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Abstract

Adversarial samples are inputs corrupted with inconspicuous perturbations misclassified by
a given target model. Adversaries create adversarial samples using various methods that
depend on the information available about the target system. In a white-box scenario,
adversaries have full access to the model, and in a black-box scenario, usually, only the
output layer is accessible. Researchers have developed adversarial samples that can fool
target models even when the adversary has almost no information about the target sys-
tem. To construct classifiers robust to adversarial samples, many authors have proposed
adversarial defenses, mechanisms intended to protect deep learning models from adversar-
ial attacks. However, many of these defenses have been shown to fail, which asserts that
building robust models is an extremely arduous and complicated task to achieve. Moti-
vated by this, there have been developed frameworks that group various adversarial attacks
to allow users to test their models, however, none of them provide a pipeline mechanism
and lack enough information about the robustness of the tested models. Various frame-
works have also stopped receiving support, leading to frameworks with antiquated attacks
and similar attacks between them. In this dissertation, a new framework was developed
with a pipeline mechanism that allows users to input their models and to choose from
the currently, eight adversarial attacks. After executing the pipeline, each model obtains
a score based on its performance against all of the images generated by the adversarial
attacks allowing for a better understanding of the robust levels of those same models. To
test the validity and capabilities of the framework, an experiment was performed using
the pipeline mechanism with models trained using an image classification dataset and the
eight supported adversarial attacks. The results obtained allow for a deeper understanding
of the robustness of the models. The evaluation of a model shouldn’t be based only on the
accuracy of the model on the adversarial samples but should take into consideration the
amount of perturbation that a sample needs to have to be able to fool the target classifier.
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Deep Learning, Adversarial Learning, Adversarial Attacks, Robustness, Performance Met-
rics
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Chapter 1

Introduction

Artificial Intelligence (AI) is an ever-growing field that has allowed computers to solve
problems that are complex for humans but simple for machines. The main challenge of AI
was solving complex problems that the human brain solves daily, for instance, recognizing
a face in an image. Deep Learning (DL) models surged as a branch of Machine Learning
(ML) capable of solving those problems. DL methods have gained immense interest and
applications that span from self-driving cars, capable of identifying pedestrians and vehi-
cles, to voice recognition systems capable of recognizing individuals by their voice. The
use of DL in human’s daily life has put forward the need of guaranteeing that those models
are secure. It was discovered, however, that DL models are not secure and can be easily
tricked into misclassification. Adversaries can create inputs with added perturbations that
are inconspicuous to the human eye but force the model to produce an incorrect output.

1.1 Motivation and Objectives

The discovery of adversarial samples has motivated researchers to understand the robust-
ness of DL models. In the latest years, the adversarial learning landscape has grown ex-
ponentially with a constant clash between developing adversarial attacks and adversarial
defenses capable of increasing the adversarial robustness of classifiers. To help researchers
understand if their model or defense is robust, frameworks that facilitate this process have
been developed. However, most of those frameworks are still incomplete or have been par-
tially abandoned. This dissertation aimed to develop a framework, oriented to the image
classification domain, that is complete with all the tools needed to evaluate the robustness
of a model. The framework was developed in Python and supports PyTorch, a well-known
machine learning framework and currently supports eight adversarial attacks. The devel-
oped framework offers a pipeline mechanism that allows users to choose a variety of models
and to attack them using any or all of the current supported adversarial attacks. In order
to allow users to understand how robust their models are, a new robustness metric was
developed that takes into consideration the behavior and performance of a model against
adversarial images generated by an attack. This robustness metric is completely integrated
into the pipeline mechanism which allows users to easily compare their models.

1.2 Document Structure

In addition to this introduction, the following chapters are organized as follows:

1
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Chapter 2 introduces a brief presentation of concepts and definitions related to DL and
adversarial attacks. An analysis of current robustness metrics for evaluating classifiers is
also performed.

Chapter 3 presents the state-of-the-art that that introduces the most relevant categories of
adversarial attacks and a deeper dive on evasion adversarial attacks is made. Real world
applications of adversarial attacks are analyzed to understand the reach and the effects that
adversarial attacks can have on machine learning based systems. In the final section, the
most well-known and used current state-of-the-art frameworks in the adversarial learning
panorama are analyzed and its limitations are discussed.

Chapter 4 describes the development plan used in the first semester as well as the devel-
opment planned for the second semester. In addition, the methodology that was expected
to be followed in the second semester is also presented.

Chapter 5 extends the development of the framework which starts by the software require-
ments specification that was performed in the first semester as well as an analysis of the
potential risks that were associated with developing the framework. The actual executed
work plan of the second semester is compared to the original expected plan. The archi-
tecture and the implementation steps of the framework, that include the developed file
system, the pipeline mechanism and the metric to evaluate the robustness of models are
presented.

Chapter 6 exposes the experiment realized to test the capabilities of the framework, which
includes the pipeline mechanism and the robustness metric. The results of that experi-
mentation are analyzed and discussed.

Chapter 7 concludes the work of this dissertation and proposes changes to be made in the
future.

2
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Chapter 2

Concepts & Definitions

The following chapter starts by introducing important concepts about Deep Learning (DL)
and DL applied to image recognition, which is the focus of this dissertation. A brief presen-
tation of theories for the existence of adversarial samples is made which is then followed up
with an introduction to the concept of threat model in machine learning security. Finally,
an analysis of current metrics to evaluate the robustness of classifiers towards adversarial
attacks is presented.

2.1 Introduction to Deep Learning

DL [1] is an approach of Artificial Intelligence that focuses on solving complex but intuitive
problems for humans such as recognizing a face. DL allows computers to learn complex
concepts from simpler ones without the need for human interference. DL models are used
in various areas such as computer vision, natural language processing, and speech recog-
nition. There is a multitude of different DL algorithms that are used according to their
purpose. These include Convolutional Neural Networks (CNNs), Recurrent Neural Net-
works, Multilayer Perceptrons, and others, with all of them sharing the same foundation:
neurons and hidden layers that are connected. A typical Deep Neural Network (DNN) can
be seen in figure 2.1.

As mentioned before, Machine Learning (ML) models can be used for various tasks. A
task in ML refers to the way that a model should process an example. From the several
tasks, the most relevant one for the context of this dissertation is classification. In this
task, the model is asked to specify to which classes the input corresponds. The model after
processing the input outputs a category that best classifies that input. To evaluate the
performance of the classifier model, it is often used the accuracy rate which corresponds
to the proportion of examples that were correctly classified by the model. The proportion
of incorrectly classified inputs is denominated error rate. The objective of the model is to
obtain the best accuracy possible which in result diminishes the error rate. In an effort
to evaluate the performance of the model, it is often used a test set that contains samples
that the model hasn’t had access to during the training process.

The training process of a model can be categorized into three main categories: supervised
learning, unsupervised learning, and reinforcement learning [1]. The focus will be on
supervised learning since it is the main process used for image classification. During
the training process, the model experiences a dataset that is full of samples and each
sample contains features that represent the individual sample. Additionally, in a supervised

4
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Figure 2.1: Schematic of a Deep Learning Model with 3 hidden layers. (Image credits:[2])

learning scenario, each example is associated with a label. To illustrate, in the task of
recognizing photographs, the training dataset of photographs also needs to have the class
that each photograph is part of.

A neural network has multiple hidden layers and each layer has various neurons that have
a weight and a bias associated with them [1]. It also has an input layer that is designed
depending on its application. To illustrate, a CNN is usually designed to classify images
and for that has an input layer designed to take advantage of a 2D input. The output
layer outputs the values that were calculated in the hidden layers. If the neural network
was designed to, for example, classify images of handwritten digits, the output layer would
consist of a vector with 10 values, each one with a probability associated with a digit. The
aforementioned weights and biases of a neural network need to be computed so that the
classifier is capable of classifying inputs. To do that, it is used a cost function, also known
as loss function. The cost function can be represented as:

C(w, b) ≡ 1

2n

∑
x

||y(x)− a||2 (2.1)

Where x is the input, y(x) is the correct output of x, w represents all the weights in a
neural network, b represents all the biases and a is the vector of outputs, for all training
inputs, and its value depends on x, w, and b. After inspecting the cost function, it is clear
that if the value is low, the classifier is correctly classifying most of the inputs and if the
value is high, the model is not performing as desired. This means that minimizing the
cost function results in better and more capable models. In order to optimize the weights
and biases of the neural networks, it is used an optimization method being the gradient
descent, one of the most preferred. The gradient descent algorithm, repeatedly, computes
the gradient value of the cost function, or in other words, the vector of partial derivatives of
the cost function with respect to the weights and the biases. The gradient in combination
with a small constant known as learning rate, attempts to decrease the value of the cost
function. A very simplified version of this algorithm can be seen as a ball falling down a
valley and a visual representation can be seen in figure 2.2.
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Figure 2.2: A visual representation of the gradient descent algorithm optimizing the cost
function, where the ball represents the cost function and the arrow represents the direction
of the gradient. The cost function is represented by C and the variables of the function by
v1 and v2. (Image credits: [3])

CNNs [1] are a type of neural network that is used to analyze grid-like data such as images,
which can be seen as a 2D grid of pixels. CNN uses a process called convolution, which
involves putting the input pixels through a filter to create a feature map. There are three
main properties of the convolution process: sparse interactions, parameter sharing, and
equivariant representations. Sparse interactions can be achieved by using a filter that is
smaller than the input image. More importantly, when processing an image with millions
of pixels, filters enable the extraction of the most important information, such as edge
detection, considerably improving network performance. When a weight is used more
than once, it is referred to as parameter sharing which reduces the number of parameters
that need to be calculated, which leads to a decrease in memory needs and increases the
computational performance. Translation equivariance is caused by parameter sharing. This
means that performing the convolution and then moving a pixel one unit to the right is the
same as applying the convolution and then moving a pixel one unit to the right. However,
this only applies to translations; equivariance does not apply to rotations and scaling is not
a natural property of convolutions. A convolutional layer [1] consists of performing several
convolutions that result in linear activations which are then passed through a non-linear
function. The output is then run through a pooling function. This final step is crucial
in making sure that the representation is invariant to small translations, especially when
it is more important to identify that a feature is present other than exactly where it is.
This allows the network to be robust to small pixel translations and increases the network
efficiency. It is significant to consider that there are many variations of CNNs, however,
all share the same building blocks presented in this section. A visual representation of a
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CNN can be seen in figure 2.3.

Figure 2.3: Architecture of a Convolutional Neural Network. (Image credits: [4])

2.2 Explaining Adversarial Attacks

Szegedy et al. [5] discovered a property concerning the stability of neural networks when
inputs have small, almost undetectable perturbations. The authors discovered that adding
a perturbation to an image, almost undetectable to the human eye, could change the
behavior of the classifier model. Additionally, the same perturbed image could be misclas-
sified by different neural network models. These perturbed samples were called adversarial
samples by the same authors. The process of finding perturbations that are imperceivable
but, at the same time capable of changing the behavior of the target model can be seen as
an adversarial attack.

Since the discovery of adversarial attacks, various authors have tried to understand and
explain the existence of these occurrences. Some of the most known and discussed theories
are briefed in the following sections.

The linearity present in most classifiers could also be related to the origin of adversarial
samples. Goodfellow et al. [6] demonstrate that the linear behavior in high-dimensional
spaces is sufficient to explain adversarial examples. This behavior was shown to be present
not only in linear but also in non-linear classifiers. Non-linear models, such as sigmoid
networks, are constructed in a way that facilitates their optimization, this leads to them
spending most of their time in the more linear regime. This leads to the same weak
robustness present in linear classifiers.

The generalization of adversarial attacks in different models with different configurations,
discovered by Szegedy et al. [5] was also proposed as being a result of the linearity present
in models. This property implies that it should be possible to attack a neural network
without having any previous knowledge about the configurations and using only attacks
that were shown to be effective in deceiving other classifiers.
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Gilmer et al. [7] hypothesize that high-dimensional geometry was responsible for the exis-
tence of adversarial examples. To investigate this hypothesis, a synthetic high-dimensional
dataset was constructed to facilitate the construction of adversarial examples since the
data distribution and the decision boundary of the model are known. The focus of the
study was the relationship between two measures of the testing error set of a model: the
under-the-data distribution of the error set and the average distance to the nearest error.
The experiments showed that the chosen points from the data distributions were correctly
classified by the model however, they were very close to the decision bound of another
class. This means that the models are extremely prone to being wrong if a small pertur-
bation was to be inserted in the inputs. The authors infer that to increase the adversarial
robustness of the models, the test error needs to be minimized.

Tanay et al. [8] argue that adversarial examples exist when the classification boundary of
a model lies close to the submanifold of sampled data, and present a mathematical analysis
of this new perspective in the linear case. The authors argue that the linearity of models
in high dimensional settings argument presented by Goodfellow et al. [6] is insufficient
to fully explain the adversarial samples phenomena. They demonstrate that increasing
the dimensionality of the problem does not make the problem of the adversarial examples
worse. Additionally, the authors show that for some classes of linear classifiers, it was
impossible to generate adversarial samples.

The boundary tilting perspective is the new solution presented by the authors to explain
adversarial samples. Essentially, a submanifold of sampled data when intersected by a
class boundary close to it suffers from adversarial examples. The behavior of low and
high-dimensional spaces can also be explained by this perspective. In higher dimensions,
the probability that a perturbation will move in the direction of the boundary is low which
makes the samples more robust to adversarial samples. On lower dimensions, on the other
hand, the perturbations are more likely to cross the boundary which makes samples in a
low dimension space more prone to adversarial examples.

Schmidt et al. [9] studied if current training datasets are capable of training classifiers
robust to adversarial samples. They identify that, as adversarial examples only occupy a
small measure in the data distribution, the standard notion of generalization cannot be
applied. Instead, a new notion of adversarial robust generalization needs to be used. To
understand the differences between benign and adversarial robustness generalization, they
used two distributional models. The results show that even for simple data distribution,
the sample complexity of adversarial robust generalization is significantly larger than that
of standard benign generalization. They hypothesized that current approaches may be
unable to attain higher adversarial accuracy on more complex datasets such as CIFAR-10
due to the size limitation of the dataset. This means that, training a classifier with a
dataset that has a low number of samples isn’t sufficient for the model to be robust to
adversarial examples. Models that use less complex datasets to train such as MNIST, were
also shown to be more robust networks. The authors also propose that adversarial defenses
need to be adapted to the dataset that is used to train the classifier.

Bubeck et al. [10] study the phenomenon of adversarial examples as a computational
constraint problem. The authors show that classifiers in high dimensions are prone to ad-
versarial examples not due to information-theoretic limitations but rather to computational
constraints. The authors present evidence supporting a hypothesis for and a hypothesis
against the existence of adversarial examples. The first hypothesis is "Identifying a robust
classifier from limited training data is possible but computationally intractable" and the
second hypothesis is "Identifying a robust classifier requires too much training data". The
evidence in favor of the first hypothesis is that there are robust classification tasks that
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are easy in terms of information but computationally intractable under the most power-
ful current generation computational models available. The second hypothesis is rejected
by the authors based on evidence that shows that if a robust classifier exists then it can
be found with relatively few training examples under a standard assumption on the data
distribution. It is important to mention that the assumptions are based on the data distri-
bution used by the authors which is a uniform data distribution and for that reason, the
results are inconsistent with the natural distribution of images.

Ilyas et al. [11] demonstrated that the current explanations for the existence of adversarial
attacks are still unable to explain the behavior of those attacks. They put forward a
new perspective for the occurrence of adversarial attacks - adversarial vulnerability is a
consequence of the current supervised learning model. The phenomenon of adversarial
samples occurs because classifiers are trained to maximize the accuracy and to do that
they use every signal that is present in the data. Furthermore, the authors find that
datasets admit features that may seem imperceptible but are highly predictive in which
classifiers will rely on to maximize their accuracy, which were called non-robust features.
This phenomenon results in models being weak towards adversarial examples as it is easy
to manipulate the mentioned non-robust features. Their hypothesis also tries to explain
the transferability property presented by Szegedy et al. [5]. Adversarial examples are
transferable between classifiers because even if they are different models, they will most
likely rely on non-robust features to maximize their classification accuracy. In the current
supervised learning, perceptible and imperceptible features are learned in the same way by
classification models even if those same features are different to the human eye.

Despite the importance that adversarial attacks have gained recently, there is still a lot of
work to do. A universally accepted explanation as to why adversarial examples can brittle
networks is still unclear but as the importance of this subject grows, more explanations are
presented for the existence of adversarial samples. Even though there is no explanation,
the relevance of adversarial learning has increased exponentially in the last few years.

