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Abstract

While it is known that imbalance on its own is not too harmful, when combined with other
issues such as dataset shift and/or overlap, its impact on the degradation of the quality
of data increases, becoming a real problem. Despite this, there is a lack of research works
studying these issues simultaneously.

The aim of this work is to study both overlap and dataset shift in contexts of where the
data is imbalanced, to understand their combined effects.

To study dataset shift, experiments were made using four cross validation algorithms, that
induce different amounts of shift in the data, with the goal of understanding their impact
on the performance of several machine learning algorithms. Furthermore, experiments
were also done using multiple oversampling techniques to measure how much the com-
bined effects of dataset shift and imbalance degrade the performance of these algorithms.
Overall, the results confirmed that the joint effects of imbalance and dataset shift are very
detrimental to the classifier’s performance, with dataset shift occupying the main role in
this equation, but that the use of oversampling algorithms could improve performance in
some scenarios. This study also contested the current literature on the efficacy of cross
validation algorithms in reducing dataset shift.

To study overlap, a new python package, pycol, was created, which aggregates most state-
of-the-art complexity measures used to calculate overlap, with the goal of making it easier
to experiment with these measures. Using this package a study was conducted validating a
taxonomy proposed for these measures. Furthermore, the efficacy of multiple preprocessing
algorithms in reducing overlap was tested in imbalanced datasets. The results revealed new
information about the preprocessing algorithms and showed their usefulness in reducing
multiple dimensions of overlap. The results also confirmed the validity of the families of
overlap proposed in the aforementioned taxonomy, but they also indicate that each family is
not independent of the others, meaning that there is some overlap degree between families.
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Resumo

Embora se saiba que existência de dados não balanceados não é muito prejudicial por si só,
quando combinado com outros problemas como dataset shift e/ou overlap, o seu impacto
na degradação da qualidade dos dados aumenta, tornando-se um problema real. Apesar
disso, existe uma falta de estudos que analisem estes problemas simultaneamente.

O objetivo deste trabalho é estudar tanto o overlap como o dataset shift em contextos
em que os dados são pouco balanceados, para perceber em mais detalhe os seus efeitos
combinados.

Para estudar o dataset shift, foram realizadas experiências usando quatro algoritmos de
cross validation, que introduzem diferentes quantidades de dataset shift nos dados, visando
entender o seu impacto no desempenho de vários algoritmos classificação. Além disso,
foram também realizadas experiências usando várias técnicas de oversampling para medir
os efeitos combinados do dataset shift e dados pouco balanceados na degradação do de-
sempenho desses algoritmos de classificação. Geralmente, os resultados confirmaram que
os efeitos conjuntos dos dois problemas são muito prejudiciais ao desempenho dos classifi-
cadores, sendo que o dataset shift ocupa o papel principal nessa equação, porém o uso de
algoritmos de oversampling pode melhorar o desempenho em alguns cenários. Este estudo
também contestou a literatura atual sobre a eficácia de algoritmos de cross validation na
redução do dataset shift.

Para estudar o overlap, foi criada uma biblioteca em python, pycol, que agrega a maioria
das medidas de complexidade existentes no estado da arte usadas para medir o overlap,
visando facilitar a experimentação com essas medidas. Utilizando a biblioteca foi realizado
um estudo de modo a validar uma taxonomia proposta para estas medidas. Além disso,
a eficácia do uso de vários algoritmos de pré-processamento na redução da overlap foi
testada em datasets não balanceados. Os resultados revelaram nova informação sobre os
algoritmos de pré-processamento testados e demonstraram a sua utilidade na redução de
múltiplas dimensões de overlap. Os resultados também confirmaram a validade das famílias
de overlap propostas na taxonomia supracitada, mas também indicam que cada família
não é independente das demais.

