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Abstract

The library of digital music available to consumers has pushed for the growth of the Music
Emotion Recognition research field, due to the need of organizing these large collections and
provide personalized recommendations to listeners. The infancy of this field is dominated
by Classical Machine Learning approaches using carefully constructed features to identify
the perceived emotions of music pieces. Recently, there has been an increase in Deep
Learning approaches in the field due to the ability of extracting the underlying features in
the pieces, making the feature design step of the previous approaches automatic.

This work thus contributes to the field by providing an extensive set of experiments using a
variety of approaches conducted on two datasets: the 4 Quadrant Audio Emotion Dataset
(4QAED) dataset, previously developed by our team, and its extension, whose results are
compared against for studying the impact in performance.

We obtained results above the state-of-the-art. Namely, a 80.24% F1 Score using an hybrid
model, comprised of a Convolutional Neural Network, pre-trained on augmentated samples
obtained using classical audio augmentation techniques, and a Dense Neural Network, pre-
trained on extracted handcrafted features.

The developed worked also gave some insight in some promising directions, include further
exploring Data Augmentation approaches and leveraging the information from multiple
spectral representation to deal with the low amount of samples available in current state
of the art datasets.

Keywords

Music Information Retrieval; Music Emotion Recognition; Machine Learning; Deep Learn-
ing; Data Augmentation.
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Resumo

A biblioteca de música disponível digitalmente aos consumidores levou ao crescimento do
campo científico de Reconhecimento de Emoção em Música, devido à necessidade de orga-
nizar estas enormes coleções e prestar recomendações personalizadas para os ouvintes. A
infância deste campo é dominada por metodologias de Aprendizagem Computacional Clás-
sica, utilizando elementos cuidadosamente desenhados para identificar as emoções perce-
cionadas em peças musicais. Recentemente, registou-se um aumento de metodologias de
Aprendizagem Profunda no campo devido à sua capacidade de extrair elementos relevantes
nestas peças, tornando o passo de desenhar features automático.

Este trabalho contribui para o campo oferecendo um conjunto alargado de experiências
utilizando diversas metodologias avaliadas em dois conjuntos de dados: o conjunto de
dados 4 Quadrant Audio Emotion Dataset (4QAED), previamente desenvolvido pela nossa
equipa, e a sua extensão, cujos resultados são comparados de forma a estudar o impacto
no desenvolvimento.

Obtivemos resultados acima do estado da arte. Nomeadamente, um F1 Score de 80.24%
utilizando um modelo híbrido, constituído por uma Rede Neuronal Convolucional, pré-
treinado em amostras sintetizadas a partir de técnicas de sintetização de áudio clássicas,
uma Rede Neuronal Densa, pré-treinada com features extraídas desenhados à mão.

O trabalho desenvolvido deu algum entendimento sobre as direções promissoras a seguir,
incluindo continuar a explorar metodologias que utilizam sintetização de dados e utilizar
a informação de múltiplas representações espectrais para lidar com o número reduzido de
amostras disponíveis nos conjuntos de dados no estado da arte.

Palavras-Chave

Recuperação de Informação em Música; Reconhecimento de Emoção em Música; Apren-
dizagem Computacional; Aprendizagem Profunda; Sintetização de Dados.
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Chapter 1

Introduction

Music has always been present throughout human history. From ancient rituals, to com-
memorations after a battle, from recreative events to manifestations, it has been a crucial
tool for humans to express themselves. It can deepen the bonds between us, conveying the
emotions we are feeling to our loved ones, or take us to a journey of introspection, helping
us cope with hardships. Due to this, many believe that music is the language of emotions,
the perfect vehicle to express even the most complex feelings. However, the amount of
music available to one person for most of our history has been limited to prior knowledge
of artists and, to be able to experience it, music needed to be purchased to be enjoyed
alone or left for social events, severely limiting the exposure to a myriad of new ideas.

The digital era completely changed the scene, making large libraries of music available
to various platforms at the fingertips of users through streaming platforms, making it
possible to easily find new artists and genres as well as sharing the right music at any time,
anywhere. However, the sheer amount of available content evoked the necessity for ways of
organizing these large digital libraries and providing more user-friendly ways of searching
and personalizing the consumption of such content.

There have been countless ways of organizing music, be it from the most common descrip-
tors for music, including genre, artist, era or even geographical location, to custom made
playlists, created by the platform’s users or curated by music specialists, catering to every
possible necessity. The problem with these methods is the underlying necessity for human
input, adding the necessary descriptors or handpicking songs.

The Music Information Retrieval field has for a long time focused on automatically iden-
tifying prominent music features, applying these to the likes of source separation, and
automating the categorisation process of music, making it possible to identify and gener-
ate sets of songs following a discernable pattern. From the possible descriptors that can
be used to this end, emotion has gained great interest due to the intrinsic connection with
music. A major drawback of objectively classifying emotion is the very subjective nature
of it. A song that evokes a sad feeling in an individual, may evoke a calming or happy
feeling in another.

Many psychology studies over the years have tried to categorize the array of human emotion
in a general sense, many of them being focused on musical emotion. These have all been
disputed by various reasons, and to this day there is not a consensus on a model that
encompasses the entire human emotion spectrum, demonstrating the abstract and complex
nature of emotion.

Despite this, many efforts have been made to further delve into the intricacies of what
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makes a music piece convey a particular emotion, due to the immense personal, social,
economic, commercial and scientific impact of this area. As such, recently the field of Music
Emotion Recognition (MER) emerged as a subfield of MIR with the goal of researching
and providing solutions for categorizing musical pieces based on their emotional content.

1.1 Problem, Motivation and Scope

The MER field contributes to the landscape of automatic music categorization by providing
solutions such as music recommendations systems, automatic playlist generation, as well
as providing solutions for a myriad of industries, including advertisement, cinema, video
games, as well as health application, such as music therapy for emotional disorders [1].

To automatically recognize emotion in a musical piece, there is a need to extract relevant
features from the audio signal of the song and proceed to train an algorithm for conducting
the classification process of the signal into a certain emotion. The feature extraction
processes in most of MER literature are based on various metrics or estimations, directly
applied to the signal, for example, estimating the fundamental frequency of the sound to
extract the pitch of the melody or estimating the tempo which marks the rhythm of a song.
These features are normally applied to Classical Machine Learning (ML)1 algorithms, such
as Support Vector Machines or Random Forest, either as regressors, predicting continuous
arousal-valence (A-V) values2 in the emotional plane (see Section 2.1.2), or classifiers,
either predicting one or multiple-labels for a piece, depending on the emotional model in
question.

There are many issues regarding the whole field of MER, such as the annotation process for
building a dataset, which requires enormous effort and labor from human subjects, most
of the times not experts in the field, leading to long validation processes for the collected
data. Not only this, due to the copyrights of the songs present in the datasets, most
of the times it is not possible to fully make a dataset available, resorting to referencing
the utilized songs, leaving other researchers with the task of retrieving them if they wish
to further experiment with the dataset. Another issue is the capability of the employed
methodologies, as the combination of a lack of new emotionally relevant features that cover
crucial musical dimensions for classification, as well as the absence of large and quality
datasets available to the general public, led to the current results reaching a glass ceiling for
Classical Machine Learning methodologies. Various other approaches have emerged to solve
this last issue, such as personalized recommendation systems [2], utilizing physiological and
brain signals [3] [4], or combining both audio and lyrics [5] to attain more accurate results.

As a way to combat the lack of features, the MER field has recently seen an increased
interest on Deep Learning approaches to automate the feature extraction process. Not only
this, the overall better performance over Classical Machine Learning approaches in other
fields made a push for exploring these approaches. This would not only cut out the time
and resource consuming task of designing new features, but the automatically extracted
features may also be more accurate, since these are directly extracted from the data, with
the potential of more accurately identifying the key components for classification.

1This term is used throughout this work when referring to methodologies that do not use any type of
deep neural network, i.e., neural networks with one or more hidden layers, most of the time using simple
classifiers.

2"Arousal (or intensity) is the level of autonomic activation that an event creates, and ranges from calm
(or low) to excited (or high). Valence, on the other hand, is the level of pleasantness that an event generates
and is defined along a continuum from negative to positive.", https://goodmancoaching.nl/definition-of-
valence-arousal-and-dominance/
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As such, this dissertation aims to contribute to the MER field by exploiting the potential of
deep learning approaches, as discussed in the next section. The dissertation was conducted
in the scope of the MERGE project3 (Music Emotion Recognition - Next Generation,
PTDC/CCI-COM/3171/2021), funded by Fundação para a Ciência e Tecnologia (FCT),
which offered the context for this work.

1.2 Objectives and Approaches

As abovementioned, this work aims to exploit DL approaches to MER.

Within MER, two problems have deserved particular attention: Static MER and Music
Emotion Variation Detection (MEVD).

Static MER focuses on automatically tagging the overall emotional content of a song,
either to single or multiple labels, based on the provided annotations. For the scope of this
work, the focus is to explore static single-label audio classification for a reduced number
of core emotion classes, namely, 4 quadrants in a 2D emotion A-V plane. In addition,
but to a lesser extent, emotion regression is also tackled with the prediction of continuous
A-V values. MEVD also focus on automatically tagging the emotional content of a song,
however, the intent is to predict the variation of the emotion along the duration of the
song.

This work aims to contribute to the MER field by:

• updating the existing 4 Quadrant Audio Emotion Dataset (4QAED) [6], previously
developed by our team, as well as validating the resulting extension to the dataset;

• replicating and validating previous work by Pedro Sá [7] on static MER, a former
MSc thesis student of the MERGE team;

• improving these models with the reviewed State of the Art approaches. This requires
a comprehensive analysis of the most promising approaches for Static MER, namely,
different DL architectures, Transfer Learning, Data Augmentation, etc.

Research, development and evaluation of current approaches mostly focused on Deep
Learning to address the lack of relevant features. Moreover, strategies to cope with the
reduced number of samples available in the dataset were studied.

The present work is a continuation of the work conducted by Pedro Sá for his Master’s
thesis on the same subject. For this reason, there is a need to first replicate and corroborate
the findings of this work before proceeding to build upon it. As stated in the Replicated
Work section (Section 4.1), it is not possible to accurately replicate the exact environment
used to obtain the reported results, since there are no details on the library versions used
for Python, the main language used in past and present work, and there was no seed set for
the pseudo-random number generator, which is used in many aspects of the experiments,
from preparing the cross-validation folds for training and testing, to shuffling the data for
training a model, and even the optimization steps for the model, since this is based on
stochastic methods of gradient optimization. With an impossibility of truly replicating the
results, fluctuations between reported and obtained results are inevitable. As a way to
mitigate this problem in the future, virtual environments are created and maintained to

3https://www.cisuc.uc.pt/en/projects/MERGE
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accurately reproduce the behavior of the tools used, as well as setting the same seed for
any pseudo-random number generation.

Plans for exploring MEVD architectures were dropped to low priority due to the sheer
amount of work from the static approaches, time and resource constraints, and lack of new
data. This last point was the most decisive of the three, since it was already previously
concluded that it is necessary to considerably increase the publicly available dynamic
dataset, which comprises only 29 songs with dynamic annotations, for any significant
increase in the dynamic approaches’ performance.

The initial planned tasks for the first and second semesters were ranked in a priority scale
of High, Medium or Low indicating their importance for accomplishing the main objectives
of this work.

Table 1.1: Objectives of the presented work.

Objective Priority
Replication of previous work High
Review and implementation of SoTA architectures - Static MER High
Development and evaluation of SMOTE for Data Augmentation

(Deep SMOTE) High

Review and evaluation of pre-trained models for Transfer Learning
(Artists, Same Domain) High

Static Database validation (New Extended Dataset) Medium
Development of Ensemble approaches (Hybrid with Augmentations, CNN with

Segment-Level Raw Branch) Medium

As to thoroughly explain the extent of this work, fulfilling the project’s objectives should
answer the following research questions:

• Are the results presented in previous conducted work replicable?

• Do recent state of the art approaches perform better than previously tested ap-
proaches on the same data?

• Are the new extended dataset candidates viable?

The rest of this section will elaborate on these research questions and approaches to solve
them, as well as changes made to the initial objectives and the reasons behind them.

Following the replication of past work, we focused on the aforementioned new state of the
art approaches experimented on the available data. Besides of a variety of CNN and RNN
based architectures tested with the current publicly available dataset from the team, which
include the ShortChunk and Sample architectures, as well as the CRNN architecture, other
approaches, some as continuation of previous work and others as promising new method-
ologies in regards to the dataset in question, are explored. Data Augmentation, with new
classical audio augmentation techniques and SMOTE, and Transfer Learning, with dif-
ferent and same domain data, are both expanded upon, while Deep Embeddings, with
pre-trained networks and a data-driven approach, and Multiple Representations, with full
and segment-level samples, are evaluated for their viability to more accurately solve MER.

4



Introduction

Ensemble methods are also further explored, further improving on an existing architecture
and exploring a two-branch spectral and end-to-end architecture.

A key requirement of DL is good and sizeable data. To this end, another objective of this
work was to extend the current Static MER dataset (henceforth termed Legacy-MERGE),
creating a larger collection (henceforth termed New-MERGE). The new dataset was then
evaluated by applying the developed and evaluated approaches on their candidates.

1.3 Results, Contributions and Limitations

In this section, the most relevant results are presented, as well as the contributions of this
work and the limitations encountered during the course of this work.

The main results obtained were:

• Significant improvements to the baseline model utilizing classical audio augmenta-
tions not previously explored;

• Overall improvements to F1 Score results using the New-MERGE dataset candidates
across many experiments;

• An 74.23% F1 Score with the Sample-level Multiple Representation methodology
when using the New-MERGE Balanced-Genre dataset candidate, a result on par with
the state of the art Support Vector Machine (SVM) approach (76.40% F1 Score, as
reported in [8]);

• 80.22% and 80.24% F1-Scores were obtained using the Hybrid CNN with Aug-
mentations + DNN using the New-MERGE Balanced and Balanced-Genre datasets
respectively, a considerable improvement over the state of the art SVM approach.

As for the contributions made with this work:

• The validation of the New-MERGE dataset, which performed on par with Legacy-
MERGE without any optimization, indicating its viability;

• A very extensive set of experiments conducted on both the Legacy- and New-MERGE
datasets;

• Preparation for a comparison article using the collected data for this thesis.

To end this section, the limitations encountered during the development of this work:

• The small dataset sizes greatly impacted the performance of the DL approaches
experimented with;

• Missing emotion tags for some of the songs on the New-MERGE dataset considerably
reduced the available datasets for methodologies using mapped A-V values;

• An oversight also reduced the available samples for the New-MERGE dataset due to
missing extracted handcrafted features for some of the songs.
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1.4 Organization, Planning and Resources

This section presents the experimental environment where this work was conducted, as
well as an overview of the planned tasks, allocated time and a reflection on the actual
project’s development.

1.4.1 Experimental Environment

The presented experiments were mostly conducted on a shared server with the team. Due
to the very demanding nature of most DL models experimented with, Graphical Processing
Units (GPUs) are required to properly develop and evaluate these in reasonable time. The
specifications of the server at the begining were:

• Intel Xeon Silver 4214 CPU @ 2.20GHz x 48

• 3x NVIDIA Quadro P500 16GB

Despite the resources available, the GPUs of the server were seldom free to conduct exper-
iments, rendering the server a lot less useful. For this reason, it was decided to use Google
Collaborator in tandem with the server. With a small fee, the following resources were
available:

• Intel Xeon Silver 4214 CPU @ 2.20 GHz x 48

• NVIDIA P100 PCIE 16GB/T4 16GB

• Maximum of 32GB System RAM

• Maximum 24 hours runtime

There were initially a lot of difficulties taking advantage of these resources, mainly due to
the fact that the time a runtime is alive varies with no discernible reason. An experiment
could run the full 24 hours or 30 minutes, with no difference between them. Google does
not disclose the reasons for terminating a runtime, justifying it with user inactivity and/or
high server load.

Later, 3 NVIDIA RTX A5000 24GB GPUs were added to the server, as well as an increase in
RAM, totalling 256GB at the time of writing. The increased resources helped to increase
the throughput of experiments conducted, with some hiccups along the way due to the
continuous heavy use by various users.

The methodologies were mostly conducted in a Python 3.9.7 virtual environment for repli-
cability purposes. Libraries such as numpy and pandas were utilized for data manipulation,
as well librosa to manipulate audio signal data. For implementing the approaches, keras,
tensorflow and pytorch were utilized to build and train DL models, while scikit-learn was
utilized for some Classical ML approaches and calculating the relevant metrics for analyz-
ing the approaches performance. Other relevant libraries are noted in the section where
the approaches utilize them.
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1.4.2 Organization

Gantt charts are presented as a contrast between the planned timeline and real effort
needed for completing each task, ending with a brief discussion on the reasons for the
changes.

First Semester

It was decided that the first two months of the first semester would be focused on the
literary review for the creation of a comprehensive State of the Art, as well as acquire
information necessary for accomplishing the objectives of the project. The rest of the
first semester would be focused on getting to know the available MER datasets, as well
as replicating the previous work conducted with the available datasets, in order to get
familiar with the tools to be used during the development of the new DL models. The
experiments would also be applied to a corrected version of the same datasets, to access
possible improvements in the performance of the models.

During the period focused on the literature reviewed, there was also some familiarization
with the server where the experiments would be conducted, as well as the setup neces-
sary for performing the experiments. Due to technical problems, familiarization was more
limited than expected.

The review of the State of the Art took longer then initially expected due to lack of planning
and knowledge on my end. The experiments also took longer then expected, due to issues
regarding the necessary packages to replicate the abovementioned work and unavailability
of the server. This led to a severe reduction of the conducted experiments, the remaining
being adjusted in the planning to be conducted in the beginning of the second semester.

The focus of the whole semester became to develop a good foundation on the various
approaches available to solve MER, as well as exploring new ML techniques for coping
with the reduced data in the explored datasets. Replication of previous work was started,
ensuring a foundation of the main tools for conducting all future experiments in the next
semester.

The Gantt chart of the estimated effort for each task at this point can be seen in Fig. 1.1.

Second Semester

For this semester, most of the tasks were already established with respective estimations of
the time they would take to be completed. These estimations, as can be seen by the final
Gantt chart, were severely underestimated due to a variety of factors. The experimentation
on new methodologies for Static MER had to be pushed back due to resource difficulties,
pushing replication work well over the initial three weeks estimated for conclusion to around
seven weeks. All these events greatly increased the time needed. Despite this, these
difficulties led to a more thorough review of the literature, leading to a lot more possible
methodologies to be followed later.

With this push, MEVD experimentation was dropped to a low priority and evaluating the
extended dataset viability was raised to medium priority, since it made more sense with
the predicted remaining time and would also pertain a more substantial contribution to
the field. At this point, the tasks at hand for the approaches to be explored were set,
dividing the time for development and evaluation of Static MER approaches between each.
Unfortunately, due to underestimating of the problems that would arise from implementing
the approaches and more resource difficulties, each experiment took longer than expected,
and this led to the delivery of the present work.
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The tasks’ timeline was again adjusted, dropping the Few-Shot Learning approaches, due
to being the least promising of the lot and MEVD experimentation, due to the already
discussed reasons. Finally, the timeline for evaluating the dataset extension was set and
the resulting version of this planning can be seen in Fig. 1.2.
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Figure 1.1: Estimated and real effort for the first semester.
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Figure 1.2: Estimated and real effort for the second semester.
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1.5 Outline of the Thesis

The document is organized as followed.

Chapter 2 presents a review on the state of the art of the MER field and relevant con-
cepts. In this chapter, the employed emotion taxonomies in the literature (Section 2.1) is
followed by a review of existing public databases focusing on music (Section 2.2), as well
as a background on key machine learning concepts to understand the reviewed approaches
(Section 2.3), following with the reviewed approaches for Static MER (Section 2.6) and
MEVD (Section 2.7).

Chapter 3 presents both studied datasets, Legacy-MERGE and New-MERGE, followed by
a brief explanation of the relevant metrics used to evaluate the performance of the models
on the aforementioned datasets.

Chapter 4, the core chapter of this thesis describes the methods and experiments performed.
Unlike the typical organization on two chapters (one for methods and another one for
experiments), we preferred to describe each method immediately followed by the performed
experiments due to: i) the larger number of performed experiments; ii) and the logical
sequence in each they were performed.

Finally, the conclusions from this thesis and a brief discussion on the possible directions
for future work are presented in Chapter 5.

11
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Chapter 2

Background Concepts and State of
the Art Review

This chapter has the objective of providing some exposure to core concepts of MER models,
while discussing the different approaches to them, and a review and critical discussion of
the research accomplished in the area.

2.1 Emotion: Basic Concepts and Representation Models

In this section we define emotion, as well as the different types of emotions: perceived (the
focus of this thesis), expressed and induced.

2.1.1 Emotion Concepts

Although inherent to humans, emotion as a concept is very hard to accurately describe. A
definition proposed by Kleinginna et al. [9] states that "Emotion is a complex set of interac-
tions among subjective and objective factors, mediated by neural/hormonal systems, which
can (a) give rise to affective experiences such as feelings of arousal, pleasure/displeasure;
(b) generate cognitive processes such as emotionally relevant perceptual effects, appraisals,
labeling processes; (c) activate widespread physiological adjustments to the arousing con-
ditions; and (d) lead to behavior that is often, but not always, expressive, goal-directed,
and adaptive." Emotion can be briefly summarized as rapid changes in the disposition of
an individual, most of the times occurring in small intervals of time.

Not only is emotion highly subjective, it can also be expressed, perceived or induced.
These are the emotion the composer and/or performer aim to transmit in a song, the
emotion identified in a musical piece and the emotion evoked by the song in the listener,
respectively [10]. Some important points in these different types of emotions are the
possible independence of perceived emotion from the other types, the same may be stated
for induced emotion, and that perceived and induced emotion are not easily distinguishable,
due to the paradox of negative emotions, for example, sadness and sorrow being considered
as enjoyable [11].

Perceived emotion is the focus of this work, nonetheless, there are works focused on induced
emotion.
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2.1.2 Emotional Models

A large problem in MER is the annotation methods used to build databases due to the
high subjectivity inherent to emotions already discussed above. To extract relevant and
accurate information from the annotations of humans, and in the process reduce ambiguity,
emotional models are used. These can be categorical, where emotions are aggregated
in clusters and music is classified with tags corresponding to one of those clusters, or
dimensional, where emotions are in a discrete or continuous space, mostly two-dimensional,
and music is classified with a value for each dimension.

There is a large debate about which type of model is better [12], both being used in the
literature.

Next, the most prominent models in recent literature are discussed.

Categorical Models

These models are based on the basic emotions, a concept introduced by Ekman [13], which
states that emotions are distinct from one another and can be defined as categories. These
basic emotions are happiness, sadness, anger, fear, disgust and surprise. They seem to be
linked to the key aspects important to our evolution, although this has been disputed, as
some authors have found different sets of emotions.

Hevner’s Adjective Circle

Based on these basic emotions, Hevner[14] developed an adjective circle which clusters
similar emotions into groups. There are 8 different groups of adjectives, having a range of
6 to 11 emotions in each, totaling 67 adjectives. Neighboring groups have higher similarity
compared to more distant ones.

Figure 2.1: Hevner’s Adjective Circle [14].

Despite encompassing a wide array of the emotion spectrum, this approach as some prob-
lems, namely the clusters being unbalanced, having varying number of adjectives, and
being developed for classical music in mind.

This model would later be revised to 10 groups by Farnsworth [15], and 9 groups by
Schubert [16].

Geneva Emotional Musical Scale Model (GEMS)
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This approach [17] aimed to study induced emotions in listeners and develop a categorical
model for music emotion classification. Four different studies were conducted in order to
build a comprehensible list of relevant affect terms.