Although there isn’t an explanation for adversarial attacks, many authors have started to
propose mechanisms to defend classifiers against adversarial attacks. These mechanisms are
called adversarial defenses, however, many defenses that have been proposed are incapable
of defending the models [12]. Since the focus of this dissertation is on adversarial attacks,
exploring the advances of adversarial defenses is out of the scope.

2.3 Adversarial Threat Model

It is clear that adversarial attacks are a threat to ML security since they can alter the be-
havior of classifier systems with very subtle changes to an input. It is, therefore, important
to understand how different adversaries can attack a model depending on the information
that they have about the system. The following section is organized based on the work
done by Papernot et al. [13] and will delineate the current landscape of machine learning
security.

The security level of an ML system is measured concerning the adversarial goals and
capabilities of the adversary threat model. The main threat models affect classifiers in two
distinct ways: poisoning attacks focus on attacking and altering the training phase of the
model, while evasion attacks focus on the testing phase of the model.

More and more applications are using ML as a foundation for their systems and while
those systems can vary from each other, they can be viewed as a generalization of a data
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processing pipeline. In a very primitive way, an ML system works in the following manner:
(1) a collection of input data is obtained from the physical world, (2) then it is processed
and converted into digital format, (3) the data, now digital, is forwarded to the system
to be processed and, (4) it finally outputs a result. If the ML system is being used in a
system in the physical world, (5) the output can have an action that has a real impact.
The aforementioned process can be seen in figure 2.4.

Figure 2.4: Attack surface of a generic machine learning system and, of two machine
learning systems used in the physical world (Image credits: [14])

The adversarial capabilities of an adversary can be viewed as the amount of information
the adversary has about the target and also, as the actions that the adversary can perform
based on that information. The capabilities of an adversary can be broadly classified into
two major groups: testing phase capabilities and training phase capabilities.

During the training phase of ML models, adversaries try to learn or corrupt the ML
system. The attacks could be focused on the ML algorithm or in the training data itself.
The adversary can have different levels of control over the model and the dataset. Usually,
stronger attacks are the ones capable of altering the ML model and the complete dataset,
and weaker attacks normally can only add corrupt samples to the training dataset. There
are three main strategies of poisoning attack use:

(1) Data injection: In data injection, the adversary doesn’t have access to the training data
nor to the learning algorithm, he can insert adversarial samples to the training dataset.

(2) Data modification: In this scenario, the adversary doesn’t have access to the learn-
ing algorithm of the target model, however, has full access to the training dataset. The
adversary directly alters the training data before it is used in the training process of the
model.

(3) Logic corruption: These types of attacks can directly alter the ML algorithm of the
target model. This is the most harmful type of attack as the adversary can change the
behavior of the model in a way that it becomes unable to learn. Despite being extremely
harmful, it is extremely hard to execute.

Attacks performed during the testing, or the inference, phase of the life of the model, don’t
tamper with the training phase of the ML model. In testing phase attacks, the adversary
tries to feed the neural network with perturbed inputs to have the classifier misclassify
them or, in other cases, only tries to collect information about the model. These types
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of attacks can be separated into two broad categories that are related to the amount of
information that the adversary has on the target: white-box attacks and black-box attacks.

In white-box attacks, the adversary has total information about the target classifier. This
information could be the training dataset, the training data distribution, the type of neural
network of the classifier, the configurations of the internal layers, the architecture of the
model, etc. Usually, in a white-box attack scenario, the adversary uses attacks that are
based on the gradient of the loss function of the neural network. State-of-the-art white-box
attacks use backpropagation with the intent to compute the gradient to then construct the
attack.

In black-box attacks, the adversary usually has no knowledge or very little knowledge
about the target classifier. In most cases, carefully constructed adversarial examples are
sent to the input of the classifiers, and the adversarial attack is constructed according to
the output. Black-box attacks can be further broken down into three different categories.

In a non-adaptive black-box attack scenario, the adversary knows the training data dis-
tribution of the target model. The adversary creates a substitute target model and trains
the substitute with samples generated from the data distribution to shape the substitute
to be closer to the target model. After the substitute model is created and trained, the
adversary generates white-box attacks based on the substitute model and tries to attack
the target model using those adversarial samples.

In adaptive black-box scenarios, the adversary has access to the input and the output of
the target model and can query carefully created inputs and obtain the output from the
target. The adversary then proceeds to create a substitute model and trains that model
with the input/output samples that were fed to the target model. Analogous to what
happens in a non-adaptive black-box scenario, white-box attacks are constructed based on
the substitute model and are then queried to the target model.

Strict black-box attacks are the most common type of scenario. In this setting, the adver-
sary only has access to the input and output of the target and can only perform queries to
obtain the output from the target classifier. Most types of strict black-box attacks usually
construct attacks based on a computed approximation of the gradient values of the target
model.

The goals of the adversary are also an important step of the adversarial threat model.
Four main goals can drive an adversarial attack: confidentiality, integrity, availability, and
privacy.

In a scenario in which an adversary is not a trusted user of a model, it may try to access
the model or the training data of the model. In these types of scenarios, the adversary
is breaching the confidentiality and the privacy of the model and its data. In addition,
models keep information about the training data set. In certain scenarios, an attacker might
realize an attack to obtain information about the training data. If the model that is being
attacked used individuals’ data to learn, those individuals’ privacy is being threatened and
the confidentiality of the data is also being put at risk.

The integrity and availability could be also the target of an adversary. In this case, the
target would be the output values of the model. Attacks with the intent of disrupting the
integrity of the model are especially dangerous as they affect the accuracy of the model.
Changes in the accuracy of models, depending on the function that the ML model has,
could result in catastrophic results. The integrity of the target model can be altered
depending on the objective of the adversary. The adversarial goals, related to the integrity
of the model, can be classified in four main ways:
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(1) Confidence reduction: The adversary tries to lower the confidence score of a prediction
made by the target.

(2) Misclassification: The adversary will try to change the output class label of an input.

(3) Targeted misclassification: In this scenario, the adversary feeds multiple different inputs
and tries to alter the output class of those inputs to a specific target class chosen by the
adversary.

(4) Source/Target misclassification: In this scenario, the adversary tries to create a specific
misclassification output in a specific input.

Availability-focused adversarial attacks try to make the target model outputs inconsistent
or unreliable. Availability attacks, similar to integrity attacks, will usually focus on poi-
soning the model during the training phase or in querying the model, during the testing
phase, with adversarial samples. If a system is incapacitated to perform its actions due
to the ML outputs being unavailable, availability attacks can be categorized as a form of
denial of service attacks. While the adversary goals may be similar to the ones in integrity
attacks, availability-focused attacks can input such a large size of perturbed inputs that
the machine becomes unstable.

2.4 Robustness Metrics for Classifiers Evaluation

Adversaries are capable of attacking ML systems under various conditions, using attacks
at the training phase but also at the testing phase. How does one evaluate the capability
of classifiers, that are trained for the same task, to resist adversarial attacks? This is
an extremely important question that has yet to receive a concise and universally agreed
answer.

The current landscape of adversarial robustness of a neural network model mostly settles
on the misclassification ratio of the samples generated by an adversarial attack. Despite
this metric being the most used, it doesn’t provide enough important information about the
robustness of a classifier. This section provides some metrics that authors use to evaluate
the adversarial robustness of classifiers.

Weng et al. [15] was the first to propose a new attack-agnostic metric for evaluating the
robustness of a neural network classifier called Cross Lipschitz Extreme Value for nEt-
work Robustness (CLEVER). The authors were motivated by the fact that the adversarial
robustness of a model was entangled with the adversarial attack used which could lead
to a biased analysis. This metric stems from the lower bound of an adversarial attack
which is the least amount of perturbation that an unperturbed sample can receive in or-
der to be misclassified by the target model for any perturbation bound of an attack ℓp
where p ≥ 1. The authors convert the lower attack bound into a local Lipschitz constant
estimation problem where the constant is estimated using Extreme Value Theory. This
metric is attack-agnostic, applicable to any neural network classifier, and was shown to be
computationally feasible even for larger networks. The experiments performed show that
the robustness of a classifier using the CLEVER metric was aligned with the robustness
measured by adversarial attacks that used ℓ2 and ℓ∞ norms.

Dong et al. [16] propose methodologies, other than simply the misclassification ratio
of the adversarial images, to evaluate the robustness of a classifier. They put forward
two robustness curves to analyze the robustness and resistance of a classifier against an
attack. The first curve is the attack success rate vs. perturbation budget curve where the
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perturbation budget is the amount of perturbation added to the adversarial image. The
second curve is the attack success rate vs. attack strength curve where the attack strength
is represented by the number of queries that the attack makes to the target model. The
authors also suggest differentiating the attack success of an attack depending on whether
the attack is targeted or untargeted.

It is clear that the adversarial learning panorama is still in its early stages and that a uni-
versal metric for evaluating adversarial robustness, after a thorough search of the relevant
literature, hasn’t been defined. This is a subject that will be further researched in this
dissertation.
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State-of-the-Art

This chapter is a representation of the initial research performed in the first iteration of
this dissertation. The initial sections introduce the most common categories of adversar-
ial attacks with an emphasis on evasion adversarial attacks since it is the focus of this
dissertation. The last section exhibits the current state-of-the-art frameworks that help
researchers evaluate the adversarial robustness ML models.

3.1 Adversarial Attacks

This section addresses the most relevant categories of adversarial attacks currently in the
literature. The main focus is evasion attacks since this is the type of attack that is to be
used in the framework to develop. However, due to the importance that the other attacks
have in the ML landscape they are also briefly addressed.

3.1.1 Poisoning Attacks

Poisoning attacks are directly related to adversarial threat models that affect the training
phase of a model. Adversaries using poisoning attacks are, essentially, trying to alter
the training phase of the model by changing the training dataset to modify the decision
boundary of the target model.

Similar to what was mentioned in training phase capabilities, poisoning attacks can be
further classified into three main groups: Data injection attacks, Data manipulation at-
tacks, and Logic corruption attacks. Since this type of attack won’t be the focus of this
dissertation, there is only going to be presented an overview of poisoning attacks.

In data manipulation attacks, the adversary has only access to the training data and can
perform two varieties of attacks: label manipulation and input manipulation.

In a label manipulation scenario, the adversary only has the capability of modifying the
training labels. Then, he needs to obtain and perturb the most vulnerable labels given
that he knows the learning algorithm. The base approach is to perturb labels randomly
selected from a subset of the original training data. Biggio et al. [17] presented that
randomly flipping at least 40% of the training labels resulted in a degradation of Support
Vector Machine (SVM) classifiers.

In an input manipulation scenario, the adversary has access to the learning algorithm
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and the input features of training points, in addition to its labels. As the knowledge of
the target model is greater, the adversary is capable of developing more advanced and
capable attacks. Attacks focused on input manipulation have a procedure of generating
perturbations similar to the process of evasion attacks. This results in some authors also
using techniques of generating evasion attacks to generate input manipulation attacks.
This type of scenario can also be different depending on whether the learning algorithm is
online or not.

In online scenarios, such as the one present in Kloft et al. [18], the training data of the
model is obtained at regular intervals. This is an easy target for the adversary because
poisoned points are found by calculating a simple linear programming problem. In offline
scenarios, Biggio et al. [19] introduced an attack that identifies poisoning points based on
the gradient ascent method. Including these inputs in the training, the data set resulted
in the degradation of the accuracy of an SVM classifier during the test phase of the model.

A data injection attack is a more limited attack than a data manipulation or a logic
corruption attack because the adversary is only capable of inserting perturbed samples in
the training dataset.

The work presented by Chen et al. [20] represents a backdoor poisoning attack with a
face recognition system as the target. A backdoor attack focuses on creating a backdoor
on the target model that can later be exploited by the adversary. The attacker can then
create inputs with a backdoor trigger to be wrongly predicted as a label chosen by the
attacker. The scenario of this work assumes that the adversary has no knowledge of the
model and the training set and it is only allowed to input a small sample size of perturbed
samples. The restrictions of this work allow for a more real-world situation in which the
adversary has very limited conditions and can only input a very small number of samples
in the training set. Despite the number of samples being very low, around 50 samples, the
results of the work show a success rate of 90%.

In a situation where an adversary obtains control over a machine learning algorithm of a
system, there could be dangerous repercussions, especially if the ML system is being used
in the physical world. A logic corruption attack has that exact objective: to obtain control
over a system. In Gu et al. [21] the authors developed a logic corruption attack called
BadNet. This attack is a backdoor attack, similar to the one presented before, however, the
knowledge and the procedure are different. In the proposed scenario, the training process of
a neural network system is outsourced to an untrusted third-party entity, which is a scenario
that is currently gaining traction. The returned model then comes with a backdoor trigger
that can be activated when in contact with specific inputs that the attacker may input. This
means that the machine learning model when in contact with supposedly regular inputs
could misclassify those inputs. Despite being an extremely powerful attack, the BadNet
attack needs to be implemented in such a way that it doesn’t fail two requirements. First,
it can only modify the model in a way that doesn’t completely change the original neural
network structure and doesn’t reduce the classification accuracy of the validation test set.
And second, the backdoor present in the classifier needs to be capable to differentiate
backdoor triggered inputs from regular inputs. A way of implementing the BadNet attack
can be seen in figure 3.1.

3.1.2 Exploratory Attacks

Exploratory attacks are similar to evasion attacks in the capabilities of the adversary -
in both scenarios, the adversary only has testing phase capabilities. However, the goal of
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Figure 3.1: A backdoor attack. The backdoor trigger is a pattern of pixels that appears
on the bottom right corner of the image. (a) A benign network that correctly classifies
its input. (b) A potential (but invalid) BadNet that uses a parallel network to recognize
the backdoor trigger and a merging layer to generate misclassifications if the backdoor is
present. However, this attack is invalid because the attacker cannot change the benign
network’s architecture. (c) A valid BadNet attack. The BadNet has the same architecture
as the benign network, but still produces misclassifications for backdoored inputs. (Image
credits: [21])

an exploratory attack focuses on breaching the privacy or the confidentiality of the model
and, of the users that provided information to the training dataset of the model. The two
current primary exploratory attacks are addressed in this section.

Membership inference attacks have been a fundamental question in the machine learning
field. The objective of this attack is to identify if a certain sample was present in the
training dataset of a model. This type of attack can be a breach of an individual’s privacy,
not just of the ones that contributed to the training dataset but also of those that belong to
the same population and may even be unaware that their privacy may be at risk. Shokri et
al. [22] studied membership inference attacks in a black-box scenario. Despite the setting
being more difficult for the attacker, it is also more probable to happen in the physical
world. In this scenario, the adversary can only feed samples to the target and observe
the output result. The approach consists in using an attack model to distinguish if a data
sample was present in the training dataset or not. The training process of the attack model
consists of a technique developed by the authors called shadow training. Shadow training
dwells in creating multiple shadow models with similar behavior to the target model, the
shadow models are trained with similar training data between them and that training data
is also relatively similar to the one used by the model being attacked. Each shadow model
has an "in" training dataset and an "out" testing dataset. The combination of the "in"
and "out" datasets of the shadow models are used as the training dataset of the attack
model. During training, the attack model needs to classify the samples given, essentially
turning into a binary classification problem. After being trained, the attack model is ready
to classify samples as being present or not in the training dataset of the target model. The
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training process can be observed in figure 3.2. The experimentation of the shadow model
resulted in 90% of membership inference accuracy against a Google-trained model.

Figure 3.2: The training process of an attack model using the Shadow training technique
proposed by Shokri et al. (Image credits: [22])

Fredrikson et al. [23] demonstrated a Model Inversion (MI) attack that is capable of esti-
mating aspects of the genotype of an individual in a black-box scenario. Later, Fredrikson
et al. [24] expanded that work into commercial ML-as-a-service APIs. The authors stud-
ied MI attacks in both white-box and black-box scenarios, depending on the information
that the attacker has on the target model. The authors developed MI attacks targeted
for facial recognition models. The two attacks only assume that the adversary has access
to the trained model but has no access to the training dataset. The first attack tries to
produce an image of a person using only a label or the name of that person and was named
Reconstruction. The second attack tries to reconstruct an image of a person using the
blurred face of that same person and was named Deblurring. While the focus of the first
attack is to identify the person’s facial characteristics, the focus of the second attack is to
identify if the subject present in the blurred image was a record of the training dataset of
the model or not. The developed white-box algorithm for MI was tested on three different
classifiers: a softmax regression, a multilayer perceptron network, and a stacked denoising
autoencoder network. The reconstruction attack results can be seen in figure 3.3.

