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Abstract

As society’s reliance on technology continues to increase, the demand for pro-
grammers will continue to rise, leading to an increase in the number of individ-
uals seeking to learn how to program. Programming is regarded as a difficult
subject to learn, and as the size of classes and the number of students enrolled in
online courses continues to grow, providing individualised support to each stu-
dent may appear impossible, leading to frustration, lack of motivation, and an
increase in dropout rates. A solution could be the implementation of chatbots
for the purpose of assisting such students. The benefits of using this technology
would not only include the possibility of assisting multiple students at once, but
also include 24-hour availability, instant feedback, and a means for shyer stu-
dents to voice their doubts. The present work proposes the development of a
Portuguese chatbot, Pyo, to assist students of introductory programming courses
by providing explanations and examples of introductory programming concepts,
assistance with the exercises, and guidance towards the resolution of errors in
the algorithms. With the Rasa framework, a rule-based approach, and the help of
other Python libraries, a chatbot was constructed, integrated into an online intro-
ductory programming platform, and then evaluated by real novice programmers.
The evaluation was skewed toward the positive, with students identifying Pyo as
beneficial to their learning journey, but it also uncovered a strong preference for
seeking assistance from peers or professors rather than the agent as the students
preferred more straightforward assistance.

Keywords

Natural Language Processing, Chatbot, Virtual Agent, Rasa, Introductory pro-
gramming
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Resumo

O aumento contínuo da dependência da sociedade relativamente à tecnolo-
gia tem fomentado um procura crescente por programadores. Este aumento cria
incentivos, a um número crescente de pessoas, a desenvolver competências na
área. A programação é considerada uma disciplina desafiante, cuja complexidade
tende a aumentar com o número the alunos matriculados devido à falta de su-
porte individualizado, resultando em frustração, falta de motivação e num maior
número de desistências. No ambiente educacional online, os chatbots oferecem
uma maneira de colmatar este problema ao proporcionar apoio especializado a
vários alunos em simultâneo. O presente trabalho propõe o desenvolvimento de
um chatbot português, Pyo, para auxiliar alunos de cursos introdutórios à progra-
mação, oferecendo explicações de conceitos introdutórios, auxílio nos exercícios
e orientação na identificação de erros. Desenvolvido com base em bibliotecas de
Python, na framework Rasa, e uma abordagem baseada em regras, o chatbot cri-
ado foi integrado numa plataforma online de introdução à programação, onde foi
usado pelos seus alunos. Da avaliação efetuada conclui-se que apesar da maioria
dos alunos ter identificando o Pyo como benéfico para a sua aprendizagem, con-
tinua a existir uma preferência por assistência direta providenciada por colegas
ou professores.

Palavras-Chave

Processamento de Linguagem Natural, Natural Language Processing, Chat-
bot, Agente Virtual, Rasa, Introdução à programação
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Chapter 1

Introduction

Our world has been and continues to be revolutionized by technology. It
has found its way into almost every aspect of our lives, such as transportation,
food, education, healthcare, and socialization, which, consequently, increases the
search for individuals with programming knowledge.

A study conducted in the United States in 20222 revealed that the demand for
computer and information science professionals is projected to increase by 22%
from 2020 to 2030, which is much faster than the average for all occupations.

Given this growth, it is not surprising that enrollment in computer science
courses has, not only increased but, according to the British Computer Society,
has seen the “largest increase of any university subject in the United Kingdom”
in 20223.

On the other hand, this high number of new students is also followed by an
equally high drop-out rate, with at least 9.8% of undergraduates dropping out
before finishing their degrees, one of the highest rates when compared to other
courses, with 33% of the students citing the difficulty of the course as the main
reason4.

There are a number of potential causes for such complications. For instance,
an increase in class size without a corresponding increase in teachers5 makes it
more difficult to provide individualized support, which may have a significant
impact on learning outcomes.

2https://www.bls.gov/ooh/computer-and-information-technology/computer-and-
information-research-scientists.htm

3https://www.bcs.org/articles-opinion-and-research/record-numbers-have-
applied-for-uk-computer-science-degrees-this-year/

4https://www.computerweekly.com/news/252467745/Computer-science-
undergraduates-most-likely-to-drop-out

5http://cacm.acm.org/magazines/2019/10/239667-the-cs-teacher-shortage/fulltext
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1.1 Problem and Motivation

The lack of individualized support can hurt the learning path of a student
as it can lead to misconceptions going unnoticed. They would greatly benefit
from close supervision, allowing immediate response to the given problems, and
explanations and discussions on challenging concepts, hence the benefits of using
a chatbot for support.

As defined by Dale [2016], a chatbot is “any software application that engages
in a dialog with a human using natural language”. This technology can deal
with multiple students’ questions at a time, providing constant support and some
comfort to students who feel intimidated to ask a question to a teacher due to the
fear of feeling judged.

The evolution of intelligent tutoring systems, particularly chatbots, has
prompted researchers to employ this technology to address the issue of insuffi-
cient individualized support for novice programmers [Chinedu and Ade-Ibijola,
2021; Hobert, 2019]. However, it is still a field with a perceptive lack of contribu-
tions and novelty [Chinedu and Ade-Ibijola, 2021].

1.2 Objectives and Approach

Regarding the objectives of this thesis, two are proposed:

• The primary objective is the implementation of a chatbot to assist introduc-
tory programming students. The chatbot must communicate in Portuguese,
motivated not only by the platform’s language, where the chatbot was in-
tegrated but also due to the proximity of this dissertation to Brasilian and
Portuguese universities, where Portuguese is the mother tongue. Its assis-
tance should include the clarification of introductory concepts, errors in the
students’ algorithms, and assistance solving the exercises.

• The second objective is the integration of the chatbot into an online plat-
form, that provides introductory programming courses, in order to conduct
an evaluation with real students to identify any implementation flaws and
determine if the chatbot is, in fact, regarded as a useful tool in the students’
learning process.

In order to achieve the previously mentioned objectives, a multi-step action
plan was developed.

In the initial phase, familiarization with Natural Language Processing (NLP)
and chatbot technology was carried out, followed by an analysis of chatbots to
identify the employed methodological strategies. It was determined that the ma-
jority consisted of introductory concept explanations.

In a second phase, the exercises, documentation, and back end of the platform
were analyzed with three goals in mind:

2
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• Examining what assistance it already provided and how the chatbot could
add to it.

• Determining what concepts were being taught in the course to prepare the
functionalities of the chatbot accordingly.

• Regulating what and how pertinent data could be passed to the chatbot. For
instance, information regarding the errors in the algorithms of the students.

In light of this investigation and the analysis of other chatbots in the domain
of introductory programming, three primary functionalities were developed:

• The feature known as concept definitions provides explanations and exam-
ples for introductory programming courses.

• The second, error guidance, was defined as a dialogue consisting of
multiple-choice questions and clarifications that assists students in identi-
fying and correcting errors in their algorithms

• The third was inspired by a feature analyzed in a related work that pro-
vided pseudo code algorithm examples, thus inspiring the exercise assis-
tance functionality. It consists of providing assistance by prompting the
student to arrange the pieces of a natural language-written skeleton repre-
senting one possible solution.

Additionally, two secondary functionalities were defined: question sugges-
tion, which assists the student in determining what questions, related to the ex-
ercise at hand, are pertinent to ask the chatbot, and hints regarding previously
solved similar exercises and small details that are frequently forgotten.

After defining the functionalities, an investigation into the required imple-
mentation tools was conducted. In regards to chatbot platforms, the Rasa6 plat-
form was selected due to its popularity and greater flexibility than others, fol-
lowed by language models to automate question answering and the generation
of questions and Python libraries. To familiarize oneself with the operation of
each tool, each was initially employed independently.

Implementing the chatbot and integrating it in the platform was the third step.
The chatbot was created by gluing together the tools from the previous step, de-
spite the fact that a few had to be discarded because they were not a “perfect
fit”. The developed system and its features were subsequently evaluated in a real
introductory programming course, where the conversations were analyzed and
students were asked to complete a questionnaire.

1.3 Contributions

The main contributions of this thesis are:
6https://rasa.com
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• The creation of a Python-specific Portuguese teaching assistant chatbot for
an introductory programming course. Whose qualities are enhanced by a
proactive willingness to offer assistance when deemed necessary. As will
be referenced throughout the dissertation, the chatbot assistant was given
the name Pyo, derived from the Portuguese word “Pio,” as it is devoted to
its mission of teaching programming. The letter “y” alludes to Python, its
language of focus.

• The evaluation of the chatbot with real students, who were asked to com-
plete a questionnaire to assess its usefulness and effectiveness in assisting
their learning process.

The development of Pyo, with an emphasis on its educational features, was
reported in a scientific article regarding the XXIV International Symposium of Ed-
ucation on Computers in Education, which focuses on systems, platforms, peda-
gogies, and practice-based education in e-learning and b-learning [Carreira et al.,
2022].

1.4 Outline

This document is organized in sections that describe the phases of the work
developed throughout the year, from the review of the literature to the evalua-
tion. The remainder of the dissertation is organized as follows:

1. Background: touches on the programming difficulties a student might en-
counter, describes the platform where the chatbot was integrated, and in-
troduces pertinent concepts for a better understanding of the work, partic-
ularly in regards to NLP, chatbots, information based question answering,
and transformers.

2. Chatbot Specification: describes the functionalities from a conceptual
standpoint and presents the initial and final architecture of Pyo.

3. Implementation: describes and explains the implementation procedure of
the chatbot and its functionalities.

4. Evaluation and Discussion: presents and discusses the results of the anal-
ysis of the students’ conversations with the chatbot, as well as the results of
a questionnaire administered to the students.

5. Conclusion: conducts an overall evaluation of the work performed and a
reflection on the expected and achieved objectives and contributions. Ad-
ditionally it describes the next steps proposed to complement the perfor-
mance and utility of the assistant.

4



Chapter 2

Background

This section presents the theoretical concepts necessary for a complete com-
prehension of the work described in this dissertation. Section 2.1 discusses prob-
lems encountered by students at the beginning of their programming journeys,
as well as potential causes and solutions, followed by a description of the RESPE
platform into which Pyo was integrated (section 2.2). Section 2.3 discusses Nat-
ural Language Processing (NLP), the technology at the core of chatbots, and the
fundamental components of NLP that a message may go through as to retrieve
relevant information.

In section 2.4, a discussion of chatbots’ concept, history, categories, ap-
proaches, development platforms, advantages and disadvantages, as well as
chatbots developed for the education domain, with a focus on those for the in-
troductory programming domain, is presented. Additionally, in section 2.5, a de-
scription of a method for automatic question answering (Information Retrieval
Based Question Answering) is provided, followed by an explanation of the trans-
formers architecture, which is widely used for various NLP taks and applications
(section 2.6).

2.1 Programming Learning Difficulties

Having in mind that the goal of the project is to develop a chatbot with the
intent to support students in learning how to program, it is fundamental to have
a general understanding of the difficulties experienced by novice programming
learners as well as possible ways to overcome them. Therefore, a study of such
was conducted and is presented in this section.

As defended by multiple researchers, learning how to program involves three
different types of knowledge: syntactic, conceptual, and strategic [McGill and
Volet, 1997].

Syntactic knowledge refers to the understanding of the rules and basic fea-
tures of a given programming language, for example, knowing that Python re-
quires indentation to differentiate between blocks of code, or that in Java, to end

5
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a statement, the use of a semicolon is needed.

Conceptual knowledge alludes to the understanding of how programming
concepts and principles work, such as why is indentation necessary in Python or
what is the reason behind the use of semicolons in some programming languages.
Difficulties in this knowledge have a greater impact than the previous mentioned,
as it may lead to significant misconceptions related to students’ mental models of
code execution [Qian and Lehman, 2017]. An example of such errors would be
the difficulty of a beginner to understand that A=1 is not equivalent to 1=A.

Strategic knowledge can be summed up as combining syntactic and concep-
tual knowledge to develop solutions for problems. Such understanding is essen-
tial in breaking down a problem, designing a solution, and debugging the pro-
gram. It is relatively common for novices to display a lack of such knowledge,
which demonstrates itself in difficulties when planning, writing, and debugging
solutions.

Qian and Lehman [2017] point out that there are numerous potential causes
of difficulties, with the following being the most significant:

Task Complexity and Cognitive Load Vainio and Sajaniemi [2007] found that
due to this freshness, tracing programs becomes complex and requires a high cog-
nitive load on novices. Thus, increasing the task complexity may lead to confu-
sion because it will require an even higher cognitive load.

Anderson [1993] states that becoming an expert in problem-solving does not
come from having a better ability at such, but more from domain familiarization.
Thus, novices who are yet to have the time for such extensive learning will in-
crease mistakes when solving problems with higher complexity. Hence, increased
task complexity can also be accompanied by a higher number of mistakes.

Flawed Mental Models In general, a mental model can be seen as an internal
representation of a given domain. They allow reasoning about a situation not di-
rectly experienced, allowing individuals to mentally simulate the behaviour of a
program. Having a flawed perception of how a system works, can result in vari-
ous misconceptions [Qian and Lehman, 2017]. Ma et al. [2007] found that a very
high portion of novice programming students held non-viable models of essential
programming concepts at the end of their first year and that the small portion of
students with viable-mental models displayed significantly better performance
in various programming tasks.

Environmental Factors Language features and programming environments
may also constitute obstacles to students’ success in introductory programming.
An example of such is the ambiguity of the addition operator (+). This operator
can either add two numbers or concatenate strings in various languages, which
allows flexibility to more skilled programmers but can inevitably confuse novices.
Another prevalent example results from error messages that are frequently per-
ceived as cryptic due to their lack of information, thereby imposing a substantial
barrier on a beginner. [Qian and Lehman, 2017].

Teachers’ Instruction and Knowledge Teachers’ knowledge can have signifi-
cant consequences in the students’ flowed mental models, and therefore, as men-
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tioned, in their performance, meaning that, if an educator contains incorrect or
incomplete knowledge of a given concept, that is what is going to be transmitted
to their students and consequently having the same outcome [Ma et al., 2007].

Having understood the main difficulties and their possible sources, Qian and
Lehman [2017] also propose different approaches to tackle them, which mainly
integrate two levels: at an editor or choice of programming language level, or at
a teacher’s level. Regarding the first, the authors call for editors that highlight
or prevent syntax errors (already supported by various Integrated Development
Environments) and using more simple, easily comprehendable, retainable, and
self-explanatory programming languages, instead of jumping straight to a choice
based on industry popularity as they are usually developed for professional use.
As for the second, the authors propose: using clear and straightforward exam-
ples; having students explain programs to help educators better perceive possi-
ble misconceptions the student may contain; and explicitly teaching helpful pro-
gramming strategies.

2.2 RESPE

As mentioned throughout the dissertation, Pyo has been integrated into a
platform. This platforms was developed as part of a doctorate, and supervised
by professor António Mendes. This platform, RESPE[Silva et al., 2022], intends to
provide a number of tools to facilitate programming education (one of which is
Pyo). It has been utilized to support multiple editions of the same course, includ-
ing the one in which the evaluated agent has been assessed. Important to note
that, despite being mentioned, the course in which the conversational agent was
evaluated did not utilize any additional RESPE tools, apart from Pyo.

