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We present rotational term values forJ e 3 of the vibrational states with up to twofold excitation of H2D+

in the lowest electronic triplet state (a3Σu
+). The calculations were performed using the method of

hyperspherical harmonics and our recent accurate double many-body expansion potential energy surface.

1. Introduction

H3
+, the simplest triatomic molecule, keeps challenging

astronomers, experimental spectroscopists, and theoreticians. As
far as the ro-vibrational states in excited electronic triplet state
1 3E′ are concerned, direct spectroscopic observations have not
yet been reported, but considerable progress has been made in
their theoretical description in recent years. Published data
include ro-vibrational1-4 states of H3

+ and vibrational states of
H3

+ 5,6 and D3
+ 6 on the lower sheet,a 3Σu

+, of the double-valued
1 3E′ surface as well as Slonczewski resonance states7,8 of H3

+

on the upper sheet. In the present paper, we extend our analysis
of the ro-vibrational states on the lower sheet to the isotopomer
H2D+. This can be formed from H3

+ by a single H/D substitu-
tion, which makes it the most important of the deuterated
isotopomers. It is hoped that the combined theoretical data on
H3

+, D3
+, and H2D+ will lead to the assignment of some of the

lines not accounted for in hydrogen plasmas; see refs 9 and 10
and references therein.

2. Computation of Ro-Vibronic States and Their
Symmetry Properties

2.1. General.In our computation of the ro-vibronic states of
H2D+, we use the method of hyperspherical harmonics.11 In
this method, the wave function is expanded in terms of
symmetrized hyperspherical harmonics,ΘN,Γ,i(Ω)

Here,N denotes the quantum number of the angular momentum
without electronic spin, which is neglected, that is,NB ) JB - SB,
and Γ is a symmetry index to be explained below. The
coordinates used are the hyperradius,F, and five angles, which
include the three Euler angles, denoted byΩ. The hyperradial
functions,Ri(F), are then determined by numerical integration,
according to the matrix Numerov method,12 of the system of
coupled equations that result from the expansion eq 1. The
parameters of the computational method are identical to those
used for H3

+ in ref 3, and the reader is referred to that article
for details. The hyperspherical harmonics expansion is known
to be slowly convergent. The large bases required demand the
use of supercomputers. The numerical data obtained here, based

on our most accurate potential energy surface4 and calculated
with nuclear masses, are converged to about 0.1 cm-1 for the
lowest states and to better than 0.7 cm-1 for the higher excited
ones. In contrast, the absolute accuracy of the ab initio points
produced at the Full CI level with the large cc-V5Z basis set
has been estimated2 to be 100( 30 cm-1, while the accuracy
of their analytical DMBE-representation varies between 1.3 and
2.8 cm-1 in the energy region of interest for the present work.
The frequencies derived from our data should be quite precise
because of cancellation of errors. Inclusion of the diagonal
adiabatic corrections, which are unavailable for the title system,
are not expected to affect the results by more than a fraction of
a wavenumber.

The hyperspherical method makes use of the exact symmetry
properties of a molecule, which are those with respect to
permutation of identical nuclei and inversion of the spatial
coordinate system. In the present case, H2D+, the calculated
states are readily classified in terms of the angular momentum,
N, and the irreducible representation,Γ, of the two-particle
permutation and inversion group,S2 × I. This group is
isomorphic with the molecular symmetry groupC2V(M).13 The
four irreducible representations (A1, A2, B1, B2) are interpreted
as follows: A and B denote states that are symmetric or
antisymmetric with respect to the permutation operator (12),
while the indices 1 and 2 distinguish states of different symmetry
with respect to the operator (12)*) (12) × E*, where E*
denotes the inversion operator.

Although such a classification, based on fundamental sym-
metry properties, is exact, it is not necessarily the most useful
one, and often the traditional classification in terms of spec-
troscopic quantum numbers is preferred even though those
quantum numbers do hold only approximately. In the following,
we will elaborate the alternative, spectroscopic representation
of the ro-vibronic states, and provide a link between the two
sets of quantum numbers.