Figure 3.3: The reconstruction of the individual on the left using the reconstruction attack
on several different machine learning models. (Image credits: [24])
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3.1.3 Evasion Attacks

Evasion attacks are the most common type of adversarial attack. In this setting, the
attacker tries to feed adversarial examples to the classifier during the testing period in
order to cause misclassification or confidence reduction. This attack is directly correlated
with the model of adversarial threat where the adversary has testing phase capabilities.

Essentially, the creation of an adversarial sample can be defined as:

fθ(x
′) ̸= y

where x′ is the adversarial sample, fθ is the classifier with parameters θ and y is an incorrect
label. The adversarial sample also needs to satisfy the following equation:

||x′ − x||p < ϵ

where, once again, x′ is the adversarial sample, x is the original sample and ϵ is the max
amount of perturbation the original sample can receive under the norm p. The total
amount of perturbation needs to be minimal so that the adversarial sample created is
still recognizable to the human eye but, at the same time, can fool the target model.
This distance metric can be seen as a metric that quantifies the similarity between the
original image and the adversarial sample created. Currently, the main norm that is used
to measure the amount of perturbation allowed in an adversarial sample is the p-norm,
however, authors have been proposing different ways of constraining a perturbation such
as the Wasserstein distance.

There are four main p norms that are currently taken into consideration when constructing
adversarial attacks:

(1) L0 norm: This distance measures the total number of pixels that have been changed
in the adversarial sample x′. The number of pixels to be modified isn’t limited.

(2) L1 norm: The distance measures the Manhattan distance between the adversarial
sample and the original sample. This distance calculates the absolute value difference
between the same pixel in the adversarial sample and the original image and then sums it
over all pixels.

(3) L2 norm: This distance measures the Euclidean distance between the adversarial sample
and the original sample. As the standard euclidean distance is the root-mean-square, the
distance can still be small when small changes have been made to many pixels.

(4) L∞ norm: This distance bound the maximum amount of change each pixel of the
sample can suffer. However, there is no limit to the number of pixels that can change.

Most of the work related to adversarial examples has focused on the p-norm distances.
Wong et al. [25] presented a new way of generating adversarial attacks bounded by the
Wasserstein distance to the original inputs. The Wasserstein distance is, essentially, the
cost of moving pixel mass from one pixel to another. In this distance metric, the cost of
the move increases with the distance.

Despite these norms being the most prevalent in the literature, other authors have proposed
other metrics to constraint the differences between an original sample and the adversarial
sample.

The following section will detail some of the most relevant evasion attacks. The full list is
represented in the table 3.1. To simplify the threat model, the attacks are classified, with
regards to the adversary knowledge, in black-box or white-box. It is important to refer
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that due to the vast quantity of different attacks that are currently in the literature, it’s
impossible to represent them all.

Table 3.1: Taxonomy of Evasion Adversarial Attacks

Year Method Knowledge Specificity Perturbation
2014 L-BFGS [5] W T,U L2

2015 FGSM [6] W T,U L∞
2016 JSMA [26] W T,U L0

2016 Hot/Cold [27] W T L2

2016 DeepFool [28] W U L2, L∞
2017 BIM (I-FGSM) [29] W T,U L∞
2017 ILLCM [29] W T L∞
2017 Substitute Model [30] B T,U ND
2017 C&W [31] W T,U L0, L2, L∞
2017 UPSET & ANGRI [32] B T L2

2017 UAP [33] W U L2, L∞
2017 ZOO [34] B T,U L2

2018 R+FGSM [35] W T,U L∞
2018 stAdv [36] W T,U Lflow

2018 AdvGAN [37] W,B T,U L2

2018 Boundary Attack [38] B T,U L2

2018 BPDA [39] W T,U ND
2018 PGD [40] W T,U L∞
2018 EAD [41] W T,U L1

2018 ATNs [42] W,B T,U ND
2018 MI-FGSM [43] W T,U L∞
2018 Limited Queries and Info [44] B U L∞
2018 Opt-Attack [45] B T,U L2

2018 SPSA [46] B U L∞
2018 HCLU [47] W T,U L2

2019 AutoZOOM [48] B T,U L1, L2, L∞
2019 One-Pixel [49] B T,U L0

2019 Bandits & Prior [50] B U L2, L∞
2019 Sparse L1 Descent (SLIDE) [51] W U L1

2019 NATTACK [52] B U L2, L∞
2019 SimBA [53] B T,U L0

2019 Wasserstein [25] W U Wasserstein
2019 Threshold & Few-pixel [54] B T,U L∞, L0

2019 DDN [55] W T,U L2

2019 POBA-GA [56] B T,U Z(At
i)

2019 CornerSearch [57] B T,U L0

2019 LogBarrier [58] W U L2, L∞
2019 Brendel & Bethge [59] W T,U L0, L1, L2, L∞
2020 Shadow [60] W U L2, L∞
2020 HopSkipJump [61] B T,U L2, L∞
2020 GeoDA [62] B U L1, L2, L∞
2020 AdvFlow [63] B T,U L2

2020 Square [64] B T,U L2, L∞
2020 GreedyFool [65] W T,U L0

Continued on next page
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Table 3.1 – continued from previous page
Year Method Knowledge Specificity Perturbation

End of Table 3.1
B: Black-box
W: White-box
T: Targeted
U: Untargeted
ND: Not-defined

Limited Memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) The attack de-
veloped by Szegedy et al. [5] to demonstrates that ML models could be fooled by inputs
with very small perturbations. The authors formulate the problem of computing a pertur-
bation as an optimization problem. As this is a hard problem, the problem is solved by
transforming it into a box-constrained formulation. This transformation is made using the
Limited Memory Broyden-Fletcher-Goldfarb-Shanno algorithm. The objective is to find
x′, using the L2 norm (Euclidean distance), that minimizes

c||x− x′||2 + L(θ, x′, l) such that x′ ∈ [0, 1] (3.1)

where x − x′ is the perturbation, x is the benign sample, x′ is the adversarial sample,
L(θ, x′, l) is the loss function of the model (e.g. cross-entropy) and l is the target misclas-
sification label. The value of c is increased until an adversary sample is found. This attack
was capable of fooling, that is, attacking with success, at the time, state-of-the-art ML
models such as the AlexNet [66] and QuocNet [67].

Fast Gradient Sign Method (FGSM) Goodfellow et al. [6], following their hypothesis
for the existence of adversarial samples, proposed a new way of generating perturbations.
Opposite to the expensive method proposed in [5], this new method was faster since it
only performs a one-step gradient update of the loss function of the model. More so, the
perturbation bound used, contrary to the L-BFGS, is the max norm which allows a greater
perturbation in the image. An adversarial sample generated using the FGSM is given by

x′ = x+ ϵ · sign(∇xL(θ, x, y)) (3.2)

where ϵ is, usually, a small constant that is multiplied by the sign of the vector of the
gradient. The y value is the label of the generated sample and it allows the adversary
to choose if the attack is targeted or non-targeted. The required gradient can be easily
computed using the backpropagation algorithm. The figure 3.4 represents an image with a
perturbation, generated using FGSM, that while being quasi-imperceptible to the human
eye, creates a higher level of confidence in the model of an incorrect label output.

Jacobian-based Saliency Map Attack (JSMA) Previous to the paper written by
Papernot et al. [26], most attacks focused on using the L∞ ou the L2 norm such as the
FGSM attack. The goal of the authors was to develop a new attack restricted by the L0

norm which only allows for a small number of pixels in an image to be changed. The
proposed attack uses adversarial saliency maps (figure 3.5), which are an extension of
saliency maps, to evaluate the effect that each input feature has on the model, in images
those features are the pixels. Pixels with the largest saliency are the ones that create the
biggest impact on the model meaning that those are the ones to be changed. This method
is repeated until the number of pixels to be changed is reached or the adversarial sample
was capable of fooling the model.
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Figure 3.4: An example of an adversarial attack using the Fast Gradient Sign Attack. The
image, after being perturbed, was misclassified by the model with a higher confidence level
than the original image. (Image credits: Goodfellow et al. [6])

Hot/Cold Attack Rozsa et al. [27] propose an attack based on changing the values of
the penultimate layer of a target model (or the logit layer). The logits are modified such
that the probability of a class "hot" increases and the probability of the original class, the
"cold" class, decreases. The logits of the target model can be represented as:

whc =


|hj(x)|, if j = ȳ

−hj(x), if j = y

0, otherwise
(3.3)

where hj represents the j-th element of the logits layer, y is the true label of the image, and
ȳ is a target class. Then, backpropagation is applied to compute the gradient values of the
new logits layer and after obtaining the gradient directions, the adversarial perturbations
are found using line-search and binary search.

DeepFool Moosavi-Dezfooli et al. [28] proposed the DeepFool algorithm that starts with
an unperturbed image that is inside a region limited by the decision boundaries of the
classifier. DeepFool iteratively moves the original input point towards the closest decision
boundary using a perturbation vector. In the case of nonlinear classifiers, the decision
boundaries are linearized and the distance to the approximated decision boundaries is
used to move the original point (seen in figure 3.6). This process is repeated until the
original image is misclassified by the model. DeepFool is also capable of measuring the
perturbation using various distance metrics such as the L2 and L∞ norms. The proposed
attack was shown to fool various ML models, notably, GoogLeNet [68], LeNet [69], and
CaffeNet [70].

Basic Iterative Method (BIM) A method proposed by [29] that is referred to as Basic
Iterative Method or Iterative-Fast Gradient Sign Method. This attack applies the FGSM
multiple times with a small step size and uses the max norm to constraint the perturbation
added to the sample. Adversarial samples generated by this attack can be formulated as:

x′i+1 = Clipx,ϵ

{
x′i + α · sign(∇xL(x′i, y))

}
where x′0 = x (3.4)
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Figure 3.5: Saliency map of a 28x28 image. Large absolute values correspond to the pixels
with the greatest impact on the decision of the network (Image credits: [26])

where x is the original benign sample, i is an iteration of the attack, L(x′i, y) is the loss
function of the target model and Clip(·) restrains the perturbation added to the image.

ILLCM (Iterative Least-Likely Class Method) The same authors of the BIM attack
developed a targeted attack method called the Iterative Least-Likely Class Method where
the goal is to create an adversarial sample that is classified as the least likely class of the
original input.

Substitute Model Attack Papernot et al. [30] proposed one of the first black-box
techniques to generate adversarial attacks that consisted in using a substitute model. The
attack consists in training a substitute model using a synthetic dataset that is constructed
using the output labels of the target model. Then, adversarial examples are constructed
using white-box methods on the substitute model which are then used to attack the target
model, leveraging the transferability property of classifiers found by Szegedy et al. [5]. The
success of this attack is based on the knowledge that the adversary has on the target model
and the quality of the constructed synthetic dataset. In order to limit the number of queries
that the substitute model makes to the target model, the authors developed the Jacobian-
based Dataset Augmentation technique. This technique focuses on approximating the
oracle’s decision boundaries with few queries and not on maximizing the accuracy of the
substitute model. This attack obtained an 84.24% misclassification ratio on a deep neural
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Figure 3.6: Approximation of the decision boundaries to find an adversarial sample. (Image
credits: [28])

network of MetaMind, a 96.19% on a classifier hosted by Amazon, and 88.94% on a classifier
provided by Google.

Carlini & Wagner Attacks C&W propose a family of white-box attacks in respect to
the L2, L0, and L∞ bounds. After experimenting with various different and possible loss
functions, the one used to tackle the optimization problem proposed by Szegendy et al.
can be formulated as:

LCW (x′, t) = max(max
i ̸=t

{Z(x′)(i)} − Z(x′)(t),−κ) (3.5)

where Z(x′)(i) is a value of the logits layer of the classifier different, Z(x′)(t) is the value of
the target label in the logits layer and κ is a parameter that controls the misclassification
confidence of the adversarial sample when classified by the model. If t has the highest logit
value of all the other logits, the difference will be negative. If the difference between t and
the highest value of the logits is negative and that value exceeds κ, the optimization stops
since the sample is being misclassified as the target label with high confidence. With a loss
function defined, the L2 attack can be defined as:

min
w

||x′(w)− x||22 + c · LCW where x′(w) =
1

2
(tanh(w) + 1) (3.6)

where w is a value to be minimized and c is a constant that starts with a low value
(e.g., 10−4) and is doubled until an adversarial sample is found or a threshold is exceeded
(e.g., 1010). The L0 and L∞ attacks are much more complex since the distances are
non-differentiable and for that, they both use an iterative approach for finding adversarial
examples. The adversarial samples generated using all three attacks were shown to be
more powerful than other, at the time, state-of-the-art attacks and also capable of breaking
classifiers trained under the defensive distillation technique [71] with almost 100% fooling
rate.

UPSET & ANGRI The authors propose two black-box attacks, UPSET and ANGRI
that generate targeted adversarial images. The UPSET model tries to generate a single
perturbation for each class using only the information of the input image. An adversarial
image generated using UPSET can be formalized as:

x′ = U(x, t) = max(min(s ·R(t) + x, 1),−1) (3.7)
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where U is the UPSET network, R is a residual generating network that is responsible
for generating the perturbation and t is the target class. The perturbation generated by
R is multiplied by a scalar value s that constrains the perturbation to be added to the
image. ANGRI, contrary to UPSET, tries to add a perturbation that makes a classifier
misclassify an image from class y as being from class t. The formulation of an adversarial
sample generated by ANGRI is formalized as:

x′ = A(x, t) (3.8)

where A is the ANGRI network and t is the target label. The loss function used by both
UPSET and ANGRI is represented as:

L(x, x′, t) = LC(x
′, t) + LF (x, x

′) = −
m∑
i=1

log(Ci(x
′)[t]) + w||x′ − x||kk (3.9)

where m is a number of pre-trained classifiers and Ci(x
′) is the classification probabilities

of the adversarial image, LC(x
′, t) is the classification loss of a classifier and LF (x, x

′) is the
fidelity loss which is given by a weight w that ensures balance between the similarity, with
the original image, of the adversarial image and the fooling capability of the adversarial
image. The constraint of the perturbation on the adversarial image is given by ||x′ − x||kk
where k is usually 2 and therefore, the constraint is the L2 norm. Both proposed networks
can train on multiple classification systems which allows them to attack multiple target
neural networks simultaneously. Since ANGRI focuses on perturbing a single image, it
generates stronger adversarial images in terms of similarity with the original image. Since
UPSET generates a perturbation for each class, it is then very fast after the training phase,
which is during the inference phase.

Universal Adversarial Perturbations Moosavi-Dezfooli et al. [33] propose a method
of generating an universal perturbation (figure 3.7), given a training dataset of a model,
that when applied to most images of the dataset is capable of fooling the target model.
This attack computes perturbations of individual inputs iteratively using a sample-specific
attack such as the FGSM. Each input-specific perturbation is added to create the universal
perturbation which is then input-agnostic. This method was capable of fooling various ML
models such as GoogLeNet with fooling rates close to 94% for the ImageNet dataset. The
authors explain this phenomenon as a result of correlations in the decision boundaries of
the classifiers.

ZOO Chen et al. [34] proposed a new black-box method for generating adversarial
examples. The method is based on the formulation of the C&W attack since it was, at the
time, one of the most effective white-box attacks. However, contrary to the C&W attack,
this algorithm doesn’t assume that it can use backpropagation to obtain the gradient,
instead the authors modify the loss function formulation to the following:

Targeted: L(x, t) = max{max
i ̸=t

log(f(x)(i))− log(f(x)(t)),−κ} (3.10)

Untargeted: L(x) = max{log(f(x)(y))−max
i ̸=y

log(f(x)(i)),−κ} (3.11)

Since this is a black-box attack, different from the C&W formulation, ZOO is computed
using the softmax probabilities f(x)(i). Similar to other formulations, t represents the
target class and y represents the true label of the class while i are the probabilities of
the softmax layer for the possible classes. κ has the same objective that is had in the
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Figure 3.7: A perturbation generated using the UAP method. The perturbation, when
applied to various images of a dataset, is capable of fooling the target model. (Image
credits: [33])

C&W formulation, to control the minimum desired confidence for the adversarial sample.
ZOO computes an approximation of the gradient by using stochastic gradient descent
over batches of input dimensions which leads to an increase in performance. The authors
propose two variations of the ZOO attack that use coordinate stochastic descent: ZOO-
Adam and ZOO-Newton. The results suggested that ZOO-ADAM was slightly faster than
ZOO-Newton.

