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Abstract

In this paper, we address 3D reconstruction of surfaces deforming isometrically. Given that an isometric surface is
represented by means of a triangular mesh and that feature/point correspondences on an image are available, the
goal is to estimate the 3D positions of the mesh vertices. To perform such monocular reconstruction, a common
practice is to adopt linear deformation model. We also integrate this model into a least-squares optimization. However,
this model is obtained through a learning process requiring an adequate data set of possible mesh deformations.
Providing this prior data is the primary goal of this work and therefore a novel reconstruction technique is proposed
for a mesh overlaid across a typical isometric surface. This technique consists in the use of a range camera
accompanied by a conventional camera and implements the path from the depth of the feature points to the 3D
positions of the vertices through convex programming. The idea is to use the high-resolution images from the RGB
camera in combination with the low-resolution depth map to enhance mesh deformation estimation. With this
approach, multiple deformations of the mesh are recovered with the possibility that the resulting deformation model
is simply extended to any other isometric surfaces for monocular reconstruction. Experimental results show that the
proposed approach is robust to noise and generates accurate reconstructions.
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1 Introduction

The reconstruction of objects from a single image is
under-constrained, meaning that the recovery of 3D shape
is an inherently ambiguous problem. The case of non-
rigid objects is even more complex and difficult [1-3].
Given a specific configuration of points on the image
plane, different 3D non-rigid shapes and camera motions
can be found that fit the measurements. The approaches
proposed over the past years can be categorized in two
major types: those involving physics-based models [4—6]
and those relying on non-rigid structure-from-motion
(NRSfM) approaches [7—13]. In most cases, the former
type ends up designing a complex objective function to
be minimized over the solution space. The latter, on the
other hand, takes advantage of prior knowledge on the
shape and motion, to constrain the solution so that the
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inherent ambiguity can be tackled, and it performs effec-
tively provided that the 2D point tracks are accurate and
reliable. For example, Aanaes et al. [14] impose the prior
knowledge that the reconstructed shape does not vary
much from frame to frame while Del Bue et al. [15] impose
the constraint that some of the points on the object are
rigid. The priors can be divided in two main categories:
the statistical and physical priors. For instance, the meth-
ods relying on the low-rank factorization paradigm [14,
15] can be classified as statistical approaches. Learning
approaches such as [16-21] also belong to the statistical
approaches. Physical constraints include spatial and tem-
poral priors on the surface to be reconstructed [22, 23].
Monocular reconstruction of deformable surface recon-
struction has been extensively studied in the last few years
[24, 25]. Strictly speaking, isometric reconstruction from
perspective camera views has attracted much of the atten-
tion. A physical prior of particular interest in this case
is the hypothesis of having an inextensible (i.e., isomet-
ric) surface [26—29]. In this paper, we consider this type
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of surface. This hypothesis means that the length of the
geodesics between every two points on the surface should
not change across time, which makes sense for many types
of material such as paper and some types of fabric.

The reconstruction of 3D deformable surfaces is becom-
ing increasingly important and this can be visible consid-
ering its practical applications. Physics has inspired early
approaches. These approaches amount to a minimization
based on the physical behavior of the surface [4, 30, 31].
Although it makes sense that we integrate physical laws
into our algorithms, the final framework will be affected
by two major shortcomings:

— The material parameters, which are typically
unknown, have to be determined.

— In order to estimate the parameters accurately, in the
presence of large deformations, we need to build a
complex cost functional (which is hard to optimize).

