the two configurations (C1 and C2) are compared in figure 10,
which reveals quite good agreement between the two cases. The results were obtained
using the full-wave electromagnetic simulator [46]. Hence, it is expected that the modified
configuration can mimic closely the electromagnetic response of the original configuration
formed by cylindrical helices and enable a strong negative refraction effect.

In the previous discussions, it was assumed that the helical-shaped wires are PECs. To
assess the effect of metallic loss, we have also calculated the transmission coefficient for
a helical wire medium (dot-dashed lines in figure 10) formed by segmented Ag helices. It
was assumed that Ag follows the Drude dispersion model, εm = ε∞ − ω2

p/(ω(ω − j0)), with
parameters taken from the literature [49]. It is evident from figure 10 that even though there is
a slight decrease of the transmission for wide incident angles, |t | remains at quite a satisfactory
level. On the other hand, the slope of the phase of the transmission coefficient remains very
similar to the PEC result (see figure 10(b)(i)), confirming the emergence of a strong negative
refraction, even when metal loss is taken into account. In fact, in general the effect of metallic
losses is expected to be negligible provided that the skin depth ds of the metal is smaller than
the radius of the wires (in this example rw = 5ds) [10].

4.3. Gaussian beam excitation

To further confirm the findings of sections 4.1 and 4.2 and demonstrate in a conclusive manner
the appearance of negative refraction, next we consider the scenario wherein the metamaterial
slab is illuminated by an incoming Gaussian beam with transverse magnetic polarization (TM-z
polarized). Firstly, we use the non-local homogenization model to characterize the refraction
of a Gaussian beam at the interfaces of a metamaterial slab infinitely extended along the x- and
y-directions. In a later stage, in order to validate the homogenization results, the electromagnetic
response of a finite-width metamaterial slab illuminated by a beam with Gaussian profile is
simulated using CST Microwave Studio [46].

We consider a cylindrical Gaussian beam excitation with beam waist w0, angle of incidence
θi, focused at z = z0 in front of the metamaterial slab (figure 5). The normalized magnetic field
associated with the Gaussian beam excitation can be expanded into a Fourier integral of plane
waves (spatial Fourier harmonics),

H GB
y (x, z) =

∫
∞

−∞

H GB
y (ω, kx) eγ0(z−z0) e−jkx x dkx , where H GB

y (ω, kx) =
e−

1
4(kx−

ω
c sin θi)w2

0w0

2
√

π
.

(14)

The response of the system to this excitation can be obtained by superposing the responses
of the metamaterial to each individual plane wave of (14). Thus, the magnetic field in the three
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Figure 11. Time snapshot of the normalized magnetic field Hy(t = 0) calculated
from equation (15). A Gaussian beam with TM polarization characterized by
2w0 = 4k0 and an incident angle of θi = 33◦ illuminates a structured slab formed
by helical shaped wires. The metamaterial slab is periodic along the x- and
y-directions. The black dashed lines represent the interfaces of the slab.
(a) R = 0.4a, rw = 0.05a, |p| = 0.3a, ωa/c = 0.35 and L = 20a; (b) R = 0.4a,
rw = 0.05a, |p| = 0.3a, ωa/c = 0.4 and L = 7a; (c) R = 0.4a, rw = 0.05a,
|p| = 0.5a, ωa/c = 0.55 and L = 10a.

regions of space can be written as follows:

H (1)
y (x, z) =

∫
∞

−∞

H GB
y (ω, kx)(e

γ0(z−z0) + ρ(ω, kx)e
−γ0(z+z0))e−jkx x dkx , z > 0,

H (2)
y (x, z) =

∫
∞

−∞

H GB
y (ω, kx)H (2)

y (kx , z)e−γ0z0 e−jkx x dkx , −L < z < 0,

H (3)
y (x, z) =

∫
∞

−∞

H GB
y (ω, kx)t (ω, kx)e

γ0(z+L−z0) e−jkx x dkx , z < −L , (15)

where H GB
y (ω, kx) is given by equation (14), H (2)

y (kx , z) is the magnetic field inside the slab
(−L < z < 0) and defined in equation (12), and ρ(ω, kx) and t (ω, kx) are the reflection and
transmission coefficients obtained by solving the plane wave scattering problem outlined in
section 4.2. Using the above equations we can calculate the magnetic field profile in all regions
of space.

In figure 11 we represent time snapshots (t = 0) of the magnetic field associated with a
Gaussian beam characterized by an angle of incidence θi = 33◦ and a beam waist 2w0 = 4k0 for
different structural parameters, calculated from equation (15). In all the figures it is manifest
that the beam undergoes a significant negative spatial shift 1, demonstrating the emergence
of strong negative refraction. The spatial shift suffered by the Gaussian beam, calculated by
inspection of the maximum amplitude of the magnetic field profiles at the input and output
interfaces, is (a) 1 ≈ −1.65k0, (b) 1 ≈ −1.38k0, and (c) 1 ≈ −1.21k0. These values are very
much consistent with the results for the spatial shift 1 shown in figure 8(d), and calculated
from the slope of the phase of the transmission coefficient. It is also evident from the results of
figure 11 that the considered metamaterial slab is well matched to free space, since the wave
reflection at both interfaces is almost imperceptible. This is completely consistent with the high
magnitude of the transmission coefficient observable in figure 8(b).
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Figure 12. Time snapshot of the magnetic field Hy(t = 0) (A m−1) obtained
from full-wave simulations done in the electromagnetic simulator [46]. A TM-
polarized Gaussian beam characterized by 2w0 = 3k0 and with an incident
angle θi = 33◦ illuminates a finite-width metamaterial slab formed by segmented
helices (see the inset of figure 10). The metamaterial slab is finite along the
x-direction, with width Wx , and is periodic along the y-direction with lattice
period a = 5 mm. The remaining geometrical parameters of the structure are:
w1 = 0.05