R+FGSM Gradient masking is one of the most common defenses used in order to pro-
tect classifiers from gradient-based attacks such as FGSM. Tramèr et al. [35] introduce a
variation of the FGSM that consists in adding a small random perturbation to the perturba-
tion generated by the FGSM. This attack was shown capable of attacking an adversarially
trained Inception ResNet v2 [72] and Inception v3 [73], obtaining higher fooling rates than
the original FGSM.

Spatially Transformed Adversarial Examples (stAdv) One important factor to
consider when generating adversarial examples is the similarity between the original sample
and the perturbed one. However, when using norms such as the L2 norm, the adversarial
samples created may fail to respect this criterion. Motivated by this, Xiao et al. [36]
propose a new category of adversarial attacks that focus on generating realistic adversarial
samples by changing the position instead of the values of the pixels in an image. The
proposed attack focus on optimizing the geometrical similarity between the original benign
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sample and the adversarial sample. The authors represent the spatially-transformed image
as a flow field f(∆u,∆v) where each element represents a change in the 2D coordinates of a
pixel. The location of a pixel in the original image can be found by computing (u(i), v(i)) =

(u
(i)
adv + ∆u(i), v

(i)
adv + ∆v(i)). The adversarial image can be obtained by calculating the

following equation for each pixel in the image:

x
(i)
adv =

∑
q∈N (u(i),v(i))

x(q)(1− |u(i) − u(q)|)(1− |v(i) − v(q)|) (3.12)

where N (u(i), v(i)) is the 4-pixel neighborhood of the i-th pixel with a spatially-transformed
coordinate u(i), v(i). It is also important to note that xadv is differentiable with respect to
the flow field f , Given an input image that is not perturbed, adversarial samples are found
by minimizing the following function:

f∗ = argmin
f

Ladv(x, f) + τLflow(f) (3.13)

where τ is the balance factor between the two loss functions, Ladv is the classification loss
of the adversarial examples in the target model, and Lflow is a metric that preserves the
similarity between the original image and the adversarial one (the perturbation distance
norm in other attacks). Adversarial samples generated by this method (figure 3.8) were
extremely similar to the original samples while at the same obtaining misclassification
similar or even higher than other attacks such as FGSM against defended neural networks.

Figure 3.8: The process of generating an adversarial sample using the stAdv attack. The
green point is the location of the pixel in the benign sample. The red flow represents the
displacement that the pixels were subjected to. The blue dot represents the position of the
green dot in the adversarial sample (Image credits: [36])

AdvGAN Similar to a P-ATN, an AdvGAN [37] consists in training a neural network
to produce adversarial samples. However, AdvGAN also uses a discriminator, based on
the work of Goodfellow et al., in order to produce visually realistic images capable of
misleading the target models. The AdvGAN framework mainly consists of a generator G,
a discriminator D, and the target neural network f. The objective function of the generator
consists of various terms and can be represented as:

L = Lf
adv + αLGAN + βLhinge (3.14)

26



State-of-the-Art

where Lf
adv is the loss for fooling the target model f (usually the cross-entropy of f),

LGAN is the adversarial loss which is used to ensure that the perturbed data is similar to
the benign data, and Lhinge is used to bound the perturbation of the adversarial sample.
In the function, α and β are constants that control the importance of the loss functions.
Adversarial GAN’s can be both used in a white-box and a black-box setting. In the
white-box setting, the AdvGAN only needs to have white-box access while the network
is being trained, after the training is complete, it doesn’t require any more access to the
model and can work in a black-box setting. The authors called this a semi-white-box
attack. In the black-box setting, the authors use a dynamic distillation technique that
consists in constructing a local model to distill the target model. In this scenario, a
random subset of instances different from the training dataset is chosen to train the local
model. The AdvGAN achieved better performance over the FGSM and C&W attacks in
models defended by adversarial training [6], ensemble adversarial training [35], and iterative
training [40].

Figure 3.9: The architecture of an AdvGAN. (Image credits: [37])

MI-FGSM The MI-FGSM is a family of attacks that is built upon the I-FGSM and
uses the momentum method which is a technique for accelerating gradient descent algo-
rithms. The integration of momentum allows for greater stabilization of update directions
for perturbations and allows the gradient sign method to escape local maxima. This allows
the adversarial samples to have greater transferability even against stronger models. The
family of MI-FGSM attacks isn’t limited just to non-targeted attacks under the L∞ norm
restriction, but it is possible to generate attacks under the L2 norm and targeted attacks.

Boundary Attack Brendel et al. [38] suggest that decision-based attacks are extremely
relevant since are much more probable of happening in the real world since they only
require the final decision of the model such as the top output label. Moreover, the authors
hypothesize that they can be more robust to standard defenses that are gaining importance
in the literature such as gradient masking and adversarial training. At the time of this
attack, there was no effective decision-based attack that could scale on natural datasets
such as ImageNet. The authors propose the boundary attack that works differently from
other methods. The starting point is a clean sample and the algorithm iteratively walks
along the boundary between the adversarial label and the clean label. The method needs
to guarantee that the image stays adversarial but the distance to the decision boundary
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of the clean label is minimized. The process can be targeted or untargeted depending on
whether the initial image was chosen or randomly selected from a distribution. An example
of a targeted attack can be seen in figure 3.10.

Figure 3.10: The process of generating an adversarial image using the Boundary Attack,
one of the first decision-based black-box attacks to be presented. (Image credits: [38])

BPDA Various defenses have been developed in order to protect models from adversarial
attacks. One of the most common baseline of defenses in the literature is gradient masking,
that focuses on obfuscating gradients, or in other words, gradients that are not useful for
white-box attacks. Backward Pass Differentiable Approximation is a technique that can be
applied to adversarial attacks in order to bypass gradient masking defenses. This method,
essentially, calculates an approximation of the gradients.

Projected Gradient Descent (PGD) In the search for adversarial robustness of net-
works and of methods capable of training neural networks robust to adversarial attacks,
Madry et al. [40] developed a new white-box attack. The attack proposed, Project Gra-
dient Decent, is still one of the most relevant white-box attacks in the literature, serving
as the base for other white-box and black-box attacks. PGD is essentially a multi-step
variant of the L∞ FGSM attack and can be formulated as:

xt+1 = πx+S(x
t + ϵ · sign(∇xL(θ, x, y))) (3.15)

While this attack may seem similar to the BIM attack, the PGD attack, contrary to BIM,
initializes the example in a random point in the L∞-ball which allows for a broader search
of samples in the loss function landscape. A very simple visual representation of the PGD
algorithm can be seen in figure 3.11.

Elastic Net Attack (EAD) Chen et al. [41] propose a new process of generating
adversarial attacks based on elastic-net regularization which is a technique used to solve
high-dimensional feature selection problems. The authors’ starting point is the loss function
used by C&W which is then complemented by introducing the elastic-net regularization.
The developed L1 attack was demonstrated to be capable of generating adversarial samples
successful in breaking MNIST, CIFAR10, and ImageNet networks with similar results to
state-of-the-art L2 and L∞ attacks.

Adversarial Transformation Networks Adversarial Transformation Networks are net-
works trained to transform an input into an adversarial example. There are two principal
approaches to generating adversarial samples using an ATN: Perturbation ATN (P-ATN)
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Figure 3.11: The iterative process of finding an adversarial sample using the Projected
Gradient Descent Attack. On the first try, the sample found has a low loss which means
it will be a weak adversarial sample. In the second try, however, the sample lands
in a region with high loss that results in a strong adversarial sample. (Image credits:
https://towardsdatascience.com/know-your-enemy-7f7c5038bdf3

and Adversarial Autoenconding (AAE). The P-ATN is an ATN trained to generate a per-
turbation to a given input while AAE is an ATN that transforms encode-and-reconstruct
a benign input into an adversarial sample. After training the networks, adversarial attacks
can be generated by simply inputting the benign sample to the ATN resulting in a possible
faster generation than other gradient-based approaches such as fast gradient methods. It
is important to note that an ATN is only capable of generating adversarial examples of a
single class of the target model. In order to generate adversarial attacks of multiple classes,
multiple ATN’s need to be trained.

Limited Queries and Info Attack Ilyas et al. [44] develop attacks for three different
limited black-box limited settings. The first setting limits the number of queries that the
attacker can make to the target model. The authors use Natural Evolutionary Strategies
(NES) to estimate the gradient from queries and then Projected Gradient Descent is applied
to generate the adversarial samples. In the second scenario, the adversary only has partial
information about the confidence scores for a given input, meaning that in some cases,
only the top-1 class probability is output. In this setting, the starting point is a benign
sample of the target class so that it will appear in the top-k classes of the output. The
algorithm, over the iterations, needs to make sure the adversarial class stays in the top-k
classes and, at the same time, the perturbation added maximizes the probability of the
input image getting classified as the target class. The third scenario is an extremely limited
one since the attacker only has access to the output labels of the model for a given input.
The idea behind this attack focuses on defining a discretized score of an adversarial sample
to represent the adversarial nature of that sample at each iteration given only the top-
k classes. The tests performed on the Google Cloud Vision API demonstrated that the
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attacks were very capable of fooling the ML model even under such limited settings. The
results of the partial information attack can be seen in figure 3.12.

Figure 3.12: The results of the Partial Information Attack on the Google Cloud Vision
API. (Image adapted from: [44])

Opt-Attack Cheng et al. tackle the challenge of developing an adversarial attack method
in a hard-label setting in which the attacker only has access to the output labels given an
input, instead of the probability outputs. The authors reformulate the hard-label black-box
settings as an optimization problem. The formulation for both untargeted and targeted
attacks is the following:

Untargeted attack: g(θ) = argminλ>0

(
f(x0 + λ

θ

||θ||
̸= y0)

)
,where y0 is the true label

(3.16)

Targeted attack: g(θ) = argminλ>0

(
f(x0 + λ

θ

||θ||
= t)

)
,where t is the target label

(3.17)

where θ represents the search direction and g(θ) is the distance from x0 (the original
sample) to the nearest adversarial example in the direction of θ. The algorithm follows
the direction θ in search for an adversarial example which allows for a minimization of the
distortion g(θ). The adversarial sample is represented by:

x∗ = x0 + g(θ∗)
θ∗

||θ∗||
,where θ∗ = argminθ g(θ) (3.18)

The algorithm works as follows: iteratively, a fine-grained search is performed and then
complemented by a binary search to find the decision boundary. After computing the g
value, the estimated gradient is calculated using the Randomized Gradient-Free method
which is an iterative Zeroth Order Optimization method. θ is then updated using a step
size, calculated using a backtracking search-line approach at each step, and the estimated
gradient.

Simultaneous Perturbation Stochastic Approximation Attack (SPSA) Similar
to other methods that are black-box, the SPSA attack uses the SPSA estimator to com-
pute an approximation of gradients of the target model. The proposed attack estimates
the gradients of the loss function of the target model N times and then computes the neg-
ative direction estimate of the gradients. Then, it perturbs the original sample along the
previously calculated negative gradient direction making sure that the perturbation stays
within the allowed L∞ bounds. The SPSA attack was shown to break various defenses
such as PixelDefend [74] and High-level Guided Denoising [75].
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High Confidence Low Uncertainty Attack An investigation on the effect of adver-
sarial examples on Bayesian Neural Networks (BNNs) performed by Grosse et al. [47]
demonstrated that it is possible to fool BNNs. The authors extend adversarial samples
from the output of classifiers to the Bayesian confidence and uncertainty levels where a
higher value means more confident and more uncertain, respectively. The optimization
problem of high-confidence-low-uncertainty results is the following:

min
δ

||δ||2

s.t confidence (f(x+ δ)) > 0.95,
and uncertainty (f(x+ δ)) ≤ uncertainty(f(x)),

(3.19)

where the perturbation is limited using the euclidean norm, the first constraint maximizes
the confidence of the classifier, and the second limits the uncertainty. Since the uncertainty
estimates of BNNs are non-smooth, the authors use a Gaussian Process Classifier (GPC)
as a substitute target model. The constructed adversarial examples were extremely similar
to the benign original samples but at the same time, capable of achieving very high levels of
confidence and low levels of uncertainty on the GPC. In order to test the transferability of
the attack, the HCLU adversarial examples were tested on a DNN, a BNN, and a different
GPC. The results show that the examples were very capable of fooling the target classifiers
achieving 90% of misclassification ratio in Spam, MNIST19, and FMNIST19 datasets and
over 50% in an FMNIST57 and MNIST38 datasets.

AutoZOOM Many of the black-box methods for generating adversarial attacks seen
until now, query the target model a vast number of times which can be extremely time
inefficient and computationally expensive. Motivated by a lack of methods that are capable
of generating strong adversarial samples and are also query-efficient, the authors propose a
new black-box framework to generate adversarial samples. AutoZOOM introduces two new
mechanisms that diminish the number of queries needed to generate a strong adversarial
sample: a random gradient estimation strategy and an autoencoder with two modes. The
authors formulate finding an adversarial sample x as the following:

min
x∈[0,1]d

||x− x0||p + λ · L(x,M(F (x)), t) where x0 is the original image (3.20)

where ||x − x0||p is the perturbation, L(·) is the training loss of the target model or a
modified function such as the one used by C&W. t is the target label and λ is a regu-
larization coefficient. M(·) is a monotonic transformation that is applied to the output
of the classifier, represented as F (x). The input image with dimension d and x ∈ [0, 1]d

constraints the generated adversarial image to the valid image space. Since finding the
loss function is impossible in a black-box scenario such as this one, the authors propose
approximating the gradients using an averaged random gradient estimation. The averaged
random gradient estimator of the loss function of the target model can be defined as:

ḡ =
1

q

q∑
j=1

b · f(x+ βuj)− f(x)

β
· uj (3.21)

where β is a smoothing parameter, b is a scalar value that balances the bias and variance
trade-off of the error of g and u is a vector that is randomly obtained from an euclidean
sphere. q is a number of random directions that dictate the direction of u. Multiple
directions reduce the variance of the average random gradient estimation. The authors
demonstrate that images with high dimensionality can make gradient estimations very
query inefficient. In order to reduce query inefficiency, they perform random gradient
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estimation in a lower dimension of the original image. The perturbation added to an
image is made using a decoder that translates a perturbation generated in a low dimension
space to the original dimension of the input image. AutoZOOM provides an autoencoder
(observable in 3.13) and a BiLIN (channel-wise bilinear image resizer) that can serve as
the decoder for the previously mentioned step. AutoZOOM obtained more than 93% of
query reduction when compared to the ZOO attack [34] while, at the same time, obtaining
similar, and even greater, attack success rates.

Figure 3.13: The autoencoder used by AutoZOOM to generate adversarial samples. (Image
credits: [48])

One Pixel Attack Su et al. [49] suggested a new family of semi-black-box attacks that
only modify a very limited number of pixels of an image in order to create an adversarial
sample. The requirements for the attack are the predicted classes and the prediction
probabilities from the target model. Opposite to other methods, the one-pixel attack
doesn’t limit the strength of the modification, instead, it focuses on creating the maximum
perturbation possible in a single pixel. Instead of using a gradient approach for finding a
perturbation, this attack uses the differential evolution algorithm to evolve the candidate
solution which, in this case, is the pixel to be changed. The use of differential evolution
has a few benefits such as needing less information from the target and having a higher
probability of finding the global optima.

Bandits & Prior Attack Ilyas et al. [50] study the existence of prior gradient infor-
mation based on two observations made: first, the input data point for which gradient
is computed is not arbitrary and is reflected in the gradient and, second, when perform-
ing iterative gradient attacks, the successive gradients show a heavy correlation between
them. Taking this into consideration, the authors propose a new formulation of the gra-
dient estimation problem based on prior information. The authors analyze two classes of
prior information extracted from the dataset: time-dependent priors and data-dependent
priors. While time-dependent priors are supported by the existence of a similar correlation
between successive gradients, the data-dependent priors are supported by a spatially local
similarity that exists in images (i.e pixels that are close tend to have similar values). The
proposed attack is built on top of the bandit optimization framework, a tool used in online
convex optimization. Each t round, the gradient gt is estimated based on the latent vector
of the previous round, vt−1. The loss ℓt function is represented by:

ℓt(g) = −⟨∇L(x, y),
g

||g||
⟩ (3.22)

where g is the gradient estimate and is accessed using the finite differences method and
L(x, y) is the classification loss on an image x with true label y. The time-dependent priors
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are reflected in the latent vector between the gradient estimations. The data-dependent
priors enforce a particular structure of the latent vector.

Sparse L1 Descent (SLIDE) Adversarial training is yet another form of defending
classifiers from adversarial attacks. For the defense to have good results and effectively
protect the classifier, it needs to use adversarial samples generated by strong and efficient
attacks. Tramer et al. [51], motivated by this, propose a new L1-based attack, based on
the PGD attack, capable of generating stronger and efficient samples. The new attack is
also a descent attack but, contrary to the PGD, has finer control over the update step.
The proposed attack was shown to outperform the L1 PGD attack.