The course takes place over two moths with a 40 hours duration. Its syllabus
is based on the Association for Computing Machinery (ACM) Curricula for fun-
damental programming concepts, encompassing variables, input/output, condi-
tionals, loop structures, and functions7.

While participating in a course, students have 24-hour access to the recorded
video materials about the programming contents. Students are left learning at
their own pace, with a new section unlocked approximately every two weeks.
The order followed is variables, conditional, loop structures, and functions.

Regarding the implementation of Pyo, the main focus was on the program-
ming exercises, consisting of a total of 70 (13 variables, 24 conditionals, 21 loops,
and 12 functions), which are available on an Open Science repository8.

Figure 2.1 displays an example of a programming exercise where the student
is asked to complete the algorithm presented initially on the editor. The student
has access to a table with test cases to give them the perception of the expected
outputs the algorithm should produce. In the example, the student submitted an

7https://www.acm.org/education/curricula-recommendations
8https://osf.io/tu47x/?view_only=aab2c35ee94d41b1abaf5ececea3f0dd
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answer that did not generate the expected outputs, thus the red circle on the top.

All of the information regarding the student’s submission, including their ex-
act algorithm, whether it was correct, and whether it generated a Python error, is
stored in a database for later evaluation.

Figure 2.1: Example of a programming Exercise

Figure 2.2 illustrates the architecture of the RESPE platform, after the integra-
tion of Pyo. The frontend of the platform is built with the angular framework,
which employs HTML, TypeScript, and CSS, while TypeScript and Python are
used to perform its logic and communicate with its database. Google’s platforms,
specifically Google Cloud and Firestore, are used for both hosting and database.

The communication with Rasa is done easily, as Rasa already comes with
an endpoint. Therefore, to send messages to Rasa a simple http POST method
is required to the “http://<host>:<port>/webhooks/rest/webhook” enpoint, to
which Pyo will then return its reponse.

2.3 Natural Language Processing

Chatbots are one of the many applications the field of NLP has. In this section,
we discuss this concept and several of its components.

NLP is a subset of Artificial Intelligence (AI) defined by Eisenstein [2018] as
“the set of methods for making Human language accessible to computers”, mean-
ing enabling systems to communicate with humans in the same language they
use to speak and write, also called natural language, as opposed to formal lan-
guages.

From machine translation [Nakazawa et al., 2006; Wu et al., 2016], ques-
tion answering [Ben Abacha and Zweigenbaum, 2015; Choi et al., 2018; Lende
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Figure 2.2: Architecture overview diagram for the RESPE platform.

and Raghuwanshi, 2016], question generation [Du et al., 2017], sentiment analy-
sis, text classification [González-Carvajal and Garrido-Merchán, 2021; Liu et al.,
2018], auto-correct [Yu and Tsai, 2021], and chatbots, NLP has become an integral
part of our lives.

As a subfield of NLP, Natural Language Understanding (NLU) is primar-
ily concerned with programming machines to interpret natural language, derive
meaning, recognize context, and draw conclusions. NLP focuses on processing
text literally, whereas NLU focuses on extracting the context and intent. Using
the phrase “Let’s hang out” as an example, NLP will interpret the request as a
literal request to hang outside, whereas NLU can infer that the user may intend
to spend time together.

NLU is typically implemented in a pipeline, as the tasks are interdependent,
and the output of one task serves as the input of the next. The pipeline consists
primarily of two stages: text processing and feature extraction.

2.3.1 Text processing

Text processing refers to the tasks that transform unprocessed input into a
suitable format for feature extraction. In terms of text processing, a simple
pipeline may include the processes of Tokenization, Text Normalization (Stem-
ming and Lemmatization), Part-of-Speech Tagging, and Named Entity Recogni-
tion.

Tokenization

Tokenization is typically the first step in the pipeline and a crucial process.
It refers to dividing text into smaller units, known as tokens, that convey useful
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information (usually a word). It is significant because several subsequent steps
require tokens as a starting point to extract and provide additional information.

Practical for various use cases is what is called a white space tokenizer. Im-
plied by its name, this approach separates text by white spaces disregarding
punctuation. For example, “Hello, how are you?” would yield the array [“Hello”,
“how”, “are”, “you”].

Although using a white space tokenizer is common, it is essential to note a
few difficulties that a language may present. In English, for example, contrac-
tions present a challenge. How should the sentence “These aren’t green” be seg-
mented? Such difficulties vary from language to language. In Portuguese, for in-
stance, the use of compound words (“guarda-roupa”) and contractions (“daque-
les” instead of “de aqueles”) may become problematic. To resolve these issues,
it is frequently necessary to develop models that account for these factors and to
establish rules for the various exceptional circumstances.

Stopword Removal

Stopwords are frequent words, such as propositions, pronouns, and determi-
nants, that contribute little or nothing to the meaning of a phrase. For instance,
in the Portuguese language, “o”, “ele”, and “de” would be two examples of such
words. Eliminating stopwords may be advantageous for specific tasks regard-
ing classification, such as, sentiment analysis [Kanakaraj and Guddeti, 2015], and
fraud detection [Chen et al., 2017].

Text Normalization

Text normalization is attempting to convert text into a more uniform format
to facilitate the association between words that, despite being written differently,
may have the same origin. Two processes are used with such intent: Stemming
and Lemmatization.

Both stemming and lemmatization aim to make all related words converge
into a common term. For instance, drove, drives, and driving, are all rewritten as
drive.

Stemming accomplishes this with heuristics that aim to remove the ending
of words to achieve this goal, mostly involving eliminating derivational affixes.
It could be problematic, as it may not always produce an existing word. For
instance, cats results in cat, while write may result in writ.

Lemmatization refers to using a vocabulary and morphological analysis of
words, usually aiming to remove inflectional endings only and to return the dic-
tionary form of a word, known as the lemma.
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Part-of-Speech Tagging

Part-of-Speech (POS) Tagging aims to determine the syntactic function of each
word in a sentence (which, depending on the context, may be different for the
same word). In simple terms, it describes how the antecedence and precedence
of particular words influence others.

Ex: TheDET dogN isPREP blackADJ

Named Entity Recognition

Named Entity Recognition (NER) is the process of detecting, identifying, and
classifying entities that contribute to the meaning of a text. From a programming
perspective, entities can be seen as variables needed to achieve a task. These
entities are categorized according to predefined categories (e.g., person, location,
date).

Ex: KatePERSON would like to book a flight to LisbonLOCATION for
tomorrowDATE.

2.3.2 Feature Extraction

The output of the previous stage is a preprocessed vector in text format, which
is not the most friendly for the majority of machine learning algorithms. Feature
extraction is responsible for converting this vector into numeric format. The fea-
tures extracted go accordingly to the type of NLP task trying to be accomplished.
For instance, the frequency and context of words are extracted as features for the
tasks described in this section.

Bag of Words

Regarding the bag-of-words method each word accounts for a feature. This
technique involves counting the frequency of each word in a text regardless of its
position. Observing the following phrases:

• Phrase 1: Can you give me an example of a for loop?

• Phrase 2: What is an example of an if statement?

• Phrase 3: What is the syntax of a for loop?

Our vocabulary would consist of the following 14 words: “what”, “you”,
“the”, “me”, “an”, “example”, “of”, “a”, “give”, “for”, “loop”, “Can”, “is”, “syn-
tax”, “if”, “statement”.
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Phrase 1 Phrase 2 Phrase 3
What 0 1 1
you 1 0 0
the 0 0 1
me 1 0 0
an 1 2 0

example 1 1 0
of 1 1 1
a 1 0 1

give 1 0 0
for 1 0 1

loop 1 0 1
Can 1 0 0

is 0 1 1
syntax 0 0 1

statement 0 1 0
if 0 1 0

Table 2.1: Bag-of-words example

Figuratively shaking the words inside a bag, a possible take of this method is
to count the frequency of each word in the set of documents/phrases, as demon-
strated in table 2.1.

Finally, the previous example would result in the following sparse vectors:

• Phrase 1: [0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0]

• Phrase 2: [1, 0, 0, 0, 2, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1]

• Phrase 3: [1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0]

Word Embeddings

Embeddings are yet another effective word representation. Its idea is to map
every word to a point in space where words with similar meanings are physically
closer. The space in which they are present is called an embedding space. One can
pre-train an embedding space to save time or use one already pre-trained, with
GloVe [Pennington et al., 2014] and WordVec [Mikolov et al., 2013] being the most
popular approaches for learning word embeddings, based on neural networks.

The embedding space then maps each word to a vector with dimensions be-
tween 50 and 1000 rather than the much longer vocabulary size. In opposition
to the bag-of-words vectors, which have several zero-counts, embeddings will be
dense vectors, of positive or negative real numbers. This is possible because each
entry does not correspond to a word, rendering embeddings not interpretable
[Jurafsky and Martin, 2021].
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2.4 Chatbots

The topic of this dissertation is chatbots, one of the many application of NLP.
This section focuses on this technological advancement. Through research, we
attempted to comprehend what a chatbot is, its origin, the various ways it can
be categorized, the primary approaches taken, and the benefits and drawbacks of
utilizing these systems.

2.4.1 Brief History

The term conversational agent has come to express a variety of systems with
different capacities and motivations, with the fundamental premise that the artifi-
cial agent takes part in a human-machine conversation through natural language
[Eeuwen, 2017]. Chatbots are the simplest types of such systems.

Communication between computers and humans is as old as the field of com-
puter science itself. Traveling back to the 1950s leads us to a prominent fig-
ure named Alan Turing. “I PROPOSE to consider the question, ‘Can machines
think?’” began Turing in his paper “Computer Machinery and Intelligence” [Tur-
ing, 1950], where he then proposed a well-known test, the Turing test, to deter-
mine if a machine can be considered intelligent. The Turing test consists of three
participants: two humans and a computer. One of the humans plays the role of
the interrogator, whose objective is to determine which of the other two contes-
tants is the computer by asking a series of text-based questions. The computer
is considered intelligent if the interrogator cannot correctly identify the machine
[Jurafsky and Martin, 2021].

Amidst the fuss generated by the Turing test, the birth of the first chatbot,
ELIZA, took place. Developed by Weizenbaum [1966], an MIT professor, this
conversational agent uses pattern matching and substitution methodology to em-
ulate the operations of a psychotherapist, mainly consisting of returning back the
sentences of users in an interrogative form. Despite its straightforward approach
and unsuccessful attempt at conquering the Turing test, the program still gave the
illusion of understanding the problems of the users and successfully fooled many
people, which encouraged a whole community of interest in developing chatbots
to defeat the Turing Test [Dale, 2016]. A sample from an example conversation
taken from the original paper is displayed in figure 2.3.

Fast forward a decade, Kenneth Colby developed a chatbot named PARRY,
described by the creator as “ELIZA with an attitude” [Colby et al., 1971]. This
time, the chatbot aimed towards simulating the behaviour of a patient with para-
noid schizophrenia, capable of expressing beliefs, fears, and anxieties [Reshmi
and Balakrishnan, 2016]. Its structure is similar to the one of ELIZA but with an
upgrade in controlling structure, understanding capabilities, and a mental model
to simulate emotions. PARRY was evaluated using an adaptation of the Turing
test where it managed to fool 52% of the psychiatrists involved.

Another worthy of noting highlight in the history of chatbots is Alice (Arti-
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Figure 2.3: Sample ELIZA dialogue from Weizenbaum [1966]

ficial Linguistic Internet Computer Entity), developed by Richard Wallace [Wal-
lace, 2009]. Initially inspired by ELIZA, it was released into the wild in 1995, and
it went on to win the Loebner Prize9 three times. Alice was the first chatbot to
use the Artificial Intelligence Markup Language (AIML) language to relate a user
input with a Knowledge Base (KB) response. A few more details on AIML will
be given on section 2.4.3, since it is a very common language used to create the
knowledge bases of chatbots.

In the early 2010s, the idea of conversational agents in our day-to-day lives
started to cement with the rise of the well-known Big Four voice-driven as-
sistants: Siri from Apple, Cortana from Microsoft, Alexa from Amazon, and
Google’s new Assistant [Dale, 2016]. Nevertheless, even though these have been
and will continue to be at the forefront of this technology, they are far from being
the only ones, as the commercial interest of this technology keeps increasing.

Although the implementation of chatbots started by simply following a
patter-matching approach, its recent achievements are due to the use of Deep
Learning. First introduced by Cho et al. [2014] for Machine Translation, Sequence
to Sequence (seq2seq) techniques have since been used to create several gener-
ative systems [Lu et al., 2017]. Recent studies make use of pre-trained models,
such as the GPT-2, which are then fine-tuned to be implemented in chatbots
[Budzianowski and Vulić, 2019]. SHI et al. [2020] provide an illustration of such
a system by implementing a language-learning chatbot that combines a transfer-
learning-based training scheme and a high-capacity transformer model.

The discussed selection of chatbots is illustrative and not exhaustive, and it
serves as a summary indicating the essential lines in the evolution of this tech-
nology.

9a competition inspired by the Turing test, defunct in 2020, that awarded prizes to the com-
puter programs considered by the judges to be the most human-like
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Criterion Categories
Knowledge Domain Open domain

Closed domain
Goals Informative

Conversational
Task-Oriented

Input Processing and Response Generation Rule-based
Corpus-based

Hybrid
Communication Channel Text

Voice

Table 2.2: Types of chatbot classifications

2.4.2 Chatbot Categories

A chatbot can be employed for a variety of purposes. Its classification can and
may be categorized differently, depending on the criteria considered. According
to the creteirons, knowledge domain, goals, input processing and response gen-
eration, and communication channel, table 2.2 displays the various classifications
a chatbot can and may have have [Adamopoulou and Moussiades, 2020].

According to the knowledge accessed by a chatbot, it can be categorized as
closed or open domain. A closed-domain chatbot is focused on a specific do-
main. For example, OneRemission [Ayanouz et al., 2020] is a chatbot that pro-
vides information about cancer and post-cancer healthcare to survivors, fighters,
and supporters. On the other hand, open domain chatbots can converse about
general topics. An example would be Blender by Facebook [Liang et al., 2021],
which can have sophisticated conversations on nearly any topic.

When it comes to the goals the chatbot aims to achieve, it can either be in-
formative, conversational or task-based. Implied by the name, a conversation
agent that aims to deliver information stored beforehand or available from a des-
ignated source is designated informative. Usually, they are based on Informa-
tion Retrieval (IR) algorithms and would either fetch the result of a query from
a database or perform string matching. An example would be any that falls in
the category of Frequently Asked Questions (FAQ) chatbots [Sethi, 2020]. A con-
versational chatbot refers to those whose aim is mainly to hold a natural conver-
sation with a user, much like a human-to-human conversation. For example, the
Mitsuku [Croes and Antheunis, 2021] and the XiaoIce [Zhou et al., 2020] chat-
bots, fall into this category. Finally, task-oriented chatbots are responsible for
handling a specific task such as bookings (restaurants, flights, hotels) [Garg et al.,
2021]. Its actions and flow of events are, normally, predetermined [Nimavat and
Champaneria, 2017]. Leggeri et al. [2018] presents an example in which the au-
thors describe a task-oriented conversational agent implemented to help people
understand how to use a platform to track an organization’s performance and
pinpoint losses in real-time.