The first two studies focused on collecting the known adjectives from the literature and
validating them. The first study, which was conducted with 92 psychology students, nar-
rowed down the list from 515 to 146 terms. The second study asked 262 undergraduate
psychology students for their music genre of choice. Three questions were made to the
students that chose a preference in order to attest how often they felt and perceived a
given emotion when listening to that genre, as well as the frequency it was experienced
in extra musical everyday life. The final result produced a list of 66 relevant terms. The
third study focused on extending the aim of the second and also examine the possibility of
dividing these terms into sub-units and the last study focuses on finding whether the term
list is more accurate at describing and lessing the subjectivity of the reported emotions.

The final GEMS comprises 45 terms, divided into 9 categories, proven to be relevant and
encompassing. Two shorter scales comprising of 25 and 9 terms were also created.

However, there are some aspects that put in question its representativeness of the various
genres. Five genres were chosen as the subject of the study meant to encompass the
remaining genres, which is very difficult to achieve due to the huge amount of musical
genres. The samples chosen are also very limited, not only in number, 16 in total, but also
in genre, focusing exclusively in classical music.

Dimensional Models

Dimensional models regard emotional experiences as “a continuum of highly interrelated
and often ambiguous states” [18]. Here, a multidimensional space is employed, mapping
different emotional states to points in that space.

Russel’s Circumplex Model

Assuming the presence of multiple stimuli as necessary for the existence of emotion,
Russell[19][18] proposed a two-dimensional emotional model, comprised of valence, which
quantifies how pleasurable the emotion is, and arousal, quantifying its namesake. The
second dimension can also be referred as activity.

Figure 2.2: Russel’s Circumplex Model [18].

According to the two aforementioned axes (arousal and valence), this model is composed
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Figure 2.3: Meyer’s Discrete Dimensional model [20].

by four different quadrants, mainly defined in the literature as: Q1 - exuberance, happy
and energetic emotions; Q2 - anxiety, frantic and energetic emotions; Q3 - depression,
melancholic and sad emotions; Q4 - contentment, calm and positive emotions.

Despite some identified shortcomings, for example, placing emotions with distinct meanings
next to each other, this has been the most widely used model in MER literature [12].
Alternative models using two main dimensions to classify emotion have been proposed in
the literature, one of these being the Thayer’s model of emotion, as cited in [20]. The
concept of arousal is now divided into energetic arousal and tense arousal and these are
defined by rotating the Russel’s circumplex model 45 degrees.

Meyer’s Discrete Dimensional Model

Another approach used by interpolating Russell is presented by Meyer [20]. There a cir-
cumplex model divided into 8 equal parts, each one characterized by it’s arousal and valence
signal, is presented.

The reasoning behind making the two-dimensional plane discrete is due to it being more
comprehensible to annotators and greatly reducing the computational cost.

The resulting sections are: arousal, excitement, pleasure, relaxation, sleepiness, depression,
displeasure and distress.

This is an example of discrete dimensional models, which are widely used since they are
more comprehensible to the annotators and used as the emotional taxonomy of datasets
[6].

Three-dimensional models have been proposed over the years, such as the Schimmack
and Grob model, Fig 2.4, which fuses the Russell and Thayer models to produce a more
comprehensive emotional plane, or the Tellegen-Watson-Clark Model, Fig 2.5, which is
based on a hierarchy that takes into account the phenomena of sad songs having a perceived
happy feeling, as well as separating positive from negative affect, being judged separately.
Despite solving some issues with the models discussed before, these models have not been
studied in the context of MER, since these are more complex and would require more
resources to train models that adopt these taxonomies, and knowing that two dimensional
models are already complex for human annotation, introducing another dimension would
add even more level of complexity, leading to lower quality annotations.
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Figure 2.4: Schimmack and Grob model, from Eerola et al. [12].

Figure 2.5: Tellegen-Watson-Clark model, from Trohidis et al. [21].

2.2 Music Emotion Databases

A necessary element in any approach for solving MER are data samples annotated with
the corresponding emotion. These data samples are normally samples of full songs which
represent the entire song content should the approach focus on solving Static MER, or
various samples of a song that represent the emotion at a certain interval for solving
MEVD. These samples also need to be humanly annotated, also called ground-truth data,
which is normally a very labor-intensive chore, conditioning the size and the quality of
the annotations, due to the number of annotators and their music expertise respectively.
Finally, features also need to be extracted from these samples, which can vary from a few
features to hundreds [22]. Various authors have assembled the aforementioned elements
into databases, some private and others released to the general public, enabling other
researchers to use these in their one studies. The databases may not always provide all the
elements as they are. The samples may not be present due to copyright reasons, instead the
songs and the interval used for the sample are annotated, or the features are not present,
needing to be extracted with audio feature extraction tools.

Another important point is the quality of the database itself. There are various factors
that impact the quality, including: the number of annotations per sample, the number
of samples in the database, how balanced are these according to genre or distribution
across the emotions in the used emotion taxonomy, how the data is collected and the
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agreement rate of annotators. Due to the subjective nature of the emotion evoked by music,
it is important to understand how the samples are annotated and how the agreement is
measured, to mitigate this issue as much as possible. Databases that do not take annotators
agreement in account, such as very large datasets mostly composed of user submitted tags,
have considerably less quality due to the inconsistencies of the annotated emotions and
the tags themselves may not be related to emotions. Despite this, a very large quantity of
samples can provide several significant features for the classification process.

These databases also range from completely varied, such as in genre or artists, to a very
focused database, such as including only classical music, as can be found throughout MER
literature, or focus on popular music from select languages, such as a English and Chinese
popular music dataset.

Since MER strives to accurately classify the emotions present in music to facilitate the
search and management in music listening in general, this project will mainly focus on
datasets that provide variety on the genre, time-frame of release and artists, to more
accurately represent the variety found in music.

This section will provide an analysis of publicly available datasets, first analyzing each
database’s characteristics, followed by a table presenting the key points of each one.

CAL500exp

The CAL500exp dataset [23], as its namesake implies, is an expansion of the CAL500
dataset composed of segments of the original music clips that are within a range of 3 to 16
seconds each. This segmentation was performed by using an algorithm that splits the music
piece according to the acoustic homogeneity in a certain interval. These segments were
then linked to the corresponding tags, which were also trimmed down from the original
CAL500. The process was carried out using 11 music experts annotations, obtaining a
total of 67 out of the original tags, where freely user created tags could be added. This
makes it more consistent than the original dataset, since all tags were expert picked.

MTAT

The MagnaTagATune, or MTAT, is a result of the annotations obtained from the TagATune
game for evaluating music tagging algorithms presented by Law et al. [24]. The tags are
aggregated by matching two human players, or a bot in case matching is not possible, and
asking them to tag the tune they are hearing as they desire, followed by asking each player
to assess whether the other player’s song is the same or different using only the submitted
tags, which should ensure that only the most relevant tags for a song are kept.

The dataset itself contains 25,877 audio clips, each 30 seconds in length, and the corre-
sponding multi-label annotations, including common tags such as genre and decades as
well as others including mood, instruments and some related techniques (ex: plucking),
however, from the 168 available tags, only the top 50 are normally used [25]. The data
is divided into 16 folders and the normal train/validation/test split is 1-12/13/14-16, but
other splits exist.

The annotation process, although not as controlled and no agreement rate is provided,
provides better quality compared with other datasets, such as MSD, however, it does not
provide a great diversity of artists, which may limit the generality of models trained on it.

Million Song Dataset

The Million Song Dataset [26] aims to provide a large-scale dataset for the MIR field,
adressing the problem of the smaller public datasets available not being very suitable to
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demonstrate the scalability of proposed approaches.

The dataset is an aggregation of multiple smaller datasets compilled from different sources,
such as The Echo Nest, MusicBrainz, MusixMatch and more. The annotations are tags
freely inputed by the large communities of listeners in the relevant services, which may
not accurately represent the song track, since common listeners may rashly input the first
impression of a track in the system without properly assessing it.

Bi-Modal

The Bi-Modal database, proposed by Malheiro et al. [27], is composed of various audio
samples with their corresponding lyrics, with the intent of achieving better performance
by combining the two, something out of the scope of this project. The audio samples
can be used independently, meaning that audio based approaches for solving MER are
possible with this database. The dataset was constructed by first collecting 200 music
samples and their corresponding lyrics spanning different music genres and eras. The
annotation phase was carried out with 39 annotators with diverse backgrounds, where each
classified either the audio or the lyrics based on their emotional content, assigning numerical
values on a discrete Russel’s A-V model for both valence and arousal, ranging from -4
to 4. After evaluating the standard deviation of the annotations between annotators,
the agreement between and whether the audio and lyrics annotations for the same song
match, the database was reduced to 133 samples. This database has a reduced number of
samples, which is a recurring negative point of databases in MER. Due to its small size, the
discrepancy of the samples representing each quadrant is more noticeable and therefore,
more unbalanced than at first.

DEAM

DEAM, presented by Aljanaki et al. [28], a database which in reality is a combination
of the three databases developed for the ’Emotion in Music at the MediaEval Evaluation
Campaign’ between 2013 and 2015 for model performance evaluation. The database is
comprised of 1802 samples, each 45 seconds in length, with both static and dynamic an-
notations, according to the continuous two-dimensional Russel’s A-V model, meaning that
the database can be applied to both Static MER and MEVD. For the dynamic annotations,
each sample has an emotional label every 0.5 seconds. The samples are extracted from the
original songs at random starting points, which raises some concerns, such as the sample
not representing the emotional content of the song or being completely silent. The mean
agreement rate for this dataset is around 0.47 [7], meaning that annotators did not agree
in most of the songs of this dataset. The annotations were a joint effort from the authors
and crowdsourcing through Amazon Mechanical Turk, for which a method was proposed to
filter out poor quality annotations. Due to the low agreement rate, a selection of samples
should be conducted to keep the most consistently annotated samples.

PMEmo

PMEmo, proposed by Zhang et al. [29], is a database composed of 794 annotated songs
along with the electrodermal activity of the annotators. The process of collecting electro-
dermal activity signals from annotators will not be discussed since it is out of the scope
of this project. The construction process of this database started by fetching 1000 English
pop songs from various United States and United Kingdom music charts. After removing
duplicates, which includes songs that were already present in the collection but added other
artists, it was reduced to 794 songs and samples of various sizes representing the chorus of
each song were extracted. 457 subjects, mainly Chinese students not majoring in music,
conducted the annotation process, which began by training the subjects to understand the
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emotional model used, discrete Russel’s A-V model, and get familiar with the interface.
After relaxing with the help of a song, each subject annotated both valence and arousal
for 20 excerpts of which 1 was a duplicate. This is stated to increase the quality of the an-
notations, as proposed in [30], since the annotations are only accepted if the bias between
the values of both clips are low enough (within 0.25 in the A-V space). By removing these
annotations, each music clip has annotations by at least 10 different subjects. Finally, the
agreement between annotators is evaluated, which produces very good results, indicating
a very high agreement rate. This database has a decent size in comparison to others in
the literature, but focuses heavily on a single genre and a very specific era, only two years.
This may explain the high results obtained in the experiments with this database.

MTG-Jamendo

The MTG-Jamendo dataset, introduced by Bagdanov et al. [31], includes 55,701 full length
songs, each having at least a duration of 30 seconds, extracted from the Jamendo1 music
platform, composed of copyright free music provided directly by artists. Each track has
692 associated tags provided by the music’s author including genre, instruments, moods
and more, which were submitted to a preprocessing step. There are also five different splits
provided by the authors, from which the first one is recommended to be used for music
auto tagging, as well as providing the 50 most frequent tags.

Due to being very recent, it has not seen much use and therefore, its generality is not yet
confirmed. Using copyright free music is also a positive point for this dataset, since song
clips can be provided without repercussions, however, not including popular music may
hurt the performance of the model when used in a more mainstream context.

4QAED

4 Quadrant Audio Emotion Dataset, or in short 4QAED, is a dataset composed of 900 music
clips, each being a sample of 30 seconds from a music piece, which annotations have been
mapped to the quadrants of Russel’s model. The clips were gathered from the AllMusic
API as well as the tags corresponding to the music’s mood, which were then mapped to
Warriner’s list of adjectives [32], which provides A-V values, in order to map these into
the above mentioned model. After a very thorough process to discard poor quality clips
and clips which the annotations did not match the All Music tags, the resulting dataset is
equally balanced across every quadrant, having 225 samples for each emotional quadrant
considered. One possible issue of this dataset is the use of the All Music tags, since it is
not explicit how the process for obtaining such tags is conducted.

WCMED-CCMED

Transfer Learning is a relatively new approach in MER, which, in simple terms, consists
in training a model with a set of data, extracting the learned weights and using them
in a model for a different problem hoping to achieve similar performance to the original
model. Fan et al. [33] proposed a database consisting of both Western and Chinese
classical music samples, providing some experimental results for Transfer Learning. The
database consists of 400 samples of Western classical music and 400 samples of Chinese
classical music, collected from a royalty free dataset and a music streaming platform,
respectively, each sample being between 8 to 20 seconds long. The annotations were
collected through a crowdsourcing effort, where a possible annotator needed to read a
tutorial and provide accurate answers to a quiz before it could continue to the actual
annotation process. The annotation process is done through pairwise comparison using
the Russell’s circumplex model, meaning that each annotator decided which sample had

1https://jamendo.com
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higher valence and/or arousal, which is stated to simplify the annotation process as well
as improving the agreement between annotators. After the samples are ranked relative
to each other, these are mapped into a -1 to 1 interval for both valence and arousal. In
this process, the authors assume that the distance between two successive rankings are the
same, which may lead to mislabeled data. The agreement rating was shown to be decent,
showing a 77.3% agreement rate for arousal and 76.1% for valence. For the conducted
experiments on this database, two approaches were taken, one were the features where
extracted using a modified version of the VGGish model, a pre-trained model trained
using a large dataset of more than 2 million humanly annotated 10-second clips, which
were then fed to a SVR model, and another using a Soundscape Emotion Recognition
model based on a LSTM-RNN architecture trained using the Emo-Soundscapes 2 dataset.
The obtained results, measured through squared error and mean squared error, for the
first approach shows slightly better results for the Chinese portion of the database over
the Western one in terms of arousal, having a significant difference in valence according
to the squared error. The same is observed in the second approach. Further analyzing
the samples for training, a binary classifier was built using the dataset from the second
experiment to understand if the samples fall into Chinese or Western classical music. The
findings show 85.97% of them fall into Chinese classical music, which may explain the
results observed in both experiments.

There are some key points to a good quality database that can be inferred from the
reviews conducted. Firstly, the samples themselves should be a good representation of
the emotional content of the songs they are extracted from, as well as being around 30
seconds in length, as it has been proven to be a good length to preserve the emotional
content of the song . The emotional model used may directly impact the quality of the
annotations, results showing that dimensional models tend to perform better, although
it is necessary to provide an annotation method, such as pairwise comparison, that does
not rely on annotator’s prior knowledge of the models, as well as analyzing the agreement
between this to preserve the quality of the annotations.

2https://metacreation.net/emo-soundscapes/
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Table 2.1: Database review.

Databases Review
Name Approach Clip Duration Features/Data Size Emotion

Taxonomy
Notes

CAL500exp Dynamic 3 to 16 seconds
song clips

Sound Signal 500 songs
divided
into various
clips

67 tags Based on the 67 tags of
the CAL500 dataset.

MTAT Static 30 seconds song
clips

Sound Signal, Metadata
and Features (extracted
from the Echo Nest
API)

25,877
audio clips

Tags ob-
tained
through the
TagATag
game (168
tags)

Does not provide a good
artist coverage and an-
notator’s agreement is
unknown.

Million Song
Dataset

Static 30 seconds song
clips

Sound Signal (major-
ity of samples), Ex-
tracted Features (such
as tempo and energy),
Metadata(Artists, Song
Title, Genre, ...)

1000000 au-
dio clips

Tags freely
submitted
by users

Annotations vary in
quality, combination of
a variety of different
databases.

Bi-Modal Static 15 seconds clip Sound Signal, Lyrics 360 audio
clips

Discrete
Russel’s A-
V model (4
quadrants)

It has very small size
even compared to other
databases reviewed,
making experimenta-
tion results not very
significant.

DEAM Static/Dynamic 45 seconds audio
clips

Sound Signal, Metadata
(Artist, Song Title, ...)

1802 song
clips

Continuous
Russel’s
A-V model

Samples may not con-
tain the emotional con-
tent of the song it was
taken from, sample du-
ration may not be ideal.
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Table 2.2: Continuation of the database review.

Databases Review
Name Approach Clip Duration Features/Data Size Emotion

Taxonomy
Notes

PMEmo Static Variable size Sound Signal, Lyrics,
Features

768 labelled
samples

Continuous
Russel’s
A-V model

Very focused database,
although focusing on
popular music may lead
to decent results, focus-
ing on only two years
heavily limits its gener-
ability.

4QAED Static 30 seconds song
clip

Sound Signal, Metadata
(Genre, Emotion Tags
and A-V values)

900 audio
clips

Discrete
Russel’s A-
V model (4
quadrants)

Randomly selected in-
tervals of song for sam-
ples.

MTG-Jamendo Static Full length songs,
minimum 30 sec-
onds

Sound Signal, Metadata 55,701 full
songs

Tags sub-
mitted by
songs’ au-
thors (692
tags)

Only encompasses copy-
right free songs and tags
may represent more ex-
pressive than perceived
emotions.

WCMED-
CCMED

Static 8 to 20 seconds
song samples

Features (loudness,
rhythm, timbre, ...),
Metadata (Song names,
Sample start and end
points, ...), Rankings
and Ratings

800 samples
(400 West-
ern and
400 Chinese
classi-
cal music
pieces)

Continuous
Russel’s
A-V model

A database composed of
only one genre is very
limiting when trying to
find a general solution
for MER.
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2.3 Machine Learning and MER

The purpose of this section is to introduce Machine Learning concepts, more specifically
related to Deep Learning, that will be further discussed when presenting the reviewed
literature or as subject of future experimentation.

2.3.1 Fundamentals of Deep Neural Networks

A deep neural network (DNN), or dense neural network, or simply a fully connected neural
network (FCNN), in contrast to a simple neural network which has a single layer of neurons
between the input and output layers, are composed of a varying number of neuron layers
between the above mentioned layers. An example of a FCNN is depicted in Fig. 2.8. A
neuron, a mathematical analogy of a biological neuron of a brain, is a very simple structure
composed of a set number of inputs and respective weights, which can be trained. A
representation can be seen in 2.6. The output from a single neuron is a weighted sum
or product, depending on the use case, passed through an activation function. In the
literature, Rectified Linear Unit (ReLU) is the most used activation function in the input
and hidden layers, whereas in the output layer, Softmax activation is used.

Figure 2.6: A simple multiple-input neuron adapted from [34]. The output of this neuron
is calculated by applying the given activation function to the sum of the weighted sum of
the inputs and the set bias.

A DNN has a variety of layers, the number corresponding to the depth of the DNN, namely,
an input layer, which width, or size, is fully dependent on the problem at hand, a varying
number of hidden layers or none at all, and an output layer, which width is also dependent
on the problem at hand. Unfortunately, it is not easy to know the optimal depth and width
of each layer, but, generally, this should scale accordingly with the size of the dataset and
the number of classes, or outputs, of the problem.

All neural networks go through a training phase, where it attempts to adjust the weights
to reduce the overall loss. This loss is normally calculated through a function that is the
difference between the obtained output and the correct output. This is done with the
backpropagation method, where the aforementioned loss function is taken into account to
update the weights in reverse, beginning with the output layer, then the hidden layers and
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finally the input layer. The network is trained for some amount of epochs, these being the
number of passes of the entire dataset for training, depending on the batch size, it can
differ from one to more passes.

(a) ReLU activation function, used in the input
and hidden layers.

(b) High-level overview of Softmax activation
function, used in the output layer.

Figure 2.7: Most widely used activation functions in MER literature. Left3. Right4.

Figure 2.8: Simple FCNN architecture5.

Should a single fully connected layer be used in any discussed methodology, it will be
referred to as a dense layer to differentiate from the FCNN architecture.

One of the most prevalent problems in neural networks is overfitting. This happens due to
the main goal of the neural network in the training phase, minimizing the loss function. It
can normally be spotted by the neural network model achieving scores close to perfect in
the training phase, but does not perform well when using the testing dataset. A dropout
layer, which randomly discards a certain number of samples, can be used to mitigate this
problem.

4https://towardsdatascience.com/softmax-activation-function-explained-a7e1bc3ad60
4https://ml-cheatsheet.readthedocs.io/en/latest/activation_functions.html#relu
5http://alexlenail.me/NN-SVG/index.html
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2.3.2 Common Neural Network Models found in MER literature

Convolutional Neural Network

Convolutional Neural Networks (CNN) are often used for Computer Vision tasks such as
image recognition and classification, but uses outside this field have been found, such as
in MER, were they are applied to Mel-spectrograms for music tagging [35] as an example.

These networks are usually divided into convolutional layer, pooling layer and fully-connected
layer, although there can be more pooling and fully-connected layers after the first convo-
lutional layer.

Figure 2.9: A simple CNN architecture consisting of two convolutional and pooling layers,
computing the output using a fully connected layer6.

The input feed to the convolution layer is normally an image, or more precisely, the values
of each pixel in its respective channel should there be more than one, as for example, an
RGB image has three channels, one for each color. A kernel, also known as filter or even
feature detector, is a matrix of weights, whose size can vary depending on the problem
at hand. It is applied to a particular area of the input, known as the receptive field,
performing a dot product between the input values and itself. The process is repeated
throughout the image, sliding a set amount of pixels horizontally and vertically, known as
stride. The resulting output is called a feature map or a convolved feature, which is feed
to the pooling layer.

The pooling layer objective is reducing the dimension of the feature map, achieved by
sweeping the map, similar to the filter, but applying either a max operation, using the
maximum value of the receptive field, or an average operation, meaning it calculates the
average of all values in the receptive field, and producing an output array to be feed to the
fully-connected layer.

Recurrent Neural Networks

A simple Recurrent Neural Network, unlike the discussed models, uses "memory" for more
accurate predictions, feeding previously computed values to future iterations of the net-
work. These are most suited to time-series data, which are a collection of observations
made by repeated measurements over time, such as annotating the predominant emotion
of a song clip in regular intervals of time.

Another characteristic that distinguishes RNN from other, is weight sharing within each
6https://towardsdatascience.com/simple-introduction-to-convolutional-neural-networks-cdf8d3077bac
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layer, meaning that a given layer has the same weight for each unit, which are still ad-
justed through gradient descent and the backpropagation algorithm, as the already dis-
cussed architectures. The backpropagation algorithms are slightly different in these types
of networks since it accounts for each iteration, or time step, of the network. Instead of
adjusting the weights with the current computed loss, backpropagation through time, or
BPTT, sums the errors of each time step to get the current loss before adjustments. This
is done to account for the weight sharing already discussed.

These have shown to be very efficient with natural language processing tasks, such as
speech recognition, and are heavily used in conjunction with CNNs in the literature for
solving MEVD [36]

Despite the discussed above, these networks tend to run into some problems regarding their
weights, known as exploding weights, which occur when the gradient is too large, meaning
that the weights of the model have grown too much, and vanishing weights, occurring when
the gradient has become too small, leading to the weights reaching near 0. Either way, the
model becomes unable to learn, massively impacting the overall performance.

Figure 2.10: A simple RNN architecture 7.

Long short-term memory networks, (LSTM), were proposed to combat the former problem.
This architecture adds three gates to each unit8: an input gate, an output gate and a forget
gate. This allows the unit to decide whether to keep a certain computed value in "memory"
if it is found relevant. Some variations include Bidirectional LSTMs, which use not only
past information, but also future information to update the current input and output.

These have been widely adopted due to performing better than regular RNNs, having been
used in recent literature also to solve MEVD [37].