The ro-vibronic states to be considered here are those on the
lower sheet of the triplet potential energy surface. Because of
the Jahn Teller effect, there are three equivalent minima at
symmetric linear configurations of the nuclei, related by
permutation of the nuclei, see ref 1. Any molecular state can
thus be considered a superposition of localized linear molecule
states as described in terms of the usual spectroscopic quantum
numbers. For H3

+, these superpositions lead to a triplication of
states such that each linear molecule ro-vibronic state has one
component ofA symmetry and one ofE symmetry. For H2D+,
the situation is different, because two isomers exist, HDH+ and

† Part of the special issue “John C. Light Festschrift”.
* Corresponding authors. E-mail: alijah@ci.uc.pt.;

varandas@qtvs1.qui.uc.pt.

ΨN,Γ(F,Ω) ) ∑
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HHD+. Of the latter, there are the two equivalent forms
H[1]H[2]D+ and H[2]H[1]D+, each corresponding to one of the
minima of the potential energy surface, while the third minimum
corresponds to HDH+.

Symmetrization of the two equivalent HHD+ forms lead to
superpositions that are symmetric or antisymmetric with respect
to the permutation operator (12). Because these superpositions
have well-defined and identical parity, the pairs formed are
(A1, B2) or (A2, B1), which have positive or negative parity,
respectively.

Our calculated states, which are readily classified in terms
of their exact quantum numbers, do not distinguish the two
isomers HDH+ and HHD+. The remaining task is then to assign
them to either of the two isomers and to attribute conventional
linear molecule quantum numbers. To this end, we will
elaborate, beginning with HDH+, the quantum numbers and
symmetry properties of the two isomers.

2.2. Spectroscopic Representation of the HDH+ Ro-
Vibronic States. Isolated HDH+ belongs to the molecular
symmetry groupD∞h(M). The fundamental vibrational modes
are the symmetric stretchν1 (σg

+), the bendingν2 (πu), and the
antisymmetric stretchν3 (σu

+). In terms of corresponding
quantum numbers, the ro-vibrational eigen state can be written
as

for l * 0 and

for l ) 0. Here, l is the quantum number of the vibrational
angular momentum, which takes the valuesl ) -V2, V2 + 2,
..., V2, andN is the rotational quantum number defined above.
Its internal projection is identical tol. m denotes the external
projection. The( superscript is related to parity by

Quantum numbers and their meaning are thus identical to
those of H3

+, and we can use some of the results obtained in
refs 1 and 3 directly. Following this work, the ro-vibronic
symmetry of states,Γrve[D∞h(M)], which is the direct product
of the vibrational symmetry,Γrv[D∞h(M)], and the electronic
symmetryΣu

+, can be classified according toV2, V3, s, andN,
wheres) ( denotes the sign of|Ψ(〉 in eq 2. The result, which
is derived from Table 1 of ref 3, is shown in Table 1. Note that
the ( superscript of the symmetry labels inD∞h(M) indicates
parity, while theg/u classification is according to the operator

(12)*. With the analysis presented in the preceding subsection,
the classification of states inC2V(M) is straightforward. This
classification is also shown in Table 1. Because of their distinct
symmetry properties, the ro-vibronic states can be divided into
four groups.

The statistical weight of a ro-vibronic state depends on the
degeneracy of the nuclear spin state with which it is multiplied.
The two protons can be coupled to yield an antisymmetric
singlet function of symmetryB2 or a symmetric triplet function
of symmetryA1. Because the total function is required to be
antisymmetric, the ro-vibronic functions ofB symmetry must
be combined with the triplet function, while those ofA symmetry
must be combined with the singlet function. The statistical
weights are thus 3 and 1, respectively. They are given in Table
1 in parentheses.

2.3. Spectroscopic Representation of the HHD+ Ro-
Vibronic States.We will now work out the symmetry properties
of the HHD+ isomer. It belongs to the molecular symmetry
groupC∞V(M) and has as fundamental modes the HD stretch,
ν1 (σ+), the bending,ν2 (π), and the HH stretch,ν3 (σ+). The
ro-vibronic states are represented by the kets|Ψ(〉 as defined
in eq 2 for HDH+, but with the modified meaning ofV1 andV3.
BecauseC∞V(M) is a subgroup ofD∞h(M), D∞h(M) ) C∞V(M)
× Ci, the symmetry properties of HHD+ can be derived from
those presented for HDH+ in Table 1 by simply omitting the
g/u subscripts because these are due to operatorCi. Thus, cases
I and II become equivalent as do III and IV, and hence we only
retain cases I and III. Furthermore,ν3 is no longer antisymmetric
so that theV3 (odd) lines of that table do not appear here. The
irreducible representationsΣ+ andΣ- in C∞V(M) correspond to
A1 andA2 in the C2V(M) molecular symmetry group, or toA1/
B2 andA2/B1 if we add the second component of the delocalized
state, which is antisymmetric with respect to the permutation
operator (12), as discussed in section 2.1. The results are
presented in Table 2.