Methods that learn models from training data were
introduced to overcome these limitations. In that case,
surface deformations are expressed as linear combinations
of deformation modes which are obtained from train-
ing data. NRSfM methods built on this principle recover
simultaneously the shape and the modes from image
sequences [11, 32, 33]. Although this is a very attractive
idea, practical implementations are not easy since they
require points to be tracked across the entire sequence.
Moreover, they are only effective for relatively small defor-
mations. There have also been a number of attempts
at performing 3D surface reconstruction without using
a deformation model. One approach is to use lighting
information in addition to texture clues to constrain the
reconstruction process [34], which has only been demon-
strated under very restrictive assumptions on lighting
conditions and is therefore not generally applicable. The
algorithms for reconstructing deformable surfaces can be
classified by the type of the surface model (or represen-
tation) used: Point-wise methods only reconstruct the 3D
position of a relatively small number of feature points,
resulting in a sparse reconstruction of the 3D surface [27].
Physics-based models such as superquadrics [35], triangu-
lar meshes [28], or thin-plate splines (TPS) [27] have been
also utilized in other algorithms. In TPS, the 3D surface
is represented as a parametric 2D-3D map between the
template image space and the 3D space. Then, a paramet-
ric model is fit to a sparse set of reconstructed 3D points
in order to obtain a smooth surface which is not actually
used in the 3D reconstruction process.

Having an isometric surface means that the length of
the geodesics between pairs of points remains unchanged
when the surface deforms and the deformed surface
can be obtained by applying an isometric transformation
(map) to a template surface. In many cases, computation
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of the geodesics is not trivial and involves the application
of differential geometry. Instead, the Euclidean distance,
which is much easier to estimate, has been regarded as a
good approximation to the geodesic distance, on condi-
tion that it does not drop too much below the geodesics.
Euclidean approximation is better when there are a large
number of points. Although it can work well in some
cases, it gives poor results when creases appear in the
3D surface. In this case, the Euclidean distance between
two points on the surface can shrink. For this reason, the
“upper bound approach” has been proposed which relies
on the fact that the Euclidean distance between two ran-
dom points on a plane is necessarily less than (or equal to)
the corresponding geodesics, which is known as inexten-
sibility constraint. As a result, early approaches relax the
non-convex isometric constraints to inextensibility with
the so-called maximum depth heuristic [24, 27]. The idea
is to maximize point depths so that the Euclidean dis-
tance between every pair of points is upper bounded by
its geodesic distance, computed in the template [18, 28].
In these papers, a convex cost function combining the
depth of the reconstructed points and the negative of
the reprojection error is maximized while enforcing the
inequality constraints arising from the surface inextensi-
bility. The resulting formulation can be easily turned into
a SOCP problem. This problem is convex and gives accu-
rate reconstructions. A similar approach is explored in
[26]. The approach of [27] is a point-wise method. The
approaches of [18, 26, 28] use a triangular mesh as sur-
face model, and the inextensibility constraints are applied
to the vertices of the mesh. Recently, analytical solutions
for isometric and conformal deformations have been pro-
vided by posing them as a system of partial differential
equations [36, 37].

1.1 Problem formulation

In this paper, we aim at the reconstruction of surfaces that
undergo isometric deformations. Assuming that a trian-
gular mesh is used to represent an isometric surface and
that a set of feature/point correspondences on an image of
the surface have been provided, the objective is to deter-
mine the 3D positions of the mesh vertices. To carry out
this monocular reconstruction, we formulate a non-linear
least-squares optimization that integrates the linear defor-
mation model, deformation-based constraints which we
call isometric constraints, and the projection equations in
order to solve for 3D positions of the mesh vertices.

Main contribution: Several reconstruction methods
have previously relied on the linear deformation model as
a crucial element that can reduce the ambiguity of infi-
nite solutions. This model is specially useful when using
the mesh representation. It is typically obtained from
prior training data that corresponds to various possible
deformations of the mesh. As a result, it is required to
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reconstruct these mesh deformations beforehand, which
is challenging without some sort of supporting 3D infor-
mation. Furthermore, the precision of the training data is
important and must be ensured. For this purpose, we pro-
pose an innovative technique to acquiring such data with
high accuracy. This technique aims to estimate a regular
3D mesh overlaid across a generic isometric surface and
is used to recover several different deformations of the
mesh in a way that makes it possible to extend the com-
puted deformation model to other isometric surfaces for
monocular reconstruction. In developing this approach,
we use a conventional RGB camera aided by a range cam-
era. Our emphasis is, in fact, on the use of a time-of-flight
(ToF) camera in conjunction with the RGB camera. Most
RGB cameras provide high-resolution images. With these
cameras, one can use efficient algorithms to calculate the
depth of the scene, recover object shape or reveal struc-
ture, but at a high computational cost. ToF cameras deliver
a depth map of the scene in real time but with insuffi-
cient resolution for some applications. So, a combination
of a conventional camera and a ToF camera can exploit
the capabilities of both. We assume that the fields of view
of both cameras mostly overlap. From the depth map, the
depth of the feature points can be extracted by adopting
a registration technique for the camera combination. This
allows the depth of the mesh vertices to be subsequently
computed using either a linear system of equations or a
linear programming problem. Given the mesh depth data,
the complete 3D positions of the vertices can be recov-
ered through a second-order cone programming (SOCP)
problem. Applying the approach just described to a variety
of mesh deformations leads to the required data, thereby
computing the deformation model.