2.3.3 Training with Few Samples

Few-Shot Learning

Few-Shot learning can be defined as a Meta-Learning problem using a very limited amount
of samples for each class. The purpose of Meta-Learning algorithms is to learn how to learn
to classify the given input data, in contrast to the usual Machine Learning approaches,
where the model learns how to classify the data using the training data and evaluate the
results using test data. This is accomplished by defining a set of tasks to be used for
training the algorithm, using that experience when trying to solve the target task. The

7https://www.ibm.com/cloud/learn/recurrent-neural-networks
8An LSTM unit can also be referred to as a LSTM neuron
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model will receive a set of tasks, also referred to as episodes, each episode comprised of N
classes, each one with k images, as well as a query set of images Q. For each episode, the
model will learn how similar or different each set of images are from each other, evaluating
the performance of the learned parameters on the Q set, maximizing the accuracy on this
last one as much as possible. Finally, after the model is trained, a test task is presented in
order to evaluate the performance of the trained model. The discussed process is depicted
in figure 2.11.

Figure 2.11: Process of training and evaluating a Few-Shot learning algorithm.

Due to being a very recent technique, it as not seen much research in the MER field,
mostly using other physiological signals such as EEG signals that are not in the scope of
this work [38]. The achieved results lead us to believe that this should be further explored.
In the literature, one of the most common architectures based on Few-Shot learning found
are Siamese Networks, or SNs, which are made up of two or more identical subnetworks,
mirroring the weight and parameter adjustments made in a subnetwork to the others. The
ultimate goal of this architecture is to learn a similarity function based on the distance of
the given samples in a high dimensional space, known as an embedding, to determine how
similar or dissimilar two samples are from each other.

2.4 Data Augmentation

In this section, classical audio augmentation are presented, followed by a GAN which
generates new samples from a learned latent space.

2.4.1 Classical Audio Augmentation

Classical audio augmentation apply a certain transformation directly to the raw signal of
the sample. Below some of the most commonly used audio augmentations, which are also
used in previous developed Data Augmentation methodologies, are presented:

• Time shifting: randomly shifts the sample in time, making some of the beginning or
ending of the sample silent, as seen in Fig. 2.12;
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Figure 2.12: Music clip before and after applying Time Shifting.

• Pitch shifting: randomly lowers or raises the pitch for the whole sample in some
amount of tone, be they complete or half tones, as seen in Fig. 2.13;

Figure 2.13: Music clip before and after applying Pitch Shifting.

• Time stretching: randomly increases or decreases the tempo of the song by some
factor, as seen in Fig. 2.14;

Figure 2.14: Music clip before and after applying Time Stretching.

• Power shifting: randomly increases or decreases the intensity of the whole sample by
some amount of dB, as seen in Fig. 2.15.

There also other audio augmentation techniques experimented with in this work. These
were:

• Time-Frequency Masking: Presented by Park et al. [39], Time-Frequency Masking,
Fig 2.16 is a technique that, as its name suggests, masks some part of the sample,
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Figure 2.15: Music clip before and after applying Power Shifting.

in the time and frequency axis, making a random segment of time and a random
frequency band silent, in order to generate new samples. This technique is widely
used in Speech Emotion Recognition due to making the models more robust, having
been applied to the MER task with the same intent [40].

Figure 2.16: Music clip before and after applying Time-Frequency Mask.

• Tanh Distortion As suggested in the audiomentation repository, this technique, seen
in Fig 2.17, was experimented with. The whole sample is distorted following the tanh
function, making mostly instruments appear, to be distorted, such as the guitar.

Figure 2.17: Music clip before and after applying Tanh Distortion.

• Seven-band Parametric Equalization Also suggested in the audiomentation to make
the model more robust, this technique, seen in Fig. 2.18 adjusts the amplitude
of certain frequencies of the samples. From seven predefined frequency intervals,
a set value is picked for each and the transformation is applied. The technique is
actually a composition of a low and high shelf filters (increases or decreases amplitude
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randomly), and five picking filters for the mid frequencies (increases or decreases
amplitude randomly in the neighborhood of the center frequency picked).

Figure 2.18: Music clip before and after applying Seven-banded Parametric Equalization.

• Random Gain This classical audio augmentation, seen in Fig. 2.19 randomly in-
creases or decreases the amplitude of the whole sample, meaning that the sample
gets louder or quieter respectively. No change is perceptible possible due to .

Figure 2.19: Music clip before and after applying Random Gain.

• Background Noise Another classical audio augmentation used for making a model
more robust. This one randomly adds background noise from a preselected set of
audio clips. The audiomentations library points to possibilities for this preselected
set, from which the ESC-50 [41] was chosen. This dataset provides 2000 audio clips
captured in the real world and are separated into five different types of environmen-
tal sounds: animals, soundscapes, speech, interior and exterior sounds. For each
augmentation, a random clip from the abovementioned 2000 is chosen to be merged
with the original clip, generating a new sample.

Figure 2.20: Music clip before and after applying Background Noise.
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There are still a lot more audio augmentations that could be experimented with, and should
be experimented with in future work for possible further improvements.

2.4.2 Generative Adversarial Network

One of the most prevalent problems in MER is the size of the available public datasets,
which are normally reduced due to the labor and time intensive effort that is required to
produce quality annotations for each sample. Recently, Generative Adversarial Networks,
or GANs, introduced in [42] by Goodfellow et al., were proposed as an approach to generate
new and unique samples using the already annotated samples [7].

The architecture of a GAN is composed by two Neural Networks: a generator, which, as its
name suggests, generates samples using a sampled vector from a latent space distribution9,
and a discriminator, which has the objective of differentiating the real samples from the
generated samples coming from the generator. The adversarial process is conducted by
training the generator to maximize the fidelity of the generated samples in order to make
them as indistinguishable as possible from the real ones in regard to the classification of
the discriminator, while the discriminator is trained as already discussed models, adjusting
the weight parameters in order to better distinguish the samples fed to it.

Figure 2.21: Overview of GAN architecture adapted from [43].

Although promising, these networks bring more complexity to the training phase, since it
is no longer as simple as minimizing loss as discussed previously. As stated in [43], the
training process is more akin to finding a solution to a minimax algorithm: minimize the
discriminator error and maximize the quality of the generator samples. Problems that
arise include the above mentioned vanishing gradients, mostly due to one of the networks
performing significantly better than the other, and mode collapse, which, in simple terms,
means that the samples outputted by the generator have stagnated, implying that the
generator as clearly outperformed the discriminator.

A different approach to GANs was proposed by Radford et al. [44]. Known as Deep
Convolutional Generative Adversarial Networks, or DCGANs, these have shown to be more
stable on the training phase in comparison with simple GANs. All layers in both networks
are convolutional and are deprived from pooling and fully-connected layers, resorting to

9A latent space is defined by the dimensionality of the compressed input data feed to a DL model, where
the data can be represented as a unique point, meaning that similar data will be relatively close to each
other in this space. A latent space distribution takes advantage of this property, generating a distribution
of similar data relative to this space.
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fractional-strided convolutions to fit the output of a layer to the input size of the next
convolutional layer, in contrast with the discussed architecture.

Figure 2.22: DCGAN architecture representation.10

2.5 Evaluation Metrics

There are a variety of metrics that are utilized to assess the choice of hyperparameters
for training a model, the model’s performance after being trained and whether the results
prove the formulated hypotheses. In this section, these points are briefly discussed, focusing
on the metrics found more frequently in the literature and used for the experimentation
portion of

The choice of hyperparameters for a DL model, which include number of epochs, batch
size, optimizer and respective learning rate, is normally done by evaluating the evolution of
the Loss, which represents how bad the prediction is for a certain sample against the real
target, meaning that lower Loss is better, and Accuracy, which represents how accurate
the predictions are on the overall data, meaning that higher Accuracy is better. For
regression purposes, Accuracy is replaced by more relevant metrics, such as the Root
Mean Squared error, which represents how distinct are the regressor’s predictions against
the actual targets of the samples in question, lower being better.

As for a DL model’s performance, this is mainly assessed through the F1 Macro11 Score,
from here on referred to as F1 Score achieved on the test data, this being the harmonic
mean of the Precision and Recall on the model’s predictions on the test data. Formulas
for calculating Precision, Recall and F1 Score can be seen bellow:

Precision = TP/(TP + FP )

Recall = TP/(TP + FN)

F1Score = 2 ∗ ((Precision ∗Recall)/(Precision+Recall))

Precision is used to tell how many of the predictive positive examples are true positives,
while Recall is used to tell how many of the positive examples were correctly predicted as
positive. Taking as an example a binary problem to differentiate between dogs and cats, as

10https://debuggercafe.com/implementing-deep-convolutional-gan-with-pytorch/
11Contrary to F1 Macro, F1 Micro takes into account the class distribution, using a weighted vector

when making the computation, ensuring that the score does not erroneously show good performance due
to the over represented classes.
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Table 2.3: Generic Confusion Matrix with F1 Score example.

C1 C2 C3 ... Cn
C1 x ...
C2 x ...
C3 x ...
... ... ... ... ... ...
Cn ... x

F1 Score Total

F1 Score Per Class

...

the positive and negative classes respectively. The Precision for the dog class would be the
ratio between the correctly predicted dogs and all examples predicted as dogs, including
the ones which are in reality cats, while the Recall would be the ratio between the correctly
predicted dogs and all true dog samples.

Performance on each individual class can be further analyzed using the Confusion Matrix
of the predicted and actual targets, as seen in Table 2.3, along with the F1 Score for each
class and the overall F1 Score.

Having trained and evaluated the model, the formulated hypotheses are validated or refuted
using inferential analysis on the F1 Scores calculated for every fold on the chosen baseline
and the methodology which performance is expected to be better. This is done through
a significance test with a certain confidence interval, most of the time 5%. Should the
p-value, the result of the significance test, be below the confidence interval, the results are
deemed statistically significant and the hypothesis is validated.

2.6 Static MER

This section present a review of proposed approaches for solving Static Music Emotion
Recognition, presenting the progress and current state of the art approaches for this prob-
lem.

2.6.1 Classical Machine Learning

For recognizing patterns, computers need to learn models using previously labeled data
from experts to a number of possible outcomes dependent on the problem in order to predict
unlabeled data. For recognizing static emotion, the same applies. Firstly, various songs are
compiled and a sample is extracted for each song, representing the whole emotional content
of the song. These samples, after being thoroughly analyzed, are annotated by human
subjects, with support on an emotional model. The audio features are then extracted from
the samples, carefully selected, and are used to discover patterns between samples with the
same annotations. These features are used to train the ML model, which after finishing
training, receives data for testing the outcome of the predictions. This means that the
models are mostly dependent on the features extracted and selected, directly influencing
its performance.

A high-level view on solving MER can be seen in Fig. 2.23.

Having the generation of playlists based on the listener’s mood as the focus, Meyers [20]
proposes an approach combining audio and lyrics of a musical piece to classify the under-
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Figure 2.23: A high-level view on solving MER as seen in [7].

lying emotion of the piece in question. For this purpose, it was also proposed a discrete
dimensional model, obtained by mapping Hevner’s Adjective List into Russel’s Circumplex
Model, already discussed in this section. The approach consists in classifying the song into
a class using decision trees and then using KNN, trained with 360 songs, to assign it to
one of the eight sectors on the used model. Various features were extracted, such as mode,
harmony, tempo, rhythm and loudness, in addition to the lyrics information also extracted,
led to good results when compared against All Music Guide experts tags, according to the
author, with no data for comparison available.

Panda et al. [45] proposes an approach combining standard and melodic audio features in
an attempt to outperform the recent models at that time, which had plateaued [46]. The
compiled dataset for evaluation was obtained by mapping tags from AllMusic12 into five
clusters used by the MIREX Mood Classification Task, resulting in 903 music clips with a
length of 30 seconds each, reasonably balanced across all clusters. After feature selection,
9 melodic and 2 standard audio features were selected from the best ranking ones, reducing
from 351 to 11 features. As for the classifiers, Naïve Bayes, KNN and SVM models were
evaluated, the best value being 0.64 F1-Score obtained by the SVM model.

Later, the focus shifted to developing novel features. In [8], the lack of relevant features for
musical characteristics proved as relevant for emotion identification and 29 newly developed
features were proposed to improve emotion classification. For testing the significance of
these features, a new dataset was created, the 4QAED dataset, already discussed in Section
2.2, and training the model proposed in [45] with various features, achieving the best
results, a 76.4% F1-Score, using a combination of the novel features with 71 standard,
which represents a 9% increase compared to using 70 baseline features.

A different approach from the reviewed so far was proposed by Markov et al. [47] in which
a Gaussian Process, or GP, was used. This consists in setting a probability distribution
over possible regression functions that comprehend a set of values, which in turn gives
a certain level of confidence to a solution for the problem at hand [48]. For the music
emotion classification evaluation step of this approach, the MediaEval 2014 database was
used, consisting of 1744 clips, each 45 seconds, of distinct musical pieces, balanced across

12All Music API link: http://developer.rovicorp.com/io-docs
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8 genres, where 500 were picked for training and 500 for testing. The results for static
emotion classification shows the same or better performance over SVM regression-based
estimation. As noted, the feature set used may be limiting the overall performance of the
models evaluated, since the features may be too simple or in reduced numbers for effective
evaluation.

Bargaje [49] proposes an approach using an SVM as a classifier, but different from the men-
tioned approaches, a feature selection process is conducted before training the model using
a genetic algorithm, or GA for short, a paradigm of evolutionary algorithms, or EA. The
motivation behind this approach is reducing the time needed for computation by selecting
the more relevant features. The emotion taxonomy used is the discrete two-dimensional
model based on Russell’s A-V, but adding a third dimension, loudness, increasing the rec-
ognizable emotions from 4 to 8. As stated by the author, due to the unavailability of a
public dataset, a dataset was built, composed of samples of 200+ randomly selected En-
glish and Hindi songs with a length around 30 seconds. Besides mentioning using jAudio13

to normalize the samples and the usage of a software to ease the annotation task, there is
no mention of the distribution of samples across quadrants, musical background of the an-
notators or agreement between their annotations. The features were then extracted using
jMIR14, which exact number is not stated, this being above 600.

As mentioned above, before training the model, a feature selection step is performed using
a GA. In simple terms, the algorithm is based on the Darwinian theory of evolution. An
initial population is set, composed of a given number of individuals, which are subsets of
the feature set retrieved with the mentioned tools. The number of iterations is known as
the number of generations, which value depends on the task at hand. In each iteration, two
operations have a set probability of occurring: crossover, exchange of information between
individuals; and mutation, a change that occurs at the individual level. Finally, a fitness
function needs to be set in order to define how fit the solution provided by an individual is.
Other parameters not mentioned in this approach, which may be influenced by the fitness
of the individual, are the selection parameters used for parent selection, which indicates
which individuals may perform crossover, and survivor selection, which indicates how many
individuals transition to the next generation.

For this approach, various numbers of generations were evaluated, 20/50/100, as was the
case for the probability of crossovering, more specifically a one-point crossover, 60% or
80%, leaving the probability of mutation, more specifically a flip mutation, at 3.3%. These
values are set this way to focus on global search, or exploration, over local search, or
exploitation, which is a very good approach considering the mentioned over 2600 possible
combinations of features. The fitness function is set as the accuracy of an individual to
correctly identify the samples of the training dataset, which is done by training the SVM
with the feature subset of the individual.

The results of this approach shows that the best feature set was found using a 60% prob-
ability crossover over 50 generations, resulting in a 84.88% accuracy with a 656 feature
set. Using the optimal feature set found for training the model, the proposed method
performed significantly better than the others, reaching 84.57% accuracy. Despite these
results, there are some concerns, mainly with the dataset used, as mentioned before, but
also the fact that the comparisons are made with approaches that used different datasets.
Not only this, the focus on the training dataset may limit the performance of the model,
since the features are selected in function of the training data and may not apply well to
other samples not present in the dataset.

13http://jaudio.sourceforge.net/
14http://jmir.sourceforge.net/overview.html
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The implementation of Classic Machine Learning approaches for solving Static MER re-
quires a robust knowledge of all necessary audio features and previous computation of these
before being fed into a model. Not only this, the relevancy of features need to be further
calculated for preventing lower performance due to the use of unnecessary features. Feature
selection and implementing a EA for the same effect should be explored as solutions.

2.6.2 Deep Learning

Due to the limitations made apparent with successive proposals of approaches using classic
machine learning algorithms, researchers shifted their focus to deep learning methods.
The necessity to previously calculate relevant features to increase the performance of the
networks may have been a contributing factor to this shift, as well as exploring approaches
the better replicate the human process of emotion perception in music.

One of the earliest known Deep Learning approaches was proposed by Feng et al.[50], using
a simple 3 layer feedforward neural network, composed of an input, hidden and output layer.
The only features used are related to tempo and articulation, based on Juslin’s theory[51],
which are mapped to one of four emotional categories: happiness, sadness, anger and
fear. Despite presenting good results for an early approach, these are misleading, since the
dataset compiled for evaluation was very unbalanced.

Choi et al. [52] contributes to the field by developing an approach using Fully Convolutional
Networks, or FCNs, which differs from a simple CNN due to not implementing any fully-
connected layers, implementing only convolutional and pooling layers. The task itself is
treated as a multi-label classification problem, meaning that a clip can be classified as part
of multiple classes, somewhat addressing the subjectivity problem of the field, but very
demanding computationally, which leads to a need for better optimization in regards to
the model used. Various architectures were proposed with increasing number of layers,
having as baseline the FCN-4 architecture depicted in Fig. 2.24, which consists in an input
layer, 4 convolutional layers, each one preceded by a max-pooling layer. Each convolutional
layer has a Rectified Linear Unit, or ReLU, as an activation function, and a two dimensional
3x3 convolutional kernel, except the output layer, where a Sigmoid activation function is
mapped to a 50 dimensional tag vector and a simple 1x1 kernel is used.

Figure 2.24: Diagram of the proposed architecture FCN-4 architecture, comprised of 4
layers, each number indicating the number of features maps implemented in each layer,
outputting the prediction on a 50 dimensional tag vector.

The evaluation was done on the MagnaTagATune dataset, were it achieved an AUC score,
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Figure 2.25: A table describing the implemented layers and layers width applied to each
parameter size experimented with, as presented in [53].

a scoring measure better fitted for the data provided on this dataset, higher then most
of the approaches evaluated with it, a 0.894 AUC score. Input features evaluated include
STFT, MFCC and Mel-spectrogram representations, the last one having the best perfor-
mance compared with the others using the same architecture. Due to the above mentioned
approaches all sharing a very small interval of AUC scores, the proposed architecture was
also evaluated using the Million Song Dataset [26], were the FCN-6 architecture using
Mel-spectrogram representations of inputs reached 0.851 AUC score. Despite achieving
very good results, the experiment on the Million Song Dataset is not compared with other
approaches and the dataset itself has questionable quality, as discussed previously.

In the same year, Choi et al. [53] proposes an architecture combining CNN and RNN layers,
a Convolutional Recurrent Neural Network, or CRNN, for extracting the relevant features
from the Mel-spectrogram given as input and extracting the temporal features from the
processed input, respectively. Mel-spectrograms have been more and more adopted in the
MER literature due to the achieved results, these being a representation of the sound
spectrum as captured by the human ear. The model is compared to the model discussed
in [52], as well as other baselines, such as an architecture based of 4 one-dimensional
convolutional layers, and another that uses 5 convolutional layers, the first being two-
dimensional in order to compress the input data and reducing computation complexity,
outputting to 2 fully-connected layers. The CRNN model itself consists of 4 CNN layers,
with 2 RNN layers using GRU units on top of the first layers. A summary of the discussed
networks can be found in Fig. 2.25.

As in [52], the output of all networks are given by a 50 dimensional tag feature taking as
input the output of the layer. The MSD dataset with the last.fm tags as targets was used,
which is a negative point in evaluating this approach due to the quality of the dataset. The
models were also scaled between 0.1 million and 3 million parameters in order to assess
the gain in performance of introducing more adjustable variables. Although an increase of
parameters should lead to better results, it is also important to note that a fewer number
of feature maps used leads to removing redundancy in the input data. The proposed model
outperforms all the baseline models assessed, achieving a 0.86% AUC score when adopting
the 3 million parameter approach.

As previously stated in Section 2.2, Transfer Learning is a recent approach to MER, where
the weights of good performing models are transferred to models aimed at solving MER
in an attempt to achieve similar results. The purpose of pursuing such techniques is due
to various studies showing that listeners with different mother tongues rate the same song
samples with different emotional states, as pointed out in [7]. Cañón et al. [54] explores this
approach in order to build a model for emotion recognition, transferring features learned
from models trained using English and Mandarin speech to models for MER. The same
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authors explored this issue in [55], proposing that there is a cultural layer to the emotions
felt by humans.

The approach itself uses the discrete Russell’s A-V emotional model and the 4QAED
database is used proposed by Panda et al. [6]. The feature extraction process for the
model trained using speech was a sparse convolutional autoencoder, or SCAE, composed
of two 2-D convolutional layers with a 3x3 kernel, which output is feed to a max-pooling
layer as well as a dropout layer, to mitigate overfitting as mentioned previously in Sec-
tion 2.3. The decoder portion uses the same structure as the encoder, but changing the
max-pooling layers to up-sampling layers. For extracting features, the decoder portion is
replaced with a DNN layer, composed of 3 fully connected layers, totaling 512 neurons.
Two variations of the models were experimented with: SCAE Feat. Ext., which freezes
the weights transferred from the speech model, tuning only the DNN portion of the net-
work, and SCAE Full, where all the network is trained, but with a lower learning rate.
The performance of these models for feature extraction is not very impressive, reaching a
48% F1-Score with the experimented configurations. These also do not perform very well
when predicting the quadrant of a given sample, although it is stated by the authors that
this is common in MER literature, since it is hard to distinguish between quadrants when
considering the valence axis (i.e. differentiating between the third and fourth quadrant),
and is validated with a better performance when predicting arousal and valence indepen-
dently. It is also important to note that the models where not validated through 10-fold
validation, as it is a common approach in other reviewed papers, and the database itself is
not balanced, there being a very large difference between Mandarin and English samples,
the first having considerably more.

A recent paper authored by Grekow [56] that explores an approach where a pre-trained
model is used to pre-process the data before being fed to a RNN. To achieve this, the
development was divided into two parts.

Firstly, the GTZAN data collection from [57] was used, where 324 six-second fragments of
the samples in the dataset were all annotated by all five musical experts that participated
in the study, setting an arousal and valence value between -10 to 10 to map each sample to
Russel’s model [19].The correlation between arousal and valence on the mapped segments
were considered uncorrelated, obtaining a Pearson correlation coefficient of -0.03, and that
the agreement levels were high, above 90% using Cronbach’s α.

The features were extracted using audio analysis and audio-based music information re-
trieval tools, more specifically Marsyas15, which resulted in a 124 feature vector, and
Essentia16, this resulting in a 529 feature vector. Since a RNN architecture is used, as seen
in Fig 2.26, the samples were further segmented in order to produce data sequences, which
the RNN will find relationships between the segments of a given sequence.

The full architecture, as seen in the above figure, is composed by an input sequence, a
feature vector, fed to the input layer, a LSTM layer, where a tanh activation function was
used, a dense layer and an output layer. The configuration and training was done using the
WekaDeeplearning4j package from Lang et al. [58]. There is no mention of a dropout layer
to help prevent overfitting, being instead handled by an early stopping strategy. Further
architectures were developed, which vary in number of LSTM layers and layer width. To
evaluate this first architecture, Linear Regression and the SMOreg algorithm, developed by
the same author, were used as baselines. The evaluation was conducted for each tool used.
The feature set retrieved with Marsyas achieved the best performance using the RNN4

15https://github.com/marsyas/marsyas
16https://essentia.upf.edu/streaming_extractor_music.html
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Figure 2.26: Depiction of the proposed RNN architecture [56].

Figure 2.27: Depiction of the pre-trained model for feature extraction [56].

architecture, consisting of 2 LSTM layers instead of one, each with 248 units, achieving
squared error and MAE of 0.67 and 0.12 for arousal and 0.17 and 0.12 for valence. As for
the Essentia feature set, the best performance using all features was also achieved by the
RNN4 architecture, despite adding more complex architectures to better handle the feature
set size, having a squared error and MAE of 0.69 and 0.11 for arousal and a 0.40 and 0.13
for valence, a considerable improvement on valence compared to the Marsyas feature set.
This may be achieved to the larger quantity of features of Essentia, meaning that it may
encompass more features relevant for valence, which is very difficult to accurately calculate
as seen in the reviewed literature.