Regarding input processing and response generation, a chatbot can be divided
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into two main classes: rule-based chatbots and corpus-based chatbots, which will
be examined in greater detail in the following section.

The last type of classification is probably one of the first that comes to mind
when classifying a chatbot. A chatbot can carry out a conversation in two ways:
text, where the interaction is conducted through messaging, or voice, in which
the conversation is carried out orally.

2.4.3 Rule-based vs Corpus-based Approaches

Although the different classifications of chatbots have already been discussed,
when thinking of its implementation, two are the main approaches one can take
into account, rule-based and corpus-based.

Rule-based approaches act upon pattern-matching to map the input supplied
by the user to a given rule pattern, which then selects an answer from a set of
responses defined beforehand [Adamopoulou and Moussiades, 2020]. ELIZA,
PARRY, and Alice fall into this category.

Because the developer has written the knowledge in conversational patterns,
this method is typically rigid because it does not generate new responses. The de-
veloper must outline all possible rule paths (dialogue flows) to provide a greater
capacity to answer user questions correctly.

Due to the fact that the messages of the user are not subjected to a thorough
syntactic or semantic analysis, this method has a quick response time, and its
behavior is entirely under the programmer’s control. On the other hand, these
chatbots lack the uniqueness of human responses. The level of diversity in a
conversation is determined by the number of programmed options.

When proceeding with this approach, one of the most common languages is
AIML, a programming language developed by Richard Wallace between 1995
and 2000. It serves the primary purpose of building the knowledge base of rule-
based chatbots [Mikic et al., 2009]. As we have previously touched on, the first
chatbot to use this language was ALICE, which went on to win three Loebner
Prizes.

A general example is given in figure 2.4, where if a user says “Hello” to the
chatbot, it would respond with “Hello, how are you?”

Chatscipt [Wilcox and Wilcox, 2014], a rule based engine developed by Bruce
Wilcox, is also widely used when taking this approach [Finch et al., 2020]. Its
main advantage when compared to AIML is the support of longer back and forth
exchanges between the user and the chatbot, called gambits, which is what keeps
the response of the agent focused on the current topic, but with the drawback of
requiring a much more complex implementation that often turns people back to
AIML.

Although AIML is widely used because of its simplicity, this is also one of its
drawbacks. When implementing a rule-based conversation agent using chatbot
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Figure 2.4: Simple AIML example.

frameworks such as Dialogflow10, IBM Watson11, Rasa12, and Microsoft LUIS13,
the use of a method that focuses on the intents and entities of a message is be-
coming increasingly prevalent. Instead of focusing on the message itself, it at-
tempts to link it to its intent. For instance, given the message “Hello”, the intent
would be “greet”, and the chatbot would respond accordingly. Another type of
intent would be “What is the weather like in Coimbra?” which could be labeled
“weather_forecast”. The difference between the two examples is that in the sec-
ond, we must also extract additional information from the message, namely the
entity, which in this case is “Coimbra”, the location where the user desires the
weather forecast.

The other alternative, to rule-based conversational agents, are corpus-based
chatbots, which map human-human conversations [Jurafsky and Martin, 2021]
instead of using hard-coded rules. This approach is hugely data-driven. The
amount of data for training these types of chatbots depends on various aspects,
including the coverage of the bot and the complexity of the domain, but to learn
how to respond effectively to different human interactions requires a substantial
amount of data. This approach has seen an increase in engagement and success,
majorly due to an increase in the availability of extensive public datasets and
efficient machine learning models [Serban et al., 2018].

These bots generally generate their responses via either retrieval methods or
generation methods. Retrieval methods rely on an IR method which retrieves
response candidates from a pre-built index and then ranks the candidates. The
calculations of the scores can be achieved using the approach explained in section
2.5. Based on this score, the system selects a reply from the top ranked ones.

As we have mentioned, the generation of a corpus-based chatbot’s response
is not restricted solely to the use of IR methods. It can instead generate its an-
swers based on the context of the dialogue through an encoder-decoder or lan-
guage models, which is a model that assigns probabilities to sequences of words

10http://cloud.google.com/dialogflow
11http://www.ibm.com/pt-en/products/watson-assistant
12http://rasa.com
13http://www.luis.ai
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(e.g. GPT-2) [Jurafsky and Martin, 2021]. The encoder-decoder takes the input
sequence (the query usually formed from the entire conversation) as to produce
a contextualized representation of it, which is then passed onto the decoder that
generates the response (figure 2.5).

Figure 2.5: Encoder decoder architecture for response generation, from Jurafsky
and Martin [2021].

Unlike rule-based chatbots, these do not require previously defined responses
for every possible outcome and take into account the context of the conversation.
However, they do require large amounts of training data, which for a particular
domain may constitute a difficulty, as it might not be available.

Due to the specificity of the chatbot domain (programming domain), the rule-
based approach was more heavily used for the implementation of Pyo, although
an initial approach also benefited from the second.

2.4.4 Advantages and Disadvantages of Chatbots

There are numerous benefits for utilizing a chatbot. In a survey conducted
by Drift14, SurveyMonkey Audience15, Salesforce16, and myclever17, participants
were asked, “If chatbots were available (and working effectively) for the online
services you use, which of the following benefits would you expect them to pro-
vide?”. The results of said survey are presented on figure 2.6.

Undoubtedly, consumers expect 24-hour service, followed by immediate re-
sponse, answers to simple questions, and accessible communication, which a con-
versational agent must be able to provide.

Two years later, another study conducted by Adamopoulou and Moussiades
[2020] in 2020 reached a similar conclusion, reporting productivity as the pri-
mary reason for using chatbots, with the majority of participants citing ease of
use, quick service, no waiting times, and the comfort of not having to interact
with a human, as it can be intimidating at times. Other motivations included
entertainment, social and relational purposes, and novelty, indicating that some
participants were interested in experimenting with this novel technology.

14https://www.drift.com
15http://www.surveymonkey.com
16https://www.salesforce.com/
17http://www.myclever.com
18http://www.drift.com/learn/chatbot/
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Figure 2.6: Survey answers on the benefits expected from a chatbot18

These factors explain why the development of this technology is not antici-
pated to cease in the near future. Technavio19 projects that the market for chat-
bots will increase by 1.73 billion dollars at a compound annual growth rate of
25% between 2021 and 2025.

However, like everything else in life, chatbots have their drawbacks. A clear
but drastic example of how things can quickly go wrong is Tay [Davis, 2016], a
chatbot released by Microsoft in 2016 that was discontinued after only 16 hours of
its release. It used a neural network that learned by interacting with users, which
led to its manipulation. It was released on Twitter, and it was intended to emulate
a teenage girl and engage with users. Shortly after its release, Tay had sent thou-
sands of texts, primarily abusive and of racist nature, which it had learned from
the social platform. This situation came to secure the position several researchers
already had that chatbots must be developed in a controlled environment to pre-
vent such situations from repeating themselves. Other disadvantages, now more
related to typical conversational agents, include the fact that they may contain a
certain degree of coldness, not be programmed to answer more than a question
at a time, may not understand the question of a user, or may return incorrect
responses, which may cause frustration.

2.4.5 Chatbot Platforms

To investigate the solutions available, research was conducted on the most
popular platforms that enable the creation of a chatbot or conversational agent.

The research conducted aimed to simulate a study conducted by an individual
with the intention of implementing a chatbot with similar goals to those proposed
in this document. The research resulted in the exploration of the platforms used
for the implementation of chatbots whose aim is to assist introductory program-
ming students (presented in the following chapter) and the cross-referencing of
articles that collected the most widely used platforms.

Research revealed the existence of solution for every purpose. Certain

19http://www.technavio.com/report/chatbot-market-industry-analysis&nowebp
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platforms permit greater customization by involving the client in the process,
whereas others provide their services and/or tools for the client to develop their
project.

At the time of writing, Dialogflow by Google, Amazon Lex, Watson Assistant
by IBM, and Rasa have been identified as the most popular platforms [15] for the
development of chatbots, despite the fact that hundreds of such platforms exist.

Therefore, these services merit a more comprehensive analysis and compari-
son of the technologies. Therefore, a brief description of each one’s characteristics
is provided, followed by the rationale for selecting Rasa.

Dialogflow Dialogflow is a Google-developed NLU platform available on
Google Cloud. It enables the user to create a chatbot that can be later in-
tegrated with other services, including mobile apps and web applications.

It offers two distinct types of services, each with its own agent type, user in-
terface, API, client libraries, and documentation: the Dialogflow CX, which
is suitable for more complex agents, and the Dialogflow ES, which is suit-
able for agents with fewer capabilities.

Both versions utilize machine learning to predict and eliminate intents and
entities based on user-supplied training phrases. It contains interfaces de-
signed to simplify the process of creating a chatbot for everyone, including
those with limited professional experience.

Amazon Lex Amazon Lex is an AWS service for building voice or text interfaces
in applications that use the deep learning engine that supports Amazon
Alexa. It offers speech recognition, speech-to-text conversion, and language
comprehension, among other features. among others, natural, slot-filling,
and intent chaining. Permits development via the console or REST APIs
supported by AWS services, enabling scalability of the developed solution.

IBM Watson Assistant IBM Watson Assistant is a platform that enables the cre-
ation of artificial intelligence assistants and applications utilizing natural
language understanding that enable the user to respond in a manner re-
sembling human interaction.

As with any IBM solution, it was designed for simple integration with the
entire IBM ecosystem, enabling rapid scaling of the solutions created.

Rasa RASA is an open-source framework that automates text and/or voice-
based assistants using open-source machine learning models and libraries.
Since these libraries are accessible to the user, the platform can be used
transparently, giving the user complete control over all aspects and pro-
cesses of their chatbot.

Reasons for selecting a platform can vary depending on the characteristics
considered. In analyzing the platforms, the characteristics of the chatbot were
considered, which led to the selection of Rasa.
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Amazon’s Lex platform was initially disregarded for two reasons. The first,
and main one, was the lack of Portuguese support, which is of utmost importance
given that one of the primary characteristics of Pyo was communication in Por-
tuguese. The second issue was the documentation, as compared to the other three
resources, which were very intuitive and straightforward, its documentation was
written as if the reader required prior knowledge of chatbots, potentially leading
to an higher learning curve.

Rasa’s open-source nature was nevertheless the deciding factor in its selec-
tion. Rasa, unlike the other two, is not implemented via a provider-held interface;
rather, the developer works with code. This may require a steep learning curve
for those without prior programming experience, but it grants the user complete
control over all chatbot processes, facilitates the connection to other channels and
APIs, and enables the user to modify and customize the chatbot’s algorithms,
setting it apart from competitive solutions.

2.4.6 Chatbots in Education

Regarding the education domain it is common to see conversation agents with
a clear service focus assisting on FAQ, for instance, the University of Murcia in
Spain, has implemented Lola with the purpose of reducing the volume of student
enrolment-related questions during enrolment periods [Muñoz, 2018]. Similarly,
Dinus University in Indonesia developed a virtual agent with the purpose of an-
swering admission related questions. However, there is a significant increase in
the number of chatbots whose aim focuses on the learning aspect of a specific
topic. Used for both informal and formal education, these conversational agents
serve the purpose of interacting and helping the students as a human educator
would [Pérez et al., 2020].

Researchers have discovered that engaging with chatbots increases students’
interest in learning, which has further prompted the creation of educational chat-
bots [Johnson, 2001]. Recent examples whose objective is knowledge acquisition
include the work of Shorey et al. [Shorey et al., 2019], where a virtual agent was
created to imitate a patient, in order to teach nursing students how to speak more
effectively, and ChatBot [Chen et al., 2020] a conversational agent developed with
the purpose of teaching Chinese.

The field of introductory programming was one of the many taken upon by
researchers, and as to form a conscience on the chatbots already developed, sev-
eral publications were analyzed with a specific attention on the programming
language of focus, the platform used to develop the bot, the approach taken, the
functionalities implemented, and the details of the evaluation.

Language Focus Analysis revealed that a big percentage of contributions had
their focus on the JAVA programming language [Finch et al., 2020; Hobert,
2019; Ismail and Ade-Ibijola, 2019; Müller et al., 2018]. The widespread use
of this language in universities may account for this [Simon et al., 2018]. De-
spite the apparent preponderance of contributions pertaining to JAVA, other
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authors have extended the field to other programming languages, such as
MATLAB [Verleger and Pembridge, 2018] and Python [Chinedu and Ade-
Ibijola, 2021], or programming in general, without specifying the language
[Ismail and Ade-Ibijola, 2019].

Approach Due to the specialized nature of the domain, rule-based approaches
were universally adopted as the method of implementation. But rather than
approaches, the selection of platforms appeared to be the primary deter-
minant of the implementation method. IBM Watson Assistant [Ismail and
Ade-Ibijola, 2019; Müller et al., 2018], Microsoft QnA Maker [Verleger and
Pembridge, 2018], Chatscript [Finch et al., 2020], and SnatchBot [Chinedu
and Ade-Ibijola, 2021] were among the platforms utilized. Other implemen-
tations did not use any framework and implemented their chatbot using
AIML [Daud, 2020].

Functionalities Regarding the types of questions, all of the conversational agents
implemented were programmed to answer to questions related to the intro-
ductory concepts of each language [Chinedu and Ade-Ibijola, 2021; Finch
et al., 2020; Hobert, 2019; Ismail and Ade-Ibijola, 2019; Müller et al., 2018;
Verleger and Pembridge, 2018]. Only the e-java chatbot [Daud, 2020] had
a more narrow domain focusing solely on the control structures, such as if-
statements and loops. Apart from answering concept related questions, Is-
mail and Ade-Ibijola [2019] also programmed their conversational agent to
generate examples and advise students facing depression. One other com-
mon option was the functionality of emailing a professor when an answer
could not be reached and then updating the database accordingly [Chinedu
and Ade-Ibijola, 2021; Finch et al., 2020; Verleger and Pembridge, 2018].

Evaluation The evaluation procedures mainly consisted of two parts: a quanti-
tative and qualitative examination of the interactions, as well as a student
perception questionnaire. Some researchers used only one, while others
used both. Regarding the quantitative aspect, developers intended to eval-
uate variables such as the number of times the chat window was opened
and the number of distinct students who interacted with the chatbot, as to
understand the evolution of its usage [Finch et al., 2020; Verleger and Pem-
bridge, 2018]. On the qualitative side, in order to determine the accuracy of
responses, researchers paid close attention to the questions asked and the
chatbot’s responses [Finch et al., 2020; Müller et al., 2018]. Another method
of evaluation was a questionnaire to determine students’ perceptions of the
chatbot’s user-friendliness, accuracy, usefulness, and suggestions for fur-
ther enhancements [Chinedu and Ade-Ibijola, 2021; Hobert, 2019; Ismail
and Ade-Ibijola, 2019; Müller et al., 2018].

