

José Gabriel Couceiro de Carvalho Machado

ASSURANCE AND COMPLIANCE OF SECURITY POLICIES IN

CLOUD NATIVE ENVIRONMENTS

Dissertation in the context of the Master’s in Informatics Engineering, advised by
Professor Dr. Nuno Antunes and presented to the Department of Informatics

Engineering of the Faculty of Science and Technology of the University of Coimbra.

July 2022

Page intentionally left blank

DEPARTAMENTO DE ENGENHARIA INFORMÁTICA

José Gabriel Couceiro de Carvalho Machado

Assurance and Compliance of Security
Policies in Cloud Native Environments

Dissertação no âmbito do Mestrado em Engenharia Informática, orientada pelo
Professor Doutor Nuno Antunes e apresentada ao Departamento de Engenharia
Informática da Faculdade de Ciências e Tecnologia da Universidade de Coimbra.

Julho, 2022

Page intentionally left blank

iii

Acknowledgment

I would like to express my gratitude to Professor Nuno Antunes which, besides being
my advisor for this thesis, introduced me to many security subjects throughout the
Cybersecurity Master. It has been quite a journey until now and, when looking back, I
can see how much I have done and achieved so far. Thank you also for all the support,
criticism, and feedback, which were always crucial for improving all my outcomes.

Thank you, Marco Amador, it was a pleasure to be your advisee and learn with all
the knowledge you have to share. It has been a very important experience that surely
contributed to the increase of my interest in this theme.

I want to thank my family for always motivating me and giving me the support I
needed to make my decisions, either inside or outside my academic path. You have
always been by my side.

Also, I want to thank my girlfriend, Mariana. These last years have been very tough,
but you’ve made them not look that bad. Your cheerfulness in every situation I faced
and how you always try to understand and support me in any way you can, is a treasure
that I cannot value enough. You have been crucial to my efforts and my work.

A special thanks to all my friends for always sharing their knowledge with me and
always helping me grow.

Finally, I want to thank ANOVA for giving me the opportunity to work in a good
enterprise environment and for their flexibility and support.

v

Resumo

A computação baseada na Cloud pode ser vista como a entrega de serviços
hospedados na internet, nomeadamente software, hardware e armazenamento, pela
Internet. As vantagens de uma implementação rápida, flexibilidade, custos iniciais
baixos e escalabilidade tornaram a Cloud Computing virtualmente presente entre
organizações de todo o tipo de dimensão.

Com um grande avanço na tecnologia, também são trazidos múltiplos potenciais
riscos para as organizações e é aí que entra a segurança na Cloud. A segurança na Cloud
é uma responsabilidade compartilhada entre o provedor dos serviços Cloud e o cliente.
Refere-se às tecnologias, políticas, controlos e serviços que protegem os dados, as
aplicações e a infraestrutura na Cloud contra possíveis ameaças.

Uma das melhores medidas para aprimorar a segurança na Cloud, é a definição de
políticas de segurança. As políticas de segurança ajudam a minimizar o risco de fuga ou
perda de dados, bem como protegem contra possíveis utilizadores internos ou externos,
mal-intencionados. Estas políticas também definem diretrizes, práticas recomendadas e
ajudam a garantir a conformidade.

Este trabalho apresenta uma pesquisa acerca das melhores ferramentas/serviços
disponíveis para definir políticas de segurança para um ambiente Cloud-Native, uma
pesquisa acerca das políticas de segurança mais adequadas a serem implementadas
para este cenário, de forma a aprimorar a segurança no ambiente, assim como o
processo de configuração necessário para a integração das políticas de segurança com
a infraestrutura existente.

Palavras-Chave

Cloud-Native, Cloud, Segurança na Cloud, Políticas de Segurança, Conformidade,
Política-como-Código, Azure Policy.

 vi

Page intentionally left blank

vii

Abstract

Cloud computing can be seen as the delivery of hosted services, including software,
hardware, and storage, over the internet. The advantages of rapid deployment,
flexibility, low upfront costs, and scalability have made cloud computing virtually
present among organizations of all sizes.

Of course, with this huge advance in technology, also comes a lot of potential risks
for organizations and that's where cloud-security comes in. Cloud security is a shared
responsibility between the cloud provider and the customer. It refers to the
technologies, policies, controls, and services that protect data, applications, and cloud
infrastructure from threats.

One of the best measures to improve cloud security is to define security policies
across the technology stack. Security policies will minimize the risk of data leak or data
loss as well as protect against potential malicious internal and external users. These
policies also set guidelines, best practices, and help ensure compliance.

This work presents a research about the best tools/services to define security
policies for a Cloud-Native environment as well as a research about the most significant
and suitable security policies to be implemented for this scenario in order to improve
security in the environment. It also presents the necessary process for the integration
of security policies with the existing infrastructure. The entire process is covered, from
the process of defining policies to its assignment and functionality validation.

Keywords

Cloud-Native, Cloud Security, Cloud, Security Policies, Compliance, Policy-as-Code,
Azure Policy.

 viii

Page intentionally left blank

ix

Table of Contents

Chapter 1 Introduction .. 19

1.1 Goals ... 20

1.2 Structure ... 21

Chapter 2 Context ... 23

2.1 Cloud-Native .. 23
2.1.1 Architecture ... 24
2.1.2 Technologies .. 25

2.2 Policy as Code .. 26
2.2.1 What is Policy as Code? ... 26
2.2.2 How it works? .. 26
2.2.3 Types of Policies ... 27
2.2.4 Benefits .. 28
2.2.5 Use Cases ... 30
2.2.6 Conclusion .. 31

Chapter 3 Environment Architecture .. 32

3.1 Technology Stack ... 34
3.1.1 App Definition and Development .. 34
3.1.2 Orchestration and Management .. 35
3.1.3 Runtime .. 35
3.1.4 Provisioning .. 35
3.1.5 Observability and Analysis ... 36

Chapter 4 State of Art .. 37

4.1 Open Policy Agent .. 37
4.1.1 How does OPA works? ... 37
4.1.2 Rego ... 38

4.2 Azure Policy ... 39
4.2.1 Evaluation .. 39
4.2.2 Response .. 40
4.2.3 Azure Policy for Kubernetes ... 40

4.3 Microsoft Defender for Cloud .. 42

4.4 Tools .. 43
4.4.1 Falco ... 43
4.4.2 K-Rail .. 43
4.4.3 Harbor .. 44
4.4.4 Conftest .. 44
4.4.5 Kyverno .. 44
4.4.6 Gatekeeper .. 44

4.5 Gatekeeper vs Kyverno for Kubernetes .. 45

4.6 Conclusion ... 47

Chapter 5 Policies .. 48

 x

5.1 What is? ... 49

5.2 Benefits ... 49

5.3 Kubernetes Oriented Policies ... 50
5.3.1 Trusted Repo .. 50
5.3.2 Block Pod Exec ... 50
5.3.3 Disallow Add Capabilities ... 50
5.3.4 Limit Pod Containers .. 50
5.3.5 Label Safety .. 50
5.3.6 Handle Privileged Mode ... 51
5.3.7 Define and Control Ingress ... 51
5.3.8 Define and Control Egress .. 51
5.3.9 Allowed Pod Priorities .. 52
5.3.10 Require Limits and Requests .. 52
5.3.11 Require Run as Non-Root ... 52
5.3.12 Spread Pods Across Nodes ... 52
5.3.13 Kubernetes cluster containers should run with a read only root file system 52

5.4 General Policies ... 53
5.4.1 Restrict External IPs ... 53
5.4.2 Enforce SSL connections for databases .. 53
5.4.3 Services should use virtual network service endpoints ... 53
5.4.4 Databases should use customer-managed keys to encrypt data at rest 53
5.4.5 Container registry images should have vulnerability findings resolved 54

5.5 Conclusion ... 54

Chapter 6 Implementation and Validation .. 55

6.1 Implementation ... 56

6.2 Validation .. 58
6.2.1 Kubernetes clusters should not allow privileged containers 58
6.2.2 SSL connection should be enabled for PostgreSQL database servers 59
6.2.3 Kubernetes cluster containers should run with a read only root file system 60
6.2.4 Kubernetes clusters should not allow container privilege escalation 62
6.2.5 Kubernetes cluster services should only use allowed external IPs 63

Chapter 7 Planning ... 66

7.1 First Semester .. 66

7.2 Second Semester ... 67

7.3 Risk Management .. 69

7.4 Methodology ... 72

Chapter 8 Conclusion and Future Work ... 73

8.1 Future Work ... 73

References ... 75

Appendix A – Policies JSON Files ... 79
Policy 1 - Kubernetes clusters should not allow privileged containers 80
Policy 2 - SSL connection should be enabled for PostgreSQL database servers 82
Policy 3 - Kubernetes cluster containers should run with a read only root file system 83
Policy 4 - Kubernetes clusters should not allow container privilege escalation 85
Policy 5 - Kubernetes cluster services should only use allowed external IPs 87

xi

Acronyms

CNCF – Cloud Native Computing Foundation

API – Application Programming Interface

IP Address – Internet Protocol Address

IIOT – Industrial Internet of Things

OPA – Open Policy Agent

SaaS – Software as a Service

SRE – Site Reliability Engineer

IT – Information Technology

CI – Continuous Integration

CD – Continuous Delivery

PSP – Pod Security Policy

TLS – Transport Layer Security

PII – Personal Identifiable Information

TDE – Transparent Data Encryption

SSL – Secure Socket Layer

I/O – Input/Output

VNet – Virtual Network

CLI – Command Line Interface

AKS – Azure Kubernetes Cluster

 xii

Glossary

API – Set of functions with logic to be acceded by external parties without them knowing
the internal workings of the software.

Cloud – Term used for content or services stored in physical servers that are accessible
to users through the Internet.

API Validation Schema – Vocabulary that allows to annotate and validate JSON
documents.

DevOps – Combination of philosophies, tools and practices that improves the ability of
organizations to deliver applications at a higher velocity.

Clusters – A set of nodes that run containerized applications.

Containers – Software package containing everything needed to run an application.

DaemonSets – Kubernetes feature to ensure that some or all pods are scheduled and
running on every single available node.

Cronjobs – Job scheduler for Unix-like operating systems. It´s used to schedule jobs
(commands) to run periodically at fixed times.

Pod – A Pod is a single instance of a running process in a cluster. It could contain multiple
containers running.

Malware – Term used to define any software intentionally designed to harm a
computer, server, client, or computer network.

Workloads – Applications or services running.

Ingress – Term used to define an API object that manages external access to the services
in a cluster, typically HTTP.

Egress – Term used to define communications being made from Pods to anything
outside of the cluster.

Configuration Drift – Term used to describe an environment in which running clusters
in an infrastructure become increasingly different over time, usually due to manual
changes.

xiii

Container Registry – Term used to describe a repository or collection of repositories
used to store and access container images.