NATTACK The approach to generate adversarial attacks by Yandong et al. [52] focus
on finding a probability density distribution over a small region (lp ball) centered around
a benign input. A sample drawn from the distribution is likely to be adversarial which
allows drawing multiple and different adversarial attacks. The formulation of finding an
adversarial sample is given by:

x′ = projS(g(z)), z ∼ N (z|µ, σ2) (3.23)

where S is the region that contains x and N (z|µ, σ2) is a normal distribution whose values
of µ and σ2 are found using NES and grid search, respectively. g : Rdim(µ) 7→ Rdim(x) maps
an instance to the space of the target model input.

SimBA SimBA [53] is a black-box model that is both straightforward and efficient in
the number of iterations that it uses to find an adversarial sample. As input, the algorithm
takes the input image, a set of orthonormal vectors, and a step size. Each iteration, the
attack selects a random q vector from the aforementioned set while making sure that the
newly selected vector isn’t in the opposite direction of the previous one. This allows for
lesser queries to be made and diminishes the time it takes to find a sample. The q vector
is then added to the image and, if the probability of misclassification of the image is lower
than the previous iteration, the vector is instead subtracted. A variation of the SimBA that
uses Discrete Cosine Transformation is also proposed by the authors. Despite the focus
of SimBA being simplicity, it was capable of fooling the Google Cloud Vision, achieving a
70% success rate after only 5000 queries.

Wasserstein Attack Wong et al. [25] propose a new category of attacks that uses
the Wasserstein distance as the bound of adversarial examples. The proposed attack use
Projected Gradient Descent as the way to generate the adversarial examples which are
bounded by the Wasserstein distance instead of the regular distances such as the L2 and
the L∞ norms. However, since computing the Wasserstein distance requires solving an
optimization problem that is not efficient in practice, the Sinkhorn-Knopp matrix algorithm
is used to compute an approximation.

Threshold & Few-pixel Attacks The authors hypothesize that not all distance metrics
are needed to evaluate the robustness of a classifier and that those metrics can lead to
adversarial examples that can be easily detected by humans. The authors propose a new
formulation for adversarial ML that has into consideration the perturbation of the sample:

min g(x+ ϵx)c subject to ||ϵx|| ≤ th (3.24)
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where th is a pre-defined threshold value. This value has the objective of limiting the
perturbation that an image can have in order to stop it from being unrecognizable. Using
this new formula that takes into consideration the quality of the samples, the authors pro-
pose new two black-box attacks that aren’t gradient-based and instead, use the canonical
version of the optimization algorithm Covariance Matrix Adaptation Evolution Strategy
(CMA-ES). The first attack is the threshold attack which uses the L∞ norm and the al-
gorithm search space is given by m × n × c where m × n is the size of the image and
c is the number of channels. The perturbation to be added to the image only needs to
respect the threshold value defined. The second attack is a variation of the One-pixel at-
tack [49] and it uses the L0 norm. The search space for this algorithm is smaller than the
threshold attack since it is a combination of the pixel values and position for all the pixels.
The results obtained showed that both attacks were capable of fooling various ML models
such as ResNet, DenseNet, WideResNet, AllConv, and CapsNet, however, the threshold
value had, as expected, a great impact on the results. While the threshold attack with
th = 1 only achieved 30% of misclassification error, with th = 10 achieved 98% error in
the WideResNet.

Decoupled Direction and Norm (DDN) Attack The authors [55] propose an alter-
native method for generating white-box gradient-based attacks. Various white-box attacks
such as the Carlini&Wagner attack and the L-BFGS attack, convert the constrained prob-
lem of generating adversarial examples into an unconstrained problem. However, choosing
the constant multiplier is performed in an adhoc way which can result in a very large
number of iterations. The authors propose a method that doesn’t impose a penalty on
the L2 norm during the optimization step of the method and instead, they project the
perturbation on a ϵ-sphere around the original sample. The norm is constrained and in-
creases if the sample isn’t adversarial and decreases otherwise (figure 3.14). The proposed
attack performs similarly to other attacks such as DeepFool and the C&W L2 attack but
generates adversarial samples much faster. Under a 100 iterations max restriction, the
DDN attack performed always better than the C&W attack.

POBA-GA Chen et al. [56] propose a novel Perturbation Optimization Black-box At-
tack based on Genetic Algorithm capable of generating adversarial samples comparable to
samples created by white-box attacks. The algorithm of POBA-GA starts by generating
random perturbations, the quality and the diversity of the initial perturbations are crucial
to obtaining an optimal solution. A low-quality initial solution may need more iterations
to converge to the optimal solution. The initial types of perturbation are generated based
on different noise point pixel thresholds, the number of noise points, and noise point size.
Each perturbation is then added to an original sample in order to create the corresponding
adversarial samples. The adversarial samples are then evaluated using a fitness function.
The fitness function evaluates the similarity of the adversarial sample to the original image
and the misclassification confidence of the model on the adversarial sample. The fitness
function is defined by:

ϕ(ASt
i ) = P (ASt

i )−
α

maxZ(A0)
Z(At

i) (3.25)

where ϕ(ASt
i ) is the fitness function of the adversarial sample ϕ(ASt

i ), P (ASt
i ) is the

calculated attack performance of the sample, Z(At
i) is the perturbation metric of the

attack proposed by the authors and α
maxZ(A0)

is used to control the proportion of attack
performance and perturbation. t is an iteration step of the algorithm. To reduce the
number of queries needed to obtain a capable sample, the authors updated the fitness
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Figure 3.14: The process of finding an adversarial image used by the Decoupled Direction
and Norm attack. The adversarial sample is found when the projection of x leaves the
original class boundary. (Image credits: [55])

function to take into consideration if the attack is successful or not. If the attack is not
successful, there isn’t a need to consider the attack perturbation and instead only focus on
the attack performance. The updated fitness function is the following:

ϕ(ASt
i ) =

{
p(y1|ASt

i )− p(y0|ASt
i )− α

maxZ(At0 )
Z(At

i) if y1 ̸= y0

p(y2|ASt
i )− p(y0|ASt

i ), if y1 = y0
(3.26)

where t0 is the number of iterations when the initial attack is successful and α
maxZ(At0 )

Z(At
i)

controls the perturbation. After evaluating the adversarial sample, if the termination
condition is reached the algorithm stops because it has found a suitable adversarial sample.
In case the stopping condition was not met, genetic algorithm operators are applied such
as selection, crossover and mutation are responsible for evolving the generation of the
population. A visual representation of the attack can be seen in figure 3.15.

CornerSearch Attack Adversarial samples while capable of fooling neural network clas-
sifiers many are also easily detected to the human eye. Croce et al. [57] propose a new
technique capable of generating sparse and imperceivable adversarial samples (observable
in figure 3.16). The authors present two methods capable of generating L0, L0 +L∞, and
L0 + σ attacks. The first method is a black-box attack that only needs the logits of the
target classifier and the second method is a generalization of the PGD attack. The black-
box attack scheme starts by creating one-pixel modifications on the input image. The
modifications created depend on the perturbation bound chosen. Despite having different
conditions for generating the one-pixel modifications, at the end of this first step there are
(z(j))Mj=1 images where M = 8d if the image is RGB or M = 2d if the image is grayscale.
The generated images are then sorted to identify the pixels that push the decision of the
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Figure 3.15: The process of generating an adversarial sample using the POBA-GA attack.
(Image credits: [56])

classifier towards a specific class or an unspecific one. If any of the changed images alone
change the decision of the target classifier the algorithm stops here. The next step of the
algorithm focus on combining multiple one-pixel modifications in order to generate an ad-
versarial sample. Since the images generated in the previous step were sorted based on the
class that they pushed the classifier, the one-pixel modifications responsible for pushing
the image towards a specific class are also sorted. To generate a candidate adversarial im-
age to be classified as a class r, the top N one-pixel modifications that pushed the images
towards the class r are chosen. The candidate image yr is generated by applying all the top
N one-pixel modifications. This method is much faster compared to an iterative method
because allows feeding all these images in batches to the classifier. Moreover, since it isn’t
iterative, it doesn’t depend on steps that prevent the algorithm from being stuck in local
maxima. This method, despite being black-box, obtained similar misclassification rates
to white-box attacks and better than black-box attacks while at the same time requiring
fewer pixels to be changed.

LogBarrier Attack Most of the white-box attacks presented until now are gradient-
based attacks that utilize the loss function of the target model to generate adversarial
samples. Finlay et al. [58] propose a new method of generating adversarial examples that,
while being gradient-based, doesn’t utilize the training loss function of the model and
instead, utilizes the logarithmic barrier optimization method. The problem of generating
untargeted adversarial samples is written as:

min
δ

m(δ)

s.t arg maxf(x+ δ) ̸= c
(3.27)

where c is the correct label of an image. In order for an image to be misclassified, the
following needs to occur:

maxi ̸=c
δ

fi(x)− fc(x) > 0 (3.28)
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Figure 3.16: Adversarial images generated by the CornerSearch attack. The three varia-
tions of the attack produce samples with extremely low sparsity that are almost impercep-
tible. (Image credits: [57])

where i is an index of the target model’s prediction. The authors use the logarithmic
barrier optimization method to find adversarial samples:

min
δ

m(δ)− λlog(fmax − fc) (3.29)

where fmax is defined as maxi fi(x+ δ), fc is defined as fc(x+ δ) and λ is a penalty term
that enforces the optimization algorithm to search for optimal solutions. The LogBarrier
attack algorithm (figure 3.17) needs to start with an image that is misclassified by the
target model. A misclassified image can be simply an image of a different class or an
image of the original class perturbed using random noise. The following step consists in
solving the previously mentioned equation using a fixed λ and gradient descent. If the
gradient descent step moves the adversarial image over the bound resulting in a correct
classification by the model, a backtracking method is used to revert the image to a previous
iteration. Despite having many hyperparameters, the authors claim that the tuning process
is relatively quick.

Brendel & Bethge Attack The Brendel & Bethge attack [59] combines the boundary
attack with a gradient-based estimation of the boundaries. The attack starts from a
point in an adversarial input that is generally far away from a clean image. After finding
the adversarial boundary, the point performs an iterative descent in order to minimize
the distance to the clean input. Each step is computed by solving a quadratic trust-
region optimization problem. Calculating the optimization problem guarantees that: the
perturbation has a minimal Lp (p = 0, 1, 2, or ∞) distance to the clean input, is placed on
the adversarial boundary, the step size is always within a given trust-region radius, and
the valid input range. Since the attack follows the adversary boundary, it is less likely
to be stuck due to obfuscated gradients. The L2 attack was shown to be more query
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Figure 3.17: The process of finding an adversarial image using the LogBarrier attack. The
starting sample is already adversarial and iteratively approaches the decision boundary of
the original image class. (Image credits: [58])

efficient than the C&W attack and on par with the DDN attack while at the same time
demonstrating to be less sensitive to wrong hyperparameter tuning.

Figure 3.18: Schematic of the Brendel & Bethge approach. Considering an input which a
model either interprets as a dog (shaded region) or as a cat(white region). Given a clean
dog image (solid triangle), the algorithm searches for the closest image classified as a cat.
The attack starts from an adversarial image far away from the clean image and walks
along the boundary towards the closest adversarial(middle). In each step, an optimization
problem is solved to find the optimal descent direction along the boundary that stays
within the valid pixel bounds and the trust region (right). (Image credits: [59])

Shadow Attack Ghiasi et al. [60] propose a new white-box attack capable of fooling
certified classifiers which are classifiers that produce a certificate that guarantees that
an image is not an adversarial sample. The generated samples (figure 3.19) fool those
same classifiers causing them to generate spoofed certificates. The shadow attack solves
a different optimization problem than the one used by various other attacks such as the
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PGD attack and instead, solves the following problem:

max
ȳ ̸=y,δ

− L(θ, x+ δ||ȳ)− λcC(δ)− λtvTV (δ)− λsDissim(δ) (3.30)

where ȳ is any possible class different than the true label y, x is the original sample, L is
the spoof loss function (the authors use the average cross-entropy loss function of a batch of
images perturbed with random noise), λc, λtv, λs are scalar penalty weights. TV (δ), C(δ)
and Dissim(δ) are penalties that force the perturbations to be small, smooth and without
big color changes. This constraints allow big p-norm values while still maintaining the
visual changes relatively small. The attack was proven capable of breaking the Randomized
Smoothing [76], a defense against L2 attacks, and CROWN-IBP [77] which is an Interval
Bound Propagation method defense against L∞ attacks.

Figure 3.19: A natural image (left), an adversarial image generated by an L∞ attack (mid-
dle), and an adversarial sample generated by the shadow attack (right). The perturbation
generated by the shadow attack is large while blending in the image. (Image adapted from:
[60])

HopSkipJump Attack The HopSkipJump attack is a decision-based black-box attack
that only requires the output labels returned by the target model in order to produce
adversarial samples. The authors formulate the decision-based attack as an optimization
problem. The attack proposed first starts with an adversarial sample and then iterates the
following steps until an adversarial sample has been found. The first step of the algorithm
approaches the boundary that separates the original class from the adversarial class, via a
modified binary search. After being at the boundary, an estimate of the direction of the
gradient is calculated via the Monte Carlo method. The step size is updated along the
gradient direction and is decreased until the perturbation is successful. This method was
also shown to be more query efficient than the Limited Queries and Info Attack [44] and
the Opt-Attack [45] and be more time-efficient than the Boundary attack [38].

GeoDA Rahmati et al. [62] propose a new decision-based black-box attack that takes
advantage of the linearization of the decision boundary in deep neural networks in the
vicinity of samples. In the proposed scenario, the adversary only has access to the top 1
label that is output by the target classifier within a limited number of queries that can
be performed. This attack is based on the property that it is possible to approximately
compute a data point x that is close to the decision boundary using a hyperplane that
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passes through a boundary point xb that is close to x with a normal vector w (figure 3.20).
The optimization problem of finding an adversarial sample can be formulated as follows:

min
v

D(x, x+ v)

s.t wT (x+ v)− wTxB = 0
(3.31)

where xb is a point close to the boundary that can be calculated using binary search and w
is the estimator. The estimator is computed using geometric priors that are obtained from
performing queries to the target model. The experimentation performed on the ImageNet
dataset demonstrated that GeoDA outperforms several state-of-the-art black-box attacks
such as the HopSkipJump attack and the Boundary attack, requiring fewer queries and
iterations than the other methods.

Figure 3.20: Visual representation of GeoDA. (Image credits: [62])

AdvFlow Dolatabadi et al. [63] propose a new method of generating black-box adver-
sarial attacks using flow-based methods and NES to estimate the gradient. Normalizing
flows are usually used to create more data samples that follow the data distribution of an
original dataset. The authors speculate that adversarial data follows the data distribution
of the original clean data and with that, they start by training a flow-based model on clean
data distribution. The data that the flow-based model uses doesn’t necessarily need to
be the training data of the target model. The authors use unseen test data and obtained
extremely similar results in both scenarios. Since it is assumed that the distribution of
clean and adversarial data is the same, the next step is to change the base distribution from
N (z, 0|I) to N (z|µ, σ2I). Here, µ is a value that is found using NES, σ is a hyperparameter
and an adversarial sample is given by:

x′ = projS(f(z)), z ∼ N (z|µ, σ2I) (3.32)

where projS(.) projects the adversaries to the set S(x) and f(.) represents the flow-based
model. The adversarial samples generated are tested to see if they are misclassified and
the µ is updated using NES. A visual representation of the AdvFlow algorithm can be seen
in Figure 3.21.

Square Attack The Square attack is a score-based black-box attack that doesn’t require
any information about the target model such as the gradient. The authors propose one
L∞-Square attack and a L2-Square attack but the algorithm for both attacks is similar.
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Figure 3.21: Visual representation of AdvFlow. (Image credits: [63])

This method is based on a variation of the random search optimization algorithm. First,
the algorithm splits an input image with size w · w into squares with length h where
h is the size of the square to be changed and is given by the closest positive integer to√

p ∗ w2. The parameter p corresponds to the percentage of elements of the input image to
be modified and is the only value that the adversary can choose (p ∈ [0, 1]) which results in
less hyperparameter tuning than other algorithms. The algorithm iteratively picks a square
of the image and calculates its h to be modified and then generates a perturbation to be
applied if it creates a bigger loss than the previous perturbation, otherwise is discarded.
The algorithm stops when the sample is adversarial and is capable of fooling the target
model.