3. Assignments of Calculated Ro-Vibronic States

In ref 14, a method for a semiautomatic assignment of the
calculated “hyperspherical” states has been developed, which
has been applied since to H3

+ and its isotopomers in the
electronic ground state and to H3

+ in the triplet state.3 The latter
version of this code has been adapted to analyze the molecule
under consideration here. The basis for the assignment is the
exact symmetry of the ro-vibronic states in their spectroscopic
representation and the requirement of sensible rotational pro-
gression within a band. No wave functions are needed. The input
simply is a list of band origins, ordered with increasing energy.
The computer program first attempts to assign the ro-vibronic
states of HHD+, making use of the additional requirement that
the two components, which arise from symmetric and antisym-
metric superposition of localized structures, be within a certain
energy interval, for example, within 0.5 cm-1. The hyperspheri-
cal states that remain unassigned at this stage must belong to
the HDH+ isomer. They are analyzed in the second phase of
the program.

TABLE 1: Symmetry Classification of the Ro-Vibronic
States of HDH+ in D∞h(M) and C2W(M)

Γrve[D∞h(M)] Γrve[C2V(M)]

V2 V3 s Neven N odd N even N odd case

even even + Σu
+ Σu

- B2(3) A2(1) I
- Σu

- Σu
+ A2(1) B2(3) III

odd + Σg
+ Σg

- A1(1) B1(3) II
- Σg

- Σg
+ B1(3) A1(1) IV

odd even + Σg
- Σg

+ B1(3) A1(1) IV
- Σg

+ Σg
- A1(1) B1(3) II

odd + Σu
- Σu

+ A2(1) B2(3) III
- Σu

+ Σu
- B2(3) A2(1) I

|Ψ(〉 ) 1

x2
|V1V2

|l|V3〉 (|Nlm〉 ( |N, -lm〉) (2)

|Ψ〉 ) 1

x2
|Ψ+〉 (3)

E* |Ψ(〉 ) ((-1)N+l|Ψ(〉 (4)

TABLE 2: Symmetry Classification of the Ro-Vibronic
States of HHD+ in C∞W(M) and C2W(M)

Γrve[D∞h(M)] Γrve[C2V(M)]

V2 s Neven N odd N even N odd case

even + Σ+ Σ- A1(1); B2(3) A2(1); B1(3) I
- Σ- Σ+ A2(1); B1(3) A1(1); B2(3) III

odd + Σ- Σ+ A2(1); B1(3) A1(1); B2(3) III
- Σ+ Σ- A1(1); B2(3) A2(1); B1(3) I
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In Tables 3-8, we present term values, forN e 3, of all
vibrational states (V1, V2

|l|, V3) up to twofold excitation, plus (0,
31, 0) and (0, 33, 0), because for the HDH+ isomer their energies
are below that of (2, 0, 0). In these tables, the zero point energy
is that of the lowest vibrational state (0, 00, 0) of HDH+. This
energy isEZPE ) -1.109100EH, and hence the corresponding
state lies 1527.76 cm-1 above the minimum of the potential
energy surface. The isomerization barriers are atE ) 1070 cm-1

above ZPE (all energies reported heretofore refer to this
reference), while the HD+ + H dissociation energy is atE )
2464 cm-1. Vibrational states with more than single excitation
are already located above the isomerization barriers.

The assignment of the HHD+ states was straightforward, and
all of the vibrational states show a quite regular energy
progression in their rotational manifolds. Furthermore, the
splitting between the symmetric and antisymmetric components
is very small. Having identified the HHD+ states in our database

of calculated eigenvalues, the assignment of the relatively few
remaining eigenvalues to ro-vibronic states of HDH+ is greatly
facilitated. Looking at the tables of the HDH+ states, we find
some interesting irregular features. Such irregularities could
cause problems in the automatic assignments, but because now
we have to divide the calculated eigenvalues over four groups
of states with different transformation properties, defined in
Table 1, the assignments are quite certain. The irregularities in
the energy region around 1100 cm-1, just above the barriers of
the potential, can be explained in terms of Fermi resonances
between members of the vibrational states (0, 20, 0), (0, 11, 1),
and (0, 22, 0), see Figure 1. In this Figure, the three states on
the left interact, as do the two states on the right. The interaction
patterns of the two groups of states are quite different. For
example, theN ) 1 member of (0, 20, 0) is pushed down by
interaction withN ) 1, (0, 11, 1)-. Corresponding displacement
of the latter manifests itself in the large energy splitting of almost