YAML – File extension

Load Balancer – Term used to describe a service that distributes the network traffic
across multiple servers, improving application availability, responsiveness and avoiding
server overload.

xv

Figures List

Figure 1 – Monolithic vs Microservices Architecture [2] ... 24

Figure 2 – Most popular cloud technologies [4] .. 25

Figure 3 – ANOVA’s system architecture ... 33

Figure 4 – OPA workflow diagram [5] .. 38

Figure 5 – Azure Policy with Gatekeeper workflow [12] .. 41

Figure 6 – Defender for Cloud capabilities [13] .. 42

Figure 7 – Policies view in Azure Portal .. 57

Figure 8 – Content of privileged_test.yaml file ... 58

Figure 9 – Result of kubectl apply command with privileged property true 59

Figure 10 – Result of kubectl apply command with privileged property false 59

Figure 11 – Azure Policy reporting non-compliant policy .. 60

Figure 12 – Azure Policy reporting compliant policy .. 60

Figure 13 – Content of test.yaml file .. 61

Figure 14 – Result of kubectl apply command with readOnlyRootFilesystem property false . 61

Figure 15 – Result of kubectl apply command with readOnlyRootFilesystem property false . 62

Figure 16 – Content test.yaml file with allowPrivilegeEscalation property false 62

Figure 17 – Content test.yaml file with allowPrivilegeEscalation property false 63

Figure 18 – Content test.yaml file with allowPrivilegeEscalation property false 63

Figure 19 – Content of test.yaml file .. 64

Figure 20 – Kubectl expose command .. 64

Figure 21 – Result of the kubectl expose command with a forbidden external IP 65

Figure 22 – Result of the kubectl expose command with an allowed external IP 65

Figure 23 – First Semester Work Plan .. 67

Figure 24 – Second Semester Work Plan .. 68

Figure 25 – Risk Exposure Matrix ... 71

Figure 26 – Policy 1 definition (1st part) ... 80

Figure 27 – Policy 1 definition (2nd part) .. 81

Figure 28 – Policy 2 definition .. 82

Figure 29 – Policy 3 definition (1st part) ... 83

Figure 30 – Policy 3 definition (2nd part) .. 84

Figure 31 – Policy 4 definition (1st part) ... 85

 xvi

Figure 32 – Policy 4 definition (2nd part) .. 86

Figure 33 – Policy 5 definition (1st part) ... 87

Figure 34 – Policy 5 definition (2nd part) .. 88

xvii

Tables List

Table I – App Definition and Development ... 34

Table II – Orchestration and Management ... 35

Table III – Runtime ... 35

Table IV – Provisioning .. 35

Table V – Observability and Analysis ... 36

Table VI – Features/Capabilities comparison [22] .. 45

Table VII – Community/Ecosystem comparison [12] .. 46

Table VIII – Meta/Misc comparison [12] ... 46

Table IX – Risk 1 – Working full-time ... 69

Table X – Risk 2 - Working in Frontend field ... 70

Table XI – Risk 3 – Some policies may not be applied within the time ... 70

 xviii

Page intentionally left blank

19

Chapter 1
Introduction

ANOVA is a leading global company in the “Industrial Internet of Things (IIOT)” for remote
monitoring and asset management. ANOVA is developing a new IIOT platform that intends to
be the platform that unifies several existing platforms into a single one that is agnostic to the
type of device. The goal is not only to build a new IIOT platform but also to use the most
modern development methodologies such as “Continuous Delivery” and Cloud-Native
architecture.

This document contains the description of the work done during this internship which
aims to study and implement a tool to ensure compliance with security policies capable of
automating and unifying the implementation of security policies across different teams and
departments.

The adoption of Cloud-Native technologies has grown in recent years. This type of
architecture brings several benefits over the traditional approach, such as faster time to
market, greater abstraction in relation to the hardware used, better cost efficiency, among
others. But this type of architecture also brings several challenges such as “Cloud lock-in”,
security, rapid technological evolution, among others. In a Cloud-Native architecture, security
must be worked from the planning, development, test, and deploy phases, being a great
challenge because it crosses several areas of specialization (cybersecurity, infrastructure,
development).

Cloud security is getting more relevant day by day since Cloud-Native solutions constantly
growing adoption. Using many solutions increases indirectly the attack surface since each one
of those solutions can have certain vulnerabilities waiting for malicious intent to exploit them.
To secure Cloud-Native technologies, organizations need to configure multiple tools, policy
languages, and policy models to manage security in each one of them. This might not be the
optimal solution, especially for organizations that are using many different technologies since
it tends to be costly and more time-consuming.

To improve security across the whole Cloud-Native stack, the configuration of a unified
platform that allows us to create, manage and audit security, would be the most desirable

 20

solution. Using a unified platform, it would be possible to manage security policies across the
entire stack using only one policy model and language without sacrificing availability or
performance.

To achieve success in a Cloud-Native architecture, it is essential to understand this type
of environment and have a collaborative modernization strategy between several teams, as
well as specialized tools that allow you to automate and guarantee security at all stages of a
Cloud-Native application.

One such tool used in Cloud-Native environments is the central management of security
policies to ensure organizational standards and assess and ensure compliance in
environments where multiple teams work together to bring a product to market quickly and
safely. The main goal is to have a tool that allows you to ensure compliance and automate the
application of security policies as well as monitor and remediate identified issues.

1.1 Goals
This has the main goal to research and implement a tool to ensure compliance with

security policies capable of automating and unifying the implementation of security policies
across different teams and departments in a Cloud-Native platform. With the goal of
improving observability, the tool should also provide visual feedback on the current status of
those policies, if they are compliant or not.

This project also has multiple sub-goals, such as:

• Understand which tools exist nowadays to handle security policies and which one
is the best for the given purpose.

• Setup the whole that was chosen, in order to support the necessary Cloud-Native
technologies.

• Research about the most suitable security policies to implement for each
technology.

• Learn the policy language if needed and implement security policies.

• Validate the functionality of those policies.

The final obtained results will enhance the existing documentation regarding
experimental work with the tool and the rest of the research topics addressed in this thesis.

21

1.2 Structure
This document is organized and divided into 8 main chapters. The Introduction (Chapter

1), the current chapter, the Context chapter (Chapter 2), the Environment Architecture
(Chapter 3), the State of Art (Chapter 4), the Policies chapter (Chapter 5), the Implementation
and Validation chapter (Chapter 6), the Planning chapter (Chapter 7), and finally, the
Conclusion chapter (Chapter 8).

Chapter 1 – In this chapter is made an initial description of the theme being approached,
the motivation of the research, the goals, the contributions of the author, and how the report
is organized and structured.

Chapter 2 – This chapter provides a context about the subject approached throughout
the report before diving into the research and implementation. It covers multiple topics, such
as what is Cloud-Native, its architecture and technologies involved, what is Policy-as-Code,
how it works, types of policies, its benefits, and use cases.

Chapter 3 – In this chapter is made a general description of ANOVA’s environment
architecture. What is its technology stack when it comes to App Definition and Development,
Orchestration and Management, Runtime, Provisioning, and finally, Observability and
Analysis.

Chapter 4 – State of Art chapter provides a background of what has been made so far in
this field, containing a description, brief comparison, and analysis of the tools and techniques
available nowadays to handle security in Cloud-Native environments and the most adequate
ones to define security policies on these environments.

Chapter 5 – Policies chapter contains a research about the most important and suitable
security policies to be implemented for each Cloud-Native technology. It will be an important
starting point for the practical implementation since it will be gathering most of the security
policies needed.

Chapter 6 – This chapter has documented the process of implementation/application of
the set of policies chosen, as well as a proper validation of whether they are working as
expected or not.

Chapter 7 – In the Planning chapter is where the planning of the whole project is
approached. It describes the tasks and timelines for each semester, an analysis of the risks
that may impact the project’s success as well as the work methodology.

 22

Chapter 8 – In the Conclusion chapter is provided a conclusion about the work performed
throughout the project, as well as a summary of what still needs to be done regarding future
work.

23

Chapter 2
Context

In order to be able to understand most of the topics covered throughout the report,
some background is needed, mainly about Cloud-Native and Policy as Code. In this section will
be explored these two concepts, what they are, how they work, their benefits, and so on.

2.1 Cloud-Native

Cloud-Native is a relatively new approach to managing data, building, and running
software applications that exploit the flexibility, scalability, and resiliency of cloud computing.
It's similar to traditional computing, except that instead of deploying applications on physical
hardware locally, all software, servers, and networks are hosted in the cloud. It uses a
computer-on-demand model, where IT resources are accessible through Internet connections
as needed.

Cloud-Native solutions are mainly promoted by CNCF (Cloud Native Computing
Foundation), a foundation that is part of the Linux Foundation and aims to promote the
development of cloud solutions, whether public, private, or hybrid. In this way, CNCF supports
and sustains an ecosystem of open-source projects without any linkage to any supplier, that
is, solutions that can be implemented in any cloud service provider.

A typical example of cloud computing usage is email. Software as a Service (SaaS)
providers such as Gmail or Microsoft Outlook allows users to store email data on external
servers that can be accessed through any common browser from anywhere in the world.

Cloud-Native applications usually have some specific characteristics that distinguish them
from others, such as [1]:

• Automation: This type of applications can be deployed and managed by machines
and not by humans.

• Flexibility: These applications should be able to move from one container to
another one without problems, it doesn't matter where it's running, it's decoupled
from the infrastructure.

 24

• Resilience and Scalability: They must withstand hardware failure, processing, or
any other point that is not human responsibility.

• Observability: They should allow monitoring, logging, tracing, and metrics that
help the SRE team find gaps or improvement points.

• Distributed: Cloud-Native is being able to benefit from the distributed and
decentralized nature of the cloud. Cloud-Native applications tend to be distributed
across multiple microservices that operate with each other.

2.1.1 Architecture

Microservices are the core of Cloud-Native application architecture. By using a
Microservices technology that splits a big application into multiple independent smaller units,
every unit will be processed as a separate service. Each one could have its own business logic,
database and execute different functions.

Looking at a monolithic architecture, it takes a lot of effort to deploy new changes to
the production environment when new features are implemented. Multiple teams need to
coordinate their changes since any code change will affect the whole system, deploying
multiple features all at once require a lot of integration and testing, applying a new technology
will make the entire application be rewritten, and so on.

Figure 1 – Monolithic vs Microservices Architecture [2]

25

As we seen in Figure 1, a Microservice Architecture can split an application into several
independent microservices. Each one can be deployed and updated independently providing
more flexibility. Each unit can also be scaled independently. There is no need to deploy an
entire application if there are only changes in one unit. Any fault appearing in the application
will only affect a unit instead of affecting the entire application [3].

2.1.2 Technologies

Cloud-Native accouples several different tools and technologies, oriented to the
different layers of the stack.

As presented next in the Figure 2, the Cloud-Native stack can be divided into many
different layers, such as Applications & Database, CI/CD, Platforms, Container Orchestration,
Container Engine, Operating System, and Virtual Infrastructure. It is up to each organization
to set up its infrastructure, combining the most adequate technologies and tools for its goals.

Figure 2 – Most popular cloud technologies [4]

 26

2.2 Policy as Code

Code used to be just something developers used to write applications. Nowadays, code
has become something used for managing most aspects and stages of an application lifecycle,
such as deployments, access control, security, and so on. That is all thanks to Policy as Code
which brings multiple advantages to DevOps teams.