For the last part, focusing on the Essentia features, another architecture was explored.
To further select the most relevant features from the Essentia feature set, a simple neural
network was implemented consisting of a single dense layer, being trained with the feature
set. The layout of the architecture was essentially the same as the discussed before, but
the input sequence is first fed into the pre-trained model, which is depicted in Fig. 2.27,
which outputs a new set of features of the input sequence, which is then feed as the input of
the first LSTM layer, following the same process as the first approach. The evaluation for
this approach was conducted using all the previous models evaluated in the first approach,
achieving the best results for the RNN 4 architecture, with a squared error and MAE of
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0.73 and 0.11 for arousal and 0.46 and 0.12 for valence, which means a 6% improvement in
squared error for the arousal regressor and 15% for the valence regressor compared to the
best results of the first approach. Although the approach achieved better results on using
the pre-trained network in addition to the RNN architecture, there is not a comparison
between using a feature selection algorithm instead of the pre-trained network to best pick
the features in order to justify this more computationally expensive approach.

Also using EAs, Yang [59] proposes a neural network with a modified BP algorithm, using
the artificial bee colony algorithm, ABC, to more easily explore the search space of the
possible weight values and reduce the time needed for convergence. To evaluate this ap-
proach, the DEAM database was chosen, in this paper referred as MediaEval Emotion in
Music, MEM, meaning that the emotional taxonomy adopted is Russel’s A-V, which was
already discussed in a previous section. The structure of the model itself is not described
in much detail, being always referenced as a BP neural network, having a lot more focus
on how the ABC algorithm is used to optimize the network weights. A diagram explaining
overall functioning of the algorithm is presented in Fig. 2.28.

Figure 2.28: A high-level representation of the proposed modified BP algorithm by Yang,
as presented in [59].

The algorithm can be more easily explained by understanding how the overall model learns
the optimal weights. Firstly, the NN parameters, such as the number of hidden layers and
input, output and each hidden layer size, and ABC parameters, value of the nectar source,
size of bee colony, maximum number of iterations and the parameters discussed for GA,
need to be set. Each nectar source, a set of values on the search space, are then assigned
to one employed bee, which will search the entire search space for possible new nectar
sources. The fitness of the nectar sources are evaluated in order to assess which are the
best sources, which neighborhood will be searched for better sources. The found optimal
solution is then compared with the already found optimal solution in memory, replacing
it if the fitness value is higher. Should the preset limit for a nectar search be reached and
the optimal solution does not change, the search will stop and the related employed bee
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will become a scout bee to search other nectar sources. Should the maximum number of
iterations be reached, the current optimal solution is passed as the optimal weights and
threshold for the NN. The names used for each of the bees in the colony were the same
found in the paper proposing this variant of ABC [60].

The evaluation of this approach used SVM, KNN, GMM and a simple neural network
with BP model as baselines. The features used for these models were a combination of
features present in the dataset, the best one resulted in 83.83% accuracy using the baseline
NN. using this combination, the evaluation was conducted. The results show that the
proposed approach performs significantly better than the simple NN, which itself performs
better than the other baseline approaches, but unfortunately, the exact architecture is not
disclosed, meaning these results can not be verified. The author concludes that a deep
learning model could improve the results and should be further explored.

After a thorough review of the literature for Static MER, there are some takeaways of
note. Due to the deep learning models capabilities, some approaches with state of the art
performance utilize Mel-spectrograms as input, having a set of CNN layers for the effect,
which results surpass even standard features with conjunction with Mel-spectrograms,
meaning that a CNN as the capabilities of extracting the most relevant features from the
visual representation of the audio. One CNN layer tend to implement a 3x3 layer, using
a ReLU activation function and dropout layers, to prevent overfitting, as well as batch
normalization and a pooling layer, varying between 3 to 5 CNN layers in total. Some
approaches also employ an RNN in order to extract local features of the data related to the
temporal nature of the emotional content of music. These approaches should be explored
as well as experimenting with Data Augmentation to deal with the prevailing problem of
small numbers of samples on the available datasets. Transfer Learning has also been more
recently used with interesting results and should also be explored. For evaluation, a 10-fold
cross validation procedure should be utilized in all approaches due to the small datasets
available as discussed, and applying an F1-Score for analyzing performance as many of the
reviewed approaches employ.
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Table 2.4: Review of MER Classical ML approaches in the literature.

Static MER Review
Author Approach Emotion

Taxonomy
Database Features/Input Models Results Observations

Meyers [20] Classic ML Fusion of
Hevner’s
with Rus-
sel’s models
(see Section
2.1.2)

372 songs
samples

5 standard audio
features (Mode,
Harmony, Tempo,
Rhythm, Loud-
ness)

Decision
Tree for
classifying,
KNN to
cluster into
quandrants

Evaluation per-
formed against
tags from differ-
ent sizes

There are no statistical eval-
uation metrics for analyzing
the performance of the chosen
models.

Panda et al.
[45]

Classic ML MIREX
task’s five
clusters

Based on
MIREX
taxonomy

11, 9 melodic and
2 standard audio
features

Naïve
Bayes,
KNN and
SVM

0.64 F1-Score The taxonomy used, although
supported by the MER com-
munity, isn’t psychologically
supported.

Markov et
al. [47]

Classic ML Russel’s
A-V, con-
tinuous
approach

MediaEval
2014

Sub-set of
features from
database

SVM (dif-
ferent
kernels)
and GP
(different
models)

0.6986 R2 for
arousal and
0.3594 R2 for
valence

Features may be limiting the
performance of the models,
which may explain the very
minor performance difference.

Bargaje [49] Classical
ML

Three-
dimension
Russel’s
model
(Arousal,
Valence and
Loudness)

200+ ran-
domly
selected
English and
Hindi songs

600+ features
extracted using
audio informa-
tion retrieval
frameworks

GA for
feature
selection
and SVM
for clasiffi-
cation

84.57% accuracy
with test data

The approach has some prob-
lems, such as a unbalanced
dataset as well as not pro-
viding statistically relevant re-
sults for analyzing the per-
formance of the approach
adopted.

Panda et al.
[8]

Classical
ML

Discrete
Russel’s
A-V (4
quadrants)

4QAED 29 novel and 71
standard features

SVM 0.76 F1-Score The process of building the
database is explained well,
providing some good bench-
mark results as well.
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Table 2.5: Review of MER Deep Learning approaches in the literature.

Static MER Review
Author Approach Emotion

Taxonomy
Database Features/Input Models Results Observations

Feng et
al. [50]

Deep
Learning

4 labels
(happiness,
sadness,
anger and
fear)

223 sam-
ples retrieved
from available
sources

3, 1 regarding
tempo and 2
regarding articu-
lation

Three layer
feedforward
network

67% precision and
66% recall

Early DL approach to MER,
dataset isn’t balanced at all,
leading to biased results, and
very few audio features are ex-
plored.

Choi et
al. [52]

Deep
Learning

50 emo-
tional tags

MagnaTag
ATune and
MSD

Mel-spectrogram,
STFT and MFCC

FCN and
variations
of this
architecture

0.894 AUC for
MagnaTagATune
and 0.851 AUC
for MSD

The use of the Million Song
Dataset hinders the credibil-
ity of the provided results.
The problem is treated as
multi-class classification prob-
lem, not adopting widely used
emotion taxonomies.

Choi et
al. [53]

Deep
Learning

50 emo-
tional tags

Million Song
Dataset

Mel-Spectrogram Stacked
model com-
prised of a
CNN and
a RNN
portion,
outputting
to a FCNN

0.86% AUC score As already mentioned, the
Million Song Dataset has
some questionable quality, us-
ing it hinders the credibility of
the provided results.

Cañón et
al. [54]

Deep
Learning

Russel’s A-
V model

Speech Recog-
nition and
4QAED

Spectrogram CNN 0.48 F1-Score (as
a classifier)

Results show emotion in music
is co-related with language of
speech.
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Table 2.6: Continuation of the review on MER Deep Learning approaches in the literature.

Static MER Review
Author Approach Emotion

Taxonomy
Database Features/Input Models Results Observations

Grekow
[56]

Deep
Learning

Russels’A-
V

324 six-second
fragments
from the cor-
responding
samples of
GTZAN[57]

124 from Marsyas
and 529 from
Essentia

Different
RNN ar-
chitectures,
without
and with
a pre-
trained
model for
feature
selection

0.73 and 0.46
mean squared
error for arousal
and valence, 0.11
and 0.12 MAE

Despite the pre-trained model
approach achieving better re-
sults, a comparison with clas-
sic feature selection is not pro-
vided.

Yang
[59]

Deep
Learning

Russel’s A-
V

DEAM Combination of
features present
in database
(short-term en-
ergy, frequency
spectrum, ...)

BP network
with weight
adjustment
through the
ABC evo-
lutionary
algorithm

0.89 MAE for
valence and 0.92
MAE for arousal

Replicating the approach is
not possible due to the ar-
chitecture not being disclosed,
pursuing a DL approach could
yield better results.
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2.7 MEVD

This section is a collection of reviewed literature concerning approaches for solving Music
Emotion Variation Detection that provide interesting insights for the implementation of
a robust architecture and methodology. The reviewed approaches are first presented and
these are summarized in Table 2.7 in the end of this section.

2.7.1 Classical Machine Learning

According to the reviewed literature, the first approach for solving MEVD was proposed by
Schubert [61] using linear regression models to predict the variation of a song’s emotional
content, for both arousal and valence, using 5 standard audio features: melodic contour,
tempo, loudness, texture and spectral centroid. The dataset used for training and evalu-
ating this model was built using the annotations from 67 participants, targeting Russell’s
A-V model, for four Romantic music pieces in one second intervals. The linear regression
models were trained separately, due to traditional linear multiple regression models not
being suited to time-series data. The evaluation found that loudness and tempo variation
was correlated with variations in arousal, none of the reviewed features had much impact
on valence, probably due to the omission of mode and articulation, features that were
proven to influence valence [62], as stated by the author.

An approach based on SVM models to detect the variation of the emotional content of a
song through time using the 4 quadrant categorical approach to the Russel’s A-V model
was presented by Panda et al. [63], part of a mood tracking platform. The features were
extracted using the Marsyas framework and MIR toolbox, in part due to their ability to
extract features for smaller clips. Using a 194 song dataset, with arousal and valence
values for each sample of 25 seconds, the model was trained. For testing the model, two
volunteers listened and annotated the changes between quadrants for the full duration of 57
songs in increments of 25 seconds. The annotations were analyzed in order to determine
the agreement rating, which led to only 29 songs being used with the criteria of more
than 80% agreement rate. The performance of the model attained an average of 44.08%
accuracy. The size of the dataset, as is very much the case across the literature, greatly
hinders the performance of the model. The authors also state that using a ranked set of
features could result in a performance boost.

2.7.2 Deep Learning

Malik et al. [36] proposes a model for solving MEVD based on a CRNN architecture for
predicting the A-V values in a 2-dimensional plane. The architecture, as presented in Fig.
2.29, can be explained as two smaller architectures. First, a CNN composed of 8 layers,
implementing a 3x3 kernel, ReLU activation layers and a dropout layer. The output of
the CNN is fed separately to two RNNs. This RNN architecture is comprised of a FCNN
network with 8 layers outputting to 8 bidirectional GRUs, finally outputting the arousal
or valence value, depending on the branch, after a maxout layer [64]. The dataset used
for evaluating the performance of this architecture is part of the already discussed DEAM
database in Section 2.2. This fragment of the dataset consists of 45 second long 431 audio
samples from the Free music archive, using the first 15 seconds for the annotators to get
familiar with the annotation process. This produced a set of 60 annotations for each 30
second sample, or an annotation for the emotional content of the song every 500 ms, based
on A-V values on an [-1, 1] range.
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Figure 2.29: CRNN approach presented by Malik et al. as found in [36].

The evaluation set consists of 58 full songs from the MedleyDb17 dataset and music website
Jamendo18. There were two approaches used for the input of the CRNN architecture:
standard features retrieved from the openSMILE19 toolbox present in the used database
and another approach using only Mel-band features extracted with the python library
librosa20. This last approach was stated as more applicable to the architecture, since
the standard features can be inferred by the model itself. The best scored achieved by
the proposed architecture reached a RMSE of 0.231 and 0.279 for arousal and valence,
respectively, reaching a similar performance to the architecture presented by Li et al. [65].
It is important to note that this result was obtained with a slightly different configuration,
where there is only one branch trained to output arousal and valence, not presenting the
capabilities of separately training a branch for outputting a certain value.

Dong et al. [66] proposes a Bidirectional Convolutional Recurrent Sparse Network, or
BCRSN, architecture which learns the sequential-information-included affect-salient fea-
tures (SII-ASF) from spectrograms extracted from an audio signal. The architecture con-
sists of a CNN as an input layer, 4 hidden layers, 2 forward and 2 backward RNN layers,
the outputs of these layers being connected to a dense layer that predicted the emotion.
The architecture can be explained in three key parts: bidirectional convolutional recurrent
feature maps (BCRFM) learning, weighted hybrid binary representation (WHBR), and the
objective function, concordance correlation coefficient (CCC);

• BCRFM learning consists in updating the weights of both the first forward and
backwards RNN layers using the results of the convolutional operations between the
input layer and these. The first hidden layers’ outputs are then fed to the second
hidden layer as input after being subsampled. These operations enable the model
to learn the features intrinsic to the time-series data in the first hidden layers and
further add to these more advanced features learned from the second hidden layers,
as well as storing the overall sequential information in the last frame of the first
hidden layers.

• In simple terms, weighted hybrid binary representation translates the numerical
ground-truth data to a hybrid binary vector, meaning the output of the previously

17https://medleydb.weebly.com/
18https://www.jamendo.com/?language=pt
19https://www.audeering.com/research/opensmile/
20https://librosa.org/doc/latest/index.html
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discussed part is the predicted value for every digit of the translated hybrid binary
vector. Each neuron from the output layer of the previous part has their weight
adjusted to control the convergence of the loss function. It is stated that by facing
the problem as a weighted combination of multiple binary classification problem in-
stead of a regression based prediction the A-V values for a sample, the computational
complexity is reduced significantly, in turn reducing the time to produce a prediction;

• The last part is the objective function of the approach, of which CCC is a part
of, proved to be a good performance measure for MEVD approaches, as it takes
into account both he correlation coefficient and mean square error of the predicted
and ground-truth data. The CCC between each segment predicted and target hybrid
binary vectors is calculated, the average CCC of a sample as the quotient of summing
the CCC of all segments multiplied by the respective loss and the number of segments
related to the sample. However, the final objective function implements a least
absolute shrinkage and selection operator, or lasso, in order to extract the SII-ASFs
and control the sparsity of the feature maps of the BCRFM learning portion of the
model.

Figure 2.30: Presented BCRSN structure, as presented in [66]

The model, depicted in Fig. 2.30, was tested using a selected portion of the DEAM database
as a benchmark, more specifically, a training dataset consisting of 431 music samples and
an evaluation dataset consisting of 58 full-length songs, these providing an acceptable
consistency of the annotations in contrast with the full database. The MTurk21 dataset
is used for testing the generalization of the model, consisting of samples of 240 American
pop songs, each being annotated in 15s intervals by 7 to 23 annotators. These annotations
are also analyzed in order to remove inconsistencies. The evaluation of this model show
that it outperforms all compared models when using spectrograms as input, achieving
an average RMSE of 0.123 for valence and 0.101 for arousal for the DEAM dataset, as
well as the highest PCC and CCC scores for both valence and arousal. The same can be

21Built using Amazon Mechanical Turk: https://www.mturk.com/
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observed in the MTurk dataset, as well when the input are the baseline features of the
dataset in question, although the performance of the model may be hindered due to loss
of emotional information when extracting the baseline features. Overall, this approach,
although complex, is very robust, mostly due to its built-in feature extraction capabilities
in the BCRFM portion of the model. Of note is the training time of the model, which
despite the WHBR method introduced to mitigate the problem, is longer than two out of
the three compared models. This is in part negligible due to the performance increase.

A very recent approach presented by Orjesek et al. [67] proposing two new architectures
for MEVD, one based on the already discussed approach by Malik et al. [36] replacing
the two-dimensionalCNN portion of the model with a one-dimensional one, as well as
the GRU units with bidirectional GRU, or BiGRU, units, and another one similar to the
aforementioned one, but swapping the dense layer between the CNN and BiGRU layers
with a novel time-distributed layer with Iterative Reconstruction, or TR-IR, discussed
ahead. The first proposed architecture is mainly used as a baseline, as stated by the
authors, due to the similarity of the newly proposed model. The decision to change the
CNN portion from a two-dimensional to a one-dimensional one is due to various studies
stating that a one-dimensional CNN is capable of extracting relevant features from a audio
signal representation, in this case a spectrogram, without prior pre-processing of the data
[68]. The layer is composed by 8 filters, as well as applying batch normalization and the
ReLU activation function, which is then fed to the dense layer. The resulting output is
then fed to the 8 unit BiGRU layer to further learn the intrinsic temporal features from
the received features, finally being fed to a dense layer with maxout for predicting the A-V
values. The second proposed architecture has the same structure as the first proposed,
changing the first fully connected layer with the already mentioned TR-IR layer. In simple
terms, this layer is based on an autoencoder using the tanh activation function, which after
a certain number of iterations, extracts the most relevant features from the input data.
This is accomplished with the help of a boosting procedure of the features using a shared
weight matrix, which with enough iterations, removes irrelevant features, leaving the most
relevant ones as the output of the layer. The datasets used are the same as the ones used in
the already discussed work by Dong et al. [66], a subset of the DEAM dataset consisting
of 45 seconds long 431 music samples for the testing dataset and 58 full songs for the
evaluation dataset. Results are compared against the best performing systems from the
latest edition of the medieval "Emotion in Music" benchmark, as well as the BCRSN model
[66] using both the baseline features and the spectrogram as input. The results show that
the proposed architectures performed better overall against the compared architectures,
specially in the valence dimension, where the second model achieved a 0.66 PCC in arousal
and 0.637 in valence. The higher performance of the model is not as noticeable when
comparing the achieved RMSE scores, underperforming in comparison with the BCRSN
architecture with spectrogram as input in arousal and the LSTM-RNN architecture in
valence.

As has been already stated, MEVD experiments were initially planned with a focus on
implementing state of the art approaches found promising in the literature review. Vari-
ous factors, such as resource constraints,inability to complete the extension of the team’s
MEVD dataset, and the very reduced size of the current dataset led to the decision of post-
poning these experiments until the update was concluded. The MEVD literature review
is still present for future reference when developing the new methodologies.
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Table 2.7: Review of MEVD approaches in the literature.

MEVD Review
Author Approach Emotion

Taxonomy
Database Features/

Input
Models Results Observations

Schubert et
al. [16]

Classical
ML

Categorical
Russell’s
A-V

4 roman-
tic songs,
annotated
in 1 second
intervals

5 features
(melodic
contour,
tempo,
loudness,
texture and
spectral
centroid)

Linear re-
gression
for arousal
and valence
separately

0.33 accuracy in
detecting changes

The dataset is very limited
and contained in one genre.

Panda et al.
[63]

Classical
ML

Categorical
Russell’s
A-V

57 songs,
annotated
in 25 second
intervals

Standard
audio fea-
tures, such
as timbre
and rhythm

SVM 0.44 accuracy The used dataset presents a
very reduced size.

Markov et
al. [47]

Classical
ML

Categorical
Rusell’s
A-V

MediaEval
2014, an-
notated in
0.4 second
intervals

Standard
audio fea-
tures

GP regres-
sion

0.69 and 0.44
mean square error
for arousal and
valence

The complexity of applying
this kinds of models may be
infeasible in large scale.

Malík et al.
[36]

Deep
Learn-
ing

Continuous
Rusell’s
A-V

Standard
audio fea-
tures / Mel-
Spectrogram

CRNN Continuous
Rusell’s
A-V

0.231 and 0.279
RMSE for arousal
and valence re-
spectively

The duration of the samples
may produce conflicting emo-
tions, since 45 seconds may
not encompass only one emo-
tion.
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Table 2.8: Review of MEVD approaches in the literature.

MEVD Review
Author Approach Emotion

Taxonomy
Database Features/

Input
Models Results Observations

Dong et al.
[66]

Deep
Learn-
ing

Continuous
Rusell’s
A-V

Portion of
the DEAM
dataset and
Amazon’s
Mechanical
Turk

Spectrogram BCRSN 0.101 and 0.123
RMSE scores for
arousal valence
on the portion of
DEAM and 0.079
and 0.145 RMSE
for the Amazon’s
Mechanical Turk
annotations

The model is very complex, re-
quiring a very large amount of
time for training.

Orjesek et
al. [67]

Deep
Learn-
ing

Continuous
Rusell’s
A-V

Portion of
the DEAM
dataset, an-
notated in
0.5 second
intervals

Standard
audio
features
and Mel-
spectrogram

Modified
CRNN
proposed
by [36],
adopting
an IR time
distributed
layer

0.66 and 0.637
PCC for arousal
and valence

The performance of the model
can be disputed due to the
achieved RMSE scores in com-
parison to the other models.
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Chapter 3

Datasets and Features

There were two main datasets used for conducting the experimentation, along with variants.
The reason for using these variants is explained in the course of this section.

3.1 Legacy-MERGE Audio

This dataset, which was used in the replicated past work, was previously described in
Chapter 2 as the 4QAED, from here referred to as Legacy-MERGE, including the data
available and distribution. In brief, the dataset is composed by 900 30 seconds clips from
various songs that encapsulate the song’s perceived emotion, these being mapped to the
four quadrants of the discrete Russell’s VA model in equal quantities, meaning that the
dataset is balanced according to class, as seen in Fig. 3.1. The creation of this dataset was
a byproduct of the work conducted by Panda [10] and later released with an accompanying
baseline by Panda et al. [8].

Figure 3.1: Legacy-MERGE distribution over each quadrant.

The process for creating the dataset began by extracting all available music from the All
Music API, as mentioned before. From here, a very thorough selection process was con-
ducted to eliminate all samples that presented dubious annotations from the “professional
editors” credited for their creation. To make sense of the 289 existing emotion tags, not all
from known emotional taxonomies, these were matched with the words present on War-
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riner’s Affective Word list, which mapped VA values enable the annotation of each sample
with a respective quadrant. A great number of samples were removed at this point since
it was decided that only samples that had at least 50% of tags present in the list would be
viable for the dataset, resulting in 2200 samples. After a manual inspection, samples which
music clips presented low quality, due to being unclear or not encompassing the song’s emo-
tion, were removed. Remaining samples were manually annotated, removing ones that did
not match with the quadrant attributed by the tags or without the annotator’s agreement,
resulting in 900 samples after balancing.

(a) A-V average values distribution (b) A-V median values distribution

Figure 3.2: A-V values distributions for Legacy-MERGE used for experimentation.

The dataset contains not only the music clips and A-V values, obtained through the mean
and averaging of the A-V values attributed to each tag, each distribution seen in Fig. 3.2
respectively, but also the standard and novel features presented by Panda et al. [8] for
every clip, which are discussed more in depth in Section 3.3. This allows the dataset to be
explored with a variety of Classical ML and DL approaches, through either classifiers or
regressors.

A variation of this dataset, from here on referred to as Legacy-MERGE Corrected, was
used in the development of the new approaches presented. This variation removes 7 clips,
due to being duplicates or being mislabeled, and although it is no longer balanced as the
main dataset, it showed better performance in preliminary experiments. The distribution
of clips can be seen in Fig. 3.3.