√
πa, w2 ≈ 0.832a, |p| = 0.3a and L = 7a; (a) ωa/c = 0.35 ( f =

3.34 GHz), (b) ωa/c = 0.4 ( f = 3.82 GHz). (c) Normalized magnetic field
profile of the Gaussian beam at the input interface (solid lines) and at the output
interface (dashed lines) for the cases (a) (blue lines) and (b) (green lines).

In order to confirm the previous results based on homogenization theory, we have simulated
the electromagnetic response of the metamaterial slab under similar conditions using the
commercial electromagnetic simulator [46]. However, due to the difficulty in modeling the
structure formed by cylindrical helices (C1 in the inset of figure 10) in CST Microwave Studio,
we have simulated instead the electromagnetic response of the modified configuration formed
by segmented helices (C2 in the inset of figure 10). The structured slab is assumed to be periodic
along the y-direction with period a and finite along the x-direction with width Wx = 122a. In all
the simulations, the lattice constant was taken as equal to a = 5 mm. The incoming cylindrical
beam is uniform along the y-direction and has Gaussian beam profile along the x-direction, with
a beam waist 2w0 = 3k0 at the frequency of operation. The angle of incidence is θi = 33◦. In all
the simulations, the dielectric host is assumed to be air and the effects of metallic losses are taken
into account by assuming that the metallic elements are made of copper (σ = 5.8 × 107 S m−1).

The time snapshots (t = 0) of the normal (y-component) of the magnetic field obtained with
CST Microwave Studio for two different frequencies of operation are depicted in figures 12(a)
and (b), and are qualitatively consistent with the homogenization results shown in figure 11 for
the original metamaterial structure formed by cylindrical helices. The magnetic field profiles at
the input (solid lines) and output (dashed lines) interfaces of the structured slab are depicted
in figure 12(c). They undoubtedly show that the Gaussian beam is negatively refracted by
the metamaterial slab. The values for the spatial shift inferred from figure 12(c) for the cases
associated with panels (a) and (b) are, respectively, 1 ≈ −0.6k0 and 1 ≈ −1.2k0, which are
reasonably consistent with the values of 1 obtained from the homogenization model of the
configuration formed by cylindrical helices (see figure 8(d) and the discussion of the results of
figure 11). Hence, these results further demonstrate that the modified metamaterial configuration
formed by segmented helices mimics the electromagnetic response of the homogenized
structure formed by cylindrical helices. It is also worth noting that, similar to the original
structure (figure 11), in the modified configuration formed by segmented helices the level of
reflection is also very weak, and hence the metamaterial is well matched to free space.
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5. Partial focusing by a planar lens

In the following, we investigate the possibility of taking advantage of the negative refraction
effect to obtain partial focusing of the electromagnetic waves by a planar metamaterial lens
[19, 20].

5.1. Guidelines for the design of the flat lens

To begin with, we briefly discuss how to fix the thickness L of the metamaterial so that the elec-
tromagnetic radiation of a point source placed at a distance d1 from the front interface is partially
focused at a distance d1 = d2 from the back interface (see the inset of figure 13(a)). As proven
in [11], the required normalized thickness L for the lens is given by the following formula:

L

d1
= 2

∣∣∣∣ tan θi

tan θt

∣∣∣∣ . (16)

Based on this equation, we computed the required normalized thickness L for the lens
as a function of the angle of incidence θi for two different slab configurations (figure 13(a)).
We show only the curve associated with each configuration for positive or negative angles of
incidence, since it is evident that, by symmetry, L(θi) is an even function of θi.

As seen from figure 13(a), the required thickness L for the slab is not constant, but instead
it is angle dependent. In fact, this result could be expected and is simply a consequence of
the nonlinear relation between the angle of incidence θi and the angle of transmission θt (see
figure 7). This angle dependence implies that, unlike in Veselago’s lens, the light rays will
not converge into a single point. Nevertheless, the metamaterial lens enables a partial focusing
of the electromagnetic radiation [19, 20]. In order to illustrate this possibility, we represent in
figure 13(b) the ray-tracing diagrams showing the path of the rays inside and outside the slab for
d1 = 0.5L , which is a value consistent with the plots of figure 13(a). Clearly, the rays coming
from the line source (located above the slab) are partially refocused inside the metamaterial
lens, and also after crossing the lens at a partial focus located at a distance d1 ≈ d2 from the
back interface.