2.2.1 What is Policy as Code?

Policy as code is an extension of the infrastructure as code movement, which has been
implemented in DevOps circles over the last ten years. Now is the time for policy as code to
kick in, move out of its niche DevOps territory and into the core technology arena. A greater
understanding of what it really is and the real challenges it solves will allow politics as code to
be embraced to its full potential.

Policy as code originated from the principles of Test-Driven Development, where users
first defined the business case, or 'desired state', in code. When applying these principles to
the infrastructure, the desired state is known “as code” and is applied to test any changes to
the infrastructure. With the rapid growth of application production, this type of pre-release
testing is vital for organizations.

The software development lifecycle is under pressure to get products to market faster.
This often means that compliance and security are left out and policies end up being manually
enforced, which causes development delays. Embedding the policy as code in the early stages
of development ensures that all changes from that point forward are validated. This means
that risks that can arise later in production can be eliminated, minimizing interruptions, and
giving the business greater confidence.

2.2.2 How it works?

Policy as code is a programmatic approach to applying and enforcing rules (policies) to
an organization's cloud resources. It's an effective way to define, maintain, and implement
policies uniformly across the software development lifecycle.

Business leaders can define these policies and teams can code these policies using
some kind of programming language like YAML or Rego. These policies can be defined in a
declarative format in the git repository, providing powerful features for change management
- version control and fine-grained access control.

27

Automating security and policy compliance checks as code will allow teams to detect
errors and violations early in the software lifecycle. This will create developer-centric
experiences, security will be built into the system design, and organizations will have security-
conscious teams.

 According to Weave, a well-known company with the mission of empowering
developers and DevOps teams to build better software faster, there are four important steps
to have policies in action. Next, there will be presented each of these steps, [4]:

1. Create Policy Playbooks - The first step of implementing Policy-as-Code into DevOps
pipelines is to create the policies. These policies can be based on organizational best
practices, compliance standards, or security frameworks.

2. Codify Policies - The next step is to code the policies. Policies can be written in a high-
level language such as Python, Yaml, or Rego. The language chosen depends on the
policy enforcement engine or platform being used.

3. Integrate Policies into CI/CD Pipelines - By using a policy enforcement engine, it’s

possible to enforce the policies into CI/CD pipelines and prevent violating changes
from being deployed. The engine will continuously monitor assets and configurations
for any violations at every stage of the software lifecycle.

4. Understand Cloud Security and Compliance Analytics - In addition to preventing

violating changes from being deployed, policy engines regularly scan Cloud-Native
assets and generate compliance reports covering the security policies applied,
standards, and best practices. Therefore, it is necessary to read and understand
analytics in order to act when needed.

2.2.3 Types of Policies

Policies can be classified into three different types, such as Security and Compliance
policies, Resilience policies, and Coding Standards. Next, there will be presented each one of
these types, [4].

 28

2.2.3.1 Security and Compliance Policies

These policies must ensure that security best practices are considered during the
development lifecycle. Compliance policies ensure the adherence to industry standards and
compliance rules.

2.2.3.2 Resilience Policies

These Policies include the best practices for deploying applications on Kubernetes,
such as configuring health probes to ensure Kubernetes can do its automation correctly and
many others. To ensure and improve the continuity of the business application, it is needed
to make the system highly available and fault-tolerant by enforcing, for instance, specific
policies in Kubernetes clusters.

2.2.3.2 Coding Standards

These policies can be company-mandated policies and checks that help organizations
apply governance standards using a centralized playbook. For instance, a business has a rule
that all Personally Identifiable Information (PII) must be encrypted when it’s stored. A policy
can be written into the system which is automatically triggered whenever a developer submits
code. If the submitted code violates the policy, the code should be automatically rejected.

2.2.4 Benefits

Policy-as-Code can bring many benefits for teams, and organizations in general. Next,
there will be presented some of the benefits teams and organizations can expect from a
Policy-as-Code approach.

2.2.4.1 Controlling Costs

Monthly cloud bills can get sizeable due to unused resources left running or using over-
sized instances for small tasks. The cost of a resource can be calculated ahead of time allowing
the creation of a policy that limits the amount spent to deploy it. In addition, it is also possible
to use the cloud provider's resources to implement a function with a policy that cleans up
unused resources. Cloud provider native tools and practices can be used in combination with
policy to control costs, [5].

29

2.2.4.2 Compliance

Policy-as-Code is a way to enforce infrastructure policies that prevent inadvertent
access to resources or to enforce cost policies. A Policy-as-Code approach is not a one-time
activity. Newly introduced code and every CI/CD pipeline iteration can trigger policy violations.
With policies defined across the software pipeline, it’s possible to prevent and detect any new
violations from taking place.

2.2.4.3 Efficiency and Automation

Using code to define workflows and rules is the most suitable way to make sure DevOps
teams are able to enforce the same policies across their environments using automated tools
that translate code-based policies into actions. These policies can be reused as many times as
needed, allowing scalability. Policies are only written once, whether there is one application
to deploy or many applications, [6].

2.2.4.4 Easier Testing

Policies that are defined as code are easy to test in Sandbox environments before they
are deployed into production. Since policies can remain consistent between dev/test and
production, teams won’t have to worry about configuration drift as code flows through CI/CD
pipelines, [6].

2.2.4.5 Planning and Collaboration

Policy-as-Code avoids isolated workflows where developers would write code and
hand it off to IT to deploy and manage, with no visibility into which goals the developers were
targeting. With policies defined as code, everyone knows what the development and
deployment rules are ahead of time, making it easier for developers and IT to collaborate, [6].

2.2.4.6 Simple and Efficient Auditing

With a Policy-as-Code approach it’s faster and easier to perform audits to
environments. Policies can be used to define how environments should be configured and
then scan them to identify deviations from policies.

It also enables developers to continuously audit as part of the software delivery and
deployment process, enabling collection of data from all systems, even those that don’t
persist, [6].

 30

2.2.4.7 Centralized Policy Management

The possibility of using a centralized policy management platform allows teams to
define, enforce, and manage a set of policies through a single interface. It is not needed to use
different programming languages anymore, APIs, and multiple tools to ensure proper
governance.

Business leaders and security and compliance teams can design a set of policies according to
the necessary business outcomes. These policies are written once and enforced everywhere,
everything is automated.

Developers will have the autonomy to move fast, and security will have time to scale their
expertise and knowledge. Business leaders will rest assured that security best practices are
applied into their CI/CD systems.

2.2.4.6 Conclusion

The benefits of a Policy-as-Code approach can extend beyond DevOps and into the
success of organizations. From reducing costs and increasing efficiency and automation to
preventing possible malicious attacks to infrastructures, there are some of many benefits that
Policy-as-Code can bring.

2.2.5 Use Cases

Policy-as-Code can have multiple use cases. Next will be presented some common use
cases of a Policy-as-Code approach.

 2.2.5.1 Access Control

Implementing access control policies for any service is one of the most common use
cases for Policy-as-Code. To check authorization, a service makes an API call to the policy
engine which then answers whether the request is authorized or not. We can take the example
of OPA (Open Policy Agent) which integrates policy enforcement and allows to specify Policy-
as-Code and easy APIs to load policy decisions from software.

2.2.5.2 Kubernetes Control

Kubernetes clusters can be managed with policies. These policies contain rules for the
different Kubernetes resources, like pods, namespace, deployment, nodes, and so on. These
policies will assure compliance for Kubernetes.

31

2.2.5.3 Infrastructure Provisioning

Policy-as-Code can also be used to enforce specific requirements on Cloud resources,
such as mandatory tags on instances, firewall, network settings, databases, and so on. Rules
can be defined regarding the access that is needed for each service or storage.

2.2.6 Conclusion

Creating checks throughout an environment is a very important part of the software
delivery process. The earlier and faster the errors or noncompliance can be caught, the better
the software delivery process will be.

Policy-as-Code uses codified and automatic compliance policies. In terms of repeatability,
versioning, and checking, Policy-as-Code can also support directly developers and operators.
The ability to automate compliance by defining the rules to be applied for each context,
regarding if it is a service or an infrastructure configuration, is one of the most attractive
benefits that Policy-as-Code can provide.

 32

Chapter 3
Environment Architecture

The architecture is strongly connected with the Azure Cloud Platform, and it takes
advantage of all the relevant Azure capabilities. It connects devices, and other assets (i.e.,
“things”), captures the data that they generate, integrates, and orchestrates the flow of that
data, then manages, analyzes the data, and presents the data as usable information. This
usable information enables the people who need this data to make better decisions, as well
as intelligently automate operations.

The Azure Cloud can provide speed of development (with all the finished applications
they offer), speed of deployment, and the ability to grow and scale solutions to millions of
“things”.

The Platform has adopted a microservices architecture. Microservices are small pieces
of functionality that contribute to the overall platform functionality. It is a collection of
services doing their job, but the individual architecture of each microservice does not have
much impact on the architecture of all platforms. Each microservice has its own NoSQL
database. For databases, it is used Azure Cosmos DB with MongoDB interface. For larger files,
it is commonly used Azure Blob Storage.

For inter-microservice communication, it is mostly used gRPC, but some microservices
use other means of communication, which make more sense in their contexts,
like NATS or Kafka. To encode and decode device messages it is used JSON or Protobufs.

Microservices are deployed using Docker images. This way microservice dependencies
are contained in the Docker image and it allows to run them in different services such as
Docker Swarm, Kubernetes, and other container-based solutions. These Docker images go into
a Container Registry, so they can be used later to deploy easily to Kubernetes.

Kubernetes, the preferred container orchestration system, is the base of the Cloud
Native Computing Foundation (CNCF), which is used worldwide in an infinite number of
projects. The Kubernetes ecosystem is huge and has services like, Helm, NATS, Prometheus,
and Grafana. Therefore, it is possible to take advantage of this ecosystem to build the Platform
faster, with the help of all community projects.

ANOVA’s solution is composed by a group of characteristics common to all IoT solutions
that are addressed when designing the solution, these characteristics are:

• There is a set of devices that generate data

33

• It’s needed to interact with and manage these devices

• There is a cloud-hosted backend that ingests and processes data from the devices

• The volume of data is large and is generated at high velocity

• The system needs to detect business-relevant events and react in a timely manner

• The system is inherently distributed

Figure 3 – ANOVA’s system architecture

As presented in Figure 3, ANOVA’s system architecture combines a wide range of
technologies such as Kubernetes, Grafana, Kiali, Prometheus, Terraform, Kafka, different
types of databases, multiple Azure services, and many others.

Next, there will be provided a more in-depth description of this technology stack and how
it is organized.

 34

3.1 Technology Stack
A Cloud-Native environment cannot rely on a single technology. Each environment will

always be built with a combination of multiple different technologies for specific use-cases.
The selection of these technologies will always depend on many factors, such as the
requirements of the users, the organization’s budget, how scalable the application should be
in the future, and so on.

