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Abstract

Sentiment Analysis (SA) in dialogue aims at detecting the sentiment expressed in utter-
ances, which, as applied in this work, may improve human-computer interaction in natural
language. In this dissertation, we explore different approaches for SA in written Portuguese
dialogues, mainly in the domain of Telecommunications. If integrated into a conversational
agent, this will enable the automatic identification and a quick reaction upon customers
manifesting negative sentiments, possibly with human intervention, hopefully minimising
the damage. We created two datasets of real data, with manually annotated sentiment: one
with dialogues from a call center, provided by Altice Labs (AL); another of Twitter conver-
sations primarily involving the accounts of Telecommunications companies. We compare
the performance of different approaches with varying complexities, from lexicon-based mod-
els, to shallow learning classifiers (e.g., Random Forest, Logistic Regression) as well as more
recent deep learning approaches (e.g., Fine-tuned Bidirectional Encoder Representations
from Transformers (BERT), Few-Shot Learning). Since a dialogue is a sequence of utter-
ances, the previous sentences may impact the sentiment of the current sentence. Hence, we
also developed models that consider the context (e.g., BERT-Conditional Random Field
(BERT-CRF)). Every Machine-Learning model, except the latter group, is analyzed with
and without considering the previous utterances. When classifying the utterances, the
best model (Fine-tuned BERT) achieved F1-Scores of 0.87 and 0.93 in the AL and Twitter
datasets, respectively. The performance of the former was achieved without considering
context, and the latter was achieved while considering it (by concatenating the current
and previous utterances). However, in most scenarios, the context seems to decrease the
performance of the classifiers, meaning that, in this application, the current utterance can
be enough. These are interesting results and suggest that automated customer support
may benefit from a sentiment detection feature. The developed approach will be made
available for the consideration of AL, for integration into their customer assistance system.

Keywords

Natural Language Processing; Dialogue Analysis; Sentiment Analysis; Text classification;
Data mining.
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Resumo

A Análise de Sentimento em diálogo visa detectar o sentimento expresso em frases e, da
forma em que foi aplicada neste trabalho, tem o potencial de melhorar a interação humano-
computador em linguagem natural. Nesta dissertação, exploramos diferentes abordagens
para Análise de Sentimento em diálogos escritos em Português, principalmente no domínio
das Telecomunicações. Se integrado num agente conversacional, isto permitirá a identi-
ficação automática e uma reação rápida a clientes que manifestam sentimento negativo,
possivelmente com intervenção humana, podendo assim minimizar os danos. Foram criados
dois datasets de dados reais, com sentimento manualmente anotado: um com diálogos de
call center, cedido pela Altice Labs (AL); outro a partir de conversas extraídas do Twitter,
envolvendo principalmente contas de empresas de Telecomunicações. Comparamos o de-
sempenho de diferentes abordagens com complexidades variáveis, desde modelos baseados
em léxico, passando por classificadores mais tradicionais (e.g., Random Forest, Regressão
Logística), até modelos mais recentes (e.g., Fine-tuned Bidirectional Encoder Representa-
tions from Transformers (BERT), Few-Shot Learning). Como um diálogo é uma sequência
de falas, as frases anteriores podem ter impacto no sentimento da frase atual. Assim sendo,
também desenvolvemos modelos que consideram contexto (e.g., BERT-Confitional Random
Field (BERT-CRF)). Cada modelo de aprendizagem computacional, com a excepção do úl-
timo grupo, é analisado com e sem a inclusão de falas anteriores. Ao classificar os datasets,
o melhor modelo (Fine-tuned BERT) atingiu F1-Scores de 0,87 e 0,93 nos datasets da
Altice Labs e do Twitter, respetivamente. O desempenho do primeiro foi alcançado sem
considerar contexto, enquanto o do segundo foi alcançado considerando contexto (inclusão
das falas anteriores). No entanto, na maioria dos cenários, a utilização de contexto parece
diminuir o desempenho dos classificadores, significando que, para esta aplicação, a utiliza-
ção da fala atual pode ser suficiente. Estes são resultados interessantes que sugerem que
um apoio ao cliente automático pode beneficiar de um componente de análise de senti-
mento. A abordagem desenvolvida será disponibilizada à AL, que poderá considerar a sua
integração no seu sistema de assistência ao cliente.

Palavras-Chave

Processamento de Linguagem Natural; Análise de Diálogo; Análise de Sentimentos; Clas-
sificação de Texto; Mineração de dados.
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Chapter 1

Introduction

Conversational systems, or chatbots, are becoming increasingly present in our daily lives
(Dale, 2016), from guiding the user through a purchase to providing assistance when the
user has a complaint about the provided service or product. These systems should un-
derstand the speaker and reply in natural language even though, in some cases, there is
tolerance for incorrect responses. However, the replacement of human-to-human interac-
tion by conversational agents may sometimes lead to a lack of understanding of the client’s
wishes, and frustration may build up and cause the loss of the client. This makes it relevant
for companies that rely on conversational systems for assisting their clients to employ a
fallback solution that considers such situations. For instance, if it was possible to auto-
matically identify that the client would benefit from a person-to-person conversation, the
switch could be performed between the human and the artificial agent, ideally, without
the client even noticing. This would hopefully contribute to decreasing the number of
unsatisfied clients, with further benefits to the companies’ business.

Since the aforementioned situations often result in negative sentiments developed by
the client, the main goal of this dissertation is sentiment analysis in the context of dialogue,
either between humans or between humans and conversational agents. A potential use case
would be an automatic monitorisation of the dialogue that, once an unusual amount of
negative sentiment is identified, will mark the conversation as requiring the intervention of
a human assistant (e.g., in a call center). Sentiment Analysis (SA) is a text classification
technique used to determine the sentiment expressed in natural language. In the simplest
case, this is a two or three-class problem (positive, negative, neutral) (Carvalho et al.,
2011, Duarte, 2013, Kouloumpis et al., 2021).

The work developed must be applied to Portuguese, as it is part of a project in col-
laboration with Altice Labs (AL)1, a company that is built upon more than 65 years of
technological experience in telecommunications, and, as of 2020, provides fiber network for
over 5 million houses and companies in Portugal (Altice Portugal, 2020). This language
restriction poses another challenge because, while approaches to a similar goal have been
proposed, they are generally applied to other languages, mostly English. It also means
that conversational datasets used in the aforementioned works for training and evaluation
are hardly usable in this work. Therefore, the compilation of one or more datasets of dia-
logue in Portuguese is also a goal of this work. AL defined their interest in the domains of
eCommerce, TV, Health Care, Finance and FinTech, and Telecommunications, so, ideally,
the datasets should contain these domains.

1https://www.alticelabs.com/
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1.1. Objectives

This dissertation was written in the context of the Master in Informatics Engineering,
with a specialization in Intelligent Systems, and in collaboration with AL, and specifically
to the project POWER (POCI-01-0247-FEDER-070365), subproject P4 Future Services,
which, besides other activities, aims to develop the current state of the companies’ chatbots.

In this chapter, we will go over the objectives defined for this dissertation and its
contributions, the approach chosen to achieve them, and a brief presentation of each of the
following chapters in this document.

1.1 Objectives

As mentioned earlier, the main objective of this dissertation is to develop research aiming
at sentiment analysis in the context of dialogue. To achieve this, a series of smaller goals
must be achieved, which are listed below:

• Creation, annotation, and analysis (e.g., number of dialogues, the average number of
turns) of a data set to be used to train the models;

• Exploration of different models/solutions applied to the Portuguese language. Ap-
plication of techniques that range from lexicon-based classification to supervised Ma-
chine Learning (ML) (including deep neural networks), to perform sentiment clas-
sification in each utterance. Analysis of results and evaluation metrics obtained
throughout this dissertation;

• Identification of solutions, among the developed models, with better performance
than the SA system currently being considered by AL;

• Writing of a scientific article related to the work developed in this dissertation.

The definition of these objectives is important as it sets the work direction for the
dissertation, and makes its purpose clearer.

1.2 Approach

SA in the context of dialogue allows the classification of each utterance’s polarity (e.g.,
Positive, Negative), and makes it possible to identify situations that cause the client to
switch to negative sentiment. If they demonstrate negative sentiments and the chatbot is
not able to overcome the negativity, or if, for example, they are repeating the same question
over and over, then it is time for the fallback system to act and mark the conversation as
requiring human intervention. Hopefully, the person will be better equipped to manage
the situation and avoid the loss of a client.

Any solution requires data, and so this was the first challenge of this dissertation. To
some extent, it is possible to rely on real anonymized transcriptions of conversations, pro-
vided by AL, where the sentiment has to be manually labeled. However, due to privacy
reasons, there are limitations on the quantity of data provided and on what can be done
with it. Therefore, we experimented with other options (e.g., data extraction from social
networks, translation of available datasets, generation of data). Since there were some
restrictions regarding the dataset (e.g., containing dialogues, being in the Portuguese lan-
guage), the choice of the data source was not particularly easy. In the end, we developed
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two datasets, one with the samples provided by AL, and another with dialogues extracted
from Twitter.

After the data collection, we annotated the sentiment associated with each utterance
and analysed the datasets (e.g., frequency of each label, number of dialogues). The an-
notation was performed manually by a group of people, but we also experimented with
emoji-based annotation. The data curation process will be explained in detail in Chapter
5.

We developed several solutions, ranging from a lexicon-based approach, to shallow ML
models (e.g., Naive Bayes, Support Vector Machine (SVM)s), and to deep architectures
(e.g., based on transformers). These models will be presented in Section 2.2.5, and a further
explanation of the development process will be explained in Chapter 6.

We set the evaluation metrics which allow for an analysis of how well the classifier is
differentiating between the Negative and Non-Negative classes. We focused on the Recall,
F1-Score, and Area Under the ROC Curve (AUC) metrics, because we believe that it
is more important to correctly determine the Negative sentiments than the Non-Negative
(i.e., it is potentially worse to identify an unsatisfied client as satisfied and failing to manage
that situation). These evaluation metrics, and more, will be presented in Section 2.2.4, and
the analysis of the most relevant metrics for this work will be further explained in Chapter
7. Furthermore, we used tuning techniques in an attempt to explore different settings for
each classifier and possibly improve their performance.

The evaluation and comparison of each solution allowed us to determine which models
could be better adjusted to the goal of this dissertation (SA in dialogues).

Furthermore, based on the results and conclusions obtained throughout this disserta-
tion, we had the chance to write scientific articles on this topic.

This whole process allowed us to tackle each of the objectives set and listed earlier.

1.3 Contributions

Overall, the work developed contributes to the SA field in the following ways:

• Creation of two manually-annotated datasets containing dialogues in the Portuguese
language, and in the domains specified as relevant by AL (eCommerce, TV, Health
Care, Finance and FinTech, and Telecommunications). Such datasets are currently
lacking in the scientific community, which makes this a large contribution of this
work, especially since one of the datasets was made available to the public;

• Development of solutions with some degree of innovation, even if just due to the fact
that they are trained in the Portuguese language;

• Extensive experimentation with different classifiers and techniques, and a comparison
of their performances for SA in dialogues;

• Identification of the models that perform better than the current solution used by
AL, meaning the company can benefit from the integration of a chosen solution in
their system;

• Creation and submission of scientific articles, which, if accepted into the correspond-
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ing conferences (IberSPEECH 20222 and RECPAD 2022 3), would allow us to share
the methods used and results obtained with a larger audience.

These contributions, as well as the objectives, can be used to evaluate the quality of
this dissertation.

1.4 Document Structure

This section briefly presents what each chapter in this document refers to:

• Chapter 2 presents background on the relevant areas of knowledge, namely Natural
Language Processing (NLP), ML, SA, and Dialogue Analysis (DA), which all relate
to the main goal of this dissertation;

• Chapter 3 presents the related work that was studied and found relevant to the
development of this dissertation, namely in the contexts of SA using Twitter data,
SA in the Portuguese language, since these topics will be explored in the development
of this work. In this chapter we also present works using SA in combination with
DA, but we did not implement this approach;

• Chapter 4 presents the pre-arranged work plan envisioned during the first months of
this work, and compares it with the real work plan, presenting the defined tasks and
the time spent working on each of them;

• Chapter 5 presents the general ML approach used, and focuses on the data gathering,
analysis, and annotation processes;

• Chapter 6 presents the experiments performed for each classifier, and explains each
approach;

• Chapter 7 presents the final results and evaluation metrics for each classifier devel-
oped, and comparisons between some aspects (e.g., the use of context);

• Chapter 8 stresses the main conclusions taken from the work and analysis developed
in this dissertation, as well as possible directions for future work.

2http://iberspeech2022.ugr.es/
3https://recpad2022.ipleiria.pt/
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Chapter 2

Background

This chapter presents background on the topics related to Sentiment Analysis (SA) that
constitute the support for the development of the solutions to this dissertation’s problem.

In the first section, 2.1, the focus will be on Natural Language Processing (NLP). This
domain consists of a set of techniques for computers to manipulate contents in human
language. Since this dissertation needs to handle human-to-human and human-to-computer
conversations, it is important to have some background knowledge on the workings of NLP.

In the second section, 2.2, the focus will be on Machine Learning (ML). This was found
relevant since there are several approaches to sentiment analysis that are based on ML
and, therefore, most of the solutions explored will belong to this domain.

In the third section, 2.3, the focus will be on SA. Since SA is the main goal of this
dissertation, it is essential to provide some background knowledge on the subject. This
section will present applications, challenges, approaches (besides ML), emotion models,
and subtasks of SA.

In the fourth section, 2.4, we will present the Dialogue Analysis (DA) domain, which
could be compelling because there is a relation between DA and SA, and their joint analysis
could provide interesting results.

In the fifth and final section of this chapter, 2.5, a summary of the domains above will
be presented.

2.1 Natural Language Processing

NLP aims to get computers to perform tasks involving human language. Some of these
tasks are summarized below:

• Machine translation: automatic translation of a document in one language to another
language (Brown et al., 1990);

• Text classification: automatic labeling of documents, sentences, or words with a class
from a predefined set. SA is a common application of this task, mainly in product
reviews or social media posts. Some applications include allowing marketeers to know
how people respond to their products or advertisements, social scientists to study how
emotions spread over social networks, and services to implement recommendation
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systems (Duarte, 2013). The set of classes could consist, in a simple scenario, of
Positive, Neutral, and Negative sentiments;

• Information retrieval: retrieval of the most useful information, given an information
need (Manning et al., 2008). This is important to understand intents (i.e., what
kind of information someone is looking for when they make a request) in question-
answering, search systems, or dialogue systems;

• Dialogue system: a computational system that the user establishes a conversation
with, using natural language. The system is capable of detecting and satisfying the
user’s intent (Einsenstein, 2018);

• Document summarization: finds elements of interest in documents to produce an
overview of what is most important (Otter et al., 2021).

Although much progress has been made in the NLP field, there are still many challenges,
mainly due to the diversity and constant evolution of human language (e.g., the number
of different languages, their dialects, the creation of new words, and the use of slang).
Knowing this, it is important that the algorithms are robust to samples that do not occur
in the training data. This also applies to speech recognition, a domain that relates to this
work because the sampled data from Altice Labs (AL) was built using speech recognition
techniques. The more knowledge a system has about language, the more tolerant it will be
to previously unseen vocabulary, either due to the evolution of language or to noisy speech
recognition. Different challenges will be addressed in the remainder of this section, as well
as some language properties.

One of the basic principles of language is the principle of compositionality. This means
that phrases and documents are composed of smaller units, words, that give meaning to
the whole composition. The meaning of a word itself is constructed from its constituent
parts (Einsenstein, 2018). An example of this is the word Novelists, which is constructed
of the word Novelist, which is itself constructed of the word Novel.

A NLP technique that will be explained further ahead, called stemming, retrieves the
root form of a word, from which different words may derive.

However, we cannot always rely on this principle, since idiomatic phrases, for example,
have meanings that are different from the sum of their parts. For situations like these,
meaning could be approximated using a distributional perspective, considering the contexts
in which the words appear (Einsenstein, 2018). Examples of idiomatic phrases would be
Spill the beans, which refers to gossiping or revealing secret information, or Torcer o nariz,
which means that you do not agree with or dislike something.

To correctly answer some questions, discourse knowledge is required, since text has an
implicit relational nature. If someone writes "I like that.", coreference resolution is needed
to understand what words like that or pronouns (e..g., they, her, mine) refer to, since their
meaning was introduced in earlier messages (Jurafsky and Martin, 2021).

Sometimes, the meaning of a phrase can be ambiguous. This can be solved through
lexical disambiguation, using part-of-speech tagging (e.g., decide if a word is an adjective
or a verb), or word sense disambiguation (e.g., decide what the verb make means). Some
situations may also require syntactic disambiguation (i.e., decide if the words refer to the
same entity or not), or speech act interpretation (e.g., decide if a phrase is a question or an
opinion) (Jurafsky and Martin, 2021). In their book, Jurafsky and Martin (2021) present
a good example of ambiguity, in the sentence I made her duck. There are several possible
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interpretations, such as I cooked a duck for her, or I cooked a duck belonging to her, or I
caused her to lower her head, or even I turned her into a duck.

There are other things to consider, such as the presence of Winograd schemas (i.e., one
word changes the referent of a pronoun) or the use of slang or multilanguage (Einsenstein,
2018). One example, as presented by Einsenstein (2018), would be The trophy doesn’t fit
into the brown suitcase because it is too small/large. The final word changes what the
pronoun, it, refers to. If it is small, then it would refer to the suitcase, otherwise, it would
refer to the trophy.

The remainder of this section will focus on text preprocessing techniques and feature
extraction or word/sub-word representation. These subjects are essential for the transfor-
mation of data into a format that machines can work with.

2.1.1 Text preprocessing

Preprocessing is used to generalize text (e.g., capitalization or lemmatization techniques)
in an attempt to reduce feature redundancy (e.g., Tree and tree could be recognized as two
different words, but there is no difference in meaning), and also to act as a sort of filter
of significance (e.g., stop words or tokenization), which will focus on meaningful elements,
while attempting to remove unnecessary or harmful characters or words. These operations
are crucial for any classification operation because only discriminating information is useful
for the algorithms. The sentence I made her a duk, bro! will be used as an example for
the following preprocessing techniques for text data, as presented by Kowsari et al. (2019):

• Tokenization: Breaks a stream of text into meaningful elements, such as words,
phrases, or symbols, called tokens. In the mentioned example, the following set of
tokens would be generated: I, made, her, a, duk, ",", bro, "!";

• Stop Words: Text classification includes words that have little discriminating power
(i.e., do not contribute much to the meaning of the text) for the classification algo-
rithms, and are usually removed from the text. In the mentioned example, a stop
word would be the token a;

• Capitalization: Diverse capitalization is usually handled by reducing every letter
to lowercase. This will allow all the words to be projected into the same feature
space. In the mentioned example, the token I would be reduced to i ;

• Slang & Abbreviation: A common method of handling these text anomalies is to
convert them into formal language. In the mentioned example, the token bro would
be converted to brother ;

• Noise Removal: Unnecessary characters, such as punctuation and special charac-
ters, can be detrimental to classification algorithms. In the mentioned example, the
symbols "," and "!" would be removed;

• Spelling Correction: Typographical errors (typos) are common in texts, especially
in social media content. This problem can be addressed using spelling correction
methods. In the mentioned example, the token duk would be corrected to duck ;

• Stemming: Text stemming modifies words to obtain their root form, consolidating
different word forms into the same feature space. In the mentioned example, the
following set of tokens would be generated: i, mad, her, a, duk, ",", bro, "!". This
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was obtained using the Lancaster Stemmer algorithm1. The Porter Stemmer2 makes
no change to the original tokens;

• Lemmatization: Replaces the suffix of a word with a different one or removes it
completely to get the form of the word as it appears in the dictionary (lemma). In
the mentioned example, the following set of tokens would be generated: i, make,
her, a, duk, ",", bro, "!".

2.1.2 Representation

Data representation is a crucial step for any classification operation because it must be
interpretable by the algorithm. Text data can be transformed into usable features that
will represent its content in a different structure, which can be called an embedding. Some
techniques for feature extraction or word/sub-word representation are presented below.

Vector semantics consists of a numeric way to represent word meaning in NLP. The
main idea, made popular by Firth (1957), is that two words that occur in similar distri-
butions, or contexts, will have similar meanings. In this sense, a word is a vector in a
multidimensional semantic space derived from the distributions of the neighboring words
(Jurafsky and Martin, 2021).

Figure 2.1 presents an example of the projection of word and phrase embeddings,
and it confirms that words with similar meanings are nearby in space. The green color
represents positive examples, the red color represents negative examples, and the blue
color represents neutral examples. This projection was obtained using a technique called
t-distributed Stochastic Neighbor Embedding (t-SNE) (Van der Maaten and Hinton, 2008)
that allows the visualization of high-dimensional data, by mapping each embedding (in this
case, a 60-dimensional representation) into a two or three-dimensional space. Briefly, the
mapping is achieved by calculating a similarity measure between pairs of elements in both
the high and low dimensional spaces and trying to optimize these two similarity measures.

Figure 2.1: Two dimensional projection of embeddings (Jurafsky and Martin, 2021)

The representation of words as vectors, besides allowing them to be positioned in a
vector space, allows a similarity metric to be computed between them. This metric can be
obtained by the cosine of the angle between the vectors, which will range from 1 (vectors
pointing in the same direction) to 0 (orthogonal vectors). Since frequency values are non-
negative, a cosine of -1 is not considered.

Another way of finding if two words are similar is by using a co-occurrence matrix.

1https://www.nltk.org/_modules/nltk/stem/lancaster.html
2https://www.nltk.org/_modules/nltk/stem/porter.html
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There are two options for the co-occurrence matrix, term-document and term-term (Ju-
rafsky and Martin, 2021).

In a term-document matrix, each document has the dimension of the vocabulary
(terms). Each value will account for the number of occurrences of each term on the
document. Similar documents contain similar words, and similar words appear in similar
documents. Table 2.1 presents an example of a term-document matrix for four words in
four Shakespeare plays.

Table 2.1: Term-document matrix for four words and documents, based on Jurafsky and
Martin (2021)’s example

As You Like It Twelfth Night Julius Caesar Henry V
battle 1 0 7 13
good 114 80 62 89
fool 36 58 1 4
wit 20 15 2 3

In a term-term matrix, each cell contains the number of times the row and column
words co-occur in some context (for example, how often two words co-occur in the same
document). Words that occur in similar contexts (defined by the counting of the words
around the target, known as context words) will have similar meanings.

The following subsubsections will summarize vector semantics techniques.

N-Gram:

Instead of considering each word individually, N-gram considers sequences of words, which
enabled more information to be extracted, such as context or terms that are used together,
like, for example, United States, and that have different meanings if considered as individual
words instead (Kowsari et al., 2019). An example of a 2-gram, or a bigram, based on the
sentence I made her duck, would be the following set of tokens: I made, made her, and her
duck.

Weighted Words:

This technique translates each document into a vector containing the frequency of the
words in it, which means that the most commonly used words will dominate the repre-
sentation, despite not offering much discriminating power (Kowsari et al., 2019). There
are two common methods, Bag of Words (BoW) and Term Frequency - Inverse Document
Frequency (TF-IDF).

In a BoW, text is represented as a non-ordered list of the words present in the document
or sentence. The words are not repeated, even if they appear more than once, but the
multiplicity is counted and registered in a Bag-of-Features (BoF) vector, that will contain
the number of times the corresponding word for that position occurred (Kowsari et al.,
2019). Based on the sentence This house is big. That big dog lives in this house., its BoW
would consist of the following words: This, house, is, big, that, dog, lives, and in. The
corresponding BoF would consist of the following array [2, 2, 1, 2, 1, 1, 1, 1].

TF-IDF is an extension of the BoW method and is usually used when the dimensions
are documents. The TF part measures the relative (or absolute) frequency of each word
in each document, and the IDF part attempts to devalue words such as the, which occur
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very often but have little discriminating value (Kowsari et al., 2019), by calculating the
logarithm of the ratio between the number of documents and the number of documents the
word appears in. When used with unseen data, the model is fitted to the samples in the
training data, and will only use the words in those samples, ignoring any new occurrences.

Table 2.2 presents an example of TF-IDF applied to sentence A, "I like the colour
yellow" and sentence B, "The yellow car is on the road".

Table 2.2: Example of TF-IDF applied to sentence A, "I like the colour yellow" and
sentence B, "The yellow car is on the road".

Word TF (A) TF (B) IDF TF-IDF (A) TF-IDF (B)
I 1/5 0 log(2/1) 0.06 0

like 1/5 0 log(2/1) 0.06 0
the 1/5 2/7 log(2/2) 0 0

colour 1/5 0 log(2/1) 0.06 0
yellow 1/5 1/7 log(2/2) 0 0

car 0 1/7 log(2/1) 0 0.04
is 0 1/7 log(2/1) 0 0.04
on 0 1/7 log(2/1) 0 0.04

road 0 1/7 log(2/1) 0 0.04

We can verify that words that occur often ("the", "yellow") are devalued using the
TF-IDF technique, as they do not present a high discriminating value.

Word Embeddings:

In the previous methods, with the exception of the t-SNE technique used in Figure 2.1, the
vectors are long and sparse (containing mostly zeros), since most words will not occur in
the context of other words. Those methods face scalability issues because when there are
several texts to be classified, every word in them is considered, adding to the dimension of
the vectors. This can become a problem, because the vocabulary can potentially become
too large, making those methods non-functional (Kowsari et al., 2019).

In the word representation domain, an embedding is a transformation of data into a
short and dense vector with useful semantic properties, resulting in a large dimensionality
reduction. The dimension of a dense vector will not have a clear interpretation, like when
using sparse vectors, since an embedding is a mapping of each word or sentence to an
N dimension vector of real numbers. Embeddings may allow for better generalization,
avoiding overfitting issues, due to the smaller parameter space (Jurafsky and Martin, 2021).

Two well-known techniques are Word2Vec (Mikolov et al., 2013) and Global Vector
(GloVe)(Pennington et al., 2014). These embeddings are static, meaning that the method
learns one representation for each word in the vocabulary. After learning, these represen-
tations will be the same for every context (Jurafsky and Martin, 2021).

Word2Vec uses a Neural Network (NN) to find which words are more likely to occur
nearby, while GloVe is based on the computation of co-occurrence matrices.

Word2Vec treats the word and its neighboring context as positive examples, and ran-
domly samples other words as negative examples. Then, a simple NN is trained on a binary
prediction task, to compute the probability that two words are likely to occur nearby in
text. The learned classifier weights will be used as the word embeddings.

GloVe is based on the ratios of word co-occurrence probabilities over a huge corpus,
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using co-occurrence matrices. While in Word2Vec only the neighboring words are consid-
ered, in GloVe the co-occurrence matrices involve the whole corpus, allowing it to use the
frequency of co-occurrence as relevant information (Kowsari et al., 2019). Figure 2.2 shows
a visualization of the word distances, using a two-dimension projection technique, and it
shows that in this kind of representation, there are syntactic and semantic relations in it,
such as, in the case presented, the relation from male (left) to female (right).

Figure 2.2: Example of GloVe for word representation (Kowsari et al., 2019)

Transformers:

Transformers (Vaswani et al., 2017) are based on encoder-decoder models, and are re-
sponsible for the latest developments in NLP. In an encoder-decoder model, the encoder
generates a contextual embedding representation for each word. The output, given by the
decoder, is a complex function of the entire input sequence.

A transformer contains a self-attention layer applied to it, avoiding the usage of re-
current connections, while still taking context into account. Self-attention layers compute
the relevancy of each element in relation to the other elements in the sequence, allowing
transformers to model how words over long distances are relevant for the processing of the
current word. These models have proven to be more parallelizable and quicker to train
than previous NN models since they calculate the element’s embeddings concurrently.

Transformers make it possible to use a pre-trained model that can be fine-tuned for a
variety of tasks. Fine-tuning consists mostly of adding and training one output layer to
the model, according to the desired task (Devlin et al., 2018).

Two known types of transformers are the Generative Pre-trained Transformer (GPT)
(Radford et al., 2018) and Bidirectional Encoder Representations from Transformers (BERT)
(Devlin et al., 2018). Both fine-tune a pre-trained model for the desired task. In the pre-
training stage, the initial parameters of the model are learned, and in the fine-tuning stage,
the parameters are adapted to the objective.

GPT uses a left-to-right architecture, meaning that the word (or sentence) represen-
tation will only consider context on the left side of it. GPT-2(Radford et al., 2019) is a
GPT model trained with English data from the social media Reddit3, and its task is the
prediction of the next word in a sequence.

GPT-3 (Brown et al., 2020) is an upgraded version of GPT-2, trained with a larger
number of parameters and on a larger combined dataset. Access to GPT-3 is currently
limited through an Application Programming Interface (API)4.

3https://www.reddit.com/
4https://beta.openai.com/overview
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2.2. Machine Learning

BERT is a pre-trained encoder that learns word (or sentence) representations that
incorporate context from left-to-right and right-to-left directions.

BERT is pre-trained using the following strategies: Masked Language Model (MLM)
and Next Sequence Prediction (NSP).

MLM randomly masks some of the tokens in the input and attempts to predict the
masked word based only on its context. This strategy enables the concatenation of both
left-to-right and right-to-left representations, resulting in a deep bidirectional transformer.

NSP jointly pre-trains text-pair representations. The input is a pair of sentences,
and it attempts to predict if the second sentence is the actual next sentence in the original
document or not. This strategy allows for a better understanding of sentence relationships.

Both GPT and BERT use special representation tokens, such as [SEP] and [CLS].
However, for the former model, these tokens are only generated during fine-tuning, while
for the latter model, they are learned during pre-training. The [SEP] token is used as a
sentence separator, but it is the [CLS] token that is the most interesting, since it contains
an aggregate representation of the whole sentence. This token is a symbol for classification
tasks, as is the case of SA.

2.2 Machine Learning

"Machine Learning is a unified algorithmic framework designed to identify computational
models that accurately describe empirical data and the phenomena underlying it, with little
or no human involvement" (Watt et al., 2020). In essence, it is "the science of programming
computers so that they can learn from data" (Géron, 2019). Today, ML can be applied to
several domains, such as search engines, medical diagnoses, loan applications, and many
more.

There are four types of ML, supervised learning, unsupervised learning, semi-supervised
learning, and reinforcement learning (Kotsiantis, 2007, Zhu and Goldberg, 2009). The first
three differ in the amount of labeled data in the training dataset. In supervised learning,
all the data is labeled (assigned a class), in semi-supervised learning, only some of the
data is labeled, and there are many unlabeled data, and in unsupervised learning, all of
the data is unlabeled. In reinforcement learning, the learner is not told which actions to
take, it must discover which ones yield the best reward, by trying them out. The training
information is provided by the environment in the form of a scalar reinforcement signal
(i.e., a measure of how well the system is operating).

Unsupervised learning applies to tasks such as clustering or outlier detection, for exam-
ple. In these algorithms, researchers hope to discover unknown and useful classes for their
data. Supervised learning applies to tasks such as classification or regression, for example,
where the classes belong to a predefined set. Semi-supervised learning designs algorithms
(e.g., self-training, graph-based methods) that take advantage of a combination of labeled
and unlabeled data.

Since SA is a (text) classification operation, and the main goal of this dissertation,
supervised learning is the most suited type of ML, and some classification models will be
trained to distinguish between different classes, representing sentiments or emotions.

A ML project life cycle includes the following stages: data collection and preparation,
feature engineering, model training, and model evaluation (Burkov, 2020), which will be
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Figure 2.3: Part of a ML project life cycle, based on Burkov (2020)’s example

the focus of this section. These stages are illustrated in Figure 2.3, where it is possible to
see that from the evaluation of a model, three stages can be modified for better results,
data collection and preparation, feature engineering, and model training.