TABLE 3: Ro-Vibronic Term Values of the HHD + States of Group Ia

(V1, V2
l , V3) N Γrve

(1) n(1) Γrve
(2) n(2) E(1) E(2) Erel

(1) Erel
(2) ∆

(0, 00, 0) 0 B2 1 A1 0 73.72 73.72 0.00 0.00 0.00
1 A2 1 B1 0 80.67 80.67 6.95 6.95 0.00
2 B2 1 A1 0 94.56 94.56 20.84 20.84 0.00
3 A2 1 B1 0 115.39 115.39 41.67 41.67 0.00

(0, 11, 0)- 1 A2 2 B1 3 711.95 711.95 0.00 0.00 0.00
2 B2 2 A1 3 724.09 724.09 12.15 12.15 0.00
3 A2 2 B1 3 742.36 742.36 30.41 30.41 0.00

(0, 00, 1) 0 B2 2 A1 2 778.63 778.63 0.00 0.00 0.00
1 A2 3 B1 4 785.85 785.85 7.22 7.22 0.00
2 B2 3 A1 4 800.28 800.28 21.65 21.65 0.00
3 A2 3 B1 4 821.87 821.87 43.24 43.24 0.00

(1, 00, 0) 0 B2 4 A1 3 946.81 946.81 0.00 0.00 0.00
1 A2 4 B1 5 953.36 953.36 6.55 6.55 0.00
2 B2 4 A1 5 966.46 966.46 19.65 19.65 0.00
3 A2 4 B1 5 986.12 986.11 39.31 39.30 0.00

(0, 20, 0) 0 B2 6 A1 4 1293.23 1293.24 0.00 0.01 -0.01
1 A2 8 B1 6 1298.34 1298.34 5.11 5.11 0.00
2 B2 9 A1 6 1307.62 1307.62 14.40 14.39 0.01
3 A2 9 B1 6 1321.90 1321.90 28.67 28.67 -0.01

(0, 11, 1)- 1 A2 9 B1 7 1303.46 1303.46 0.00 0.00 0.00
2 B2 10 A1 7 1316.17 1316.17 12.70 12.71 0.00
3 A2 10 B1 7 1336.17 1336.16 32.71 32.70 0.01

(0, 22, 0)+ 2 B2 11 A1 8 1356.46 1356.46 0.00 0.00 0.00
3 A2 11 B1 8 1381.39 1381.39 24.93 24.93 0.00

(0, 00, 2) 0 B2 7 A1 6 1437.31 1437.32 0.00 0.01 -0.01
1 A2 10 B1 10 1442.78 1442.77 5.47 5.46 0.01
2 B2 12 A1 11 1453.75 1453.74 16.44 16.44 0.00
3 A2 12 B1 10 1470.55 1470.50 33.24 33.19 0.05

(1, 11, 0)- 1 A2 12 B1 11 1512.49 1512.51 0.00 0.02 -0.02
2 B2 14 A1 12 1525.38 1525.36 12.89 12.86 0.03
3 A2 14 B1 12 1544.66 1544.66 32.17 32.17 0.00

(1, 00, 1) 0 B2 9 A1 8 1561.41 1561.42 0.00 0.00 0.00
1 A2 13 B1 13 1567.96 1567.96 6.55 6.54 0.00
2 B2 15 A1 15 1581.08 1581.07 19.66 19.65 0.01
3 A2 15 B1 14 1600.67 1600.65 39.26 39.24 0.02

(2, 00, 0) 0 B2 11 A1 9 1749.21 1749.53 0.00 0.32 -0.32
1 A2 16 B1 15 1755.27 1754.96 6.06 5.75 0.31
2 B2 17 A1 17 1766.50 1766.80 17.28 17.58 -0.30
3 A2 17 B1 16 1784.41 1784.05 35.19 34.83 0.36