This environment’s technology stack is divided up as defined at CNCF Cloud Native
Interactive Landscape [7]. It has a combination of technologies from different layers such as
App Definition and Development, Orchestration and Management, Runtime, Provisioning,
and Observability and Analysis.

For each of these layers, there are many different tools being used. They will be presented
in the following sections.

3.1.1 App Definition and Development

For App Definition and Development, as it’s presented in Table IV, it is being used Azure
Cosmos, MongoDB, SQL Server, Azure Redis Cache, Azure Blob Storage, and Azure Table
Storage for Databases, NATS, Kafka, and Benthos for Streaming and Messaging, Helm,
OpenAPI, and Docker for App Definition and Image Build, Azure Pipelines, Fastlane, Flagger,
Flux, and Helm Operator for CI/CD.

Table I – App Definition and Development

Database Streaming and
Messaging

App Definition and
Image Build

CI/CD

Azure Cosmos NATS Helm Azure Pipelines

MongoDB Kafka OpenAPI Fastlane

SQL Server Benthos Docker Flagger

Azure Redis Cache Flux

Azure Blob Storage Helm Operator

Azure Table Storage

35

3.1.2 Orchestration and Management

For Orchestration and Management, as it’s presented in Table V, it is being used
Kubernetes for Scheduling and Orchestration, CoreDNS for Coordination and Service
Delivery, gRPC, and Initiative for Remote Procedure Call, Envoy for Service Proxy, Istio for API
Gateway and Service Mesh.

Table II – Orchestration and Management

Scheduling and
Orchestration

Coordination
and Service

Delivery

Remote
Procedure

Call

Service
Proxy

API
Gateway

Service
Mesh

Kubernetes CoreDNS gRPC Envoy Istio Istio

 Initiative

3.1.3 Runtime

For Runtime, as it’s presented in Table VI, it is being used Azure Storage for Cloud Native
Storage, Cri-o for Container Runtime, and CNI for Cloud Native Network.

Table III – Runtime

Cloud Native Storage Container Runtime Cloud Native Network

Azure Storage Cri-o CNI

3.1.4 Provisioning

For Provisioning, as it’s presented in Table VII, it is being used Terraform for Automation
and Configuration, Azure Container Registry for Container Registry, Anchore and Azure
Security Center for Security and Compliance, and Azure Key Vault for Key Management.

Table IV – Provisioning

Automation and
Configuration

Container Registry Security Compliance Key Management

 36

Terraform Azure Container
Registry

Anchore Azure Key Vault

 Azure Security
Center

3.1.5 Observability and Analysis

For Observability and Analysis, as it’s presented in Table VIII, it is being used Prometheus,
Thanos, Grafana, Kiali, and Azure Monitoring for Monitoring, Grafana Loki, and Azure Log
Analytics for Logging, Jaeger Tracing, and Open Tracing for Tracing, and Gremelin for Chaos
Engineering.

Table V – Observability and Analysis

Monitoring Logging Tracing Chaos Engineering

Prometheus Grafana Loki Jaeger Tracing Gremlin

Thanos Azure Log Analytics Open Tracing

Grafana

Kiali

Azure Monitoring

37

Chapter 4
State of Art

Due to increasing software vulnerabilities, the possibility of developers committing errors
that can compromise security, as well as the continuous emergence of new data privacy
regulations, security is increasingly generating more concern over time, especially when we
are talking about the cloud where data, resources, and private information could potentially
be exposed on a massive scale. As opposed to older software architectures, modern Cloud-
Native solutions come with nuances that require more and different types of security.

In the following sections, we will approach some Cloud-Native Security and Compliance
solutions, such as Open Policy Agent, from Styra, Azure Policy and Microsoft Defender for
Cloud, both from Microsoft, as well as some of the most popular security and compliance tools
approved by Cloud-Native Computing Foundation (CNCF). These solutions can help apply and
manage policies, ensure regulatory compliance, protect web traffic, assure frequent software
patching, and many other vital actions. Most of the tools approached offer integrations with
popular Cloud-Native infrastructures like Microsoft Azure, Amazon Web Services, Google
Cloud Platform, IBM Cloud, etc. Since Kubernetes are usually one of the broadest technologies
in a Cloud-Native environment, most of the tools and technologies are more focused on
Kubernetes security and compliance.

4.1 Open Policy Agent
Open Policy Agent provides a universal policy engine across an entire Cloud-Native stack.

This decoupled nature makes it easier to apply policy controls across containers, Kubernetes,
APIs, service mesh, or at the application level. It relies on a unique high-level declarative
language. Using this language, it is possible to specify policies across all create, update, and
delete operations. This is helpful to ensure provenance is trusted and lock down access to only
those with correct authentication credentials.

4.1.1 How does OPA works?

Open Policy Agent Workflow can be described the following way [5]:

 38

1. API queries OPA for a decision. The query will contain some attributes like HTTP
method used in the request, the path, the user, and so on.

2. OPA validates those attributes against data already provided to it.

3. OPA sends a decision to the requesting API with either allow or deny.

 Figure 4 – OPA workflow diagram [5]

 As shown in Figure 4, users make requests that will be handled by APIs being used.
Then, the API will ask OPA for a decision about the request. Finally, OPA will validate the
decision and send the answer back to the API so it can serve the user.

4.1.2 Rego
Regarding programming languages, there are a lot of general-purpose programming

languages like Go, Rust, and Python designed for software developers. But general-purpose
programming languages aren’t well-suited to specific problems and so a new class of
languages is required. Each language is designed to address requirements that arose from the

39

specifics of the domain. Similarly, Policy requirements are not well-served by general-purpose
programming languages, so it needs its own language. Rego is a high-level policy language for
defining rules that are evaluated by the Open Policy Agent engine. It allows specifying policy
as code and simple APIs to offload policy decision-making from software. Rego focuses on
providing powerful support for referencing nested documents and ensuring that queries are
correct and ambiguous. It is declarative so policy authors can focus on what queries should
return rather than how queries should be executed.

The design of Rego was mainly influenced by the following requirements [8]:

1. Humans need to be able to write the policies they want in a way that is also
understandable to machines.

2. The policy language must be able to deal natively with the inherited hierarchical
information that defines the cloud-native environment.

3. Policy is something that many stakeholders throughout the organization need to

understand, e.g. developers, operations, security, and compliance.

4.2 Azure Policy
Azure Policy is a service, provided by Microsoft, that helps to enforce organizational

standards and to assess compliance at a large scale. It has multiple use cases, such as
implementing governance for resource consistency, regulatory compliance, security, cost, and
management.

It uses JSON Format to define business rules that will be compared to Azure resources
and evaluate whether it is compliant or not. Policies can be assigned to resources using .NET,
JavaScript, Python, REST, Terraform, and a few other technologies.

4.2.1 Evaluation

Regarding evaluation, resources can be evaluated at different times, such as during the
resource lifecycle, the policy assignment lifecycle, and for regular ongoing compliance
evaluation. Next, will be presented some of the times or events that can make a resource to be
evaluated [9]:

 40

• A resource is created or updated in a scope with a policy assignment.

• A policy or initiative is newly assigned to a scope.

• A policy or initiative already assigned to a scope is updated.

• During the standard compliance evaluation cycle, which occurs.

4.2.2 Response

Business responses to non-compliant resources can vary widely between organizations.
These responses are known as effects, in Azure, and are set in the policy rule definition.
Organizations can define different effects, such as [9]:

• Deny the resource change.

• Log the change to the resource.

• Alter the resource before the change.

• Alter the resource after the change.

• Deploy related compliant resources.

4.2.3 Azure Policy for Kubernetes

In order to improve the security of Azure Kubernetes Service (AKS) clusters, it is
recommended to apply and enforce security policies by using, for instance, Azure Policy. Azure
Policy helps to enforce organizational standards and to assess compliance. Azure provides a
specific Azure Policy add-on for AKS that can apply individual policy definitions or groups of
policy definitions called initiatives to your clusters [10].

Azure provides multiple policies already set, but in addition, it is also possible to define
custom policies to fit different needs. Once these policy definitions have been created, they
need then to be assigned to Kubernetes clusters.

Azure Policy makes it possible to manage and report on the compliance state of
Kubernetes clusters from one place, the Azure Portal. The Azure Policy add-on enacts the
following functions:

• Checks with Azure Policy service for policy assignments to the cluster.

• Deploys policy definitions into the cluster as constraint templates and constraint
custom resources.

41

• Reports auditing and compliance details back to Azure Policy service.

As mentioned before, Azure provides a built-in set of policies [11], covering multiple
different application categories, that can be adjusted to suit different specifications. These
policies can enforce as well, for example:

• Security Practices

• Cost Management

• Organization-specific rules (name, locations, and so on)

Azure Policy extends Gatekeeper, the admission controller webhook for Open Policy Agent
(OPA), to apply enforcements and safeguards on Kubernetes clusters in a centralized and
consistent manner. Policies are defined in Azure, in JSON format.

Next, in Figure 5, is presented the workflow between Azure Policy and Gatekeeper
admission controller.

Figure 5 – Azure Policy with Gatekeeper workflow [12]

As seen in Figure 5, on one hand, there’s Azure Policy, and on the other hand, there’s an
Azure Kubernetes Cluster (AKS). The Azure Policy add-on is added to the cluster which will allow
the application of policies on the cluster. This add-on will install a sync component and
Gatekeeper v3 automatically. Then, it will check Azure Policy for specific Kubernetes policies

 42

and create ContraintTemplates and Constraints which are artifacts that Gatekeeper can work
with. With those artifacts, Gatekeeper is able to decide whether a request should be allowed
or denied and then, send the result of the validation back to Azure Policy.

4.3 Microsoft Defender for Cloud
While Cloud brings multiple benefits for organizations compared to the other

solutions, there are also security challenges inherited that require a pragmatic approach to
reduce vulnerabilities and the attack surface.

Cloud-Native environments usually relies on the integration of several internal and
external services to host applications. Attackers can study the usage patterns of these
services, identify security gaps, and then attempt to perform breaches.

Defender for Cloud can offer a solution for the mentioned challenges, in a single
platform, to manage threats and the security posture of workloads in Azure. As presented in
Figure 6, it fits three vital needs for managing the security of resources, such as, Continuously
Assess, Secure, and Defend.

 Figure 6 – Defender for Cloud capabilities [13]

For Continuous Assessment, it provides a solution named Secure Score which shows a
score representing the current security situation. For Secure, it provides the possibility of
implementing Security Recommendations (policies), to improve security posture. Finally, for
Defend, it provides Security Alerts which are triggered when Defender for Cloud detects
threats to resources and workloads [13].

Microsoft Defender for Cloud can work together with Azure Policy and provide an even
stronger layer of security. Azure Policy can enforce - by defining a policy - for instance, a

43

vulnerability scan to Kubernetes images before they are deployed, and depending on the
result, allow or deny the deployment.

4.4 Tools
Although Cloud-native environments are seen as secure environments, they are also

prone to many types of threats. Therefore, developers are continuously trying to incorporate
more automated threat detection and management tools to help get a better visibility into
vulnerabilities. There are many tools designed for security and compliance in Cloud-Native
environments under the CNCF umbrella. However, we will approach some of the well-known
and most used tools nowadays.