The results appeared mixed. On the one hand, novices considered the chat-
bots user-friendly and valuable in supporting their programming learn-
ing journey [Chinedu and Ade-Ibijola, 2021; Ismail and Ade-Ibijola, 2019;
Müller et al., 2018]. On the other hand, some of the agents displayed a
lack of capability in answering the majority of the student’s answers [Finch
et al., 2020; Verleger and Pembridge, 2018], and a few even compared the
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agent to other resources such as Google, which they deemed an easier way
to retrieve the answers [Verleger and Pembridge, 2018].

As already mentioned, the search for relevant literature on chatbots in the field
of programming education did not yield an abundance of results. With Pyo, the
aim is to make a valuable, well-implemented, and interesting contribution to this
domain, given that it was only possible to find one other chatbot that focused on
the same programming language as Pyo’s (Python). Novelty also comes from the
use of Portuguese as the interaction language, and a proactivity aspect, as it was
revealed that it was always the student who requested assistance, and never the
agent offering help and making its presence known when in need.

2.5 Information Retrieval Based Question Answer-
ing

Included in the features of Pyo is the ability to answer questions, which, sim-
ilar to what was described in section 2.4.3, can be implemented through prede-
fined rules, where there is a predefined answer for a given intent, or through the
corpus-based approach employing machine learning models. The route of the
rules was followed, but the latter was used initially. As it was developed and can
be a characteristic that further enhances the chatbot’s capabilities, the method for
doing so is explained in this section.

Jurafsky and Martin [2021] present a question answering model (figure 2.7)
based on IR that, as we have previously touched on, can be used to acquire similar
information in regards to the query of a user. The model comprises two stages:
the first stage, regarding the input of a user, returns relevant documents from
a collection (IR). In a second stage, possible spans, likely to clarify the question
of the user, are extracted from the relevant documents utilising a neural reading
comprehension algorithm (Extractive Question Answering (QA)).

Figure 2.7: IR-based QA model from Jurafsky and Martin [2021]

IR is defined by Jurafsky and Martin [2021] as “the field encompassing the
retrieval of all manner of media based on user information needs.”

The specific IR task displayed in the model is called ad-hoc retrieval. It takes
the query of a user and, based on relevance, returns an ordered set of documents
from a given collection [Guo et al., 2016].
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The documents with a higher relevance are then passed onto a neural al-
gorithm, where for a given question (q) of n tokens, and a passage (p) of m
tokens, computes the probability of each span being the answer, P(a|q, p) =
Pstart(as|q, p)Pend(ae|q, p), where as is the start of the span and ae is its end. Thus,
for each token pi in the passage, the probabilities of that given token being the
start and the answer’s end have to be computed.

Such a standard architecture is represented in figure 2.8. Based on the archi-
tecture of transformers described in section 2.6, the figure depicts a BERT encoder
[Devlin et al., 2019] that, given a query and a passage, returns an encoding token
embedding for each token pi in the passage.

Figure 2.8: Encoder Model using Bert for question answering from Jurafsky and
Martin [2021]

A linear layer is added and trained upon the fine-tuning phase to predict the
start and end positions of the span containing the answer. Additionally, two em-
beddings are added and learned in the fine-tuning phase, a span-start embedding
(S) and a span-end embedding (E). The span-start (equation 2.1) and span-end
(equation 2.2) probabilities, of each token pi returned by BERT, are then given by
the dot product between S and pi, and E and pi, respectively normalized by a
softmax on all the tokens in the passage [Jurafsky and Martin, 2021].

Pstarti =
exp(S · p′i)

∑j exp(S · pj)
(2.1)

Pendi =
exp(E · pi)

∑j exp(E · p′j)
(2.2)

Finally, the score of a span going from position i to position j is given by S · pi +
E · pj. The model prediction choice is the span with the highest score, attending
that j is higher than i.
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2.6 Transformers

In section 2.4.3, we have seen that language models can be used for genera-
tive approaches when generating the responses of a chatbot, and, in section 2.5,
for extracting answers from a set of relevant documents, or similarly to generate
questions. Two of the most used models (GPT-2 and BERT) are based on trans-
formers. This architecture is also responsible for many of the recent advances of
NLP. Therefore, we deemed valuable an explanation of what transformers are,
which we present in this section.

Vaswani et al. [2017a] first introduced the transformer neural network archi-
tecture in their paper “Attention Is All You Need”. This network operates using
encoder-decoder architectures likewise to recurrent neural networks with the dif-
ference that input sequences can be processed in parallel.

The encoder and decoder are composed of modules stacked on top of each
other multiple times, as described by the Nx in figure 2.9.

Figure 2.9: The transformer model architecture from Vaswani et al. [2017b]

Each encoder is broken down into two sub-layers, the self-attention layer, and
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the Feed Forward Neural Network layer.

The performance improvements transformers offer concentrate on the self-
attention mechanism. As the model processes each word, self-attention allows
it to look at other positions in the input sequence for clues that can help lead to
a better encoding of the word. Taking as an example a phrase we would like to
translate “John didn’t feel like working out as he was too tired”, self-attention is
what allows the model to associate “he” with “John”. The Feed Forward Neural
Network applied to all the attention vectors is used in practice to transform the
attention vectors into a form that is digestible by the next encoder/decoder block.

The decoder similarly contains both these layers, but with an extra attention
layer in between them that helps the decoder focus on relevant parts of the input
sentence.

Transformers adopt a form of semi-supervised learning, meaning that they
are pre-trained in an unsupervised manner with a large, unlabeled dataset and
then they are fine-tuned through supervised training for a downstream task, such
as QA.

Based on this Transformer architecture, there are two well-known language
models: the Generative Pre-trained Transformer (GPT) (1, 2, and 3) [Brown et al.,
2020; Radford et al., 2019] and the Bidirectional Encoder Representations from
Transformers (BERT) [Devlin et al., 2019].

Both models are pre-trained using unlabeled data and can be fine-tuned for
different NLP tasks. GPT is comprised solely of stacked decoder blocks from
the transformer architecture, whereas BERT is comprised only of encoder blocks.
However, the significant difference, which Devlin et al. [2019] consider “harmful
when applying fine-tuning based approaches to token-level tasks such as ques-
tion answering, where it is crucial to incorporate context from both directions”,
is that GPT is unidirectional, whilst BERT is a bidirectional encoder model.
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Chatbot Specifications

Using the acquired knowledge, a chatbot that assists introductory program-
ming students was developed. It uses Natural Language Processing (NLP) to
provide additional assistance quickly and on demand, enabling individualized
support that may not always be possible due to the large number of students, a
difficulty exacerbated by the online regime, or the “learn at your own pace” na-
ture of the course, which can mean the professor may not be available when the
student is completing the exercises.

This chapter describes the primary functionalities (section 3.1) of the imple-
mented system and the proposed architectures (section 3.2) throughout its imple-
mentation process, thus providing an overview so that implementation specifics
can be introduced in the following chapter (Chapter 4).

3.1 Functionalities

Recalling the main objective, Pyo was designed to assist introductory pro-
gramming students, particularly when completing exercises requiring the cre-
ation of an algorithm. Towards this goal specialized functionalities were devel-
oped as a means to answer the question “How does one provide assistance to
introductory programming students?”.

When stratergizing Pyo’s possible methods of assistance, there were three pri-
mary factors considered that could prevent a student from successfully complet-
ing an exercise:

• Inability to recall what and how the various introductory concepts are im-
plemented (e.g., variables, conditions, for loops).

• Incapacity of understanding and correcting errors presented in their algo-
rithms.

• Lack of understanding of what is necessary to complete an exercise.
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For each of this three points the functionalities referred to as concept defini-
tions, error guidance, and exercise assistance, were developed. In addition, at a
later stage of implementation, two secondary features were added: question sug-
gestions as a means of suggesting questions related to the concepts embedded in
the exercise, and hints for additional assistance with the exercises. Important
to note that only the first feature was available for all question types, whereas
the others were only available for exercises requiring the implementation of a
program, as they required information about the algorithm corresponding to the
exercise’s answer.

3.1.1 Concept Definitions

As stated in the background (section 2.1), one of the causes of difficulty is the
rise in cognitive load as tasks become more complex. This can be a hindrance for
novice programmers who lack a solid understanding of the concepts and hence
easily forget how to apply them. The concept definitions feature consists simply
of asking Pyo a question about a particular concept and receiving the response.
An example can be seen in figure 3.1 The response begins with an explanation
(figure 3.1a), followed by an illustration (figure 3.1b), and, if predefined, a list of
recommendations pertaining to the concept in question (figure 3.1c).

3.1.2 Error Guidance

When beginning the process of learning a subject, it is normal to make several
mistakes; programming is no different. Beginner programmers typically produce
a large number of flawed algorithms at first, and if their conceptual understand-
ing is not solid, moving on to more complex tasks that require them to produce
more complex solutions, can lead to frustration and a lack of motivation.

Typically, a programming editor contains error messages with relevant error-
related information, which novice programmers may find difficult to interpret.
Not only that, but the primary focus of Pyo is assisting students who speak Por-
tuguese, and those messages are typically sent in English. This issue is taken into
account by the RESPE platform, which already generates error messages that are
more easily comprehended and in Portuguese.

Despite the fact that the messages are presented in a more user-friendly for-
mat, some students still find it difficult to understand them. With these students
in mind, the “error guidance” functionality was developed.

By error guidance, it is meant that when a student submits code containing
syntax errors, Pyo suggests assistance in the form of multiple-choice questions.
Figure 3.3 depicts an example of a dialogue pertaining to this functionality.

Importantly, both this feature and the exercise assistance feature are initially
triggered. In the context of error guidance, Pyo is triggered when a student sub-
mits code containing an error; it then sends the student the message shown in
figure 3.2. The use of the functionality starts, however only if the student agrees
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(a) (b)

(c)

Figure 3.1: Example of the concept definitions functionality.

in participating in a dialog (figure 3.3a). Beginning the dialogue, the student is
prompted with a question on the same topic as the error they have committed,
after which they are presented with different options (figure 3.3b). The number
of questions is limited to a maximum of two so as not to loose the students’ at-
tention. At the conclusion of the question/s, an explanation with an emphasis on
the error’s specifics is provided.

In addition to providing an example of the error and an explanation of any
details the student may not be aware of, the questions and options are designed
to improve the student’s ability to analyze their own code.

Figure 3.2: Message suggesting error guidance.

29



Chapter 3

(a)

(b) (c)

Figure 3.3: Example of the error guidance functionality.

3.1.3 Exercise Assistance

The third main feature is named “exercise assistance”. It consists of prompt-
ing the student to arrange, in natural language, the components of a possible
answer’s skeleton. This assistance is intended to provide the student with an un-
derstanding of the concepts involved in the exercise without revealing the exact
Python syntax for implementing them.

As mentioned in the explanation of the error guidance feature, this function-
ality is also triggered. This trigger is sent 2 minutes after the student entered an
exercise involving the development of an algorithm, to which it then sends the
student the message displayed on figure 3.4. This requirement that a minimum
of two minutes must have passed before a student may request assistance on an
exercise is intended to prompt the student to first think and analyse the exercise.

When the student requests assistance, they are prompt to organize a scram-
bled list of the constituent parts of a potential answer. In the example shown in
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Figure 3.4: Message suggesting exercise assistance.

figure 3.5a, the green buttons at the bottom of the image represent the answer’s
components, and the numbers they contain indicate their selection order. Once
the student submits their response, the chatbot provides feedback and the correct
skeleton (figure 3.5b).

(a) (b)

Figure 3.5: Example of the exercise assistance functionality.

3.1.4 Question Suggestions and Hints

Question suggestions and hints are more accurately described as secondary
features, as they do not serve a primary function. Regarding the suggestion of
questions, when prompt to, as displayed on figure 3.6, Pyo returns a list of ques-
tions pertaining to the implementation of all the concepts involved in that partic-
ular exercise (e.g., “How to conduct concatenation?” and “How to declare a for
loop?”).

The second mentioned functionality refers to the return of predefined small
hints regarding previously solved similar exercises and small commonly forgot-
ten details observed in previous student submissions of previous course of the
platform (figure 3.7).
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Figure 3.6

Figure 3.7

3.2 Chatbot Architecture

This section presents two diagrams as to understand the various components
of Pyo, how they connect, and the differences between the initial (figure 3.8) and
final approaches (figure 3.9). The tools and resources (documentation) mentioned
in this section will be further explained on section 4.1.

The architectures have two common aspects:

• The Natural Language Understanding (NLU) and dialogue management
processes, which are responsible for extracting pertinent information from
the student’s message and predicting the next action, respectively.The Rasa
platform was used to manage and implement both of these procedures.

• The block of the Exercise Assistance functionality, in which the abstract
syntax tree of the answer to the exercise, provided by the platform, is exam-
ined with the intent of translating each algorithmic component into natural
language and returning the list to the student. This was achieved using the
Python library AST.

The differences, however, lie in the initially projected approach of the concept
definitions and error guidance versus the final implementation, as well as the
addition of two secondary features.

Regarding the initial architecture (figure 3.8):
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• The Concept Definitions functionality was initially implemented with the
intention of automating the retrieval of the answer to a student’s question
from a collection of documents using information retrieval-based question
answering. For information retrieval, the Python library Whoosh was used,
while a Portuguese Question Answering (QA) language model was em-
ployed for question answering.

• The Error Guidance was originally idealized to use question generation,
using a Portuguese Question Generation (QG) language model on a set of
documents, in an effort to automate this process.

Figure 3.8: Initial proposed architecture overview diagram for the implementa-
tion of Pyo.

As will be explained in the implementation chapter, the final strategy took a
different route. In regards to the final architecture (figure 3.9):

• Both Concept Definitions and Error Guidance were developed using a
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more hard-coded method, in which each has its own collection of docu-
ments and the definition and set of questions are pre-defined based on the
intent or error information.

• Similarly to the Exercise Assistance feature, the Question Suggestion func-
tionality performs an analysis of the syntax tree of the exercise’s answer.
The concepts pertinent to the solution are extracted during analysis and
used to form questions in natural language.

• Given the exercise’s id (sent by the RESPE platform), the Hints functionality
sends the student a predefined hint.

Figure 3.9: Final proposed architecture overview diagram for the implementation
of Pyo.
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Implementation

This chapter is intended to introduce the reader to the development strategy
according to the functionalities and architecture proposed on the previous chap-
ter. The following sections will describe the resources and tools used throughout
the implementation of Pyo (section 4.1), the approaches used to implement the
functionalities (section 4.2), the pipeline employed (section 4.3), and the front-
end development (section 4.4).

4.1 Resources and Tools

This section discusses the tools and resources used to implement Pyo. Begin-
ning with an explanation of the framework’s primary characteristics, and con-
cluding with the language model and Python libraries used throughout the im-
plementation of the agent.

