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Considering the importance of the road transportation nowadays, concerns related to

pavement deterioration and maintenance have become relevant subjects. Especially for

commercial vehicles, the vertical dynamic load (characterized by the tire-road interaction)

is directly related to wear on the road surface. Given this, the main objective of this paper is

to analyse effects of vertical loads applied on the flexible pavement, considering the

variation of the condition of shock absorbers from a truck's front suspension. The mea-

surements were performed on a rigid truck, with 2 steering front axles, in a durability test

track located in Brazil. With a constant load of 6 tons on the front suspension (the

maximum allowed load on front axles according to Brazilian legislation), 3 different shock

absorber conditions were evaluated: new, used and failed. By applying the relative damage

concept, it is possible to conclude that the variation of the shock absorber conditions will

significantly affect the vertical load applied on the pavement. Although the results clearly

point to a dependent relationship between the load and the condition of the shock ab-

sorbers, it is recommended to repeat the same methodology, in future to analyse the in-

fluence of other quarter car model variants (such as spring rate, mass and tire spring

stiffness).

© 2015 Periodical Offices of Chang'an University. Production and hosting by Elsevier B.V. on

behalf of Owner. This is an open access article under the CC BY-NC-ND license (http://

creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Besides the direct impact on the vehicle dynamic behaviour

(rolling resistance, ride & handling, fuel economy, NVH), the

tire-road interaction is also a factor that compromises the

pavement integrity. As larger loads and vehicles appear in the
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road transportation system, pavement damage concerns

become an increasingly relevant issue in road construction

and maintenance activities (Fabela-Gallegos et al., 2010; Oli-

veira et al., 2008).

Vertical dynamic load is directly related to the deteriora-

tion of the pavement (Sayers et al., 1986). Therefore, this
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Fig. 2 e Illustration of a metal-foil strain gauge (Hannah

and Reed, 1992).
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relation can also be extended to vehicles variants, especially

for commercial vehicles (trucks and buses). However, not all

vehicles could cause equivalent damage because of the

differences in wheel loads, number and location of axles,

types of suspensions and tires, and other aspects (Gillespie

et al., 1991).

By analysing a quarter car model (Fig. 1), it was expected

that the shock absorber damping forces could be influenced

by the natural wear of this system.

In Fig. 1,M1 is sprungmass, Z is displacement of the sprung

mass, K1 is primary suspension spring rate, C1 is shock

absorber damping force, m1 is unsprung mass, Zu is

displacement of the unsprung mass, K1
0

is tire spring

stiffness, Zr is displacement of the ground.

The equations of motion for the quarter car model in Fig. 1

are shown as below (Simms and Crolla, 2002).

m1Zu

··
¼ K0

1ðZr � ZuÞ � K1ðZu � ZÞ � C1

�
Z
·

u � Z
· �

(1)

M1Z
··
¼ K0

1ðZu � ZÞ þ C1

�
Z
·

u � Z
· �

(2)

Besides the fact that thedamping forces (C1) isaparameterof

the quarter carmodel, it is not often considered in some studies

regardingvertical loadm1Z
··

u appliedon thepavement (Cheetal.,

2011; Sunet al., 2011; ZhangandZhang, 2011), or it is considered

asa constant (Liu andWang, 2008). In reality, theshockabsorber

damping forces varies in terms of compression and extension

speed (Causemann and Kelchner, 2000).

The main objective of this paper is to analyse the influence

of the shock absorber conditions on the vertical load damage

on the pavement, using a simple instrumentation (metal-foil

strain gauges) and the concept of relative damage.
2. Methodology

2.1. Metal-foil strain gauge

The metal-foil strain gauges (Fig. 2) are sensors made up of a

thin resistive foil, fixed on an electrical insulation material

called base (Andolfato et al., 2004) or matrix (Hannah and

Reed, 1992). The main advantages and characteristics of the

metal-foil strain gauges are their high precision and

linearity, low cost and good dynamic and static response

(Lima et al., 2008).
Fig. 1 e Quarter car model (Gillespie, 1992).
Theworking principle of this gauge is based on the fact that

all electrical conductors change their resistance when elon-

gated (Gallina, 2003). This characteristic is stated in the

Second Ohm's Law, which relates the resistance (R) of a

conductor to its length (L), cross-sectional area (A) and

resistivity (r).