2.2.1 Data collection and preparation

The success of a classification model is dependent on the quality of the data available for
training. If there is a large and diversified collection of samples, the better the model can
perform its tasks, since it will be exposed to a varied collection of data, giving it more
learning experience (Watt et al., 2020).

The data collection is usually split into three sets, the training dataset, the validation
dataset, and the testing (or holdout) dataset. The first is used to train the model, and
each sample is assumed to belong to a predefined class (the target label). The second is
used to estimate the performance on unseen data, and compare it with the performance of
different algorithms or configurations. The third is used to assess the performance of the
best model, according to the validation dataset.

The analysis of the errors during the training set and either the validation or holdout
sets can be helpful to determine if a model has a complexity fitting of the problem, trans-
lating into a good bias-variance tradeoff. If this happens, then the model is in the zone of
solutions. An example of a simple error metric would be how many samples were badly
classified.

Figure 2.4 allows for better visualization of how the error analysis can be helpful. If
both the training and holdout errors are large, and the latter error is not stagnating, then
the model’s complexity should be increased, and the scenario is of underfitting. Once both
values are low and the holdout error starts increasing at a fast pace, while the training
error is stagnating, then the model’s complexity should be simplified, and the scenario is
of overfitting.

The bias-variance tradeoff and the concepts of overfitting and underfitting will be ex-
plained further ahead when model training is addressed.

2.2.2 Feature engineering

Features are a representation of a property of the data used by the model, such as the
color or size of a fruit. The design of good features can be dependent on the classification
goal. Features that are discriminating against certain classes may be useless for a different
application. Color may be a relevant feature for distinguishing between blueberries and
strawberries, but not between carrots and oranges, for example. In the context of this
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Figure 2.4: Training error vs. holdout error (Burkov, 2020)

work, we will be using word or sequence representations. In section 2.1.2 some techniques
that include feature representation were presented, so the topic will not be further explored
in this section.

2.2.3 Model training

This subsection will focus on hyperparameter tuning and the bias-variance tradeoff. The
classification algorithms will be presented later, in subsection 2.2.5.

Hyperparameter tuning

Each classification algorithm has a unique set of parameters, hyperparameters, that control
the inner workings of the algorithm, such as the number and type of layers, and the number
of neurons per layer, in the case of neural networks. Hyperparameter tuning should be
performed on the validation dataset, so it does not overlap the training set. The definition
of the classification algorithm can have a big effect on its performance, so it is important
to choose an appropriate set of hyperparameters. To accomplish this, one can use several
techniques, such as:

• Grid search: Tries a set of defined values, evaluates the model for each value, and
chooses the setting that maximizes the performance (Einsenstein, 2018);

• Random search: Does not use a defined set of values, it randomly samples values
from a defined statistical distribution for each hyperparameter. A grid search can be
performed in the region of the highest value found (Burkov, 2020);

• K-fold Cross-validation: Usually used when the size of the dataset is small. Cross-
validation consists of randomly splitting the training dataset into training and testing
sets. The model will train on the split training set and will be evaluated on the testing
set. K-fold cross-validation consists of repeating this process K times, with different
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randomly selected training and validation, or "Dev", sets. The evaluation of the
model will be computed in the original testing set (Jurafsky and Martin, 2021). An
extra fold can be used for a grid search. Figure 2.5 may help with the visualization
of the k-folds, presenting an example for 10-fold cross-validation;

• Genetic Algorithm (GA) Search Cross-Validation5: Applies cross-validated evolu-
tionary optimization over hyperparameters, using simple algorithms which can be
accessed through the Distributed Evolutionary Algorithms in Python (DEAP) pack-
age;

• Population-Based Training (PBT) (Jaderberg et al., 2017): Optimization evolution-
ary algorithm that jointly optimizes a population of models and their hyperparame-
ters. PBT has shown improvements in relation to other options, such as grid search,
making it an interesting choice for hyperparameter tuning.

Figure 2.5: 10-fold cross-validation (Jurafsky and Martin, 2021)

The fine-tuning of the hyperparameters is usually done when a good bias-variance
tradeoff is achieved.

Bias-variance tradeoff

Bias and variance are values that control if a model is underfitting, overfitting, or if it
has good generalization. Bias can be thought of as a deviation from the regression line,
while variance can be thought of as the regression line being a too close fit to the data.
Underfitting is associated with high bias. This usually means the model is too simple for
the data, or the features are not discriminative enough. In this scenario, the model makes
several mistakes on the training data. Overfitting is associated with high variance. This
usually means that the model is too complex for the data, or there are too many features
and few training samples. In this scenario, the model makes several mistakes on the testing
or validation data (Burkov, 2020).

Figure 2.6 provides good examples of the bias-variance tradeoff. In the figure to the
left, there is an underfitting scenario, and it is possible to verify that the regression line
does not follow the flow (the ups and downs) of the training examples, meaning that the
model oversimplifies the data.

5https://sklearn-genetic-opt.readthedocs.io/en/0.4.0/api/gasearchcv.html
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2.2. Machine Learning

In the figure to the right, there is an overfitting scenario, and it is possible to verify
that the regression line follows the training examples almost perfectly, meaning that the
model is too complex for the data.

In the middle figure, there is a good tradeoff scenario, where both the bias and the
variance are low. To reach this kind of solution, the complexity of the model must be
increased (in case of underfitting) or decreased (in case of overfitting). Once a good fit is
reached, the hyperparameters can be fine-tuned to optimize the model (Burkov, 2020).

Figure 2.6: Examples of underfitting, good fit, and overfitting (Burkov, 2020).

There is a bias-variance tradeoff since by trying to reduce one, you increase the other.

2.2.4 Model evaluation

It is important to be able to quantify the performance of a model and establish a baseline
value as a reference point so that we can say that the chosen approach performs better than
the baseline model, or other solutions. Several evaluation metrics can be used to evaluate
the performance of a classification model, and they are usually based on the interpretation
of a confusion matrix, represented in Figure 2.7.

Figure 2.7 introduces the concepts of True Positive (TP), False Positive (FP), False
Negative (FN), and True Negative (TN). Taking as an example the task of spam detection
in emails, these concepts would refer to:

• TP: Spam being classified as spam;

• FP: Non-spam being classified as spam;

• TN: Non-spam being classified as non-spam;

• FN: Spam being classified as non-spam.

Essentially, TP and TN occur when the predicted and the true classes are the same.
Otherwise, in the FP and FN cases, the true class is the opposite of the predicted class.

Applying this to the (simplified) purpose of this dissertation (i.e., to determine when,
in a conversation between a chatbot and a client, the client’s sentiment is so negative that
a human should replace the conversational agent), a TP would be when the prediction of
the negative sentiment reflects the real sentiment of the client (i.e., a negative sentiment
has been correctly classified). A FP would be when the prediction is that the sentiment is
negative, but in fact, it is not (i.e., a non-negative sentiment has been incorrectly classified).
A FN would be when the prediction is a non-negative sentiment, but the client is reflecting
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Figure 2.7: Confusion Matrix

a negative sentiment in reality (i.e., a negative sentiment is incorrectly classified). A TN
would be when the prediction of a non-negative sentiment reflects the real sentiment of the
client (i.e., a non-negative sentiment has been correctly classified).

It is important to understand which metric better applies to each problem, which is
dependent on the data and the context of the problem itself. If more importance is given to
reducing the FN predictions, then a valid metric to choose would be the recall metric. This
is a common metric for clinical problems since it is of high importance to avoid sending
home a patient that is sick (a false negative situation). However, if the problem is about
distinguishing between real and fake images or if it is about spam detection, as presented
earlier, a valid metric could be the precision metric, since it is more important to avoid
wrongly placing a legitimate message in our spam folder, or to classify a real image as false
(a false positive situation) (Burkov, 2020).

The evaluation metrics should be calculated for each dataset. If a model performs well
on the validation and testing datasets, then, depending on the chosen evaluation metric, one
could affirm that the model generalizes well, meaning it is capable of classifying unseen data
correctly, within the given performance value. It may also be important to find out which
evaluation metric should be maximized in comparison with the others, since sometimes
models may not vary much between the evaluation results. Despite this, the choice of the
final model must be justified, and so this analysis may be relevant. In a binary situation,
this can be achieved by considering the problem at hand and figuring out which would be
more important, either to reduce the number of FP or to reduce the number of FN.

Accuracy (equation 2.1) consists of the ratio of correct predictions over all predictions.

Accuracy =
TP + TN

TP + TN + FP + FN
(2.1)

Accuracy may not be a good performance metric for imbalanced datasets, since one
class may consist of the majority of the samples, which will skew the accuracy results. If
there are 90 samples of class A and 10 samples of class B, and the model is badly trained
due to oversampling, it will classify all samples as class A, which will return an accuracy
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of 90%, when in reality the model’s performance is low.

Precision (equation 2.2) consists of the ratio of correctly predicted positives to all pos-
itive predictions made (i.e., among the predicted positives, how many were real positives).

Precision =
TP

TP + FP
(2.2)

Recall (equation 2.3) consists of the ratio of known/real positive classifications that
are correctly predicted (i.e., among the real positives, how many were correctly predicted).
This metric can also be called sensitivity or True Positive Rate (TPR).

Recall =
TP

TP + FN
(2.3)

Specificity (equation 2.4), also known as True Negative Rate (TNR), consists of the ratio
of known/real negative classifications that are correctly predicted, as given by equation 2.4
(i.e., among the real negatives, how many were correctly predicted).

Specificity =
TN

TN + FP
(2.4)

F-score (equations 2.5 and 2.6) consists of the harmonic mean of precision and recall.
The general approach (equation 2.5) can be referred to as the Fβ-score. The β value will
modify the weight given to the recall value, in relation to the precision value.

F − Score = (1 + β2)× precision× recall

(β2 × precision) + recall
(2.5)

The F1-score (equation 2.6), where the value of β is defined as 1, is a common appli-
cation of the F-Score metric, and is used when the same weight is given to both precision
and recall (Burkov, 2020).

F1− Score = 2× precision× recall

precision+ recall
(2.6)

The last metric to be presented is the Area Under the ROC Curve (AUC). The Receiver
Operating Characteristic (ROC) curve is a plot of the TPR/Recall vs. the False Positive
Rate (FPR), which consists of the ratio of wrong negative classifications to all real negative
samples (i.e., among the real negatives, how many were wrongly predicted). The FPR is
obtained by the equation 2.7, but can also be calculated as seen in equation 2.8, where the
second term is the specificity.

F.P.R. =
FP

TN + FP
(2.7)

F.P.R. = 1− TN

TN + FP
(2.8)

The different points on the ROC curve correspond to different decision thresholds,
depending on how the threshold is defined. To better explain this, Mandrekar (2010)
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proposes that multiple decision thresholds are possible for the classification of a sample,
based on a given feature. He explains that if a feature value of 4 or above indicates a given
class, then the FPR and the TPR would be different than if the limit were defined as a
value of 3 or above, meaning that both the FPR and the TPR are specific to the selected
decision threshold. A ROC curve is obtained by combining the FPR and TPR values for
different decision thresholds.

The larger the AUC, the better the performance of the model, since a larger area means
that the TPR is large while the FPR is small. Figure 2.8 should provide better visualization
of this relation. If the AUC value is of 0.5, then the ROC curve falls on the diagonal line
that connects the coordinates (0,0) and (1,1). What this means is that the model performs
as well as a random classifier (i.e., as if the labels were given by pure chance). The goal
would be for the area under the curve to be as close to 1 as possible.

Figure 2.8: Area under the ROC curve (Burkov, 2020)

2.2.5 Classification algorithms

As the "No Free Lunch" theorem implies, there is no algorithm that is the best-performing
for all problems (Wolpert and Macready, 1997). The best algorithm is dependent on
the context, objectives, and domain of the problem. Properties such as interpretability,
training and classification speed, tolerance for missing values or noise, scalability, size
and nonlinearity of the data, and the available memory of the machine or server should
be considered (Burkov, 2020). On the other hand, Domingos (2015) proposes a Master
Algorithm, which is the combination of contemporary ML paradigms into an algorithm
capable of fine-tuning itself, which would allow it to reach a perfect understanding of how
the world and the people in it work. As the author states, this is yet a very distant
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accomplishment and can be referred to as the promise of ML.

In this subsection, some of the possible algorithms to be applied to the problem will
be summarized.

Probabilistic models:

Probabilistic classification algorithms use statistical inference to find the best class for a
given sample. These algorithms output the probability of the example being a member of
each of the possible classes and assign the class with the highest probability (Deng et al.,
2014).

Examples of this type of model are presented below. The last two, Hidden Markov
Model and Conditional Random Field, classify sequences instead of just words.

• Naive Bayes Classifier:

P (A|B) =
P (B|A) ∗ P (A)

P (B)
(2.9)

This classifier is based on the Bayes theorem, represented in equation 2.9. This
theorem gives us the probability of A given B (probability of an event, A, given
the sample’s characteristics, B). The operation is based on the prior probability
(probability of the event, A) and the conditional probabilities of each feature (P(B|A),
representing the effect each characteristic has on the outcome).

This method is referred to as "naive" because it assumes conditional independence
between features (Jurafsky and Martin, 2021).

• Logistic Regression:

Classifiers that use a linear combination of the inputs to perform a classification
decision are called linear classifiers (Jurafsky and Martin, 2021). Logistic regression is
a simple linear classifier that distinguishes between two classes, but it can be adapted
to multiclass problems. This algorithm requires independence of data (Kowsari et al.,
2019).

• Hidden Markov Model (HMM)s:

HMM assign a label to each word in the input so that the output sequence has the
same length as the input sequence. These models compute the probability distribu-
tion over possible sequences of labels and choose the best label sequence (Jurafsky
and Martin, 2021).

• Conditional Random Field (CRF):

CRF (Lafferty et al., 2001) is based on the logistic regression classifier and is best
suited to tasks where contextual information has an effect on the current state.
Hence, instead of assigning a class to a single observation, it produces a global prob-
ability for the whole sequence, taking context into consideration. CRF turns a se-
quence of words into a linear chain (i.e., a directed graph where each word is a node),
and considers not only the probability of a label for each word but also the transi-
tioning probability between labels. Taking this into consideration, the CRF model
returns the prediction from the most probable path (Sutton et al., 2012). To account
for unseen data, this classifier can be set to generate all the possible combinations
between words and labels, and all the possible transitions between labels.
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Instance-based models:

A classification process is usually a two-phase approach that is cleanly separated between
constructing a model from training instances and using it to label unseen instances. In
instance-based approaches, there is no explicit training phase. Instance-based or learning
algorithms require a similarity or distance function to identify a locality around the test
sample and use it to classify the current sample (Aggarwal, 2014b).

• K-Nearest Neighbors (K-NN):

K-NN finds the K closest examples to the testing sample and classifies it based on
the most common class in the neighborhood (Kowsari et al., 2019).

Rule-based models:

Rule-based models are highly interpretable systems and usually involve a large database of
hand-written disambiguation rules, which will specify the class of a given sample (Jurafsky
and Martin, 2021).

• Decision Trees:

Decision trees have a hierarchical structure where each terminal node holds a class
label, each internal node denotes a test on a feature, and each branch represents the
outcome of that test. The hierarchy of the features is computed based on relevance
metrics, such as information gain, which allow these models to automatically perform
feature selection (Jurafsky and Martin, 2021).

• Dictionary-based:

A dictionary is used to assign each word a list of potential classes, and then the
disambiguation rules are used to narrow down the list to a single class for each word
(Jurafsky and Martin, 2021).

Connectionist models:

Connectionist models can be deep or shallow NNs. A NN is a combination of basic units,
neurons, arranged in layers, that are connected to form a network (Aggarwal, 2014a).

There are three types of layers, the input layer, the hidden layer(s), and the output
layer. Shallow networks have a single hidden layer, while deep networks can have several.
Only deep algorithms will be summarized.

Learning is achieved by computing weights between the neurons. First, the input is
propagated forward, and the error is calculated when the output layer is reached. Then, a
backpropagation algorithm is used to propagate the error backward and update the weights
of the neurons (Aggarwal, 2014a).

• Multilayer Perceptron (MLP)

A perceptron is a shallow NN with a binary output and a linear activation function.
The latter means that such models could not solve non-linear problems (Jurafsky
and Martin, 2021).
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A MLP is a NN consisting of multiple layers of perceptrons (at least three layers),
that can use non-linear activation functions, allowing it to distinguish data that is
not linearly separable.

• Graph Attention Network (GAT)

GAT is a type of NN used to process data that is represented by a graph structure.
Attention mechanisms allow the model to deal with variable-sized input, focusing
only on the most relevant parts of the input. When such a mechanism is used to
represent a sequence, it is referred to as self-attention (Veličković et al., 2017).

The attention-based architecture allows the computation of the hidden layers in
the graph, by attending over its neighbors, which allows for parallelization across
node-neighbor pairs. The self-attention on the nodes will compute the attention
coefficients, indicating the importance of the features of one node to its neighbor
(Veličković et al., 2017).

• Recurrent Neural Network (RNN)

RNN contain a cycle within its network connections, allowing these models to con-
sider context since the previous value will be used to compute the current value
(Jurafsky and Martin, 2021).

The sequential nature of these models makes it hard to perform computation in
parallel. (Jurafsky and Martin, 2021)

• Long Short-Term Memory (LSTM)

A LSTM model is a type of RNN that uses multiple gates to regulate the amount of
information allowed into each neuron (Kowsari et al., 2019).

The addition of gates allows LSTMs to handle more distant information than RNNs.
However, passing information through many series of recurrent connections results
in information loss and difficulties in training (Jurafsky and Martin, 2021).

• Convolutional Neural Network (CNN)

The architecture of CNN is composed of convolutional layers, pooling layers, (typ-
ically) fully connected layers, and an output layer. The convolution layers provide
filters on the input, while the pooling layers reduce the size of the output from one
layer to the next, reducing the computational complexity (Kowsari et al., 2019).

• Transformers

These models were already summarized in section 2.1.2 and differentiate themselves
from the rest due to their composition of stacks of encoder and decoder blocks, which
are multilayer networks made by combining feedforward layers and self-attention
layers. Self-attention allows a network to directly extract and use information from
arbitrarily large contexts without the need to pass it through intermediate recurrent
connections (Jurafsky and Martin, 2021).

Some interesting approaches using transformers have been developed and will be
experimented with in this dissertation. Hence, they will be presented in more detail.
These approaches are Few-Shot Learning (Few-SL) (Miller et al., 2000) and Zero-Shot
Learning (Zero-SL) (Chang et al., 2008).

– Few-Shot Learning
Few-SL aims to train classifiers given only a few labeled examples of each class.
This is better employed using large models, which can adapt to many contexts
and generalize with just a few examples.

22



Chapter 2– Background

Examples of these models are GPT-3, already presented, GPT-Neo6, GPT-J,
and Meta-OPT7.
GPT-Neo is a replication of the GPT-3 architecture, and was trained on the
Pile8, a large (825GB) dataset comprised of 22 smaller datasets containing data
from many disparate domains, including books, webpages, chat logs, and even
code. 97.4% of this dataset is in the English language.
Meta-OPT was also trained to roughly match the performance and sizes of the
GPT-3 class of models, and it was trained on multi-language data (predomi-
nantly English) comprised of some data from the Pile dataset, and data from
four other datasets, with emphasis on human-generated text.
GPT-J9 is a GPT-2-like model, trained on the Pile dataset. This model seems
to perform better than GPT-Neo, according to Xu et al. (2022), however, this
was tested in completion of code, not text generation.
Regarding the data these models were trained on, when multi-language, as is
the case for all (even if the samples are predominantly English), sometimes this
can result in lower performances than using models trained on a single language.
In the Few-SL approach, the models will perform text completion based on the
examples received. If you feed the model examples such as "I am unhappy with
this service |sentiment| Negative", "Thank you for helping me |sentiment| Pos-
itive", and "Hi, I need some information about payments |sentiment| Neutral",
and then give it as input the sentence "I want to speak with an assistant |senti-
ment| ", the model will, ideally, generate one of the sentiment labels provided in
the examples, following the patterns set by them. However, this is not always
the case, and the model can generate text that is not desirable (e.g., "infor-
mation", "|sentiment|", or even just symbols). Hence, this kind of approach
requires some processing of the text completion to evaluate if it is valid.
Besides the type of examples presented, there are other options as how to ask the
model to generate what you want. Mi et al. (2022) experimented with including
a task description, composed of a definition, a constraint, and a prompt. An
example of these, provided by the authors, could be:

∗ Definition: Predict the intent of the input query. Intent is the main topic
or purpose of a query.;

∗ Constraint: Model needs to select the most suitable intent from: {candidate
labels + label descriptions};

∗ Prompt: What is the intent of the given query?

This was presented to keep in mind that the way the examples and the input is
presented can affect how the model will generate the data.

– Zero-SL
Zero-SL has the most restrictive premise because there are no training samples
for model training. Chang et al. (2008) claims that a concept or label is often
sufficient for classification, and is based on the use of a source of world knowledge
to analyse sentiments and sentences (in our application) from a semantic point
of view, allowing them to be compared to perform classification. This requires
large models, similarly to the Few-SL approach, but not many are trained for
zero-shot classification.

6https://huggingface.co/EleutherAI/gpt-neo-2.7B
7https://huggingface.co/facebook/opt-2.7b
8https://pile.eleuther.ai/
9https://huggingface.co/docs/transformers/model_doc/gptj
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BART is a large model that is particularly effective for text generation and text
comprehension (Lewis et al., 2019) that allows for Zero-Shot classification. This
model is available on the Hugging Face website10, and it was trained on the
Multi-Genre Natural Language Inference (MultiNLI) corpus (Williams et al.,
2018), a crowd-sourced collection of English sentence pairs (a premise and a
hypothesis) annotated with textual entailment information (entailment, neutral,
or contradiction).
In Zero-SL, you send as input a premise (i.e., the sentence to be labeled) and a
hypothesis (i.e., the possible label), and this model will return the probabilities
of textual entailment regarding that hypothesis. For better understanding, take
as an example the premise "My TV is not working, you better fix it now!". Some
hypotheses could be "Happy", "Unhappy", "Problem", and "Praise". Ideally,
the model would return high entailment for "Unhappy" and "Problem", and
low entailment (or high contradiction) for the remaining hypotheses. In fact,
testing this example in the Hugging Face Inference API11, and allowing more
than one hypothesis to be true, the model returns the expected probabilities.
Since in this approach we do not work with text generation, it does not face the
same problem as the Few-SL approach. Every output will be valid, meaning
every sample will have a corresponding prediction.

Ensemble models:

Ensemble models combine weak learners, which perform slightly better than random guess-
ing, and they will converge into a final strong learner. The new sample is classified based
on voting techniques (Kowsari et al., 2019).

• Boosting:

Boosting consists of iteratively training weak classifiers. Freund et al. (1999) devel-
oped AdaBoost, which is an adaptive boosting algorithm, in the sense that subsequent
weak learners are tweaked, so that the weights of incorrectly classified examples are
increased and the weak learner is forced to focus on the hard examples.

• Bagging:

A bagging algorithm generates different uniform samples from the training data,
trains a classifier for each dataset, and in the end, applies a voting technique (Kowsari
et al., 2019).

• Random Forest:

Random Forest is an example of bagging that combines the output from multiple
decision trees. The application of bagging allows each tree to contain different sam-
ples from the dataset, resulting in different trees. Furthermore, this classifier allows
each tree to consider only a random subset of features, resulting in a low correlation
between trees, which creates a model that is more robust and less prone to error
(Breiman, 2001).

10https://huggingface.co/facebook/bart-large-mnli
11https://huggingface.co/facebook/bart-large-mnli?candidateLabels=happy%2Cunhappy%

2Cproblem%2Cpraise&multiClass=true&text=My+TV+is+not+working%2C+you+better+fix+it+now%21
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Hyperplane-based learning model:

The Support Vector Machine (SVM) is a classifier that does not completely fit any of the
presented categories, hence we defined its own category. SVMs were originally developed
for binary classification tasks but were later adapted into a nonlinear formulation (Kowsari
et al., 2019). These models use a kernel function (e.g., linear, polynomial) to transform
the data and try to find a hyperplane that splits the data, and attempt to maximize the
hyperplane’s margin, allowing for higher generalization (Aggarwal, 2014a).

It could be partially considered instance-based, since during the training stage, the
SVM will estimate the hyperplane from the positions of the instances in the training
dataset, and then maximize the margin. However, during evaluation, the classifier will not
compare the new sample with the existing instances, but against the hyperplane, which is
where this model differs from the regular instance-based models. Hence, we classify it as
hyperplane-based.

2.3 Sentiment Analysis

SA aims to classify the opinions and emotions expressed by humans, for example, on social
media posts, and can be useful, for example, in the following applications:

• Recommender systems: recommend items to the user based on their opinions (Asani
et al., 2021);

• Editorial sites: create summaries of people’s experiences and opinions extracted from
reviews (Roy et al., 2020);

• Information extraction: systems could flag statements and queries regarding opinions
rather than facts (Wiebe and Riloff, 2011);

• Market intelligence: allows businesses to find consumer opinions automatically (Ram-
bocas and Gama, 2013);

• Political studies: prediction of election results and the study of political standpoints
(Sharma and Moh, 2016);

• Advertisement placement: place advertisements in social media content if users like
one product, for example (Adibi et al., 2018);

• Dialogue systems: allow the system to adjust to the user’s sentiment (Rinaldi et al.,
2017).

Social media posts are usually informal and contain slang, irony, sarcasm, abbrevia-
tions, and emoticons, which are hard for a computer to understand (Pereira, 2021). These
difficulties are common to text classification problems, but there are challenges specific to
this domain, as mentioned by Einsenstein (2018):

• Targeted SA: mixed overall sentiment (positive towards one entity, negative towards
another). Requires identifying the entities and linking them to specific sentiment
words;
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• Emotion classification: the identification of emotions (e.g., anger, happiness, surprise)
instead of sentiment (e.g., negative, positive) can highly increase the number of
possible classes, making annotation more difficult and resulting in low accuracy;

• Domain adaptation: in different domains, the same word may express different sen-
timents (e.g., terrifying has positive sentiment if the domain is horror movies, but in
most domains, it would bear negative sentiment);

• Sentiment shifters: words/phrases that can change sentiment orientation (negation,
sarcasm).

SA can be performed using deep learning approaches, such as the ones presented in
section 2.2, but there are other options, such as lexicon-based approaches.

In lexicon-based classification, dictionaries of words annotated with their sentiment
polarity are used, and the number of words of each label that is present in the input is
calculated. The final label is the one with the higher count (Einsenstein, 2018). The
labeled dictionaries can be created manually or automatically, using, for example, seed
words to expand the list of words. What this later creation process does is to use a set
of words to search for synonyms or antonyms in a dictionary, adding them to the lexicon
with the corresponding sentiment polarity.

Examples of available sentiment lexicons are SentiWordNet (Baccianella et al., 2010),
AFINN (Nielsen, 2011), or Opinion Words (Hu and Liu, 2004). SentiWordNet is an example
of a sentiment dictionary, built for supporting sentiment classification and opinion mining
applications, and created using seed words. Table 2.3 presents the top five positive and
negative words (or expressions) found in this lexicon. AFINN is a list of words and phrases
manually rated for valence (pleasantness of a stimulus), with values that range from -5
(e.g., prick or twat) to 5 (e.g., hurrah or outstanding). Opinion Words is a dictionary
of opinion words, extracted from reviews, and their sentiment polarity (e.g., arrogant or
cranky as negative words, and mercy or relief as positive words).

Table 2.3: Top 5 ranked positive and negative words or expressions in SentiWordNet.

Rank Positive Negative
1 good, goodness abject

2 better off deplorable, distressing, lamentable,
pitiful, sad, sorry

3 divine, elysian, inspired bad, unfit, unsound
4 good enough scrimy
5 solid cheapjack, shoddy, tawdry

A corpus-based approach can be used as opposed to the dictionary-based approach,
where the set of words is used to search for new words in a corpus, through context-specific
orientations (which can sometimes be composed of multi-word expressions associated with
a specific sentiment) (Pereira, 2021).

According to Taboada et al. (2011), supervised classifiers (i.e., based on the use of
labeled data) are capable of performing very well in the domain they are trained on, but
the performance drops (almost to pure chance) if the same classifier is used on a different
domain. The authors also stress that valence shifters should be taken into account (e.g.,
intensifiers, downtoners, and negation), to avoid misclassification, since the presence of
negation, for example, can completely shift the text’s sentiment polarity (e.g., not good vs.
good.
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There is a lexicon and rule-based sentiment analysis tool, Valence Aware Dictionary
and Sentiment Reasoner (VADER)(Hutto and Gilbert, 2014), that is specifically attuned
to sentiments expressed in microblog-like contexts. Some translated solutions are available,
such as Léxico para Inferência Adaptada (LEIA)(Almeida, 2018). Otherwise, VADER of-
fers two approaches to its application to other languages: either the samples are translated
into English and the VADER algorithm is applied to it (Costa et al., 2021), or the lexicon
is manually edited, along with files containing negation examples or special meanings for
the language (Amin et al., 2019).

In the following sub-sections we will go over four substasks related to SA, and we will
discuss models for one of those substasks, Emotion Classification.

2.3.1 Subtasks

According to Pereira (2021), there are four subtasks related to the task of SA:

1. Polarity: The polarity classification subtask consists of identifying a degree of posi-
tivity or negativity in a given input. Polarity can consist of only positive and negative
labels, or also include a neutral class;

2. Subjectivity: Sentences can be classified as objective or subjective, and only the
latter are used for sentiment classification;

3. Emotion: Emotion classification may refer to feelings such as sadness or fear, and
will be explored further in sub-section 2.3.2;

4. Aspect-based: At the aspect level, the sentiment regarding specific aspects of the
entities is classified. This demands the identification of the entities and their aspects
first.

In the context of this dissertation, the most focused subtask is polarity, but emotion
can be considered for future work. Subjectivity could be helpful to filter out sentences
with no sentiment (objective utterances), but since Neutral can be a polarity label, this
subtask may not be required. The aspect-based subtask may be the least relevant since
this work will not focus on sentiment regarding entities’ specificities (e.g., such as price or
service).

2.3.2 Emotion models

SA is usually framed in terms of positive and negative categories Einsenstein (2018), but
it can also include a neutral category. Emotion Analysis uses a more broad spectrum
of emotions, and there have been efforts to define which emotions should be taken into
consideration:

• Plutchik (1984) argues that there are eight basic emotions: fear, anger, joy, sadness,
disgust, acceptance, surprise, anticipation (or curiosity), and proposes a wheel of
emotions, where each of these emotions is represented with different levels of arousal
(maximum arousal at the top and milder versions at the bottom). This representation
can be seen in Figure 2.9;
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• Ekman (1992) proposes six universal emotions: happiness, surprise, fear, sadness,
anger, and contempt;

• Pearl and Steyvers (2010) consider complex emotions: politeness, rudeness, embar-
rassment, formality, persuasion, deception, confidence, and disbelief;

• Cowen and Keltner (2017) identified 27 types of emotions elicited by emotionally
evocative short videos.

• Russell (1980) proposed a non-categorical circumplex model, that suggests that emo-
tions are distributed in a two-dimensional (or three-dimensional, if the Dominance
dimension is considered), containing Arousal and Valence dimensions. Valence rep-
resents the pleasantness of the stimulus, arousal represents the intensity of emotion
provoked by the stimulus, and dominance represents the degree of control exerted by
the stimulus.

Emotion models make text classification harder due to there being more classes, which
makes even human annotators frequently disagree with each other regarding the chosen
class (Einsenstein, 2018), meaning it is hard to isolate the most prominent emotion.