GreedyFool Attack The authors propose a new method of generating sparse adversarial
samples in a white-box scenario. The GreedyFool algorithm consists of two stages. In the
first stage, iteratively, is performed a forward-backward pass with modifications made to
the pixels of the image. The gradient value of that image is then calculated in order to
understand which pixels create a bigger adversary sample (higher gradients mean higher
contribution in the resulting adversarial image). The loss function and the gradient value
of the adversarial image in iteration t are represented by the following equations:

gt = ∇xadv
t

L(xadvt , y,H) (3.33)

L(x, y,H) = max(H(x)y −maxi ̸=y{H(x)i},−κ) (3.34)

where L(xadvt , y,H) is the loss function of the adversarial image generated in iteration t,
∇xadv

t
L(xadvt , y,H) is the gradient value of the adversarial image generated in iteration t,

L(x, y,H) is the loss function proposed by C&W and κ controls the attack strength (default
is 0 but higher values allow for a better transferability of the generated samples). In order
to guarantee the similarity between the adversarial sample and the original sample, the
authors use a distortion map that stores the distortion level of a pixel. A higher distortion
level means that a change in that pixel created a more visible change. In the second stage
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of the attack, the pixels that have a higher distortion level and create a small adversarial
change in the image are changed to their original values. This stage consists in reducing
the number of changed pixels to maintain sparsity. To create the distortion map that is
used in the second stage of the algorithm, the authors propose the use of a GAN. The
results show that GreedyFool obtains fooling rates higher than 85%, in the CIFAR10 and
ImageNet datasets. In comparison to other methods such as JSMA, PGD (with norm L0),
and SparseFool, GreedyFool obtains higher fooling rates while needing to change fewer
pixels.

Analysis of the presented adversarial attacks From the attacks presented in this
section (see table 3.1), it is clear that during the emergence of adversarial attacks authors
focused on white-box attacks, however, recently, more black-box attacks have been pro-
posed. More so, the most recent black-box attacks have a similar attack success rate to
white-box attacks. This is extremely concerning because adversaries, even with almost no
information about the target model, are capable of fooling, with high success rates, vari-
ous state-of-the-art classifiers. It is even more worrying because even targeted attacks are
extremely successful. Additionally, current adversarial defenses, thought to be powerful
against adversarial attacks, still aren’t capable of fully defending the models. This presses,
even more, the need for tools capable of helping researchers make relevant progress in the
adversarial attacks and defenses landscape.

3.1.4 Real-World Applications

ML interest is growing and its use is also helping to accelerate innovations in various fields
such as cancer diagnosis and self-driving cars. The broad use of ML systems pushes the
need of understanding if ML is secure or if it is vulnerable to attacks. In this section,
multiple real-world applications of ML are addressed alongside adversarial samples that
were developed to fool those same systems.

Eykholt et al. [78] developed a general white-box attack algorithm Robust Physical Per-
turbations (RP2) to generate adversarial perturbations that could be used in a real-world
case scenario. The focus of the work was on road sign classification. This is extremely
relevant for different reasons. Self-driving cars have incorporated an ML algorithm that
needs to compute all different objects that are present in the road, including traffic signs.
More so, road signs are extremely simple in their design, so it is hard to hide perturbations.
Despite being generally simple, an environment such as a road is extremely unconstrained
of noise such as the distance and angle from the car to the traffic sign. If an attacker tries
to attack a vehicle and isn’t able to directly affect the ML system, one way to produce
major damage to the vehicle and its occupants could be to modify objects in the real
world, such as traffic signs. The algorithm developed by the authors was shown to be
capable of generating perturbations on physical objects such as the aforementioned traffic
signs. The authors tested the samples on two classifiers: LISA-CNN, a CNN trained on
the LISA traffic sign dataset, and a GTSRB-CNN, a CNN trained on the German Traffic
Sign Recognition Benchmark. The perturbations created were in the form of stickers and
posters. The perturbations and the results can be seen in figure 3.22. In the case of the
stop signs, the models classified the sign as being a 45 mph speed limit sign.

Sharif et al. [79] explored the vulnerabilities of facial biometric systems in order to under-
stand if attackers could cause damage in systems used for sensitive purposes like surveil-
lance and access control. In biometric systems, attackers usually have little control over
the input of the target system. The only control over the inputs that adversaries have is to
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Figure 3.22: Physical adversarial perturbations for traffic signs against LISA-CNN and
GTSRB-CNN classifiers (Image credits: [78])

change their physical appearance. For an attacker, changing his physical appearance and
still not drawing attention is something that may prove to be difficult.

The authors propose a new class of white-box attacks that consider difficulties that an
attacker may face: attacks that are physically realizable and inconspicuous. More so, the
attacks were developed to fool the recognition systems in two different ways: impersonation
and dodging. The attacks generated were in the form of eyeglasses frames. The attacks
were proven to be extremely capable of fooling facial recognition systems, and they can be
observed in figure 3.23.

Thys et al. [80] explored the possibility of fooling person detection systems, mainly, surveil-
lance cameras by using adversarial attacks. The authors propose an attack based on adver-
sarial patches. The goal was to create a system that was capable of generating adversarial
patches that could be then used to fool the object detector classifier, YOLOv2. The pro-
posed adversarial patch attack was proved to be very effective in fooling the aforementioned
classifier. The attack can be observed in figure 3.24. Once again, this proves that ML sys-
tems are under threat of adversarial examples and that a security system using ML models
might be vulnerable to adversarial patches.

3.2 State-of-the-Art Frameworks

The following section presents the current state-of-the-art libraries for robustness evalua-
tion. They allow users to implement one or various evasion adversarial attacks to evaluate
the robustness of computer vision models. In order to implement an attack, the user needs
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Figure 3.23: Impersonation and dodging attacks. The top row represents the impersonators
using the adversarial glasses and the bottom row represents the attributed classification
by the target classifier. (Image credits: [79])

to provide a classifier and a group of benign samples, in this case, images, to be used as
input to said attacks. The libraries provide the misclassification rate of the classifier on the
adversarial samples generated. In each of the following sections, a more detailed view of
each of the current frameworks is performed. The evasion attacks currently supported in
each framework are presented in table 3.3. It is important to consider that various attacks
implemented by the authors of the frameworks are an adaption of the original attack.

The Adversarial Robustness Toolbox [81] is currently the most used tool for robustness
evaluation. ART was designed to work on any version of Python 3 and, at the time, sup-
ports TensorFlow 1 and 2, PyTorch, Keras, MXNet, Scikit-learn, XGBoost, LightGBM,
CatBoost, and GPy. It is the toolbox with the most diverse number of attacks available
for users to experiment as demonstrated in 3.3. It is currently the only library support-
ing exploratory and poisoning adversarial attacks. This framework also implements 28
state-of-the-art adversarial, resulting in the framework with the most available adversarial
attacks, and defenses. More so, there are available metrics of robustness, other than mis-
classification rate, to evaluate a classifier such as CLEVER and Loss sensitivity of a model.
It is possible to view the original sample, the perturbation generated by the attack, and the
adversarial sample. As support for users, various examples can be used to get familiarized
with the tool and with adversarial attacks in the form of PY files or Jupyter Notebooks.
ART is currently in version 1.9.0, released on 18 of December 2021.

Foolbox [82] requires Python 3.6 or newer and natively supports PyTorch, TensorFlow,
and JAX. Foolbox currently only has one example of how the library works in the form
of a Jupyter Notebook. Evaluating the benign samples’ accuracy and the accuracy of the
adversarial samples obtained by the model is also possible to compute. Furthermore, users
can calculate the plot of robust accuracy over the epsilon (where epsilon is the perturbation
of the images) and can visualize the original image, the generated perturbation, and the
perturbed image. Foolbox is currently in version 3.3.1 having its latest update on 5 of
June 2021.

CleverHans [83] version 4.0.0, currently supports JAX, PyTorch, and TensorFlow 2. The
current iteration of CleverHans only supports a few evasion attacks (as seen in 3.3) and
doesn’t support adversarial defenses. However, in version 3.1.0 more attacks are supported
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Figure 3.24: The left person is detected by the classifier, however, the right person wearing
the patch is ignored. (Image credits: [80])

and examples are available for users. As mentioned before, CleverHans version 4.0.0 is in
development and was last updated on 23 September 2021.

AdverTorch [84] currently supports Python 3.6 and PyTorch 1.0.0 & 0.4.1. Just like in
other toolboxes, there are some available examples for users to better understand the
framework. AdverTorch is currently in version 0.2.4 and was last updated on 30 of July
2021.

AdversarialBox is a Python toolbox that belongs to the AdvBox family developed by
Goodman et al. [85] to generate adversarial attacks in TensorFlow, PyTorch, Caffe2,
PaddlePaddle, MxNet, and Keras. It currently supports various releases of Python 3. This
library supports evasion adversarial attacks and adversarial defenses. It also supports three
life real-world attack scenarios: Face Recognition Attack, Stealth T-shirt, and DeepFake
Face Detect. The AdvBox family also provides a perceptron to evaluate the robustness
of a classifier using other metrics such as the perturbation needed for an image to be
misclassified. Various implementations of attacks are also available in Jupyter Notebooks.
AdversarialBox was last updated on 26 of August 2020.

DeepRobust [86], at this time, works with Python 3.6 or newer and PyTorch 1.2.0 or
newer. This framework supports evasion adversarial attacks and defense methods in the
image domain. For the attacks currently implemented in the library, only the MNIST and
the CIFAR10 datasets and the CNN, ResNet-18/34, DenseNet, VGG-11/13/16/19 neural
networks are supported. This toolbox also supports adversarial attacks and defenses of
Graph networks. At present, only the GCN network and Cora, Cora-ml, Citeseer, Polblogs,
and Pubmed datasets are supported. A few examples of the implementation of the toolbox
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are also available. DeepRobust is on version 0.2.4 and was last updated on 23 of December
2021.

DEEPSEC [87], at this moment, supports PyTorch 0.4. This library employs both adver-
sarial evasion attacks and adversarial defenses. This library also makes available utility
metrics of both attacks and defenses. Similar to other frameworks, there are examples
ready to use for users who may want to delve deeper into adversarial learning. There are
a few metrics to analyze the robustness of a model that is also available.

Carlini [88] critiqued the DEEPSEC library and pointed out several flaws with the imple-
mentation attacks and defenses and the experimentation results shown in [87]. From the
various problems identified, the two most relevant are: The permitted distortion (ϵ) is too
large to be meaningful. and Multiple attacks are implemented incorrectly. This occurrence
results in possible incorrect evaluations of the robustness of a model. DEEPSEC was last
updated on 21 of May 2019.

The main features supported by each framework are exhibited in table 3.2 and the sup-
ported attacks in table 3.3. From the analysis of each framework, it is evident that the most
supported machine learning frameworks are TensorFlow and PyTorch. ART and Foolbox
are the frameworks that contain the most extensive number of adversarial attacks, which
could explain their popularity. DEEPSEC was demonstrated to have incorrectly imple-
mented attacks and hasn’t received support in the latest years. Alongside DEEPSEC,
AdversarialBox, CleverHans, and AdverTorch have received a small scale of updates in the
last months. In addition, many of the presented toolboxes don’t have the most recent and
powerful adversarial attacks that are accessible in the literature. Finally, the information
that researchers can obtain from benchmark tests is insufficient; most of the toolboxes only
present the misclassification rate of the adversarial samples. This is one of the main ob-
jectives with the framework developed in this dissertation, to provide a robustness metric
to allow users to compare their models. A deep dive on the framework developed and its
features is made on Chapter 5.

Table 3.2: Functionalities supported in the current state-of-the-art frameworks

Feature A
R
T

A
dv

er
T
or

ch

Fo
ol

bo
x

C
le

ve
rH

an
s

A
dv

er
sa

ri
al

B
ox

D
ee

pR
ob

us
t

D
E

E
P

SE
C

Evasion Adversarial Attacks � � � � � � �
Poisoning Adversarial Attacks �
Exploratory Adversarial Attacks �
Adversarial Defenses � � � �
TensorFlow � � � �
PyTorch � � � � � � �
Keras �
Scikit-learn �
XGBoost �
MXNet � �
LightGBM �
CatBoost �
GPy �

Continued on next page

46



State-of-the-Art

Table 3.2 – continued from previous page
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JAX � �
Caffe2 �
PaddlePaddle �
Examples Ready-to-Use � � � � �
Graph Adversarial Attacks �
Graph Adversarial Defenses �
Robustness metrics � � � �

End of Table 3.2

Table 3.3: Evasion Adversarial Attacks supported in the current state-of-the-art frame-
works
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Additive Gaussian Noise �
Additive Uniform Noise �
AdversarialPatch [89] �
Auto Attack [90] �
Auto-PGD [90] �
BPDA [39] � �
BIM [29] � � � � � �
Binarization Refinement �
Binary Search Contrast Reduction �
Boundary [38] � �
Brendel & Bethge [59] � �
C&W [31] � � � � � � �
Clipping Aware Additive Gaussian Noise [91] �
Clipping Aware Additive Uniform Noise [91] �
Clipping Aware Repeated Additive Gaussian Noise [91] �
Clipping Aware Repeated Additive Uniform Noise [91] �
Contrast Reduction Attack �
DDN [55] � �
Decision Tree Attack [92] �
DeepFool [28] � � � � � �
Dpatch [93] �
EAD [41] � � � �
Fast Adaptive Boundary [94] �
Fast Gradient Method [6] � � � � � � �
Feature Adversaries [95] � �

Continued on next page
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Table 3.3 – continued from previous page
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Gaussian Blur �
GeoDA [62] �
HCLU [47] �
HopSkipJump [61] � �
Inversion Attack [96] �
ILLCM [29] � �
JSMA [26] � � � �
L-BFGS [5] � � � �
LLCM [29] �
Linear Search Blended Uniform Noise �
Linear Search Contrast Reduction �
Local Search Attack [97] �
MI-FGSM [43] � � �
NATTACK [52] �
NewtonFool [98] � �
One-Pixel/Few-Pixel � � �
Opt-Margin [99] �
PGD [40] � � � � � �
R+FGSM [35] �
R+LLC [35] �
Repeated Additive Gaussian Noise �
Repeated Additive Uniform Noise �
RobustDPatch [100] �
Salt And Pepper Noise �
Shadow [60] �
ShapeShifter [101] �
SimBA [53] �
Single Pixel Attack [97] �
Sparse L1 Descent (SLIDE) [51] � �
Spatial Transformations Attack [102] �
Spatially Transformed Attack [36] �
SPSA [46] � �
Square [64] �
Threshold [54] �
UAP [33] � � �
Virtual Adversarial Method [103] � �
Wasserstein [25] �
YOPO Attack [104] �
ZOO [34] �

End of Table 3.3
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Chapter 4

Development Plan

This chapter presents the planning of the work for the first and the second semester of this
dissertation. The estimated time-interval for every task is represented in a Gantt chart.
The methodology proposed in the first semester that was to guide the development during
the second semester is also presented.

4.1 Work Plan

The work plan followed in the first semester, as well as the plan for the second semester,
are represented in figure 4.1. The proposed time frame for each task is a prevision and
therefore, some small shifts in some of the tasks may occur without risking the final delivery.

Selection of attacks to implement Supported by the work done in the first semester,
complemented with additional research to be performed in the second semester, the most
relevant adversarial attacks will be chosen. The work performed in this step is crucial to
make sure that the framework has a complete and robust set of attacks.

Development of the framework The process concerned with the initial architecture
and implementation of the framework. It encompasses the integration of the attacks attacks
chosen and the functionalities that allow the users to perform a benchmark and obtain
relevant robustness and statistical information about the model and the attacks performed.

Development of a robustness metric This task is concerned with the development
of a metric that allows researchers to better understand the level of robustness of a model.
For instance, given two models that are benchmarked, exclusively comparing the misclas-
sification value of each model isn’t sufficient to understand the robustness of the models.
This task aims to solve that problem.

Testing the framework The process of evaluating the implemented framework. This
step encompasses evaluating the reliability and stability of the functionalities implemented.

Comparison analysis with current state-of-the-art frameworks Comparing the
developed framework with current frameworks and evaluating the differences and the bene-
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fits that the developed framework in addition to the support that it may give to researchers.

Scientific dissemination In order to present the framework to the researchers working
in the adversarial attacks panorama, it is expected to write a scientific paper with the
findings and the advances made.

Write the dissertation This process is performed over the second semester and reports
the discoveries and the evolving process of the dissertation.