4.4.1 Falco

Falco is a threat detection package that can be used to specify rules for containers. It can
scan for known common vulnerabilities and exposures and trigger alerts to help respond to
threats quickly. Falco ships with default rules to check for unusual behaviors such as privilege
escalation, namespace changes, risky read/write abilities, unexpected network connections
and other potential exploits. Falco also provides integration with tools such as OPA,
Prometheus, Helm, Kubernetes, Elasticsearch, and others. Falco was the first runtime security
project to join CNCF as an incubating project and since has seen adoption by many companies
including GitLab, Shopify, Skyscanner and many others [5].

4.4.2 K-Rail

K-rail is a tool built mainly to help manage security in Kubernetes while maintaining high
developer productivity. As a workload policy enforcement tool designed for Kubernetes, K-rail
allows us to [15]:

• Measure violations before and after enforcing them.

• Use flexible and easy-to-use policy exemptions.

• Use many impactful policies out of the box.

• Get real-time, interactive feedback to users when they apply resources, even high-level
resources such as Deployments, DaemonSets, and CronJobs.

 44

4.4.3 Harbor

Harbor is an open-source tool that aims to secure artifacts with policies and role-based
access control, ensures images are scanned and free from vulnerabilities, and signs images as
trusted. Harbor, also a CNCF Graduated project, delivers compliance, performance, and
interoperability to consistently and securely manage artifacts across Cloud-Native platforms
like Kubernetes, Docker, and many others [16].

4.4.4 Conftest

Conftest is a tool created to help write tests against structured configuration files. It was
built purely focusing on building the best developer experience for testing configuration files.

Conftest relies on the Rego language created by Open Policy Agent. It gives the possibility
to write tests for Kubernetes configurations, Terraform code, Tekton pipeline definitions, and
many other configurations and structured data.

With Conftest it’s possible to test three types of rules: deny, violation, and warn. These
rules can be applied to JSON files, YAML files, or Helm charts, with the help of a external plugin
[17].

4.4.5 Kyverno

Kyverno the Kubernetes Native Policy Management tool. With Kyverno, policies are
managed as Kubernetes resources, and no new language is required to write policies. This
allows using familiar tools such as kubectl, git, and kustomize to manage policies. Kyverno
policies can perform the following operations on generated Kubernetes resources:

• Validation - ability to verify resource configurations for policy compliance [18].

• Mutation - ability to modify a resource during admission control [19].

• Generation - ability to create additional resources based on resource creation or
source updates [20].

The Kyverno Command Line Interface can also be used to test policies and validate resources
as part of a CI/CD pipeline.

4.4.6 Gatekeeper

Gatekeeper was created to enable users to customize admission control via
configuration, not code and to bring awareness of the cluster’s state, not just the single object

45

under evaluation at admission time. Gatekeeper is a customizable admission webhook for
Kubernetes that enforces policies executed by the Open Policy Agent (OPA), a policy engine
for Cloud Native environments hosted by CNCF.

It allows us to enforce policies like [21]:

• All images must be from approved repositories.
• All ingress hostnames must be globally unique.
• All pods must have resource limits.
• All namespaces must have a label that lists a point-of-contact.

Gatekeeper acts as a bridge between the API server and OPA. The API server will enforce
all policies executed by OPA, during the validation process. It can also be integrated with Azure
Policy, through an add-on, where it will work as a validator of the policies defined and sent by
Azure.

4.5 Gatekeeper vs Kyverno for Kubernetes
Pod Security Policy in Kubernetes is a set of mechanisms for ensuring validating controls

over Pods and their attributes. Although it can add a layer of security, it only operates on Pods
and can only block their creation without being able to perform any remediation.

In contrast, with policy engines such as OPA Gatekeeper and Kyverno, the capabilities are
far broader (i.e., applicable to more than just Pods) and deep (i.e., more than just simple
validation) [14].

In Table I, we can see a comparison between Gatekeeper and Kyverno in terms of features
and capabilities which represents technical attributes.

In Table II, it is shown a comparison between both projects in terms of their community
and ecosystem which represents the adoption and organizational attributes of each one.

Lastly, in Table III, we can see a comparison in terms of meta and miscellaneous which
represents cognitive and miscellaneous attributes.

Table VI – Features/Capabilities comparison [22]

Features/Capabilities Gatekeeper Kyverno

Validation

 46

Mutation

Generation

Policy as native resources

Open API validation schema

High availability

API object lookup
CLI with test ability
Policy audit ability
Self-service reports

In terms of Features and Capabilities, it’s possible to see that Gatekeeper has some
downsides prior to Kyverno since it doesn’t allow to do Generation, doesn’t provide an API
validation schema and self-service reports as well.

Table VII – Community/Ecosystem comparison [12]

Community/Ecosystem Gatekeeper Kyverno

CNCF status Graduated (OPA) Sandbox
Partner ecosystem adoption 5/10 3/10
GitHub status (starts, forks, releases,
commits)

2405, 493, 51, 875 2015, 272, 116, 4034

Community traction 5/10 3/10

In terms of Community and Ecosystem, we can see that in general, Gatekeeper has more
adoption than Kyverno so far since it is a more mature project, and it is already graduated by
CNCF (numbers registered in March 2022).

Table VIII – Meta/Misc comparison [12]

Meta/Misc Gatekeeper Kyverno

Programming required

Use outsider Kubernetes

47

Birth July 2017 May 2019
Origin Company Styra (OPA) Nirmata
Documentation maturity 5/10 7/10

Looking at a Meta and Miscellaneous comparison, it’s possible to highlight that is no need

to learn a new programing language to use Kyverno, even though Gatekeeper is an older
project, Kyverno has more mature documentation and it doesn’t need to learn a specific
programming language to write policies.

Based upon the information presented, both OPA Gatekeeper and Kyverno have their
strengths and weaknesses. Although they are both very capable tools, the chosen between
both will depend on several aspects and goals of the organization/users. OPA Gatekeeper
could be the most suitable solution for an organization/user but can be a worse solution for
an organization/user that has another plan or a different work model.

Users should evaluate which tool suits best their plan and work model but assure that
they will use a policy engine to secure their clusters.

4.6 Conclusion
After researching and evaluating the most well-known projects and tools available to help

ensure security and compliance for Cloud-Native services and technologies, it’s clear that
there are multiple different and powerful tools that can be used for this scope. Each project
and tool have its own specifications that make them more suitable or less suitable for an
organization depending on its goals, budget, IT capacity, and so on.

Although there are many good tools that could be used for this scope, since ANOVA’s
infrastructure is all built around Azure services, the wiser choice to implement policies across
the whole Cloud-Native stack would be Azure Policy.

Azure Policy is obviously a service that is integrated with Azure and can be integrated with
Kubernetes as well. It is a general policy engine that is integrated with Gatekeeper specifically
for Kubernetes.

Therefore, it would be possible to define policies to control costs, resource creation
(types, tiers, and so on), and security policies for multiple different technologies being used.

 48

Chapter 5
Policies

Cloud-Native environments have the potential to be more secure than other types of
environments. However, protecting systems, applications, and data in the cloud brings a
completely new set of challenges to overcome. Security teams need to adapt, plan, and learn
how to utilize the tools, controls, and design models needed to properly secure the cloud
environments.

In this new territory, the process of setting policies is not only applicable, but it’s essential
to provide another layer of security and control. The more security layers an environment has,
the more difficult would be for a malicious party to get in or simply for developers to commit
errors that might compromise the system.

To well define policies, it’s important to differentiate different types of policies. Policies
can be categorized as company-wise policies and project-wise policies, policies that are
defined according to organizational requirements and policies that are defined for each
project specifications, respectively.

In this chapter, will be approached some of the most important topics about policies, as
well as focus on gathering some of the prime security and compliance policies and best
practices for securing a Cloud-Native environment and provide a brief description of how it
works and the importance of each one.

The majority of policies are mainly focused on Kubernetes since Kubernetes are one of
the biggest and most significant parts of the environment. Some of the policies are
recommended by Styra, the creators of Open Policy Agent, Nirmata, the Kyverno creators
[23], and by Microsoft, which provides multiple built-in policies as well. These policies should
be implemented to ensure that the apps being built has an increased security layer that could
prevent bad consequences like customer data being exposed to the entire internet, infecting
clusters with malware, allowing privilege escalation and getting full access to a server, and so
on.

49

5.1 What is?
The National Institute of Science and Technology (NIST) defines an information security

policy as an “aggregate of directives, regulations, rules, and practices that prescribes how an
organization manages, protects, and distributes information”, [24].

Since organizations have different business requirements and compliance obligations, it
is not possible to define a single policy that works for everyone. Instead, each security team
should evaluate and define the policy choices that fit better their needs.

5.2 Benefits
Policies are a must-have for organizations in many aspects. They can provide controls and

procedures that help ensure security and compliance for different resources. More
specifically, they are essential for the following reasons [25]:

• Ensure confidentiality, integrity, and availability of data: provides a standard
approach for identifying and mitigating risk, as well as an appropriate response.

• Minimize risk: policies can help to evaluate and mitigate vulnerabilities to block
security threats.

• Communicate security measures: enables an organization to easily communicate its
security measures to employees, internal stakeholders, external auditors, contractors
and other third parties.

• Regulatory compliance: it’s important for an organization to pass compliance audits
for security and standards and regulations.

• Controlling costs: it´s important to keep costs controlled so the organization’s
software bills don’t get sizeable.

By having a well-defined policy strategy, organizations can benefit from many different
aspects, from security to costs.

 50

5.3 Kubernetes Oriented Policies
In this section will be gathered the most important security and compliance policies,

focused on Kubernetes. These policies aim to improve security and reduce the attack surface
of a Kubernetes system.

5.3.1 Trusted Repo
 Pulling images from unknown providers from the internet can bring risks, such as malware.
By ensuring that images can only be pulled from trusted repos, it’s easier to closely control
the image inventory, mitigate the risks, and increase the overall security of your cluster.

This policy aims to only allow container images that are pulled from trusted
repositories and, optionally, pull only those that match a list of approved repo image paths.

5.3.2 Block Pod Exec
The ‘exec’ command could be used to gain shell access or run several commands in a

Pod’s container.
This policy aims to block Pod ‘exec’ commands to Pods that are within a specific

namespace, that have their name starting by a specific pattern, or if they contain a specific
label.

5.3.3 Disallow Add Capabilities
Pod capabilities allow privileged actions without having full root access. To prevent this,

the possibility to add capabilities beyond the default set, must not be allowed.
This policy ensures that users cannot add any additional capabilities to a Pod.

5.3.4 Limit Pod Containers
Pods can have many different containers which are usually coupled. It may be desirable

to limit the number of containers that can be in a single pod to control best practice
application so policy can be applied consistently.

This policy aims to check all Pods to ensure they have no more than four containers.

5.3.5 Label Safety
 The downside of manual label entry is that it increases the probability of committing
errors, especially because labels are both extremely flexible and extremely powerful in
Kubernetes. They identify the groupings of Kubernetes objects and policies, including where
workloads can run, either in Frontend, Backend, or Data-tier, and which resources can send

51

traffic. Getting labeling wrong can lead to untold deployment and supportability issues in
production.