3.2 New-MERGE Audio

The New-MERGE Audio dataset, referred to as New-MERGE from here on, is actually
a collection of three new dataset candidates: New-MERGE Complete, New-MERGE Bal-
anced and New-MERGE Balanced-Genre. All of the candidates are in some way an ex-
tension to the Legacy-MERGE dataset. The Complete candidate has all new samples that
were deemed viable to be included in the extension, while the Balance candidate com-
prehends new samples while maintaining class balance, and the Balance-Genre candidate
maintains class balance and balances each class in regards to the genres present. The
new samples are from the previously mentioned selection process for creating the Legacy-
MERGE dataset. Having no previous baseline, this dataset is tested for their viability
as an extension, evaluating its quality. This is also an opportunity to validate previous
hypotheses regarding the previous dataset, such as:
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Figure 3.3: Legacy-MERGE Corrected distribution over each quadrant.

Figure 3.4: New-MERGE Complete distribution over each quadrant.

• Sample quantity increases the methodologies’ performance;

• Equal genre distribution in each quadrant is as impactful to performance as equal
quadrant distribution.

The obtained results may shed some light on these hypotheses, but only if it is indeed
considered an improvement. Not only this, since the same hyperparameters found using
Legacy-MERGE for the various methodologies, there is no guarantee that the models could
perform better should a proper search be made.

Each candidate’s sample distribution is depicted in Figs. 3.4, 3.5 and 3.6. The significantly
unbalanced Complete candidate, having more Q2 and Q1 representatives than Q3 and Q4,
may lead to some subpar performance due to a certain bias on samples with high arousal,
which may lead to more difficulty in predicting the perceived valence of a song, a recurring
problem in MER. The Balance candidate, although balanced, as hinted by the name, may
suffer due to not taking into account the genre distribution, since it has been proven that
certain genres are more dominant in certain quadrants, as explained in Section 4.1.6. The
Balance-Genre candidate is the most promising candidate of the three, since it avoids the
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Figure 3.5: New-MERGE Balanced distribution over each quadrant.

Figure 3.6: New-MERGE Balanced-Genre distribution over each quadrant.

56



Datasets and Features

pitfalls of the others, but it is also the least significant improvement to Legacy-MERGE,
only being a 52% increase in sample quantity while the Complete candidate is a more
exciting 81%, emphasizing how difficult it is to build a large and quality dataset.

3.3 Handcrafted Features

Present in both datasets are the handcrafted features previously mentioned. There are
a total of 1714 features extracted from each sample which represent different musical di-
mensions, such as melody, harmony, rhythm, and others. Many of the original features
developed fall into the expressive techniques dimension, which is dominated by high-level
descriptors. The lack of high-level musical descriptors can be explained by the difficulty to
accurately calculate compared to the low-level descriptors found in other dimensions [10].

The standard features encompass 1603 features extracted from existing audio informa-
tion extraction toolboxes, namely and ordered by amount of features extracted, Marsyas,
PsySound1 and MIR Toolbox2, previously evaluated in the literature, along with 558 orig-
inal features extracted from the original audio signal and the same 558 features extracted
from the isolated voice signal, amounting to 2719 features in total. In order to reduce the
high dimensionality and after removing bugged features, the ReliefF [69] feature selection
algorithm is used in order to assess the correlation between features, being set to a 0.9
threshold for removal as stated in the thesis, their predictive attributes, which are ranked
from -1 to 1. The process is first conducted for the standard features, while a similar pro-
cess was conducted for the original features, with the caveat of removing a novel feature if
any standard feature is found to be similar enough to it.

1http://www.densilcabrera.com/wordpress/psysound3/
2https://www.jyu.fi/hytk/fi/laitokset/mutku/en/research/materials/mirtoolbox
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Chapter 4

Methods and Experimentation

This chapter comprehends all experimentation conducted in the present work, including
essential theoretical background to understand implementation choices and methodology
followed for each experiment, as well as discussion on the obtained results, including the
initial evaluation and further evaluation with the New-MERGE dataset, and conclusions
taken from them. The chapter begins with the replication of previously developed method-
ologies, followed by the developed methodologies for this present work. The chapter con-
cludes with a brief note on the evaluation methodology followed, as well as a summary on
the conclusions from each experiment.

4.1 Replicating Past Work

Being a continuation of the work by Sá [7], referred to as foundation work from here on,
experimentation started by replicating the methodologies previously evaluated, comparing
against the reported results, as well as applying them to the new dataset candidates being
finalized by the team. The rest of this section will consist of briefly explaining the exper-
iments and comparing the obtained results for the dataset used in the foundation work
against the already mentioned new dataset candidates, ending with an also brief discussion
on them. The hyperparameters reported are the same used to replicate the experiments.

4.1.1 SVM

The initial baseline for the foundation work is the SVM classifier approach presented by
Panda et al. [8] using the Top 100 features available in Legacy-MERGE, achieving a 76.4%
F1 Score using cross-validation with 10 splits and 10 repetitions. The achieved F1 Score
in the foundation work was slightly lower, a 76%, and as stated, it was only replicated to
serve as baseline for the developed methodologies.

As previously done in the foundation work, the implemented SVM model is based on the
scikit-learn1 Python package Support Vector Classification method, which receives as input
the kernel to be used and necessary parameters for the implemented kernel.

For achieving optimal performance, the best hyperperameters for the model were searched,
including the linear, polynomial, RBF and sigmoid kernels, as well as values for the cost,
the degree for the polynomial kernel and gamma value for all kernels except the linear

1https://scikit-learn.org/stable/
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kernel in an interval between 1e-6 and 100 using a bayesian optimization using Gaussian
Process, as implemented in the already mention package.

For Legacy-MERGE, the optimal hyperparameters found used the RBF kernel with a cost
of 28.264 and gamma 4.16e-04. The same was done for Legacy-MERGE Corrected to
assess the impact on Classical ML, which found the sigmoid kernel with cost 100 and
gamma 2.67e-04 as the best parameters.

Legacy-MERGE Corrected does not improve the results. This result is most likely ex-
plained by the removal of data, since it has been found in the literature that Classical ML
approaches are solely dependent in the quantity and quality of the used features, meaning
that reducing the number of samples hinders the training process of the model. As for
Legacy-MERGE, it performs according to documented results, achieving around 1% worse
performance than reported, as shown in Table 4.1.

Table 4.1: Confusion Matrix obtained for the SVM methodology for Legacy-MERGE.

Q1 Q2 Q3 Q4
Q1 1842 144 59 205
Q2 273 1869 62 46
Q3 170 68 1529 483
Q4 273 3 407 1567

F1 Score Total

F1-Score Per Quadrant
76.67%
86.17%
70.85%
68.68%
74.89%

The results obtained for all New-MERGE candidates are presented in Table 4.2 and com-
pared against the baseline results, using Legacy-MERGE, and between candidates.

Table 4.2: Results and comparisons obtained for New-MERGE dataset on SVM.

F1 Score

Complete 69.79%

Balanced 69.22%

Balanced-Genre 69.82%

Statistical Significance Test Against:

Baseline Balanced Balanced-Genre

Significant Not Not
(2.2447x10−18) Significant Significant
Significant // Not
(9.3508x10−22) Significant
Significant // //(1.2314x10−16)

Results show a significant decrease in performance using all of the New-MERGE dataset
candidates with SVM. This however may be due to some songs missing handcrafted features
as mentioned before. Not only this, the used set of features may not be ideal, since feature
selection was performed only for the Legacy-MERGE dataset.

4.1.2 Simple CNN

Following the same approach as Sá, we set the basic architecture used, here defined as
Simple CNN, as our baseline. The architecture itself is a faithful reproduction of the
one presented by Choi et al. [52]. The input of the architecture are full sample Mel-
spectrograms, which will be utilized for most of the experiments conducted.

As for most of the experiments to be conducted, Mel-spectrograms are used, which are
generated from .wav files containg the 30 second clips of each song on the dataset at
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Figure 4.1: Diagram of the Conv 2D Block, the fundamental building block of the Simple
CNN’s feature extractor.

a 16kHz sampling rate and 128 filter bins, meaning that each second in the spectrogram
corresponds to 16000 different datapoints on the raw signal and that there are 128 different
frequency bins across it. These have been proven to be the most effective parameters to
be used as input to the feature extractor in the foundation work.

The feature extraction portion consists of four Conv 2D blocks, each being a sequence of
a Convolutional 2D, Max Pooling 2D, Batch Normalization and Dropout layers as seen in
Fig. 4.1, except the last one which only has the first two layers. The output is flattened
and passed to the classification portion of the network, comprising a Dropout and two
Dense layers, the last one outputting one of the four quadrants in the discrete Russell’s
VA model. A diagram representing the described architecture is depicted in Fig. 4.2

Figure 4.2: Diagram of the Simple CNN architecture. The frontend and backend of the
model is clearly defined in this figure for future reference.

The replication results obtained was a 60.62% F1 Score using Legacy-MERGE, as seen
in Table 4.3, which is around a 3% decrease from the reported results. Most replicated
results show a decrease, mostly are small and others fall around in the same range as
this experience, and this may be due to the impossibility of replicating the results, which
was already discussed previously in Section 1.2. For baseline purposes, the model was
also trained using Legacy-MERGE Corrected, resulting in a 60.61% F1 Score, which
disproved our previous notion of an improvement over the original dataset. Nevertheless,
the previous dataset had some mistakes and due to the similar performance, the Corrected
version will still be used for evaluating newly developed approaches.

The results for the New-MERGE dataset, displayed in Table 4.4, show that an increase in
number of samples does not directly translates to better performance, which is expected,
since the hyperparameters were the same across all experiments, indicating that the New-
MERGE dataset may still outperform with more optimal ones.
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Table 4.3: Confusion Matrix obtained for Simple CNN

Q1 Q2 Q3 Q4
Q1 1359 470 217 204
Q2 316 1809 93 32
Q3 277 101 1138 734
Q4 249 62 631 1308

F1 Score Total

F1-Score Per Quadrant
58.99%
76.77%
49.70%
57.01%
60.62%

Table 4.4: Results and comparisons obtained for New-MERGE dataset on Simple CNN.

F1 Score

Complete 61.66%

Balanced 60.97%

Balanced-Genre 60.28%

Statistical Significance Test Against:

Baseline Balanced Balanced-Genre

Not Not Significant
Significant Significant (0.0245)
Not // Not
Significant Significant
Not // //Significant

4.1.3 Split CNN

To deal with the less than ideal amount of data for a DL experiment, each sample was
sliced in half, essentially doubling the amount of samples available for training a model.
The Simple CNN architecture was taken as the foundation for evaluating this approach,
tuning the input layer to accept Mel-spectrograms of half the size to accommodate the
“half-samples”, as seen in Fig. 4.3.

Figure 4.3: Diagram of the Split CNN architecture.

Replicating the experiment produced a 64.77% F1-Score, using Legacy-MERGE, as seen
in Table 4.5, a decrease of around 2% when compared to the reported results.

Splitting samples for New-MERGE degrades the performance of the model significantly
when compared with the baseline, as can be seen in Table 4.6. This may indicate that
splitting the new songs’ clips introduced in New-MERGE is not preserving the emotional
content found in the full clips.
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Table 4.5: Confusion Matrix obtained for Split CNN

Q1 Q2 Q3 Q4
Q1 3027 885 263 325
Q2 517 3793 114 76
Q3 640 197 2372 1291
Q4 647 122 1126 2605

F1 Score Total

F1-Score Per Quadrant
64.41%
80.03%
55.85%
58.75%
64.77%

Table 4.6: Results and comparisons obtained for New-MERGE dataset on Split CNN.

F1 Score

Complete 62.95%

Balanced 62.79%

Balanced-Genre 62.30%

Statistical Significance Test Against:

Baseline Balanced Balanced-Genre

Significant Not Not
(0.0031) Significant Significant
Significant // Not
(7.2376x10−04) Significant
Significant // //(1.1261x10−04)

4.1.4 Simple CNN with Audio Augmentations

In the MER and related fields literature, some classical audio augmentation approaches
were found to be helpful when training models. For MER, the pool of augmentation
techniques explored is limited and mostly falls on the ones experimented with by Sá. The
techniques explored used were explained back in Section 4.4.

Individually, each augmentation technique made a positive impact on the overall perfor-
mance, except for time stretching. This can be explained by the difficulty in preserving
the sentiment of an augmented sample, which is explored later in Section 4.4.1. In brief,
applying time stretching negatively to a sample on a quadrant of high arousal, which has
normally high energy and fast tempo (first and second quadrant), may be perceived as
having lower arousal and as a result, being predicted as belonging to the third or fourth
quadrant. The reverse also applies, higher tempo in a sample that originally belonged to
the third or fourth quadrant, may place it on the second or third.

Applying all four augmentation techniques was also evaluated, producing the best results.
Only the all-encompassing experiment is replicated for this reason and as a way to save
resources for original experiments. Results are a lot lower than reported, achieving around
59.92% F1-Score with Legacy-MERGE, as seen in Table 4.7. Despite the expected
differences due to the randomness aspect inherent to the augmentation process, there is
a need to investigate each augmentation technique contribution performance individually,
since the use of Time Stretch is reported to significantly degrade the performance, which
may have contributed to the obtained results.

As can be seen in Table 4.8 for New-MERGE, the increase in number of samples with
augmentations is substantial enough to produce statistical significant results with a 0.0112
p-value, which shows that the dataset indeed is an improvement on Legacy-MERGE. As
previously discussed, further investigating the individual performance of augmentation
techniques may also lead to an increase in performance.
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Table 4.7: Confusion Matrix obtained for Simple CNN with Audio Augmentations

Q1 Q2 Q3 Q4
Q1 1364 327 296 263
Q2 359 1741 70 80
Q3 346 68 1068 768
Q4 250 33 706 1261

F1 Score Total

F1-Score Per Quadrant
59.00%
78.43%
48.23%
54.03%
59.92%

Table 4.8: Results and comparisons obtained for New-MERGE dataset on Simple CNN
with Audio Augmentations.

F1 Score

Complete 61.55%

Balanced 61.13%

Balanced-Genre 60.41%

Statistical Significance Test Against:

Baseline Balanced Balanced-Genre

Significant Not Not
(0.0112) Significant Significant
Significant // Not
(0.0665) Significant
Significant // //(0.4551)

4.1.5 Simple CNN with GAN generated samples

A GAN, as explained in Section 2.3, has the ultimate goal of generating artificial samples
as close to the real samples used for training the network. The process starts by training
an autoencoder, discussed ahead in 4.4.2, on the real samples in order to get the most
optimal latent space, from where the embeddings, samples projected in the latent space,
should accurately be reconstructed to their original representation. This can be difficult if
not enough data is available, as is the case, which leads to a large latent space dimension,
since there is not enough data to reduce it and maintain the accuracy of the reconstruction.

After having the autoencoder trained, all samples are embedded into the latent space
to calculate the mean and covariance matrix for the samples in each class, in our case,
in each quadrant, for sampling the corresponding distributions. To train the GAN, the
discriminator is first trained on real samples and then on fake samples from the generator.
Only one is trained at a time, meaning that after training the discriminator, the generator
is trained by evaluating the accuracy of the discriminator on distinguishing real and fake

Figure 4.4: Process of generating new samples using a GAN. After being trained, the
original Mel-spectrograms of the samples are passed through the generator, which embedds
the samples into the learned latent space. From here, the desired samples are generated and
passed through the discriminator, where these are reconstructed as accurately as possible
to the dimensions of the used Mel-spectrograms.
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samples. The GAN is ready to be used after a number of epochs or, ideally, when the
discriminator is unable to differentiate real and fake samples. The process can be seen in
Fig. 4.4.

Replicating this experiment proved to be a difficult task, since the covariance matrix for
each quadrant is dependent on the size of the latent space, the smallest possible being
60416, meaning that we have four 60416x60416 matrix to work with. Processing this ma-
trix along with some intermediate calculations needed for each quadrant made generating
samples with a GAN the most time consuming methodology to be replicated.

The results obtained for this approach reached a 52.36% F1 Score with Legacy-MERGE
as seen in Table 4.9, which is a very huge decrease in performance from the reported
60.44% F1 Score. Although a decrease in performance was expected compared with the
baseline model, the uncertainty of certain details for replicating the GAN’s training process
seem to have made a very considerable negative impact on the results. Nonetheless, we
expect that by using more samples some of this negative impact can be mitigated.

Table 4.9: Confusion Matrix obtained for Simple CNN with GAN

Q1 Q2 Q3 Q4
Q1 1168 447 366 239
Q2 534 1526 120 70
Q3 394 117 1000 739
Q4 337 88 759 1066

F1 Score Total

F1-Score Per Quadrant
49.39%
67.84%
43.89%
48.31%
52.36%

To prove if more samples are indeed enough for improving the latent space representations,
we look at the results for New-MERGE, shown in Table 4.10.

Table 4.10: Results and comparisons obtained for New-MERGE dataset on Simple CNN
with GAN

F1 Score

Complete 54.75%

Balanced 55.89%

Balanced-Genre 55.81%

Statistical Significance Test Against:

Baseline Balanced Balanced-Genre

Significant Not Not
(0.0052) Significant Significant
Significant // Not
(2.7965x10−05) Significant
Not // //Significant

Here, the results show a statistically significant improvement in performance, which may
be due to the increase in accuracy of the GAN model, as it was expected. Since more
samples are available, the mappings of the latent space become more accurate, generating
more relevant artificial samples.

4.1.6 CNN Model Pre-Trained with Genre

As stated in [7], there is some correlation between music genre and emotion, since some
genres have a tendency to fall in particular quadrants, such as Pop and Rock being pre-
dicted as Q1, or R&B and Religious (such as choir music) being predicted as Q4. With
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this in mind, it makes sense to give some notion of music genre to a network to hopefully
unveil some patterns relevant to emotion recognition.

Figure 4.5: Diagram of the Genre CNN architecture.

For this experiment, the GTZAN dataset [57] was used to train a well performing genre
classification model2, reporting a 83.20% F1 Score. It can be seen in Fig. 4.5. This
dataset is composed of 1000 songs, each having a corresponding genre, which includes
blues, classical, country, disco, hip-hop, jazz, metal, pop, reggae and rock. Details on the
process of collecting annotations for compiling the dataset are not disclosed.

After training, the model’s weights are frozen and the last layer, which outputs to genre,
is replaced by three Dense layers, which last layer outputs to one of the four quadrants,
and is once again trained, resulting in a model that predicts emotional quadrants.

The evaluation process was conducted by splitting full samples, each 30 seconds, to 1.5 sec-
onds segments, feeding the segments to the network. Full sample predictions are obtained
by majority voting, meaning that the mode of all segments’ predictions is considered the
full sample prediction.

Looking at Table 4.11 shows an obtained 19.23% F1 Score, much in line with the reported
results. This experiment shows how different the relevant features for determining genre
and emotion, and that simple using out-of-domain knowledge is not the most promising
direction for improving performance.

Table 4.11: Confusion Matrix obtained for CNN model pre-trained on GTZAN.

Q1 Q2 Q3 Q4
Q1 164 539 503 1044
Q2 80 522 535 1113
Q3 136 476 556 1082
Q4 108 541 565 1036

F1 Score Total

F1-Score Per Quadrant
14.23%
15.78%
16.28%
24.37%
19.23%

Despite the mediocre prediction ability of this network, the New-MERGE dataset was
experimented for possible improvements, as shown in Table 4.12.

2https://github.com/Hguimaraes/gtzan.keras
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Table 4.12: Results and comparisons obtained for New-MERGE dataset on CNN model
pre-trained on GTZAN.

F1 Score

Complete 16.96%

Balanced 18.40%

Balanced-Genre 18.55%

Statistical Significance Test Against:

Baseline Balanced Balanced-Genre

Significant Significant Significant
(1.0961x10−04) (0.0061) (0.0049)
Not // Not
Significant Significant
Not // //Significant

The Complete candidate significantly decreases the performance of the model, which may
be explained by its unbalanced nature. This is further corroborated with the results ob-
tained for the balanced candidates, which maintain the performance of the model. Natu-
rally, when more genres are equally represented the more accurate the model’s performance
is.

4.1.7 Voice CNN

As was reported by Panda et al. [8] and mentioned by Sá, voice-specific features tend to be
correlated with sad or calm songs, which fall in low valence quadrants, namely, Q3 and Q4.
In order to further explore this finding, Spleeter3, an audio source separation tool developed
by Deezer, a very large music streaming service akin to Spotify, is used to separate voice
from all samples and used in tandem with the full sample as Mel-spectrograms to train a
network using the baseline as foundation.

Figure 4.6: Diagram of the Voice CNN architecture.

Different from the previous experiments, the feature extractor portion is used for the full
sample and for the voice isolated sample, each one an input branch for the network. The
output from each branch is concatenated into a feature vector and the classification portion
outputs the prediction.

Results show an obtained 61.35% F1 Score for Legacy-MERGE, has seen in Table 4.13,
which is not far from the reported results. New-MERGE results are shown in Table 4.14.

Performance did not change as the statistical results were not significant. This may indicate
that the voice branch may not introduce enough relevant information for improving the

3Spleeter repository: https://github.com/deezer/spleeter
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Table 4.13: Confusion Matrix obtained for Simple CNN with isolated Voice branch.

Q1 Q2 Q3 Q4
Q1 1347 481 198 224
Q2 300 1826 82 42
Q3 295 93 1125 737
Q4 254 65 622 1309

F1 Score Total

F1-Score Per Quadrant
60.05%
77.56%
51.23%
56.56%
61.35%

Table 4.14: Results and comparisons obtained for New-MERGE dataset on Simple CNN
with isolated Voice branch.

F1 Score

Complete 61.44%

Balanced 60.58%

Balanced-Genre 60.63%

Statistical Significance Test Against:

Baseline Balanced Balanced-Genre

Not Not Not
Significant Significant Significant
Not // Not
Significant Significant
Not // //Significant

performance.

4.1.8 Double Branch CNN Regressor

Beyond the discrete quadrant labels, our dataset also provides continuous arousal and
valence values in the AV plane, meaning that it is possible to train a regressor on the data.
These AV values were obtained by obtaining the tags available for each sample from All
Music and comparing the relevant ones with Warriner’s Adjective List, which lists 13,915
English words and their respective rankings in arousal, valence and dominance, this last one
being irrelevant for the purposes of the dataset. The rankings for each tag were averaged
for each sample and these were taken as the placement of each sample in the plane, as
elaborated in [10].

Figure 4.7: Diagram of the Double Branch CNN Regressor architecture. The feature
extractor portion is the same as the baseline.
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Table 4.15: Confusion Matrix obtained for Double Branch CNN Regressor

Q1 Q2 Q3 Q4
Q1 986 359 123 772
Q2 430 1405 146 169
Q3 262 106 509 1433
Q4 169 24 351 1756

F1 Score Total

F1-Score Per Quadrant
47.67%
68.97%
28.80%
54.31%
49.93%

The network itself, presented in Fig. 4.7, is composed of two branches, each with its own
feature extraction portion, which takes a full sample Mel-spectrogram as input, feeding
into the classifier portion, outputting either arousal or valence values depending on the
branch. Each branch tries to predict arousal or valence, being trained against the AV
values already discussed. Here, not only is the F1-Score relevant, but also the Root Mean
Squared Error between the predictions and ground-truth data.

The results show that the feature extraction portion does not feed relevant features to
the regressor with a significant decrease in performance, obtaining a 49.93% F1 Score
at best, as shown in Table 4.15. Despite the match rate for A-V mapped values and
actual quadrants being around 96%, the extracted features do not reflect this. The bad
performance of the A-V values should be further tested against verification to assess the
emotional tags accuracy for each song in our dataset.

Do to missing emotional tags, some songs were unable to be mapped to the A-V plane for
the all candidates of the New-MERGE dataset. Due to time constraints, it was decided
to proceed experimentation with the available songs. This decreases encompasses 282, 226
and 322 songs for the Balanced and Balanced-Genre candidates, resulting in 1347, 1178
and 1050 songs. The obtained results can be seen in Table 4.16.