Figure 2.9: Plutchick’s Wheel of Emotion (Plutchik, 1984)

The choice of an emotion model would depend on the goals and context of the clas-
sification problem. For the context of this dissertation, Ekman’s or Plutchik’s proposals
are likely to fit the objectives better, since distinguishing between some of the complex
emotions, such as formality or confidence, probably would not be relevant enough to make
up for the larger number of labels and the consequently increased difficulty. Whether a
client is using formal speech or communicating with confidence does not necessarily make
a difference to help understand if they require human assistance or not. Russell’s proposal
may also be interesting because there is a relation between the valence dimension and
sentiment polarity (a pleasant stimulus could be associated with a positive sentiment) that
could be experimented with.
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2.4 Dialogue Analysis

A dialogue is a conversation between two or more participants where each speaks in turns
(ideally). A turn can consist of a single sentence, a single word, or multiple sentences,
making it potentially very complex (Jurafsky and Martin, 2021). Similarly to NLP and
SA, which also handle human language, DA also faces several challenges, which will be
presented in this section.

DA allows for the modeling and automatic detection of a discourse’s structure, usually
through Dialogue Act Recognition (DAR), which will be explained further ahead in this
section. This kind of operation may be useful for chatbots, where it is helpful to know
whether a question was asked or an order was issued, or for meeting summarizers, where
it is important to keep track of who said what to whom (Stolcke et al., 2000). Examples
of dialogue acts would be Answer, Question, Request, Greet, or Acknowledgment.

Besides chatbots, which are designed for extended conversations, another type of di-
alogue system is the task-oriented dialogue system, where the conversational agent helps
the user complete tasks (e.g., they can give directions, make restaurant reservations, or
make phone calls) (Jurafsky and Martin, 2021). This is not the focus of this work, so we
will not delve deeper into this subject.

Dialogue analysis may not be sufficient to perform SA, since the structure of a conver-
sation may not give enough information to assess the sentiment behind some utterances.
For example, knowing that an answer follows a question, or that someone is giving an
opinion, does not, by itself, provide information on the sentiment portrayed.

2.4.1 Challenging properties of human conversation

Jurafsky and Martin (2021) explored some of the properties of human conversation, which
are among the reasons why it is hard to build dialogue systems capable of carrying on
natural conversations. These challenges are summarized in this subsection, and Table 2.4
will be used as an example to better visualize the challenges.

It is important for a system to understand when a user has finished talking, so that
it can process its utterance and reply to it, and also when the system itself should stop
talking, due to an interruption from the user or a similar situation.

These tasks, called Endpoint Detection, can be challenging since in conversation, speak-
ers start or stop talking almost immediately after an interruption or the end of an utterance.
This is also made harder due to noise. An example of an interruption is present in turns
16 and 17 of Table 2.4.

In a conversation, it is important to establish a common ground between the partici-
pants, which is one by grounding each other’s utterances.

Grounding is an acknowledgment that what was said by one was understood by the
other. A system can perform this kind of action by explicitly agreeing with the other user’s
utterance, by repeating it or parts of it, or by implying that the utterance was understood
and moving to another action (e.g., by using the word "And" at the start of the utterance).
Examples of grounding are present in turns 8 or 10 of Table 2.4, where the agent says OK,
or in turn 2, where the agent repeats in May.

In human conversations, initiative shifts back and forth between the participants. Ini-
tiative in this context means actions such as asking questions, changing topics, or asking
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Table 2.4: Example of a conversation between a human travel agent and a client. The
symbol # indicates overlaps in speech (Jurafsky and Martin, 2021).

Speaker Turn
Number Utterance

Client 1 ... I need to travel in May.
Travel
Agent 2 And, what day in May did you want to travel?

Client 3 OK uh I need to be there for a meeting that’s from the 12th to the 15th.
Travel
Agent 4 And you’re flying into what city?

Client 5 Seattle.
Travel
Agent 6 And what time would you like to leave Pittsburgh?

Client 7 Uh hmm I don’t think there’s many options for non-stop.
Travel
Agent 8 Right. There’s three non-stops today.

Client 9 What are they?

Travel
Agent 10

The first one departs PGH at 10:00am, arrives Seattle at 12:05 their time.
The second flight departs PGH at 5:55pm, arrives Seattle at 8pm.
And the last flight departs PGH at 8:15pm, arrives Seattle at 10:28pm.

Client 11 OK I’ll take the 5ish flight on the night before on the 11th.
Travel
Agent 12 On the 11th? OK. Departing at 5:55pm arrives Seattle at 8pm, U.S. Air flight 115.

Client 13 OK.
Travel
Agent 14 And you said returning on May 15th?

Client 15 Uh, yeah, at the end of the day.
Travel
Agent 16 Ok. There’s #two non-stops...#

Client 17 #Act...actually #, what day of the week is the 15th?
Travel
Agent 18 It’s a Friday.

Client 19 Uh hmm. I would consider staying there an extra day til Sunday.
Travel
Agent 20 OK... OK. On Sunday I have...

for clarification.

This is difficult for dialogue systems to achieve, as they are usually passive responders,
reacting only to the user’s initiative.

Inference can be crucial in the understanding of dialog. Sometimes users will not
explicitly reply to a question but will mention something related to it instead.

An example of inference is present in turns 2 and 3 of Table 2.4, where the client
mentions the need to be in Seattle from the 12th to the 15th. The agent knows that to
have a meeting it is required to be at the place where the meeting is held, and therefore
that the meeting may be a reason for the travel. Since people like to arrive the day before
a meeting, the agent infers that the flight should be on the 11th.

2.4.2 Dialogue Acts

Dialogue acts are labels (e.g., statement, opinion, question, response, and agreement) over
utterances, which roughly correspond to the speaker’s intention (Einsenstein, 2018).

Some dialogue acts compose adjacency pairs, which represent the relation between the
first pair part and the second pair part. Questions are usually followed by answers and
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proposals by acceptance or rejection. However, it is important to take into consideration
that the second pair part may not follow the first pair part immediately, meaning they can
be separated by a side sequence (e.g., a clarification or correction) (Jurafsky and Martin,
2021).

Dialogue analysis and dialogue acts are usually defined according to a particular ap-
plication, meaning the lack of domain independence is a common challenge (Stolcke et al.,
2000). In these situations, the label and acts sets must be designed according to the needs
of the problem at hand.

According to (Stolcke et al., 2000), the most frequent dialogue acts are:

• Statement and Opinion, that can be combined or distinguished, if relevant. An
opinion is usually countered by other opinions and often includes expressions such as
I think or I believe;

• Question, that can be split into yes or no questions, wh-questions, and declarative
questions, which lack indicative words such as who, where, when, as opposed to wh-
questions;

• Backchannel, that has a discourse-structuring role, and is usually an indication that
the speaker should continue talking (e.g., um or uh-huh), and also commonly occur
at syntactic boundaries;

• Abandoned utterances, that happen when the speaker does not finish the utterance
and are usually followed by a restart;

• Answer and Agreement, that can be distinguished by the previous dialogue act (if it is
a question or an opinion or proposal), since yes could be an answer or an agreement.

In the case of task-oriented dialogue systems, the dialogue acts can be related to the task
at hand, and could include Hello, Inform_Restaurant, Request_Hotel, Deny_Train_Booking,
or Bye, for example. Inform, Request, and Deny acts apply to several domains, as in the
examples given.

DAR and SA are closely related and mutually promote each other by being jointly
performed. The former’s goal is to label each utterance in a dialogue and identify the
underlying intention, while the latter’s goal is to detect the sentiment transmitted by each
utterance, which can help to better capture a speaker’s intention (Qin et al., 2020a). Gen-
erally, the same sentiment will be expressed once the dialogue act Agreement is assigned.
Knowing the sentiment information also contributes to the dialogue act prediction, because
when the speaker changes the sentiment from Negative to Neutral, there is a tendency for
the dialogues to transition into Statement (Li et al., 2020). An Opinion dialogue act usually
contains a Non-Neutral sentiment, while a Question is more likely to be Neutral.

2.5 Summary

This section offers a summary regarding the present chapter, which presented NLP, ML,
SA, and DA.

This work will deal with human language, both for SA and for DA, which will require
NLP techniques so that machines know how to handle the supplied data correctly. Both
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SA and DA use classification models. These models can use supervised ML algorithms,
which may internally apply NLP techniques.

The above paragraph summarizes how the presented domains relate to each other and
the goal of this dissertation, SA in the context of dialogue.

In the following chapter, some of the work done in contexts that are relevant to the
development of this dissertation will be presented.
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Chapter 3

Related Work

In this chapter, some approaches to sentiment analysis will be summarized, in three differ-
ent contexts: in Twitter data, its application to the Portuguese language, and in combina-
tion with Dialogue Act Recognition (DAR), also known as Dialogue Act Classification.

These three contexts were chosen because they relate to the development of this work.
The first is because Twitter has been a popular target for Sentiment Analysis (SA), and
also because one of the goals is the creation of a dataset, and dialogues can be established
on Twitter. The second, as it is a requirement that the models developed are applied to
Portuguese. The third, because the combination of SA and DAR has proved to improve
the results, in comparison to using SA alone (Li et al., 2020).

The available datasets for SA will also be summarized, in addition to some techniques
for dataset creation.

3.1 Sentiment Analysis with Twitter data

This section will present some of the work developed for SA with Twitter data.

One of the most studied Natural Language Processing (NLP) tasks on Twitter is sen-
timent recognition (Cerisara et al., 2018), which is for example a recurrent task at the
International Workshop on Semantic Evaluation (SemEval)(Rosenthal et al., 2017) eval-
uation campaign. SemEval consists of a series of evaluations of computational semantic
analysis systems and explores tasks such as SA of product review and their aspects (Pontiki
et al., 2016), SA of figurative language on Twitter (Ghosh et al., 2015), detecting stance
in tweets (Mohammad et al., 2016), and emotion detection (Strapparava and Mihalcea,
2007). In fact, the work by Severyn and Moschitti (2015) at SemEval-2015 Task 10: SA in
Twitter, was the winner for subtask A: Phrase-level Polarity and placed second for subtask
B: Message-Level Polarity (Rosenthal et al., 2015). This work will be explained further
ahead.

Furthermore, Twitter data can be used to compile datasets of dialogue (Ritter et al.,
2010), which is a goal of this work. Burkov (2020) mentions that a dataset should reflect
real inputs, i.e., the training samples should contain inputs like the ones that the model
will receive in a real-world application. In the context of this dissertation, a good source of
data would be Twitter, due to the short and informal messages typical of this social media,
which resemble the real inputs that the solution will need to handle. Another advantage of
using Twitter as a data source is that dialogues between two or more users are very present
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in this social network, and are of high importance for this work since the real inputs will
consist of a conversation between two users.

Tweets often include abbreviations, private information, or misspelled words, so prepro-
cessing is an important step of any work that handles Twitter data. Usernames, hashtags,
URLs, or even emoticons (if not being used by the solution) can be replaced by identifiers
(e.g., USER, URL) in order to protect the identity of the entities involved. Abbreviations
can be converted to their original forms, and a spell checker can be applied to correct
misspelled words.

Table 3.1 summarizes the works that applied SA using Twitter data, regarding the
classification technique used and the classification result.

Table 3.1: Works about SA with Twitter data

Classification
Technique Result

Duarte (2013) Lexicon-based (SentiWordNet) Sentiment (aspect-based)
Duarte et al. (2019) Naive Bayes and SVM Emotion

Madanian et al. (2021) LSTM Sentiment
Kouloumpis et al. (2021) AdaBoost and SVM Sentiment
Pak and Paroubek (2010) Naive Bayes Classifier, SVM, and CRF Sentiment

Severyn and Moschitti (2015) CNN Sentiment
Jianqiang et al. (2018) CNN Sentiment

Looking at Table 3.1, it is noteworthy that only the first of the related works used a
Non-Machine Learning (ML) approach, (Duarte, 2013). Regarding the ML approaches, in
the works presented, Support Vector Machine (SVM)s and Convolutional Neural Network
(CNN)s were the most common models. It is also of note that only the oldest work used
Conditional Random Field (CRF), which did not perform as well as a Naive Bayes classifier
for sentiment classification of documents.

The first two entries in Table 3.1 will be explained in the next section since they target
the Portuguese language. The remaining works will be summarized below.

Madanian et al. (2021) used Twitter to explore reactions and perceptions of the popula-
tion towards Covid-19 health messaging. This work used Lamsal (2020)’s Covid-19 Tweets
Dataset, which contains IDs and sentiment scores of tweets related to the pandemic. The
data was collected using the Twitter Stream Application Programming Interface (API),
and it looked up tweets with keywords or hashtags commonly used when referencing the
Coronavirus. Before computing the sentiment scores, the tweets were cleaned, i.e., sym-
bols, URLs, emojis, and similar components were removed, spelling correction was applied,
and abbreviations were converted to their original forms. To obtain the sentiment scores,
a Long Short-Term Memory (LSTM) deep network model was used, and the values are
defined in the range [-1,+1], where a negative value means a Negative sentiment, a positive
value means a Positive sentiment, and a value of zero means a Neutral sentiment. Mada-
nian et al. (2021) used text extraction to explore sentiments regarding health messages such
as wash hands, facemask, social distancing, and others. The outcome of tweets analysis
such as this could help identify the concerns and reactions to covid-19 and provide a better
perception of the situation to governments, supporting them in implementing appropriate
policies.

Kouloumpis et al. (2021) uses a hashtagged data set (i.e., they selected messages con-
taining hashtags that could be associated with sentiment) and an emoticon data set (i.e.,
they selected messages containing either :) or :( ) for development and training, while for
evaluation they used a manually annotated data set on certain topics. In this work, they
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found that AdaBoost performed better than SVMs, and concluded that the presence of
intensifiers (e.g., all-caps, I LOVE THIS, and character repetitions, happyyyyyyyyy) and
sentiment emoticons were very useful for SA.

Pak and Paroubek (2010) automatically collect a corpus for SA, containing sentiment
polarity, and build sentiment classifiers for documents. The tweets collected were queried
for happy and sad emoticons (e.g., :-), :D, =(, ;( ) and for accounts of popular newspapers
(e.g., New York Times, Washington Posts) to obtain objective texts. They constructed
n-grams and verified that better results were obtained when using bigrams and that a
Naive Bayes classifier outperformed the SVM and the CRF models.

Severyn and Moschitti (2015) and Jianqiang et al. (2018) used CNNs as their classi-
fication model. Jianqiang et al. (2018) used a CNN to refine the word embeddings on a
large corpus, then the pre-trained parameters from this model are used to initialize the
final CNN model. They claim that providing the network with good initialization param-
eters has a significant impact on the accuracy of the model. Severyn and Moschitti (2015)
also focused on providing good features, obtaining Global Vector (GloVe) representations,
which were then combined with n-grams and polarity scores (obtained using a lexicon).
They then fed the combined features to a CNN for training and predicting the sentiment
labels, and called this model GloVe-DCNN. The number of hashtags, emoticons, and cap-
italized words, for example, were also used as features in the work by Jianqiang et al.
(2018). These two final words make clear the importance of representation, mainly when
using CNNs that better capture the neighboring words.

There is a downside to using Twitter to create a dataset, which is that the platform’s
license only allows the tweets’ (or users’) ids to be published1. If a user deletes a tweet
or if, for some reason, the tweet becomes unavailable, then part of the compiled dataset
would not be reachable, and the results of the project will not be completely reproducible.

3.2 Sentiment Analysis in the Portuguese language

This section will present some of the work developed for SA in the Portuguese language.

One of the challenges of this work is the language restriction because the developed
approaches are generally applied to English. However, there have been some projects
that have addressed this constraint. There is a survey of SA for the Portuguese language
(Pereira, 2021) that categorizes and describes works involving approaches to each of the
tasks of SA, as well as NLP tools, lexicons, datasets, and more. This work claims that
often translating texts into English and using tools developed for that language may be
more effective than efforts in Portuguese, however, this is highly debatable.

Table 3.2 summarizes the works that applied SA to the Portuguese language, regarding
the classification technique used, whether translation was applied, the classification result,
whether it was applied to European or Brazilian Portuguese, and the data source used for
the evaluation of the models.

Only Duarte (2013) and Hammes and de Freitas (2021) used translation in their works.
The former translated n-grams to English and looked them up on SentiWordNet (Bac-
cianella et al., 2010), a sentiment dictionary, to get their sentiment values. The latter
applied automatic translation to GoEmotions, a highly unbalanced dataset that contains

1Content redistribution terms: https://developer.twitter.com/en/developer-terms/
agreement-and-policy
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Table 3.2: Works about SA in the Portuguese language

Classification
Technique Translation Result Portuguese Data Source

for Evaluation

Carvalho and Silva (2015) Lexicon-based
(SentiLex) No Sentiment European SentiCorpus-PT and a

literary piece "Os Pobres"

Balage Filho et al. (2013) Lexicon-based
(LIWC) No Sentiment Brazilian ReLi

Duarte (2013) Lexicon-based
(SentiWordNet) Yes Sentiment

(aspect-based) European Twitter

Duarte et al. (2019) Naive Bayes and SVM No Emotion European Twitter

Dosciatti et al. (2013) SVM No Emotion Brazilian Emotion in News
Portuguese dataset

Hammes and de Freitas (2021) Fine-tuned BERT,
BERTimbau Yes Emotion Brazilian Translated GoEmotions

dataset

over 50.000 sentences from Reddit manually labeled in 28 classes (including Neutral).

Half of the works in Table 3.2 used lexicon-based approaches, while the other half
used machine learning approaches. While Duarte (2013) based his classification in Senti-
WordNet, a tree structure was also implemented, which represented relations between each
segment of the input. The sentiments found for each segment are assigned to the closest
entity within the tree and are then grouped into a single label for each entity found, as well
as for the whole message. It is also relevant to mention that Hammes and de Freitas (2021)
fine-tuned the pre-trained BERT models for the Portuguese language (BERTimbau) and
also applied a balancing algorithm to GoEmotions, which allowed for better results.

Regarding the data source for the evaluation of the models, Carvalho and Silva (2015)
used SentiCorpus-PT (Carvalho et al., 2011), a social media corpus of user comments on
political news articles in Portuguese, and a book by Raul Brandão. Resenha de Livros
(ReLi) (Freitas et al., 2014), used by Balage Filho et al. (2013), is a corpus of book reviews
in Portuguese. Dosciatti et al. (2013) used a corpus of news extracted from a Brazilian
newspaper. Hammes and de Freitas (2021) translated the GoEmotions dataset, which
contains over 50.000 sentences from Reddit. The remaining works, (Duarte, 2013, Duarte
et al., 2019) used data extracted from Twitter for the evaluation of their models. There
seems to be a tendency for using social media (Twitter, Reddit) or online newspapers as a
data source.

Further details regarding each of the works mentioned in Table 3.2 are presented below.

Carvalho and Silva (2015) developed a sentiment lexicon and a lexicon-based solution
for the extraction of sentiment and opinion in Portuguese texts. Each entry was selected
by its ability to modify human nouns and classified by its polarity (Positive, Negative,
or Neutral). The use of human predicates makes it a lexicon oriented by the syntactic
restrictions of the predicates and not by any specific domain of knowledge.

Balage Filho et al. (2013) presents an evaluation of the Brazilian Portuguese Linguistic
Inquiry and Word Count (LIWC) dictionary for SA in Brazilian Portuguese texts. The
mentioned dictionary has sentiment polarity labels associated with each entry. The classi-
fication algorithm used is similar to the SO-CAL algorithm (Taboada et al., 2011), which
computes the individual polarity of each word and then sums them up to form the text
polarity. The results showed that this lexicon had higher F-score results for positive texts
(in opinion and sentence classifications) than SentiLex-PT, which had higher F-score re-
sults for negative texts. This suggests that the LIWC dictionary performs better indicating
positivity than negativity in opinion and sentence classifications.

In his Master’s dissertation, Duarte (2013) proposed a SA and entity recognition tool
using a tree structure, which represented relations between each segment of the input by
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using part of speech (e.g. noun, verb, adverb) classification. This work used Twitter
messages in the Portuguese language to extract information concerning different entities.
The messages were filtered and all known entities were marked and sentiment n-grams
were labeled (Positive, Negative, or Neutral). To get the sentiment value of the n-grams,
they were translated to English and looked up on SentiWordNet (Baccianella et al., 2010),
a sentiment dictionary mentioned in section 2.3. After the identification, the sentiments
found are assigned to the closest entity within the tree and are then grouped into a single
label for each entity found, as well as for the whole message.

The following two works used Ekman’s six basic emotions model (Ekman, 1992) as
their classification target.

Duarte et al. (2019) collected texts from Twitter, and exploited emojis, often connected
with emotions, to classify emotion. They also suggested that emojis could be used for self-
labeling, as an alternative to manual annotation, which is a similar approach to previous
words that used emoticons as features. However, the amount of conversations on Twitter
where each text contains at least one emoji is low, which would limit the applications of
this approach.

Dosciatti et al. (2013) presented an approach using linear multiclass SVMs and a la-
beled dataset consisting of news extracted from a Brazilian newspaper. This work did
not consider words with an occurrence lower than four and then selected words with an
information gain above 68%, reducing the dimensionality. The features used for training
the SVMs were designed using Term Frequency - Inverse Document Frequency (TF-IDF)
to set the weights for each word.

A transformer-based solution was proposed by Hammes and de Freitas (2021), who fine-
tuned the pre-trained Bidirectional Encoder Representations from Transformers (BERT)
models for the Portuguese language (BERTimbau) for the classification of 27 emotions.
This solution applied automatic translation to the GoEmotions dataset, a highly unbal-
anced dataset (the most frequent class has 184 times more samples than the least frequent
class) manually labeled in 28 classes (including Neutral). This work used a balancing
algorithm, calculating the weights based on the number of samples of each class, which
was considered the reason for the better results in comparison to those obtained using the
BERT model for the original GoEmotions dataset.

3.3 Sentiment Analysis and Dialogue

This section will present some of the work developed for SA and DAR as joint tasks which
mutually promote each other.

Mastodon (Cerisara et al., 2018) and DailyDialog (Li et al., 2017) are popular datasets
for sentiment and dialogue classification, and are labeled for dialogue acts (e.g., Inform,
Question, or Directive) and sentiment (Positive, Negative, Neutral) or emotion (e.g., Anger,
Joy, or Sadness). Table 3.3 presents a snippet of a dialogue sample from Mastodon,
that showcases the previously mentioned relation between SA and DAR, where the same
sentiment is expressed when the dialogue act is Agreement.

Some approaches that perform the two classification tasks simultaneously have been
developed, as shown in Table 3.4. All of the presented works used the Mastodon and
DailyDialog datasets for evaluation.

Looking at Table 3.4, deep learning seems to be the common option for the joint tasks
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Table 3.3: Dialogue sample from the Mastodon dataset, and their corresponding dialogue
act and sentiment labels

Speaker Utterance Dialogue Act Sentiment
User A they are as tired of social media as i am . Statement Negative

User B yes ! i don’t get it . everyone i talk to about facebook–everyone - -
hates it ,but none of them will take action . Agreement Negative

Table 3.4: Works about SA and DAR

Classification Technique Result
Qin et al. (2020a) Deep Co-Interactive Relation Network Dialogue act and sentiment
Li et al. (2020) Bi-channel Dynamic Convolutions Dialogue act and sentiment

Qin et al. (2020b) Co-interactive Graph Attention Network Dialogue act and sentiment

of SA and DAR. Since the models used are more complex than in previous solutions, these
architectures will be explained in more detail below.

Qin et al. (2020a) proposed a Deep Co-Interactive Relation Network (DCR-Net) which
adopts a co-interactive relation layer to explicitly model the contextual and mutual inter-
action information between both tasks. The proposed architecture uses one hierarchical
encoder, consisting of a Bi-directional LSTM (BiLSTM), which captures temporal rela-
tions, and a self-attention layer, which considers the contextual information, shared by
both operations. The co-interactive layer takes as input the dialogue act and the senti-
ment representations and outputs new representations, which consider the cross-impact
on the two tasks. Before combining the information, a BiLSTM is applied for DAR, and
a Multilayer Perceptron (MLP) is applied for SA to make them more task-specific. To
better capture mutual information, the co-interactive layer can be stacked. Two separate
decoders are used to perform the DAR and SA predictions. At the time, the DCR-Net
model achieved state-of-the-art performance in Mastodon and DailyDialog.

Li et al. (2020) proposed Bi-Channel Dynamic Convolutions, which aimed at improving
the joint DAR and SA tasks by fully modeling the local contexts of utterances. The pro-
posed architecture uses a BiLSTM layer to encode the input utterance into representations,
and then, in the utterance encoder layer, multi-layer bi-channel versions of Dynamic Con-
volution Network (DCN) and of Context-aware Dynamic Convolution Network (CDCN)
are used to capture the context representations for DAR and SA, respectively. DCN is
a variant of CNNs that is more flexible on mining contextual features but ignores the
surroundings of the utterance, while CDCN is a variant that takes context into account,
allowing for a more informative contextual representation. After the context representa-
tions are captured, a linear transformation is applied, and the model makes the predictions
separately. This approach used DiaBERT (Liu and Lapata, 2019), a BERT-based encoder
that takes the whole dialogue and outputs a complete representation, while BERT restricts
the input to a maximum of two utterance sentences. The proposed model achieved better
results than DCR-Net in Mastodon and DailyDialog.

Qin et al. (2020b) proposes a Co-Interactive Graph Attention Network (Co-GAT) to
jointly perform the DAR and SA tasks. In general, previous models either consider only
one source of information (contextual or mutual interaction) or employ both types using
a pipeline modeling method, which results in the two kinds of information being modeled
separately. In this model, a cross-utterances connection, for contextual information, and a
cross-tasks connection, for mutual interaction information, are constructed and iteratively
updated with each other to simultaneously model both types of information. Both con-
nections are integrated into a unified graph architecture, and each node can be updated
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simultaneously with contextual and mutual interaction information. The architecture is
composed of a shared hierarchical speaker-aware encoder (using a BiLSTM to capture tem-
poral relationships, and a speaker-aware Graph Attention Network (GAT) to incorporate
the speaker information), a stack of co-interactive graph layers (models the interaction pro-
cess with the cross-tasks and cross-utterances connections), and two separate decoders for
each prediction. The proposed model achieved better results than DCR-Net in Mastodon
and DailyDialog but was not compared with the model proposed by Li et al. (2020).

A common conclusion of the referenced works is that using fine-tuned BERT improved
the results obtained.

3.4 Datasets for Sentiment Analysis

This section will present dataset creation approaches, as well as some of the already avail-
able options.

A dataset is required for any kind of solution. Since the development of one or more
compilations of data is a goal of this dissertation, some datasets were explored. However,
it should be kept in mind that the domains of interest for this dissertation, as defined by
Altice Labs (AL), are eCommerce, TV, Health Care, Finance and FinTech, and Telecom-
munications, which may not be represented in the datasets summarized in Table 3.5.

Table 3.5: Available datasets

Size Annotation Language Data
Source(s) Domain(s)

DailyDialog 13.118 dialogues Dialogue act
and emotion English Websites for the practice

of English dialogues
Daily life topics (e.g., buying goods

from a shop, summer vacation)

Mastodon 505 dialogues Dialogue act
and sentiment English Social Media (Mastodon) General dialogues in the

octodon.social Mastodon instance
Friends’ Emotion

Detection 12.606 utterances Emotion English TV Show Friends Daily life topics common
in comedy TV shows

CORAA 400.000+ audio
transcriptions - Brazilian

Portuguese Five audio corpora Spontaneous speech (e.g., interviews,
informal conversations)

Emotion in News 1.750 news Emotion Brazilian
Portuguese News extracted from Globo news website News (international, national,

politics, economics, law enforcement)

ReLi 1.600 reviews Opinion and
sentiment

Brazilian
Portuguese Book reviews posted on the Internet Book reviews

Sentituites-PT 30.470 tweets Sentiment Portuguese Tweets posted during the 2011
Portuguese elections Politics

Wizard of
Wikipedia 22.311 dialogues - English WoZ framework Wikipedia

Multi-WoZ 8.438 dialogues Dialogue act
and slots English WoZ framework Restaurants, Attractions, Hotels

CamRest 680 dialogues Dialogue act
and slots English WoZ framework Restaurant search

Ubuntu Dialog Nearly 1 million
dialogues - English Ubuntu chat logs (2004-2015) Technical support for

Ubuntu-related problems

A brief analysis of Table 3.5 shows that only two datasets are labeled for dialogue acts
and sentiment or emotion, DailyDialog (Li et al., 2017) and Mastodon (Cerisara et al.,
2018) (Table 3.3 shows a snippet from a Mastodon conversation). DailyDialog is a multi-
turn, human-written, dialogue dataset collected from various websites which serve for the
English learner to practice English. Mastodon is a Twitter-like corpus from an alternative
social network, Mastodon, which allows for reproducible experiments. Both these datasets
are commonly used for model evaluation, as seen in Table 3.4.

From Table 3.5 we can also see that only three datasets do not contain dialogues,
Emotion in News (Dosciatti et al., 2013), ReLi (Freitas et al., 2014), and Sentituites-PT
(Carvalho et al., 2011). These datasets are in the Portuguese language and are being
considered because they can be used to verify if a model trained with dialogue data could
be adapted to non-dialogue contexts. For this use, the Sentituites-PT data could be more
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interesting, since it is larger and in Portuguese.

The remaining datasets, DailyDialog, Mastodon, Friends’ Emotion Detection (Za-
hiri and Choi, 2018), CORAA (Junior et al., 2021), Wizard of Wikipedia, Multi-WoZ
(Budzianowski et al., 2018), CamRest (Wen et al., 2016), and Ubuntu Dialog, contain dia-
logues, but are in English. Regarding the Friends’ Emotion Detection dataset, it presents
a collection of multiparty dialogues from the TV show Friends with emotion labels for each
utterance. Since it contains dialogue and emotion, this could be an interesting dataset,
despite being in the English language. The language restriction could be bypassed by us-
ing available Portuguese subtitles of the TV show, aligning them with the utterances, and
importing the labels from the original dataset.

It is also worth noting that none of the datasets cover the desired domains, Ubuntu
Dialog being the closest. The largest datasets, Wizard of Wikipedia (Dinan et al., 2018)
and Ubuntu Dialog (Lowe et al., 2015), are, sadly, not annotated, as seen in Table 3.5.
The CORAA dataset is not labeled, however, there is another version of this dataset,
CORAA SER, composed of approximately 50 minutes of audio segments labeled in three
classes (Neutral, Non-Neutral Female, Non-Neutral Male), based on audio features. This
version of CORAA is annotated for emotions, so Neutral means there was no well-defined
emotional state, and Non-Neutral was labeled considering paralinguistic elements (e.g.,
laughing, crying), which do not apply to our context. This dataset was introduced in the
S&ER 2022 Workshop2, which is part of the 15th edition of the International Conference
on the Computational Processing of Portuguese (PROPOR 2022).

Regarding domains and data sources, there does not seem to be a trend between the
presented works, except maybe for the adoption of a Wizard of Oz (WOZ) framework,
since there are several options and domains from where to extract or create data.

Despite not being mentioned in Table 3.5, five of the datasets contained information
regarding the average number of turns per dialogue. Multi-WoZ had the largest ratio,
13.46, while CamRest had the smallest ratio, 5. DailyDialog had a ratio of 7.9, Wizard of
Wikipedia had a ratio of 9.1, and Ubuntu Dialog had a ratio of 8 turns per dialogue.

The datasets not yet presented will be summarized below, as well as the option of
creating a dataset using a WOZ framework.

The CORAA corpus (Junior et al., 2021) is an Automatic Speech Recognition (ASR)
dataset comprised of over 290 hours of audios in Brazilian Portuguese and their respec-
tive transcriptions. This dataset combined five existing audio corpora, ALIP (Gonçalves,
2019), C-ORAL Brasil I (Raso and Mello, 2012), NURC Recife (Oliviera Jr., 2016), SP2010
(Mendes and Oushiro, 2013), and TEDx Portuguese talks3. For this work, only the tran-
scriptions would be of use, since it is not a goal to experiment with data in an audio
format.