Figure 4.1: Gantt chart of the development plan

4.2 Methodology

In the first semester, the proposed method of developing the framework was the Water-
fall model. This model assumes that the requirements were well defined which was the
case, observable in the next section, As mentioned in section 5.1, small changes to the
requirements may need to be made over the next semester. However, these changes will
be appropriately considered and evaluated to make sure that they don’t put at risk the
success of the final product.

Since the requirements of the framework were well defined in the first semester, the Water-
fall model was the chosen to represent the development phase during the second semester.
The Waterfall model represents the development as a group of separate phase in which a
new phase can begin once the previous one has been completed. Following the require-
ments specification, the next phase is the design of the tool, which is followed by the
implementation, then verification and finally the deployment of the developed tool.

51



This page is intentionally left blank.



Chapter 5

The Framework

This chapter presents the proposed and developed framework. Firstly, it puts forward the
software requirements specification that was made as well as the risks associated with the
framework development. Next, it presents the executed work plan of the second semester
and the architecture and implementation of the proposed framework and its main features,
the pipeline mechanism and the model robustness metric.

5.1 Software Requirements Specification

As mentioned in previous chapters, there is a need to develop better adversarial attacks
and defenses that push forward the security of Machine Learning (ML) models. In order
to help developers test their defenses and attacks, the current state-of-the-art frameworks,
mentioned in the previous chapter were developed. However, some of those frameworks
suffer from a lack of adversarial attacks, metrics to evaluate the models’ robustness, and
metrics to evaluate the attack benchmark.

This dissertation aimed to develop a framework that provides the most relevant attacks for
researchers to test their models. In the first phase of this dissertation, a preemptive analysis
of the software requirements was performed which can be seen in a MoSCoW diagram,
observable in figure 5.1. It is important to refer that some changes in the requirements
were expected to change throughout the framework development.

The software requirements projected in the first semester were the main guide for the devel-
opment that was performed in the second semester. In order to claim that the final project
was a success, the Must Have requirements of the MoSCoW diagram, shown in section 5.1,
need to be satisfied in the current iteration of the framework. Every Must Have require-
ment was achieved; the current framework supports, however, only one machine learning
framework for Python 3, PyTorch. The first initial weeks of the semester were used to
evaluate current adversarial attacks in the literature as well as their availability and imple-
mentation. From the research that was performed, most of the attacks were implemented
in either TensorFlow 1, TensorFlow 2, or PyTorch. Since the implementation of adver-
sarial attacks isn’t the main objective of this dissertation, and it is of most importance
to guarantee that the attacks are correctly implemented, the only attacks that were going
to be taken into consideration were the ones with code provided by the original authors.
Incorporating and working with attacks from two very different frameworks would increase
exponentially the scope of this dissertation therefore, after analyzing the attacks imple-
mented in TensorFlow, it was decided to focus on attacks implemented in PyTorch. Despite
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Figure 5.1: MoSCoW diagram representing the software requirements of the framework
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various recognized attacks being implemented in TensorFlow, various changes would need
to be made to each implementation which is out of scope for this dissertation. With this
in consideration, the current framework supports a single machine learning framework for
Python 3, and PyTorch and supports 8 different adversarial attacks implemented in the
same language. All of the other software requirements were also achieved, however, the
implementation specifications will be addressed in further sections which will detail the
implementation of main feature of the framework - the pipeline mechanism as well as the
newly proposed metric to evaluate the robustness of a model.

5.2 Risk Analysis

Since the implementation of the adversarial attacks wasn’t the main focus of this disserta-
tion, the main code needed to be sourced the authors of those same attacks which needed
to be peer-reviewed and accepted. There are multiple risks associated with this course of
action. Motivated by this, a careful risk assessment was performed in order to identify and
establish the actions of all the possible risks that could happen during the development.
The figure 5.2 represents the main risks identified as well as the corresponding likelihood,
impact and appropriate course of action to deal with them.
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The risk assessment table developed in the first semester, seen in 5.2, proved to be a
valuable tool since many of the risks were encountered during the development phase of
the framework. As mentioned before, the current framework supports only PyTorch which
conveys that only attacks developed using this framework are supported. This indicates
that strong and reliable attacks in the literature that are implemented in other machine
learning languages are not currently implemented in the current state of the framework.
The risks associated with unavailable code or code in different machine learning languages
had an extreme impact and in both cases, these were avoided. The risk associated with
the execution time of the framework being higher than other frameworks was also avoided.
The current iteration of the framework offers a pipeline mechanism that is unique in the
current literature as well as a model robustness metric that is also unique which allows for
discarding this risk. The pipeline mechanism allows users to choose the models and the
adversarial attacks at their leisure which could result in a failed benchmark if the users’
computational resources are insufficient. The associated risks are accepted since each user
needs to execute a benchmark that considers the available computational resources.

5.3 Executed Work Plan

The development work plan deviated from the original work plan. The initial selection of
attacks to implement took more time than expected for the reason that the attacks were
implemented in different machine learning frameworks and many authors don’t provide the
original code for their attacks which lead to a deeper analysis of which attacks were possible
to implement. Contrary to the original plan made in the first semester, the development
of the framework didn’t follow a strict Waterfall methodology since it was necessary to
test the features along the implementation leading to a more ad-hoc methodology. This
was due to the various changes that each adversarial attack needed to have since the
implementation of each attack was very different from the other. The development of the
robustness metric also took more time than expected since the metric formula changed
multiple times until reaching its current state. The various changes during the framework
development as well as the various changes to the robustness metric delayed the scientific
paper writing and the writing of this dissertation. The Gantt chart of the executed work
plan can be seen in figure 5.3.

Figure 5.3: 2nd Semester Work Plan
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5.4 Architecture and Implementation

The first step in the development phase was planning the architecture of the framework.
The file structure of the framework must be set up in such a way that allows users to easily
understand and access the necessary files for their needs. The framework file structure is
divided into two main folders, the engine folder, and the examples folder. The latter in-
cludes various examples so that users can get familiar with the workings of the framework.
This includes examples for each of the attacks currently implemented, as well as examples
using the pipeline mechanism. The engine folder contains the crucial files of the frame-
work. This folder contains two main folders, the attacks folder, and the core folder. The
attacks directory has additional folders that correspond to attacks that are fully supported
or that are still in development. As mentioned previously, the adversarial attacks’ original
code was obtained from repositories that were made available by its’ authors. However,
the original implementation of several attacks was incorporated in a very specific example,
using a specific model and a specific dataset or images that were used by the authors. It
is imperative that users of this framework can use various models trained using different
datasets and images, which resulted in the need to change the attack’s original implemen-
tation to generalize its possible use cases. The first step was to create an abstract attack
class that serves as the blueprint for all the other attacks. With this class created, various
changes were made to various attacks currently in the framework. This resulted in each
attack folder having a folder lib and various additional files, the primary one being the file
with the proxy prefix followed by the name of the attack. The core folder contains various
files that are needed to execute functions of the framework or complementary functions.
This is where the pipeline mechanism function is also located. The figure 5.4 represents
the folder structure of the current iteration of the framework.

Figure 5.4: Framework file structure
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As mentioned previously, the main focus of this dissertation is on the pipeline mechanism
and the robustness metric, however, for the framework to work it needs to contain various
adversarial attacks as these are a required factor in evaluating the robustness of a model.
During the phase of selection of attacks to implement, the papers previously mentioned
in the section 3.1.3 were reviewed in order to gather information about the original code
implementation of the authors. A table with the collected information can be seen in
table 5.1. It is important to reiterate that attacks implemented by the original author
were put front to implement in the framework, this occurs because it is extremely impor-
tant to guarantee that the framework only supports attacks that are not peer-reviewed
because otherwise, incorrect attacks could lead to erroneous or incomplete evaluations of
the robustness of evaluated models. From the table 5.1, it is clear that there are a very
large number of attacks in the literature that don’t have their original implementation
currently available, and those that do, have it under old versions of TensorFlow 1, Py-
Torch, or NumPy. There are 17 attacks implemented in TensorFlow 1 with only 12 being
implemented by the original author, 0 implemented in TensorFlow 2, 23 implemented in
PyTorch with only 12 made available by the original author, and 6 in NumPy with 3 im-
plemented by the original author. Choosing PyTorch as the machine learning tool to use
was also supported by these numbers; having the same number of original implementa-
tions of both TensorFlow 1 and PyTorch pushes the latter tool as the preferred option for
various reasons. Mainly, implementations in older versions, which is the case for most of
the attacks, are easily updated due to a lower complexity when compared to TensorFlow.
PyTorch is also gaining a lot of popularity which pushes forward the number of possible
attacks to be implemented in the future under the same language which is the opposite of
TensorFlow 1. Since TensorFlow has updated into TensorFlow 2, TensorFlow 1 has lost
popularity and since there are no original implementations in TF2, supporting this tool
would not be feasible. From the table, the attacks supported in PyTorch made available by
the original authors are AdvFlow, Bandits & Prior, DDN, DeepFool, GeoDA, GreedyFool,
LogBarrier, Opt-Attack, Shadow, SimBA, Square, and Wasserstein. The attacks imple-
mented using NumPy are also possible to adapt to PyTorch which results in three possible
attacks to support, CornerSearch, Threshold & Few-pixel, and UAP. From these attacks,
the framework currently supports Bandits & Prior, DDN, DeepFool, GeoDA, LogBarrier,
SimBA, Square, and UAP.

Table 5.1: List of attacks analyzed during the selection phase of the framework development

Attack Original author? TF1 TF2 PyTorch NumPy
AdvFlow Yes X
AdvGAN No X X
ATNs No X X
AutoZOOM Yes X
Bandits & Prior Yes X
BIM (I-FGSM) No X
Boundary Attack No X
BPDA Yes X
Brendel & Bethge Yes
C&W Yes X
CornerSearch Yes X
DDN Yes X
DeepFool Yes X
EAD Yes X
FGSM No X

Continued on next page
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Table 5.1 – continued from previous page
Attack Original author? TF1 TF2 PyTorch NumPy
GeoDA Yes X
GreedyFool Yes X
HCLU No
HopSkipJump Yes
Hot/Cold No
ILLCM No X
JSMA No X
L-BFGS No X X
Limited Queries and Info Yes X
LogBarrier Yes X
MI-FGSM Yes X
NATTACK Yes X
One-Pixel No X X
Opt-Attack Yes X
PGD Yes X
POBA-GA No X
R+FGSM No X
Shadow Yes X
SimBA Yes X
Sparse L1 Descent (SLIDE) Yes X
SPSA Yes X
Square Yes X X
stAdv No X
Substitute Model No X
Threshold & Few-pixel Yes X
UAP Yes X
UPSET & ANGRI No
Wasserstein Yes X
ZOO Yes X

End of Table 5.1

Subsequent to implementing the adversarial attacks, the next phase was the development
of the pipeline mechanism, the main feature of the toolbox. It was important to develop
a pipeline that could receive various models, images, and attacks and could output rel-
evant statistical information about the procedure. The pipeline needs to receive several
arguments that are crucial to its operation, as seen in figure ??. The selection of attacks
to execute is performed using a JSON config file that users can customize by selecting
the preferred attacks as well as the additional hyperparameters that an attacker needs to
receive to work, such as the one represented in figure 5.6. This allows users to test in the
same execution various attacks with different parameters which can then be shared with
other users resulting in much-improved portability. An example of the formatting of this
file is given under the examples folder of the framework. The pipeline needs other input
arguments such as a Python dictionary with the PyTorch models to test, a list with the
images to use and their corresponding ground truth labels, the batch size to use, the pixel
size of each image, the mean value, and the standard deviation of the images or the dataset,
the number of classes that an image can belong to, the number of channels of the images
(for example, RGB would be 3 channels) and a PyTorch dataset loader with the training
images of the models (this is necessary because various white-box attacks may need this
information to generate adversarial images).
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Figure 5.5: A call to the pipeline class. The execute function has several inputs that are
needed for the execution to start.

After receiving the inputs, the pipeline is now ready to be executed. The execution iterates
throughout all the attacks by each model; at the beginning of the iteration, each model
evaluates all of the input images without any perturbations to obtain a list of the classified
labels by the model. This is an important step to evaluate the initial accuracy of the model
without any perturbation being added to the images. After that, each attack chosen in the
config file will be executed and the output information is stored in a Python dictionary, this
includes the generated images by the attack and its corresponding labels obtained by the
model, the number of total queries that the attack used, the L2 norms of each image, and
the success of the attack (this corresponds to the percentage of generated images that were
misclassified by the model which is essentially the number of adversarial images created).
All of the information associated with every attack executed and every model is saved in
another Python dictionary which is then saved as a PyTorch file (with .pt extension) so
that users can access all of the information relative to the execution. This file is saved
under a folder outputs with the name of the folder referring to the date of the execution
and the dataset that was used. Under this folder, all of the original images used are also
stored. Every model input to the pipeline also has a folder with the images generated
from every attack that was also chosen by the user. A CSV file with information relative
to each image is also generated which includes the ground truth label of the image, the
label attributed by the classifier of the original image, the label of the adversarial image
attributed by the classifier, the L2 value of the image and the number of queries that took
to generate that image. The number of adversarial images correctly classified by the model
and the number of original images without perturbation correctly classified by the model
are also stored under the same data.csv file. If the user chooses the option to generate
plots, at the end of the execution, plots with the images generated by each attack will also
be available to further analyze the experimentation performed, observable in figure 5.7. At
the final step, the pipeline calculates the Model Robustness Score of each model and the
maximum possible score achievable. This is the model robustness metric that was one of
the focal points of this dissertation and will be explained in the next section.

In addition to the developed functions of the framework such as the adversarial attacks
and the pipeline mechanism, the architecture of the current iteration can be represented
by the figure 5.8. The Attack class is the abstract class that all other attacks implemented
use as a blueprint, such as the Bandits & Prior attack that is represented as the class
BanditsPrior. The Pipeline class is also represented and incorporates all the adversarial
attacks currently supported, however, in order to abbreviate the UML diagram, only the
Bandits & Prior attack class is shown. In addition to this, the framework depends, not
only, on the implementation of the original attacks but also on external libraries such as

61



Chapter 5

Figure 5.6: An example of a config file. In this example, the Bandits & Prior and the DDN
attacks are going to be executed in the pipeline.

PyTorch, Torchvision, NumPy, and Pillow.

5.5 Model Robustness Score

Developing a metric to evaluate classifiers was one of the main objectives of this disser-
tation, which meant that the final formula needed to be thought out with extreme care
to be able to give relevant information about the robustness of classifiers. This phase of
the development took longer than expected due to changes that were made to the model
robustness score formula. Before developing the formula, the factors related to the ad-
versarial robustness were evaluated such as the number of correctly classified adversarial
images by a model, the perturbation in each adversarial image, that corresponds to the
L2 of the adversarial image, and the number of non-perturbed images that were correctly
classified by the model, essentially this corresponds to the accuracy of the model on the
original images. To evaluate the robustness of a model, all of the previous factors have
an important role. First of all, if a model, trained under an image classification dataset,
such as the CIFAR-10, incorrectly classifies non-perturbed images that belong to that
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Figure 5.7: The outputs folder with examples of executions using the pipeline mechanism
of the framework

dataset, the robustness score of that model needs to be lower than a model that classi-
fies the same images correctly. Secondarily, each attack generates adversarial images with
different amounts of perturbation depending on the model. This symbolizes that between
adversarial images generated for two models, the more robust model is the one that its
adversarial images generated with the most amount of perturbation, resulting in higher
L2 scores. On the other hand, if the adversarial images generated for a model have lower
L2 scores, with almost non-visible perturbations, the model is less robust because images
with small amounts of perturbation easily change their accuracy. Finally, if even a high
amount of perturbation in an image isn’t sufficient to change the classification attributed
by the model to that image, that implies that the model is unaffected by the perturbation
which needs to be represented in the model robustness score.

With the previous factors in mind, the robustness score of a model is given by the following
formula which is a maximization formula, meaning that the objective of a model is to obtain
the maximum value possible:
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Figure 5.8: UML diagram representing the main classes of the framework and the external
libraries

MRS =
N∑
i=1

M∑
j=1

label ∗ (1− (
1

1 + L2
∗ 0.5 + 0.5 ∗misclassified)) (5.1)

The calculation of the robustness of a model takes into consideration all the attacks (rep-
resented by the first sum) that were used and the adversarial images that were generated
by them (represented by the second sum of the formula). The factor 1

1+L2 represents the
strength of the perturbed image, since the L2 value represents the amount of perturbation
added, a robust adversarial image has a very low L2 value (close to 0) and is misclas-
sified by the model, which is represented by the factor misclassified. If the L2 value is,
hypothetically, 0 and the perturbed image is misclassified by the model then the sum of
these two factors is 1, which is then subtracted to the constant 1 that is represented in the
formula. This would mean that for this sample of a specific attack the model behaved very
poorly. However, if the L2 was large and still the model classified the sample correctly,
that would mean that the value would be very close to 0 which after the subtraction factor
would result in a value very close to 1 which leads to the belief the model was capable of
correctly classifying the perturbed image. The initial label factor is assigned to 1 if the
classified label of the original image by the model is the same as the ground truth label of
the original image, otherwise, the value is assigned to 0.