Table 4.16: Results and comparisons obtained for New-MERGE dataset on Double Branch
CNN Regressor

F1 Score

Complete 45.94%

Balanced 45.94%

Balanced-Genre 43.19%

Statistical Significance Test Against:

Baseline Balanced Balanced-Genre

Significant Not Significant
(2.0355x10−11) Significant (2.1544x10−04)
Significant // Significant
(4.1245x10−12) (0.0399)
Significant // //(4.4920x10−17)

After some investigation, the significant decrease in performance appeared to be explained
by the low match rate of mapped A-V values with the actual quadrant labels. More
specifically, around 50% of the songs do not correctly match the mapped A-V values for
the Complete candidate, which makes this model highly inaccurate. There is a need to
understand why this low rate was encountered.

4.1.9 DNN

These features, as for the SVM, were used to train a DNN with the same sets as mentioned
previously: all features, top 100 and top 100 + Spotify’s 11 features. These last 11 Spotify
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Figure 4.8: Diagram of the DNN models. From top to bottom: 1714 Decorrelated features,
100 Top Features and 100 Top + 11 Spotify features.

Table 4.17: Confusion Matrix obtained for DNN with All 1714 Decorrelated Features

Q1 Q2 Q3 Q4
Q1 1622 288 136 204
Q2 277 1847 74 52
Q3 115 106 1457 572
Q4 292 54 580 1324

F1 Score Total

F1-Score Per Quadrant
71.06%
81.28%
64.52%
60.00%
69.21%

features were only available for 704 songs, considerably reducing the number of samples.

The architectures for the networks reported are rather small due to the small number of
samples, which is more accentuated in this experiment, since large DNN’s are mentioned
to overfit very rapidly [7]. The architecture for processing all features has only five layers, a
Batch Normalization at the start and four Dense layers at the end for classification, having
500, 300, 100 and 4 output units respectively, outputting to one of the four quadrants,
as can be seen in Fig. 4.8. To process the top 100 features, the previous architecture
is maintained, but the first Dense layer is removed and the rest’s number of units are
reduced, to 100, 50 and 4 respectively. For the last set, the previous network is reused,
but the Batch Normalization layer is removed and the first Dense layer output units are
matched with the number of input features.

The models with all 1717 decorrelated features (Table 4.17), top 100 features without
(Table 4.18) and with 11 Spotify features (Table 4.19) obtained a 69.21%, 72.48%, and
73.73% F1 Score respectively for Legacy-MERGE. Some of the decorrelated features
still seem to introduce some noise, due to the better performance of the top 100 features
model. Surprisingly, the reduced number of samples did not matter since the last model
outperforms the ones before significantly.

There was a reduction of the available samples for the balanced datasets due to an oversight,
which was already mentioned back in 4.1.1. The experiment proceeded with a decrease
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Table 4.18: Confusion Matrix obtained for DNN with Top 100 Features

Q1 Q2 Q3 Q4
Q1 1749 187 112 202
Q2 281 1852 68 49
Q3 156 88 1494 512
Q4 278 20 512 1440

F1 Score Total

F1-Score Per Quadrant
74.11%
84.18%
67.17%
64.45%
72.48%

Table 4.19: Confusion Matrix obtained for DNN with Top 100 Features + 11 from Spotify

Q1 Q2 Q3 Q4
Q1 1427 122 90 161
Q2 148 1446 40 36
Q3 121 53 1105 431
Q4 239 15 394 1212

F1 Score Total

F1-Score Per Quadrant
76.33%
87.33%
66.00%
65.28%
73.73%

that encompasses 226 and 322 songs for the Balanced and Balanced-Genre candidates,
resulting in 1178 and 1050 songs. Results for the 17144 Decorrelated features and top 100
features for the New-MERGE dataset can be seen in Tables 4.20 and 4.21.

Table 4.20: Results and comparisons obtained for New-MERGE dataset on DNN with All
1714 Decorrelated Features.

F1 Score

Complete 68.63%

Balanced 68.10%

Balanced-Genre 68.05%

Statistical Significance Test Against:

Baseline Balanced Balanced-Genre

Not Not Not
Significant Significant Significant
Not // Not
Significant Significant
Not // //Significant

Table 4.21: Results and comparisons obtained for New-MERGE dataset on DNN with Top
100 Features.

F1 Score

Complete 67.40%

Balanced 67.41%

Balanced-Genre 67.41%

Statistical Significance Test Against:

Baseline Balanced Balanced-Genre

Significant Not Not
(1.5032x10−14) Significant Significant
Significant // Not
(1.6082x10−13) Significant
Significant // //(2.143110−13)

An overall decrease in performance is significant in the Top 100 features model, which
410 of these features had missing values, and for this reason were removed. It was latter found that this

was also the case for the Legacy-MERGE dataset, were these missing values were changed to 0. Future
experiments will be conducted to assess the performance differences.
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Figure 4.9: Diagram of Hybrid CNN + DNN.

Table 4.22: Confusion Matrix obtained for Hybrid CNN + DNN

Q1 Q2 Q3 Q4
Q1 1635 234 130 251
Q2 322 1786 91 51
Q3 164 83 1272 731
Q4 242 33 565 1410

F1 Score Total

F1-Score Per Quadrant
70.07%
81.33%
58.65%
59.85%
67.63%

strongly suggests that the most relevant features are not the same as the ones found for
the Legacy-MERGE dataset. As future work, feature selection needs to be redone in order
to improve performance.

4.1.10 Ensemble - Hybrid CNN + DNN

As a way to take advantage of the different information that can be leveraged from the
spectral representation of an audio sample and the hand-crafted features calculated from
it, an ensemble model, comprised of the models seen in Fig. 4.9, fusing both information
is experimented with.

As shown above, the ensemble has a CNN branch and a DNN branch. The DNN portion is
pre-trained previously in order to find the best performing model from the various training
folds and the weights are saved. To train the whole model, first the best weights for the
DNN are loaded and its layers are frozen. Then, the model is fed both the features and the
full samples Mel-spectrograms as input, finally outputting to one of the four quadrants.

The 67.63% F1 Score result, as shown in Table 4.22, indicates a significant improvement
compared with the baseline, but a significant decrease against the DNN only approach,
which means makes this model not state of the art as previously reported. This was found
to be a bug on the code available for these experiments, which after being fixed, resulted in
the mentioned score Reasons behind this may include the lower performance of the feature
extraction portion negatively impacting the whole model.

New-MERGE candidates’ results are shown in Table 4.23.

No significant changes in performance are noted by using the New-MERGE candidates.
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Table 4.23: Results and comparisons obtained for New-MERGE dataset on Hybrid CNN
+ DNN

F1 Score

Complete 67.34%

Balanced 66.54%

Balanced-Genre 67.30%

Statistical Significance Test Against:

Baseline Balanced Balanced-Genre

Not Not Not
Significant Significant Significant
Not // Not
Significant Significant
Not // //Significant

4.1.11 MEVD Experiments

Although it was not pursued in the present work, in the foundation work there were also
some methodologies developed and evaluated for solving MEVD.

These were conducted using the dynamic dataset from Panda et al. [63] which derived
from a previous dataset presented by Yang et al. [70] containing 194 clips of songs, each
25 seconds, annotated with arousal and valence values. The dynamic dataset contains 29
entire songs, with continuous arousal and valence annotations. The process for obtaining
these 29 songs started by removing the oriental songs, keeping 57 of the original 194. From
here, the full songs were extracted and continuously annotated by two subjects. Should the
agreement between the annotations of one song not reach 80%, the song would be removed,
eventually leading to the 29 songs on the dataset. This necessary process to ensure the
quality of the samples came with balancing issues, as it can be seen in Fig. 4.10, Q1 is
overrepresented and Q3 is heavily underrepresented, which makes it difficult to properly
train a DL model without bias to the more represented quadrants, as well as keeping it
from rapidly overfitting. Another problem is the quadrant distribution of annotations in a
concrete song, as can also be seen in Fig. 4.10, there are many songs that have annotations
for only a quadrant, which may also impact the predictions of the model. The difficulty
in not only balancing the number of samples for each quadrant, but also ensuring some
balance in same song annotations and the process of obtaining these annotations, show
how much more complex solving MEVD is compared to static MER.

(a) Quadrant distribution of the MEVD dataset,
as seen in Sá [7].

(b) Quadrant distribution of all segment-level
clips on the MEVD dataset, as seen in Sá [7].

Figure 4.10: MEVD dataset quandrant distribution.

The conducted experiments’ architecture are almost the same between each other, using
the feature extraction portion without the last layer. For the classifier portion however,
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experiments were conducted with a unidirectional and a bidirectional LSTM unit, which
output is fed in both to two dense layers for classification. The input for this architecture
are 2 second clips with an overlap of 100 milliseconds, meaning that each clip contains 100
milliseconds of the previous and/or next clip belonging to the same song, outputting the
predicted quadrant.

Another important point of the evaluation process of these models was the cross-validation
methodology used. Instead of the 10 splits 10 repetitions methodology followed until this
point, the number of splits was reduced to 4. This was necessary to maintain a good
proportion between the train and test sets, since the train set should be considerably
larger than the test set, and to ensure that there is a reasonable quadrant distribution in
the test set.

Results are much in line with the reported, achieving a 21.22% and a 20.95% F1 Score
for the networks utilizing LSTM and Bi-LSTM units respectively. Has was already men-
tioned in the foundation work, MEVD is a very complex task for which there is not nearly
enough data for DL approaches to take advantage.

Taking into account the very limited size of the dataset and the very unbalanced distri-
bution, it was decided to not proceed with any experiments due to the impossibility of
finalizing the updated MEVD dataset, since it is expected that the results would not differ
too much with any newly developed methodology for the current dataset.

Despite no MEVD experiments were conducted, it was still important to understand the
experiment for future work and the reported results were also validated.

4.2 New Architectures

In this section, we experimented with current implementations researched in the state of
the art. We begin by studying segment-level methodologies, one using segments of Mel-
spectrograms from full song clips by averaging the predictions of each segments, and then
proceeding to another directly extracting features from the raw signal of the song clip.

4.2.1 ShortChunk CNN

Despite some earlier literature mentioning that the length of a sample that contains the
whole emotional envelope of a song is about 30 seconds, more recent studies have shown
that this is not always the case. As shown in various works [71] [72] [25], the length of a
sample can be reduced as low as 3 seconds and still produce state of the art performance
in some datasets, such as the MTG-Jamendo dataset, and recently in MediaEval [40].
Previous work on Legacy-MERGE has also shown that by using half of a sample as a full
sample, performance increases despite the decrease of the sample length [7].

The approach in question has been experimentally evaluated using the above mentioned
dataset by Won et al. Taking Mel-spectrogram representations of the samples as input,
this approach uses 7 Residual 2D layers in sequence, a Global Max Pooling 2D layer
and a sequence of Dense, Batch Normalization, Dropout and another Dense to make the
classification. It is important to note that a direct comparison cannot be made between
the reported results and the results from Legacy-MERGE since the problem is not the
same. The original experiments approached MER as a multi-tag classification problem,
meaning that multiple tags can be attributed to one sample, whereas here we approach
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Figure 4.11: Diagram of the Residual 2D Block in the Sample CNN architecture.

it as a multi-class classification problem, meaning that only one class can be attributed
to a sample. Moreover, by using smaller segments for training, the amount of training
samples increases significantly, indirectly applying some Data Augmentation to the dataset,
hopefully, increasing the accuracy at this level and extending it to the entire sample.

The implementation of this network is available in Won’s repository5. The implementa-
tion was translated from PyTorch, as found in the repository, to Tensorflow, which was
accurately done with precious help from the paper’s author, Minz Won. In this repository,
pre-trained weights for the various models are also available, which are discussed more in
depth in Section 4.5.2, where these are experimented with.

Figure 4.12: Diagram of the ShortChunk CNN architecture. The feature extraction portion
comprehends the first Residual 2D block until the Global Max Pooling 2D Layer, the rest
is part of the classifier portion.

Due to the smaller input size, the classification of the full sample is done through the
average of the classification for the chunks of the sample. Experimenting with majority
voting showed a decrease in performance with Legacy-MERGE.

A Residual 2D layer, depicted in Fig 4.11, for our purposes, is a sequence of two Convolu-
tional 2D layers, with an additional Convolutional 2D layer for when the number of filters
in the current Residual 2D layer is different from the previous. The input is passed through
the two Conv 2D layers, which output is summed with the initial input before being passed
to a ReLU activation layer, producing the final output. In case of the already mentioned

5https://github.com/minzwon/sota-music-tagging-models

75



Chapter 4

Table 4.24: Confusion Matrix obtained for ShortChunk CNN.

Q1 Q2 Q3 Q4
Q1 989 859 334 48
Q2 312 1810 112 16
Q3 134 356 1342 378
Q4 99 276 1011 854

F1 Score Total

F1-Score Per Quadrant
52.16%
64.23%
52.71%
46.90%
54.00%

difference in filters, the input is passed through the remaining Conv 2D layer before being
summed with the output of the other layers. This architecture is depicted in Fig. 4.12.
The use of the Residual 2D layer helps preserve information that would otherwise be lost
during the convolutional operations [73].

The experiments using Legacy-MERGE Corrected accomplished at best a 54% F1-Score,
as can be seen in Table 4.24, which is considerably lower than the baseline Simple CNN.
The explanation may lie in the considerably lower number of samples in comparison with
the MGT-Jamendo dataset, from the 54.380 samples used in the reported experimentation
to the 893 samples of Legacy-MERGE, meaning that the convolutional filters may have a
hard time to adapt to less data.

The results in Table 4.25 show a similar performance for the Complete candidate of the
New-MERGE dataset, but there is a significant decrease in performance for both balanced
candidates. As other experiments have shown before, the balanced candidates seem to
have worse performance in general.

Table 4.25: Results and comparisons obtained for New-MERGE dataset on ShortChunk
CNN.

F1 Score

Complete 53.39%

Balanced 50.35%

Balanced-Genre 49.60%

Statistical Significance Test Against:

Baseline Balanced Balanced-Genre

Not Significant Significant
Significant (1.1313x10−04) (1.3298x10−04)
Significant // Not
(2.572410−06) Significant
Significant // //(3.4229x10−06)

4.2.2 Sample CNN

End-to-end learning applies convolutional networks for extracting features directly from
raw data, finding the best representation for classifying given samples. Previous studies
were conducted with full length samples, failing to reach similar performance when using
Mel-spectrograms instead, concluding that the model was not adequate enough for extract-
ing the same level of features present in a pre-computed representation. Despite this, there
was some promise due to the tested models being able to extract some relevant features,
such as frequency decompositions.

With this idea in mind, Lee et al. [71] presents the Sample CNN architecture, which
employs feature extraction at the sample-lavel by using small chunks of the sample, such
as the precious architecture. This architecture is very deep, comprising 11 Convolutional
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Figure 4.13: Diagram of the Conv 1D Block in the Sample CNN architecture.

Table 4.26: Confusion Matrix obtained for Sample CNN.

Q1 Q2 Q3 Q4
Q1 891 889 372 78
Q2 330 1712 192 16
Q3 76 285 1451 398
Q4 86 233 1082 839

F1 Score Total

F1-Score Per Quadrant
47.70%
63.14%
54.09%
45.50%
52.60%

1D layers, a Dropout layer and a Dense layer for classification, as seen in Fig. 4.14. As
with the previous network, Mel-spectrogram representations are also used as input to the
network.

Figure 4.14: Diagram of the Sample CNN architecture. The feature extraction portion
comprehends the first to the last Conv 1D Block, the rest is part of the classifier portion.

Due to the already large network and limited resources, changing the Convolutional 1D
layers to Residual 1D was not considered.

The experiments using Legacy-MERGE Corrected accomplished at best a 52.60% F1-
Score, as shown in Table 4.26, still lower than the baseline Simple CNN. The same line of
thought for the previous architecture stands: the very complex compositions of music are
hard to effectively model with such little data.

As seen in the results displayed in Table 4.27 for the New-MERGE dataset, the same pat-
tern of the Complete dataset candidates maintaining similar performance and the balanced
candidates underperforming.
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Table 4.27: Results and comparisons obtained for New-MERGE dataset on DNN with All
1714 Decorrelated Features.

F1 Score

Complete 52.00%

Balanced 47.51%

Balanced-Genre 47.44%

Statistical Significance Test Against:

Baseline Balanced Balanced-Genre

Not Significant Significant
Significant (3.6075x10−05) (0.8166)
Significant // Not
(2.295910−05) Significant
Significant // //(3.3740x10−06)

4.3 Improvements to Baseline Network

In this section, an improvement to the baseline architecture from the foundation work is
proposed, as well as experimenting with the CRNN architecture to study the impact of
time-distributed features.

4.3.1 Improving Simple CNN with GRU

After trying some new architectures, it is obvious that our data does not play well with
them. The baseline architecture continues to perform better, however there may be some
room for improvement. For instance, the architecture in question only leverages sample-
level features, directly classifying them with Dense layers. There is also some information
that can be found by analyzing the resulting features from the CNN feature extractor,
or frontend, as time-series data using a variant of an RNN. Due to recent findings that
GRU units have very similar performance as LSTM units while using less computational
resources, these were considered to improve our baseline.

Figure 4.15: Diagram of the Simple CNN architecture with added GRU units in the clas-
sifier portion of the architecture.

The architecture is mostly unchanged from the already presented baseline, but two GRU
units were introduced at the top of the classifier, or backend. The new proposed architec-
ture can be seen in Fig. 4.15. Various numbers of units were tested, 2000 units in each
layer provided the best results out of them.

Results for the Legacy-MERGE Corrected dataset showed no improvement, achieving at
most a 60.07% F1-Score, as seen in Table 4.28, which is a small dip in performance
compared to the baseline results.

However, as it can be seen in Table 4.29, there is very significant improvement on the
results for the New-MERGE Complete candidate, indicating that an increase in samples
positively impacts the recurrent portion of the network, while the other candidates perform
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Table 4.28: Confusion Matrix obtained for Improvement with GRU.

Q1 Q2 Q3 Q4
Q1 1307 556 205 162
Q2 265 1872 76 37
Q3 311 118 1116 665
Q4 292 71 887 1210

F1 Score Total

F1-Score Per Quadrant
58.45%
77.06%
49.99%
54.79%
60.07%

Table 4.29: Results and comparisons obtained for New-MERGE dataset on Improvement
with GRU.

F1 Score

Complete 61.99%

Balanced 60.66%

Balanced-Genre 58.85%

Statistical Significance Test Against:

Baseline Balanced Balanced-Genre

Significant Significant Significant
(0.0105) (0.0334) (3.6075x10−05)
Not // Significant
Significant (0.0178)
Not // //Significant

similarly. As shown by comparing between candidates, the number of samples seems to be
the only driving factor for improving performance using this architecture.

4.3.2 CRNN

The idea of adding recurrent units to process the extracted features from the frontend
came from the already discussed CRNN architecture from Choi et al. in Section 2. In the
repository presented in Section 4.2.1, there is code provided for a variety of state of the
art models, including the CRNN. As discussed in the article by Won et al. [25], the LSTM
units are replaced by GRU units much for the same reason as mentioned in the previous
expression.

Figure 4.16: Diagram of the Conv 2D Block in the CRNN architecture.

The architecture, which can be seen in Fig. 4.17, is comprised of an initial Batch Nor-
malization layer, followed by four Conv 2D Blocks, as the depicted in Fig. 4.16, the first
with 64 filters and the rest with 128, two GRU units, a Dropout layer and a final Dense
layer for classification. The model accepts a Mel-spectrogram of the full sample as input,
outputting the prediction as one of the four quadrants.

Results for Legacy-MERGE show a 60.35% F1 Score, displayed in Table 4.30, not im-
proving, but maintaining the performance in a similar way to the previous experiment.
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Figure 4.17: Diagram of the CRNN architecture. The feature extraction portion compre-
hends the Batch Normalization layer to the last Conv Block 2D, the rest is part of the
classifier portion.

Table 4.30: Confusion Matrix obtained for CRNN.

Q1 Q2 Q3 Q4
Q1 1372 402 253 203
Q2 355 1742 111 42
Q3 241 98 1223 648
Q4 264 46 728 1202

F1 Score Total

F1-Score Per Quadrant
60.05%
76.41%
52.07%
52.89%
60.35%

Table 4.31: Results and comparisons obtained for New-MERGE dataset on CRNN.

F1 Score

Complete 63.33%

Balanced 62.50%

Balanced-Genre 62.54%

Statistical Significance Test Against:

Baseline Balanced Balanced-Genre

Significant Not Not
(0.0031) Significant Significant
Significant // Not
(0.0264) Significant
Significant // //(0.0262)

However, we obtained very significant increases in performance for all candidates of the
New-MERGE dataset as shown in Table 4.31. These positive results indicate that extract-
ing time-distributed features is a very promising direction for improving future architec-
tures.

4.4 Data Augmentation

In this section, we experiment with different audio augmentations, using both classical
audio augmentation techniques and a technique for generating new artificial samples by
exploiting the a learned latent space.
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4.4.1 Classical Audio Augmentations

Further expanding on the work from Sá, other audio augmentation techniques were ex-
plored beyond the already four experimented with before. To do this, the available augmen-
tations on the audiomentations library6 were explored, from which the five more promising
ones were picked to be experimented with. Classical audio augmentations, although tested
with other subfields of MIR, such as Music Genre Recognition [74], only a few are found
in MER literature. This is mostly due to the difficulty in guaranteeing that an augmented
sample, generated from a real sample by applying one or a composition of techniques,
maintains the same emotion, or the same quadrant for our case. There is a need to fur-
ther experiment with traditional techniques to find possible better ways to generate new
samples.

Table 4.32: Confusion Matrix obtained for Simple CNN with Time-Frequency Masking
Audio Augmentation.

Q1 Q2 Q3 Q4
Q1 1366 464 168 232
Q2 324 1818 72 36
Q3 266 90 1121 733
Q4 244 41 624 1331

F1 Score Total

F1-Score Per Quadrant
60.70%
77.63%
52.22%
57.56%
62.03%

Table 4.33: Confusion Matrix obtained for Simple CNN with Tanh Distortion Audio Aug-
mentation.

Q1 Q2 Q3 Q4
Q1 1362 436 203 229
Q2 291 1805 90 64
Q3 259 84 1028 839
Q4 264 71 572 1333

F1 Score Total

F1-Score Per Quadrant
60.77%
77.40%
48.25%
55.96%
60.59%

Table 4.34: Confusion Matrix obtained for Simple CNN with Seven-band Parametric
Equalization Audio Augmentation.

Q1 Q2 Q3 Q4
Q1 1410 509 154 157
Q2 255 1893 69 33
Q3 277 144 1154 635
Q4 326 70 636 1208

F1 Score Total

F1-Score Per Quadrant
62.17%
77.53%
53.28%
55.50%
62.12%

The techniques from the audiomentations library, which were already explained in Section
4.4, experimented with were Time-Frequency Masking (Table 4.32), Random Gain (Table
4.35) and Seven-band Parametric Equalization (Table 4.34), which significantly outper-
formed the baseline results, achieving a 62.03%, 62.24% and 62.12% F1-Score respectively,
with 0.0451, 0.0340 and 0.0230 p-values. However, Tanh Distortion (Table 4.33) and Back-
ground Noise (Table 4.36) all underperformed, achieving a 60.59% and 60.84% F1-Score

6https://github.com/iver56/audiomentations
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respectively. Overall, the augmentations that performed better despite changing the sam-
ple in some ways, the actual content of the songs persist, along with the emotional content
in them. This may explain the bad performance of the other augmentations, since Tanh
Distortion may introduce some information to samples that is encountered very frequently
in rock and metal music, which are genres mostly associated with the Q2 quadrant, leading
to a bias towards it, while Background Noise may make the context of songs become more
jarring by introducing dissonant noises.

Table 4.35: Confusion Matrix obtained for Simple CNN with Random Gain Audio Aug-
mentation.

Q1 Q2 Q3 Q4
Q1 1582 422 95 131
Q2 331 1833 62 24
Q3 419 87 1046 658
Q4 382 55 599 1204

F1 Score Total

F1-Score Per Quadrant
63.51%
78.68%
51.21%
55.57%
62.24%

Table 4.36: Confusion Matrix obtained for Simple CNN with Background Noise Audio
Augmentation.