R ¼ rL
A

(3)

Considering a generic elongation in an electrical

conductor, Eq. (3) can be rewritten as follow

DR
R

¼ kDL
L

(4)

where the factor k is defined as the sensitivity of the strain

gauge, corresponding to a constant that varies with the

resistive material used (Andolfato et al., 2004; Gallina, 2003).

Considering that the giving strain is measured as the total

elongation per unit length of the material, the following

equation is obtained.

DR
R

¼ ke (5)

The Eq. (5) indicates that the magnitude of the measured

strain (e) is proportional to a relative change of resistance,

which is the working principle of this type of sensor

(Andolfato et al., 2004; Doebelin, 1990).
2.2. Damage calculation

As structures and mechanical components are regularly sub-

jected to oscillating loads and fatigue is one of the major

causes in component failures, fatigue life prediction has

become a relevant subject (Liou et al., 1999). If a test specimen

is subjected to a sufficiently severe cyclic stress, a fatigue

crack or other damage will develop, resulting in the

complete failure of the component/system (Dowling, 2012).

Through a stress-life (W€ohler) curve, as shown in Fig. 3, it is

possible to estimate the number of cycles for component to

failure on a determined magnitude of cycle stress.

Unfortunately, only a few applications present such behaviour

(regular and sinusoidal stress loads).
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Fig. 3 e Example of 2 stress-life curves (Dowling, 2004).

Fig. 5 e Tested truck.
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Within this scenario, Palmgren suggested the following

equation

N1

Nf1
þ N2

Nf2
þ N3

Nf3
þ/ ¼

X Nj

Nfj
¼ 1 (6)

where Nj is number of cycles for each constant load, Nfj is

number of cycles (failure) from stress-life curve for each

constant load.

Basically, Palmgren states that a component will fail when

the sum of the ratio of the number of cycles for each segment

to the number of cycles from stress-life curves is equal to 1.

Moreover, the damage, represented by those ratios, occurs

and accumulates only when the stress is higher than the fa-

tigue limit (Zhu et al., 2011).

On the other hand, Dowling highlights that for loads with

high variation levels, it is not feasible to do the calculation as

stated by PalmgreneMiner (Miner, 1945). In this way, it is

necessary to adopt a procedure called rainflow cycle

counting, created by Matsushi and Endo (1968). This analysis

considers a cycle counting, which follows the criteria shown

in Fig. 4.

With the combination of the peak-valley-peak “A-B-C”

(Fig. 4), it will be considered as a cycle, if the amplitude

variation DsBC is equal to or greater than the previous

amplitude variation (Matsushi and Endo, 1968).

Finally, using the concepts from PalmgreneMiner/Endo

and Matsushi, it is possible to define the following equation

for the absolute damage

 P Nj

Nfj

!
.

sa ¼ smax � smin

2
(7)
Fig. 4 e Rainflow cycle counting (Dowling, 2012).
where sa is average amplitude from each rainflow cycle, smax

is the maximum amplitude (peak) of each rainflow cycle, smin

is the minimum amplitude (valley) of each rainflow cycle.

Nfj ¼ 1
2

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
smaxsa

p
s0
f

!1
b

(8)

where s�f is theoretical loading that indicates failure with

0 cycle (material property), b is stress-life curve slope (material

property).
2.3. Boundaries and assumptions

In order to analyse the influence of the shock absorber con-

dition, it was necessary to keep the other variants of the

quarter car model (Fig. 1) steady/fixed as follows.

(1) Sprungmass and unsprungmass were set as 6 tons, the

maximumweight allowed on the front axle according to

the Brazilian legislation;

(2) Primary suspension spring rate were set according to

the manufacturing specificationenew components;

(3) Tire pressure was set as 110 psi (7.6 bar);

(4) Pavement longitudinal profile tests were performed on

a proving ground located in Brazil, in order to keep the

same track in all measurements.

An 8 � 2 rigid truck was chosen (Fig. 5) and all

measurements reflect the loads of both front steering axles.
2.4. Instrumentation and calibration

Uniaxial strain gaugeswere placed on themain leave spring of

the 1st and 2nd steering axle (Fig. 6) on the left hand side (LHS)

and right hand side (RHS) of the vehicle.

The recorded values given by the above-mentioned

instrumentation were in me (micro-strain). Therefore, it was

necessary to calibrate the system in order to estimate the

force applied on the pavement.

A weighting scale was used and different loads were

applied on the vehicle body with the objective of obtaining the

calibration curves between me and the load applied on the

ground in tons (Figs. 7 and 8).