ReLi and Emotion in News were used in works mentioned in the previous sections.
ReLi contains book reviews manually annotated and their polarities, and Emotion in
News contains news extracted from a Brazilian newspaper and uses Ekman’s emotions
for classification.

SentiTuites-PT is a corpus of tweets posted by Portuguese users during the 2011 elec-
tion campaign. The corpus is labeled for sentiment polarity with values -1 (Negative), 0
(Neutral), and 1 (Positive), regarding the entity identified in the tweet.

2https://sites.universidadedefortaleza.com/propor2022/?page_id=367
3www.ted.com
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Multi-WoZ and CamRest are task-oriented datasets, which is why they include a label
for slots, or dialogue states (e.g., postcode, name, phone), and not just dialogue act labels
(e.g., recommend, not found, greet). Both datasets, along with Wizard of Wikipedia, were
created using a WOZ framework.

In Wizard of Wikipedia, a dataset of human-to-human conversations was built using
crowd-sourced workers. Several topics connected to Wikipedia4 were discussed, and one of
the humans, playing the role of the apprentice, has the goal of going in-depth about a chosen
topic and keeping the conversation engaging, while the other human, playing the role of
the wizard, has access to the Wikipedia information and has the goal of informing the other
person about a topic, providing them with a relevant and engaging reply. CamRest and
Multi-WoZ also used crowd-sourced workers to develop the conversations. In the former,
the system was designed to help users find restaurants in the Cambridge area, while in the
latter, the system was designed to help tourists find restaurants, attractions, and hotels.

A commonly adopted approach for the development of a dataset is through the WOZ
framework (Kelley, 1984). WOZ consists of one or more wizards, humans who simulate
part or whole of the performance of the system being designed, while interacting with
users, apprentices, who preferably believe themselves to be using a real system. A series
of interactions in this format has the potential to deliver a specification of the system’s
input/output behavior which can then be safely implemented, by replacing the wizard with
a learned agent (Bernsen et al., 1994). This approach was challenging in the context of
this dissertation, due to the logistical needs involved, mainly the time required to set up
the framework, and the manpower required to make it work, and so was not pursued.

Gonçalo Oliveira et al. (2022) presents an interesting overview of existing dialogue
datasets, containing several more options than presented in Table 3.5, but still, none of
them check all the requirements for this work.

As one can verify, the options for dataset creation or application are vast, although the
majority are, unfortunately, not applicable to this work. The choice of an approach would
depend on the language, annotation, type of speech (dialogue or regular text), domains
represented, and the goals of the work itself.

3.5 Summary

In this section, work related to several parts of this dissertation was overviewed, and can
be summarized as follows:

Regarding the use of Twitter data for SA, it was verified that it is commonly used in
similar problems and that it may be a suitable source for real-world data. Tweets can be
collected using APIs and may require somewhat complex preprocessing. For some domains,
there are already collections of tweets available.

Regarding the work applied to the Portuguese language, some possible solutions involve
using a Portuguese sentiment lexicon, translating the Portuguese input and looking up
sentiments in an English dictionary, collecting data in the Portuguese data, or using fine-
tuned models in the Portuguese language.

Regarding the combination of SA and DAR, it was confirmed that solutions that con-
sider these joint tasks have interesting results. It is also noteworthy that the use of a
fine-tuned BERT model improved the performance for each of the mentioned approaches.

4https://en.wikipedia.org/wiki/Main_Page
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Finally, there are several options for the development of a dataset, the translation of an
available collection, the use of speech-to-text data (samples provided by AL), the extraction
of data from Twitter, or the development of an intricate WOZ approach. However, not
all of them will be usable for this work, either because of time constraints, regarding the
WOZ option, or due to data incompatibilities, regarding the translation option. This last
one will be explained further in section 5.1.

In the following chapter, we will present the work plan (estimated vs. real) for this
dissertation.
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Planning

This chapter presents the expected tasks and corresponding deadlines predicted in the
early stage of this dissertation and compares them with the real work plan.

The following tasks were defined:

• Data Creation: Includes the creation of two datasets, and the exploration of other
alternatives;

• Data Annotation: Includes the manual annotation process and the exploration of the
emoji-based alternative;

• Data Analysis: Includes the analysis of the number of turns, the number of dialogues,
the average turns per dialogue, the number of samples of each label, the agreement
level, and the frequencies of each label, as well as a general analysis of the data
gathered (e.g., analysis of the tweets from each account);

• Models Development: Includes the development of baseline and Machine Learning
(ML) approaches, and the latter includes text (e.g., Random Forest, Support Vector
Machine (SVM)s) and sequence/context (e.g., Transformers) approaches;

• Models Evaluation: Includes the application of evaluation metrics to the created
datasets;

• Models Optimization: Includes the comparison of different solutions and corpus avail-
able, the implementation of hyperparameters’ tuning and cross-validation techniques,
and the proposal of a solution that would identify recurrent problems;

• Documentation: Includes the writing of the dissertation and the scientific articles,
commenting on the code developed, and writing on Altice Labs (AL)’ Wiki page.

The predicted work plan, containing the mentioned tasks and their expected timelines
is summarized in Figure 4.1. The actual work plan is presented in Figure 4.2.

There are plenty of differences between the original (predicted) and actual work plans.
First, the timeline was extended from June to August, due to delays in the development of
the proposed work and so that more results, experiences, and analyses could be performed.

Regarding the beginning of each task, the majority was accurate, with the exception
of the Models Optimization task, which was postponed to the end of July, due to the
extended time taken with the previous tasks.
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Figure 4.2: Actual Work Plan

Regarding the Data-related tasks, what took the longest was the data annotation,
especially since it was dependent on the availability of third parties, but also because the
choice of data would affect all the remaining work. Hence, we took some time to consider
the pros and cons of each possibility (e.g., translation of the Friends’ Emotion dataset,
extraction from Twitter, annotation of existing datasets such as CORAA or Ubuntu Dialog,
generation of data based on the AL dataset, development of a Wizard of Oz (WOZ)
framework), and perform some small experiments and data exploration, which naturally
was a long process, but an important one, since the amount and quality of the data can
make or break the learning process of a classifier. In the Data Creation task, besides the
extraction of Twitter data and the selection of the data by AL, we also spent some time
exploring the Generative Pre-trained Transformer (GPT)-2 and GPT-3 text generation
abilities, the possibility of adapting the Friends’ Emotion dataset, and the use of the
Sentituites dataset to explore whether models trained on non-dialogue data could correctly
classify dialogues.
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Regarding the Models Development tasks, the development of the baseline models
was easily achieved in the predicted timeline, but the remaining options took longer than
expected. This was mainly due to bugs and their resolution, technical issues (e.g., lost con-
nections, unavailable extra machines), and more research about more complex approaches,
such as the Few-Shot Learning (Few-SL), the Bidirectional Encoder Representations from
Transformers (BERT) fine-tuning, and the sequence-specific models, Conditional Random
Field (CRF) and BERT-CRF, the latter of which had to be developed in a more manual
approach as to combine both individual models. Furthermore, the exploration of a broad
range of different classifiers, sometimes with different requirements regarding their config-
uration, packages, and time complexity, was a challenging and time-consuming process.

Overall, the majority of tasks took longer than predicted, which is not surprising be-
cause it is hard to estimate the duration of such tasks, especially when developing models
that were unknown or that we lacked experience with, meaning that, for some classifiers,
we had to search for guides on their usage and experiment different approaches to reach
the final implementation. Furthermore, additional experiences and models were set during
the course of the dissertation that were not included when the original work plan was
developed.

The process for completing each task (besides Documentation) will be explained in the
next Chapters.
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Chapter 5

Proposed Approach and Dataset
Curation

In this chapter, we present the general Machine Learning (ML) approach used (Figure 5.1)
and focus on the work regarding the Dataset Curation, including the analysis, creation,
and annotation of datasets, along with the required preprocessing and a summary of ex-
isting options. The next steps of our approach will be presented in Chapters 6 (Feature
Engineering and Model Training and Optimization) and 7 (Model Evaluation).

Dataset
Curation

Feature
Engineering

Model
Training
and

Optimization

Model
Evaluation

Sparse
Dense
Manual (CRF)Existing Dataset

Datasets Collection
and Annotation

With Context
Without Context

Logistic Regression
SVM
Naive Bayes
Random Forest
BOTSchool API
Fine-tuned BERT
Few-Shot Learning
Zero-Shot Learning
CRF
BERT-CRF

F1 Score
Recall
A.U.C.

Figure 5.1: General ML Approach

Each step in the Figure is linked to a list that describes the most important aspects of
each part of our approach. In the Dataset Curation, the list presents Existing Dataset and
Datasets Collection and Annotation, because, as seen in Section 3.4, the available datasets
were either in English, not annotated, or did not contain dialogues. Hence, there was a
need to either adapt an existing dataset or create a new one.
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5.1 Existing Datasets

This section focuses on the two existing datasets that were considered in the development
of this work, SentiTuites (Carvalho et al., 2011) and Friends’ Emotion Detection (Zahiri
and Choi, 2018). The former was chosen because it contained data labeled for sentiment
polarity and in the Portuguese language, and it could be used to evaluate whether models
trained in non-dialogue data could perform well when classifying dialogues. The latter was
chosen because it contained dialogues, was labeled (for emotion), and there was the option
of translation using available subtitles in the Portuguese language.

5.1.1 SentiTuites

SentiTuites (Carvalho et al., 2011) is a corpus of tweets posted by Portuguese users during
the 2011 election campaign. The corpus is labeled for sentiment polarity with values -1
(Negative), 0 (Neutral), and 1 (Positive). Twitter only allows the Tweet IDs to be shared,
meaning that we needed to extract each tweet. Hence, some were unavailable (e.g. due
to blocked accounts, deleted tweets), and from 30,470 tweets, we only gathered 13,538,
composed of 1,531 positive tweets, 7,685 neutral tweets, and 4,322 negative tweets.

Examples of the data and annotations in this dataset are shown in Table 5.1.

Table 5.1: Examples of data from the SentiTuites dataset

Tweet Sentiment
Polarity

Passos Coelho está a mentir. Vai mesmo haver corte de salários e despedimentos.
Sócrates deixou isto uma lástima. -1

Até quando pretende a Esquerda manter Sócrates no Poder? 0
"Voluntários Sócrates"?!? consegue ser pior que o vídeo de boas
vindas da ministra da educação... -1

Passos é alto e bem parecido como Sócrates mas tem seguramente o nariz melhor,
ou seja, não é tão comprido - Ângelo Correia 1

The evaluation of models trained with non-dialogue data will use this dataset.

5.1.2 Friends

The use of the Friends’ Emotion Detection dataset (Zahiri and Choi, 2018) could be in-
teresting for this work since it contains labeled dialogue, and there are publicly available
Portuguese subtitles that could be aligned with the English data, and inherit the labels.
This dataset is labeled with seven emotions (Neutral, Joyful, Peaceful, Powerful, Scared,
Mad, Sad), which could be translated into sentiment polarity labels (Negative and Non-
Negative) or kept as is, to explore Emotion Classification.

The English and Portuguese subtitles contained a timestamp, a line ID, and the line
itself. However, there was no relation between both files, as the IDs and timestamps were
different, and no pattern was found between the timestamps (i.e., the delay between the
beginning of the dialogues was not constant). Table 5.2 shows these disparities, and it also
showcases, in Line ID 8, that the same line can present a different number of utterances,
making the detection of a relation between both files harder.

For these reasons, the Friends’ Emotion Detection dataset was deemed unusable for
this work.
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Table 5.2: Example of disparities between English and Portuguese subtitles

Language Line ID Timestamp Line Timestamp
Difference

English 2
00:00:52,969

-
00:00:55,137

Come on. You’re going out with a guy.

Portuguese 2
00:00:59,806

-
00:01:01,933

Vais sair com um tipo. 00:00:06,837

English 5
00:01:02,395

-
00:01:03,771

Wait. Does he eat chalk?

Portuguese 5
00:01:07,180

-
00:01:09,705

Ele tem uma corcunda e um capachinho? 00:00:04,785

English 8
00:01:05,207

-
00:01:06,522

This is not even a date.

Portuguese 8
00:01:17,591

-
00:01:21,687

Vamos todos a ter calma. Isto nem é um encontro. 00:00:12,384

5.2 Dataset Creation

There are several options for creating a dataset, as mentioned in chapter 3. This section
focuses on the development of two datasets and their preprocessing. One of the datasets
was provided by Altice Labs (AL) and is highly important since it contains examples of
the real data to be evaluated by the classifiers. The other dataset required the extraction
of data from Twitter, which will be explained in this section.

5.2.1 Altice Labs Dataset

AL provided us with data containing dialogues from their call-center service. These conver-
sations are between a client and a chatbot, whose purpose is to detect the user’s intention
and correctly answer them. When this does not happen, it will redirect them to a human
assistant.

The conversation is verbal, so a speech-to-text technique had to be employed to tran-
scribe the utterances into text. This presents some limitations, since, sometimes, this
technique cannot fully grasp what the client is saying, and the transcription does not rep-
resent what was said, causing it to lose its meaning. This can be due to noise in the
call (sometimes from someone else speaking close to the caller), the caller’s accent, the
speed at which they speak, or mis-transcriptions if some words do not exist in the model’s
vocabulary.

Some examples where it is hard to understand what the client is saying follow:

• "estou a são delete", followed by "instalação do eyelashes";

• "ultrassom de saturação";

• "eu queria saber o meu primo do produto";
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• "boa tarde menina menina fazer a favor dava-me o número do telefone do pão de ló
delícia casa de pão de ló delícia".

The data also seems to contain an internal operation wrongly identified as part of the
dialogue. An example of a conversation where this happens can be viewed on Table 5.3,
in Turn IDs 5 to 15, and back again in Turn ID 21.

Table 5.3: Example of a conversation from the Altice Labs dataset where there seem to be
non-dialogue parts.

Turn ID Speaker Utterance
1 USER a minha box anda para a constantemente e eu não tenho sistema na televisão

2 BOT
Para que possamos ajudar com o problema na sua televisão, diga-nos: a televisão
que apresenta problemas está ligada a uma MEOBOX? Ou é sem MEOBOX?
Caso não pretenda apoio técnico para o sua TV, diga, voltar Atrás

3 USER é o meu box

4 BOT Para o ajudarmos estamos a analisar remotamente o estado da sua meo box.
Este processo demora alguns segundos. Pedimos que aguarde e não desligue.

5 USER resume

6 BOT Para o ajudarmos estamos a analisar remotamente o estado da sua meo box.
Este processo demora alguns segundos. Pedimos que aguarde e não desligue.

7 USER resume

8 BOT Para o ajudarmos estamos a analisar remotamente o estado da sua meo box.
Este processo demora alguns segundos. Pedimos que aguarde e não desligue.

9 USER resume

10 BOT
Vamos agora consultar remotamente o estado da ligação da sua meo box.
Informamos mais uma vez este processo demora alguns segundos.
(colocar 3 segundos silencio) Pedimos que aguarde e não desligue.

11 USER resume

12 BOT
Vamos agora consultar remotamente o estado da ligação da sua meo box.
Informamos mais uma vez este processo demora alguns segundos.
(colocar 3 segundos silencio) Pedimos que aguarde e não desligue.

13 USER resume

14 BOT
Vamos agora consultar remotamente o estado da ligação da sua meo box.
Informamos mais uma vez este processo demora alguns segundos.
(colocar 3 segundos silencio) Pedimos que aguarde e não desligue.

15 USER resume
16 BOT Confirme por favor: Na sua televisão aparecea informação X1, X5 ou X10?
17 USER não eu tenho a imagem da televisão parada que não rtp1 e a imagem está parada

18 BOT Vamos efetuar uma operação e a sua meobox vai reiniciar.
Já efetuou anteriormente esta operação e continua com problemas?

19 USER eu faço olha tem 7 vezes por dia tenho esta miséria não vou constantemente
era para dar um serviço ou não estou disponível né algum problema

20 BOT Vamos proceder à correcção da situação identificada. Este processo
demora alguns segundos. Pedimos que aguarde e não desligue.

21 USER resume

22 BOT
Efetuámos as operações necessárias para resolução da sua avaria.
A sua meobox irá reiniciar. Daqui a alguns minutos verifique se está tudo a
funcionar corretamente. Caso o problema persista ligue-nos novamente. Obrigada

The dataset resulting from the provided samples cannot be made public, as it contains
real and private data (despite most private information having been replaced by placehold-
ers). To overcome this obstacle and be able to share a similar dataset, we experimented
with Generative Pre-trained Transformer (GPT)-2 and GPT-3 to generate fake data based
of the real samples. However, it was not a simple task to evaluate the quality of the data
generated, as there are no good automated metrics for this evaluation. In fact, Novikova
et al. (2017) and Howcroft et al. (2020) argue that automated metrics only weakly reflect
human judgements, and that human assessment is the most trusted form of evaluation in
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generated data. This means the process to obtain a labeled dataset using this data would
require, first, an evaluation of the quality of the data, involving manual assessments of di-
mensions such as fluency (e.g., clarity, grammar use) and adequacy (e.g., semantic accuracy,
coherence) by several participants, followed by a selection of the data with higher quality,
and the annotation of this set of samples by, again, several participants. As this would be
a very complex and time consuming task, as well as highly dependent on third-parties, we
chose not to pursue this approach, leaving it for future work.

Tables 5.4 and 5.5 present some examples of the generated data, using GPT-2 and
GPT-3, respectively.

Table 5.4: Example of data generated using GPT-2, based on the Altice Labs dataset.

Turn ID Speaker Utterance
1 USER portabilidade de telemóvel
2 BOT Vou transferir a chamada para um serviço CVP que irá processar o seu pedido.

1 USER não tem pouca internet está mensalidade de pagamento

2 BOT
Pretende saber os dados pagamento do numero de onde está a ligar? Se pretende
de outro numero diga outro numero, ou se não pretende saber dados de
pagamento diga voltar Atrás

3 USER do número que está a ligar

4 BOT Lamento não ter percebido corretamente o que me disse. Pode por favor dizer
por outras palavras o que pretende?

5 USER fala para aqui uma informação sobre a faturação de dizer dos telemóveis
6 BOT Vou transferir a chamada para o assistente comercial Genérico MXO

1 USER a internet está ligada ao setor de faturação
2 BOT Vou transferir a chamada para um serviço INT que irá processar o seu pedido.

1 USER olha tenho aqui uma segunda via de um cartão eu vai não posso muito muito
muito muito muito muito muito muito mas o que é que eu tenho aqui para aqui

2 BOT Vou transferir a chamada para um assistente VIA que irá ajudar a tratar a situação

As we did not follow the data generation approach, we will only briefly explain how
these samples were generated.

Regarding the GPT-2 approach, we used a model trained for the generation of Por-
tuguese text, based on data from the Portuguese Wikipedia1. The process for generating
data was as follows:

1. Load the AL dataset to base the generated data on;

2. Define the model and tokenizer, available at the Hugging Face website2;

3. Fine-tune the model on the AL dataset;

4. Use the fine-tuned model to generate new data, according to a sampling algorithm
(We will go over these methods when explaining the Few-Shot Learning (Few-SL)
approach, in Section 6.3).

Regarding the GPT-3 approach, we needed access to OpenAI’s Application Program-
ming Interface (API)3, so we signed up for a limited free trial. The process for generating
data was as follows:

1https://pt.wikipedia.org/wiki/
2https://huggingface.co/pierreguillou/gpt2-small-portuguese
3https://openai.com/api/
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Table 5.5: Example of data generated using GPT-3, based on the Altice Labs dataset.

Turn ID Speaker Utterance
1 USER é assim eu gostava de saber se já tinha data de pagamento da meo se faz favor

2 BOT
Pretende saber os dados pagamento do numero de onde está a ligar? Se pretende
de outro numero diga outro numero, ou se não pretende saber dados de pagamento
diga voltar Atrás

3 USER deste número

4 BOT Tem a pagar ValorDivida até ao dia DataVencimento. Utilize a Entidade 21159 e a
referência ReferenciaMB. Pretende receber os dados de pagamento por SMS?

5 USER sim mas preciso de ajuda para meu

6 BOT Será enviada uma SMS para o número do qual está a ligar. Posso ajudar em mais
alguma questão?

7 USER não é tudo obrigado
8 BOT Obrigado por utilizar os nossos serviços.

1 USER eu quero saber como é que eu posso fazer uma chamada para a frança faz favor
2 BOT Lamentamos, mas não entendemos o que disse, pode repetir por outras palavras

3 USER
é uma chamada para a frança para a frança para a ponte para a frança para a
ponte para a ponte para a ponte para a ponte para a ponte para a ponte para a
ponte para a ponte

1 USER avarias
2 BOT Para o ajudarmos, diga-nos qual é o serviço para o qual precisa de apoio.
3 USER televisão
4 BOT Vamos transferir a sua chamada para o serviço AST

1. Set up the access to OpenAI’s API;

2. Prepare the training data to fine-tune the model, organizing it into prompt-completion
columns (e.g., user utterance, bot utterance). OpenAI allows access to a tool4 that
converts the samples into the required file format (JSONL).

3. Set up the GPT-3 model, defining the engine to use (davinci5 being the most powerful
option), and fine-tune it6;

4. Use the model to generate new data, by sending an empty prompt to the Completion
endpoint7.

Going back to the AL data, it should also be noted that the chatbot speech is very
mechanic and repetitive, which can affect the flow of the conversation, in the sense that
context may not have as much effect as expected, because a mechanical response can "shut
down" the client’s reactions.

Further ahead in this Chapter, an analysis of this dataset will be presented, as well as
examples of dialogues.

5.2.2 Twitter Dataset

Four reasons make Twitter a good option for the extraction of data for this work:

1. Allows the extraction of dialogues, based on the tweets and their respective replies;
4https://beta.openai.com/docs/guides/fine-tuning/cli-data-preparation-tool
5https://beta.openai.com/docs/models/gpt-3
6https://beta.openai.com/docs/guides/fine-tuning
7https://api.openai.com/v1/completions
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2. Has a large amount of data, including in the Portuguese language;

3. Allows us to target the domains of interest (TV, eCommerce, Health Care, Finance
& FinTech, Telecommunications);

4. Contains short informal messages, which have been confirmed by the collaborators
of AL to be somewhat close to the format and language of the real call-center data.

The process of tweet extraction consists of several steps. First, a developer account is
required and a project needs to be set up, preferably the academic research option, which
requires approval from the Twitter team, but allows for more tweets to be extracted per
month and has fewer restrictions.

Then, the following 19 user accounts were deemed related to the domains of inter-
est and in the Portuguese language were selected: Altice Portugal (@altice_portugal),
Deco Proteste (@decoproteste), Direção-Geral da Saúde (@DGSaude), FNAC Portugal
(@fnacportugal), MEO Portugal (@MEOpt), Netflix Portugal (@NetflixPT), NOWO Por-
tugal (@nowoportugal), Finanças Portugal (@pt_financas), Rádio Popular (@radiopopu-
larPT), RTP (@rtppt), RTP Notícias (@RTPNoticias), RTP Play (@playrtp), Saúde Por-
tugal (@saude_pt), SIC (@SIConline), Serviço Nacional de Saúde (@SNS_Portugal), TVI
(@tvi), Vodafone Portugal (@VodafonePT), VOST Portugal (@VOSTPT), and Worten
Portugal (@WortenPT).

However, some accounts (Finanças Portugal, Rádio Popular, RTP, Saúde Portugal,
SIC, Serviço Nacional de Saúde, and TVI) did not engage with the users during the time
of collection, so they were not useful for this work since the focus was on user-service
dialogues. FNAC Portugal engaged with the users, but only three of the conversations
contained more than two turns (three turns), so we decided to exclude this data as it did
not add much value to the dataset.

In the tweet collection process, the Twitter API8 was used. From each tweet, informa-
tion related to the tweet itself is collected, along with information about the user. Despite
21 parameters being gathered, only 6 of them were in fact used:

• Tweet ID: The unique ID that identifies the posted tweet;

• Author ID: The unique ID that identifies the user who posted the tweet;

• In Reply To User ID: If the tweet is a reply, this field contains the ID of the author
of the tweet it replies to;

• Conversation ID: One tweet can spark different conversation threads. The conversa-
tion ID matches the ID of the tweet that started the conversation, and is present in
all related tweets;

• Text: The actual text from the tweet;

• Username: The unique screen name of the user.

All the parameters and their meanings are listed in Appendix 8.2.

Five types of search operations were developed for Twitter API requests, a mentions
search, a username search, a tweet ID search, a keyword search, and a replies search. The

8https://developer.twitter.com/en/docs/twitter-api
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first will operate on the tweets that mention a given account. The second will operate on
the tweets from a given user. The third will return the tweet associated with the given
tweet ID. The fourth option will return the tweets that contain a given keyword. The
fifth option will return the replies from a given username. There is a sixth operation, the
conversation search, that is used after any of the other operations, and looks up the tweets
related to a given conversation ID.

We chose to focus on extracting tweet replies from the chosen accounts. This would
ensure that we would get dialogues with a response from the service account, which was not
granted with any other search option. Initially, we experimented with extracting tweets
from users that mention the accounts of interest, but mentioning an account does not mean
that you will get a response from it.

When performing a request, it is required to define the endpoint, and the parame-
ters to be collected from the tweet (mentioned above). In a search by replies, the end-
point would be https://api.twitter.com/2/tweets/search/all?query=QUERY&PARAMS,
where QUERY is from:/USERNAME is:reply, and the USERNAME refers to the selected
accounts’ username, and where PARAMS sets the information we wish to retrieve, listed
above. It is also possible to define the maximum number of results to return.

From the tweets retrieved by the search operation, we identify their conversation IDs.
Then, through this unique identifier, the associated tweets are collected. This collection is
then analysed to figure out which ones correspond to a dialogue between two users, which
is done using the In Reply to User ID and Author ID properties, enabling a match between
the users’ tweets.

Both the total of tweets and the conversation tweets (between two users) are saved in
.xlsx format, but only the conversation file was used in this work.

Some examples of retrieved conversations are presented in Figure 5.2. In the example,
any sensitive data was replaced with placeholders (e.g., COMPANY whenever a business
was mentioned, or PHONE_NUMBER whenever a phone number was given). In example
3 of the figure, the original tweet was deleted. This example was provided to demon-
strate one of the problems with using Twitter data, which was that tweets available at the
time of extraction may not be available later on, making it impossible to reconstruct the
conversation.

This dataset is publicly available on GitHub9 and lists the Tweet IDs and corresponding
annotations (binary and multi-class), in accordance with the platform’s license10.

5.2.3 Datasets Preprocessing

Each dataset required some preprocessing. The AL and the generated datasets contained
a prefix for each line, signaling whether the speaker was the user or the bot. These prefixes
and the # that anticipated the bot’s text were eliminated. This dataset required no further
action.

Regarding the Twitter dataset, we used regular expressions11, shown in Table 5.6, to
detect some sequences that could be of interest - user tags, hashtags, URLs, and emotes.

9https://github.com/NLP-CISUC/twitter_sentiment_analysis
10Content redistribution terms: https://developer.twitter.com/en/developer-terms/

agreement-and-policy
11https://docs.python.org/3/library/re.html
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USER A
@USER_B Eu só queria ter o serviço que

contratei sem falhas. Estive sem serviço 19
dias, e hoje aparentemente começou mais uma

temporada da série "A estranha
(in)competência da @USER_B"

EXAMPLE #1

EXAMPLE #2

USER B
@USER_A Olá NAME, Em caso de dificuldades

com o serviço, para que possamos analisar e
ajudar, sugerimos o contacto com a nossa linha

de apoio técnico - PHONE_NUMBER.
 

USER A
@USER_B @USER_C Metam fibra na minha
rua por favor, já andam a prometer há anos

USER B
@USER_A Mantemos o compromisso de expandir

o serviço de Fibra COMPANY, mas não
conseguimos avançar com um prazo ou data.

Agradecemos a sua preferência. Sugerimos que
acompanhe a informação sobre a cobertura

disponível na sua morada através do contacto
gratuito com PHONE_NUMBER.

 

USER A
@USER_B Vou é mudar para a COMPANY ou

para a COMPANY a este ritmo, têm todos
fibra aqui menos a COMPANY

EXAMPLE #3

USER A
DELETED TWEET

USER B
Olá @USER_A, para que possamos verificar a

sua situação, peço que indique o seu nº de cliente
por mensagem privada, por favor.

Estamos inteiramente disponíveis para ajudar.
Obrigado e até breve!

USER A
@USER_B Feito

USER B
Olá @USER_A, informo que respondemos à sua

mensagem privada.
Obrigado e até breve!

USER A
@USER_BNão respondeu a minha pergunta,
por favor, leia as minhas mensagem antes de

responder

USER B
Olá @USER_A, lamentamos a situação.

Informo que foi enviada resposta por mensagem
privada.

Obrigado e até breve!

Figure 5.2: Dialogue examples collected from Twitter

Table 5.6: Regular expressions and examples for preprocessing the Twitter data

Type of Text Regular Expression Example
User Tag (\\s)?(@[\\w]+) @user01
Hashtag (\\s)?(#[\\w]+) #cinema

Simplified URL (\\s)?((http(s)?|(ftp)://)?://[^\\s]+) https://twitter.com/
Emote Eyes [:;=X8] : ; =
Emote Nose [-oO^>’\\\"*]{0,1} - o >

Positive Emote [\\s]?\"+ Emote Eyes + Emote Nose +\"([)}DpP3]|])\"+\"\\s? : - D
Inverted

Positive Emote [\\s]?\"+\"([({Cc])\"+ Emote Nose + Emote Eyes +\"\\s? C o :

Negative Emote [\\s]?\"+ Emote Eyes + Emote Nose +\"([({\\/CcSst])\"+\"\\s? = >S
Inverted

Negative Emote [\\s]?\"+\"([)}\\/DSs]|])\"+ Emote Nose + Emote Eyes +\"\\s? } o =

The user tags and URLs were replaced by placeholders - xUSERx and xURLx. Table
5.7 presents some examples of the preprocessing mentioned (the Twitter usernames and
URL were replaced with fake data for privacy’s sake). The hashtags were kept unchanged
since we believed they could contain relevant information, as they usually summarize the
topic in discussion. We considered using emotes and emojis (detected directly) since they
could be helpful for the dataset annotation - this approach will be explained ahead, in
Section 5.3.

5.3 Dataset Annotation

The selected models required labeled datasets for classification. Some options for the
annotation process were to base it on the use of emojis in text (Duarte et al., 2019), to use
an active learning approach, to do it manually, or to do it through crowd-sourcing.
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Table 5.7: Dialogues before and after preprocessing.

Altice Labs Dataset Twitter Dataset

USER: casamento de chamadas Hoje é dia de ver o último concerto de Simone de Oliveira
na @canal_tv @canal depois vão ter o concerto, certo?Original

Utterances BOT: #A chamada vai ser transferida para o
assistente CARREGAMENTO PPP

@utilizador @canal_tv Certo! Aqui está:
https://t.co/url

casamento de chamadas Hoje é dia de ver o último concerto de Simone de Oliveira
na xUSERx xUSERx depois vão ter o concerto, certo?Preprocessed

Utterances A chamada vai ser transferida para o
assistente CARREGAMENTO PPP

xUSERx xUSERx Certo! Aqui está:
xURLx

As the data extraction and development of the models took precedence and developing
an active learning approach would require at least some labeled data already, we chose to
focus on other parts of this work. We did not use crowd-sourcing as a paid service, but
we chose acquaintances to perform this task, as we believed we could get better results by
choosing people to whom we could easily explain the work and who could easily reach us
for questions since sentiment is very subjective. Two approaches were experimented with,
namely emoji-based annotation and manual annotation.

The exploration of the relation between Dialogue Act Recognition (DAR) and Senti-
ment Analysis (SA) would also require the data to be annotated for Dialogue Acts, which
was not executed in order to prioritize and guarantee a decent amount of annotated samples
for SA, which is the priority and objective of this work. Hence, there were no experiments
performed that involved DAR, leaving this for future work.