1.2 Outline of the paper

This paper is organized as follows: Section 2 discusses
the background of our work, including the notation
used, mesh representation, and the linear deformation
model. Section 3 describes the monocular reconstruc-
tion. Section 4 is assigned to a detailed explanation
of our D-RGB-based reconstruction. Section 5 presents
experimental results and quantitative evaluations, demon-
strating the efficiency of our reconstruction schemes. In
Section 6, we discuss conclusions.

2 Background

2.1 Notation

Matrices are represented as bold capital letters (A €
R 5 rows and m columns). Vectors are represented
as bold small letters (a € R”, n elements). By default, a
vector is considered a column. Small letters ( a) represent
one-dimensional elements. By default, the jth column vec-
tor of A is specified as a;. The jth element of a vector a is
written as a;. The element of A in the row i and column j
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is represented as A;j. A2 and a''* indicate the first two
rows of A and a. A®® and a® denote the third row of A
and a, respectively. Regular capital letters (A) indicate one-
dimensional constants. We use R after a vector or matrix
to denote that it is represented up to a scale factor.

2.2 Maesh representation

Assume that a set of 3D feature points p™f =
{ p{ef, e plr\?f } on a template with a known shape (usu-
ally a flat surface), and a set of 2D image points q =
{ql, -+, qu} tracked on the RGB input image of the
same surface, but with a different and unknown deforma-
tion are given. As already stated, we represent the surface
as a triangular 3D mesh with 7, vertices v; (and ny, trian-
gles) concatenated in a vector s = [VIT, e, v,{v ]T, and
denote by s'f the template mesh, and s the mesh we seek
to estimate—see Fig. 1. Let p; be a feature point on the
mesh s corresponding to the point pfef in the template. We
can express p; in terms of the barycentric coordinates of
the triangle it belongs to:

3
pi = Zaijvl['l] 1)
=1

where the a;; are the barycentric coordinates and v][i] are
the vertices of the triangle containing the point p;. Mesh
representation has the advantage of simplifying recon-
structions in view of the fact that the isometric type of
deformation imposes the constraint that the length of the
edges of a mesh with a dense distribution of vertices stay
nearly the same, as the surface deforms. As a result, we
may treat the mesh triangles as rigid, allowing us to con-
sider that the barycentric coordinates remain constant for
each point. These coordinates are easily computed from
points pfef and the mesh s™. Let us denote by A =
{ a;, ---, ay } the set of barycentric coordinates associ-
ated with the feature points, where a; = [ a1, i, a;3 ]

2.3 Linear deformation model

The space of possible deformed shapes of the surface is
constrained by applying a deformation model. This model
adequately fills in the missing information while being
flexible enough to allow reconstruction of complex defor-
mations [17]. A mesh deformation is thus modeled as a
linear combination of a mean shape sg and #,, basis shapes

(deformation modes) S = [sl, e s,,m]:
Hm
s:so+2wksk:so+8w 2)
k=1

These modes can be obtained by applying principal
component analysis (PCA) to a plenary set of training
deformations. In our work, this training data is acquired



Hosseini and Araujo EURASIP Journal on Image and Video Processing (2016) 2016:15

Page 4 of 11

a b

P=ca+ ffb+p

o+pB+y=1

Fig. 1 A regular triangular mesh and barycentric coordinates

using a high-resolution image combined with the knowl-
edge of the depth of a set of feature points.