(0, 31, 0)- 1 A2 18 B1 16 1813.30 1813.67 0.00 0.37 -0.37
2 B2 19 A1 18 1813.46 1813.53 0.15 0.22 -0.07
3 A2 19 B1 19 1829.50 1829.47 16.20 16.16 0.03

(0, 33, 0)- 3 A2 20 B1 20 1848.01 1848.24 0.00 0.22 -0.22

a The energiesE(1) andE(2) are with respect to the zero point energy, while the energiesErel
(1) andErel

(2) are with respect to the band head of the first
component.∆ is the energy difference between the two components. All energies are in units of cm-1. Γ(1) andΓ(2) indicate the ro-vibronic symmetry
of the states, whilen(1) andn(2) are indices counting states with the same symmetry and angular momentum,N.
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10 cm-1 with respect to the other component of thel-type
doublet, (0, 11, 1)+, which is unperturbed. In comparison, the
splitting of the components of the (0, 11, 0) l-type doublet is
only about 2 cm-1.

To obtain the selection rules for dipole transitions, we note
that the dipole operator is antisymmetric with respect to
inversion of the coordinate system and symmetric with respect
to permutation of the two protons; thus, it transforms asA2 in
C2V(M). Consequently, the selection rules are

In addition, the usual selection rule∆J ) 0, (1 applies. For
convenicence, we list in Table 9 the lowest frequencies of (far)

TABLE 4: Ro-Vibronic Term Values of the HHD + States of Group IIIa

(V1, V2
l , V3) N Γrve

(1) n(1) Γrve
(2) n(2) E(1) E(2) Erel

(1) Eel
(2) ∆

(0, 11, 0)+ 1 B2 0 A1 1 712.92 712.92 0.00 0.00 0.00
2 A2 0 B1 1 727.00 727.00 14.08 14.08 0.00
3 B2 0 A1 1 748.11 748.11 35.19 35.19 0.00

(0, 11, 1)+ 1 B2 2 A1 2 1302.28 1302.27 0.00 -0.01 0.01
2 A2 3 B1 2 1311.57 1311.58 9.29 9.30 -0.01
3 B2 3 A1 2 1326.64 1326.63 24.36 24.35 0.01

(0, 22, 0)- 2 A2 4 B1 3 1356.57 1356.56 0.00 0.00 0.00
3 B2 4 A1 3 1381.77 1381.77 25.20 25.20 0.00

(1, 11, 0)+ 1 B2 3 A1 4 1512.46 1512.45 0.00 -0.02 0.02
2 A2 5 B1 5 1525.23 1525.25 12.77 12.79 -0.02
3 B2 5 A1 5 1544.40 1544.38 31.94 31.92 0.01

(0, 31, 0)+ 1 B2 5 A1 6 1813.49 1813.11 0.00 -0.37 0.37
2 A2 7 B1 8 1813.50 1813.43 0.01 -0.05 0.07
3 B2 7 A1 9 1829.31 1829.34 15.83 15.85 -0.02

(0, 33, 0)+ 3 B2 8 A1 10 1847.43 1847.15 0.00 -0.28 0.28

a Entries as in Table 3.

TABLE 5: Ro-Vibronic Term Values of the HDH + States of
Group I a

(V1, V2
l , V3) N Γrve n E Erel

(0, 00, 0) 0 B2 0 0.00 0.00
1 A2 0 9.55 9.55
2 B2 0 31.36 31.36
3 A2 0 60.04 60.04

(1, 00, 0) 0 B2 3 946.77 0.00
1 A2 5 954.75 7.98
2 B2 5 976.91 30.13
3 A2 5 1001.68 54.91

(0, 20, 0) 0 B2 5 1075.90 0.00
1 A2 6 1076.44 0.54
2 B2 6 1085.50 9.60
3 A2 6 1143.34 67.44

(0, 11, 1)- 1 A2 7 1092.82 0.00
2 B2 7 1113.84 21.02
3 A2 7 1221.62 128.80

(0, 22, 0)+ 2 B2 8 1132.24 0.00
3 A2 8 1249.83 117.59

(0, 00, 2) 0 B2 8 1438.90 0.00
1 A2 11 1447.77 8.87
2 B2 13 1470.42 31.53
3 A2 13 1504.12 65.22

(2, 00, 0) 0 B2 10 1731.74 0.00
1 A2 15 1746.17 14.43
2 B2 18 1777.60 45.85
3 A2 18 1813.70 81.96

a E is with respect to the zero point energy, whileErel is with respect
to the band head. All energies are in units of cm-1. Γ indicates the
ro-vibronic symmetry of the states, whilen is an index counting states
with the same symmetry and angular momentum,N.