4.1.1 Rasa

Rasa was selected as the framework for a number of reasons, including its
open-source nature, the potential for rapid development of context assistants,
and its high degree of customizability. As it is a fundamental aspect of the work
developed, the explanation of its underlying general concepts and mechanisms
is provided in this section. Figure 4.1 demonstrates how its components connect
with each other.

General Concepts

In regards to this framework there are general concept that will be mentioned
further ahead, which are intents, entities, slots, forms, custom actions, responses,
stories, and rules.

Intents When developing a chatbot, it is necessary to specify all the possible in-
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Figure 4.1: Rasa components diagram.

tentions of a user’s message and provide training examples for them. Re-
garding Pyo, examples of intentions include greeting, saying goodbye, re-
questing the explanation of a conditional, and requesting assistance. An
extensive list comprising all of the intents defined can be found in Apendix
A as well as their descriptions. Figure 4.2 depicts an example of training
data for an intent regarding the concatenation concept.

- intent: ask_question_var_strings_concat
examples:|

- como concatenar
- o que é a concatenção
- me dá um exemplo de concatenação
- como se juntam dois textos
- que operador se usa para uma concatenação
- como junto duas frases

Figure 4.2: Example of training data for an intent.

Entities Entities are structured pieces of information that a chatbot can extract
from the users’ input. Such information can help the assistant comprehend-
ing the question and utilizing the requested information in a particular set-
ting. Figure 4.3 presents a short example of an ask_definition intent whose
training examples contain the entity wanted_concept.
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- intent: ask_definition
examples: |
- o que é uma [variavel](wanted_(concept)?
- o que significa [concatenacao](wanted_(concept)
- me diz como declarar uma [função](wanted_(concept)?
- ...

Figure 4.3: Example of how the entities are inserted into the training data.

The entity would allow the agent to know what concept the user is refer-
ring to without needing to specify all possible concepts, provided that the
training data is sufficient for the chatbot to identify it correctly.The initial
method necessitated the identification of the entity depicted in the image,
whereas the final method did not require the extraction of any entity.

Slots In Rasa, slots represent long-term conversational memory. They store in-
formation that the developer may need in the future. They can be used to
control the flow of a conversation, or accessed by a custom action.

Slots differ from entities in that they store persistent information and can be
used to store data even if no entity has been detected, such as by a custom
action or when a specific intent is extracted. Despite this, assigning an entity
value to a slot is extremely common.

This component is not represented in figure 4.1 as it is not linked to any
other component specifically.

Forms In a variety of situations, it is advantageous to collect information before
acting on behalf of a user. For instance, when we ask a student a question for
the functionality of “error guidance”, Rasa must know that the next input is
their response and, unless otherwise specified, ignore the extracted intent.
We accomplish this by activating a form that deactivates once a student
submits an answer.

Custom Actions Rasa offers a feature referred to as “Custom Action” that trig-
gers a custom Python function instead of a response text.

Using the scenario in which a student requests the definition of a concept,
as an illustration, suppose we had the concept but needed to retrieve the
answer from a database. This would require more than simply returning a
response. Therefore code needs to be executed on behalf of the users, hence
the need for custom actions.

Responses Responses are the messages we want the chatbot to send to the user
in response to a particular intent. In figure 4.4, the response utter_goodbye
contains two options that are selected at random when used. Worthy to
note that the name convention of the responses is utter_name.

Stories Stories serve as training data to instruct the assistant on its next steps.
They are examples of conversational flows that will be taught to the chatbot
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responses:
utter_goodbye:

- text:"Goodbye :("
- text:"Sad to see you go :("

Figure 4.4: Example of responses.

so that it can learn and apply them to unseen flows. Figure 4.5 depicts an
example of a conversation’s flow.

stories:
- story:definition of variable

steps:
- intent:ask_variable_definition
- action:utter_variable_definition
- action:utter_anything_else
- or:

- intent:deny
- intent:goodbye

- action:utter_goodbye

Figure 4.5: Example of a story.

Rules Rules constitute another type of training data used to train the assistant’s
dialogue management model. Rules provide a means of describing short
conversations that should always proceed in the same manner.

The primary distinction between a rule and a story is that a story can serve
as a learning example, whereas a rule is a pattern the assistant must follow.

Figure 4.6 presents an example of a simple rule, where given the intent greet,
the chatbot must always answer with a utter_greet response.

rules:
- rule:Greeting Rule

steps:
-intent:greet
- action:utter_greet

Figure 4.6: Example of a rule.
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NLU and Dialog Policies

The conversational agent is generally driven by two mechanisms contained
within Rasa. The mechanisms of Natural Language Understanding (NLU) and
Dialog Policies.

NLU In the context of Rasa, when talking about NLU, we typically referring
to the portion of the system that accepts raw text and outputs machine-
readable information. This typically denotes that the component accepts
text and converts it into intents and entities.

This can be rule-based, wherein we might employ a Regex or a neural net-
work. Rasa includes a neural network architecture called DIET, which is
a multitasking architecture for classifying intent and recognizing entities
based on the examples provided [Bunk et al., 2020]. The architecture is
based on a transformer that is shared for both tasks.

Rule-based approaches are typically more lightweight and necessitate
greater domain expertise. Neural approaches typically require more train-
ing data and processing power, but they are better at handling novel situa-
tions.

Dialog Policies The component of the system that predicts the next course of
action is referred to as the dialogue policy. Sometimes, in order to determine
the next action, it is necessary to be aware of the entire conversation thus far.

Again, policies may be based on rules or neural methods. Rasa enables the
definition of lightweight rules for determining what must occur. Rasa also
provides a neural network called TED that selects the next best turn based
on the current conversation and all the conversations it was trained on.

It contains three different dialog policies:

• The RulePolicy manages interactions that correspond to predefined
rule patterns.

• The MemoizationPolicy examines the current conversation to deter-
mine if it matches any of the scenarios in the training data. If so, it will
predict the subsequent move of the matching story.

• The TEDPolicy predicts the next-best action using machine learning.

These policies predict the next action in parallel, and the policy with the
highest degree of certainty determines the subsequent action. When two
policies have equal confidence, Rasa has a mechanism for prioritizing the
decision. Policy priority determines how an assistant makes decisions when
multiple policies accurately predict the next action.

Priority by default in Rasa is:

• 6 for the RulePolicy

• 3 for the MemoizationPolicy

• 1 for the TEDPolicy
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RulePolicy and MemoizationPolicy have a higher priority due to the fact
that they are directly based on designer input. The added rules and stories
serve as examples of how conversations should proceed. The TEDPolicy
is a machine-learning-based policy that will attempt to generalize so that it
can handle conversations not defined in the training data.

4.1.2 Documentation

Throughout the explanation of the functionalities, the term documentation
appears multiple times; therefore, it is necessary to provide an explanation of
what it entails. Initially, when using the term documentation, we were refer-
ring to a Word book draft written by the developer of the RESPE platform. The
document contained information regarding variables, conditions, and the differ-
ent types of Python errors. Given that the course also included repetitions and
functions, information from a source suggested by the original documentation’s
author was added20.

The existence of this documentation was what originally inspired the search
for language models regarding Question Answering (QA) and Question Genera-
tion (QG).

4.1.3 BERT Language Models

From the beginning of the implementation of Pyo, it was clear that it would
need to address any introductory concept questions a student might have regard-
ing the course offered by the RESPE platform. Early on in the development of
the chatbot, a BERT-QA language model was employed. Although it was not
included in the final product, as we will see in the following chapter, it still rep-
resents a significant step to be considered in future work.

At the beginning of the implementation, the creator of the RESPE platform
provided us with a document containing an introduction to the Python program-
ming language capable of answering multiple questions regarding introductory
concepts. With this in mind an Extractive Question Answering model, specifi-
cally a language model, was sought to automatically extract, from the document,
the answer to the questions of the students.

The choice of model was made based on three main reasons: first, because it
is based on a state-of-the-art architecture (BERT/transformer), second, because it
is easy to use as it is available on the Hugging Face portal21, which allows access
through Python by utilizing the transformers22 library, and third because it is
dedicated exclusively to the Portuguese language.

The research on question answering models led us to the “Portuguese BERT
base cased QA (Question Answering), finetuned on the Portuguese version of the

20https://algoritmosempython.com.br
21http://huggingface.co
22http://huggingface.co/docs/transformers/index
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Stanford Question Answer Dataset (SQUAD) v1.1”23 [Guillou, 2021], referred to
throughout this thesis as BERT-QA. For reference, SQUAD is a dataset consisting
of questions asked by crowdworkers in a set of Wikipedia articles. A Portuguese
version is available and was published by the group Deep Learning Brasil24.

This model is the result of fine-tuning the pre-trained Portuguese BERTimbau
Base language model (“bert-base-portuguese-cased”) on the Portuguese version
of the SQUAD dataset.

Important to note that the model is applied to a particular type of QA, Extrac-
tive QA, and, as discussed in section 2.5, it extracts a potential answer from a text
segment. It cannot extract the answer from lengthy documents, so the documen-
tation had to be divided into multiple files, each based on the subject matter of
the information they contained, before the method outlined in section 2.5 could
be applied; hence the need for an Information Retrieval (IR) library, which we
will discuss next.

Another attempted approach was in regards of the “error guidance” func-
tionality. As we had on out hands useful documentation the thought pro-
cess passed by the automation of the generation of questions using a language
model. For this purpose we found the “bert2bert_shared-portuguese-question-
generation model”25, also fine-tuned on the pre-trained Portuguese BERTimbau
Base language model, referred to in this dissertation as BERT-QG. Although the
model was tested, its use was abandoned at the beginning of the implementation
and as further discussion on the implementation of the functionalities was con-
ducted. The documentation lacked information regarding syntax errors, and a
further modification did not justify the use of the model due to the preference for
multiple-choice questions. This preference was based on the student’s ability to
reflect on the various options and make the connection between them and their
flawed code.

4.1.4 Whoosh

Whoosh26 is a Python library that indexes and searches a collection of docu-
ments, facilitating the implementation of ad-hoc information retrieval. Its pur-
pose was to retrieve the most pertinent document pertaining to the concept ref-
erenced by the student’s query. This document would then be forwarded to the
BERT-QA model discussed previously.

Throughout the creation of the index, the search based on a query, and the
results themselves, it is important to keep in mind the desired end result when
utilizing Whoosh. Regarding the creation of an index, the following steps are
taken:

1. Designing a schema – The schema lists the fields of the index. A field is a
23http://huggingface.co/pierreguillou/bert-base-cased-squad-v1.1-portuguese
24http://www.deeplearningbrasil.com.br
25http://huggingface.co/mrm8488/bert2bert_shared-portuguese-question-generation
26http://whoosh.readthedocs.io/en/latest/
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piece of information associated with each document in the index, such as
the path or text content of the document. It is also required, when creating
a Schema object, to map the field names to their respective types, which
determines what is indexed and searchable. Whoosh includes several pre-
defined field types, including ID, KEYWORD (space or comma separated
keywords), TEXT, NUMERIC, BOOLEAN, and DATE. For TEXT fields,
Whoosh requires an analyzer, which is a function or callable class that ac-
cepts a unicode string and returns a generator of tokens, which may include
regex tokenizers, lowercase filters, stemmers, and stop lists.

2. Creating an index and adding the documents – The remainder of the pro-
cess consists of creating an index and adding documents to said index,
with each document containing the initially created fields; therefore, if the
schema is composed of path and text content, we must specify the docu-
ment’s path and its content for each document.

After the index has been created, one can proceed to the search phase. A
simple “searcher” requires the index, the field we wish to search on (for example,
the document’s content), and the query terms.

Whoosh enables the development of more sophisticated “searchers” with the
ability to modify standard aspects and add additional features for manipulating
search results. The selection of scoring algorithms is an illustration of the modifi-
cation of standard features. Typically, result document lists are ordered by score.
Its scoring module implements a variety of scoring algorithms, such as BM25F
and TF-IDF.

Once searched a Result object is returned which acts like a list of the matched
documents. It can be used to retrieve and display the stored fields of each docu-
ment hit. Given the search results, Whoosh offers additional features for manip-
ulating the search results:

• Sorting results according to the value of an indexed field rather than by
relevance.

• Highlighting the search terms in excerpts from the original documents. For
example, rather than the entire document, one could use a context frag-
menter, which finds matched terms and then pulls in surrounding text to
form fragments, or a sentence fragmenter, which attempts to fragment the
text based on sentence punctuation.

• Expanding the search terms based on the most relevant documents discov-
ered.

• Paginating the results (e.g. “Showing results 1-20, page 1 of 4”).
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4.1.5 AST

The ast27 python library module allows the conversion of Python code into
Abstract Syntax Tree (AST), where each node of an AST is represented by a differ-
ent Python class. This library allows the analysis of code in which by iterating the
tree we are able to find whether, for instance, a conditional, variable, repetition,
and function is being declared. As explained ahead in greater detail, this library
is essential for the implementation of the exercise assistance functionality.

4.2 Implementation of the Functionalities

The purpose of this section is to first explain the further modifications made
to the collection of documents, and the implementation process of the function-
alities explained on section 3.1

4.2.1 Documentation Alterations

Regarding the final implementation of “concept definitions” and “exercise
guidance”, two new sets of documents were compiled for each of the aforemen-
tioned functionalities. This because the path chosen was a more hard-coded ap-
proach.

Introductory Concept Definitions This collection of documents contains infor-
mation on the concepts mentioned and required for resolving the exercises
on the RESPE platform. The data was assembled by adapting and complet-
ing the initially provided information with details from a source suggested
by the owner of RESPE.

In most instances, the explanations on each concept consists of:

• Definition of the referenced term

• Illustration and its description

• Suggestions of related questions

An example of the organization of the files containing information about
variable concepts is shown below.

27https://docs.python.org/3/library/ast.html
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ConceptDefinitions

variables

arrays.txt

bools.txt

floats.txt

ints.txt

strings.txt

variables_general.txt

variable_types.txt

Error Guidance Similar to the approach taken for the feature utilizing the previ-
ously described collection of documents, a hard-coded approach was taken
regarding this feature, with the questions, choices, answers, and explana-
tions predefined.

Below is an example of the structure of files containing data we want to
return regarding the assistance of an error.

ErrorGuidance

Função

faltaDoisPontos.txt

faltaParentesis.txt

faltaVirgula.txt

Regarding the naming convention, the chosen method requires that the
folder containing the files be named based on the type of error, whether
it was related to variables, functions, loops, or conditionals. Furthermore,
each of the files must correspond to the error’s exact simplified error mes-
sage generated by the platform. Both the type and message are transmitted
to Pyo by RESPE.

Each error message is accompanied by one or two multiple-choice ques-
tions. Each block regarding a question is composed by:

• Question statement

• Choices

• Answer

• Explanation when the given answer was incorrect

• Final explanation with a greater emphasis on the error’s cause
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The final point is presented to the student only after each question has been
posed. Figure 4.7 depicts an example of a file containing a question, its
alternatives, the correct response, and an explanation with an emphasis on
the error’s cause, for an attempt to declare a variable with two equal signs.