3 Monocular reconstruction from a single view
Given that the linear deformation model has been com-
puted, the objective is to proceed with an efficient
algorithm which is intended to demonstrate the use of
the linear deformation model in monocular reconstruc-
tion of mesh deformations. For this purpose, we intro-
duce an algorithm that falls within a particular class of
methods which follow the same basic principle, namely,
mesh representation along with linear deformation model
[17, 18, 24, 28]. Our algorithm is slightly different, which
is composed of two non-linear constraints. It is capable of
performing such reconstruction that the shape of any iso-
metrically deformed surface is estimated by using only a
conventional camera.

Isometric constraint: This constraint is the difference
between the observed and the predicted length of an edge.
We formulate a non-linear constraint as

ne
€iso = Z (Li - Hs[li] o S[Zi] H)2 (3)
i=1

where L; is the length of the edge i, computed on the tem-
plate. s[li] and s[zi] denote the two entries of the mesh that
account for the ending vertices of the edge i.

Reprojection error: In addition, there are also reprojec-
tion errors, that is, errors on the image position of the
feature points. We should thus account for the repro-
jection error by adding a term to the function to be
optimized. By combining Eqs. 1 and 2, we will have

3
pi = Z “i/sl['l] (4)
j=1

where sg] and S are the subvector of so and the subma-
trix of S (respectively), corresponding to the vertex j of
the triangle in which the feature point i resides. The term

corresponding to the reprojection error can be obtained
as indicated below.

3] bl

where N is the number of feature points. The A; add extra
unknowns to the optimization problem. Therefore, it is
advantageous to reformulate the above equations so that
the A; can be eliminated. Consider the equation below:

“[ ] Z“U 3 ©)

After some simple algebraic manipulation, we obtain

€re =

s
L
[ainAi anAi asAil, o | sy =
]
$3° dox1
€1,i o(1:2) o(3)
=0 where A; = —qK 7
|:e2,i :|2><1 where A, rgb q: rgb (7)
This equation provides 2 linear constraints as: e;; = 0

and ey ; = 0. Thus, the modified e,, takes a form where the
A; does not exist, as follows:

N
€mre = Z ((el,i)2 + (eZ,i)2> (8)
i=1
where enre denotes the modified eye.

Objective function: We have now derived two con-
straints, described as two separate non-linear expressions.
However, we intend to integrate both constraints into
a single objective function so that they are taken into
account at one time, while estimating all the parameters.
To do so, we minimize the weighted summation of them
in such a way that the reprojection error term is assigned
a weight m that accounts for its relative influence within
the combined objective function.
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miny etot = (€iso + 7.emre) )

The above optimization scheme is a non-linear least-
squares minimization problem, typically solved using an
iterative algorithm such as Levenberg-Marquardt.

4 Reconstruction using a D-RGB camera setup

In order to build an adequate data set of mesh deforma-
tions for learning the deformation model, we propose a
reconstruction approach for a typical surface based on a
D-RGB camera setup. The completed deformation model
can be then extended for monocular reconstruction of
any other surfaces that undergo isometric deformations.
Using the result of the registration described below, we
can obtain an estimate for the depth of the feature points.
The idea behind our D-RGB-based reconstruction is to
determine the 3D positions of the mesh vertices, given this
depth data. This is done in two steps: first the depth of the
vertices is estimated and then their xy-coordinates.

Registration between depth and RGB images: The reso-
lutions of the depth and RGB images are different. A major
issue that directly arises from the difference in resolution
is that a pixel-to-pixel correspondence between the two
images cannot be established even if the FOVs fully over-
lap. Therefore, the two images have to be registered so that
a mapping between the pixels in the depth image and in
the RGB image can be established. The depth images pro-
vided by the ToF camera are sparse and affected by errors.
Several methods can be used to improve their resolution
[38—41], allowing the estimation of dense depth images.
However, to estimate depth for all the pixels of the RGB
image, based on the depth map given by the ToF camera,
simple linear procedures are used as follows:

We use a pinhole camera model for both cameras and
assume that they are calibrated internally and that also
the relative pose between both cameras, specified by the
rotation matrix R’ and translation vector t has been esti-
mated. Let pyof and prgp represent the 3D positions of a
point in the coordinate system of the ToF and the RGB
cameras, respectively. piof is obtained directly from the
calibrated ToF camera. Thus, p.gp can be easily calculated
by prgb = R Ptof + t —see Fig. 2. For each point of the
RGB image, we select the four closest neighbors whose
depth was obtained from the depth image. Then, a bilinear
interpolation is performed. Another possibility could be
to select the three closest neighboring points (therefore,
defining a triangle) and assume that the corresponding 3D
points define a plane. An estimate for the depth of the
point could be then obtained by intersecting its project-
ing ray with the 3D plane defined by the three 3D points.
As a result, the depth of the N feature points is computed
accurately and we indicate by p,  the depth of the feature
point k.
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Fig. 2 ToF/RGB camera setup

4.1 Step 1:recovery of the depth of the vertices

Given p, x for all ks, the goal is to estimate the depth of the
vertices. Let z; and rz; denote the depth of the vertex i and
the relative depth of the edge j, respectively. The vertices
are numbered and sorted according to a particular order-
ing. The same goes for the set of all relative depths. In
addition, a relative depth needs to conform to either of the
two directions along its edge, i.e., rza5 = z16 — 27 or vice
versa. So, a predefined set of selected directions is applied
to all edges. As a matter of fact, the rigidity of a closed
triangle enforces the fact that the sum of the depth dif-
ferences between every two vertices concatenated around
the triangle, be zero. This can be expressed with relative
depths and gives us ny equations which, in conjunction
with the equations associating the relative depths with the
depth of vertices, add up to ny + #, (the number of trian-
gles + the number of edges) linear equations. We augment
this linear system with the depth of the feature points.
From Eq. 1, we can derive p,; = a,-lzgi] + aigzg] + aigzg].
Having this equation for every feature point results in
N linear independent equations. Putting together all the
equations available, we end up with nyt = ny + e + N
linear equations where the only unknowns are the depth
of vertices and of the edges (i.e., n, + 1, unknowns), which
means that the resulting linear system is overdetermined.

We denote this linear system as Mx = . We now

z
propose two algorithms for determining the depth of the
mesh vertices below.

Algorithm 1: solving a linear system of equations: The
linear system above has n, + N independent equations out
of i and this is not yet enough to find the right single
solution because there are still an infinitude of solutions
that satisfy this linear system. One possible alternative
to handle this is to fit an initial mesh using polyno-
mial interpolation, to the data. This fitting consists in
xy-coordinates of the feature points on the template as
input and their z-coordinates on the input deformation
as output. Once the parameters of the interpolant have
been found, we can obtain initial estimates for depth of
the vertices, with their xy-coordinates on the template as
input. Let z;. be the interpolated depth of the vertex i. By
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adding this result as an extra equation to the linear system
described earlier, we obtain the modified linear system
Mpodx = b, which has most likely full column rank. So,
the number of independent equations out of nyt + 1, will
be n, + n,. Since the number of independent equations is
equal to that of unknowns, there must be a unique solu-
tion which can be computed via the normal equations.
In general, the use of least-squares minimization leads to
better results.

Algorithm 2: a linear programming problem: An LP can
be also defined to estimate the depth of the vertices. The

linear system Mx = |: 0
Pz

in this LP. However, it is essentially useful to have addi-
tional estimates for the depth of the mesh vertices in order
to ensure accurate results. For this purpose, we use again
the output of the polynomial interpolation. From this,
additional constraints on the depth of the vertices can be
defined as z;—o <z < z;—f—a. o is set to a small value (e.g.,
0.5 cm) depending on the object’s deformations. Apart
from these constraints, we need to define an objective
function that is best suited to our particular problem. This
objective function is defined as summation over all rela-
tive depths, which is equal to a linear expression g in terms
of the depth of the vertices (with coefficients —1, 0, or
+1), depending on the direction of the edges. For exam-
ple, using our conventional directions for a 9 x 9 mesh, we
would have Z;’;l rzj = g = z73 — Z9. As a result, the error
e, to be minimized will be:

He
e, = Z rzj — g
j=1

] is used as a set of constraints

(10)

However, this error must be close to zero but strictly
positive. Therefore, we need to specify e, > 0. Finally,
the depth of all vertices can be estimated via the linear
program expressed as

miny e, such that

Ne
! ’
eZ:Zrzj—g, e,>0, z,—0 <z <z;+0
j=1

0

. (11)

Mx=|: ], zi >0, Vie{1,~~,nv}

where M is a (14 + n. + N) x (n, + n,) matrix contain-
ing the coefficients of the linear system, x represents the
vector comprising z; and rz; for all is and js and p, indi-
cates the set of all p, ;s. This LP problem provides accurate
estimates, as will be shown in the experimental results.
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4.2 Step 2: estimation of the xy-coordinates of the
vertices

Assuming that Ky, is the calibration matrix of the RGB
camera, an optimization procedure is formulated to esti-
mate the variables q; ; and qy; (qsyi = ziqy,; = [ u; v; ]T>
of vertex i. We call these variables unnormalized image
coordinates. Such estimation is based on what we call
unnormalized projected lengths and is performed by
means of second-order cone programming (SOCP), con-
sequently determining the full 3D positions of the vertices.
This SOCP includes a linear objective function and a set
of linear and conic constraints.

Unnormalized projected length: Let us represent v;
and vy as v = [x1 y1 zl]T and vy = [xg Y2 Zz]T,
respectively . We can derive the difference between
the corresponding unnormalized image points

T T
(qu,l = [zlul z1v1] and qﬁ’z = [z2u2 z2vz] ) as fol-
lows: ziu1 —zouz = f(x1 —%2), z1v1—22v2 =f(y1 —¥2).
By squaring and subsequently computing the sum of
these two equations, we obtain this:

(2111 —22u2)* + (211 —22v2) > =2 [ (61 —%2)* + (11 —92)°]
(12)

Note that the 3D length of an edge can be expressed as
L* = (01— x)” + 01 = 92)” + (21 — 22)° (13)

For isometric deformations, the geodesics between any
two points on the surface is constrained to a constant
value. The Euclidean distance between these two points
can be assumed to equal the corresponding geodesics
when the edge connecting them is generally short length
and the deformations do not cause sharp creases along
this edge. Therefore, let us assume that L does not change
and can be pre-computed from the template. Note that z;
and z; have been already determined. With these results,
Eq. 13 can be rewritten as L? — (z; — 22)% = (x1 — %) +
(y1 — y2)%. Thus, the right-hand side of Eq. 12 can be
easily calculated with the equation above. We define as
the unnormalized projected length the square root of the
left-hand side of Eq. 12

1= (ziu1 — 22u2)? + (z1v1 — 22v2)? (14)

SOCP optimization: Equation 14 introduces a quadratic
constraint. Such a constraint may not be satisfied if folds
between mesh vertices occur. To deal with that issue, we
replace the above constraint by a variation that allows the
vertices to move closer. So, it can be relaxed into a conic
constraint as

Jy —ug? + 0y — v <1

(15)

where i € { 1, -, n } The above conic constraint is
applied to each edge of the mesh. According to Eq. 1, the
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unnormalized image coordinates of feature point k (i.e.,

T
q; = Pz = [ Uk Vik ] ) can be represented as

”}),k = apu] + akus + arsus,

V},k = apn V] + axaVy + arsvs, (16)

wherek € { 1, -, N } The linear equations above hold
for all the feature points. In these equations, the left-hand
side represents the observed unnormalized image coor-
dinates of the feature points, while the right-hand side
represents the estimated coordinates. The cost function
being minimized is the geometric distance between these
two terms. However, in formulating our optimization as a
SOCP, this error is not used as the objective function but
as a conic constraint:

N u° 3 4O K2
2% -z

.VO
k=1 fik j=1 j

1
2

17)