This policy requires all Kubernetes resources to include a label that follows a specific
pattern and format. Through its application, it’s easier to ensure that the labels are configured
correctly and consistently which will reduce the probability of committing errors.

5.3.6 Handle Privileged Mode
One of the key measures to avoid access to the host’s recourses and kernel capabilities,

which includes the ability to disable host-level protections, is obviously not running containers
in privileged mode. If a privileged container gets compromised, a whole system could get
compromised next.

This policy ensures that containers cannot run in privileged mode, by default. If there are
any specific circumstances where containers need to run in privileged mode, they can be
specified as exceptions.

5.3.7 Define and Control Ingress
In Kubernetes, it’s easy to activate a service that talks to the public internet which can

cause to activate unnecessary services and quickly become very expensive and exceed the
budget. Moreover, it’s easy to break an application when two services try to share the same
Ingress.

This policy aims to prevent Ingress objects in different namespaces from sharing the same
hostname by allowing to expose specific services (allow Ingress) or doesn’t expose any to the
public. Therefore, new workloads won’t steal internet traffic from existing workloads,
preventing service outage, data exposure, etc.

5.3.8 Define and Control Egress
Like what happens with Ingress, it’s easy to allow Egress to every IP in the world by

default. Furthermore, it’s also possible, at an intra-cluster level, to unintentionally send data
to services that shouldn’t have it. These situations carry risks of data exfiltration or theft if
services get compromised.

This policy allows controlling how Egress traffic can flow. It lets specifying when both intra
and extra cluster communications can occur and to which services.

 52

5.3.9 Allowed Pod Priorities
This policy is used to provide a guarantee on the scheduling of a Pod relative to others. If

not all users are trusted in a cluster, a malicious user could create Pods with the highest
priority, causing other Pods to be overridden or not get scheduled.

This policy will check the defined priority of a Pod and block it if needed.

5.3.10 Require Limits and Requests
As application workloads usually share cluster resources, it is important to limit resources

requested and consumed by each Pod. By requiring resource requests limits per Pod, it will
reduce the change of memory and CPU reach their limit.

This policy validates that all containers have something specified for memory and CPU
requests and memory limits.

5.3.11 Require Run as Non-Root
Running containers as root is not safe for security reasons. By running them as root,

anyone with access to the containers will be able to read all kinds of information, including for
instance database connection credentials and, especially in cloud environments, multiple
cloud technologies credentials. Perhaps, it might also be possible to escape the container and
start, for example, new services that could ramp up huge costs. This policy will ensure that
containers must not run as non-root and only specific users will be able to access them as root.

5.3.12 Spread Pods Across Nodes

Deployments to a Kubernetes cluster with many different availability zones sometimes
need to distribute those replicas to align with those zones to ensure site-level failures don’t
impact availability.

This policy will check Deployments distributed configuration is set and mutates them to
spread Pods across zones.

5.3.13 Kubernetes cluster containers should run with a read only root file
system

Running containers with a read-only root file system is a great measure to protect from
bad intentioned changes at run-time. Using an immutable root filesystem and a verified boot
mechanism prevents against malicious parties from “owning” the machine through
permanent local changes. An immutable root filesystem can also prevent malicious binaries
from writing to the host system.

53

5.4 General Policies
In this section will be approached some general security policies and best practices that

should be followed to increase security strength. These policies can fit a wide array of usage
on ecosystem resources and subjects such as API management, App configurations, Servers
and Virtual Machines configurations, and specific technologies and services policies, such as
Kubernetes, Key Vault, Cosmos DB, Event Hub, and many other.

5.4.1 Restrict External IPs
External IPs can be used to perform, for instance, Man in the Middle Attacks. To prevent

this, blocking external IPs or defining a set of allowed IPs is a good practice to follow so it is
possible to restrict access.

5.4.2 Enforce SSL connections for databases
Azure Database for PostgreSQL and MySQL supports connecting Azure Database for

PostgreSQL and MySQL servers to client applications using Secure Sockets Layer (SSL).
Enforcing SSL connections between database servers and client applications helps improving
security against “man in the middle” attacks by encrypting the data stream between the server
and applications. This configuration enforces that SSL is always enabled for accessing database
servers.

5.4.3 Services should use virtual network service endpoints
SQL Server, Key Vault, Cosmos SD, Event Hub, and other services should be enforced to

use virtual network service endpoints.
Virtual Network (Vnet) service endpoint provides secure and direct connectivity to Azure

services over an optimized route over the Azure backbone network. Endpoints allow to secure
critical Azure service resources to only virtual networks. Service Endpoints enable private IP
addresses in the Vnet to reach the endpoint of an Azure service without needing a public IP
address on the Vnet [26].

This policy audits whether those services are configured to use a virtual network service
endpoint or not.

5.4.4 Databases should use customer-managed keys to encrypt data at rest
Databases should be enforced to use customer-managed keys to encrypt data at rest. A

malicious party who steals physical media like drives or backup tapes can restore or attach the
database and browse its data.

 54

One solution is to encrypt sensitive data in a database and use a certificate to protect the
keys that encrypt the data. This solution prevents anyone without the keys from using the
data. TDE (Transparent Data Encryption) does real-time I/O encryption and decryption of data
and log files [27].

This policy audits whether a database is configured or not to use customer-managed keys
to encrypt data at rest.

5.4.5 Container registry images should have vulnerability findings resolved
Container image vulnerability assessment from Azure Defender for Cloud, scans registries

for security vulnerabilities and exposes detailed findings for each image. Resolving the
vulnerabilities can greatly improve containers security posture and protect them from attacks.

This policy audits whether container registries have their vulnerability findings resolved
or not.

5.5 Conclusion
As seen throughout this report, there is a vast amount of already built-in policies that

were developed to improve security along with many already identified issues. The ones
mentioned so far are the ones found most important and more quickly needed for ANOVA’s
context. There are many more policies that can be later set in order to increase security.

By implementing a suitable set of policies for a Cloud-Native environment it would be
possible to prevent developers from accidentally bringing services down, exposing data to a
non-authorized environment, and avoiding the manual remediation needed from teams, as
well as cover multiple possible entry points for malicious parties to exploit and possibly
harming systems.

55

Chapter 6
Implementation and Validation

Before starting the implementation, it was necessary to define the set of policies that
were really important to have as soon as possible and suitable for the context. Thus, the
ANOVA’s Infrastructure team elements were questioned about what problems did they notice
so far that would need to be covered with policies. In addition, it was a presentation about
the existing policies that could be applied in ANOVA’s environment to the team. Finally, the
Infrastructure team’s needs, combined with the policies gathered before that should be
enforced, resulted in the set of policies approached in the next topics.

In that sense, this chapter will cover two very significant parts of the whole project, the
implementation process, and the validation process. In order to be able to implement, apply,
and test the functionality of the policies, it was necessary to think about the best approach to
do the job, without harming ANOVA’s systems and services availability initially.

Therefore, implementation and testing policies in production were obviously put apart.
There were two main possibilities left, the first one was creating a specific cluster in Azure just
to work and test policies but this one, other than the possibility of increasing costs, would not
be the ideal solution since many policies would need to have different services running inside
the cluster. The second possibility was working in a staging cluster, which contains many
services running inside. Since there was different region staging clusters, the best way would
be to work in a staging cluster in a specific region and, if something happened that could affect
services availability, it would only affect temporarily a single region in staging which would
not be a serious problem.

It was defined that the work would then be done in a specific region staging cluster
context initially and if everything worked as expected with the desired output, the policies
would be applied to the other staging and production clusters. Furthermore, since Azure
Polices can be defined with the “Audit” effect, all policies were firstly applied with that effect
so it would be possible to have feedback if services were compliant or not with policies,
without blocking any services and harming availability as well.

As for the policies implemented, the names could be slightly different from the ones
mentioned before, mainly in Chapter 4, but they are quite similar and easy to notice.

 56

Additionally, every time that is possible to use Azure built-in policies, they should be
used other than writing custom ones since Microsoft maintains them, and it’s easier to keep
them updated over time.

6.1 Implementation
After collecting the most important and needed policies to be implemented for the

context, the following step is to put them to work. For this process, Azure Portal gives the
possibility of assigning policies to scopes or even specific resources inside those scopes. In
addition, it also allows to specify exclusions for some resources, for instance, as well as define
specific parameters for each policy, depending on its goal, and define a remediation task.
Remediation tasks will assure that those policies will take effect on existent resources, instead
of only in newly created ones.

With this being said, next will be enumerated the policies defined during this process in
Azure Portal:

• SQL servers should use customer-managed keys to encrypt data at rest

• Azure Cosmos DB accounts should use customer-managed keys to encrypt data at
rest

• Kubernetes cluster pod hostPath volumes should only use allowed host paths

• Kubernetes cluster pods should only use allowed volume types

• Kubernetes clusters should not allow container privilege escalation

• Kubernetes cluster containers should run with a read only root file system

• Kubernetes cluster containers should only use allowed pull policy

• Kubernetes cluster should not allow privileged containers

• Kubernetes cluster containers should only use allowed images

• Kubernetes cluster containers should only use allowed capabilities

• Azure Policy Add-on for Kubernetes service (AKS) should be installed and enabled on
your clusters

• Kubernetes cluster services should only use allowed external IPs

• SQL Server should use a virtual network service endpoint

• Enforce SSL connection should be enabled for PostgreSQL database servers

57

Although this set of policies was defined in Azure Portal, if there is a need for that, it is
also possible to define more policies in the future. In this case, a policy is considered
Compliant when all the resources on its scope are compliant with it, and Non-compliant when
there is at least one resource non-compliant with it on its scope.

At the time, most of the policies are non-compliant, since there are resources that need
to face some configuration changes before in order to be compliant without compromising
their availability. Those policies are defined with the effect property set as “Audit” so the
policy doesn’t block anything but still audits the resources.

In the following figure, Figure 7, it is presented the Azure Portal view for Policies, where
it’s possible to view, assign, and modify policies, as well as see relevant information about
them.

Figure 7 – Policies view in Azure Portal

As for the policy “Azure Policy Add-on for Kubernetes service (AKS) should be installed
and enabled on your clusters”, it is basically a policy to allow keeping track of clusters that are
configured to use Azure Policy. Since in this context policies are only applied in staging scope,
the policy audit is considered non-compliant.

Some of the policies are not yet assigned with the final parameters defined, such as the
hostPaths needed, the customer-managed keys configured to encrypt data at rest, and some
others, which will be addressed with the team in a near future. Thus, for the Validation section
(6.2), there will be considered only the policies that are finalized and ready to be applied in
production as well.

 58

Since the JSON files of the built-in policies provided by Microsoft are quite long, those
files will be attached in the Appendix section.

6.2 Validation
This section covers the validation of some policies. In order to validate if a policy is

working as expected or not, it is usually performed a test in favor and against that policy.
To help perform these tests, it is used a tool called kubectl, which is a Kubernetes

command-line tool. It basically allows running commands against Kubernetes clusters. It’s
possible to use kubectl to deploy applications, inspect and manage cluster resources, and view
logs.