Q1 Q2 Q3 Q4
Q1 1334 480 161 255
Q2 261 1838 74 77
Q3 251 80 1000 879
Q4 260 63 548 1369

F1 Score Total

F1-Score Per Quadrant
60.71%
77.71%
48.75%
56.20%
60.84%

Due to resource limitation and the amount of methodologies to still be developed, the
approach seen in the foundation work, were all audio augmentations were applied simul-
taneously to obtain a better performance than using these individually, was not able to
be tested. It was decided to further experiment with the ones that showed visible im-
provement. With this said, the results obtained for the New-MERGE dataset are shown
in Tables 4.37, 4.38 and 4.39 for the best performing augmentation techniques.

Table 4.37: Results and comparisons obtained for New-MERGE dataset on Simple CNN
with Time-Frequency Mask Audio Augmentation.

F1 Score

Complete 61.82%

Balanced 60.58%

Balanced-Genre 61.39%

Statistical Significance Test Against:

Baseline Balanced Balanced-Genre

Not Significant Not
Significant (0.0251) Significant
Significant // Not
(0.0264) Significant
Not // //Significant

The great majority of the results show similar performance between the New-MERGE
candidates and the Legacy-MERGE dataset, with an exception of the Balanced candidate
when Time-Frequency Masking is applied. Since it has been found that there are some
songs that are exclusive to each of the candidates and taking into account the randomness
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Table 4.38: Results and comparisons obtained for New-MERGE dataset on Simple CNN
with Seven-band Parametric Equalization Audio Augmentation.

F1 Score

Complete 61.73%

Balanced 61.31%

Balanced-Genre 61.01%

Statistical Significance Test Against:

Baseline Balanced Balanced-Genre

Not Not Not
Significant Significant Significant
Not // Not
Significant Significant
Not // //Significant

Table 4.39: Results and comparisons obtained for New-MERGE dataset on Simple CNN
with Random Gain Audio Augmentation.

F1 Score

Complete 62.08%

Balanced 61.17%

Balanced-Genre 61.36%

Statistical Significance Test Against:

Baseline Balanced Balanced-Genre

Not Not Not
Significant Significant Significant
Not // Not
Significant Significant
Not // //Significant

of the factor, more or less accentuated, and location in the sample where the augmentations
are applied, may explain this lower value compared with the Balanced-Genre dataset. This
can only be verified by using a different random seed, changing how the augmentations
are applied to each sample, and making a comparison with the obtained results, but as it
stands, there does not to seem any considerable changes in this approach.

4.4.2 Deep SMOTE

As discussed in the embeddings section 4.6.2, deep audio embeddings have recently seen
success in the MIR field. Using a higher level representation not only makes it possible to
use more traditional ML algorithms, such as SVM as an example, but also other techniques,
leading us to SMOTE.

Synthetic Minority Oversampling Technique, or SMOTE, is a widely used Data Augmen-
tation technique, consisting, very briefly, of finding clusters of minority data samples and
generating new samples within these clusters. The original implementation consists of us-
ing the K-Nearest Neighbor classifier to find the above clusters, adjusting k as needed, and
randomly sampling new data points through interpolation of already existing points in the
same cluster.

From the inception of SMOTE [75] until the moment of writing, there have been a myriad
of variants introduced in order to address different problems with the original approach,
which adjust the methodology of achieving both above mentioned points.

Due to the nature of SMOTE, very high-dimensional datasets tend to produce low quality
or almost copies of the already existing points, which leads to redundant or noisy data
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[76]. With this in mind, the idea of reducing the dimensionality of our audio samples using
the autoencoder previously trained for the GAN experiment was experimented with, which
coincidentally, had already been proposed by Dablain et al. [77]. The idea is the same:
reduce the dimensionality using an autoencoder, apply SMOTE to the embedded data
and finally get the images, in our case Mel-spectrograms, from the resulting SMOTE’d
embeddings through the same autoencoder.

As to understand the distribution of the samples in the latent space of the embeddings,
tSNE, a technique that projects high-dimensional samples into a lower dimensional plane
for visualization purposes, was used and can be seen in Fig. 4.18.

(a) Distribution of the samples as calculated from
their embeddings.

(b) Distribution of the samples as calculated from
their embeddings, including generated samples.

Figure 4.18: Visualization of the samples’ distribution using tSNE, without, left, and with,
right, generated samples.

The SMOTE’ing process was done using the smote_variants package [78], introduced in
the work by Kovacs [79], where a total of 85 variants of SMOTE were tested against each
other using 104 imbalance datasets. The library also supports oversampling with multi-
class problems, not found in other libraries which only support binary problems, as the
original implementation. Something that was not referred to until now, is that SMOTE
was developed in order to balance unbalanced datasets, which was not exactly the case for
our already balanced Legacy-MERGE corrected dataset. Despite this, the library offers
the option to oversample any class up to twice the proportion between the class in question
and the other classes. This feature was taken advantage of to generate new samples from
our already balanced dataset.

For our purposes, some of the most mentioned SMOTE variants across the reviewed liter-
ature were explored: SMOTE, Borderline-SMOTE and Adasyn. Some preliminary testing
found that due to the distribution in the latent space, the performance difference between
each of the tested variants was very minor and it was decided to proceed with Borderline-
SMOTE due to its theoretical basis, consisting on the same KNN clustering as the original,
but instead of randomly sampling from within the clusters, possible new samples which
are closer to the borderline with other classes have priority on being chosen. The num-
ber of new generated samples was also tested, finding that the 25 new samples for each
class produced the best performance, since more than these always produced worse results.
The best F1-Score found for 25 samples generated using Borderline-SMOTE ended up at
60.70%, shown in Table 4.40, which is below the baseline results for the Legacy-MERGE
Corrected dataset.
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Table 4.40: Confusion Matrix obtained for Simple CNN with Deep SMOTE generated
samples.

Q1 Q2 Q3 Q4
Q1 1138 715 224 153
Q2 217 1930 70 33
Q3 231 124 1231 624
Q4 215 101 689 1235

F1 Score Total

F1-Score Per Quadrant
55.34%
75.73%
55.03%
56.72%
60.70%

The low results may be explained by some factors. The dimension of the latent space
is one of the most probable reasons for the poor performance. The paper by Dablain et
al. presents an autoencoder that reduces the dimensionality to 600, whereas the lowest
our data is capable of going before being unable to reconstruct the samples is 60416, a
lot higher than the previously mentioned dimensionality. Using SMOTE on such high
dimensions as already mentioned, tends to produce lower results and it could be seen here
and further increase the necessity for more data even for Data Augmentation approaches.
The choice of the SMOTE variant may also contribute to this, since according to Kovacs,
despite his findings, there is not an objectively better variant and may change depending
on the problem at hand. Further investigating other variants may also lead to better
performance.

Results obtained for New-Merge shown in Table 4.41 indicate that contrary to what was
seen for the GAN generated sample, the increase in samples did not impact the SMOTE
generated samples.

Table 4.41: Results and comparisons obtained for New-MERGE dataset on Simple CNN
with Deep SMOTE generated samples.

F1 Score

Complete 61.47%

Balanced 61.52%

Balanced-Genre 60.48%

Statistical Significance Test Against:

Baseline Balanced Balanced-Genre

Not Not Not
Significant Significant Significant
Not // Not
Significant Significant
Not // //Significant

4.5 Transfer Learning

As already discussed in Chapter 2, Transfer Learning has recently been applied in MER
due to the mostly small publicly available datasets. Beyond this, Transfer Learning can
also be used to transfer domain knowledge from one field to, hopefully, aid models to
understand underlying patterns in the data that datasets from the field are not prepared
for.
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Table 4.42: Confusion Matrix obtained for Transfer Learning with Artists CNN.

Q1 Q2 Q3 Q4
Q1 854 960 363 53
Q2 390 1606 205 49
Q3 93 367 1262 488
Q4 105 267 949 919

F1 Score Total

F1-Score Per Quadrant
45.85%
58.87%
50.43%
48.25%
50.85%

4.5.1 Artists CNN

Park et al. [80] present two different methodologies. First, a simple model using CNN
as the frontend, similar to our baseline model. Second, a siamese neural network, which
consists of at least two twin networks, denominated this way due to having the same
exact architecture and sharing weights and other parameters, trained using a sample and
positive and negative items, which should make the network prioritize the patterns that
are similar between the sample and positive items, doing the opposite between the sample
and negative items. Both accept Mel-spectrogram as inputs, output to between 1000 to
10000 artist label depending on the configuration, and was trained using the MSD dataset.
This last methodology was considered to be experimented with, but the reported results
comparison shows that most of the time the simple methodology performs the same or
better than the siamese one, which led us to experiment with the simpler model.

The Transfer Learning model was built using the architecture from the simple methodol-
ogy, discarding the last layer, substituting it with a final classification layer for our four
quadrants and freezing the remaining layers, which can be seen in Fig. 4.19. A dropout
layer and more Dense layers before the classification layer were tested with, degrading
the performance with the parameters tested with. This may be due to the already small
feature vector produced by the frozen layers, having dimensionality of 256.

Figure 4.19: Diagram of the Artists CNN architecture. The feature extraction portion
comprehends the first Conv 1D Block to the Global Max Pooling, the rest is part of the
classifier portion.

Experiments using the Legacy-MERGE corrected dataset achieved at best a 50.85% F1-
Score, lower than the baseline results. Transfer learning has not provided any improve-
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ments despite different approaches taken, and as it can be seen in Table 4.42, the same is
observed when using the New-MERGE dataset as can be seen in Table 4.43.

Table 4.43: Results and comparisons obtained for New-MERGE dataset on Transfer Learn-
ing with Artists CNN

F1 Score

Complete 50.27%

Balanced 50.63%

Balanced-Genre 50.22%

Statistical Significance Test Against:

Baseline Balanced Balanced-Genre

Not Not Not
Significant Significant Significant
Not // Not
Significant Significant
Not // //Significant

4.5.2 CRNN Pre-trained on MTAT, Jamendo, MSD

As already mentioned in the previous experiment, Transfer Learning may be done to trans-
fer the knowledge from a domain where data is abundant to a related domain with less
available data. At some point, the article by Choi et al. [81] was considered to be used
as part of a Transfer Learning experiment. The model used a CNN to extract features,
something very familiar at this point, however, the output of each layer except the last
one is passed through an Average Pooling layer, all outputs being concatenated at the end,
including the output from the last layer, to form a feature vector. This feature vector is
then classified using a variety of classifiers and regressors in order to find the best results.
The model accepts The idea behind using the output of the intermediate layers of the
CNN is to capture lower-level features that may ultimately be lost in the final layer, which
features are thought to be more high-level. Despite the implementation being available
here, using the provided weights appears to be impossible, since there is not an accurate
way to replicate the environment where these were used. Contacting the author of the
article and repository owner, Keunwoo Choi, pointed us to the provided models in Won’s
repository mentioned in Section 4.2.1 as more viable candidates for our experiment.

As way of comparing performance between using bigger datasets for pre-training a network
or only using our data, the CRNN model, which was already discussed in Section 2, and
tested in 4.3.2 using a translated Tensorflow implementation and our own data. The
architecture of the model is the same as already discussed, but the original implementation
in PyTorch is used to be able to use the pre-trained weightgs.

Upon building the model, the weights for one of the tested datasets, MTAT, Jamendo,
and MSD, are loaded, and the layers are frozen, replacing the last one with a classification
layer that outputs one of the four quadrants. Despite the models being trained with Mel-
spectrograms with 96 Mel bins, after experimentation, it was found that 128 Mel bins, used
for the remaining experiments, still provided the best results. Another important point
is the optimizer used for training this Transfer Learning model, which is not static. This
method, discussed in the article mentioned back in Section 4.2.1, consists of training the
model for 200 epochs and changing the current optimizer or/and learning rate depending
on the current epoch. This is done to more rapidly converge to the best values for the
weights of the model, while reducing the number of epochs necessary for a static optimizer
to reach similar performance.
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Table 4.44: Confusion Matrix obtained for Transfer Learning with CRNN using MTAT

Q1 Q2 Q3 Q4
Q1 267 349 589 1019
Q2 151 1045 342 697
Q3 127 123 813 1147
Q4 154 79 642 1356

F1 Score Total

F1-Score Per Quadrant
22.38%
74.28%
42.16%
48.95%
46.40%

Table 4.45: Confusion Matrix obtained for Transfer Learning with CRNN using MTG-
Jamendo

Q1 Q2 Q3 Q4
Q1 531 735 381 568
Q2 164 1833 94 162
Q3 374 222 465 1144
Q4 192 190 364 1511

F1 Score Total

F1-Score Per Quadrant
28.86%
69.71%
25.29%
53.09%
43.73%

The best results were achieved for a batch size of 16 and using the pre-trained weights
for the MTAT dataset (Table 4.44), reaching a 46.87% F1-Score with the Legacy-MERGE
corrected dataset, lower than the baseline and the results obtained for the CRNN trained
with our data, while using the Jamendo (Table 4.45) and MSD (Table 4.46) reached 43.73%
and 41.29% respectively. Interestingly, we would expect that a network trained with larger
datasets would produce better results, but has it can be seen, this is not the case. Of course
this may not be the only factor, as the lower quality of MSD as already been discussed in 2.2,
seemingly confirming it, and the same may be true for the Jamendo dataset. Despite this,
there is a considerable decrease in performance in comparison with training the network
only using our dataset, which evokes the interest in further understanding which dataset
is indeed the less accurate in terms of annotations, since this cannot be extrapolated with
the current data. Due to this clear better performance seen with the MTAT pre-trained
weights, these were the only ones considered when experimenting with New-MERGE.

Table 4.46: Confusion Matrix obtained for Transfer Learning with CRNN using MSD

Q1 Q2 Q3 Q4
Q1 1061 541 308 304
Q2 221 1717 121 198
Q3 576 647 388 598
Q4 641 478 258 873

F1 Score Total

F1-Score Per Quadrant
44.33%
60.82%
21.83%
40.14%
41.29%

The results for New-Merge, displayed in Table 4.47, show an improvement across all can-
didates when compared with Legacy-MERGE.

4.6 Multiple Spectral Representations

Using multiple representations for classification came from the idea that different spectral
representations have different information that can be extracted. By having a network
branch to extract features for each representation, that branch adapts to the representation,
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Table 4.47: Results and comparisons obtained for New-MERGE dataset on Transfer Learn-
ing with CRNN using MTAT

F1 Score

Complete 49.81%

Balanced 49.46%

Balanced-Genre 49.35%

Statistical Significance Test Against:

Baseline Balanced Balanced-Genre

Significant Not Not
(4.434510−06) Significant Significant
Significant // Not
(3.580710−05) Significant
Significant // //(3.580710−05)

which would in theory, extract relevant features from each one [40] [82].

A Short Time Fourier Transform, referred to STFT in the literature, is a transformation
applied to a raw signal to extract the time-frequency information present in it, with the
intent of plotting it as a spectrogram of the signal. This is done by segmenting the signal
in small segments, or windows, and applying a Fourier Transform over each individual
window. These windows normally have a small overlap to ensure that no information
is lost in the calculations. STFT is also used as an intermediate step for other spectral
representations, such as the Mel-spectrogram.

Figure 4.20: Waveform, STFT, Mel-spectrogram and MFCC representations of the same
30 second song clip. For each representation, excluding the waveform, the previous rep-
resentation is a necessary step for obtaining it, meaning that for obtaining the MFCC
representation, the Mel-spectrogram is needed, which is obtained from the STFT spectro-
gram, and so on.

The Mel Frequency Cepstral Coefficient, or as more commonly known, MFCC, is widely
used in the field of Automatic Speech Recognition and Speech Emotion Recognition [83],
since it accurately represents the structure of a human’s vocal tract, but more recently as
seen use in various subfields of MIR, due to studies finding that it represents the timbre
of a audio signal quite well. The process starts by getting an STFT spectrogram of the
signal, converting it to the Mel scale, and finally applying the same procedure of STFT
over the spectrogram, producing the STFT representation. The resulting representation
is a cepstrogram, the name given to the spectrogram of the log of the STFT. All of the
mentioned representations can be seen in Fig. 4.20.
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4.6.1 Segment-level Representations

Bathigama et al. [84] presents an approach which uses the idea in the beginning of this
subsection. The architecture, as seen in Fig. 4.22, takes as input small samples, such as
4.2, these being longer, each one 5 seconds, and is trained as a regressor using the values
in the AV plane for each sample. The feature extraction portion is composed by three
branches, one for each representation used as input: STFT, Mel-spectrogram, and MFCC.

The sample rate used for getting the representations is 22kHz, above the 16kHz used as
baseline for the experiments before. In theory, there would be more information per time
window when using a higher sample rate, but both are used in the literature depending on
the architecture in question.

The branches are very similar, being composed by a certain number of Conv Blocks 2D,
depending on the representation, an Adaptive Average Pooling layer and a Flattening
layer before being passed to a Concatenation layer. The backend, a regressor in this
case, is composed of a Dense Block with Dropout, a Dense Block without Dropout, which
outputs are passed to two branches, one for arousal and another for valence. Besides F1-
Score, RMSE is also a relevant metric to assess how well each branch can correctly predict
samples.

It is also important to note that a custom Early Stopping strategy was used for this
experiment. Until this point, most of the criteria necessary for ensuring good performance
of the models, was to limit the accuracy of the training to 0.9, mitigating the possibility
of the model overfitting. For this experiment and the next, the training of the models was
stopped after 10 epochs without any improvements, keeping the weights found as having
the best performance until that point. This drastically reduced the necessary time to train
these very complex models and mitigates the not surprising unstability of the training
process, due to the very complex nature of them.

The experiments using Legacy-MERGE Corrected produced a 43.06% F1-Score, a lot lower
than the baseline. Interestingly, a 0.2114 RMSE was obtained for Arousal, which is better
than the reported results of 0.2301 RMSE, but for valence, the obtained result was a 0.4318
RMSE, which is considerably worse than the reported 0.1938 RMSE.

Having used a different dataset for the experimentation, it was expected that the results
would not be the same, but the difference in valence is higher than would be expected, since
it is lower than arousal in the reported results. Using 5-fold Cross Validation could explain
some differences, but the lack of details for generating the spectral representations may
be the factor with more impact. Further tests with the parameters for the representations
should be made.

Results for the New-MERGE dataset, show in Table 4.49, an increase for the Complete
dataset, while maintaining the same performance for the Balanced dataset. This shows
that these models need a lot more data for considerable improvements to be made, as can
be seen by the underperforming Balanced-Genre candidate.

4.6.2 Sample-level Representations

Interpolating the idea from [84], the baseline frontend architecture was used as the foun-
dation for STFT and MFCC feature extractors. The architecture, as seen in 4.22, is very
similar to the previous model, only varying the number of Conv Block 2D. This experiment
was done to assess how well the architecture from the previous experiment suited our data.
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Figure 4.21: Diagram of the Multiple Representations Segment-level CNN architecture.
The feature extraction portion comprehends the various Conv Block 2D used in each
representation, which after concatenated is feed to the classifier portion.

The best results obtained was a 49.80% F1-Score, as seen in Table 4.50, higher than the
segmented approach, but still lower than the baseline. Arousal reached 0.2596 RMSE and
Valence 0.4799 RMSE, higher than the segmented approach, despite a better F1-Score.

A possible explanation for a worse F1-Score but better RMSE for both arousal and valence,
is the method for classifying the full sample emotion. As for the first experiment, the mean
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Table 4.48: Confusion Matrix obtained for Segment-level Multiple Representations.

Q1 Q2 Q3 Q4
Q1 1069 812 281 68
Q2 402 1643 182 23
Q3 512 584 830 284
Q4 460 421 791 568

F1 Score Total

F1-Score Per Quadrant
44.25%
58.03%
36.87%
32.85%
42.99%

Table 4.49: Results and comparisons obtained for New-MERGE dataset on Segment-level
Multiple Representations.

F1 Score

Complete 49.81%

Balanced 49.46%

Balanced-Genre 49.35%

Statistical Significance Test Against:

Baseline Balanced Balanced-Genre

Not Significant Significant
Significant (0.0029) (5.113810−16)
Not // Significant
Significant (7.127310−14)
Significant // //(1.554510−07)

Figure 4.22: Diagram of the Multiple Representations Sample-level CNN architecture.
The feature extraction portion comprehends the various Conv Block 2D used in each
representation, which after concatenated is feed to the classifier portion.
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of all segments’ predictions of a sample determines the emotion for the whole sample, due
to producing better results for that experiment, although it is not what is commonly done
in the literature, using the mode over the mean of the segments. It is possible that using
the mode instead may lead to better results, but it was not possible to assess. As for the
experiment with the full sample, a bigger batch size may lead to better performance, but
a 32 batch size was the most that could be tested with the resources available.

Table 4.50: Confusion Matrix obtained for Sample-level Multiple Representations.

Q1 Q2 Q3 Q4
Q1 865 617 369 379
Q2 220 1444 507 79
Q3 170 147 1123 770
Q4 145 83 872 1140

F1 Score Total

F1-Score Per Quadrant
46.04%
61.43%
43.13%
48.60%
49.80%

There was a surprisingly good result obtained for the Balanced-Genre candidate of the New-
MERGE dataset, a 74.23% F1 Score, as seen in Table 4.51, which is on par with the state-
of-the-art SVM. Although the results for the other candidates make this result suspicious,
there was nothing found that would erroneously produce this high score. This seems to
indicate that multiple spectral representations are indeed a very promising direction to
further mitigate the small size of our datasets, as the extra information leveraged from
other representations is shown to be beneficial.

Table 4.51: Results and comparisons obtained for New-MERGE dataset on Sample-level
Multiple Representations.

F1 Score

Complete 31.44%

Balanced 28.68%

Balanced-Genre 74.23%

Statistical Significance Test Against:

Baseline Balanced Balanced-Genre

Significant Significant Significant
(2.678110−27) (6.270910−08) (2.719710−34)
Significant // Significant
(1.037210−58) (4.067410−128)
Significant // //(5.882010−61)

4.7 Deep Audio Embeddings

In this section, deep audio embeddings approaches are presented using pre-trained deep
audio embedding models and utilizing a data-driven approach using an autoencoder trained
on our data.

4.7.1 OpenL3

Recently, deep audio embeddings have shown great performance such as in SER, where
Cramer et al. [85] reached state-of-the-art results when compared against other popular
deep embeddings architectures using a modified version of the Look, Listen, Learn deep
embedding approach. Taking in account these promising results, Koh et al. [86] further
compares the performance of this deep audio embedding methodology against VGGish, a
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Table 4.52: Confusion Matrix obtained for Random Forest with OpenL3 Embeddings

Q1 Q2 Q3 Q4
Q1 1128 449 313 340
Q2 477 1564 115 94
Q3 451 207 822 730
Q4 459 109 659 1013

F1 Score Total

F1-Score Per Quadrant
47.31%
68.24%
39.56%
45.59%
55.70%

popular deep embedding approach experimented by Somonyan et al. [87] using the popular
VGGNet model as the foundation, using a variety of classifiers.

The experiments were conducted using a variety of datasets, including our own 4QAED
dataset, using the OpenL3 library as the L3 implementation for obtaining the embeddings.

The OpenL3 library 7 is a collection of embedding models for a variety of media, including
music. The authors state that the purpose of this library is to provide an implementation
of the Look, Listen, Learn (L3) paper by Arandjelovic et al. [88] and to improve on some
of the flaws in the original method.

The model used was trained on the music subset of the AudioSet dataset [89], consisting
on more than 1M 10 sec excerpts from Youtube videos following a very thorough 632 audio
classes onthology, encompassing a myriad of audio-related tasks.

In the paper by Koh et al., various configurations of the embedding model for music in
this library are experimented with and evaluated with a variety of classifiers (SVM, RF,
DNN,...) using the Legacy-MERGE dataset.