< Oy

Finally, the appropriate SOCP is formulated like this:
minge 0y, such that Eqs. 15 and 17 are satisfied. When
applied to a number of different mesh deformations of a
generic isometric surface, the approach detailed in this
section results in the training data set required to recon-
struct other isometric surfaces by the use of only a normal
camera and from a single view, as discussed in the previ-
ous section.
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5 Experiments and results

5.1 Synthetic data

With synthetic data that exactly simulates and conforms
to various deformations of a 9 x 9 mesh, we have eval-
uated both reconstruction schemes proposed, in order
to validate their efficiency. The evaluation comprised a
number of experiments, conducted with a set of fea-
ture points (N = 60) well distributed over the mesh
triangles. From the planar template mesh, the barycen-
tric coordinates can be computed—see Fig. 3. The virtual
RGB camera model is defined such that the focal length
is f = 268 pixels. With this model, point correspon-
dences across the simulated deformations were projected
onto the virtual RGB image plane, assuming that the
simulated mesh is placed 50 cm in front of the camera
(along the optical axis). To perform the quantitative eval-
uation, it is necessary to define some numerical metrics as
follows:

— To evaluate the results from mesh depth recovery,
obtained by linear programming, the following
criterion is adopted:

DepthAccuracy = niv Z:'L [sz,,' —Zy ”2/ ”Z;’i ”2]
Mesh depth estimates are strongly affected by errors
mainly due to the errors on the depth estimates of the
feature points—see Fig. 4.

— Point reconstruction error (PRE): the normalized
Euclidean distance between the observed (p;) and
estimated (p;) feature points:

PRE= 3 3L, [”Pt - pi|)*/ ||15i||2]

Fig. 3 Top—some simulated deformations. Bottom—I/eft: A9 x 9 template mesh with feature points—radius = 20 cm. Right: metric coordinates in
centimeters—overlap between the ground-truth shape (blue) and the estimated shape (red)
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Fig. 4 D-RGB-based reconstruction. Left: the error on the depth estimates of the mesh vertices, computed via LP. Right: The std of the global error on

the estimates of the positions of the mesh vertices

— Mesh reconstruction error (MRE): the normalized
Euclidean distance between the observed (v;) and
estimated (v;) 3D vertices of the mesh, computed as

MRE = 137, [~ %/ 4]

— The re-projection error of the feature points is also
another measure of precision:

ReprErr = % YN, [l — ail*/ 4]

— The standard deviation of the errors on the estimates
of 3D positions of the mesh vertices: the standard
deviation of the global error in each coordinate of the
mesh vertices estimated with the monocular
optimization algorithm (calculated separately for
each coordinate).

\

Note that all quantitative results represent an average
obtained from five deformations randomly selected. By
performing 500 trials for each deformation, each average
value was acquired from 2500 trials.

Experiments on D-RGB-based reconstruction: We
obtained results in a set of experiments where Gaussian
random noise with five different standard deviation
values added to the depth of the synthetic feature points.
Noise levels with standard deviations greater than 0.3 cm
prevent the LP from giving good results, as shown in
Fig. 4. Since image points are also used in the 3D recon-
struction, the effect of the noise in the image points was
evaluated. To do so, Gaussian noise was also added to the
image points (with standard deviation in increments of
0.5 pixels). Figure 5 shows how the reconstruction accu-
racy behaves as a function of noise level. In the left-hand
plot, a zero-mean Gaussian noise with 0.1-cm std in the
depth estimates of the feature points was also considered
in all the relevant tests. In the right-hand plot, on the

other hand, a zero-mean Gaussian noise with 1-pixel
standard deviation in image points was also considered in
all the relevant tests. Two of the recovered deformations
and their equivalent ground truth are illustrated in Fig. 3.

Experiments on monocular reconstruction: To perform
such experiments, a deformation model has to be esti-
mated. This model was directly obtained by applying PCA
to a comprehensive set of synthetic mesh deformations. In
these experiments, Gaussian noise was also added to the
image points (with standard deviation in increments of 0.5
pixels). Figure 6 shows how the reconstruction accuracy
behaves toward noise.