Let’s say there’s a policy that should deny the creation of pods with the tag “TestTag”. In
this case, a good validation test would be trying to create a pod with the tag “TestTag”, and
one without the tag “TestTag”. After each attempt of creation, kubectl should return feedback
on whether the creation of the pod was successful or not. Therefore, it’s possible to validate
if a policy is compliant or not.

6.2.1 Kubernetes clusters should not allow privileged containers
To validate this policy, it was created a privileged_test.yaml file with the security context

of privileged: true, as presented in Figure 8. This security context escalates the pod’s
privileges. The policy disallows the creation of privileged pods, so the request should be
denied resulting in the deployment being rejected.

Figure 8 – Content of privileged_test.yaml file

59

After the creation of priviledged_test.yaml file with the property privileged: true, it’s used
the kubectl apply command followed by the file name to create the pod. As expected, the
scheduling of the pod failed with the output presented in Figure 9.

Figure 9 – Result of kubectl apply command with privileged property true

As for the YAML file created before, but with the property privileged: false, the pod is
scheduled correctly, as presented in Figure 10.

Figure 10 – Result of kubectl apply command with privileged property false

6.2.2 SSL connection should be enabled for PostgreSQL database servers
For this validation, Azure Policy was essential. Azure Policy identified that one of the

PostgreSQL database servers was not compliant with the policy, as presented in Figure 11. For

 60

this specific situation, Azure Portal allows enforcing SSL connection in server settings without
further configurations.

Figure 11 – Azure Policy reporting non-compliant policy

For this validation, Azure Policy was essential. Azure Policy identified that one of the
PostgreSQL database servers was not compliant with the policy, as presented before in Figure
11. For this specific situation, Azure Portal allows enforcing SSL connection in server settings
without further configurations.

After enforcing the SSL connection for the database server, Azure Policy rechecked the
policies and detected it as compliant, as presented next, in Figure 12, meaning that the SSL
connection for that database was enabled.

 Figure 12 – Azure Policy reporting compliant policy

6.2.3 Kubernetes cluster containers should run with a read only root file system
For this validation, it was again created a test.yaml file, with the security context property

readOnlyRootFilesystem: false, which is the default value for the property, as presented next
in Figure 13.

61

Figure 13 – Content of test.yaml file

As expected, the pod scheduling was denied, because the policy was enforcing pods to
run with a read-only root filesystem. Next, in Figure 14, it’s possible to see the error returned
by Azure Policy after trying to create the pod.

Figure 14 – Result of kubectl apply command with readOnlyRootFilesystem property false

On the other hand, when setting the readOnlyRootFilesystem property to true, the pod
is scheduled without any problem, as shown in Figure 15.

 62

Figure 15 – Result of kubectl apply command with readOnlyRootFilesystem property false

6.2.4 Kubernetes clusters should not allow container privilege escalation
To validate this policy, it is used the same approach as before. It is again created a

test.yaml file, in this case, with the security context property allowPrivilegeEscalation: false as
presented next in Figure 16. This will ensure that container’s child processes can’t gain more
privileges than its parent.

Figure 16 – Content test.yaml file with allowPrivilegeEscalation property false

In this case, the pod was successfully created since the configuration is compliant with
the policy. The test.yaml file has its security context property allowPrivilegeEscalation: false,

63

meaning that the pod does not allow privilege escalation. Next, in Figure 17 is presented the
output of the pod scheduling command.

 Figure 17 – Content test.yaml file with allowPrivilegeEscalation property false

As for the default configuration where allowPrivilegeEscalation: true, the pod scheduling
was denied by Azure Policy since there is a policy enforcing clusters to not allow privilege
escalation. As presented next in Figure 18, Azure Policy blocked the creation of the pod.

 Figure 18 – Content test.yaml file with allowPrivilegeEscalation property false

6.2.5 Kubernetes cluster services should only use allowed external IPs
To validate this policy, the process of validation will follow the kubernetes.io tutorial to

expose external IP addresses to access an application in a Cluster [28].
Firstly, for this example, it is created a simple service for an application that is running in

5 pods, as presented in Figure 19, test.yaml file.

 64

 Figure 19 – Content of test.yaml file

Then, like on the validations done before, it is used the kubectl apply command to
schedule the service, named “hello-world”.

The next step was to create a service Object that exposes the deployment to a specific IP.
It was defined a random external IP, different from the ones specified to be allowed on the
Policy. In Figure 20, is described the command used to expose the deployment. For the case,
it was used the 1.1.1.1 IP Address.

 Figure 20 – Kubectl expose command

As expected, since there is a Policy assigned refusing external IPs other than the ones
specified to be allowed, Azure Policy denied the kubectl expose command because it was
created with a forbidden external IP, as presented next in Figure 23.

65

Figure 21 – Result of the kubectl expose command with a forbidden external IP

Next, in Figure 22, is shown the result of the kubectl expose command when using an
allowed external IP. As expected, the service was exposed correctly.

Figure 22 – Result of the kubectl expose command with an allowed external IP

 66

Chapter 7
Planning

In this chapter will be approached the planning of the project. This project will be mainly
divided into two semesters, the first semester, and the second semester.

In section 7.1 will be addressed the work plan for the First Semester, in section 7.2 will
be addressed the work plan for the Second Semester. Section 7.3 will cover the Risk
Management, and finally, section 7.4 will approach the Methodology.

7.1 First Semester

The work performed during the first semester focused initially on studying the State of
The Art of policy-based tools to assure compliance in Cloud-Native environments. Then was
made a research about the Cloud-Native technologies being used in the organization followed
by a presentation of the most suitable solution to assure compliance.

A more detailed description of each task to be performed during the first semester is
presented next:

• Task 1 – State of The Art – This task was based on studying the tools available to
implement security policies in a Cloud-Native environment.

• Task 2 – Study Cloud-Native Technologies – This task was mainly based on
studying the Cloud-Native tools and technologies that are being used in our
organization to be able to find the most suitable solution.

• Task 3 – Policy Compliance Solution – For this task, were made various discussions
with the organization’s cyber-security team about which solution/solutions could
fit the best.

• Task 4 – Write Intermediate Report – The Intermediate Report was written since
the State of The Art was mainly done. The State of The Art was the starting point
for the Intermediate Report writing.

67

Figure 23 – First Semester Work Plan

7.2 Second Semester

The work performed during the second semester was mainly divided into 6 tasks. The
Planning with Team task (Task 1), the Work Environment Preparation task (Task 2), the
Policies Definition task (Task 3), the Apply Policies task (Task 4), the Validation task (Task 5),
and finally, the Write Final Report task (Task 6).

A more detailed description of each task to be performed during the second semester is
presented next:

• Task 1 – Planning with Team – This task aims to plan with the team how the work
should flow, define the most suitable tool/service to use to implement the
policies, and what would be the best approach to follow so the system Availability
was not compromised, the most adequate role to have for this job, and so on.

• Task 2 – Work Environment Preparation – This task aims to prepare the work
environment to implement and test policies. In this case, preparing the staging
cluster to support the Azure Policy add-on which is the intermediary that syncs
Policies defined in Azure with Gatekeeper, the policy validator. Other than that,

 68

it’s needed to prepare the local machine with specific tools to interact with
ANOVAS’s Azure subscriptions by the terminal.

• Task 3 – Policies Definition – This task will be a starting point for the
implementation of policies. It will begin with the definition of which policies are
actually needed as well as which policies could also be implemented in order to
improve security.

• Task 4 – Apply Policies – In this task will be collected and implemented/applied
all the policies defined in the step before.

• Task 5 – Validation – In this task will be validated the functionality of the policies,
see if they are working as expected as well as fix some issues that could have
appeared.

• Task 6 – Write Final Report – This task will start as soon as the planning with team
is completed. It will accompany all the practical work done throughout the
semester.

Figure 24 – Second Semester Work Plan

69

7.3 Risk Management

During the development of a project, there is always a chance that certain types of events
will have a negative impact on the project, so at an early stage, it is important to list and
analyze the potential risks that could impact the success of the project. In this context, the risk
analysis step arises, which aims, for each identified risk, to calculate its probability of
occurrence and the level of impact on the project and also to try to outline a strategy to
prevent the risk from happening.

In this section will be identified and described the risks that might affect the success of
the project. These risks will be classified according to a scale presented next, corresponding
to the Probability of happening and respective Impact on the project, followed by their
possible mitigation, and finally, a Status, observed or not observed, that represents if the risk
really occurred during the project development or not, respectively.

Probability level can vary on a scale from “0 – Very Low Probability” to “5 – Very High
Probability”.

On the other side, impact level can vary on a scale from “0 – No Impact” to “5 – Very High
Impact”.

Table IX – Risk 1 – Working full-time

Risk Working full-time

Description Working in a full-time job at the same time as doing the internship

(although there is one week per sprint where I can focus specifically on

internship work) and a discipline for the master’s degree might affect the

quality of the work since the time needed to be distributed between these

three commitments.

Probability 4

Impact 4

 70

Mitigation Try to plan the tasks as best as possible as well as the time needed to be

dedicated to each task may be the best way to take.

Status Observed

Table X – Risk 2 – Working in Frontend field

Risk Working in Frontend field

Description Since I work as a Frontend developer and this subject encompasses

several terms and techniques that have nothing to do with Frontend

development, this will probably increase the difficulty of the project.

Probability 5

Impact 4

Mitigation Try to do a preliminary study that covers the largest number of terms,

techniques, and technologies to be used during the implementation

phase, as well as share some knowledge with experienced people in the

organization.

Status Observed

Table XI – Risk 3 – Some policies may not be applied within the time

Risk Some policies may not be applied within the time

Description Since all policies will be enforced over already existing resources that are

constantly being used, it may not be possible to apply some of them

before a proper preparation of the resources, which could lead to a delay.

71

Probability 3

Impact 3

Mitigation Try to identify earlier which policies can need some preparation before so

that is possible to apply them within time.

Status Observed

Next, in Figure 25, there is a presentation of the risks identified for this project, in a Risk
Exposure Matrix where the Xaxis scale goes from an Insignificant consequence to a Severe
impact, and the Yaxis scale goes from a Rare likelihood to a Very Likely to happen probability.

In this matrix, Risk 1 is represented by R-1, Risk 2 is represented by R-2, and finally, Risk 3
is represented by R-3.

Figure 25 – Risk Exposure Matrix

As presented in Figure 25, it is possible to realize that Risk 1 (R-1) occupies a position
Likely to happen with a possible Major impact. For Risk 2 (R-2), it occupies a position Likely to
happen with a possible Severe impact. As for Risk 3 (R-3), it occupies a position with a
Moderate likelihood, with a Significant impact.