Due to the fact that all tested springs have the same spring

rate, all calibration curves have similar characteristics.

http://dx.doi.org/10.1016/j.jtte.2015.10.001
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Fig. 6 e Primary suspension spring leaf-instrumentation.

Fig. 7 e Weighting scale used for calibration.

Fig. 8 e Example of one spring calibration (1st axle-LHS-

front).

Fig. 9 e Detail of the pothole track.
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For the test procedure, a pothole (PH) track in the proving

ground was used for the measurements with the following

conditions (Figs. 9 and 10):

(1) Vehicle weight was 6 tons per front axle;

(2) Vehicle speed was 40 km/h;

(3) Tire pressure was 110 psi (7.6 bar) (ALAPA, 2013);

(4) Suspension spring used original primary suspension

spring rate setting.

The only variant was the condition of the shock absorber:

new, used (60,000 km of accumulatedmileage) or failed (shock

absorber with no damping force). The 3 measurements were

performed for each test (as shock absorber condition). For the

data analysis, all time signals were used.
3. Results and discussion

Fig. 11 presents an example of the time-series signal of each

front spring for a shock absorber condition (new). The

mentioned figure refers to the load applied to the pavement

on each front axle tires, in tons.

Figs. 12e14 present the histograms for the tested shock

absorber conditions. These diagrams can be visualized in a

way that the counting cycles close to the static load (3 tons) are

the mandatory values.
Fig. 10 e Interaction between tire and pothole.

http://dx.doi.org/10.1016/j.jtte.2015.10.001
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Fig. 11 e Time-series signal with new shock absorber on the pothole track. (a) 1st steering axle-LHS-load. (b) 1st steering axle-RHS-load. (c) 2nd steering axle-LHS-load. (d)

2nd steering axle-RHS-load.
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Fig. 12 e Level crossing histograms: new shock absorber. (a) 1st steering axle-LHS-load. (b) 1st steering axle-RHS-load. (c)

2nd steering axle-LHS-load. (d) 2nd steering axle-RHS-load.

Fig. 13 e Level crossing histograms: used shock absorber. (a) 1st steering axle-LHS-load. (b) 1st steering axle-RHS-load. (c)

2nd steering axle-LHS-load. (d) 2nd steering axle-RHS-load.
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Fig. 14 e Level crossing histograms: failed shock absorber. (a) 1st steering axle-LHS-load. (b) 1st steering axle-RHS-load. (c)

2nd steering axle-LHS-load. (d) 2nd steering axle-RHS-load.
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Nevertheless, with this statistical tool, it is not possible to

precisely evaluate the influence of the shock absorber condi-

tion on pavement fatigue. Therefore, from the measured re-

sults and based on an artificial SeN curve, a relative damage

analysis of the pavement was performed.

Fig. 15 presents the results for the relative damage on the

pavement according to the shock absorber condition and for

each front axle tires. The obtained results suggested that the

shock absorber condition has a significant relation with the

vertical load applied on the pavement and consequently to

the relative damage on it. This analysis considered the new

shock absorber condition as the baseline (fixed on 100%) and

used a slope (k0) of the SeN curve equal to 5.
Fig. 15 e Relative damage among shock absorber

conditions (k′ ¼ 5).
By analysing Fig. 15, it is noticeable that the first steering

axle has a linear increment on pavement damage with the

degradation of the shock absorber condition and that both

sides (LHS and RHS) have the similar behaviour. On the

other hand, this linearity is not observed on the 2nd steering

axle, where the severity of the loading caused by this axle

didn't increase up to the total failure of the damper. In

addition, difference was found on the sides of the 2nd

steering axle, which was higher on the RHS, due to the extra

weight (fuel tank) on that area.
4. Conclusions

Three extreme shock absorber conditions have been analysed

in order to identify their behaviour trends. However, it is

important to highlight that the above-mentioned variation

represents the entire lifetime of the component. Given this

scenario, by applying the relative damage concept, it is

possible to conclude that the variation of the shock absorber

conditions will significantly affect the vertical load and

consequently the damage made on the pavement.

For this first analysis, the other quarter car model variants,

such as spring rate, tire pressure and spring mass were

considered as constants, but it is recommended to apply the

same methodology to those parameters, in order to have a

complete view of the key factors that contribute to the in-

crease of the pavement damage.

Finally, it is recommended to consider the real shock

absorber damping forces, in order to identify any character-

istics involving vehicle dynamics interaction with pavement.
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