5.2. Imaging a magnetic line source

To verify the ray-tracing diagrams and to further characterize the imaging properties of
the considered structured lens, in the following we consider that a magnetic line source
(infinitely extended along the y-direction) is placed at a distance d1 above the metamaterial
slab (figure 14(a)). The magnetic field radiated by the line source is of the form Hy =

(A/4j)H (2)

0 ((ω/c)ρ), where A is a constant that depends on the line current, ρ is the radial
distance to the source, and H (2)

0 (x) = J0(x) − jY0(x) is the Hankel function of the second kind
and order zero. The field of a line source can be decomposed into a spectrum of plane waves, i.e.
the Hankel function can be represented as a Fourier integral of plane waves. Hence, considering
that the magnetic line source is located at z = d1, its magnetic field is of the form:

Hy(x, z) =
A

π

∫
∞

0

1

2γ0
e−γ0|z−d1| cos(kx x) dkx . (17)
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Figure 13. (a) Normalized thickness of the metamaterial slab as a function of
the angle of incidence calculated such that d1 = d2. (i) R = 0.4a, rw = 0.05a,
|p| = 0.3a and ωa/c = 0.28; (ii) R = 0.4a, rw = 0.05a, |p| = 0.5a and ωa/c =

0.45. The inset represents the geometry of the problem. (b) Ray-tracing diagrams
showing that the structured material refocuses the rays coming from a magnetic
line source both inside and outside the slab. The rays represent the direction
of the Poynting vector (energy density flux). The source is placed at a distance
d1 = 0.5L from the front interface, the thickness of the slab is L = 20a, and the
remaining parameters are the same as in (a): (i) the same parameters as (ai) and
(ii) the same parameters as (aii).

Now, similarly to what was done in the derivation of equation (15), the magnetic field in
the three space regions can be written in terms of Sommerfeld-type integrals:

H (1)
y (x, z) =

A

π

∫
∞

0

1

2γ0
(e−γ0|z−d1| + ρ(ω, kx) e−γ0(z+d1)) cos(kx x) dkx , z > 0,

H (2)
y (x, z) =

A

π

∫
∞

0

1

2γ0
H (2)

y (kx , z) e−γ0d1 cos(kx x) dkx , −L < z < 0,

H (3)
y (x, z) =

A

π

∫
∞

0

1

2γ0
t (ω, kx) eγ0(z+L−d1) cos(kx x) dkx , z < −L , (18)
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Figure 14. (a) Geometry of the problem: a magnetic line source is placed at
a distance d1 above the helical wire medium lens. (b) Squared (normalized)
amplitude of the magnetic field |H|

2. (i) R = 0.4a, rw = 0.05a, |p| = 0.3a,
ωa/c = 0.28 and L = 100a; (ii) R = 0.4a, rw = 0.05a, |p| = 0.5a, ωa/c = 0.45
and L = 60a. The white dashed lines represent the interfaces of the slab.

where H (2)
y (kx , z) is the magnetic field inside the slab (−L < z < 0) and is defined as in

equation (12), and ρ(ω, kx) and t (ω, kx) are the reflection and transmission coefficients obtained
by solving the plane wave scattering problem outlined in section 4.2. Using this formalism, we
calculated the magnetic field profile in all regions of space.

In figure 14(b) the density plots of the normalized squared amplitude of the magnetic field
|H|

2 are depicted in the xoz-plane for the same metamaterial configurations of the ray-tracing
diagrams of figure 13(b).

In both figures, an intense and elongated focal point of the magnetic field inside the
helical wire medium lens and also after the lens is clearly seen. The slight aberration along
the z-direction is consistent with the ray-tracing diagrams of figure 13(b). These results prove
that a thick enough slab of the metamaterial can work, indeed, as a planar focusing device,
redirecting the electromagnetic radiation of a p-polarized source to a narrow spot at the focal
plane. Moreover, consistent with the results of section 4.3 for a Gaussian beam excitation (see
figure 11), it is visible from figure 14(b) that the non-bianisotropic helical wire medium lens is
well matched to free space, since field reflections are hardly noticeable in the region above the
lens (where the source is located).
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The resolution of this structured lens is limited by diffraction, since the half-power
beamwidth (HPBW) at the focal plane is about k0/2 as in any conventional optical system.
Nevertheless, and despite the referred resolution restriction, the considered metamaterial lens
has the important property that the imaging characteristics are independent of the position of
the source because of the flat interfaces.

6. Conclusion

We have shown that a metamaterial formed by a racemic mixture of helical-shaped wires
may effectively behave as a local (with a very much reduced spatial dispersion) uniaxial ENG
material and, as a result, enable a strong negative refraction effect over a wide frequency band.
The proposed metamaterial is an interesting alternative to the arrays of metallic wires loaded
with metallic patches (multilayered mushroom-type metamaterial), and may have the advantage
of being better matched to the surrounding medium (e.g. free space), and hence enabling a lower
level of reflections. Taking advantage of the negative refraction effect, we have demonstrated
the possibility of using the proposed metamaterial to design a planar lens that provides partial
focusing. The reported results were obtained using an effective medium model and confirmed
by full-wave simulations [46].
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