The reported results show that the best classifier for this approach is Random Forest with
a 72% F1-Score. There is some confusion as to which splits for the data were used, more
specifically, there is mention of a 80%/10%/10% split for train, test and validation sets
respectively, but also a mention of using cross-validation with 20 repetitions. For consis-
tency, cross-validation with 10 splits and 10 repetitions was used as for other experiments
presented. Attempts to contact the author asking clarification on this point, as well as
details not mentioned regarding the parameters used for training the RF classifier, but
there was no answer until the moment of writing.

The obtained results show a huge decrease in performance, only being able to reach a
55.70% F1 Score using the provided details, as shown in Table 4.52. Unfortunelly, the
problem with the replicability of published work is general across all science fields, being
dubbed the replication crisis [90], which most of the time entails the lack of enough detail
to properly replicate the presented results. Since replicability of previous work is necessary
for consistently improving on any science field, we have ensured to share the necessary
details for each conducted experiment, hoping these may be of use in future work, in or
out of the MERGE team.

As for the New-MERGE dataset, there were some significant improvements, as can be seen
in Table 4.53. This is most probably due to the increase in samples, since the performance
of each candidate slightly decreases in proportion with the quantity of samples available.

7https://github.com/marl/openl3
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Table 4.53: Results and comparisons obtained for New-MERGE dataset on Sample-level
Multiple Representations.

F1 Score

Complete 53.62%

Balanced 52.95%

Balanced-Genre 52.85%

Statistical Significance Test Against:

Baseline Balanced Balanced-Genre

Significant Not Not
(3.7057x10−07) Significant Significant
Significant // Not
(2.3283x10−05) Significant
Significant // //(5.4467x10−05)

4.7.2 Autoencoder Embeddings

Since an autoencoder was trained for the purpose of experimenting with Data Augmenta-
tion, see Section 4.4.2, classification of the resulting embeddings on that latent space may
be more accurate due to the data-driven approach taken. In order to test the validity of
this approach, the same classifier from the previous experiment was tested with these data
points, retaining the same parameters for a direct comparison.

Table 4.54: Confusion Matrix obtained for Random Forest with Autoencoder Embeddings

Q1 Q2 Q3 Q4
Q1 1351 344 318 217
Q2 627 1404 133 86
Q3 340 67 1049 754
Q4 337 38 695 1170

F1 Score Total

F1-Score Per Quadrant
55.06%
68.19%
47.39%
52.17%
50.85%

Results indicate that the OpenL3 embeddings still perform better, as shown in Table 4.54
with a lower 50.85% F1 Score. Despite the lower score, the obtained scores for the
New-MERGE dataset, shown in Table 4.55, corroborates what was already found for the
Deep SMOTE approach: more samples increases the accuracy of the learned latent space.
As the dataset increases in the future, we may expect even further improvements to this
methodology, has more accurate latent space representations will be attainable.

Table 4.55: Results and comparisons obtained for New-MERGE dataset on Sample-level
Multiple Representations.

F1 Score

Complete 53.56%

Balanced 52.97%

Balanced-Genre 53.69%

Statistical Significance Test Against:

Baseline Balanced Balanced-Genre

Significant Not Not
(3.7057x10−07) Significant Significant
Significant // Not
(2.3283x10−05) Significant
Significant // //(5.4467x10−05)
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Table 4.56: Confusion Matrix obtained for Hybrid CNN with Augmentations + DNN.

Q1 Q2 Q3 Q4
Q1 1681 270 107 172
Q2 310 1843 61 36
Q3 194 91 1319 606
Q4 332 50 570 1288

F1 Score Total

F1-Score Per Quadrant
70.30%
81.62%
61.31%
58.93%
68.18%

4.8 Ensemble Method: Hybrid CNN with Augmentations +
DNN

The last methodology developed, was an improvement on the Ensemble method presented
in the foundation work, previously discussed in Section 4.1.10. Data augmentation has
had some success when using classical audio augmentation techniques, which can be seen
in the experiments concerning these.

To further assess their impact, the CNN portion of the Hybrid model was pre-trained using
the set of augmentation studied in the foundation work. Due to the already mentioned
resource constraints, this could not be tested with the techniques experimented with in the
present work.

Various approaches were taken, firstly only pre-training the CNN portion, but latter, im-
provements were noted when pretraining the DNN portion of the model as well.

The results in Table 4.56 show a significant improvement over the baseline, achieving a
68.18% F1-Score for the Legacy-MERGE dataset, but it did not significantly improve
over its non-augmented counterpart. However, when using the New-MERGE dataset, as
seen in Table 4.57, there were very significant improvements on the balanced datasets,
achieving a 80.22% and 80.24% F1 Score, which make them state of the art for this
dataset. These improvements are very exciting and urges for more effort in Data Augmen-
tation for any future methodologies.

Table 4.57: Results and comparisons obtained for Hybrid CNN with Augmentations +
DNN.

F1 Score

Complete 67.85%

Balanced 80.22%

Balanced-Genre 80.24%

Statistical Significance Test Against:

Baseline Balanced Balanced-Genre

Significant Not Significant
(3.7057x10−07) Significant (1.1712x10−56)
Significant // Significant
(5.5791x10−47) (4.0674x10−128)
Significant // //(1.2784x10−45)

4.9 A note on the Evaluation Methodology

Due to the impossibility to experiment with all possible hyperparameters for each model
evaluated, a methodology was defined and followed when developing and evaluating each
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new approach presented in this work to ensure the best performance under the resources’
constraints.

(a) Example of a train and test loss plot. (b) Example of a train and test accuracy plot.

Figure 4.23: Examples of loss and accuracy plots

For the approaches replicated from the literature, if any set of optimal hyperparameters is
provided, these are used as the starting point. After first training the model, the resulting
metrics, loss and accuracy are plotted in order to assess what changes may be made, which
can be seen in Fig. 4.23. Taking as an example a plot of the loss during training that
plateaued at a relatively early epoch, various paths can be taken, such as reducing the
number of epochs to save on resources or experimenting with a larger batch size to get
better performance. In the case a plot of the accuracy during training seems to reach a
plateau at a very early epoch, it is possible that a change to the optimizer used needs
to be made, changing it entirely or reducing the learning rate. For approaches that were
not directly replicated from the literature or approaches from the literature that do not
provide a set of hyperparameters, the optimal parameters from similar already evaluated
models were used.

For training and testing, cross-validation using 10 splits and 10 repeats is used, meaning
that the dataset in question is split into 10 random slices, 9 are used for training and the
remaining one is used for testing, one particular train and test split as described is known
as train and test folds, and at some point, all slices are utilized as train and test data.
The process of randomly selecting the slices is done 10 times, resulting in a total of 100
different folds that are used to evaluate each model. This is done to circumvent the low
number of samples on the studied datasets, as was done in previous work by the team [8].

4.10 Summary of presented approaches

As to put into perspective the different methodologies studied in this work, a summary
of the most important details of each one are presented in Tables 4.58, 4.59 and 4.60.
The presented F1 Scores are the best ones found between the Legacy- and New-MERGE
datasets, as to provide an idea on the limitations of each methodology. The time estima-
tions provided are very rough, since the development environment was not the most stable.
Not only where the used GPUs dependant on the load of these environment, as well as the
speed at which computations could be made, impacted by other users’ usage.

To end this section, Figs. 4.24 and 4.25 present the F1-Scores obtained between the datasets
by ascending order of the dataset where the methodologies were developed, meaning that
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the best performing methodologies for the Legacy-MERGE dataset for the foundation
work and New-MERGE dataset for the newly explored methodologies are to the right of
the respective figures, as to give an idea on the limits of the datasets themselves.
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Table 4.58: A Summary of Replicated Approaches.

Experiment
Data
(Num Samples)
(Length)

Input
(Sample Rate)
(Dim)

Architecture
Description

Num. Parameters
(All)
(Trainable)

Batch
(Size)

Epochs
(Num)

Optimizer
(LR)

Time
Est.
(Min)

Best
Overall
F1 Score

SVM with Top 100
(Panda)

Legacy-MERGE
(900)

100
Handcrafted
Features

Support
Vector
Machine (Classifier)

N.A. N.A N.A N.A 4.5 74.89%

Baseline -
Simple CNN (Sá)

Legacy-MERGE
(900)
(30 sec)

Mel-spectrograms
(16kHz)
(942x128x1)

CNN (Feature Extractor)
->FCN (Classifier)
->Quadrant

621.360
621.264 150 200 SGD

(0.01) 1269.7 61.66%

Split CNN
(Sá)

Split Legacy-MERGE
(1800)
(30 sec)

Mel-spectrograms
(16kHz)
(471x128x1)

CNN (Feature Extractor)
->FCN (Classifier)
->Quadrant

1.272.028
1.271.900 150 200 SGD

(0.01) 1261.3 64.77%

Simple CNN
with Aug (Sá)

Legacy-MERGE +
Augmented Samples
(900 + 3600)(30 sec)

Mel-spectrograms
(16kHz)
(942x128x1)

CNN (Feature Extractor)
->FCN (Classifier)
->Quadrant

621.360
621.264 120 450 Adam

(0.005) 1446 61.55%

Simple CNN
with GAN (Sá)

Legacy-MERGE +
GAN generated per quad
(900 + (25 * 4)) (30 sec)

Mel-spectrograms
(16kHz)
(942x128x1)

CNN (Feature Extractor)
->FCN (Classifier)
->Quadrant

621.360
621.264 200 100 Adam

(0.01) 285.3 55.89%

Pre-Trained
CNN with
Genre (Sá)

GTZAN (Pre-Train)
Legacy-MERGE (900 / 6300)
(30 sec / 1.5 sec)

Mel-spectrograms
(16kHz & 0.5 sec overlap)
(129x128x1)

CNN (Feature Extractor)
->FCN (Classifier)
->Quadrant

2,654,724
164.740
(After Pre
-Training)

1800 20 Adam
(0.05) 49.8 19.23%

Voice CNN -
Full Branch +
Voice Branch (Sá)

Legacy-MERGE
(900)
(30 sec)

2x Mel-spectrograms (16kHz)
(942x128x1)
[Full Sample + Voice Only Sample]

[CNN (Feature Extractor - Full)
+ CNN (Feature Extractor - Voice) ]
->FCN (Classifier) ->Quadrant

1.320.156
1.318.764 150 200 SGD

(0.01) 1660.2 61.44%

AV CNN -
Arousal Branch +
Valence Branch (Sá)

Legacy-MERGE
(900)
(30 sec)

Mel-spectrograms
(16kHz)
(942x128x1)

CNN (Feature Extractor)
->FCN (Classifier)
->[Arousal + Valence]

1.270.642
1.270.386 300 100 SGD (0.01) 320.3 49.93%

DNN All (Sá) Legacy-MERGE
(900)

1714
Handcrafted
Features

FCN (Preprocessing)
->FCN (Classifier)
->Quadrant

1,045,160
1,041,732 450 10 Adam

(0.0005) 4.1 69.21%

DNN Top 100
(Sá)

Legacy-MERGE
(900)

100
Handcrafted
Features

FCN (Preprocessing)
->FCN (Classifier)
->Quadrant

15.754
15.554 150 300 SGD

(0.01) 28.1 72.48%

DNN Top 100 +
11 Spotify (Sá)

Legacy-MERGE -
Available on Spotify
(704)

111
Handcrafted
Features

FCN (Preprocessing)
->FCN (Classifier) ->
Quadrant

18.236
18.236 300 80 Adam

(0.0005) 9.1 73.73%

Emsemble -
CNN Branch +
DNN Branch (Sá)

Legacy-MERGE
(900)
(30 sec)

Mel-spectrograms
(16kHz)(942x128x1) +
1714 Handcrafted
Features

[FCN (Preprocessing) +
CNN (Feature Extractor) ]
->FCN (Classifier)
->Quadrant

1.767.280
721.596 300 100 SGD

(0.01) 222.8 67.63%
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Table 4.59: A Summary of Developed Methodologies.

Experiment
Data
(Num Samples)
(Length)

Input
(Sample Rate)
(Dim)

Architecture
Description

Num. Parameters
(All)
(Trainable)

Batch
(Size)

Epochs
(Num)

Optimizer
(LR)

Time
Est.
(Min)

Best
Overall
F1 Score

ShortChunk
CNN (Louro)

Legacy-MERGE-C
(893 / 6993)
(30 sec / 3.69 sec)

Mel-spectrograms
(16kHz)
(116x128x1)

CNN (Feature Extractor)
->FCN (Classifier)
->Quadrant

12.092.424
12.080.646 50 100 SGD

(0.001) 840 54.00%

Sample
CNN (Louro)

Legacy-MERGE-C
(893 / 6993)
(30 sec / 3.69 sec)

Raw Waveform
(16kHz)
(59049x1)

CNN (Feature Extractor)
->FCN (Classifier)
->Quadrant

1.852.164
1.846.276 50 150 SGD

(0.001) 635 52.60%

Simple CNN
+ RNN Improvement
(Louro)

Legacy-MERGE-C
(893)
(30 sec)

Mel-spectrograms
(16kHz)
(942x128x1)

CNN (Feature Extractor)
->RNN (Feature Extractor)
->FCN (Classifier) ->Quadrant

48.667.035
48.666.939 150 200 SGD

(0.01) 700 61.99%

CRNN
(Louro)

Legacy-MERGE-C
(893)
(30 sec)

Mel-spectrograms
(16kHz)
(942x128x1)

CNN (Feature Extractor)
->RNN (Feature Extractor)
->FCN (Classifier) ->Quadrant

392.480
392.582 50 200 SGD

(0.001) 940.5 63.33%

Simple CNN with
Time-Frequency
Masking
Augmentation
(Louro)

Legacy-MERGE-C +
Time-Frequency Masking
(893 + 893)(30 sec)

Mel-spectrograms
(16kHz)
(942x128x1)

CNN (Feature Extractor)
->FCN (Classifier)
->Quadrant

621.360
621.264 150 200 SGD

(0.01) 1482.5 62.03%

Simple CNN
with
Tanh Distortion
Augmentation
(Louro)

Legacy-MERGE-C +
Tanh Distortion
(893 + 893)(30 sec)

Mel-spectrograms
(16kHz)
(942x128x1)

CNN (Feature Extractor)
->FCN (Classifier)
->Quadrant

621.360
621.264 150 200 SGD

(0.01) 696.3 60.59%

Simple CNN
with
Random Gain
Augmentation
(Louro)

Legacy-MERGE-C +
Random Gain
(893 + 893)(30 sec)

Mel-spectrograms
(16kHz)
(942x128x1)

CNN (Feature Extractor)
->FCN (Classifier)
->Quadrant

621.360
621.264 150 200 SGD

(0.01) 1245.5 62.24%

Simple CNN with
Background
Noise
Augmentation
(Louro)

Legacy-MERGE-C +
Background Noise
(893 + 893)(30 sec)

Mel-spectrograms
(16kHz)
(942x128x1)

CNN (Feature Extractor)
->FCN (Classifier)
->Quadrant

621.360
621.264 150 200 SGD

(0.01) 843.5 60.84%

Simple CNN with
Seven-Band
Parametric Eq.
Augmentation
(Louro)

Legacy-MERGE-C +
Seven-Band
Parametric Eq.
(893 + 893)(30 sec)

Mel-spectrograms
(16kHz)
(942x128x1)

CNN (Feature Extractor)
->FCN (Classifier)
->Quadrant

621.360
621.264 150 200 SGD

(0.01) 1096.2 62.12%

Simple CNN with
Deep SMOTE Generated
Samples (Louro)

Legacy-MERGE-C +
Deep SMOTE generated
per quad
(893 + (25 * 4)) (30 sec)

Mel-spectrograms
(16kHz)
(942x128x1)

CNN (Feature Extractor)
->FCN (Classifier)
->Quadrant

621.360
621.264 200 150 SGD

(0.01) 557.4 61.47%
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Table 4.60: Continuation of Summary of Developed Methodologies.

Experiment
Data
(Num Samples)
(Length)

Input
(Sample Rate)
(Dim)

Architecture
Description

Num. Parameters
(All)
(Trainable)

Batch
(Size)

Epochs
(Num)

Optimizer
(LR)

Time
Est.
(Min)

Best
Overall
F1 Score

Pre-Trained
Artist CNN
(Louro)

Legacy-MERGE-C
(893 / 8930 )
(30 sec / 3 sec)

Mel-spectrograms
(22.05kHz)
(129x128x1)

CNN (Feature Extractor)
->FCN (Classifier)
->Quadrant

267.01
21.028
(After Pre-Training)

100 200 Adam
(0.01) 593.2 50.85%

Pre-Trained
CRNN with
MTAT (Louro)

Legacy-MERGE-C
(893)
(30 sec)

Mel-spectrograms
(16kHz)
(942x128x1)

CNN (Feature Extractor)
->RNN (Feature Extractor)
->FCN (Classifier)
->Quadrant

392.582
392.582 16

200
(As per
Won
Optimizer)

Adam
(0.001)
SGD
(0.0001)
SGD
(0.00001)

748.3 49.81%

Pre-Trained
CRNN with
JAM (Louro)

Legacy-MERGE-C
(893)
(30 sec)

Mel-spectrograms
(16kHz)
(942x128x1)

CNN (Feature Extractor)
->RNN (Feature Extractor)
->FCN (Classifier)
->Quadrant

392.582
392.582 16

200
(As per
Won
Optimizer)

Adam
(0.001)
SGD
(0.0001)
SGD
(0.00001)

748.3 43.73%

Pre-Trained
CRNN with
MSD (Louro)

Legacy-MERGE-C
(893)
(30 sec)

Mel-spectrograms
(16kHz)
(942x128x1)

CNN (Feature Extractor)
->RNN (Feature Extractor)
->FCN (Classifier)
->Quadrant

392.582
392.582 16

200
(As per
Won
Optimizer)

Adam
(0.001)
SGD
(0.0001)
SGD
(0.00001)

748.3 41.29%

Open-L3
Embeddings
(Louro)

Legacy-MERGE-C
(893)
(30 sec)

Deep Audio
Embeddings
(N.A.)(298x512)

Random Forest
(Classifier) N.A. N.A. N.A. N.A. 1.66 55.70%

Autoencoder
Embeddings
(Louro)

Legacy-MERGE-C
(893)
(30 sec)

Deep Audio
Embeddings
(N.A.)(60416)

Random Forest
(Classifier) N.A. N.A. N.A. N.A. 1.66 53.69%

Multiple
Sample-Level
Representations
(Louro)

Legacy-MERGE-C
(893)
(30 sec)

Mel-spectrograms (16kHz)(942x128x1)
MFCCs (16kHz)(942x20x1)
STFTs (16kHz)(1876x515x1)

[CNN (Feature Extractor - Mel) +
CNN (Feature Extractor - MFCC) +
CNN (Feature Extractor - STFT) ]
->FCN (Classifier) ->Quadrant

4.008.374
4.006.318 32 100 SGD

(0.01) 2342.8 74.23%

Multiple
Segment-Level
Representations
(Louro)

Legacy-MERGE-C
(893 / 5358)
(30 sec / 5 sec)

Mel-spectrograms (22.05kHz)(216x128x1)
MFCCs (22.05kHz)(216x20x1)
STFTs (22.05kHz)(431x515x1)

[CNN (Feature Extractor - Mel) +
CNN (Feature Extractor - MFCC) +
CNN (Feature Extractor - STFT) ]
->FCN (Classifier) ->Quadrant

2.054.274
2.054.274 16 50 SGD

(0.01) 2673.6 49.81%

Emsemble -
CNN Augmented
Branch + DNN
Branch (Louro)

Legacy-MERGE-C
(893 + 3572)
(30 sec)

Mel-spectrograms
(16kHz)(942x128x1) +
1714 Handcrafted Features

[FCN (Preprocessing) +
CNN (Feature Extractor) ]
->FCN (Classifier)
->Quadrant

1.767.280
721.596 300 100 SGD

(0.01) 188.4 80.24%
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Figure 4.24: Results for Replicated Work.

Figure 4.25: Results for Explored Methodologies.

102



Chapter 5

Conclusions and Future Work

This chapter summarizes the main contributions of this work, and proposes possible direc-
tions that directions that might be promising for future work.

5.1 Conclusion

As this work comes to its end, the most relevant conclusions and main contributions are
presented and discussed.

Beginning with the most pressing matter that severely limits the performance of the pre-
sented methodologies, is the lack of data in reasonable amounts to truly take advantage of
DL. This has been stated multiple times in this work and as the data shows, it truly is the
most impactful factor for performance at this stage for solving MER.

Still on improving the performance of this methodologies, there is an interest in testing with
different hyperparameters for the DL models, most importantly, the batch size. Although
some methodologies seem to perform better with a higher number of epochs, batch size
has been the most impactful hyperparameter. For example, there is evidence that higher
batch sizes may positively impact the Sample-level Multiple Representations methodology,
as was shown by the considerable performance increase when increasing the batch size,
however, the sheer complexity of the model did not make this possible with the available
resources.

There is some interest in continue experimenting with time-distributed features with re-
current units, as these have shown to be at its best when there is a more considerable
number of samples, increasing the need to further update our datasets.

Shifting the focus on the overall methodologies employed, it was apparent that transfer
learning has not improved the performance of the models in any way. This was seen in
the foundation work and the tendency was sustained in the present work, should it be
out-of-domain knowledge or in-domain knowledge transfer learning, as was seen with the
Artists CNN architecture with pre-trained weights and the larger Static MER datasets ex-
perimented with the CRNN architecture. Nonetheless, there are other methods to employ
it which have not been experimented with, some being presented in the next section.

Another overall methodology that deserves a lot more research is Data Augmentation. It
has been shown that classical Data Augmentation has a positive impact in the models
where these are applied, but there is still not much information regarding the effects of
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most of these in MER. This being more effective than Transfer Learning to mitigate lack
of data quantity, it should be of great priority in future work.

Multiple representations, although not showing very promising results initially, the ob-
tained results for the New-MERGE dataset indicate a very promising direction. Since only
three representations were tested in tandem, there is still a lot of possibilities in this area,
such as the work by Zang et al. [82], where the Legacy-MERGE dataset was adopted for
evaluation. Here, Mel-spectrograms and the Mel Filter Banks used to generate them are
used in combination to produce very impressive results. Although there was interest in
pursuing this and the author contributed some pointers for replicating the experiment, it
was not possible to conduct and is expected to be explored in the future.

Some of the best results obtained are still the ones that incorporate handcrafted features in
some way. These should be further pursued in order to enrich DL models with intricacies
that may not be apparent with such a small quantity of data.

With this work, we also have proved the viability of the extension to the static dataset
created by the team. The preliminary results will be used as basis to further improve on
the hyperparameters used in these methodologies, as performance gains are expected.

We also provide a very detailed run down of all replicated and developed methodologies
as future reference for future work using DL approahces.

5.2 Future Work

There are a lot of aspects that can be improved in future work. Here, a summary of the
most promising directions is presented. These are:

• Expand the Static MER datasets, as it has been shown that is the most crucial point
for improving performance;

• Assuring augmented samples retain the emotion pertaining their original quadrant
by splicing the vocals and instrumentals of songs in the same quadrants;

• Deeper study on applying classical audio augmentations with an automated search
approach, looking for the best combination of augmentations possible;

• Pre-training the voice isolated branch of the Voice CNN model with data from Speech
Emotion Recognition to improve performance;

• Pre-training deep embedding models, as was done for OpenL3, with other domain
knowledge that may be more appropriate for the problem at hand.

Other promising direction not explored in this work include:

• Applying unsupervised learning to automatically label data, reducing the manual
labor necessary;

• Introducing attention layers between the feature extraction and classifier portions of
DL models may improve the performance by removing redundant features;

• Study the quality of larger datasets when projected to the A-V plane, such as the
MSD dataset, which large quantity of available social tags may produce good results.
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Conclusions and Future Work

On a personal note, developing this work has been a very enriching experience, not only
in a professional, but also in a personal level. The sheer complexity of the topic was very
hard to get into in the beginning, but with a lot of perseverance, we were able to grasp the
necessary concepts to provide a very extensive and comprehensive work, which we sincerely
hope to be a reference for any future work on our team.
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