Pergunta:O seu erro parece ser na declaração de uma variável,
digamos que queriamos declara a variavel var1, com a string Olá,
como o faria?

Opções:var1 = "Olá"<sep>var1: "Olá"<sep>var2 == "Olá"

Resposta:var1 = "Olá"

Checkpoint:Por vezes pode haver uma certa confusão entre as
variáveis e as condições, no que toca às igualdades. Nas vari-
aveis apenas uma igualade é usada! Olhando agora para o seu
algoritmos, veja se talvez esse tenha sido o seu erro.

Figure 4.7: File containing the information regarding the syntax error of using
two equal signs to declare a variable.

4.2.2 Concept Definitions

The concept definitions functionality was initially implemented using Infor-
mation Retrieval Based Questions Answering. Although it was successfully im-
plemented, the low level of accuracy and the modifications the documentation
required to increase it did not justify its use. The final version of the implemen-
tation made use of a more hard-coded method. Both approaches are explained
here, as the initial approach remains a vital component of future work despite not
being chosen (section 6.5).

Initial Approach

In addition to Rasa, the initial strategy used the BERT-QA model and the
Whoosh library described in the preceding section. An example of the steps the
system would take to extract and return the answer are depicted in figure 4.8:

1. Intent and entity extraction – Given this method, it was only necessary to
define one intent, ask_concept_definition for this feature, for which multiple
training examples were provided. If asked “What is the syntax of an if?”, if
correct, the system would extract the mentioned intent as well as a defined
entity named wanted_concept.
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Figure 4.8: Concept definition feature’s procedure (initial method).

2. Rule mapping – Because the interaction is straightforward, i.e., given a
query about a concept, we would always want to return its definition, there-
fore, Rasa would apply the RulePolicy, specifically the rule “Search concept
definition”, which would then move to the action action_get_document.

3. Information Retrieval – The custom action action_get_document was re-
sponsible for IR. It would take the initially extracted entity “if” and use
Whoosh to appoint the most relevant document, “conditionals.txt”.

4. Extractive Question Answering – The preceding custom action would for-
ward the document to a subsequent action, action_get_answer, which would
apply the BERT-QA model using the student’s query and the relevant doc-
ument as parameters. Then the span with the highest probability of being
the answer would be returned to the student, in the case of the example it
would simply return if variable operator variable:.

This approach had an advantage over the second one because it automated
the process of adding new information. As long as Rasa could accurately predict
the intent based on its training data and the document contained information on
the subject, it would not be required to identify all the possible concepts, in the
form of intents, the student could ask about.

On the other hand there were a few reasons why this approach had to be put
aside:
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• The returned response would be the span of text with the highest prob-
ability percentage, but regarding novice programmers, a straightforward
answer without exemplification or context would not be optimal.

• The model was insufficiently accurate to be presented to real introductory
programming students. In contrast to Whoosh, which was accurate when
returning the document containing the answer, the model’s inaccuracy was
considerable regarding queries containing Python-specific words that are
English by nature. Nonetheless, modifications were made to the documents
to enhance the performance of the model, but the numerous changes did
not justify the possibility of the model still returning the incorrect answer
or favoring this approach over a rule-based method.

Table 4.1 displays the number of incorrect and accurate predictions made by
the BERT-QA model in response to 78 test queries requesting explanations and
illustrations of conditionals . The test consisted of determining whether the span
predicted by the model was contained within the phrase deemed to contain the
answer. Approximately 68% of the 78 prompted questions were incorrect.

Correct Incorrect
if 14 12

else 5 21
elif 6 20

total 25 53

Table 4.1: Results of BERT-QA model accuracy testing regarding conditional
queries.

Table 4.2 illustrates examples of incorrect and correct answers regarding the
syntax of the different types of conditions.

Final Approach

Given the problems with the previous method, a more hard-coded strategy
was adopted, with the advantage that the returned answer would be transmitted
in a more controlled manner.

Rasa’s objective, given a concept-related user utterance, is to extract the user’s
specific intent regarding the concept. Then, a custom action uses the intent’s
name as the key of a predefined dictionary whose value is the answer’s path.
Examples of intents include:

• ask_opearators_arithmetic

• ask_loop_for

• ask_conditional_elif

• ask_variables_ints
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Question Answer Status
if Qual a sintaxe das

instruções if?
pela palavra-chave "else"
seguida por dois pontos (:)

Incorrect

if Qual a sintaxe das
condicionais if?

palavra-chave "if", duas var-
iáveis para comparação, o oper-
ador dessa comparação, e final-
izando com dois pontos (:)

Correct

else Qual a sintaxe de
um else?

pela palavra-chave "if" Incorrect

else sintaxe instrução
else?

pela palavra-chave "else"
seguida por dois pontos (:)

Correct

elif Qual a sintaxe de
uma condicional
elif?

pela palavra-chave "else"
seguida por dois pontos

Incorrect

elif Qual a sintaxe
de uma instrução
elif?

dada pela palavra-chave "elif",
duas variáveis para compara-
ção, o operador dessa compara-
ção, e finalizando com dois pon-
tos (:)

Correct

Table 4.2: Examples of correct and incorrect answers given by the BERT-QA
model.

Figure 4.9 depicts the system procedure of the “concept definitions” feature:

1. Intent extraction – Rasa runs the message through its pipeline, resulting
in an extraction of intent, in this case, the specific ask_conditional_if intent,
when given the same example as the initial approach, e.g., a student asks,
“What is the syntax of an if”. As we are not using the BERT-QA model, the
Whoosh library serves us no purpose, therefore no entities are required as
we do not have to extract any keyword to pass to Whoosh.

2. Rule mapping – As with the implementation of all features, Rasa applies
the RulePolicy, in this case the rule “Search definition of conditional if”, and
then executes the custom action action_get_answer. Herein lies one of the
most significant disadvantages of this method, as not only multiple intents
had to be declared to correspond to the multiple concepts the student could
ask about, but also a rule had to be specified for each intent, even though
the action called is common to all of them.

3. Answer retrieval – The action action_get_answer is then intended to retrieve
the file path associated with the intent and return its contents. These files
constitute the previously described collection of introductory concept def-
initions. The intent’s name serves as the key to a dictionary containing the
predefined path as its value.

Control over what is sent to the user is a big advantage of this approach, but
having chosen this hard-coded path has a significant disadvantage in that spe-
cific data must be defined when adding new information, such as the definition
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Figure 4.9: Concept definition feature’s procedure (final method).

of the intent, its training examples, the creation of a rule pointing to the action
action_get_answer, and the addition of a new key to the paths dictionary pointing
to the desired file.

4.2.3 Error Guidance

As mentioned previously on section 3.1.2 this functionality is triggered when a
student submits code containing syntax errors. The platform inserts into the con-
versation an intent EXTERNAL_ERROR_MESSAGE with the entities error_type
and error_message which are programmed to fill identically-named slots to be later
accessed. The error_type defines the folder and the error_message the file where
the wanted information is contained, as explained in the previous section for the
Error Guidance collection. The result of this trigger is a message suggesting as-
sistance.

Figure 4.10a depicts the system’s procedure for initiating error assistance,
whereas figure 4.10b depicts the examination of the answer.

The starting procedure for the assistance is as follows:

1. Intent extraction – Given the example, Rasa takes the “yes” message input
and proceeds to predict the intent affirm.

2. Rule mapping – The intent is then be mapped to the rule “Student
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(a) Error guidance feature’s initial-
ization procedure.

(b) Error guidance answer verification pro-
cedure.

Figure 4.10: Error guidance feature’s procedure.

wants error assistance”. This is because the message triggered by the plat-
form corresponds to the utter_start_error_guidance, which is the first step
of the defined rule, and as the student responded positively to the sug-
gestion, it matches to the said rule. The following steps of the rule are
the custom action action_start_error_guidance and the activation of the form
form_error_assistance_answer, which informs Rasa that the user’s subsequent
message corresponds to the answer and not another intent. Notable that a
message informing the student that the “stop” command terminates the in-
teraction is sent.

3. Question retrieval – The objective of the action action_start_error_guidance
is to use the slots error_type and error_message to locate the file containing
the guidance’s specifics. The data is then organized as required, sending
the question statement and answer options to the student and storing the
response along with the subsequent data in a slot.

For checking the answer and, if defined, sending a second question the proce-
dure is the following:

1. Answer acquirement – The next input provided by the student after
activating the form form_error_assistance_answer is interpreted as the stu-
dent’s response, which can be provided via a button click or in text for-
mat. Upon retrieving the answer, the form is stopped and the action ac-
tion_error_assistance _check_answer is predicted as the next action when ap-
plying its corresponding rule.
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2. Answer verification – As the answer is passed to the custom action, the
slot, where the real answer was stored on, is retrieved and then compared
to the answer provided by the student. If the answer is correct, it sends a
predefined motivational message; otherwise, it sends an explanation of the
differences between the choices. If there is a second question, the function is
also responsible for delivering the question and re-starting the form, which
will then trigger this same rule “Check error assistance answer”.

4.2.4 Exercise Assistance

As touched on in section 3.1.3, this feature is not accessible until two minutes
after the student has entered a programming exercise. By inserting an external
intent EXTERNAL_EXERCISE_INFO with the entity code_answer and ex_id onto
the conversation, a message will be triggered after the specified time to inform
the student that the functionality is now available. The first entity carries the
code for a solution to the exercise, while the second stores the id of the exercise.
When Rasa detects it, it stores the information in slot so that it can be retrieved
later in the conversation.

When the student requests the assistance, a few explanation messages are re-
turned, followed by buttons containing the answer components. After the stu-
dent’s response, whether correct or incorrect, the ordered solution is displayed.

Figure 4.11a depicts the system’s procedure for initiating exercise assistance,
whereas figure 4.11b depicts the examination of the answer.

The starting procedure for the assistance is as follows:

1. Intent extraction – The student initially receives a message proposing help
that instructs them to say help me if they need assistance. The procedure,
therefore, begins when the intent ask_exercise_assistance is predicted.

2. Rule mapping – In accordance with the rule “Student wants ex-
ercise assistant”, the assistant predicts the execution of the ac-
tion action_exercise_assistance_concets_order followed by the action
form_exercise_assistance_answer, which activates the form and notifies
the chatbot that the next input is an answer.

3. Concepts – The purpose of the action ac-
tion_exercise_assistance_concepts_order is to retrieve the answer code
previously stored in a slot and run it through another function that iterates
its AST, converted using the previously mentioned ast library, and checks
for the use of concepts including inputs, variables, functions, conversion
functions, types of variables, various types of conditionals, and repetitions.
This enables us to pass it the answer code passed by RESPE to Pyo,
extract its components using ast, and generate the buttons without having
to pre-define the pieces for the student to order for each exercise. The
unshuffled buttons are stored in another slots, while a shuffled version is

51



Chapter 4

(a) Exercise assistance feature’s initial-
ization procedure.

(b) Exercise assistance answer verification
procedure.

Figure 4.11: Exercise guidance feature’s procedure.

Code Elements
var1 = "Olá " Declaração de variável COM texto (string)
var2 = input() Declaração de variável COM dado do teclado
concat = var1 + var2 Declaração de variável COM concatenação de

variáveis
print(concat) Impressão DE valor de variável

Table 4.3: Example of algorithm translated into natural language phrases.

sent to the student. An example of an algorithm translated into natural
language pieces is demonstrated on table 4.3.

The procedure for validating the response is nearly identical to that described
in the error guidance section, but now, the answer is provided by selecting the
buttons in the order the student believes to be correct. The platform then stores
the button’s text in an array and passes it to Rasa as the answer. The agent
predicts action_error_assistance_check_answer based on the rule policy, which com-
pares the answer array to the one stored in the slot.

4.2.5 Question Suggestions and Hints

Regarding question suggestions, when the agent predicts the intent
ask_suggestions it applies the RulePolicy, predicting and returning the custom ac-
tion action_return_suggestions. This custom action utilizes the ast library to extract
the concepts presented on the answer code, which is stored in a slot, and gener-
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ates natural language questions using the same method as the one used for the
“exercise assistance” functionality. It analyses the abstract syntactic tree of the al-
gorithm corresponding to the answer and extracts the concepts involved. Finally,
it transforms the concepts into questions. Examples are:

• What is an input?

• How do I convert a String to Integer?

• How to a conduct a subtraction?

In respect to the hints/tips feature, responses containing messages with simple
tips were generated for various exercises. Upon detecting the intent ask_hint, the
RulePolicy is similarly applied, and the action action_return_hint is returned. This
action retrieves the exercise’s id from the slot ex_id and returns the predefined
response with the id as its name.

4.3 Pipeline

Initially, as described in section 4.2.2, two distinct approaches were utilized,
each with its own pipeline (figures 4.12 and 4.13).

For each pipeline, the types of components are the same:

• Tokenizer

• Featurizers

• Intent Classifier

• Entity Extractor

The difference lies in the choice of the tokenizer and the featurizers:

Tokenizer As an entity needed to be extracted, both its position and syntactic
function were essential. Consequently, a more Portuguese-centric strat-
egy was required. To accomplish this, the spaCy structures needed to be
initialized using the Poruguese model “pt_core_news_md”28, upon which
all subsequent spaCy components depended. This was used in the initial
method, which employed a spaCy tokenizer. On the final approach, how-
ever, since only the intent is required, a simple white space tokenizer was
used.

Featurizers As already mentioned, when extracting features, the initial method
took a more entity-aware approach, and as a result, it utilized additional
featurizers that the final method did not. The supplementary characteristics
were:

28https://spacy.io/models/pt
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pipeline:
- name: SpacyNLP

model: "pt_core_news_md"
case_sensitive: False

- name: SpacyTokenizer
- name: SpacyFeaturizer
- name: RegexFeaturizer
- name: LexicalSyntacticFeaturizer

"features": [
[ ’BOS’, ’EOS’, ’pos’],

]
- name: CountVectorsFeaturizer
- name: CountVectorsFeaturizer

analyzer: char_wb
min_ngram: 1
max_ngram: 4

- name: DIETClassifier
epochs: 100
constrain_similarities: true

- name: EntitySynonymMapper
- name: FallbackClassifier

threshold: 0.65
ambiguity_threshold: 0.1

Figure 4.12: Pipeline utilized on the initial version of Pyo.

pipeline:
- name: WhitespaceTokenizer
- name: RegexFeaturizer
- name: CountVectorsFeaturizer
- name: CountVectorsFeaturizer

analyzer: char_wb
min_ngram: 1
max_ngram: 4

- name: DIETClassifier
epochs: 100
constrain_similarities: true

- name: FallbackClassifier
threshold: 0.65
ambiguity_threshold: 0.1

Figure 4.13: Pipeline utilized on the final version of Pyo

• SpacyFeaturizer - Unlike the following featurizers, this feature extrac-
tor generates dense features for entity extraction and intent classifica-
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tion using the spaCy featurizer.