Palavras-Chave

Dados não balanceados, Dataset Shift, Overlap, Cross validation, Medidas de complexidade
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Chapter 1

Introduction

The introduction of industry 5.0, reinforced the idea that artificial intelligence should co-
exist with humans in the workplace. If a company hopes to compete in the marketplace,
it is key to merge aspects of automation brought by artificial intelligence and the cognitive
skills of humans. With this in mind machine learning algorithms and data analysis became
even more important to study than before. While this idea is true for all companies, it is the
tech companies that by using their expertise in the domain can truly take advantage of this
phenomenon, in fact large tech companies like Apple, Amazon and Microsoft individually
rival the value of the largest companies in the oil and gas industry, greatly in part to their
investment in machine learning algorithms and data analysis [1][2].

One important area of data analysis are knowledge discovery processes (KDP) also known
as knowledge discovery in databases (KDD) which seek to find new knowledge in a domain
[3]. More specifically they are defined as processes that extract useful and understandable
patterns from data. These processes usually consist of sequential steps that range from the
storing/fetching of data to visualization techniques to present the extracted information
to the data miners. Particularly, in [3] the following steps of KDD are defined:

• Understanding the application domain: which consists in learning the prior
knowledge of the problem and goals of the end user;

• Creating a target dataset: where the features and data samples to be examined
in the data mining task are selected;

• Preprocessing: where the outliers and missing data are handled accordingly;

• Data reduction: which consists of finding useful features by applying feature re-
duction and transformation techniques;

• Data mining: in this step the data miner defines a task (such as classification,
regression, clustering) according to the goals defined in step 1. Furthermore, the
data miner selects the algorithms to search for patterns in the data and generates
patterns according to this task, such as classification or regression models;

• Interpreting the mining patterns: where the data miner visualizes the extracted
patterns and models;

• Consolidation discovered knowledge: where the knowledge extracted is incor-
porated into the target system or application.

1
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1.1 Context and Motivation

As datasets become more complex, analysing them manually became almost impossible
and as such machine learning techniques have been applied to achieve that goal. However,
most data available is not without its problems, which increases the complexity of the
extraction of useful information. One problem, for instance, is missing data, which happens
when some values on the dataset go missing due to data corruption or some mistake in
recording [4][5]. Another issue is labelling noise, which is defined as incorrect labelling of
some samples in a dataset. Furthermore, the feature values of the samples can also be
inaccurate, potentially leading an algorithm to reach wrong conclusions. Accessibility is
also a big issue, many times good datasets are not available to use by the public, or in
more extreme cases have not been created yet.

The listed issues have been addressed in many research works, however this study will
focus on the aspects of overlap [6][7][8][9] and dataset shift [10][11][12] in the context of
imbalanced datasets, which will be described in more detail in the remainder of this section.

Most machine learning algorithms are resilient to an imbalanced class distribution. How-
ever, the aforementioned data problems become much more difficult when considering a
skewed class distribution, especially when it comes to identifying the minority class, in a
binary classification task.

Overlap has been studied over the years and can cause of many problems in pattern recog-
nition tasks. It can essentially be defined as a region in the data space where different
classes are present. Figure 1.1 shows an example of two datasets with low and high over-
lap. This context increases the complexity of the learning of the decision boundary task,
which leads to misclassification of samples in the overlapped region [13].

(a) Low overlap (b) High overlap

Figure 1.1: An example of two datasets with low and high overlap

While a high level definition of overlap is more or less agreed upon, how to measure it
exactly still remains an open issue. One proposed method is thorough the use of dataset
complexity measures/metrics [14]. However, overlap can be affected by multiple factors
[6][13] like imbalance, data topology, dimensionality, and most measures only take into
account one of these facets. Due to that, it is very difficult to obtain a metric that is
capable of measuring overlap encompassing these multiple facets or to define a set of
metrics that do so in conjunction [15].