Comparative evaluation: In the literature, there are sev-
eral approaches for 3D reconstruction of deformable sur-
faces. To compare against the approaches described in
this paper, we chose the approach presented in [17]. The
main reason for selecting this work is because the authors
have used both the linear deformation model and the
mesh representation and this enables us to make reliable
comparisons. They also propose a SOCP problem for the
reconstruction and their approach is known to be robust
and efficient, in which a linear local deformation model
is used to combine local patches into a global surface.
We obtain results from this approach and the proposed
reconstruction schemes in the absence of noise. The lin-
ear deformation model for the approach being compared
and our monocular reconstruction was computed from
the results of the D-RGB-based reconstruction of the syn-
thetic mesh deformations. Two different cases have been
examined: (1) simple deformations with small, moder-
ate creases; (2) complex deformations with large, sharp
creases. Accordingly, the comparative results are divided
in two cases, as shown in Fig. 7. The charts reveal that
the monocular reconstruction outperforms the other two
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Fig. 8 Real deformations. A 20 x 20-cm square was selected from the intermediate part of the cardboard and then reconstructed

approaches in the case of simple deformations but its
performance declines significantly in the case of com-
plex deformations, while the D-RGB-based reconstruc-
tion maintains satisfactorily stable performance under dif-
ferent situations (i.e., the results do not vary dramatically).

5.2 Realdata

For qualitative assessment, the reconstruction schemes
have been tested with real data. A camera setup made
up of a high-quality ToF camera and a high-resolution
RGB camera was prepared for D-RGB-based reconstruc-
tion. The two cameras were calibrated both internally and
externally. In the experiments, we used a piece of card-
board flexible enough to allow creating as many different
deformations as possible so that the deformation model
learned from the reconstruction results could be gener-
alized to other surfaces of different material. The camera
setup was located 60 cm in front of the surface being
reconstructed, guaranteeing that the FOV of the ToF cam-
era was completely covered by the RGB camera. A regular
9 x 9 mesh was again used to represent the surface, with
the positions of the feature points available in relation to
the positions of the vertices on the planar template. Such

positioning data enabled the calculation of the barycen-
tric coordinates for the feature points. Correspondence of
these points across the image sequence was established
with respect to the template. The depth of the points,
given by the ToF image, was registered with respect to
the RGB image. The rest of the implementation was just
the same as in the experiments with synthetic data. After
having applied the D-RGB-based reconstruction to multi-
ple deformations of the cardboard, the training data nec-
essary to estimate the deformation model was acquired, as
shown in Fig. 8. In the case of monocular reconstruction,
this deformation model was then employed to reconstruct
the same mesh overlaid across such isometric surfaces
as those given in Fig. 9, by using only the RGB camera.
The qualitative results have shown that this reconstruc-
tion scheme yields good results (although no quantitative
assessment was possible because of lack of the ground
truth). It is worth mentioning that the left and right sur-
faces in Fig. 9 resemble the cardboard in Fig. 8 in terms
of flexibility in particular, whereas the middle surface was
made with a different material. However, we reached the
conclusion that while the results for the left and right sur-
faces appeared slightly better than those for the middle

Fig. 9 Isometric surfaces. Real deformations. Courtesy of [18]
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surface, a readily deformable cardboard is a proper choice
for deriving the linear deformation model.

6 Conclusions

In this paper, we dealt with reconstruction of isomet-
ric surfaces. To perform such monocular reconstruction,
an algorithm based on the linear deformation model and
consisting of a non-linear least-squares optimization was
proposed. To find the proper deformation model, prior
training data should be used. We therefore provided this
prior data by proposing a novel approach for the recon-
struction of a typical surface so that the computed defor-
mation model can be also extended to other isometric
surfaces. This approach was founded on a range camera
along with a conventional camera and its goal is to esti-
mate the 3D positions of the mesh vertices from the depth
of the feature points. By applying this approach to mul-
tiple mesh deformations, we acquired the training data
required. Experimental results showed that both the pro-
posed reconstruction schemes are efficient and result in
accurate reconstructions.
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