TABLE 6: Ro-Vibronic Term Values of the HDH + States of
Group II a

(V1, V2
l , V3) N Γrve n E Erel

(0, 11, 0)- 1 B1 1 551.46 0.00
2 A1 1 570.73 19.26
3 B1 1 646.43 94.97

(0, 00, 1) 0 A1 1 617.52 0.00
1 B1 2 628.32 10.80
2 A1 2 650.98 33.47
3 B1 2 710.57 93.05

(1, 00, 1) 0 A1 5 1358.05 0.00
1 B1 8 1362.45 4.40
2 A1 9 1375.45 17.40
3 B1 9 1421.87 63.82

(1, 11, 0)- 1 B1 9 1405.86 0.00
2 A1 10 1430.96 25.11
3 B1 11 1488.50 82.64

(0, 31, 0)- 1 B1 12 1518.77 0.00
2 A1 13 1536.50 17.73
3 B1 13 1599.96 81.19

(0, 33, 0)- 3 B1 15 1602.64 0.00

a Entries as in Table 5.
TABLE 7: Ro-Vibronic Term Values of the HDH + States of
Group III a

(V1, V2
l , V3) N Γrve n E Erel

(0, 11, 1)+ 1 B2 1 1083.63 0.00
2 A2 1 1087.80 4.17
3 B2 1 1107.27 23.64

(0, 22, 0)- 2 A2 2 1123.66 0.00
3 B2 2 1163.70 40.04

a Entries as in Table 5.
TABLE 8: Ro-Vibronic Term Values of the HDH + States of
Group IV a

(V1, V2
l , V3) N Γrve n E Erel

(0, 11, 0)+ 1 A1 0 553.51 0.00
2 B1 0 572.84 19.33
3 A1 0 602.49 48.98

(1, 11, 0)+ 1 A1 3 1403.23 0.00
2 B1 4 1418.53 15.29
3 A1 4 1442.88 39.64

(0, 31, 0)+ 1 A1 5 1601.87 0.00
2 B1 7 1621.72 19.85
3 A1 7 1654.98 53.11

(0, 33, 0)+ 3 A1 8 1679.89 0.00

a Entries as in Table 5.

A1 T A2, B1 T B2 (5)
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IR transitions originating from the vibrational ground states of
HDH+ and HHD+.

4. Conclusions
With the present work, the first data on ro-vibronic energies

of H2D+ in the electronic triplet state have become available.
Because the hyperspherical harmonics expansion of the ro-

vibrational wave function is only slowly convergent for the title
system, our present analysis has been restricted to states with
up to moderate vibrational or rotational excitation. To make
the method more efficient, we are exploring the concept of
energy selected bases, as presented by Lee and Light,15 within
the hyperspherical harmonics contraction scheme. With such
an optimized method, even higher excited states should become
accessible. In the meantime, we hope that the data presented
here may prove useful in an analysis of yet unassigned lines in
hydrogen plasmas.
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Figure 1. Ro-vibronic states of HDH+ in the 1100 cm-1 region, see
the text. The lowest two (0, 20, 0) levels are nearly indistinguishable
within the scale of the Figure and appear as a slightly broader line.

TABLE 9: Frequencies, in Wavenumbers, of the First
Low-Energy IR Transitions Originating from the
Vibrational Ground States of HDH+ and HHD+

isomer initial state
Γrve

(weight) final state
Γrve

(weight) ∆E

HDH+ N ) 0, (0, 00, 0) B2(3) N ) 1, (0, 11, 0)- B1(3) 551.46
HDH+ N ) 0, (0, 00, 0) B2(3) N ) 1, (0, 00, 1) B1(3) 628.32

HHD+ N ) 0, (0, 00, 0) A1(1) N ) 1, (0, 11, 0)- A2(1) 638.23
B2(3) N ) 1, (0, 11, 0)- B1(3) 638.23

HHD+ N ) 0, (0, 00, 0) A1(1) N ) 1, (0, 00, 1) A2(1) 712.13
B2(3) N ) 1, (0, 00, 1) B1(3) 712.13
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