R-1 R-2

R-3

 72

7.4 Methodology

During the planning stage of a project, it is fundamental to decide how to organize a
team in the different tasks to be executed. In this sense, it is necessary to define a working
methodology. The methodology will shape the team’s work method in order to organize it in
the most efficient way in an effort to reduce possible risks that may occur. There are two main
groups when it comes to existing work methodologies, traditional and agile. The first one
stands out for delivering the product at the end of its production. In this methodology, the
phases of software development are performed in a specific order, the next phase is started
only when the one that is being executed, is completed. On the other hand, agile
methodologies are distinguished by having small deliveries throughout the development of
the product and greater contact with the customer. In this type of approach, the analysis,
development, testing, integration, and validation phases are executed in small tasks, with the
goal of developing and delivering small parts of the final product and presenting them to the
customer to obtain their feedback more frequently.

For the development of this project, it was used an agile methodology based on Scrum.
This working method consists of production cycles known as sprints. Sprints are defined as
small iterations of work, where the tasks to be performed are defined, as well as the
development methods. At the end of each sprint, usually occurs a meeting to review the work
done so far and plan the next iteration. During the course of the internship, this was the
working method used with a slightly different change regarding the meetings. In this
methodology, these meetings are usually with all the team elements, however, due to the
difficulty of bringing all the members together at the same time, meetings were held
throughout the year individual depending on the working section and team availability.
Despite this slight adaptation, a group chat conversation with the team members was used to
discuss different questions that may have appeared at any moment.

73

Chapter 8
Conclusion and Future Work

Although Cloud-Native technologies can bring many advantages for organizations, in
terms of scalability, reliability, provisioning, reduced costs, and so on, it’s very important to
keep in mind that they also bring a wider attack surface to be explored by malicious parties or
even for developers to commit mistakes that could compromise a whole system.

Looking at the Kubernetes side, typically, malicious parties look at ways of taking
control of the host worker node by hacking into a Kubernetes application. Then they can use
that opportunity to shut down clusters or exploit them for malicious activities. One way of
preventing such control is by enforcing proper security policies, without impacting
development speed and adding admin overhead.

If an organization is thinking about defining security policies specifically for
Kubernetes, Kyverno could be the best option to take since it is a powerful and easy-to-use
policy engine designed specifically for Kubernetes that doesn’t require learning new languages
and adopting different tools to manage policies. On the other hand, if it is needed to write
more complex policies, Kyverno will probably struggle and OPA Gatekeeper could be a better
option [29].

If the goal of an organization is to define security policies across multiple Cloud-Native
technologies, like Kubernetes, Terraform, Docker, SQL Databases, Kafka, and so on, maybe
using Open Policy Agent as a unified platform could be the best solution. If the organization’s
infrastructure is built over Azure services, the wiser choice to take might be Azure Policy by
Microsoft. Microsoft provides countless policies, from cost management to security policies,
which are maintained by them, that can be used in a pretty straightforward way inside Azure
Portal.

8.1 Future Work
Regarding future work, firstly, it’s important to summarize what was achieved

throughout the project.

For this project context, it was discovered the best approach and the best tool/service
to use in order to implement and monitor security policies across multiple technologies in

 74

ANOVA’s Cloud-Native environment, the Azure Policy. The most suitable and significant
policies were also defined and assigned to the scope used during the process (staging cluster).
Some policies were defined, set with the right parameters, and all the resources are already
in compliance with them, which means that those policies, hypothetically, are ready to be
assigned to production scope as well.

As for the future work itself, the goal is to continue the process until all the policies are
compliant and ready to be assigned to production scope. For this to be achieved, some
changes and adaptations will need to be addressed by ANOVA’s Infrastructure team to the
existing resources in order to support the policies without compromising services availability.
In addition, currently, some of the non-compliant policies are set with the “Audit” effect,
meaning that those policies are only evaluating resources, instead of blocking their creation
or update if they are non-compliant.

75

References

[1] “What is Cloud Native? | LinkedIn.” https://www.linkedin.com/pulse/o-que-%C3%A9-

nativo-de-nuvem-cloud-native-renato-souza/?originalSubdomain=pt (accessed Jan. 08,
2022).

[2] “Going Cloud Native: 6 essential things you need to know.” www.weave.works/use-
cases/going-cloud-native-6-essential-things-you-need-to-know (accessed Jan. 08, 2022).

[3] “Microservices vs Monolith: which architecture is the best choice for your business?”
https://www.n-ix.com/microservices-vs-monolith-which-architecture-best-choice-your-
business/ (accessed Jan. 08, 2022).

[4] “Codified Security and Compliance with Policy as Code.” https://www.weave.worksurl!
(accessed Apr. 04, 2022).

[5] “Benefits of Policy as Code,” pulumi. https://www.pulumi.com/blog/benefits-of-policy-
as-code/ (accessed Apr. 13, 2022).

[6] “Why DevOps are choosing Policy-as-Code,” Apolicy, Mar. 08, 2021.
https://apolicy.io/why-devops-are-choosing-policy-as-code/ (accessed Apr. 13, 2022).

[7] “CNCF Cloud Native Interactive Landscape,” CNCF Cloud Native Interactive Landscape.
https://landscape.cncf.io/?category=database (accessed Apr. 27, 2022).

[8] “The Origin of Open Policy Agent and Rego.” https://blog.styra.com/blog/origin-of-open-
policy-agent-rego (accessed Jan. 04, 2022).

[9] George Wallace, “Overview of Azure Policy - Azure Policy.”
https://docs.microsoft.com/en-us/azure/governance/policy/overview (accessed Jan. 16,
2022).

[10] zr-msft, “Use Azure Policy to secure your cluster - Azure Kubernetes Service.”
https://docs.microsoft.com/en-us/azure/aks/use-azure-policy (accessed Jun. 08, 2022).

[11] timwarner-msft, “List of built-in policy definitions - Azure Policy.”
https://docs.microsoft.com/en-us/azure/governance/policy/samples/built-in-policies
(accessed Jun. 08, 2022).

[12] Geert Baeke, Admission Control on AKS with Azure Policy, (Mar. 26, 2021). Accessed:
Jul. 02, 2022. [Online Video]. Available:
https://www.youtube.com/watch?v=OJGmwCMsUNE

[13] bmansheim, “What is Microsoft Defender for Cloud?”
https://docs.microsoft.com/en-us/azure/defender-for-cloud/defender-for-cloud-
introduction (accessed May 26, 2022).

 76

[14] “Open Source Container Security Tools: Falco,” Sysdig.
https://sysdig.com/opensource/falco/ (accessed Jan. 04, 2022).

[15] D. Decker, “Securing Kubernetes with K-rail,” Cruise, Apr. 03, 2020.
https://medium.com/cruise/securing-kubernetes-with-k-rail-5f77a1a11174 (accessed
Jan. 04, 2022).

[16] “Harbor.” https://goharbor.io/ (accessed Jan. 08, 2022).
[17] “Conftest joins the Open Policy Agent project,” Cloud Native Computing Foundation,

Jul. 23, 2020. https://www.cncf.io/blog/2020/07/23/conftest-joins-the-open-policy-
agent-project/ (accessed Jan. 20, 2022).

[18] “Validate Resources,” Kyverno. https://kyverno.io/docs/writing-policies/validate/
(accessed Jan. 04, 2022).

[19] “Mutate Resources,” Kyverno. https://kyverno.io/docs/writing-policies/mutate/
(accessed Jan. 04, 2022).

[20] “Generate Resources,” Kyverno. https://kyverno.io/docs/writing-policies/generate/
(accessed Jan. 04, 2022).

[21] “OPA Gatekeeper: Policy and Governance for Kubernetes,” Kubernetes, Aug. 06,
2019. https://kubernetes.io/blog/2019/08/06/opa-gatekeeper-policy-and-governance-
for-kubernetes/ (accessed Jan. 04, 2022).

[22] “Kubernetes Policy Comparison: OPA/Gatekeeper vs Kyverno.”
https://neonmirrors.net/post/2021-02/kubernetes-policy-comparison-opa-gatekeeper-
vs-kyverno/ (accessed Jan. 04, 2022).

[23] “Kyverno Policies,” Kyverno. https://kyverno.io/policies/ (accessed Jan. 24, 2022).
[24] C. C. Editor, “information security policy - Glossary | CSRC.”

https://csrc.nist.gov/glossary/term/information_security_policy (accessed Jun. 08,
2022).

[25] “IT Security Policy: Must-Have Elements and Tips,” https://blog.netwrix.com/.
https://blog.netwrix.com/2021/02/25/security-policy/ (accessed Jun. 08, 2022).

[26] sumeetmittal, “Azure virtual network service endpoints.”
https://docs.microsoft.com/en-us/azure/virtual-network/virtual-network-service-
endpoints-overview (accessed Jun. 28, 2022).

[27] shohamMSFT, “Transparent data encryption (TDE) - SQL Server.”
https://docs.microsoft.com/en-us/sql/relational-
databases/security/encryption/transparent-data-encryption (accessed Jun. 28, 2022).

[28] “Exposing an External IP Address to Access an Application in a Cluster,” Kubernetes.
https://kubernetes.io/docs/tutorials/stateless-application/expose-external-ip-address/
(accessed Jul. 02, 2022).

77

[29] DevOps Toolkit, Kubernetes Policy Management Tools Compared - OPA with
Gatekeeper vs. Kyverno, (Jul. 01, 2021). Accessed: Jan. 16, 2022. [Online Video].
Available: https://www.youtube.com/watch?v=9gSrRNmmKBc

[30] timwarner-msft, “Details of the policy definition structure - Azure Policy.”
https://docs.microsoft.com/en-us/azure/governance/policy/concepts/definition-
structure (accessed Jul. 04, 2022).

 78

 Page intentionally left blank

79

Appendix A – Policies JSON Files
This appendix presents the JSON files of each policy approached during the

Implementation and Validation process, detailed in Chapter 6. These JSON files correspond to
the definition of each built-in policy, provided by Microsoft, and differ from policy to policy.
As noticeable in the file’s content, these policies can receive multiple different arguments for
their configuration.

Policies can contain elements for [30]:

• Display name – policy name

• Description – policy description

• Mode – which resource types should be evaluated

• Metadata – version, category, preview, deprecated, and portalReview

• Parameters – the parameters that each policy could receive

• Policy Rule – logical evaluation and its effect (Audit, Deny, Disabled, etc)

 80

Policy 1 - Kubernetes clusters should not allow privileged containers

Figure 26 – Policy 1 definition (1st part)

81

Figure 27 – Policy 1 definition (2nd part)

 82

Policy 2 - SSL connection should be enabled for PostgreSQL database servers

Figure 28 – Policy 2 definition

83

Policy 3 - Kubernetes cluster containers should run with a read only root file
system

Figure 29 – Policy 3 definition (1st part)

 84

 Figure 30 – Policy 3 definition (2nd part)

85

Policy 4 - Kubernetes clusters should not allow container privilege escalation

Figure 31 – Policy 4 definition (1st part)

 86

 Figure 32 – Policy 4 definition (2nd part)

87

Policy 5 - Kubernetes cluster services should only use allowed external IPs

For this policy, an array of allowed external IPs was defined in Azure Portal. The array
is then sent by parameter to the JSON file to be validated.

Figure 33 – Policy 5 definition (1st part)

 88

Figure 34 – Policy 5 definition (2nd part)