This section will explain the approaches taken and perform an analysis of the results
of the annotation process.

5.3.1 Emoji-based Annotation

The emoji-based approach could only be used in the Twitter data since the speech-to-text
data does not contain emojis, which limits the application of this approach. Despite this
and the fact that not all tweets contain emojis, a preliminary experience was made, with
a subset of 713 tweets.

We were able to detect some emotes and emojis that could be helpful. Of the 713
tweets, 137 contained emojis or emotes, and 106 contained only emojis. There was a
problem with the identification of the negative inverted emojis, such as ): and );, since
they were confused with the use of those symbols in listing something or just having text
inside parenthesis followed by a colon. Furthermore, only about 15% of the tweets could
be labeled using emojis and these labels were still subject to errors (e.g., use of irony, the
emoji not reflecting the sentiment of the whole sentence). Hence, we decided not to explore
this option any further and instead used manual annotation.

The emojis show in Figure 5.3 were selected based on an online emoji dictionary12.
Some of the meanings assigned are very subjective and due to the preliminary results, we
did not consider it relevant to review the dictionary.

Examples of tweets containing emotes and/or emojis can be seen in Figure 5.4, and
some showcase the problems with the emote detection.

12https://hotemoji.com/emoji-meanings.html

55

https://hotemoji.com/emoji-meanings.html


5.3. Dataset Annotation

Figure 5.3: Emojis considered for emoji-based annotation

Figure 5.4: Examples of tweets containing emotes and/or emojis.

5.3.2 Manual Annotation

The process of manual annotation required some manpower and the development of some
guidelines for assistance. A total of 14 people were involved in the annotation, distributed
between 15 data blocks. For each data block, there were three annotators, and each block
contained approximately 100 dialogues. Some Twitter conversations were removed if the
dialogues did not suit the problem, were very repetitive, or the accounts often just replied
to themselves, which is why some blocks contained less than 100 dialogues. The guidelines
presented the expected labels, an example of a sentence for each label, and a description
of the general goal and structure of this process. The annotators labeled the samples
independently, not considering the other annotators’ classifications. They were asked to
classify the utterances as one of four possible sentiments: Very Negative (-2), Negative
(-1), Neutral (0), and Positive (1).

Figure 5.5 presents the guidelines for the annotation of AL’ data. There is only one
degree for positive sentiment because it was not often that this occurred, and we did not

56



Chapter 5– Proposed Approach and Dataset Curation

feel that it showed up strongly enough in the data to justify having two degrees for the
positive sentiment. Since the AL dataset contained situations in which the client could not
get their answer quickly, and had to repeat themselves, we asked the annotators to consider
this, as it builds up stress, and to decrease the sentiment in the repeated utterances.

Figure 5.5: Guidelines for the annotation of Altice Labs’ data

Since there were 3 annotators for each data block, we determined the median to assign
a final label to each sentence in the dialogues. We considered using the mean, the mode,
and the median for this purpose but concluded that using the mean was not the best
option, since the classification scale is similar to Likert scales since the data is ordinal (Very
Negative, Negative, Neutral, Positive). Sullivan and Artino Jr (2013) state that an average
of, for example, “never” and “rarely” has no useful meaning. Furthermore, if responses are
clustered at the high and low extremes, the mean may appear to be the neutral response,
which does not fairly characterize the data. In the context of this dissertation, this could
happen if, for example, there is irony in an utterance, and one annotator labels it as Very
Negative (-2) while the other two label it as Positive (1), obtaining the mean value of 0,
a Neutral sentiment, which is false by the annotators’ interpretations. Hence, the mean
is not a helpful measure for this kind of data. We chose the median because annotators
could all pick different labels, meaning there would be no mode. In this situation, we
would have used the median, but since there were only three annotators, meaning three
values for each sentence, then using the median all the time would be the same as using a
combination of mode and median. This is true because if there was a mode (i.e., two or
three equal labels), then the median would be the same value, as the mode value would be
in the middle position.

We prioritized the real data provided by AL and the Twitter data over the generated
data. This happened because the real data was essential for the evaluation of the models,
and the Twitter data was more diverse than the generated data. Due to the time and
manpower required, only these two datasets were annotated.
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5.3.3 Annotation Analysis

An analysis of the data collected and annotated allows for the comparison of the created
datasets (between themselves and existing datasets mentioned in 3.4), and provides a
perception of the dimension and variety of the samples.

From the annotation process, there were four possible values for each sentiment, but
they were not equally distributed due to the data’s nature. Tables 5.8 and 5.9 shows the
frequency of each final label, using either the mean or the median to determine this value,
for each dataset.

Table 5.8: Sentiment frequency for the annotated AL dataset.

Altice Labs Dataset
Mean Median

Sentiment Absolute
Frequency

Relative
Frequency Sentiment Absolute

Frequency
Relative

Frequency
Very

Negative 37 0.7% Very
Negative 42 0.8%

Negative 948 17.8% Negative 930 17.5%
Neutral 4,299 80.9% Neutral 4,311 81.2%
Positive 28 0.5% Positive 29 0.5%
Total 5,312 100% Total 5,312 100%

Table 5.9: Sentiment frequency for the annotated Twitter dataset.

Twitter Dataset
Mean Median

Sentiment Absolute
Frequency

Relative
Frequency Sentiment Absolute

Frequency
Relative

Frequency
Very

Negative 131 12.4% Very
Negative 138 13.1%

Negative 400 37.9% Negative 310 29.4%
Neutral 468 44.4% Neutral 551 52.2%
Positive 56 5.3% Positive 56 5.3%
Total 1,055 100% Total 1,055 100%

Through the analysis of Tables 5.8 and 5.9, we can confirm that the data is not balanced,
especially in the AL dataset, where 81.7% of the data is Non-Negative (Positive or Neutral).
Due to the low frequency of Very Negative and Positive sentiments, and the main goal being
to detect when the sentiment is negative, it was decided to convert this multi-class problem
into a binary problem, by merging the sentiments in two final classes, Negative (0) and
Non-Negative (1). This conversion makes the Twitter dataset nearly balanced, containing
57.5% of Non-Negative samples and 42.5% of Negative samples.

A visualization of the distribution of the data can be helpful to preliminarily assess how
difficult it might be to separate the samples in the defined categories, using two dimensions
(for example). With this in mind, we used the visualization technique mentioned in Section
2.1.2, t-distributed Stochastic Neighbor Embedding (t-SNE), a non-linear technique to
project the sentence embeddings from the testing dataset (using an 80%-20% split of
the data) into a two-dimensional space. The embeddings used were obtained with the
Term Frequency - Inverse Document Frequency (TF-IDF) and the BERTimbau Natural
Language Inference (NLI)13 encoder techniques, and they are represented in Figure 5.6
for the Twitter dataset, and in Figure 5.7 for the AL dataset. This feature reduction
technique was not used in the development of any of the classification algorithms, which is

13https://huggingface.co/ricardo-filho/bert-portuguese-cased-nli-assin-assin-2
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why it serves only a visualization purpose and allows us to verify that the representation
of sentences in a low dimension can be challenging as both labels seem to overlap often,
especially in the AL dataset.

Figure 5.6: Projection of the Twitter testing dataset using t-SNE.

Figure 5.7: Projection of the Altice Labs testing dataset using t-SNE.

Regarding the Twitter data, it should be mentioned that the labeled dataset does
not contain dialogues from all the selected accounts since we could not annotate all the
extracted conversations. The final dataset contains dialogues from the NOWO Portugal,
RTP Play, RTP Notícias, Vodafone Portugal, MEO Portugal, Netflix Portugal, Altice
Portugal, Deco Proteste, and Direção-Geral da Saúde. Some of the Deco Proteste and
Netflix Portugal’s data was removed because the dialogues were very repetitive, did not
always fit the domains of interest, or because the tweets in the conversation all belonged
to the service account. The VOST Portugal annotated data was fully removed because
it ended up relating only to weather forecasts and warnings, which did not fit any of the
domains of interest.

It was important to evaluate the reliability of the annotation process. In order to
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accomplish this, we determined inter-rater reliability metrics (i.e., the degree of agree-
ment between annotators) for every data block, considering each annotator’s classification.
Several works have used metrics for the data’s reliability (Carvalho et al., 2011, Cerisara
et al., 2018, Li et al., 2017), and Zapf et al. (2016) considered the following metrics the
most generalized measures for agreement:

• Cohen’s Kappa Coefficient (Cohen, 1960): considers only pairs of annotators, and
the observed agreement is corrected for the agreement expected by chance. A score
of 0 would mean a random agreement, while a score of 1 would mean a complete
agreement. We omitted the Cohen’s Kappa values because the pairs of annotators
were not fixed and not every rater labeled every single data block;

• Fleiss’ Kappa Coefficient (Fleiss, 1971): an extension of Cohen’s Kappa for three
raters or more, with the assumption that the raters can be randomly chosen instead
of fixed, which better fits the scenario of our work;

• Krippendorff’s Alpha Coefficient (Krippendorff, 1970): in contrast with the previous
metrics, this value is based on the observed disagreement corrected for disagreement
expected by chance. This Alpha coefficient can handle a high number of raters and
ratings, and even incomplete datasets. Although we had complete datasets, we still
considered it an interesting metric to use.

Values between 0.41 and 0.60 reveal moderate agreement between the annotators for
the Fleiss and Cohen’s metrics, while for the Krippendorff’s metric this level of agreement
is given by values between 0.6 and 0.79. Higher values mean a good or very good level of
agreement.

Finally, for each dataset, we ended up with the characteristics shown in Table 5.10.
The agreement scores were calculated for the multi-class and binary scenarios.

Table 5.10: Analysis of the two datasets used

Dataset #Dialogues #Turns Avg. Turns
Per Dialogue

#Negative
Samples

#Non-Negative
Samples

Avg.
Fleiss

Binary
Avg. Fleiss

Avg.
Krippendorff

Binary Avg.
Krippendorff

Twitter 418 1,055 2.52 448 607 0.48 ±0.13 0.67 ±0.16 0.66 ±0.16 0.67 ±0.16

Altice Labs 1,000 5,312 5.32 972 4,340 0.56 ±0.17 0.62 ±0.17 0.61 ±0.15 0.67 ±0.16

While the AL dataset is larger than the Twitter dataset, the latter is more balanced.
Despite the average agreement levels being considered moderate for both datasets, it should
be noted that these values refer to four different classes. Considering the binary setup, as
used in the experimentation, the level of agreement increases by 19% in the Twitter data
for the Fleiss metric, but only slightly (1% and 6%) in the other evaluations and dataset.

Figure 5.8 and Table 5.11 present some examples of dialogues in each annotated dataset,
using the multi-class annotation.
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Figure 5.8: Examples of dialogues from the Twitter data

Table 5.11: Examples of dialogues from the Altice Labs data

Speaker Turn
Number Utterance Sentiment

USER 1 os dados para pagamento 0

SERVICE 2
Pretende saber os dados pagamento do numero de onde está a ligar?
Se pretende de outro numero diga outro numero, ou se não pretende
saber dados de pagamento diga voltar Atrás

0

USER 3 dados de pagamento deste número 0

SERVICE 4
Tem a pagar ValorDivida até ao dia DataVencimento.
Utilize a Entidade ENTITY e a referência ReferenciaMB.
Pretende receber os dados de pagamento por SMS?

0

USER 5 sim quero 0

SERVICE 6 Será enviada uma SMS para o número do qual está a ligar.
Posso ajudar em mais alguma questão? 0

USER 7 não é tudo obrigado 1
SERVICE 8 Obrigado por utilizar os nossos serviços. 1

USER 1 oi eu quero saber porque é que este mês pago uma fatura tão
grande 25 e 76 eu nunca paguei isto -1

SERVICE 2 Lamentamos, mas não entendemos o que disse, pode repetir por outras palavras -1

USER 3
outras palavras é isso é sobre a faturação deste mês
como apareceu aquilo essa fatura 2576 e eu nunca paguei este
valor e diz que não sei o que é que foi

-1

SERVICE 4
Pretende saber os dados pagamento do numero de onde está a ligar?
Se pretende de outro numero diga outro numero, ou
se não pretende saber dados de pagamento diga voltar Atrás

0

USER 5 queres saber o nosso pagamento sim porque é
que eu estou a pagar isso pá caraças pá -2

SERVICE 6 Tem a pagar ... por débito bancário até ao dia....
Posso ajudar em mais alguma questão? 0

USER 7 olha essa questão saiu que tenho aqui na fatura eu quero
saber o porquê o porquê o porquê dessa fatura estar tão elevada que nunca -2

SERVICE 8 Obrigado por utilizar os nossos serviços. 0

USER 1 não consigo estou com problemas nos meus telemóveis e
não consigo estabelecer ligação para lado nenhum -1

SERVICE 2 Vou transferir a chamada para o assistente comercial Genérico MXO 0
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Experimental Setup

In this chapter, we will focus on the Feature Engineering and Model Training and Op-
timization steps presented in Figure 5.1. The experiments performed for each classifier
and the approaches taken for achieving the objectives of this work will be explained and
analysed. The experimental setup will also be presented.

The exploration of different solutions to the classification problem began with lexicon-
based approaches that could be used as baselines. All other experiments used Machine
Learning (ML) approaches, ranging from shallow to deep classifiers (transformers-based).
The models were chosen based on the approaches used in the related work (e.g., Support
Vector Machine (SVM), Conditional Random Field (CRF), Fine-tuned BERT) or for being
common models with different types of approaches to the problem (e.g., Logistic Regression,
Random Forest).

With the exception of the lexicon-based approach, the CRF model, and the com-
bined Bidirectional Encoder Representations from Transformers (BERT) and CRF model
(BERT-CRF), every other classifier was evaluated in two ways: with and without context,
since, for the objective of this work, context may be relevant in the progression of sen-
timent. It is important to stress that, in these scenarios, by context, we mean that the
classifiers received as input a concatenation of the current sentence with, at most, the two
previous sentences in the dialogue if they existed. We say at most because some models
present limitations on the length of the input. In these cases, the input may present only
the current sentence or the current and previous sentences. In the eventuality that the
current sentence in itself is too large, it is cut until it reaches the maximum length allowed.

Furthermore, the use of context could be considered non-standard for Sentiment Anal-
ysis (SA), as, when applied to text, it usually refers to a single sentence. With this in mind,
it could be interesting to see how standard SA techniques perform in a non-standard setting
(the use of dialogues/context).

Besides the experiment and comparison of the performances of each classifier, we will
also report the following experiences:

• The use of different representations (sparse vs dense) in the shallow classifiers and
the CRF model. Note that while we defined the feature engineering as manual
for the CRF model, in Figure 5.1, the chosen features include the sparse or dense
representations of the utterances;

• The use of unigrams, bigrams, and trigrams in the shallow classifiers and CRF model
with sparse representations;
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• The use of a holdout set vs cross-validation (including hyperparameters tuning),
when applicable;

• The use of more or fewer features in the CRF model;

• The use of different representation functions (i.e., ways to obtain the sentence em-
bedding) in the BERT-CRF model;

• The use of hypotheses in Portuguese, English, and as labels or sentences, in the
Zero-Shot Learning (Zero-SL) model;

• Whether models trained using non-dialogue data were able to properly classify dia-
logues.

The evaluation of the classifiers, using the metrics presented in section 2.2, will be
presented in Chapter 7.

Regarding the experimental setup, the programming language chosen was Python, due
to its simple syntax, platform independence, community support, readability, and mostly
due to the great choice of libraries. It is important that the experiences performed can be
reproducible, meaning that any randomness must be controlled, otherwise the data and
even some of the algorithms will not be defined as they were for this work. Hence, we
defined a seed state (123) to initialize the random number generator, making sure that the
results are reproducible. When evaluating the models on the testing dataset, they were not
retrained on the combined training and validation datasets, however this approach could
possibly affect the results, and could be used in future work.

In this work, several libraries were used and they are listed in appendix 8.2. Some of
them include: For data structures, pandas1 and numpy2. For data visualization, seaborn3

and matplotlib4. For Natural Language Processing (NLP), nltk5 and spacy6. For machine
learning, scikit-learn7. For CRF, sklearn-crfsuite8. For deep learning, tensorflow9 and
torch10. For transformers, there are several options in Hugging Face11.

6.1 Lexicon-based Approaches

A lexicon-based approach is a traditional and quick option for SA, which is why they were
considered baseline models for this work.

The SentiLex-flex (Carvalho and Silva, 2015), and the NRC Emotion (Mohammad and
Turney, 2013) lexicons were used. The former is based on Portuguese texts and uses the
words’ inflected forms, and the latter is composed of an English Thesaurus’ unigrams and
bigrams translated to Portuguese. SentiLex-flex is likely to be the better option since it is
based on Portuguese texts and focused on sentiments towards humans.

1https://pandas.pydata.org/
2https://numpy.org/
3https://seaborn.pydata.org/
4https://pypi.org/project/matplotlib/
5https://www.nltk.org/api/nltk.html
6https://spacy.io/
7https://scikit-learn.org/stable/
8https://sklearn-crfsuite.readthedocs.io/en/latest/
9https://www.tensorflow.org/

10https://pytorch.org/docs/stable/package.html
11https://huggingface.co/models
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6.2. Shallow Learning Classifiers

For this approach, the following steps were followed:

1. Create a dictionary based on each lexicon, containing the words and associated sen-
timent polarity;

2. Transform multi-class labels in binary (Non-Negative and Negative), in accordance
with the datasets’ annotations;

3. Find the words in each sentence that are present in the lexicon and sum their lexicon
sentiment polarities;

4. Determine the final polarity of a sentence by the sentiment polarities of the composing
words;

5. Analyse the results, applying the evaluation metrics defined.

As a baseline, the performance of these models was not expected to be high. The
results will be presented in Chapter 7. Table 6.1 presents some examples of entries from
each lexicon.

Table 6.1: Examples of entries and annotations from each lexicon

Lexicon Entry Sentiment
ruinosas -1
entusiasmam 1SentiLex-flex
senhor do seu nariz 0
à deriva -1
perspicácia 1NRC Emotion
permitido 0

6.2 Shallow Learning Classifiers

In this work, we used the following Shallow ML classifiers, that were presented in section
2.2.5:

• Logistic Regression, a simple linear classifier;

• SVM, a classifier that splits the data using an hyperplane. Different kernels were
used, and only the one with higher performance will be presented in the results;

• Naive Bayes, a classifier based on the Naive Bayes theorem (equation 2.9). We
chose the Multinomial Naive Bayes12, since it is suited for text classification and
handles Term Frequency - Inverse Document Frequency (TF-IDF) counts;

• Random Forest, an ensemble of decision trees that automatically performs feature
selection.

12https://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.MultinomialNB.
html
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For each classifier, two types of representation were used, TF-IDF (Sparse) and encod-
ings generated by BERTimbau Natural Language Inference (NLI)13 (Dense). The former
is a simple and traditional technique, while the latter is a Sentence Transformer (Reimers
and Gurevych, 2019), a modification of the pre-trained BERT model developed for appli-
cation with sentences. This type of transformers are fine-tuned on pairs of sentences (and
labels), regarding the chance of inferring one based on the other. BERTimbau NLI is the
only model of this type trained in the Portuguese language and available at Hugging Face.

For this approach, the following steps were followed:

1. Load and split the data, using a 60%-20%-20% split or cross-validation;

2. Define the model and tokenizer or TF-IDF vectorizer, according to the type of en-
coding used;

3. Encode the data and train the model;

4. Evaluate the model in the validation and testing datasets;

5. Analyse the results, applying the evaluation metrics defined.

6.3 Deep Learning

The following deep learning approaches, which do not consider context, were used in this
work:

• BOTSchool Application Programming Interface (API):

BOTSchool14 is a platform developed by Altice Labs (AL)15 to create Virtual As-
sistants that can be used for companies to increase their customer experience and
engagement, from Support, Shopping Assistant, Self-Care, Management Assistant,
among others.

AL allowed us access to their sentiment analysis API, which was built using a fine-
tuned multilingual BERT model trained on 198M Tweets16 (Barbieri et al., 2022).
This approach is relevant for this work since it sets a performance mark that, if
surpassed by other models, could mean there might be better options for the system
created by AL. To use this model, a request is sent with the sentence, and the
probabilities of it containing a negative, neutral, or positive sentiment polarity are
returned.

For this approach, the following steps were followed:

1. Load and split the data using an 80%-20% ratio. This model is already fine-
tuned in sentiment data and does not require additional training. The testing
dataset contains the same data as the testing datasets from the models that
require training, so the evaluation is performed on the same utterances for all
classifiers;

13https://huggingface.co/ricardo-filho/bert-portuguese-cased-nli-assin-assin-2
14https://botschool.ai/home
15https://www.alticelabs.com/
16https://huggingface.co/cardiffnlp/twitter-xlm-roberta-base-sentiment
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2. Define the model’s endpoint (https://api.botschool.ai/sentiment/v1/polarity?
apiKey=API_KEY ) and request parameters. API_KEY refers to the access
key provided by AL so that we could use the BOTSchool API;

3. Post requests to the API, containing one sample at a time;
4. Retrieve the probabilities of the sample containing Negative, Neutral, or Positive

sentiment, and transform them into Negative and Non-Negative labels;
5. Analyse the results, applying the evaluation metrics defined.

AL has used this model in a development setting, but, so far, it has not been applied
to their live services.

Regarding the training of this model, we note that the dataset used contains standard
SA data, which may impact the model’s performance in non-standard data, as is the
case of dialogues.

• Fine-tuned BERT

A fine-tuning approach consists of training a pre-trained model on the SA task,
which will update the model weights. Since there is a BERT model pre-trained for
the Portuguese language, BERTimbau17 (Souza et al., 2020), there was a good chance
that the use of this model fine-tuned for SA could provide good results.

For this approach, the following steps were followed:

1. Load and split the data, using a 60%-20%-20% split or cross-validation;
2. Use the BERTimbau Tokenizer to generate initial embeddings for each dataset,

with padding to the maximum length found in the training dataset to ensure
equal length in all samples;

3. Define the model and optimizer18 (i.e., the optimizer is responsible for changing
the weights of the model in order to minimize the loss function, in this case);

4. Train the BERTimbau model in batches of size 16 (the model is updated at
every 16 samples processed) and for two epochs (times that the model will work
through the entire training dataset). At the end of each epoch, the model is
evaluated using the validation dataset;

5. Evaluate the model on the testing dataset and analyse the results, applying the
evaluation metrics defined.

• Few-Shot Learning

Few-Shot Learning (Few-SL) aims to train classifiers given only a few labeled exam-
ples of each class. In this work, three examples were fed to the Generative Pre-trained
Transformer (GPT)-Neo19 model.

GPT-320 and GPT-J21 were also considered, but were not applied due to limited
or paid usage. Technical and time constraints did not allow us to experiment with
Meta-OPT22, which could be an interesting model. The same reasons did not allow
the experimentation with the inclusion of a task description (Mi et al., 2022) in
the examples selected. The experiments could have included descriptive sentences,
presenting a definition, a constraint, and a prompt, such as:

17https://huggingface.co/neuralmind/bert-base-portuguese-cased
18https://pytorch.org/docs/stable/generated/torch.optim.AdamW.html
19https://huggingface.co/EleutherAI/gpt-neo-2.7B
20https://openai.com/api/
21https://huggingface.co/docs/transformers/model_doc/gptj
22https://huggingface.co/facebook/opt-2.7b
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– Definition: Predict the sentiment in the input sentence;
– Constraint: Select the most suitable value from 0;1. If multiple values appear,

select the latest one;
– Prompt: What is the sentiment?

Besides the choice of the model and how to describe the task, several algorithms
can be used in the decoding operation (i.e., analysis and selection of the most likely
tokens to generate):

– Greedy Search: Selects the word with the highest probability as the next word
to generate at each timestep;

– Sampling Decoding: Randomly selects the next word according to its conditional
probability distribution;

– Beam Search: Keeps the most likely N (defined by the number of beams) hy-
potheses at each timestep, choosing the one with the highest overall probability;

– Top-K Sampling (Fan et al., 2018): Filters the K most likely next words and
redistributes the probability mass among those K words. This algorithm was
adopted by GPT2;

– Top-P (Nucleus) Sampling: Filters the smallest possible set of words with a
cumulative probability higher than p, and redistributes the probability mass
along that set of words;

– Top-P and Top-K Sampling: A combination of the Top-P and Top-K algorithms,
which can avoid low-ranked words while allowing some dynamic selection.

Some of these algorithms use a parameter called temperature, which affects how it
will choose the next word to generate (from a distribution). A lower temperature
value will decrease the likelihood of low probability words while increasing the like-
lihood of high probability words). The algorithms are further explained in Hugging
Face’s website (von Platen, 2020). Table 6.2 presents the execution time for a ran-
domly selected sentence using each of the mentioned decoding algorithms. With
this in mind, the Top-P and Top-K Sampling algorithm was selected for the Few-SL
experiments.

Table 6.2: Exploration of Few-Shot Learning’s Sampling Algorithms

Sampling
Algorithm

Sampling Decoding
(Temperature) Greedy Decoding Beam Search Top-K Sampling Top-P (Nucleus)

Sampling
Top-P and Top-K

Sampling

Top-K Sampling
(with Definition,

Constraint,
Prompt)

Execution
Time (min) 17.28 17.28 Not Determined 0.57 0.55 0.55 4.34

As mentioned in Section 2.2.5, a Few-SL approach can generate tokens that may not
always match the desired classifications (0 or 1). This analysis will be included and
presented in Chapter 7.

For this approach, the following steps were followed:

1. Load and split the data using an 80%-20% ratio. This model does not require
training, so we only use the testing dataset;

2. Define the model and tokenizer;
3. Set three examples, according to each dataset, that contain negative and non-

negative sentiment. To each example we add separation tokens (|bos| to define
the start of the utterance, |eos| to define the end of the utterance, and |sentiment|
to append the associated label at the end);
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4. Generate and decode the answer from each input from the testing data at a
time, using the chosen decoding algorithm (Top-P and Top-K). The separation
tokens are also added to the input, but no associated label is appended to the
|sentiment| token so that the model knows how to classify it;

5. Process the answers, verifying which ones are valid (were given a 0 or 1 la-
bel), and analyse the results on the valid data, applying the evaluation metrics
defined.

For better visualization of the use of the separation tokens, we present two examples
of utterances from the Twitter dataset:

1. |bos| _USER_ Já fizemos tudo o que a equipa técnica nos disse e inclusive voltei
a reiniciar e continua sem funcionar portanto vou ter que contactar novamente
a equipa técnica! Obrigada! |eos| |sentiment| 0

2. |bos| _USER_ por favor, não deixes de existir! ( _URL_ _URL_ |eos| |sen-
timent| 1

• Zero-SL

Zero-SL aims to perform classification without using labeled data. In this work, the
BART model23 was used. However, it was trained on data in the English language,
which may add an extra layer of difficulty to the task.

For this task, hypotheses in the Portuguese and English languages were used, as a
single word (e.g. Negative, Positive) and as a sentence (e.g. The sentiment in this
sentence is negative).

For this approach, the following steps were followed:

1. Load and split the data using an 80%-20% ratio. This model does not require
training, so we only use the testing dataset;

2. Define the model and tokenizer;
3. To each sample in the testing dataset, add separation tokens (|bos| to define the

start of the dialogue, |eos| to define the end of the dialogue, and |sentiment| at
the end of the dialogue). The |bos| and |eos| tokens were not required for this
approach, but were kept for coherence with the Few-SL approach;

4. Define the hypothesis, either as a single label (e.g., Negative) or as a sentence
(e.g., Esta frase tem sentimento negativo) and in Portuguese or English lan-
guage;

5. For each hypothesis and input, retrieve the probability of the hypothesis being
true;

6. Normalize the probabilities of the set of hypotheses (since the model considers
semantic, we used Negative, Neutral, and Positive labels, because we believe
they could bear more meaning than just using Negative and Non-Negative la-
bels);

7. Analyse the results, applying the evaluation metrics defined.

There are not many models trained for zero-shot classification, which is why only
BART was used. We experimented with a model fine-tuned on Spanish data, SE-
LECTRA24, but the results were below random guessing, so they will not be pre-
sented.

23https://huggingface.co/facebook/bart-large-mnli
24https://huggingface.co/Recognai/zeroshot_selectra_medium
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6.4 Classifiers with Context

Since the focus of this work is to perform SA in a dialogue context, it was important to
determine if the sequential nature of the dialogue was relevant to determining its sentiment.

This section will present the CRF model and the BERT-CRF model, an approach that
makes use of CRF’s sequence modeling characteristics while combining them with the more
powerful deep learning model, BERT.

It should be noted that the Few-SL, Zero-SL, and BOTSchool API models contain a
limit on the number of tokens received, so when considering the previous sentences they
may exceed this number. Hence, some samples may not contain the two previous sentences,
but only one, or just the current sentence. In extreme cases, an option to cut the current
sentence was added so that it would be usable by these models.

In the Few-SL and Zero-SL approaches with context, an extra token is added, |pad|,
that separates between each turn in the dialogue. An example of the use of this extra
token follows, from the AL dataset, where three input sequences are concatenated:

1. |bos| churrasqueira fatura |pad| Se bem percebi pretende falar sobre faturação e
pagamentos. E é sobre este numero de onde me está a ligar? Caso não queira
informação de faturação diga "voltar atrás" |pad| dás isto é demais |eos| |sentiment|
0

Figure 6.1 and Table 6.3 present the set of dialogues used as examples in the Few-SL
approach, for both datasets. When not considering context, a sentence was chosen from
these dialogues (this sentence is signaled with bold).

Figure 6.1: Set of dialogues used as examples in the Few-Shot Learning approach, using
the Twitter dataset.

The set of dialogues in Figure 6.1 was chosen because the first contains a negative
example, the second contains a positive example, and the third contains a more strongly
negative example.

The set of dialogues in Table 6.3 was chosen because the first contains a short and
mostly neutral (non-negative) common example, the second contains a longer, strongly
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Table 6.3: Set of dialogues used as examples in the Few-Shot Learning approach, using the
Altice Labs dataset.

Dialogue ID Utterance Sentiment
1 queria falar com o técnico 1

1 Vamos transferir a sua chamada para um assistente. Para um melhor atendimento
diga qual o assunto que pretende tratar com o assistente PPP 1

1 outra questão 1
1 Lamento não poder ajudar, vou passar a sua chamada para o assistente PPP 0

2 tarifários 1

2
Se bem percebi quer tratar de tarifários. O que pretende saber ? informações sobre
o seu tarifários, conhecer outros e alterar o seu tarifário? Se não pretende falar
sobre tarifários, diga "voltar atrás"

1

2 churrasqueira fatura 1

2
Se bem percebi pretende falar sobre faturação e pagamentos. E é sobre este
numero de onde me está a ligar? Caso não queira informação de faturação
diga "voltar atrás"

1

2 dás isto é demais 0

2
Se bem percebi pretende falar sobre faturação e pagamentos. E é sobre este
numero de onde me está a ligar? Caso não queira informação de faturação
diga "voltar atrás"

1

2
facturação não quero voltar a carregar as coisa nenhuma porra que eu cada
vez estou mais ligada com estes clientes da meo com estes operadores
da meo f**a-se

0

2 Lamento mas não consigo ajudar. Vou transferir a chamada para o atendimento automático 0

3 a internet está sempre a falhar 0
3 Vou transferir a chamada para um serviço ATF que irá processar o seu pedido. 1
3 a internet está sempre a falhar 0
3 Vamos transferir a sua chamada para o serviço AIT 1

negative example, and the third contains a short negative example with repetition.

6.4.1 CRF

A CRF is a classifier that considers context, allowing for the classification of sequences
instead of single samples, and is commonly appended to deep learning classifiers such as
Long Short-Term Memory (LSTM)s or BERT models as the last layer of the network (Jin
et al., 2019, Souza et al., 2019).