• LexicalSyntacticFeaturizer - This feature extractor generates sparse
features for entity extraction. It moves a sliding window over each to-
ken in the user message and generates configuration-specific features.
The configuration chosen was, BOS, EOS, and pos. The first determines
whether the token is at the beginning of the phrase, the second whether
it is at the end, and the third retrieves the token’s Part-of-Speech tag.

Due to the use of entities in the initial strategy for concept definitions, a
more cautious pipeline was required regarding entity extraction. However,
since the final strategy did not require entity extraction, a more straightfor-
ward and lightweight pipeline with the same efficiency was chosen.

In addition, the following characteristics are shared and adopted by the sec-
ond strategy:

• RegexFeaturizer This featurizer creates attributes for use in entity and
intent classification. During training, the RegexFeaturizer generates a
list of regular expressions defined in the training data. For each regex,
a feature will be set indicating whether this expression was found in
the user message or not. All features will eventually be fed to an in-
tent classifier/entity extractor to facilitate classification (assuming the
classifier has learned during the training phase that a particular set of
features indicates a particular intent/entity).

• CountVectorsFeaturizer Creates classification features for intent. Us-
ing sklearn’s CountVectorizer29, this method produces a bag-of-words
representation of the user’s message, intent, and response.

Intent and Entity Classifier Rasa provides distinct classifiers for entity classifi-
cation and intent classification, for which its multi-task architecture Dual
Intent and Entity Transformer (DIET) was selected. It outputs entities, in-
tents, and the ranking of the intents based on dense and/or sparse features.

Fallback Classifier If the NLU intent classification scores are ambiguous, this
classifier assigns the message the intent “nlu fallback”. The confidence
value is set to match the fallback threshold value. In response to this intent
there was created a rule in which Pyo returns an apology message followed
by the suggestion of questions.

4.4 Front End

Even though it is not the project’s primary focus, the chatbot’s user interface
is crucial because it serves as the conduit between users and Pyo. The icon of a
bird represents the chatbot, following the concept of Rasa itself, a perfect fit as
its name is pronounced as per the Portuguese word “pio”, a word used when

29https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.
text.CountVectorizer.html
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imitating the sound of birds. During research on chatbot user interfaces, a free-
to-use image30 was discovered and selected for the icon of Pyo, which is depicted
at the bottom right of figure 4.14.

Figure 4.14: Pyo’s pop-up for awareness of its existance.

On figure 4.14 we are focusing on Pyo’s appearance when a student enters an
exercise, which displays a balloon for 10 seconds to indicate its existence, while
figure 4.15 depicts the appearance of the chat window when the student initi-
ates communication with the chatbot. Initially, as represented in the image, the
student is presented with an introductory message containing example questions
that describe the general purpose of the chatbot.

As the chatbot was integrated in the RESPE platform it made use of the same
technologies, meaning angular, HTML, CSS, and TypeScript. The front end and
back end of Pyo was conducted using simple http requests as Rasa already pro-
vides a endpoint (http://<host>:<port>/webhooks/rest/webhook) to send and
receive messages.

30https://github.com/JiteshGaikwad/Chatbot-Widget/blob/main/static/img/
botAvatar.png
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Implementation

Figure 4.15: Pyo’s conversation window and introductory message.
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Evaluation and Discussion

A technological solution, regardless of how complete and ready it may ap-
pear, is only valuable if it achieves its goals when used by its intended audience.
In order to validate the implemented agent, Pyo was exposed to real RESPE plat-
form students. In this section the evaluation process will be explained and its
results discussed.

5.1 Methodology

An online introductory programming course offered by the RESPE platform
was advertised on the Pernambuco Federal Institute of Education’s, a Brazilian
institution of higher education, website to evaluate Pyo in a real-world setting.
The course spanned two months and 40 hours and was designed for individuals
with little to no programming background.

Throughout the course, the chatbot’s interactions were analyzed on a daily
basis in order to quickly correct any errors encountered or conduct pertinent
modifications on its features based on their usage. Then, a questionnaire was
developed to collect the students’ opinions and feedback regarding the chatbot
and its features.

Ten of the 65 enrolled students completed more than 50% of the course, with
just one student completing more than 90%, similarly with previous RESPE’s pre-
vious courses. Only nine students responded to the survey that was prompted
three weeks before the course’s conclusion.

Students were made aware of the chatbot and its experimental nature. Addi-
tionally they were warned of the storage and analysis of their conversations.

It is important to note that Pyo was present in every question, regardless of
whether it required the development of an algorithm, but exercise assistance and
error guidance were only available for programming questions.
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5.2 Pyo Usage

Throughout the course, an analysis of the conversations was conducted al-
most daily in order to identify and correct any errors quickly. This section de-
scribes the implementation errors as well as the interaction and functionality us-
age statistics.

The percentage of errors in both the implementation and intent predictions
was highest during weeks one through three. The number of errors increased
as the number of active students (students actively participating in the course)
increased during the first week.

The most significant implementation error was a flaw in the code that stored
the conversations, which caused the students to receive messages regarding other
conversations. Due to the lack of testing prior to the course, Pyo was unprepared
to manage multiple students. As a result of storage errors, the first week’s analy-
sis of the conversation was omitted from subsequent analyses.

Regarding intent prediction, Pyo encountered a total of 12 incorrectly pre-
dicted intents, which were subsequently added to the agent’s training examples.
Following is an examination of the usage of Pyo and its characteristics, weekly,
from May 23 to July 31.

Figure 5.1 depicts the evolution of the proportion of active students who en-
gaged at least once with Pyo. The week with the highest percentage of students
interacting with the agent was the second week, with 67% of students engaged in
the course interacting with the agent. Inspired by the results referred to in section
2.4.4, the novelty of this technology can explain the level of student interest.

The weeks with the lowest percentage, inferior to 30%, were week 7 and week
10. The percentage of week 7 can be explained by a problem with the virtual
machine which caused Rasa to crash. This issue could not be resolved until the
following week due to a lack of access to a machine.

The percentages follow the increases and decreases in the number of active
students throughout the weeks (figure 5.2), except for week 4 that saw a decrease
in number of active students but and increase in the percentage of students inter-
acting with Pyo.

Regarding the weekly analysis of each feature’s usage, it was impossible to
draw any conclusions because the data did not appear to follow any interesting
pattern (figure 5.3). Therefore, table 5.1 depicts the absolute values of the number
of times a student utilized a particular feature throughout the whole course. The
most frequently utilized feature was the assistance on the exercise, followed by
the explanation of concepts, hints, error guidance, and finally, the suggestion of
questions.
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Figure 5.1: Weekly number of different students that interacted with Pyo.

Figure 5.2: Weekly evaluation of the number of active students.

Functionality Number of Times Used
Concept Definition 53

Error Guidance 33
Exercise Assistance 61

Question Suggestions 15
Hints 49

Table 5.1: Functionalities utilization frequency.

61



Chapter 5

Figure 5.3: Weekly functionality utilization frequency.

5.3 Student Perceptions of Pyo

In an effort to enhance the user experience and gain insight into students’
perceptions of Pyo, a questionnaire was developed and conducted using Google
Forms. The questionnaire enables the identification of student feedback, allow-
ing future modifications to be made accordingly. As stated in the methodology,
the questionnaire was proposed three weeks prior to the end of the course in or-
der to prevent additional dropouts and obtain a sufficient number of responses,
however, only nine answers were obtained which corresponds to a total of ap-
proximately 14% of the initially registered users.

Despite the lack of a standard form or specific guidelines for its creation, a
questionnaire inspired by the ones used in the evaluation of the reviewed chat-
bots in the same domain (section 2.4.6) was developed.

Two questionnaires were developed, the “Questionnaire 1 (No)” and the
“Questionnaire 2 (Yes)”, which would be displayed to the depending on whether
the student would respond negatively or positively to the initial question, ’Do
you use the assistant?’. Questionnaire 1 was designed to determine why students
were not using Pyo.

Table 5.2 displays the form’s questions and their respective evaluation scales.
The original form and the original answers regarding the open questions are pre-
sented in Apendix B.

Observing the pie chat corresponding to the question - “Do you use the assis-
tant?” - (figure 5.4), it was determined that only six out of the nine people that
answer the questionnaire had interacted with the chatbot.
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Question Id Question Statement Scale
Question 1a Why did you not use the assistant? Text field
Question 1b Do you have any suggestions for how

the assistant could be improved?
Text field

Question 2a The assistant was easy to use 1, 2, 3, 4, or 5
Question 2b The assistant possessed a realistic and

engaging personality
1, 2, 3, 4, or 5

Question 2c The assistant elucidated its functional-
ities and purpose in an enlightening
manner

1, 2, 3, 4, or 5

Question 2d The assistant accurately answered my
questions

1, 2, 3, 4, or 5

Question 2e The assistant handled errors and misun-
derstandings competently

1, 2, 3, 4, or 5

Question 2f The assistant facilitated my learning 1, 2, 3, 4, or 5
Question 2g I prefer interacting with my

peers/professor over the assistant
1, 2, 3, 4, or 5

Question 2h I feel uncomfortable knowing that my
conversations are being analysed

1, 2, 3, 4, or 5

Question 2i The assistant contained several features.
Which do you consider to be more ad-
vantageous?

Options boxes

Question 2j What aspects do you believe should be
improved?

Text field

Table 5.2: Specifics regarding the form’s questions (translated) and their respec-
tive evaluation scales.

Figure 5.4: Results to question “Do you use the assistant?” of the questionnaire.

The majority of the options presented to the users were based on a Likert scale
(1 - Completely Disagree, 2 - Disagree, 3- Indifferent, 4 - Agree, 5 - Completely
Agree). The purpose of questions 1a and 1b was to discover why students did
not interact with Pyo and if they had any suggestions for its enhancement.

Regarding the second questionnaire the aim was to incorporate qualitative
characteristics such as functionality and affection (questions 2a, 2b, and 2c)
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[Radziwill and Benton, 2017]. Followed by questions regarding the students’
perceptions of precision and error management (questions 2d and 2e). The
most obvious and crucial question regarding Pyo’s goals was whether or not
it had actually facilitated their learning (question 2f) [Chinedu and Ade-Ibijola,
2021]. The students were also asked about their stance on interacting with their
peers/professor over the agent (question 2g), followed by a question devised
to determine if their awareness that their conversations were being analyzed
had any bearing on their interactions (question 2h). Finally, the students were
queried regarding their preferred functionalities and suggestions for enhance-
ments (questions 2i and 2j)31.

5.3.1 Results

In this section the results pertaining to the questions of the two parts of the
questionnaire (“No”, and “Yes”) are presented.

Why did you not use the assistant?

When asked for the reason on why have not they used Pyo, two of the stu-
dents simply said that they had yet to need its assistance, while the third student
thought of the interactions of the chatbot as being forced, as they prefer more
examples with the content they are currently studying. This response can be at-
tributed to a lack of comprehension of Pyo’s capabilities, as the chatbot provides
an example when asked for one via the concept definitions functionality. How-
ever, their feedback could be considered for the future addition of a feature that
focuses solely on examples equipping the agent with numerous illustrations of
the different concepts.

Do you have any suggestions for how the assistant could be improved?

Similar to the previous question, two students responded negatively, whereas
the third student provided a more detailed answer. Now focusing on the first
part of their answer, the student suggested a higher interval where the exercise
suggestion message is presented, as two minutes is not enough time, for every
question, to solve the exercise. A further suggestion was the addition of prefer-
ences, such as the ability to disable or enable suggestions, a particular feature, or
the use of a “do not bother me” checkbox.

The assistant was easy to use

Figure 5.5 reveals that, of the six students who used the chatbot, two were
indifferent to the statement “The assistant was easy to use”, while the remaining

31For the observations purposes, the form remains open via the url: https://forms.gle/
6r7BpJoX3kdq3Yg17
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four were entirely in agreement with the statement. Since no student wholly
disagreed, the results can be considered positive. The ’indifference’ may be a
result of Pyo’s initial difficulties, which caused confusion in the interactions.

Figure 5.5: Results to question “The assistant was easy to use” of the question-
naire.

The assistant possessed a realistic and engaging personality

Observing the responses in figure 5.6, it was determined that one student dis-
agreed, two agreed, and three completely agreed with the statement. We can,
therefore, conclude that the majority of students who responded to the survey
found Pyo’s personality captivating.

Figure 5.6: Results to question “The assistant possessed a realistic and engaging
personality” of the questionnaire.

The assistant elucidated its functionalities and purpose in an enlightening way

Regarding the purpose of the chatbot, the feedback was deemed satisfactory
(figure 5.7), with one student indifferent, three agreeing, and two completely
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agreeing with the statement “The assistant elucidated its functionalities and pur-
pose in an enlightening manner”.

Although still positive, it was not as positive as the responses to statement 2a.
This was to be expected, as it was evident that not all students were aware on
what the functionalities offered, for instance, that the exercise assistance would
allow them to be presented with the skeleton of a possible answer, which would
then only require translation into Python. And if the student had forgotten how
to convert the concept into code, they could refresh their memory by asking Pyo.

Figure 5.7: Results to question “The assistant elucidated its functionalities and
purpose in an enlightening way” of the questionnaire.

The assistant accurately answered my questions

To this statement four of the students opted for the indifferent response 5.8.
The conclusion drawn is that students had both positive and negative interactions
with the chatbot.

Figure 5.8: Results to question “The assistant accurately answered my questions”
of the questionnaire.
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The assistant handled errors and misunderstandings competently

As depicted in figure 5.9, 2 students responded indifferently to the statement
about how Pyo handled errors and misunderstandings, while 3 agreed and 1
totally agreed.

As stated previously, conversations were analyzed daily to quickly correct
any incorrectly predicted intentions or other issues, which may account for the
majority of positive feedback. The fallback intent may be another reason, which
in the cases where the agent was unable to predict an intent Pyo would return
question suggestions.

Figure 5.9: Results to question “The assistant handled errors and misunderstand-
ings competently” of the questionnaire.

The assistant facilitated my learning

The majority of responses to the statement “the assistant facilitated my learn-
ing” were positive, with 4 students agreeing with the statement (figure 5.10). Al-
though 2 students still exhibited apathy, the conclusion is positive and significant,
as this is the chatbot’s primary objective.

I prefer interacting with my peers/professor over the assistant

Throughout the course, the student had access to a WhatsApp group where
they could communicate with their classmates and instructor. The students fre-
quently turned to the group, which may have been due to the fact that Pyo did
not provide an exact solution for how to solve an exercise or a straightforward
solution for how to solve an error; instead, it provided the pieces for the stu-
dent to reach the solution independently. They would then consult the group,
where their peers would provide the exact solution. The majority of respondents
favored interacting with their peers and professor (figure 5.11).
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Figure 5.10: Results to question “The assistant facilitated my learning” of the
questionnaire.

Figure 5.11: Results to question “I prefer interacting with my peers/professor
over the assistant” of the questionnaire.

I feel uncomfortable knowing that my conversations are being analysed

As a means of determining whether the results obtained on the previous ques-
tion could be due to discomfort on the part of the student, the student was
prompted to provide their response to the statement, “I feel uncomfortable know-
ing that my conversations are being analyzed”. It was determined that 66.7% of
students strongly disagreed with the statement, while the rest were neutral (fig-
ure 5.12). This suggests that the student knowing of analysis of their conversa-
tions did not influence the preference on asking peers for assistance.