The developed formula evaluates the robustness of a model based on its performance
against several adversarial images generated by a set of selected adversarial attacks. This
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score allows users to understand more clearly the robustness of their models based on the
number of correctly classified adversarial images, the perturbation that each image needed
to fool the model, and the number of correctly classified non-perturbed images. The aim
is that users, not only use the accuracy of the model on non-perturbed samples but also
use this score to evaluate its capabilities and to push forward the development of models
more robust to adversarial attacks.
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Chapter 6

Experimentation

Over the development of the framework, various tests were conducted to assess its capa-
bilities. To evaluate its final state and in order to get relevant and meaningful conclusions
that can be taken from robustness evaluations, a final test was conducted with all the
supported adversarial attacks and various machine learning models trained with an image
classification dataset. The following sections will present the complete settings that were
used and the results and conclusions of the same experiment.

6.1 Settings

As mentioned before, in this experiment all of the supported attacks by the framework were
used in the test which includes the following attacks: Bandits & Prior, DDN, Deepfool,
GeoDA, Logbarrier, SimBA, Square Attack, and UAP. The models used, DenseNet121,
GoogLeNet, MobileNet, ResNet18, SENet18, and VGG19, belong to a GitHub repository
by kuangliu1. The original accuracy of the models can be seen in the table 6.1. The
settings used for each attack can be viewed in table 6.2. The first 20 images of the
image classification dataset CIFAR-102, seen in figure 6.1, were used in the experiment
as the input images to generate adversarial images using the aforementioned models and
adversarial attacks.

Table 6.1: Test accuracy of models used in the experimentation

Model Accuracy
DenseNet121 95.04%
GoogLeNet 95.65%
MobileNet 91.20%
ResNet18 93.02%
SENet18 95.06%
VGG19 93.83%

End of Table 6.1

1https://github.com/kuangliu/pytorch-cifar
2https://www.cs.toronto.edu/~kriz/cifar.html
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Figure 6.1: CIFAR-10 samples used in the experimentation

(a) Sample 1 (b) Sample 2 (c) Sample 3 (d) Sample 4 (e) Sample 5

(f) Sample 6 (g) Sample 7 (h) Sample 8 (i) Sample 9 (j) Sample 10

(k) Sample 11 (l) Sample 12 (m) Sample 13 (n) Sample 14 (o) Sample 15

(p) Sample 16 (q) Sample 17 (r) Sample 18 (s) Sample 19 (t) Sample 20
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Table 6.2: Settings of the attacks used in the experimentation

Attack Hyperparameters
Bandits & Prior max_queries: 1000

fd_eta: 0.01
image_lr: 0.5
online_lr: 0.1
mode: "l2"
exploration: 0.01
tile_size: 50
epsilon: 5.0
log_progress: "False"
nes: "False"
tiling: "False"
gradient_iters: 1

DDN steps: 1000
targeted: "False"
gamma": 0.05
init_norm: 1.0
quantize: "True"
levels: 256

DeepFool overshoot: 0.02
max_iter: 50

GeoDA dist: "linf"
tol: 0.0001
sigma: 0.0002
mu: 0.6
delta: 255
search_space: "sub"
sub_dim: 75
Q_max: 5000

LogBarrier norm: 2
lower_bound: 0
upper_bound: 1
dt: 0.01
alpha: 0.1
beta: 0.75
gamma: 0.5
max_outer: 15
tol: 1e-6
max_inner: 100
T: 500

SimBA freq_dims: 14
stride: 7
epsilon: 0.2
linf_bound: 0.0
order: "rand"
targeted: "False"
log_every: 10
num_iters: 0

Continued on next page
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Table 6.2 – continued from previous page
Attack Hyperparameters

pixel_attack: "True"
UAP overshoot: 0.02

num_classes: 10
xi: 10
delta: 0.2
max_iter_df: 10
max_iter_uni: -1
norm: "inf"

SquareAttack eps: 5
n_iters: 1000
p_init: 0.05
targeted: "False"
constraint: "linf"

End of Table 6.2

6.2 Results and Discussion

From the experimentation that was performed, it is important to observe the images that
were generated, which of them were capable of fooling the models, and the model robustness
score attributed to each model. As mentioned previously, all of the attacks currently
available in the framework were used during the test and 20 images from the CIFAR-10
dataset were used as the test images. This results in a maximum possible score of 160 for
each model which would stipulate that no attack was capable of generating an image that
fooled the model. From the scores obtained, visible in table 6.3, the most robust model was
the ResNet18, which obtained a score of 46.91, and was capable of correctly classifying 24
adversarial images generated. The least robust classifier was the MobileNet with a score of
42.40 with 27 adversarial images correctly classified. In order to understand why a model
that was capable of classifying correctly more adversarial images had an inferior robustness
score than a model that classified correctly less adversarial images, in this case, 3 images,
it is important to analyze the L2 scores of the adversarial images generated as well as the
images themselves.

It is important to allude, however, that a classifier with higher robustness score classified
correctly a less number of adversarial images than a classifier with lower robustness score
since, the L2 value of each adversarial image is a crucial factor in the calculation of the
robustness score of a model. Since the L2 value of each adversarial image has a very
big weight on the score of the model, there are two possible scenarios that could explain
this event. On one hand, there were images with small L2 values, which are images with
very small perturbations, capable of fooling the MobileNet classifier. On another hand,
the adversarial images generated for the ResNet18, despite having higher values of L2
which would indicate larger and more visible perturbations, were not capable of fooling
the classifier or the adversarial images that fooled the classifier had very high L2 values.
The combination of these two factors is a possible explanation for why a model with a
higher Model Robustness Score classified correctly a lesser number of adversarial images
than a model with a lower Model Robustness Score. In order to understand if this is the
case and what is the cause of this result, it is important to understand the images that
were generated.
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Model Model Robustness Score Number of adversarial images correctly classified
ResNet18 46.91 24

GoogLeNet 44.50 24
DenseNet121 46.22 24
MobileNet 42.40 27
SENet18 44.80 18
VGG19 45.06 21

Table 6.3: Model Robustness Values

Initially, it is important to look at the generated images from each attack for both mod-
els. The starting point will be the adversarial images generated using samples 1 to 5
represented in the figures 6.3 and 6.4 for the ResNet18 and MobileNet respectively, and
the corresponding L2 values. The first image (top row) generated from each attack has
always a higher value of L2, for the ResNet18 model than the images generated for the
MobileNet. This indicates that the perturbation needed to fool the ResNet18 was higher
than the perturbation needed to fool the MobileNet. Even though the number of queries
used for each attack isn’t utilized in the formula to calculate the robustness of a model,
the results also indicate that for this image, the attacks Bandits & Prior, GeoDA, SimBA,
and Square needed more queries in order to generate an adversarial image. Similar to both
models, the attacks DDN and UAP were incapable of generating an adversarial sample.
The second image demonstrates interesting results since the DDN attack wasn’t capable
of generating an adversarial sample capable of fooling the ResNet18 but every attack gen-
erated an adversarial image capable of generating a sample for the MobileNet. However,
the generated images, for the MobileNet, from the Bandits Prior, DeepFool, GeoDA, and
LogBarrier have higher values than the ones generated for the ResNet18. The Bandits
Prior attack was also incapable of generating an adversarial image capable of fooling both
of the networks. Similar to what happened for the first image, the L2 values for all of the
images, generated from the attacks were higher for the ResNet18 than for the MobileNet
except for the Square attack that generated images with equal L2 values for both networks.
For the fourth image, the DDN attack didn’t generate an image that was capable of fooling
the ResNet18; the same happened for the Bandits Prior and the MobileNet. The other
attacks generated once again higher L2 adversarial images for the ResNet18 with the ex-
ception being the Square Attack that similar to what had happened previously generated
images with equal perturbations for both networks. The Bandits Prior didn’t generate
adversarial images from the fifth image for both of the networks, however, the UAP attack
also wasn’t capable of generating for the MobileNet. Once again, the rest of the attacks
generated higher perturbation images for the ResNet18. From these images, it is clear that
the images generated from the attacks for the ResNet18 have higher levels of perturbation
(L2 is higher) than the ones generated for the MobileNet. This is clear when comparing
the generated adversarial images for both models, observable in figure 6.2. In the figure,
the original sample and the generated samples by the attack UAP for the ResNet18 and
MobileNet can be seen, and it is clear that there is a more significant perturbation in the
image generated for the ResNet18, with an L2 value of 4.34, than for the MobileNet, with
an L2 value of 2.60. The remaining generated images need to follow this pattern, in other
words, many of the generated adversarial images for the ResNet18 have higher amounts of
perturbation when compared to the adversarial images generated for the MobileNet. The
L2 values of all the images can be seen in the table 6.4 and the generated images from
each attack for those two models can be seen in the appendix . The results indicate that,
as expected, the L2 values of the adversarial images have an extremely important weight
in evaluating the robustness of the models using the developed metric.
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Figure 6.2: Comparison between the original sample 4 (a), the adversarial image generated
by the UAP attack for the ResNet18 (b), and the adversarial image generated by UAP for
the MobileNet (c)

(a) Original (b) ResNet18 (c) MobileNet

This is extremely relevant because it shifts the focus from only considering the accuracy of
models on adversarial samples and focusing on the quantity of perturbation that is needed
to fool a model. This work pushes forward the need to evaluate models using various
factors such as the L2 value of the samples allowing for a more multifaceted evaluation of
those same models.
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Figure 6.3: ResNet18 generated images (1-5)

73



C
hapter

6

Figure 6.4: MobileNet generated images (1-5)
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Table 6.4: L2 scores of the adversarial images generated for the ResNet18 and the MobileNet

Sample BP DDN DF GeoDA LB SimBA UAP Square
R M R M R M R M R M R M R M R M

1 2.06 1.69 x x 0.75 0.12 0.73 0.39 0.16 0.11 2.01 1.33 x x 2.77 2.77
2 2.21 2.33 x 0.17 0.19 0.30 0.67 1.02 0.12 0.28 2.83 2.17 4.34 2.59 2.73 2.73
3 x x 0.06 0.05 0.05 0.04 0.56 0.12 0.17 0.05 1.41 0.80 4.34 2.59 2.76 2.76
4 1.01 x x 0.04 0.12 0.03 0.22 0.08 0.08 0.05 1.32 0.53 4.34 2.59 2.77 2.77
5 x x 0.21 0.14 0.63 0.22 1.55 1.41 0.21 0.14 2.06 1.44 4.34 x 2.77 2.77
6 x x 0.15 0.06 0.46 0.06 1.41 1.07 0.18 0.07 2.62 1.10 4.34 2.59 2.77 2.77
7 2.14 x x 0.09 0.31 0.08 0.65 0.26 0.16 0.09 1.96 x 4.34 x 2.73 2.72
8 x x 0.05 0.08 0.05 0.09 0.35 0.48 0.08 0.07 0.72 1.00 4.34 2.59 2.76 2.76
9 x 1.23 0.08 x 0.39 0.11 0.52 0.36 0.15 0.11 1.97 1.07 x x 2.77 2.77
10 x x 0.08 0.09 0.12 0.10 0.21 0.55 0.11 0.10 1.21 1.05 4.34 2.59 2.76 2.76
11 x x 0.12 0.08 0.38 0.07 0.47 0.20 0.12 0.08 2.40 1.73 4.34 2.59 2.77 2.77
12 3.77 x x 0.15 1.44 0.37 1.91 1.00 0.39 0.27 x 2.53 4.34 x 2.72 2.73
13 1.01 1.66 x x 0.09 0.09 0.19 0.34 0.07 0.12 0.10 1.25 4.34 2.59 2.76 2.76
14 3.39 1.98 x 0.19 0.96 0.32 1.23 0.75 0.33 0.19 x 2.19 4.34 2.59 2.68 2.69
15 x x 0.28 0.13 0.80 0.16 1.19 0.51 0.33 0.26 3.61 1.56 4.34 x 2.75 2.75
16 x x 0.04 0.07 0.03 0.06 0.08 0.19 0.05 0.10 0.80 1.20 4.34 x 2.77 2.77
17 2.51 1.47 x x 0.47 0.13 0.73 0.33 0.23 0.01 1.59 0.94 4.34 2.59 2.70 2.71
18 x x 0.13 0.01 0.38 0.12 0.79 0.35 0.18 0.10 2.02 1.40 4.34 2.59 2.77 2.77
19 2.38 x x 0.16 0.72 0.23 1.09 0.63 0.26 0.17 1.76 2.81 4.34 2.59 2.66 2.67
20 5.00 x x 0.19 1.25 0.37 2.27 2.65 0.27 0.24 2.53 2.30 4.34 x 2.77 2.77

End of Table 6.4
BP: Bandits & Prior
DF: DeepFool
LB: Logbarrier
R: ResNet18
M: MobileNet
x: Attack was incapable of generating an adversarial image capable of fooling the model
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Conclusion and Future Work

Current machine learning models are not secure; adversaries have a wide range of tools that
can use to put at risk classifiers that are being used in everyday lives. Adversarial samples
are small perturbations added to inputs that are capable of fooling even state-of-the-art
deep learning models.

The first stage of this dissertation focused on researching adversarial attacks, which are
methods for generating adversarial samples, specifically, in the image classification land-
scape. In recent years, the adversarial attacks panorama has expanded which resulted
in authors developing various types of adversarial attacks such as poisoning attacks, ex-
ploratory attacks, and evasion attacks. Since many adversarial attacks have surged and the
importance of developing safe and robust models has been growing, various authors have
developed frameworks to group various attacks to help researchers make advancements in
the adversarial learning panorama. Despite some frameworks being equipped with many
adversarial attacks, some of them have also been abandoned but most important, none of
them offer a way of comparing the robustness levels of different machine learning models.

Motivated by this, a new framework was developed in the second iteration of this disser-
tation. In the first semester, a work plan was put forward in addition to the software
requirements in a form of a MoSCoW diagram. Despite the original work plan not being
followed due to various drawbacks, the Must Have software requirements were fulfilled
resulting in a successful final product. Currently supporting eight different adversarial
attacks, the framework, developed in Python and PyTorch, presents a pipeline mecha-
nism that allows users to easily test their models against the supported attacks. From the
execution of the pipeline, the users have access to statistical information relative to the
models and to the adversarial images generated from each attack. In order to evaluate the
robustness level of the models, a new metric was proposed, that takes into consideration
all of the images generated from each attack and attributes a model robustness score based
on the capabilities of the model to correctly classify the perturbed images.

With the intent of testing the developed framework and its capabilities, experimentation
was performed. By utilizing the new pipeline mechanism, various PyTorch models were
trained using an image classification dataset, the CIFAR-10 dataset, and the eight sup-
ported attacks the experimentation was executed. From the results, the most robust model
was the ResNet18, achieving a Model Robustness Score of 46.91, with the least being the
MobileNet only achieving a score of 42.40. Further analysis of the results, the ResNet18
only correctly classified 24 adversarial images while the lesser robust MobileNet classified
correctly 27 adversarial images. This leads to an interesting conclusion, that evaluating
the robustness of a model shouldn’t be based only on the accuracy of the model but should
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also take into consideration the perturbation of each adversarial sample generated. The
work performed allowed us to understand more clearly the impact that adversarial images
have on the models and allows users to easily perform robustness benchmarks on their
models.

The next steps would focus on incorporating more attacks and supporting more machine
learning frameworks such as TensorFlow 1 and TensorFlow 2 and developing the pipeline
mechanism to support those same machine learning tools. The intent is also to grow
a community around this framework which would allow for authors with peer-reviewed
adversarial attacks to incorporate them into the framework. Relative to the robustness
metric developed, there are other factors that should be looked into in the future such
as the number of queries that an attack took in order to generate an adversarial sample.
Giving weight to the number of queries that an attack took, in the model robustness score
formula, is something that should be considered in the future.
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Appendix A
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Figure 1: ResNet18 generated images (6-10)
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Figure 2: ResNet18 generated images (11-15)
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Figure 3: ResNet18 generated images (16-20)
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Figure 4: MobileNet generated images (6-10)
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Figure 5: MobileNet generated images (11-15)
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Figure 6: MobileNet generated images (16-20)
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