The application of this model required some extra work, in comparison with the other
classifiers, since CRF is usually used for sequence tagging operations (Lafferty et al., 2001,
Patil et al., 2020, Warjri et al., 2021) which use words instead of full sentences, and needed
to be adapted to consider sentences instead. We also needed to consider which features
would be relevant. Some possible features were:

• Turn/Longest Dialog: Current turn number in comparison with the longest dia-
logue in the training data;

• Number of Words: Number of tokens in the sentence. This is obtained using
Spacy25;

• Has Question: Whether the sentence contains a question mark;

• Has Exclamation: Whether the sentence contains an exclamation mark;

• Beginning of Speech (BOS): Whether the sentence is the first in the dialogue;
25https://spacy.io/models/pt/
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• Previous Labels: The sentiment of the previous sentences, if there are any. Up to
two previous sentences are considered. In training, the annotated sentiment is used,
while in testing, the predicted sentiment is used;

• Encodings: The embeddings of the previous sentences, if there are any, and the
current sentence.

´ The HasQuestion and HasExclamation features were thought to possibly have low infor-
mational value, and so the CRF model was tested with and without these features.

For this approach, the following steps were followed:

1. Load and split the data using a 60%-20%-20% ratio or cross-validation;

2. Define the model and tokenizer or TF-IDF vectorizer, according to the type of en-
coding used;

3. Encode the dialogues and define the features set for each sample;

4. Train the model;

5. Evaluate the model in the validation and testing datasets while updating the previous
labels feature (when applicable);

6. Analyse the results, applying the evaluation metrics defined.

6.4.2 BERT-CRF

Souza et al. (2019) developed a BERT-CRF architecture used for Named-Entity Recog-
nition (NER) in the Portuguese language and explored feature-based and fine-tuning ap-
proaches. In this work, only the fine-tuning approach was used, since it generally obtains
better results.

We developed an architecture that consists of using the BERT model (i.e., BERTimbau)
and feeding its output scores and embeddings to the CRF model, as well as other features.
The loss generated by the CRF model will be used to update the BERT model’s weights.
Figure 6.2 illustrates the architecture used, as well as the features fed to the models.

The loss value was obtained using the Negative Log Likelihood Loss (NLLL), the loss
function utilized by BERT models and that can be computed to work with the CRF model,
so that the loss returned by the latter can maintain its meaning by the former, connecting
both models. The NLLL function is based on the softmax output (a function that provides
the probabilities that a certain input belongs to a certain class). The higher the probability
of the predicted class, given by the softmax output, the lower the associated loss.

As seen in Figure 6.2, the BERT model feeds the CRF model with a representation
for each sentence considered. Figure 6.3 represents BERT’s hidden states, the embeddings
resulting from the data going through BERT’s 12 hidden layers. There are 13 hidden
states, because the first state represents the initial input embedding, before going through
any hidden layer. The embedding of the previous layer is fed to the next until it reaches
the last layer, the one with the most contextual information. We only use the [CLS] token
since it represents the whole sentence and not just word tokens, making the final embedding
present the dimensions [number of samples x 768] instead of [number of samples x max
length x 768], as seen in the figure.
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Figure 6.2: BERT-CRF model’s architecture

Despite containing the most contextual information, the last layer may be too fitted
for BERT’s target functions, Masked Language Model (MLM) and Next Sequence Pre-
diction (NSP), which is why we experiment with the following ways to obtain the final
representation:

1. Concatenation: use the last 4 hidden layers, ending up with dimension [number of
samples x (768 x 4)] instead of the regular [number of samples] x 768;

2. Mean: use the average of the last 4 hidden layers, keeping the 768 dimension;

3. Last Hidden Layer: use the last hidden layer;

4. First Hidden Layer: use the initial input embedding, containing no contextual infor-
mation;

Other layer options and operations could have been used (e.g., the sum of layers, any
other single layer besides first and last).

For this approach, the following steps were followed:

1. Load and split the data using a 60%-20%-20% ratio or cross-validation;

2. Define the BOS feature for each sample, the model, tokenizer, and optimizer (AdamW);

3. Use the BERTimbau Tokenizer to generate embeddings for each dataset, with padding
to the maximum length found in the training dataset to ensure equal length in all
samples;

4. Set the features for each sample (embeddings and BOS) and train the BERT model,
using the chosen representation strategy, and batches of size 16, for 2 epochs.

5. After training the BERT model, obtain the selected CRF features, using the labels
and [CLS] embeddings generated by the BERT model;

6. Train the CRF model, compute the NLLL, and feed it to the optimizer to update
the BERT model’s weight at the end of each epoch, and evaluate the model with the
validation dataset;
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Figure 6.3: BERT’s Hidden States, adapted from Neeraj (2020)

7. Evaluate the model on the testing dataset and analyse the results, applying the
evaluation metrics defined.

6.5 Non-Dialogue Training

Some models were used to verify if they were able to properly classify dialogues when
trained using standard, non-dialogue data (the SentiTuites dataset, mentioned in chapter
5). Only models without context were considered, since the non-dialogue data used is
composed of single samples, lacking any kind of context.

The chosen models were the shallow learning classifiers. Their results, which will be
presented in chapter 7, were not promising. Due to the low performance and the longer
training and evaluation processes, the dense representations and the deep learning models
were not used in this experiment.

It should be noted that the domain reflected in SentiTuites (Politics) is not one of our
target domains, which is likely to have harmed the performance of these models.

6.6 Validation

We initially split the data into three sets, training, validation, and testing, with a 60%-
20%-20% split, which grants a common ground between all models. Later, a 5-Fold Cross
Validation technique was applied, which is expected to improve the performance of each
model since it will select the best split for the training-validation data. The training and
validation sets were used to tune the models, and the testing set was used for a final
and independent evaluation of each model. When performing the split automatically, the
stratification option was enabled, in order to assure that both classes were represented in
each dataset. This is especially important since our datasets are unbalanced.
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Regarding the cross-validation, for the free-of-context models, which use only current
utterances, we used a Stratified 5-Fold cross-validator26, which divides the data while
attempting to keep each split somewhat balanced. For the models using context, a Non-
stratified 5-Fold cross-validator27 was used, since the input of these models are dialogues,
and these are not labeled.

Cross-Validation can be particularly interesting when used with small datasets since
it is likely that the variance in each fold is lower, while in larger datasets it is likely that
each fold contains a good representation of the dataset. Hence, in smaller datasets, this
approach may have a bigger impact, since it will choose the fold with the most relevant
information (defined through an analysis of the best performance from each trained model).

Adding to the cross-validation, we also tuned most models’ hyperparameters. This
process will be explained in the next section.

6.7 Hyperparameters Tuning

A hyperparameter is a parameter used to configure the model, and that is not derived
via training. There are many options for each parameter that can affect the performance
of each model, therefore, we combined the cross-validation technique with hyperparam-
eters’ tuning to get better performances with the models. However, approaches such as
the lexicon-based models, the AL’s BOTSchool28 API, and Zero-SL and Few-SL models
were not subject to tuning, due to their lack of a training stage and the nature of each
application.

The traditional models, fine-tuned BERT, and CRF, were all tuned. In the case of
the BERT-CRF model, the best hyperparameters from each composing model will be used
since the tuning of this model would take a very long time, and it is expected that the use
of the tuned individual models will improve the performance of the whole model.

Some models required higher computational power and could not run the tuning process
for the AL dataset. Hence, for these models (SVMs, Fine-tuned BERT, and BERT-CRF),
we used the tuned hyperparameters found for the Twitter dataset, which may not be ideal.

The technique used for the hyperparameters tuning was Grid Search29, which per-
forms an exhaustive search over each possible parameter value. The model with the best
parameters will be selected and applied to the testing set for final evaluation.

Due to a lack of time and resources, the Genetic Algorithm (GA) search and Population-
Based Training (PBT) options for hyperparameters’ tuning were not explored.

6.7.1 Shallow Classifiers

In this sub-section we will list the hyperparameters and values considered for each of the
Shallow Learning Classifiers.

Regarding the Logistic Regression, we considered four hyperparameters:
26https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.

StratifiedKFold.html
27https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.KFold.html
28https://botschool.ai/
29https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.

GridSearchCV.html
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1. Solver: Limited-Memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS), the default
algorithm, and Library for Large Linear Classification (LibLinear), good for small
datasets;

2. Penalty: Regularization penalty, using L2 regularization;

3. C: Regularization parameter where smaller values specify stronger regularization;

4. Max. Iterations: Number of iterations for the solver to converge.

For the C values, we generated 20 values between the log scale of 0 and 10, and for the
maximum iterations, we experimented with 100, 200, and 500. The penalty hyperparam-
eter was set at L2, and the solvers were already described.

Regarding the SVM, we considered four hyperparameters:

1. Kernel: Defines the kernel function for the algorithm;

2. C: Regularization parameter that defines the cost of misclassification. Higher values
give lower bias and higher variance;

3. Gamma: Kernel coefficient, specific to the poly and rbf kernels, that controls the
shape of the margin between classes. Higher values give higher bias and lower vari-
ance;

4. Degree: Degree of the poly kernel function.

For the kernel, we selected linear, poly, and rbf functions. For the C values, we exper-
imented with 0.1, 1, 10, and 100. For the Gamma values, we chose 0.001, 0.01, 0.1, and 1.
For the Degree values, we set 2 and 3.

Regarding the Random Forest, we considered seven hyperparameters:

1. Criterion: The measure of the quality of a split, gini or entropy, which calculate the
impurity of a node (a pure node only contains one class);

2. Estimators: The number of trees in the model;

3. Max. Features: Define the limit of features when splitting, considering the square
root or the logarithm to the base 2 of the number of features;

4. Max. Depth: How deep a tree can become;

5. Min. Samples Split: The lower limit on the number of samples required to split an
internal node;

6. Min. Samples Leaf: The lower limit on the number of samples required to be at a
leaf node;

7. Bootstrap: Whether to use bootstrap samples when building trees. If false, the whole
dataset is used to build each tree.

For the Estimators, we selected 100 and 200 trees. We defined Max. Features and
Criterion as described in the list. For Max. Depth, we chose 10 and 50. For the Min.
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Samples Split we experimented with 2 and 5, and for the Min. Samples Leaf with 1 and
2. We explored using and not using bootstrap in this classifier.

Regarding the Naive Bayes, there was only one hyperparameter to consider, the Alpha
parameter, which was explored with values of 0 and 1. The alpha parameter represents the
smoothing prior, which accounts for features not present in the training set and prevents
probabilities of zero. An alpha value of 1 is called Laplace smoothing (adds 1 to all counts),
otherwise it is called Lidstone smoothing (adds a value different than 1).

6.7.2 CRF

Regarding the CRF, we considered three hyperparameters:

1. Max. Iterations: Limit the iterations for the algorithm;

2. C1: Coefficient for L1 regularization (Lasso), a method to manage overfitting and
perform feature selection;

3. C2: Coefficient for L2 regularization (Ridge) a method to manage overfitting and
perform feature selection.

For the C1 values, we set eleven values between 0 and 2. For the C2 values, we selected
ten values between 0.001 and 1. As for the Max. Iterations, we experimented with 100,
200, and 500.

We set the training algorithm to L-BFGS, which is a popular optimization algorithm
that was also used in the Logistic Regression model. We also allowed all possible transitions,
meaning that the model is capable of generating transition features that associate all
possible label pairs, even if they do not occur in the training data.

6.7.3 Fine-tuned BERT

Regarding the fine-tuning of BERTimbau, we considered four hyperparameters:

1. Epochs: Number of times the whole dataset is passed through the model;

2. Batch Size: the size of the data sub-samples, makes the learning process faster be-
cause it does not give the model the whole data at once;

3. Learning Rate: Controls the step size (higher means faster learning but a higher
chance of not reaching the optimum value);

4. Epsilon: Value to avoid division by zero when the gradient is close to zero. Larger
values make the training process longer because the weight updates will be smaller.

The last two hyperparameters apply to the optimizer.

For the number of Epochs, we chose 2 and 4. For the Batch Size we had 16 and 32
but could not run experiments in the available machines using the latter. For the Learning
Rate we experimented with 0.0001 and 0.00005. For the Epsilon values, we selected 0.001
and a very small value, 0.00000001.
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6.7.4 BERT-CRF

As mentioned, BERT-CRF will use the best hyperparameters found for each individual
model.

For the Twitter dataset, this translates into the following values for the seven total
hyperparameters:

1. Batch size (BERT): 16;

2. Epochs (BERT): 2;

3. Learning Rate (BERT): 0.0001;

4. Epsilon (BERT): 0.00000001;

5. C1 (CRF): 0.408;

6. C2 (CRF): 0.556;

7. Max. Iterations (CRF): 200.

For the AL dataset, only the three CRF hyperparameters’ values changed: the C1 value
was set to 1.8, the C2 value to 0.67, and the number of Max. Iterations was defined as
100.

6.8 Summary

This chapter tackles the feature engineering (which, for most classifiers, consists of applying
an encoding technique, TF-IDF or BERTimbau NLI, to represent each utterance), model
training and optimization (when applicable, since some models do not require training
data) problems.

Regarding the first problem, we used three main approaches, as represented in Figure
5.1: sparse, when using the TF-IDF technique, dense, when using the BERTimbau NLI
approach, and manual, which we define as a manually selected set of features (e.g., number
of words, BOS), including a sparse or dense representation of the utterances involved.
This last option is only used for the CRF and BERT-CRF classifiers. When the context is
involved but not included in the original models, we concatenate the current and previous
utterances to compare the performances in both scenarios (with and without context).

Since representation has an impact on the performance of a model, we experimented
with the use of unigrams vs. multi grams in the models using TF-IDF, the definition of a
smaller set of features for the CRF model, the use of different representation functions in
the BERT-CRF model, and setting the Zero-SL hypotheses as labels or sentences.

Regarding model training and optimization, we developed solutions based on the ten
classifiers listed in Figure 5.1. The datasets were split 60%-20%-20% for training, valida-
tion, and testing, when the models required training data, and 80%-20% when they did not,
as is the case of the BOTSchool API, Few-SL, and Zero-SL classifiers. The first group of
classifiers was optimized, using cross-validation and grid-search. We kept the results from
the non-optimized models as they all share the same training and testing data, providing
us with a solid base for comparison of their performances.

77



6.8. Summary

An experiment regarding the performance of models trained in standard SA data and
their application to dialogues was also defined, and it uses the Sentituites dataset as a
source for non-dialogue samples.

The results obtained from each experiment and classifier will be presented and discussed
in the next chapter.
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Chapter 7

Experimental Results

In this chapter, we will focus on the Model Evaluation step presented in Figure 5.1. We
will present the results from the evaluation of each of the developed classifiers, as well as
the experiences mentioned in Chapter 6, including the comparison of different n-grams,
kernels, representations, and hyperparameters.

It should be mentioned that the number of samples in each dataset is different based
on whether we consider context or not. This happens because without context we perform
the data split by utterance, because we use a method1 that splits the data automatically,
while with context we perform it by dialogue and each contains a varying number of
utterances. However, we could also have organized the data in dialogues, split it like that,
and then extract the individual sentences. Since we were not considering the context in
those approaches, we did not think this was important enough to experiment with, since
the only difference would be that each sub-dataset would contain full dialogues. The data
split is used when defining a testing dataset, and when performing cross-validation or
defining a fixed validation set (however, we did not explore the validation scores). Table
7.1 presents the number of samples of each label, in the testing dataset, in both scenarios,
with and without context. It is also relevant to mention that the testing dataset contains
the same data (dialogues or utterances) for all models since the data split is performed
equally across all of these experiments, which creates a common base between each of
them. When not performing cross-validation, the training data is also the same for every
model (that requires training).

Table 7.1: Number of samples of each class present in the testing dataset, with and without
using context.

Altice Labs Testing Dataset
(Without Context)

Twitter Testing Dataset
(Without Context)

Altice Labs Testing Dataset
(With Context)

Twitter Testing Dataset
(With Context)

Non-Negative
Samples 867 120 891 139

Negative
Samples 196 91 191 79

Total Samples 1,063 211 1,082 217

The evaluation results present six metrics, Accuracy, Precision, Recall, Specificity, F1-
Score, and Area Under the ROC Curve (AUC). However, not all of them share the same
relevance, and it is important to define which metrics are more important for this disser-
tation’s problem.

With this in mind, and considering we are approaching it from a binary perspective
1https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_

split.html
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(i.e., a client’s sentiment is either negative or non-negative), one could affirm that the loss
of a client would be worse than the pointless allocation of a human to a client (i.e., when
the client does not require human intervention), since losing a client would reduce the
company’s profit and negatively affect their reputation, as the client could complain about
the service, officially or not. What this analysis tells us is that a false negative situation
(i.e., classifying a client’s sentiment as non-negative when it is actually negative) should
be minimized as much as possible, even if it might slightly increase the number of False
Positive (FP) (i.e., this would translate into calling a human to handle a client with no
negative sentiment). With this in mind, it could be argued that the most relevant metric
would be the recall. However, the f1-score can be equally relevant, since it balances both
situations mentioned (the loss of a client due to a False Negative (FN) scenario and the
pointless allocation of a human to a client due to a FP scenario), by considering both the
recall and the precision metrics.

Despite considering recall and f1-score as the most relevant metrics, we will also keep
an eye on the AUC, as it is a common performance metric since it evaluates the classifier’s
ability to distinguish between classes.

In the last section of this chapter, we will present a summary of the analysis of the
experimental results.

7.1 Lexicon-based Approaches

In this section, we present the results using the lexicon-based models. These classifiers do
not produce probabilities of a sample belonging to each class, so the metric AUC is not
applicable. The remaining metrics’ scores are presented in Tables 7.2 and 7.3.

Table 7.2: Evaluation of the lexicon-based approaches using the Altice Labs dataset.

Altice Labs Dataset
Lexicon Accuracy Precision Recall Specificity F1 Score

NRC Emotion
Lexicon 0.71 0.17 0.15 0.84 0.16

SentiLex-flex 0.23 0.19 0.95 0.06 0.32

Table 7.3: Evaluation of the lexicon-based approaches using the Twitter dataset.

Twitter Dataset
Lexicon Accuracy Precision Recall Specificity F1 Score

NRC Emotion
Lexicon 0.59 0.64 0.1 0.96 0.17

SentiLex-flex 0.63 0.54 0.92 0.4 0.68

Using the Altice Labs (AL) data (the focus of this work), these models perform worse
than random-chance for most metrics, making it a bad option. These values also confirm
why it is important to consider the F1-Score metric, and not just the Recall metric since,
in the SentiLex results, we get very high recall scores, which could make us wrongly assume
this was a good model.

Using the Twitter data, the results are not as low, but we still cannot claim that these
are good models.
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By analysing the Recall and Specificity scores, we can conclude that using the SentiLex
lexicon, the models seem to classify most utterances as Non-Negative (high recall and low
specificity), while when using the NRC Emotion lexicon, the models seem to classify most
utterances as Negative (low recall and high specificity), especially in the AL dataset.

7.2 Shallow Learning Classifiers

This section presents the results for the shallow learning classifiers using sparse and dense
representations. We also analyse the effect of the n-grams choice in the sparse represen-
tation models. Regarding the Support Vector Machine (SVM) model, we chose the RBF
kernel since it performed better than the other kernels (the evaluation results of each kernel,
with and without context, can be seen in appendix 8.2).

7.2.1 Sparse Representations

A sparse representation is obtained by using the Term Frequency - Inverse Document
Frequency (TF-IDF) technique. The results presented in Tables 7.4 and 7.5 use unigrams,
but we will explore the effect of the choice of n-grams further ahead.

Table 7.4: Evaluation of the shallow classifiers, using TF-IDF encoding, with the AL
dataset.

Altice Labs Dataset
Model Accuracy Precision Recall Specificity F1 Score A.U.C.
Logistic

Regression 0.91 0.84 0.63 0.97 0.72 0.92

RBF SVM 0.91 0.84 0.66 0.97 0.74 0.9
Naive
Bayes 0.91 0.82 0.64 0.97 0.72 0.92

Random
Forest 0.91 0.78 0.7 0.96 0.74 0.92

Table 7.5: Evaluation of the shallow classifiers, using TF-IDF encoding, with the Twitter
dataset.

Twitter Dataset
Model Accuracy Precision Recall Specificity F1 Score A.U.C.
Logistic

Regression 0.84 0.89 0.73 0.93 0.8 0.94

RBF SVM 0.86 0.85 0.81 0.89 0.83 0.93
Naive
Bayes 0.82 0.88 0.67 0.93 0.76 0.94

Random
Forest 0.83 0.86 0.73 0.91 0.79 0.9

The Twitter dataset presents better results than the AL dataset, overall, although the
greatest difference is in the Recall scores. This means that these shallow models with
sparse representations are better at classifying negative sentiment in the Twitter dataset.
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Despite the scores being generally good, the recall (and so the f1-score as well) are
mostly below 80%, so while the results are much better than the lexicon-based results,
there is room for improvement.

The best shallow model with sparse representations seems to be the SVM for the Twitter
dataset with a slightly lower AUC but higher recall and f1-score than other models, and
the Random Forest for the AL dataset, achieving the top score on all three important
metrics.

Regarding the experiment on the use of unigrams, bigrams, and trigrams in the shallow
classifiers with sparse representations, the first presented the best results, and this is the
n-gram setting to be used in all following experiments. The full results can be viewed in
Appendix 8.2.

Focusing on another experiment, related to the effect of using models trained in stan-
dard Sentiment Analysis (SA) data instead of dialogues, a comparison of the F1 Scores
obtained when training shallow learning classifiers (with sparse representations) in the Sen-
tituites dataset (80% split for training) and evaluating the performance on the remaining
20% of this dataset, and the Twitter and AL datasets can be seen in Figure 7.1. The
results regarding the other evaluation metrics are presented in Appendix 8.2.

Figure 7.1: Evaluation of the Models Trained in Non-Dialogue Data

The F1 Scores of the models trained in the Sentituites dataset reveal that the perfor-
mance is not good even when evaluated in the same type of data (under random guessing
using the Naive Bayes classifier). This could be due to overfitting in the training pro-
cess, since the metrics in Appendix 8.2 show low Recall scores and very high Specificity
scores, suggesting that the classifiers mostly make Non-Negative predictions, resulting in a
high number of True Negative (TN) and FN. Since this experiment was not a priority, de-
spite being interesting, we did not attempt to further analyse and overcome the overfitting
hypothesis.

The decrease in performance for all models is striking, especially in the AL dataset,
which differs the most from the Sentituites type of data. The difference in the domains used
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for training and evaluation is likely to have harmed the performance of these classifiers,
but this may not be the only reason for such a significant decrease in the evaluation scores.
These results suggest that it may be important to train the classifiers in dialogues, as
standard SA data may not be sufficient for a good performance in SA in the context of
dialogues.

Every model evaluated in our datasets performs below random guessing for both the
Recall and F1 scores, and hence this approach should not be considered for the purpose of
this dissertation.

7.2.2 Dense Representations

A dense representation is obtained by using the BERTimbau Natural Language Inference
(NLI) Tokenizer. The results are presented in Tables 7.6 and 7.7.

Table 7.6: Evaluation of the shallow classifiers, using BERTimbau NLI encoding, with the
AL dataset

Altice Labs Dataset
Model Accuracy Precision Recall Specificity F1 Score A.U.C.
Logistic

Regression 0.93 0.8 0.83 0.95 0.81 0.94

RBF SVM 0.93 0.82 0.8 0.96 0.81 0.94
Naive
Bayes 0,9 0.76 0.69 0.95 0.72 0.9

Random
Forest 0.92 0.82 0.76 0,96 0.79 0.95

Table 7.7: Evaluation of the shallow classifiers, using BERTimbau NLI encoding, with the
Twitter dataset

Twitter Dataset
Model Accuracy Precision Recall Specificity F1 Score A.U.C.
Logistic

Regression 0.92 0.91 0.9 0.93 0.9 0.96

RBF SVM 0.91 0.93 0.86 0.95 0.89 0.97
Naive
Bayes 0.86 0.84 0.84 0.88 0.84 0.92

Random
Forest 0.88 0.88 0.84 0.92 0.86 0.96

Better performances are achieved in the Twitter dataset than in the AL dataset, over-
all, although the greatest difference is in the Recall scores. This means that these shallow
models with dense representations are better at classifying negative sentiment in the Twit-
ter dataset, as were the models with sparse representation. As seen in the data projections
earlier, in Figures 5.7 and 5.6, this may also be due to the Twitter data being more easily
separable (although not easy), as we could see in the projection that the AL data seemed
to overlap more, although it also contained more samples. Hence, there is a possibility
that the Twitter dataset is just easier to classify.

The best shallow model with dense representations seems to be the Logistic Regression
for both datasets, with a slightly lower AUC but higher recall and f1-score than the other

83



7.3. Deep Learning Classifiers

models.

From the analysis of Tables 7.4, 7.5, 7.6, and 7.7, we can affirm that the use of dense
representations, in the form of BERTimbau NLI embeddings, provides the models with
better features, which is reflected in the higher performance for all shallow models. Naive
Bayes was the only model not to show a notable improvement using these embeddings, and
just on the AL data, but still, the recall value slightly increased. The higher Specificity
score in both approaches is justified by the larger presence of Non-Negative samples in the
datasets.

7.3 Deep Learning Classifiers

This section presents the results for the deep learning classifiers, in Tables 7.8 and 7.9.

Regarding the Zero-Shot Learning (Zero-SL) model, we will present the results ob-
tained using the labels in Portuguese (Negativo, Neutro, Positivo) as hypothesis, since this
approach obtained higher results overall (slightly lower on the Twitter dataset, but notably
higher on the AL dataset, compared to the other Zero-SL approaches). The scores of these
other approaches can be viewed in Appendix 8.2.

Regarding the Few-Shot Learning (Few-SL) model, the AUC score will not be pre-
sented (defined as Not Applicable (N.A.)), since this approach generates sequences, not
providing us with the required probabilities for each label. We will present the results
obtained without using descriptions (Definition, Constraint, Prompt) and using the Gen-
erative Pre-trained Transformer (GPT)-Neo model, and will also analyse the number of
valid classifications.

Table 7.8: Evaluation of the deep learning classifiers without context, with the AL dataset

Altice Labs Dataset
Model Accuracy Precision Recall Specificity F1 Score A.U.C.

BOTSchool
API 0.85 0.57 0.73 0.88 0.64 0.87

Fine-tuned
BERTimbau 0.95 0.89 0.85 0.97 0.87 0.97

Few-Shot
Learning 0 0 0 0 0 N.A.

Zero-Shot
Learning 0.8 0.46 0.76 0.81 0.57 0.85

It is notable that the Few-SL and Zero-SL are not good options for this work. The
latter’s metric scores could be compared to the lexicon-based scores, seen in Tables 7.2 and
7.3, and the former’s scores can not be considered, because for the Twitter dataset only
0.01% of the classifications were valid, while for the AL dataset no classification was valid.
The decoding algorithm used was likely not the best option (although it is not the worst,
since it combines the Top-P and Top-K algorithms), but it was chosen because it was
rather quick to run, as seen previously in Table 6.2. Due to a lack of time and resources,
we did not experiment with other decoding algorithms or models (e.g. Meta-OPT).

Going back to the Zero-SL model, it performs considerably better than the Few-SL
approach but, for the Twitter dataset, it performs worse than the SentiLex lexicon model.
However, it is interesting how a model not trained in the Portuguese language, managed
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Table 7.9: Evaluation of the deep learning classifiers without context, with the Twitter
dataset

Twitter Dataset
Model Accuracy Precision Recall Specificity F1 Score A.U.C.

BOTSchool
API 0.75 0.72 0.7 0.79 0.71 0.75

Fine-tuned
BERTimbau 0.93 0.97 0.88 0.97 0.92 0.99

Few-Shot
Learning 0.67 1 0.5 1 0.67 N.A.

Zero-Shot
Learning 0.58 0.44 0.63 0.55 0.52 0.62

to obtain better results using hypotheses in Portuguese over English.

The best deep learning model seems to be the Fine-tuned BERTimbau for both datasets,
although in the Twitter dataset it rivals the results obtained using the Logistic Regression
with dense embeddings. The BOTSchool Application Programming Interface (API) per-
forms worse than the shallow learning classifiers with dense embeddings, and in the AL
dataset it is comparable to the performance of these classifiers with sparse embeddings.
As such, there seem to be better options than the actual choice for SA in AL, and this is
an important contribution of this work.

7.4 Classifiers with Context

This section presents the results for the classifiers using context, either by concatenat-
ing previous sentences in the input or by being models able to process context (Condi-
tional Random Field (CRF) and Bidirectional Encoder Representations from Transformers
(BERT)-CRF). Since all previous models are considered, along with two more others, there
are too many results to present in a table, and so we graphically present the results for
each model (Figures 7.2 and 7.3), considering the most important metrics. The table with
the full results is in Appendix 8.2. A graphical comparison of the results with and without
context can be seen in Figures 7.4 and 7.5. We chose the F1-score metric since it presents
a balanced result between the recall and precision metrics. In this comparison we will not
include the CRF and BERT-CRF models since they were not tested without context.

Regarding the Zero-SL and Few-SL models, the configuration is the same as for the
results presented in the previous section (Portuguese labels as hypotheses and no use of
description, respectively). However, the latter will not be included in the comparison of
the results with and without context, due to the extremely low percentage of valid results
for the Few-SL model without context.

Regarding the CRF model, the results presented use the features described in section
6.4, since there was no significant difference between using fewer or more features. For the
TF-IDF embedding, the CRF model is using unigrams, which achieved the best results
between unigrams, bigrams, and trigrams. The results of other n-grams and features are
in Appendix 8.2.

Regarding the BERT-CRF model, we are presenting the results obtained using the last
hidden layer as the representation function. The results using the remaining options can
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be seen in Appendix 8.2.

Figure 7.2: Evaluation of the classifiers with context, using the Altice Labs dataset

Figure 7.3: Evaluation of the classifiers with context, using the Twitter dataset

Notably, the highest scores come from the models that originally consider context,
CRF and BERT-CRF, and the fine-tuning BERTimbau model for both datasets. The
BOTSchool API, and Naive Bayes with sparse representations are the common models
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among the 5 lowest performing classifiers for both datasets. This is interesting because
it suggests that the solution being explored by AL does not have to consider the client’s
previous utterances.

Regarding the use of sparse and dense representations in the CRF model, the use of
the BERTimbau NLI embeddings seems to improve the performance, in accordance with
the results from the shallow learning classifiers. Interestingly, with context, the Random
Forest model with sparse representations outperforms most other classifiers, especially in
the Twitter dataset where it takes the fourth top position. In the AL dataset, only the
CRF models and the Logistic Regression with dense representations perform better than
this model (considering only models that compare dense and sparse representations).

Similarly to the conclusions reached earlier, it is notable that the Few-SL and Zero-SL
are not good options for this work, with scores around 60% or lower for most metrics (the
exception being the AUC metric of the Zero-SL model with the AL data). Regarding the
Few-SL, we can declare that the model performs better when considering context, but
still, only 47% and 73% of the classifications were valid for the Twitter and AL datasets,
respectively. This means that the AL dataset is better for text generation, probably because
there is less variance in the samples. Yan et al. (2018) alerted to the fact that in short texts,
such as tweets, abbreviations are commonly used, and the sentence is normally informal,
with poor grammar and misspellings, which could make it harder for a Few-SL model to
generalize and gather sufficient semantic information, and possibly justify the significantly
lower results for the Twitter dataset. We should also keep in mind that the model used is
multilingual (predominantly English), which is likely to negatively impact the results.

An interesting note on the shallow classifiers with sparse representations is that when
considering context, the use of multi grams, particularly trigrams, improved the perfor-
mance of these classifiers. These results can be seen in Appendix 8.2.