The assistant contained several features. Which do you consider to be more
advantageous?

The students were also asked which of the features they believe to be most
advantageous; they were required to select at least one but were permitted to
select more. The results, displayed in figure 5.13, indicate that error assistance
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Figure 5.12: Results to question “I feel uncomfortable knowing that my conver-
sations are being analysed” of the questionnaire.

was deemed the most important factor, followed by error assistance, question
suggestion, and hints.

Figure 5.13: Results to question “The assistant contained several features. Which
do you consider to be more advantageous?” of the questionnaire.

What aspects do you believe should be improved?

When asked for suggestions, as this question was not mandatory, only 4 stu-
dents answered. The feedback was the following:

• Translated: Focus on the exercises that we are solving, especially for us
students who have not had contact with programming. An example: if the
error is in line “4”, the program could alert us that there is an error in the
respective line, and present the concepts related to the error committed, we
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could review and find the error, as if a teacher were nearby, guiding. And if
it is an error in the logic or typing of the programming, the program could
say “Paulo, your mistake is in not having declared a data” or “you forgot to
print your data, use the print() command to do so”, or “In line 5 you didn’t
insert the quotes - (could come as the general concept)”. I think this is the
program’s proposal, because the student keeps trying, and can’t implement
the right logic in the exercise or due to a typing error, and when he uses the
program he can’t understand where the error is and ends up getting lost.

• Original: “Focar nos exercícios que estamos a resolver, principalmente, nós
alunos que não tivemos contato com programação. Um exemplo: se erro for
na linha “4”, o programa poderia nos alertar que há um erro na respectiva
linha, e apresentar os conceitos relacionadas ao erro cometido, poderíamos
revisar e encontrar o erro, como se um professor estivesse ali perto, nos
orientando. E caso for um erro na lógica ou digitação da programação, o
programa poderia dizer “Paulo o seu erro está em não ter declarado um
dado” ou “você se esqueceu de imprimir seu dado, para isso use o comando
print()”, ou “Na linha 5 você não inseriu as aspas – (poderia vir conceito
geral)”. Acho que a proposta é essa do programa, porque o aluno vai ten-
tando, e não consegue implementar a lógica certa no exercício ou devido a
algum erro na digitação, e quando recorre ao programa não consegue com-
preender onde está o erro e acaba se perdendo.”

• Translated: Well, the assistant itself is great, but I believe that it could be
improved by adding a second monitor to display the questions, shortening
the response time, and increasing student interaction.

• Original: “Bom, o monitor em si é ótimo, acho que o que poderia melhorar
seria ter mais um monitor para ver as perguntas, ter um tempo de resposta
um pouco mais rápido, ter uma interação maior aos alunos.”

• Translated:Always end the service in the face of the questions asked,
whether conclusive or not, for instance, it was not possible to identify the
question.

• Original: “Sempre finalizar o atendimento diante das perguntas feitas, seja
conclusivas ou não, tipo, não foi possível identificar a perguntar”

• Translated: More examples.

• Original: “Da mais exemplos”

In contrast to multiple-choice questions, the first recommendation suggests a
more straightforward approach for error guidance. For example, attempting to
pay greater attention to the code that is being developed and adding support for
logical errors or missing steps. The second suggestion concerns the assistant’s
speed, which could be enhanced. The third was considered illogical, as even
when it was impossible to predict the student’s intent, Pyo would inform them of

70



Evaluation and Discussion

this fact. The reason can be that the student may still be referring to the mistakes
made in the first week. Additionally as similarly suggested on the “no” side of
the questionnaire is the suggestion of the addition of more examples.

These suggestions are a great insight into the enhancements that can be con-
ducted regarding Pyo’s functionalities.

5.3.2 Conclusion

The questionnaire allowed us to identify the perception of students regarding
different aspects of Pyo. On the one hand, the chatbot was deemed user-friendly,
realistic, possessing an engaging personality, perceptive regarding its features,
adept at handling misunderstandings, and useful, thus achieving the primary
objective of “being able to assist introductory programming students”.

The students, on the other hand, viewed the chatbot as neither accurate nor in-
accurate and showed a strong preference for seeking assistance from their peers
and professor. Possible causes include the presence of critical errors at the be-
ginning and a lack of individualized assistance based on the student’s level of
knowledge.

Nonetheless, the analysis demonstrated the utility and value of Pyo, as the
majority of questionnaire responses were positive. It was also extremely help-
ful in identifying aspects in need of improvements to conduct in future work,
described in the final chapter.

Important to consider the major limitation of this evaluation, as only twelve
of the 65 students enrolled in the course reached the final week, and only nine
completed the questionnaire, preventing us from drawing conclusions that are
representative of the entire population, in this case the students.
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Conclusion

In this section, a review of all the completed work, the resulting contributions,
and the upcoming work is presented.

This project’s initial phase consisted of an analysis of existing tools and appli-
cations in order to achieve the proposed objectives. The objective of this research
was to acquire the knowledge required to implement a chatbot to aid introduc-
tory programming students. The implementation of error guidance, exercise as-
sistance, and concept definitions followed an analysis of the RESPE platform to
determine how Pyo could assist its students. Not forgetting the later addition of
question hints and suggestions

Initially the implementation of the different features included the process of
Information Retrieval Question Answering (QA) and Question Generation (QG),
which were omitted from the final version due to their unreliability. To counter
this and achieve the goals of this dissertation a rule-based approach was taken.

Finally, recalling the objectives proposed as a result of this thesis:

• Development of a chatbot able to answer questions about introductory con-
cepts, provide assistance with the exercise, and provide guidance on mis-
takes

• Integration of the chatbot into an online platform for teaching introductory
programming

• Evaluation of the assistant by real world users

Given the results of the daily analysis and of the questionnaire, it is believed
that the work performed was successful and that all objectives were met. It can be
regarded as a significant and useful contribution to the field of chatbots, despite
the need for further development.

Despite the drawn conclusion, we are aware of certain limitations and the
fact that there is significant room for improvement. For future endeavors, it is
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intended to continue the entire current procedure. Future work would concen-
trate on training a QA model specifically for the programming domain in order
to accurately automate the agent’s answer-providing capabilities.

Regarding the functionalities, the question suggestions would remain un-
changed, as students, particularly at the beginning, may not know what to ask
for or what concepts are involved in the exercise. The exercise’s assistance would
be enhanced in terms of its design’s intuitiveness.

The error guidance feature would be modified to account for frequently oc-
curring logical errors and missing steps in the student’s algorithm, for which
a more direct approach would be taken by returning the definitions of the in-
volved concepts. Keeping in mind that the world of logical errors easily turns
into a “snowball”, it could take a considerable amount of time to implement this
feature correctly.

In addition to the previously mentioned factors, the students’ participation in
the course should be analyzed to determine ways to personalize the Pyo’s sup-
port. Additionally, the front-end could be improved by creating settings that give
students control over the notifications they receive from the chatbot.

Upon the project’s objective, an article was written, “Pyo, a Chatbot Assis-
tant for Introductory Programming Students” accepted to the XXIV International
Symposium on Computers conference, focusing on the educational aspect of the
agent.

On a final note, my overall impression of the internship has been quite pos-
itive. This was a time of tremendous professional and personal development.
This year established a crucial link between education and the working world.
It undoubtedly revealed areas that required improvement, such as time manage-
ment, but, on the other hand, allowed me to improve my research skills and learn
and get a great insight into the world of intelligent systems. Not only was this
dissertation an excellent addition to my academic career, but also to my personal
life.
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Appendix A

Rasa Training Data

This appendix contains all the intents defined as well what purpose they
serve.

• General

– greet

* The user intends to greet.

– goodbye

* The user intends to say goodbye.

– affirm

* The user intends to affirm or answer positively.

– deny

* The user intends to deny or answer negatively.

– bot_challenge

* The user intends to ask Pyo whether they are talking to a person
or not.

• Variables

– ask_question_var

* The user intends to ask for the definition or an example of a vari-
able.

– ask_question_var_name

* The user intends to query about what names can a variable be
given or what words and symbols can it not contain.

– ask_question_var_get_type

* The user intends to ask of what types can a variable be or how to
get its type.

– ask_question_var_strings
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* The user intends to ask for the explanation or example of a string.

– ask_question_var_strings_convert

* The user intends to ask how to convert a value to a string.

– ask_question_var_strings_concat

* The user intends to ask what is a concatenation or how it is con-
ducted.

– ask_question_var_ints

* The user intends to ask for the explanation or example of an inte-
ger.

– ask_question_var_ints_convert

* The user intends to ask how to convert a value to an integer.

– ask_question_var_floats

* The user intends to ask for the explanation or example of a float.

– ask_question_var_floats_convert

* The user intends to ask how to convert a value to a float.

– ask_question_var_bools

* The user intends to ask for the explanation or example of a
boolean.

– ask_question_var_arrays

* The user intends to ask for the explanation or example of an array.

• Conditions

– ask_cond_general

* The user intends for the explanation or purpose of a conditional.

– ask_cond_if

* The user intends to ask for an explanation, syntax, or example, of
a conditional if.

– ask_cond_else

* The user intends to ask for an explanation, syntax, or example, of
a conditional else.

– ask_cond_elif

* The user intends to ask for an explanation, syntax, or example, of
a conditional elif.

– ask_cond_indent

* The user intends to ask for an explanation of what the scope of a
conditional is.

• Repetitions

– ask_loop_general
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* The user intends for the explanation or purpose of a repetitions.

– ask_loop_for

* The user intends to ask for an explanation, syntax, or example, of
a repetition for.

– ask_loop_while

* The user intends to ask for an explanation, syntax, or example, of
a repetition while.

– ask_loop_indent

* The user intends to ask for an explanation of what the scope of a
repetition is.

• Functions

– ask_func_general

* The user intends to ask for an explanation or example of a function
without parameters.

– ask_func_parameters

* The user intends to ask for an explanation or example of a function
with parameters.

– ask_func_return

* The user intends to ask how to have a function return data.

– ask_func_indent

* The user intends to ask for an explanation of what the scope of a
function is.

• Operators

– ask_op_arithmetic

* The user intends to ask what operations are allowed.

– ask_op_arithmetic_add

* The user intends for an example or explanation on how to conduct
an addition.

– ask_op_arithmetic_sub

* The user intends for an example or explanation on how to conduct
an subtraction.

– ask_op_arithmetic_multi

* The user intends for an example or explanation on how to conduct
a multiplication.

– ask_op_arithmetic_div

* The user intends for an example or explanation on how to conduct
a division.
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– ask_op_arithmetic_rem

* The user intends for an example or explanation on how to get the
remainder or how to verify if a number is multiple of another.

– ask_op_arithmetic_exp

* The user intends for an example or explanation on how to calculate
the power of a number.

– ask_op_square_root

* The user intends for an example or explanation on how to calculate
the square root of a number.

– ask_op_logic

* The user intends to ask what are the logic operators.

– ask_op_logic_and

* The user intends to ask an explanation/example of the logic oper-
ator “and”.

– ask_op_logic_or

* The user intends to ask an explanation/example of the logic oper-
ator “or”.

– ask_op_logic_not

* The user intends to ask an explanation/example of the logic oper-
ator “not”.

– ask_op_comparison

* The user intends to ask an explanation/example of comparison
operators, such as to verify if a number is greater than another.

– ask_op_order

* The user intends to ask for the order or priority of the arithmetic
operators.

• Input and Output

– ask_input

* The user intends to ask how to read a value from the keyboard, or
simply what is an input.

– ask_output

* The user intends to ask how to print a value, or simply what is an
output.

• Exercises

– ask_help

* The user intends to ask for assistance on the exercise

– ask_hint
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* The user intends to ask for a hint.

– ask_suggestions

* The user intends to ask for suggestions of questions.

• Errors

– ask_name_error

* The user intends to ask what is a NameError as well as possible
causes.

– ask_syntax_error

* The user intends to ask what is a SyntaxError as well as possible
causes.

– ask_type_error

* The user intends to ask what is a TypeError as well as possible
causes.

• External The purpose of these intents are to send data, regarding informa-
tion about the exercise or errors, from the platform to Pyo, and not to repre-
sent an intent of the student.

– EXTERNAL_ERROR_MESSAGE

– EXTERNAL_CODE_MESSAGE

– EXTERNAL_CODE_INFO
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Questionnaire

This appendix includes both the original questionnaire and the untranslated
responses to the open questions.

Figure B.1 displays the original question, and whether the students responded
affirmatively (figure B.2) or negatively (figure B.3), they would be displayed an-
other set of questions.

Figure B.1: Original student questionnaire, initial question.

Regarding the first question on the “no” part of the questionnaire (figure B.1)
the answers were:

• Acho a Interação dele forçada. Prefiro pesquisa exemplos com o conteúdo
que estou estudando para melhor entender

• Ainda não precisei

• Não precisei usar, pois não fiquei com dúvidas ainda
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In regards to the second, their answers were:

• Não

• Ainda não

• Poderia ter um intervalo de tempo maior em que ele manda uma mensagem
e outra, as vezes o enunciado é um pouco grande e acabo ficando mais
tempo escrevendo o código e ele fica mandando mensagem de minuto em
minuto, também seria bom um botão com a utilidade de desabilitar ele para
ele não ficar aparecendo na tela se você ativasse o botão

Figure B.2: Original student questionnaire, questions to students that had not
interacted with Pyo.

For the “yes” part of the questionnaire, the last question also prompted sug-
gestions, in which the students gave the following answers:

• Focar nos exercícios que estamos a resolver, principalmente, nós alunos que
não tivemos contato com programação. Um exemplo: se erro for na linha
“4”, o programa poderia nos alertar que há um erro na respectiva linha, e
apresentar os conceitos relacionadas ao erro cometido, poderíamos revisar e
encontrar o erro, como se um professor estivesse ali perto, nos orientando. E
caso for um erro na lógica ou digitação da programação, o programa pode-
ria dizer “Paulo o seu erro está em não ter declarado um dado” ou “você se
esqueceu de imprimir seu dado, para isso use o comando print()”, ou “Na
linha 5 você não inseriu as aspas – (poderia vir conceito geral)”. Acho que a
proposta é essa do programa, porque o aluno vai tentando, e não consegue
implementar a lógica certa no exercício ou devido a algum erro na digitação,
e quando recorre ao programa não consegue compreender onde está o erro
e acaba se perdendo.

• Da mais exemplos

• Bom, o monitor em si é ótimo, acho que o que poderia melhorar seria ter
mais um monitor para ver as perguntas, ter um tempo de resposta um
pouco mais rápido, ter uma interação maior aos alunos

• Sempre finalizar o atendimento diante das perguntas feitas, seja conclusivas
ou não, tipo, não foi possível identificar a perguntar

92



Questionnaire

Figure B.3: Original student questionnaire, questions to students that had inter-
acted with Pyo
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