We will now compare the performance of the classifiers with and without considering
the context.

The performance decrease when using context is notable for most classifiers, except
for the fine-tuned BERTimbau model, which shows that context does not improve the
performance of these classifiers, for the datasets used. The Naive Bayes and BOTSchool
API are the models with the highest decrease in performance (as evaluated by the F1-score
metric).

While in the AL dataset, there are no improvements at all by considering context (the
concatenation of the current and past utterances), in comparison to the results obtained
without considering it, in the Twitter dataset, despite most classifiers performing better
without context, it is more often that the difference between both approaches returns
similar results. In fact, we should note that, the Fine-tuned BERTimbau model remains
the classifier with the highest performance, and when considering context, in the Twitter
dataset, its score is further increased, making this, so far, the best model for SA in this
dataset.

Regarding the other CRF model experiments, about the use of different n-grams and
other features, the classifiers applying only unigrams versus bigrams and trigrams per-
formed better on all important metrics on both datasets (the use of trigrams presented
the worst results on both datasets). The experiment regarding the use of fewer features
showed no significant differences in both datasets, as mentioned earlier. The full results
for both experiments are presented in Appendix 8.2.
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Figure 7.4: Comparison of the F1 Score between Classifiers with and without Context,
using the Altice Labs dataset

Figure 7.5: Comparison of the F1 Score between Classifiers with and without Context,
using the Twitter dataset

7.5 Cross-Validation and Hyperparameters’ Tuning

This section presents the results for classifiers that could be optimized: all except the
"ready-to-use" models, BOTSchool API, Few-SL and Zero-SL, and the lexicon-based ap-
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proaches. Regarding the SVM models, we will only present the RBF kernel, as it was the
one selected previously.

The cross-validation and grid search processes are time-consuming and of heavy com-
putation. Hence, not all classifiers, namely SVMs, and fine-tunedBERT could go through
these in the available time. As an alternative to this, and since most classifiers were able
to perform these operations in the smaller Twitter dataset, we decided to use the best
parameters found for this dataset in the AL dataset and verify if the results improved in
comparison with the not-optimized classifiers. We automatically select the best model,
according to the F1-Score.

The batch size hyperparameter considered for tuning BERTimbau could not be ex-
perimented with, because the available machines did not handle a batch size higher than
16.

The BERT-CRF model has issues handling the AL dataset even without optimization.
Because of this and the tuning process being especially heavy in this scenario, since we
would need to tune two models at the same time, for this classifier we will use the best hy-
perparameters found for each individual model and we will verify if there are improvements
in its performance.

Figures 7.6 and 7.7 present a comparison between the performances of each classifier and
its tuned version with highest performance for each datasets. For ease of visualization, we
will only consider the F1 score. The full results are presented in Appendix 8.2. Regarding
the fine-tuned BERTimbau model, we only presented the top performance model in this
Appendix, but the full tuning experience (using the Twitter dataset) can be viewed in
Appendix 8.2.

Figure 7.6: Comparison between the F1-Scores of the tuned and original Classifiers, using
the Altice Labs dataset.

From both figures, we can verify that while the optimization process increases the scores
of most models, there was no large variation between both performances.
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Figure 7.7: Comparison between the F1-Scores of the tuned and original Classifiers, using
the Twitter dataset.

We will now list the hyperparameters’ values used in the original and tuned classifiers:

• Logistic Regression (TF-IDF):

Table 7.10: Comparison between the hyperparameters’ values of the original and tuned
Logistic Regression (TF-IDF)

Dataset Classifier C Max.
Iterations Penalty Solver

Tuned 3.36 100 l2 LibLinearTwitter Original 1 100 l2 L-BFGS
Tuned 11.29 100 l2 L-BFGSAltice

Labs Original 1 100 l2 L-BFGS

Looking at Table 7.10, the only common value between both datasets was the Max.
Iterations, as the Penalty was a constant.

The tuning process improved the performance of the classifiers.

• Logistic Regression (BERTimbauNLI):

Looking at Table 7.11, we can see that the only different value between both datasets
was the Max. Iterations, in opposition to what happened with the Logistic Regression
(TF-IDF). In fact, the original hyperparameters for the Twitter dataset are the same
as the tuned hyperparameters, meaning the only difference between those approaches
is the Cross-Validation.

The performance of the tuned classifiers did not change much from the original
classifiers, there was only a 0.01 shift in the F1 Score.

• RBF SVM (TF-IDF):
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Table 7.11: Comparison between the hyperparameters’ values of the original and tuned
Logistic Regression (BERTimbau NLI)

Dataset Classifier C Max.
Iterations Penalty Solver

Tuned 1 100 l2 L-BFGSTwitter Original 1 100 l2 L-BFGS
Tuned 1 200 l2 L-BFGSAltice

Labs Original 1 100 l2 L-BFGS

The hyperparameters obtained with the Twitter dataset were used with the AL
dataset, as the SVM training was too computationally expensive to go through the
cross-validation and tuning operations.

The hyperparameters’ values used were:

– C: 100 in the tuned classifiers, and 1 in the original classifiers;

– Gamma: 0.01 in the tuned classifiers, and "scale"2 in the original classifiers.

There was no change in the performance with the AL dataset. With the Twitter
dataset, the tuned classifier performed slightly worse (-0.02 in the F1 score).

• RBF SVM (BERTimbau NLI):

The hyperparameters obtained with the Twitter dataset were used with the AL
dataset, as the RBF SVM training was too computationally expensive to go through
the cross-validation and tuning operations.

The hyperparameters’ values used were:

– C: 10 in the tuned classifiers, and 1 in the original classifiers

– Gamma: 0.01 in the tuned classifiers, and "scale" in the original classifiers.

There was no change in the performance with the AL dataset. With the Twitter
dataset, the tuned classifier performed slightly better (+0.01 in the F1 score).

• Naive Bayes (TF-IDF):

For both datasets and both the tuned and original classifiers, the value of Alpha was
set to 1, meaning the classifiers used the Laplace smoothing.

There was no change in the performance with the AL dataset. With the Twit-
ter dataset, the tuned classifier performed slightly better (+0.04 in the F1 score).
The difference in performance, in this case, is only due to the application of Cross-
Validation.

• Naive Bayes (BERTimbau NLI):

For both datasets and both the tuned and original classifiers, the value of Alpha was
set to 1, meaning the classifiers used the Laplace smoothing.

There was no change in the performance with the Twitter dataset. With the AL
dataset, the tuned classifier performed slightly worse (-0.01 in the F1 score). The dif-
ference in performance, in this case, is only due to the application of Cross-Validation.

• Random Forest (TF-IDF):
2https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html
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Table 7.12: Comparison between the hyperparameters’ values of the original and tuned
Random Forest (TF-IDF)

Dataset Classifier Criterion Max.
Depth

Max.
Features

Min. Samples
Leaf

Min. Samples
Split Estimators Bootstrap

Tuned Gini 50 log2 1 5 200 TrueTwitter Original Gini None sqrt 1 2 100 True
Tuned Gini 50 sqrt 2 2 100 FalseAltice

Labs Original Gini None sqrt 1 2 100 True

Looking at Table 7.12, the only common values between both datasets were the
Criterion and the Max. Depth.

There was no change in the performance with the AL dataset. With the Twitter
dataset, the tuned classifiers performed slightly better (+0.03 in the F1 score).

• Random Forest (BERTimbau NLI):

Table 7.13: Comparison between the hyperparameters’ values of the original and tuned
Random Forest (BERTimbau NLI)

Dataset Classifier Criterion Max.
Depth

Max.
Features

Min. Samples
Leaf

Min. Samples
Split Estimators Bootstrap

Tuned Entropy 50 log2 1 2 100 FalseTwitter Original Gini None sqrt 1 2 100 True
Tuned Entropy 10 sqrt 2 5 100 FalseAltice

Labs Original Gini None sqrt 1 2 100 True

Looking at Table 7.13, the only common values between both datasets were the
Criterion, the Bootstrap usage, and the Estimators. It is interesting to note that
using sparse encoding, the classifiers performed better with the Gini criterion, while
for dense encoding, they performed better with the Entropy criterion.

The performances with both datasets improved with the tuning process, even if only
by 0.01 in the F1 scores.

• CRF (TF-IDF):

Table 7.14: Comparison between the hyperparameters’ values of the original and tuned
CRF (TF-IDF)

Dataset Classifier C1 C2 Max.
Iterations

Tuned 0.21 0.22 200Twitter Original 0 0 Unlimited
Tuned 0.2 0.33 100Altice

Labs Original 0 0 Unlimited

Looking at Table 7.14, we can see that there are no common hyperparameters’ values
between both datasets, although the C1 value is very similar.

In these classifiers, the performances with both datasets were improved with the
tuning process, by 0.06 (largest difference so far) and 0.03 in the Twitter and AL
datasets, respectively.

• CRF (BERTimbau NLI):

Looking at Table 7.15, we can see that, again, there are no common hyperparameters’
values between both datasets. Interestingly, the Twitter dataset seems to perform
better with more iterations, as opposed to the AL dataset.
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Table 7.15: Comparison between the hyperparameters’ values of the original and tuned
CRF (BERTimbau NLI)

Dataset Classifier C1 C2 Max.
Iterations

Tuned 0.41 0.56 200Twitter Original 0 0 Unlimited
Tuned 1.8 0.67 100Altice

Labs Original 0 0 Unlimited

The performance of the tuned classifiers did not change much from the original
classifiers, there was only a 0.01 shift in the F1 Score.

• Fine-tuned BERTimbau:

The hyperparameters obtained with the Twitter dataset were used with the AL
dataset, as the tuning process was too computationally expensive to go through the
cross-validation and tuning operations.

The hyperparameters’ values used were:

– Batch Size: 16; (tuned)

– Epochs: 2;

– Learning Rate: 0.0001;

– Epsilon: 0.00000001.

The tuned classifiers performed worse than the originals, with a 0.07 and a 0.03
decrease using the Twitter dataset and the AL dataset, respectively. So far, a 0.07
shift is the largest difference in performance between the tuned and original classifiers.

• BERT-CRF:

The hyperparameters obtained with the individual models (Fine-tuned BERTimbau
and CRF) were used for this combination, as the tuning process was too computa-
tionally expensive to go through the cross-validation and tuning operations.

The values were already presented in Section 6.7, so they will not be repeated.

There was no change in the performance of the tuned and original classifiers, regard-
ing the F1 Score.

The results presented regard only the no-context approach (for the classifiers that do not
consider context, originally). This is because context, for the most part, did not improve
the performance of the classifiers, and the tuning process is computationally expensive.

7.6 Analysis of the Experimental Results

The lexicon-based classifiers (Tables 7.2 and 7.3) defined baseline results for the task of
SA in the context of dialogue. Most models performed worse than random guessing (i.e.,
results lower than 50%), with SentiLex-flex being the exception when applied to the Twit-
ter dataset. Both lexicon-based classifiers achieve higher F1 Scores when applied to this
dataset.
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All the shallow learning classifiers with sparse representations (Tables 7.4 and 7.5)
perform better than the baseline models, but most do not achieve Recall and F1 Scores
higher than 80%. For the AL dataset and Twitter dataset, Random Forest and SVM
are the best models, respectively. There is a small difference between the performance of
Random Forest and SVM in the AL dataset, so we could say that the best shallow learning
classifier with sparse representations is the SVM model, overall. Every classifier performs
better when applied to the Twitter dataset.

When the shallow learning models use a dense representation (Tables 7.6 and 7.7) they
all achieve higher performances than their sparse representation equivalents. The Logistic
Regression classifier achieves higher results in both datasets, followed by the SVM classifier.
Most models present Recall and F1 Scores higher than 80%, with maximum values of 90%.
Every classifier performs better when applied to the Twitter dataset.

From the deep learning models (Tables 7.8 and 7.9), only the Fine-tuned BERTimbau
classifier performed better than the shallow learning models with dense representations.
The BOTSchool API achieves higher Recall and AUC scores in the AL dataset than the
Twitter dataset, contrary to the current tendency. Zero-SL also performs better when
applied to the AL dataset, possibly due to how messages are written on Twitter, as already
discussed. Focusing on the BOTSchool API, its performance is somewhat similar to that
of the shallow learning classifiers with sparse representations. The former achieves higher
Recall scores than the latter classifiers, but lower AUC and F1 scores.

When context is considered, the CRF, BERT-CRF, and Fine-tuned BERTimbau per-
form better than the remaining classifiers. The first achieves higher Recall scores than
the third in the AL dataset, but lower AUC and F1 scores. In the Twitter dataset, the
Fine-tuned BERTimbau is the best classifier, with a Recall, AUC and F1 scores higher
than 90%. When applied to the AL dataset, this classifier achieves Recall and F1 Scores
of around 80%, so the difference in performance between datasets is significant.

Context has decreased the performances of most classifiers, with the sole exception of
the Fine-tuned BERTimbau model, when applied to the Twitter dataset. The BOTSchool
API is one of the models in which the performance decreases the most when considering
context (-27% in the AL dataset, and -24% in the Twitter dataset).

The optimization (when applicable) of the classifiers did not improve their performance
significantly, the largest improvement being 6% in the CRF model with sparse represen-
tation, applied to the Twitter dataset. In the AL dataset, the Fine-tuned BERTimbau
performed better than the remaining tuned models, while in the Twitter dataset, the Lo-
gistic Regression performed better.

Finally, we can affirm that, in these datasets, the shallow learning classifiers with dense
representations, the Fine-tuned BERTimbau, and the CRF and BERT-CRF classifiers all
performed better than the solution being considered by AL, BOTSchool API. The high
decrease (especially in the AL dataset) when considering the previous utterances in this
solution makes this one of the worst models to use with context. This could be related to
the classifier using standard SA data instead of dialogues, which could make it harder to
analyse context.

Regarding the remaining experiments, introduced in Chapter 6, the experimental re-
sults suggest that:

• The classifiers benefit from the use of BERTimbau NLI’s dense representations;

• The use of multi grams instead of unigrams is only beneficial in the shallow learning
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classifiers, and when considering context;

• The choice of fewer features (removing HasQuestion and HasExclamation) in the
CRF model did not have a considerable impact on the model’s performance;

• The BERT-CRF model performed better when using the representation obtained in
the last hidden state;

• The Zero-SL model performed better when using labels as hypotheses instead of
sentences;

• The models trained using non-dialogue data (sentituites) perform significantly worse
than when trained using dialogues.

This last item, and the number of solutions that performed better than the BOTSchool
API (which was also trained in standard SA data), suggest that it is important to train
the models in dialogues to perform SA in this type of data.

This concludes the experimentation and evaluation of all models developed during the
course of this dissertation. The conclusions derived from this work will be presented in the
next chapter.
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Chapter 8

Conclusions and Future Work

Sentiment Analysis (SA) is a domain that still faces many challenges, mainly because there
are many different languages, dialects, and words that are continuously being invented and
dropped, or their meanings keep evolving, making it a very dynamic field. Besides this,
the perception of sentiments and emotions can be very subjective, which can make the
classification process complex.

In this Chapter, we will present the conclusions taken based on the work and analysis
developed, as well as set the possible future work.

8.1 Conclusions

Going over the objectives and contributions mentioned in Chapter 1, we can say that we
achieved the goals set for this dissertation and contributed to the SA field.

Keeping the first objective in mind, we created, annotated, and analysed two datasets
(referred to as the Altice Labs (AL) dataset and the Twitter dataset) containing dialogues
in the Portuguese language. It was highly important to provide the models with samples
similar to the ones found in real data, which, for this problem, would mean dialogues
in Portuguese and related to the domains of eCommerce, TV, Health Care, Finance and
FinTech, and Telecommunications. The use of Twitter for data extraction checks all these
requirements, which made it a good option for the creation of data.

The two datasets were manually labeled, with the contribution of 14 annotators. The
evaluation of the agreement level between them for each block of data revealed that the
average agreement was just of moderate level. This could be expected, as we mentioned
that the classification of sentiment can be very subjective. However, this is likely to have
harmed the models trained on these datasets, because similar utterances were classified
differently, making it harder to detect and generalize the sentiment.

The Twitter dataset was made available1 in accordance with Twitter’s Content Redis-
tribution Terms, which allow the publishing of the Twitter IDs only.

Regarding the second objective, we experimented with several models and techniques
for SA and Natural Language Processing (NLP), which is confirmed by the high number
of classifiers, with varying complexity, developed and evaluated during the course of this
dissertation. From the comparison of the performances of each classifier, we could derive

1https://github.com/NLP-CISUC/twitter_sentiment_analysis
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the following conclusions:

• The analysis of the related work for this dissertation made it clear that the use
of Bidirectional Encoder Representations from Transformers (BERT) or fine-tuned
BERT models seemed to perform better than solutions that did not include these
approaches. In fact, we confirmed that the fine-tuned BERTimbau classifier was the
model with better performance, for both datasets;

• Keeping in mind the importance of BERT, we also saw improvements from using
the dense representations (obtained with BERTimbau Natural Language Inference
(NLI)) over the sparse representations (obtained with Term Frequency - Inverse Doc-
ument Frequency (TF-IDF)). An interesting conclusion regarding the use of this
dense representation was that the evaluation of the classifiers with context (Fig-
ures 7.2 and 7.3), considering the three most important metrics, revealed that the
Conditional Random Field (CRF) model with the BERTimbau NLI representation,
performs similarly to the fine-tuned BERTimbau, enforcing the importance of seman-
tically meaningful embeddings for NLP. In fact, in all the comparisons performed,
the Fine-tuned BERTimbau model is usually followed by a classifier with this type
of representation;

• Most models with TF-IDF encoding did not benefit from the use of multi-grams
over unigrams, except when context (the concatenation of the current and previous
sentences) was involved, possibly due to the use of similar expressions or words over
the dialogue;

• The results from using models trained in non-dialogue data and applying them to our
datasets, as well as the number of options that perform better than the BOTSchool
Application Programming Interface (API) solution, also trained in this type of data,
suggest that to achieve a good performance in the classification of SA in dialogue,
it is important that the classifiers are trained in this non-standard type of data.
These results further emphasize the importance of the creation of our datasets, as
they allow for better performance when compared to the two existing options tested
(Sentituites and BOTSchool API);

• An analysis regarding the use of context revealed that, for these datasets, the inclu-
sion of the previous utterances actually harmed the performance of the models, con-
trary to what could have been expected. An exception is the Fine-tuned BERTimbau
model, which actually performed slightly better when considering context (as seen in
Figure 7.5), however, this only happened in the Twitter dataset. In the AL dataset,
we can argue that a possibility for context not being helpful in the classification of
sentiment in dialogues, is that the conversations are with a chatbot, making them
less emotionally rich, especially when the user knows they are not speaking with
another person, as is the case. A possibility for these results in the Twitter dataset,
is that the dialogues are mostly small (an average of 2.52 turns per dialogue), which
could make it so that the conversation does not develop enough for context to be
beneficial to the classification task;

• Overall, and despite the difference in the size of both datasets, the models trained on
the Twitter dataset generally perform better than those trained on the AL dataset.
This may be due to the quality of the data samples, since the latter dataset suffers
from some limitations due to the underlying speech-to-text conversion, making some
utterances hard to understand even for people (confirmed during the annotation
process);
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• The tuning process did not have a large impact on the performance of the classifiers,
the biggest difference being an increase of 0.06 in the F1 Score for the CRF model
with sparse representation. However, this could be due to the choice of values and
the use of grid search, which may not be the best option for the tuning of hyper-
parameters. Without further experimentation, we cannot confirm that the models
would not benefit from the tuning process, but this did not happen (with significant
improvements) for the values considered.

Regarding the third objective, there are several options that, for our datasets, perform
better than the current solution in use by AL. Considering the F1 Score metric, these
options include a Logistic Regression model with dense representations, a Random Forest
model with sparse representations, a Fine-tuned BERTimbau model, and the solutions
that originally consider context, especially a CRF model with dense representations, and a
BERT-CRF model. Any of these options could improve the way AL is able to communicate
with its clients, by better identifying the expression of negative sentiment in the dialogues.

Regarding the fourth objective, two scientific articles were written during the course of
this dissertation: one was submitted to the IberSPEECH 2022 Conference2, and the other
to the RECPAD Conference3. The notifications of acceptance will only be sent by the end
of September, so at the time of the submission of this dissertation, these results are not
yet known.

This analysis allows us to confirm that the objectives set for this work were achieved,
and the approach followed allowed for several contributions to the SA field:

• Creation of two labeled datasets for SA in Portuguese dialogues. One of which is
publicly available;

• Presentation of solutions with some degree of innovation;

• Extensive experimentation and evaluation of different models and techniques for SA
in dialogues, which led to most of the conclusions presented above;

• Identification of models that perform better than AL’ current solution. If they choose
to integrate any of the models in their system, it would be important to define a
negativity threshold that, if surpassed, would activate the fallback system and notify
the company that a client required personalized attention;

• Submission of two scientific articles into NLP-related conferences.

Nevertheless, there are still several possible tasks for future work, which will be pre-
sented in the following section.

8.2 Future Work

This section presents the tasks considered for future work, in relation to the data (creation
and annotation) and the models (development, optimization, evaluation), as well as general
possible improvements and experiments.

2http://iberspeech2022.ugr.es/
3https://recpad2022.ipleiria.pt/
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Regarding the creation of data, the use of a Wizard of Oz (WOZ) framework could
generate interesting data and even more fitting to our interests than the Twitter data.

Regarding the annotation of data, there are five possible options, where three of them
mostly aim at improving the moderate annotation agreement obtained for the created
datasets.

• The use of an active learning approach (Settles, 2009) (e.g., applying uncertainty
sampling, where the active learner queries the instances about which it is least certain
how to label, while labeling the others) could be beneficial to either improve the
current annotations or to enlarge the created datasets, by annotation the remaining
data;

• The annotators involved in this work could gather to discuss and review the annota-
tions with a lower agreement;

• The data generated using the Generative Pre-trained Transformer (GPT)-2 model
could be evaluated, selected, and annotated. The AL dataset cannot be publicly
shared, but it could be useful in the annotation process of the generated data since
the samples would be very similar. Hence, the similarity between the annotated
and non-annotated utterances could be computed (e.g., using cosine similarity) to
perform a match of the labels, when the similarity metric was high;

• The datasets could be labeled for emotion instead of sentiment polarity, which could
allow for interesting comparisons between both approaches. Another option would
be to adapt existing datasets with emotion annotations;

• The analysis of the related work studied for this dissertation showed us that the joint
tasks of SA and Dialogue Act Recognition (DAR) can provide better results than
SA (or DAR) alone. However, we could not confirm this since we had no annotated
data for DAR. Hence, the annotation of dialogue acts present in our datasets could
allow for the development of classifiers with these joint tasks, and possibly better
performances than those achieved with just SA in mind.

Regarding the development of classifiers and their optimization, there are four possible
options:

• The application of feature reduction techniques in the classifiers that are computa-
tionally heavy and do not handle large datasets too well (e.g., BERT-CRF, Fine-
tuned BERTimbau). We could use the t-distributed Stochastic Neighbor Embedding
(t-SNE) technique presented for visualization purposes, or others such as the Princi-
pal Component Analysis (PCA), a common feature reduction approach, so that the
models could run more smoothly;

• The Few-Shot Learning (Few-SL) and Zero-Shot Learning (Zero-SL) classifiers could
be explored with different base models, decoding algorithms and descriptive sentences
(in the case of the former), and trying to find other semantically meaningful sentences
(in the case of the latter). If good results were achieved, the models could be used to
classify the remaining unlabeled data. Since the low Twitter results may be derived
from the use of abbreviations and misspellings, the former could be converted to
their original forms, and a spell checker can be applied to correct the latter;

99



8.2. Future Work

• An intriguing approach would be to use Ordinal Regression (Saad and Yang, 2019) in
a multi-class setting. What this would do is perform a better analysis of the errors,
since it would compute a higher loss if a Very Negative sample was classified as
Positive than it would if it were classified as Negative, which could provide interesting
results in the scenario of this dissertation;

• Since there were few improvements using a grid search approach, it could be beneficial
to explore the Genetic Algorithm (GA) search or the Population-Based Training
(PBT) approaches.

Regarding the evaluation of the classifiers’ performances, it could be useful to test how
well the models trained on Twitter data could classify the AL data. This would also let us
know if we succeeded in trying to extract data similar to the real data.

Regarding some of the problems faced with the AL data, we mentioned that sometimes
the client would repeat the same utterance. This was considered in the annotation process,
where the annotators were told to decrease the sentiment when this was detected. However,
more work could be done that could potentially improve the solutions. This repetition
could happen because there are specific topics that do not get correctly replied to. To
tackle this, an analysis of the wrongly classified utterances could be performed, applying a
clustering algorithm to it (the use of BERTimbau NLI could be interesting for this purpose
since sentence transformers would extract semantically meaningful embeddings). From the
clustered data we could possibly extract some common topics, and then we could train the
model with data related to that topic, hopefully improving the interactions with the clients.

Generally speaking, the development of a tool capable of analyzing dialogues and clas-
sifying the sentiment in their utterances could be interesting and a good contribution to
the SA field.

Finally, another option that could be interesting, but not as related to the topic at
hand, would be an aspect-based approach, which would allow us to understand if there are
any specific aspects related to AL that users react to in a more negative (or positive) way
than to other aspects, such as price or fibra.

Throughout this chapter, we could see that a lot of work was done, resulting in several
experiments and conclusions, but that many other approaches could have been used. This
is great news for the SA and NLP fields because it means that there is still a lot to explore
(and hopefully enhance or invent) in these topics.
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Appendix A

List of the information gathered about each tweet:

• Conversation ID : One tweet can spark different conversation threads. The conver-
sation ID matches the ID of the tweet that started the conversation, and is present
in all related tweets;

• Author ID : The unique ID that identifies the user who posted the tweet;

• Tweet ID : The unique ID that identifies the posted tweet;

• Created At : The date and time at which the tweet was posted;

• Retweet Count : The number of times the tweet was retweeted;

• Reply Count : The number of times the tweet was replied to;

• Like Count: The number of times someone liked the tweet;

• Quote Count : The number of times someone quoted the tweet;

• Language: The language of the tweet, if detected by Twitter;

• Text : The actual text from the tweet;

• Referenced Type: List containing the type (e.g., quoted, replied to) of the tweets this
tweet refers to;

• Referenced ID : List containing the IDs of the tweets this tweet refers to;

• In Reply To User ID : If the tweet is a reply, this field contains the ID of the author
of the tweet it replies to;

• Verified : If the user is verified by Twitter;

• Username: The unique screen name of the user;

• Name: Name of the user, as defined in their profile;

• Followers Count : Number of followers of the user;

• Following Count : Number of accounts that the user is following;

• Tweet Count : Number of tweets posted by the user;

• Listed Count : Number of lists that the user is a part of;

• User Created At : The time and date at which the user’s account was created.
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Appendix B

Full metric scores of the classifiers using context. They are split in categories according to
the type of algorithm used. The second category, Deep Learning with "Context", receives
as input the current and previous sentences only, which is why context is referred to that
way. Table 1 presents these scores for the Altice Labs (AL) dataset, and Table 2 for the
Twitter dataset.

Table 1: Evaluation of the classifiers with context using the AL dataset, grouped by
categories

Altice Labs Dataset
Model Accuracy Precision Recall Specificity F1 Score A.U.C.

CRF-based Classifiers
CRF

(BERTimbau
NLI)

0.93 0.79 0.81 0.95 0.8 0.96

CRF
(TF-IDF) 0.91 0.75 0.72 0.95 0.73 0.94

BERT-CRF 0.92 0.74 0.78 0.94 0.76 0.93
Deep Learning with "Context"

Few-Shot
Learning 0.67 0.22 0.58 0.69 0.32 N.A.

Zero-Shot
Learning 0.8 0.45 0.58 0.85 0.51 0.74

Botschool
API 0.84 0.58 0.4 0.94 0.47 0.8

Finetuned
BERTimbau 0.93 0.90 0.77 0.98 0.83 0.96

Shallow Learning with BERTimbau NLI
Logistic

Regression 0.89 0.77 0.57 0.96 0.66 0.93

RBF SVM 0.9 0.87 0.5 0.98 0.64 0.92
Naive
Bayes 0.84 0.55 0.44 0.92 0.49 0.83

Random
Forest 0.9 0.88 0.5 0.99 0.64 0.93

Shallow Learning with TF-IDF
Logistic

Regression 0.88 0.79 0.41 0.98 0.54 0.9

RBF SVM 0.89 0.82 0.49 0.98 0.61 0.93
Naive
Bayes 0.85 0.72 0.29 0.98 0.41 0.83

Random
Forest 0.9 0.84 0.51 0.98 0.63 0.92
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Table 2: Evaluation of the classifiers with context using the Twitter dataset, grouped by
categories

Twitter Dataset
Model Accuracy Precision Recall Specificity F1 Score A.U.C.

CRF-based Classifiers
CRF

(BERTimbau
NLI)

0.88 0.87 0.78 0.94 0.82 0.92

CRF
(TF-IDF) 0.8 0.74 0.68 0.86 0.71 0.86

BERT-CRF 0.86 0.74 0.85 0.87 0.79 0.91
Deep Learning with "Context"

Few-Shot
Learning 0.75 0.5 0.05 0.98 0.09 N.A.

Zero-Shot
Learning 0.56 0.43 0.65 0.51 0.52 0.57

Botschool
API 0.65 0.51 0.63 0.66 0.56 0.68

Finetuned
BERTimbau 0.93 0.95 0.91 0.96 0.93 0.99

Shallow Learning with BERTimbau NLI
Logistic

Regression 0.81 0.75 0.71 0.87 0.73 0.88

RBF SVM 0.81 0.81 0.62 0.92 0.7 0.86
Naive
Bayes 0.72 0.59 0.71 0.73 0.64 0.8

Random
Forest 0.78 0.69 0.69 0.83 0.69 0.83

Shallow Learning with TF-IDF
Logistic

Regression 0.76 0.67 0.64 0.82 0.65 0.81

RBF SVM 0.74 0.64 0.63 0.81 0.63 0.8
Naive
Bayes 0.73 0.66 0.5 0.86 0.57 0.76

Random
Forest 0.76 0.64 0.73 0.77 0.68 0.86

Appendix C

Packages used throughout the development stage of this dissertation:
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Table 3: List of packages used in the development of this work, and their descriptions.

Package Description Version
TwitterAPI Allows access to Twitter 2.7.5

requests Allows HTTP requests to be sent 2.27.1
json Allows writing and reading .json files 2.0.9

os Allows access to operating system functionalities
(e.g., setting environment variables) 3.8.13

time Allows the measure of execution time 3.8.13

pandas Allows access to more data structures
(e.g., dataframes) 1.4.2

numpy Supports multi-dimensional data structures
(e.g., tensors) 1.22.3

torch Allows tensor computation and an auto-gradient
system for deep neural networks 1.11.0

nltk Allows access to Natural Language Processing
techniques (e.g., tokenization) 3.7

sklearn Allows access to machine learning models
and techniques (e.g., cross-validation, SVMs) 1.1.1

matplotlib Allows the visualization of data 3.5.1
seaborn Allows statistical data visualization 0.11.2
pickle Allows easy storage of many data types 4.0

transformers Allows access to pretrained transformer models 4.19.2

tensorflow Allows high performance numerical
computation 2.8.0

gpt_2_simple Allows easy access to GPT-2’s
functionalities 0.8.1

spacy Allows access to Natural Language Processing
techniques (e.g., lemmatization) 3.3.0

krippendorff Allows fast computation of Krippendorff’s
alpha agreement measure 0.5.1

statsmodels Allows fast computation of Fleiss’
kappa agreement measure 0.13.2

pygsheets Allows access to google spreadsheets 2.0.5
random Allows access to random-number generators 3.8.13

sentence_transformers Allows access to state-of-the-art sentence
embeddings 2.2.0

sklearn-crfsuite Allows access to a sklearn-compatible
CRF classifier 0.3.6

tqdm Allows access to progress bars and functions 4.64.0

math Allows access to mathematical functions
(e.g., ceil) 3.8.13

openai Allows access to GPT-3 0.18.0
nlpcloud Allows access to GPT-J 1.0.25

Appendix D

Conditional Random Field (CRF) experiment, using more ("full" - list described in Section
6.4) or fewer (without HasQuestion and HasExclamation) features. Table 4 presents the
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metric scores using the AL dataset, and Table 5 using the Twitter dataset.

Table 4: Comparison between the use of more or fewer features in the CRF models, using
the AL dataset.

Altice Labs Dataset
Representation Features Accuracy Precision Recall Specificity F1 Score A.U.C.

Sparse Full 0.91 0.75 0.72 0.95 0.73 0.94
Sparse Fewer 0.92 0.8 0.7 0.96 0.75 0.94
Dense Full 0.93 0.79 0.81 0.95 0.8 0.96
Dense Fewer 0.93 0.79 0.82 0.95 0.8 0.96

Table 5: Comparison between the use of more or fewer features in the CRF models, using
the Twitter dataset.

Twitter Dataset
Representation Features Accuracy Precision Recall Specificity F1 Score A.U.C.

Sparse Full 0.8 0.74 0.68 0.86 0.71 0.86
Sparse Fewer 0.81 0.79 0.63 0.91 0.7 0.85
Dense Full 0.88 0.87 0.78 0.94 0.82 0.92
Dense Fewer 0.89 0.89 0.81 0.94 0.85 0.91

CRF experiment, using different N-gram ranges (unigrams, bigrams, and trigrams).
Table 6 presents the metric scores using the AL dataset, and Table 7 using the Twitter
dataset.

Table 6: Comparison between the use of N-grams in the CRF models, using the AL dataset.

Altice Labs Dataset
N-Grams Accuracy Precision Recall Specificity F1 Score A.U.C.
Unigram 0.91 0.75 0.72 0.95 0.73 0.94
Bigram 0.9 0.81 0.57 0.97 0.67 0.9
Trigram 0.86 0.63 0.55 0.93 0.59 0.88

Table 7: Comparison between the use of N-grams in the CRF models, using the Twitter
dataset.

Twitter Dataset
N-Grams Accuracy Precision Recall Specificity F1 Score A.U.C.
Unigram 0.8 0.74 0.68 0.86 0.71 0.86
Bigram 0.73 0.61 0.67 0.76 0.64 0.72
Trigram 0.71 0.6 0.58 0.78 0.59 0.7

115



Appendix E

Support Vector Machine (SVM) experiment, using each kernel function (linear, poly, rbf)
with Term Frequency - Inverse Document Frequency (TF-IDF) encoding. Table 8 presents
the metrics scores using the AL dataset, and Table 9 using the Twitter dataset.

Table 8: Comparison of the results obtained with each tested kernel function for SVMs
with TF-IDF encoding, using the AL dataset.

Altice Labs Dataset
Kernel Accuracy Precision Recall Specificity F1 Score A.U.C.
Linear 0.91 0.79 0.68 0.96 0.73 0.9
Poly 0.91 0.83 0.63 0.97 0.72 0.88
RBF 0.91 0.84 0.66 0.97 0.74 0.9

Table 9: Comparison of the results obtained with each tested kernel function for SVMs
with TF-IDF encoding, using the Twitter dataset.

Twitter Dataset
Kernel Accuracy Precision Recall Specificity F1 Score A.U.C.
Linear 0.82 0.9 0.76 0.93 0.82 0.91
Poly 0.82 0.76 0.85 0.8 0.8 0.89
RBF 0.86 0.85 0.81 0.89 0.83 0.93

SVM experiment, using each kernel function (linear, poly, rbf) with BERTimbau Nat-
ural Language Inference (NLI) encoding. Table 10 presents the metrics scores using the
AL dataset, and Table 11 using the Twitter dataset.

Table 10: Comparison of the results obtained with each tested kernel function for SVMs
with BERTimbau NLI encoding, using the AL dataset.

Twitter Dataset
Kernel Accuracy Precision Recall Specificity F1 Score A.U.C.
Linear 0.92 0.77 0.81 0.94 0.79 0.91
Poly 0.93 0.81 0.8 0.96 0.8 0.94
RBF 0.93 0.82 0.8 0.96 0.81 0.94

Table 11: Comparison of the results obtained with each tested kernel function for SVMs
with BERTimbau NLI encoding, using the Twitter dataset.

Twitter Dataset
Kernel Accuracy Precision Recall Specificity F1 Score A.U.C.
Linear 0.91 0.94 0.84 0.96 0.89 0.96
Poly 0.91 0.94 0.84 0.96 0.89 0.96
RBF 0.91 0.93 0.86 0.95 0.89 0.97

SVM experiment, using each kernel function (linear, poly, rbf) and considering "con-
text". Table 12 presents the metrics scores using the AL dataset, and Table 13 using the
Twitter dataset.
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Table 12: Comparison of the results obtained with each tested kernel function for SVMs,
using "context" and the AL dataset.

Altice Labs Dataset
Representation Kernel Accuracy Precision Recall Specificity F1 Score A.U.C.

Sparse Linear 0.89 0.82 0.46 0.98 0.59 0.9
Sparse Poly 0.88 0.83 0.42 0.98 0.56 0.92
Sparse RBF 0.89 0.82 0.49 0.98 0.61 0.92
Sparse Linear 0.91 0.78 0.66 0.96 0.72 0.93
Sparse Poly 0.9 0.9 0.51 0.99 0.65 0.92
Sparse RBF 0.9 0.87 0.5 0.98 0.64 0.92

Table 13: Comparison of the results obtained with each tested kernel function for SVMs,
using "context" and the Twitter dataset.

Twitter Dataset
Representation Kernel Accuracy Precision Recall Specificity F1 Score A.U.C.

Sparse Linear 0.73 0.63 0.63 0.79 0.63 0.8
Sparse Poly 0.64 0.5 0.68 0.61 0.58 0.76
Sparse RBF 0.74 0.64 0.63 0.81 0.63 0.8
Sparse Linear 0.77 0.68 0.71 0.81 0.69 0.84
Sparse Poly 0.81 0.8 0.63 0.91 0.7 0.87
Sparse RBF 0.81 0.81 0.62 0.92 0.7 0.86

Appendix F

Shallow classifiers’ results for N-gram range tested (unigram, bigram, trigram), using TF-
IDF encoding. Table 14 presents the metric scores using the AL dataset, and Table 15
using the Twitter dataset.

Table 14: Comparison of the results obtained with each tested N-gram range for shallow
classifiers with sparse encoding, using the AL dataset.

Altice Labs Dataset
Model N-Grams Accuracy Precision Recall Specificity F1 Score A.U.C.

Unigrams 0.91 0.84 0.63 0.97 0.72 0.92
Bigrams 0.89 0.84 0.49 0.98 0.62 0.88Logistic

Regression Trigrams 0.88 0.85 0.43 0.98 0.57 0.86
Unigrams 0.91 0.79 0.68 0.96 0.73 0.9
Bigrams 0.89 0.82 0.54 0.97 0.65 0.86Linear

SVM Trigrams 0.88 0.85 0.45 0.98 0.59 0.77
Unigrams 0.91 0.83 0.63 0.97 0.72 0.88
Bigrams 0.89 0.82 0.53 0.97 0.64 0.81Poly

SVM Trigrams 0.89 0.84 0.47 0.98 0.6 0.78
Unigrams 0.91 0.84 0.66 0.97 0.74 0.9
Bigrams 0.89 0.82 0.55 0.97 0.66 0.73RBF

SVM Trigrams 0.89 0.84 0.47 0.98 0.6 0.76
Unigrams 0.91 0.82 0.64 0.97 0.72 0.92
Bigrams 0.88 0.79 0.51 0.97 0.62 0.88Naive

Bayes Trigrams 0.88 0.79 0.47 0.97 0.59 0.85
Unigrams 0.91 0.78 0.7 0.96 0.74 0.92
Bigrams 0.9 0.81 0.56 0.97 0.66 0.88Random

Forest Trigrams 0.89 0.83 0.49 0.98 0.62 0.86

Shallow classifiers’ results for N-gram range tested (unigram, bigram, trigram), using
TF-IDF encoding and considering "context". Table 16 presents the metric scores using the
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Table 15: Comparison of the results obtained with each tested N-gram range for shallow
classifiers with sparse encoding, using the Twitter dataset.

Twitter Dataset
Model N-Grams Accuracy Precision Recall Specificity F1 Score A.U.C.

Unigrams 0.84 0.89 0.73 0.93 0.8 0.94
Bigrams 0.71 0.91 0.35 0.98 0.51 0.88Logistic

Regression Trigrams 0.62 0.81 0.14 0.98 0.24 0.82
Unigrams 0.86 0.9 0.76 0.93 0.82 0.91
Bigrams 0.81 0.75 0.84 0.79 0.79 0.88Linear

SVM Trigrams 0.78 0.66 0.98 0.62 0.62 0.82
Unigrams 0.82 0.76 0.85 0.8 0.8 0.89
Bigrams 0.8 0.74 0.8 0.79 0.79 0.86Poly

SVM Trigrams 0.61 0.72 0.14 0.96 0.96 0.81
Unigrams 0.86 0.85 0.81 0.89 0.89 0.93
Bigrams 0.7 0.8 0.41 0.92 0.92 0.59RBF

SVM Trigrams 0.59 0.62 0.14 0.93 0.93 0.34
Unigrams 0.82 0.88 0.67 0.93 0.93 0.94
Bigrams 0.7 0.89 0.34 0.97 0.97 0.88Naive

Bayes Trigrams 0.62 0.81 0.14 0.98 0.98 0.82
Unigrams 0.83 0.86 0.73 0.91 0.91 0.9
Bigrams 0.64 0.94 0.19 0.99 0.99 0.61Random

Forest Trigrams 0.62 0.92 0.13 0.99 0.99 0.82

AL dataset, and Table 17 using the Twitter dataset.

Table 16: Comparison of the results obtained with each tested N-gram range for shallow
classifiers with sparse encoding, using the AL dataset and considering "context".

Altice Labs Dataset
Model N-Grams Accuracy Precision Recall Specificity F1 Score A.U.C.

Unigrams 0.88 0.79 0.41 0.98 0.54 0.9
Bigrams 0.88 0.8 0.4 0.98 0.53 0.91Logistic

Regression Trigrams 0.89 0.77 0.57 0.96 0.66 0.93
Unigrams 0.89 0.82 0.46 0.98 0.59 0.9
Bigrams 0.9 0.82 0.59 0.97 0.69 0.92Linear

SVM Trigrams 0.91 0.78 0.66 0.86 0.72 0.93
Unigrams 0.88 0.83 0.42 0.98 0.56 0.92
Bigrams 0.88 0.82 0.39 0.98 0.53 0.91Poly

SVM Trigrams 0.9 0.9 0.51 0.99 0.65 0.92
Unigrams 0.89 0.82 0.49 0.98 0.61 0.93
Bigrams 0.89 0.83 0.48 0.98 0.61 0.93RBF

SVM Trigrams 0.9 0.87 0.5 0.98 0.64 0.92
Unigrams 0.85 0.72 0.29 0.98 0.41 0.83
Bigrams 0.88 0.77 0.45 0.97 0.57 0.84Naive

Bayes Trigrams 0.84 0.55 0.44 0.92 0.49 0.83
Unigrams 0.9 0.84 0.51 0.98 0.63 0.92
Bigrams 0.89 0.8 0.53 0.97 0.64 0.92Random

Forest Trigrams 0.9 0.88 0.5 0.99 0.64 0.93
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Table 17: Comparison of the results obtained with each tested N-gram range for shallow
classifiers with sparse encoding, using the Twitter dataset and considering "context".

Twitter Dataset
Model N-Grams Accuracy Precision Recall Specificity F1 Score A.U.C.

Unigrams 0.76 0.67 0.64 0.82 0.65 0.81
Bigrams 0.76 0.7 0.55 0.87 0.62 0.78Logistic

Regression Trigrams 0.81 0.75 0.71 0.87 0.73 0.88
Unigrams 073 0.63 0.63 0.79 0.63 0.8
Bigrams 0.75 0.68 0.58 0.85 0.63 0.79Linear

SVM Trigrams 0.77 0.68 0.71 0.81 0.69 0.84
Unigrams 0.64 0.5 0.68 0.61 0.58 0.76
Bigrams 0.63 0.49 0.68 0.6 0.57 0.7Poly

SVM Trigrams 0.81 0.8 0.63 0.91 0.7 0.87
Unigrams 0.74 0.64 0.63 0.81 0.63 0.8
Bigrams 0.74 0.65 0.59 0.82 0.62 0.77RBF

SVM Trigrams 0.81 0.81 0.62 0.92 0.7 0.86
Unigrams 0.73 0.66 0.5 0.86 0.57 0.76
Bigrams 0.76 0.77 0.46 0.92 0.58 0.73Naive

Bayes Trigrams 0.72 0.55 0.71 0.73 0.64 0.8
Unigrams 0.76 0.64 0.73 0.77 0.68 0.86
Bigrams 0.72 0.64 0.54 0.83 0.59 0.81Random

Forest Trigrams 0.78 0.69 0.69 0.83 0.69 0.83

Appendix G

Zero-Shot Learning (Zero-SL) results, using different languages (Portuguese vs. English)
and different hypotheses settings (as labels vs. as sentences). Table 18 presents the metrics
scores using the AL dataset, and Table 19 using the Twitter dataset.

Table 18: Comparison of the results obtained with different languages and sentence vs.
label hypotheses in the Zero-Shot Learning model, using the AL dataset

Altice Labs Dataset
Language Hypothesis Accuracy Precision Recall Specificity F1 Score A.U.C.

Label 0.8 0.46 0.76 0.81 0.57 0.85Portuguese Sentence 0.33 0.14 0.52 0.29 0.22 0.52
Label 0.49 0.25 0.92 0.4 0.39 0.76English Sentence 0.78 0.35 0.26 0.9 0.3 0.64

Table 19: Comparison of the results obtained with different languages and sentence vs.
label hypotheses in the Zero-Shot Learning model, using the Twitter dataset

Twitter Dataset
Language Hypothesis Accuracy Precision Recall Specificity F1 Score A.U.C.

Label 0.58 0.44 0.63 0.55 0.52 0.62Portuguese Sentence 0.51 0.38 0.59 0.46 0.46 0.58
Label 0.57 0.45 0.81 0.44 0.44 0.59English Sentence 0.59 0.37 0.22 0.79 0.79 0.5

Zero-SL results, using different languages (Portuguese vs. English) and different hy-
potheses settings (as labels vs. as sentences), while considering "context". Table 20
presents the metrics scores using the AL dataset, and Table 21 using the Twitter dataset.
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Table 20: Comparison of the results obtained with different languages and sentence vs.
label hypotheses in the Zero-Shot Learning model, using "context" and the AL dataset.

Altice Labs Dataset
Language Hypothesis Accuracy Precision Recall Specificity F1 Score A.U.C.

Label 0.8 0.45 0.58 0.85 0.51 0.74Portuguese Sentence 0.26 0.14 0.64 0.18 0.23 0.49
Label 0.43 0.21 0.83 0.34 0.34 0.63English Sentence 0.65 0.22 0.39 0.7 0.28 0.58

Table 21: Comparison of the results obtained with different languages and sentence vs.
label hypotheses in the Zero-Shot Learning model, using "context" and the Twitter dataset.

Twitter Dataset
Language Hypothesis Accuracy Precision Recall Specificity F1 Score A.U.C.

Label 0.56 0.43 0.65 0.51 0.52 0.57Portuguese Sentence 0.46 0.32 0.46 0.45 0.38 0.49
Label 0.56 0.43 0.65 0.51 0.52 0.57English Sentence 0.56 0.36 0.29 0.71 0.32 0.48

Appendix H

Bidirectional Encoder Representations from Transformers (BERT)-CRF’s results using dif-
ferent representation functions (ways to retrieve the sentence’s embedding) using the Twit-
ter dataset (Table 22):

Table 22: Comparison of the results obtained with different representation functions in the
BERT-CRF model, using the Twitter dataset.

Twitter Dataset
Representation

Function Accuracy Precision Recall Specificity F1 Score A.U.C.

Concatenation 0.84 0.72 0.82 0.85 0.77 0.91
Mean 0.86 0.77 0.82 0.88 0.79 0.91
Last 0.86 0.74 0.85 0.87 0.79 0.91
First 0.57 0.46 0.41 0.67 0.43 0.60
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Appendix I

Results for each Machine Learning (ML) classifier analysed and their tuned version. The
bold values mean that, for that model, we had to use the hyperparameters found for the
Twitter dataset and apply them to the AL dataset. Table 23 presents the metrics scores
using the AL dataset, and Table 24 using the Twitter dataset.

Table 23: Comparison between the performances of the tuned and original classifiers, using
the AL dataset.

Altice Labs Dataset
Representation Model Version Accuracy Precision Recall Specificity F1 Score A.U.C.

Original 0.91 0.84 0.63 0.97 0.72 0.92Sparse Logistic
Regression Tuned 0.92 0.81 0.73 0.96 0.77 0.94

Original 0.93 0.8 0.83 0.95 0.81 0.94Dense Logistic
Regression Tuned 0.93 0.79 0.82 0.95 0.8 0.94

Original 0.91 0.79 0.68 0.96 0.73 0.9Sparse Linear
SVM Tuned 0.92 0.81 0.71 0.96 0.76 0.92

Original 0.92 0.77 0.81 0.94 0.79 0.91Dense Linear
SVM Tuned 0.93 0.81 0.82 0.96 0.81 0.93

Original 0.91 0.83 0.63 0.97 0.72 0.88Sparse Poly
SVM Tuned 0.91 0.8 0.65 0.96 0.72 0.89

Original 0.93 0.81 0.8 0.96 0.8 0.94Dense Poly
SVM Tuned 0.93 0.82 0.8 0.96 0.81 0.94

Original 0.91 0.84 0.66 0.97 0.74 0.9Sparse RBF
SVM Tuned 0.91 0.77 0.73 0.95 0.75 0.89

Original 0.93 0.82 0.8 0.96 0.81 0.94Dense RBF
SVM Tuned 0.93 0.81 0.81 0.96 0.81 0.95

Original 0.91 0.82 0.64 0.97 0.72 0.92Sparse Naive
Bayes Tuned 0.91 0.81 0.65 0.97 0.72 0.92

Original 0.9 0.76 0.69 0.95 0.72 0.9Dense Naive
Bayes Tuned 0.9 0.74 0.69 0.94 0.71 0.9

Original 0.91 0.78 0.7 0.96 0.74 0.92Sparse Random
Forest Tuned 0.91 0.82 0.68 0.97 0.74 0.92

Original 0.92 0.82 0.76 0.96 0.79 0.95Dense Random
Forest Tuned 0.93 0.84 0.77 0.97 0.8 0.96

Original 0.95 0.89 0.85 0.97 0.87 0.97Dense
(BERTimbau)

Finetuned
BERTimbau Tuned 0.94 0.92 0.78 0.98 0.84 0.96

Original 0.91 0.75 0.72 0.95 0.73 0.94Sparse CRF Tuned 0.91 0.75 0.77 0.94 0.76 0.95
Original 0.93 0.79 0.81 0.95 0.8 0.96Dense CRF Tuned 0.93 0.79 0.8 0.96 0.79 0.96
Original 0.92 0.74 0.78 0.94 0.76 0.93Dense

(BERTimbau) BERT-CRF Tuned 0.92 0.71 0.81 0.94 0.76 0.94

121



Table 24: Comparison between the performances of the tuned and original classifiers, using
the Twitter dataset.

Twitter Dataset
Representation Model Version Accuracy Precision Recall Specificity F1 Score A.U.C.

Original 0.84 0.89 0.73 0.93 0.8 0.94Sparse Logistic
Regression Tuned 0.88 0.92 0.79 0.95 0.85 0.94

Original 0.92 0.91 0.9 0.93 0.9 0.96Dense Logistic
Regression Tuned 0.92 0.92 0.9 0.94 0.91 0.97

Original 0.86 0.9 0.76 0.93 0.82 0.91Sparse Linear
SVM Tuned 0.86 0.88 0.78 0.92 0.83 0.92

Original 0.91 0.88 0.91 0.91 0.89 0.95Dense Linear
SVM Tuned 0.92 0.9 0.92 0.92 0.91 0.97

Original 0.82 0.76 0.85 0.8 0.8 0.89Sparse Poly
SVM Tuned 0.86 0.85 0.82 0.89 0.83 0.92

Original 0.91 0.94 0.84 0.96 0.89 0.96Dense Poly
SVM Tuned 0.91 0.94 0.85 0.96 0.89 0.97

Original 0.86 0.85 0.81 0.89 0.83 0.93Sparse RBF
SVM Tuned 0.85 0.88 0.75 0.92 0.81 0.91

Original 0.91 0.93 0.86 0.95 0.89 0.97Dense RBF
SVM Tuned 0.92 0.91 0.9 0.93 0.9 0.97

Original 0.82 0.88 0.67 0.93 0.76 0.94Sparse Naive
Bayes Tuned 0.84 0.88 0.74 0.92 0.8 0.94

Original 0.86 0.84 0.84 0.88 0.84 0.92Dense Naive
Bayes Tuned 0.86 0.84 0.84 0.88 0.84 0.92

Original 0.83 0.86 0.73 0.91 0.79 0.9Sparse Random
Forest Tuned 0.86 0.93 0.74 0.96 0.82 0.94

Original 0.88 0.88 0.84 0.92 0.86 0.96Dense Random
Forest Tuned 0.89 0.89 0.85 0.92 0.87 0.95

Original 0.93 0.97 0.88 0.97 0.92 1Dense
(BERTimbau)

Finetuned
BERTimbau Tuned 0.92 0.91 0.9 0.93 0.9 0.97

Original 0.8 0.74 0.68 0.86 0.71 0.86Sparse CRF Tuned 0.83 0.76 0.78 0.86 0.77 0.91
Original 0.88 0.87 0.78 0.94 0.82 0.92Dense CRF Tuned 0.88 0.88 0.78 0.94 0.83 0.92
Original 0.86 0.74 0.85 0.87 0.79 0.91Dense

(BERTimbau) BERT-CRF Tuned 0.86 0.78 0.81 0.88 0.79 0.91

Results for each ML classifier analysed and their tuned version, considering context.
The bold values mean that, for that model, we had to use the hyperparameters found for
the Twitter dataset and apply them to the AL dataset. Table 25 presents the metrics
scores using the AL dataset, and Table 26 using the Twitter dataset.
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Table 25: Comparison between the performances of the tuned and original classifiers, using
"context" and the AL dataset.

Altice Labs Dataset
Representation Model Version Accuracy Precision Recall Specificity F1 Score A.U.C.

Original 0.88 0.79 0.41 0.98 0.54 0.9Sparse Logistic
Regression Tuned 0.89 0.8 0.51 0.97 0.62 0.91

Original 0.89 0.77 0.57 0.96 0.66 0.93Dense Logistic
Regression Tuned 0.91 0.8 0.64 0.97 0.71 0.94

Original 0.89 0.82 0.46 0.98 0.59 0.9Sparse Linear
SVM Tuned 0.89 0.82 0.46 0.98 0.59 0.9

Original 0.91 0.78 0.66 0.96 0.72 0.93Dense Linear
SVM Tuned 0.91 0.78 0.66 0.96 0.72 0.93

Original 0.88 0.83 0.42 0.98 0.56 0.92Sparse Poly
SVM Tuned 0.88 0.83 0.42 0.98 0.56 0.92

Original 0.9 0.9 0.51 0.99 0.65 0.92Dense Poly
SVM Tuned 0.9 0.9 0.51 0.99 0.65 0.92

Original 0.89 0.82 0.49 0.98 0.61 0.93Sparse RBF
SVM Tuned 0.89 0.82 0.49 0.98 0.61 0.93

Original 0.9 0.87 0.5 0.98 0.64 0.92Dense RBF
SVM Tuned 0.9 0.87 0.5 0.98 0.64 0.92

Original 0.85 0.72 0.29 0.98 0.41 0.83Sparse Naive
Bayes Tuned 0.86 0.71 0.31 0.97 0.43 0.83

Original 0.84 0.55 0.44 0.92 0.49 0.83Dense Naive
Bayes Tuned 0.84 0.55 0.43 0.92 0.48 0.82

Original 0.9 0.84 0.51 0.98 0.63 0.92Sparse Random
Forest Tuned 0.91 0.86 0.57 0.98 0.69 0.91

Original 0.9 0.88 0.5 0.99 0.64 0.93Dense Random
Forest Tuned 0.9 0.87 0.52 0.98 0.65 0.93

Table 26: Comparison between the performances of the tuned and original classifiers, using
"context" and the Twitter dataset.

Twitter Dataset
Representation Model Version Accuracy Precision Recall Specificity F1 Score A.U.C.

Original 0.76 0.67 0.64 0.82 0.65 0.81Sparse Logistic
Regression Tuned 0.78 0.72 0.64 0.86 0.68 0.82

Original 0.81 0.75 0.71 0.87 0.73 0.88Dense Logistic
Regression Tuned 0.85 0.84 0.73 0.92 0.78 0.89

Original 0.73 0.63 0.63 0.79 0.63 0.8Sparse Linear
SVM Tuned 0.75 0.65 0.63 0.81 0.64 0.82

Original 0.77 0.68 0.71 0.81 0.69 0.84Dense Linear
SVM Tuned 0.82 0.78 0.69 0.89 0.73 0.89

Original 0.64 0.5 0.68 0.61 0.58 0.76Sparse Poly
SVM Tuned 0.71 0.58 0.68 0.72 0.63 0.79

Original 0.81 0.8 0.63 0.91 0.7 0.87Dense Poly
SVM Tuned 0.83 0.79 0.72 0.89 0.75 0.9

Original 0.74 0.64 0.63 0.81 0.63 0.8Sparse RBF
SVM Tuned 0.77 0.75 0.54 0.9 0.63 0.8

Original 0.81 0.81 0.62 0.92 0.7 0.86Dense RBF
SVM Tuned 0.84 0.82 0.72 0.91 0.77 0.89

Original 0.73 0.66 0.5 0.86 0.57 0.76Sparse Naive
Bayes Tuned 0.75 0.7 0.51 0.88 0.59 0.78

Original 0.72 0.59 0.71 0.73 0.64 0.8Dense Naive
Bayes Tuned 0.73 0.6 0.71 0.74 0.65 0.8

Original 0.76 0.64 0.73 0.77 0.68 0.86Sparse Random
Forest Tuned 0.77 0.7 0.65 0.84 0.67 0.86

Original 0.78 0.69 0.69 0.83 0.69 0.83Dense Random
Forest Tuned 0.8 0.75 0.65 0.88 0.7 0.85

Appendix J

Results of the Finetuned BERTimbau tuning process for the Twitter dataset. The set of
hyperparameters and folds that we considered the best for each experience is presented in
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bold (Table 27).

Table 27: Comparison of the results obtained using Cross-Validation and Grid Search
Tuning for the Finetuned BERTimbau model.

Twitter Dataset
Learning

Rate Epsilon Epochs Fold Accuracy Precision Recall Specificity F1 Score A.U.C.

0 0.86 0.93 0.79 0.94 0.85 0.99
1 0.89 0.84 0.9 0.88 0.87 0.96
2 0.89 0.91 0.85 0.93 0.88 0.95
3 0.89 0.82 0.9 0.88 0.86 0.95

0.0001 0.00000001 4

4 0.9 0.88 0.89 0.91 0.88 0.96
0 0.87 0.85 0.85 0.88 0.85 0.99
1 0.9 0.9 0.86 0.92 0.88 0.99
2 0.92 0.91 0.9 0.93 0.9 0.97
3 0.63 0.15 0.93 0.61 0.26 0.93

0.0001 0.00000001 2

4 0.86 0.7 0.96 0.81 0.81 0.96
0 0.86 0.73 0.93 0.82 0.82 0.99
1 0.83 0.67 0.92 0.79 0.78 0.97
2 0.89 0.8 0.94 0.86 0.86 0.99
3 0.87 0.76 0.93 0.84 0.84 0.97

0.0001 0.001 2

4 0.83 0.68 0.9 0.8 0.77 0.99
0 0.9 0.9 0.87 0.92 0.88 0.99
1 0.91 0.86 0.93 0.9 0.89 0.97
2 0.89 0.85 0.9 0.89 0.87 0.96
3 0.89 0.9 0.85 0.92 0.87 0.96

0.0001 0.001 4

4 0.9 0.87 0.9 0.9 0.88 0.96
0 0.88 0.76 0.95 0.84 0.84 0.99
1 0.85 0.74 0.91 0.82 0.82 0.95
2 0.87 0.77 0.92 0.84 0.84 0.95
3 0.85 0.68 0.95 0.8 0.79 0.95

0.00005 0.001 2

4 0.87 0.76 0.92 0.84 0.83 0.99
0 0.91 0.86 0.92 0.9 0.89 0.99
1 0.89 0.82 0.9 0.88 0.86 0.96
2 0.91 0.91 0.88 0.93 0.89 0.99
3 0.89 0.9 0.85 0.92 0.87 0.97

0.00005 0.001 4

4 0.88 0.76 0.96 0.84 0.85 0.99
0 0.89 0.79 0.95 0.86 0.86 0.96
1 0.85 0.69 0.95 0.81 0.8 0.99
2 0.88 0.78 0.92 0.85 0.84 0.96
3 0.81 0.58 0.95 0.75 0.72 0.99

0.00005 0.00000001 2

4 0.83 0.62 0.98 0.77 0.76 0.99
0 0.9 0.95 0.84 0.95 0.89 0.96
1 0.89 0.9 0.85 0.92 0.87 0.97
2 0.89 0.92 0.84 0.94 0.88 0.96
3 0.87 0.84 0.85 0.88 0.84 0.99

0.00005 0.00000001 4

4 0.9 0.8 0.95 0.87 0.87 0.99
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Appendix K

Full metric scores of the experiments regarding dialogue classification when the models are
not trained in this type of data. Tables 28, 29, and 30 present the evaluation of the shallow
learning models with sparse representations when tested on the AL dataset, the Twitter
dataset, and the Sentituites dataset, respectively.

Table 28: Evaluation of the classifiers trained on the Sentituites data and tested on the
AL data.

Altice Labs Dataset
Model Accuracy Precision Recall Specificity F1 Score A.U.C.
Logistic

Regression 0.7 0.08 0.07 0.84 0.07 0.43

RBF SVM 0.8 0.19 0.03 0.97 0.05 0.43
Naive
Bayes 0.81 0.25 0.03 0.98 0.05 0.45

Random
Forest 0.81 0.24 0.02 0.99 0.04 0.56

Table 29: Evaluation of the classifiers trained on the Sentituites data and tested on the
Twitter data.

Twitter Dataset
Model Accuracy Precision Recall Specificity F1 Score A.U.C.
Logistic

Regression 0.59 0.59 0.18 0.91 0.28 0.53

RBF SVM 0.6 0.73 0.12 0.97 0.21 0.54
Naive
Bayes 0.59 0.7 0.08 0.98 0.14 0.53

Random
Forest 0.56 0.48 0.11 0.91 0.18 0.58

Table 30: Evaluation of the classifiers trained and tested on the Sentituites data.

Sentituites Dataset
Model Accuracy Precision Recall Specificity F1 Score A.U.C.
Logistic

Regression 0.79 0.9 0.39 0.98 0.54 0.83

RBF SVM 0.82 0.93 0.47 0.98 0.62 0.88
Naive
Bayes 0.75 0.94 0.22 0.99 0.36 0.83

Random
Forest 0.8 0.91 0.43 0.98 0.58 0.85
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