Multiple works have made a comparison of various complexity measures to determine

2
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which can better characterize the datasets [16][17][14]. Most works attempt to either alter
existing measures to better fit the problem domain or create new measures that compute
overlap differently. In [15] a thorough review of different available complexity measures
is done, not only providing their formulation but also each measure’s main advantages
and disadvantages. In [14] adaptations to these complexity measures were proposed for
the context of imbalanced domains. One issue identified in some works is that many of
the most popular complexity measures present low correlation between the overlapped
calculated and the performance of the algorithm [14][17], indicating that the current set
of measures needs to be further examined. Furthermore, a lot of complexity measures are
formulated for simple binary problems with no categorical attributes, which makes them
invalid to use in most real world datasets. Finally, a lot of other factors might influence
how overlapped a problem is, for example imbalance, however many times these are not
taken into account when comparing the performance between different sets of measures.

Another problem in real world data is dataset shift. In supervised machine learning a model
is learned through the use of training data, however in real world scenarios it is possible
that that model is no longer applicable in the new data of the testing set, implying that
the data distribution in the two sets is not the same [10]. If this problem is not dealt with,
then the models that were developed in the training set will be unable to perform with
good results in the testing set. While in some cases the data might be inherently shifted,
there are cases where the authors do not take this issue into account when creating the
training and testing sets, causing dataset shift to occur (Figure 1.2). If this is considered,
this type of shift can be mitigated with the proper division algorithms.

Figure 1.2: Example of covariate shift: When analysing the training dataset, it would
appear the minority class (blue) only has values below 6 and the majority class (red) has
values above. Although in the original dataset that is not the case has the minority class
has values above 6 that end up showing in the test dataset.

Dataset shift has been tackled before, however not many works have tried to study its effects
in the context of imbalanced datasets [10][18]. In [10] two cross validation algorithms,
DBSCV and DOBSCV, are experimented on datasets with high imbalance ratio (IR) to
study the effects of dataset shift on these types of datasets. Similarly, in [12] four cross
validation algorithms, including the two previously mentioned ones, are experimented with,
to establish which of them provides the least shift in the dataset and allows for a better
performance overall.

Even though more works have been made in the area of dataset shift in imbalanced contexts,
most works performed still do not take into account the two issues simultaneously [18], as
such most algorithms and approaches to combat dataset shift might not be applicable in
the context. Furthermore, even with the above-mentioned cross validation methods, it is
not guaranteed that a classifier will achieve higher performances, as it can be influenced

3
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by other external factors like overlap, dimensionality and data noise [10].

1.2 Goals

While some studies have been made on the context of imbalance and dataset shift, the two
problems are rarely studied together. Other works have identified that the performance of
algorithms can degrade due to these issues individually, however it is important to study
how each of them interact with each other, what are the consequences and potentially how
they can be mitigated. With that in mind, the first goal of this work will be to:

Perform a sensibility analysis of the combination effects between
dataset shift problems in imbalanced contexts

With this goal in mind, the following research questions emerged in our research study:

• RQ1: Is DOBSCV a cross validation algorithm that reduces more dataset
shift in comparison to DBSCV, SCV and MSSCV? Other studies [12] have
tested these cross validation algorithms which combat dataset shift. DOBSCV seems
to outperform other state-of-the-art methods in imbalanced contexts. However, due
to the reduced number of used datasets, one of the main limitations of this study is
the lack of generalization of its achieved results. Our research study aims to verify if
this conclusion is generalizable for a setup with a higher number of datasets, multiple
performance measures, with the results backed up by the use of dataset complexity
measures;

• RQ2: What is the impact that imbalance and dataset shift have on the
performance of classifiers. Can oversampling algorithms increase their
performance? While it is known that both of these problems individually can
degrade performance, few studies analyse them in the same context. Thus, it is
important to study how these two data problems interact, so that solutions may be
proposed for the problems found in this context.

To answer the first research question, multiple experiments were run with 4 classifiers
(Support Vector Machine, kNN, C4.5 decision tree and Naive Bayes) on 83 datasets of
the KEEL repository [19], trying out 4 different cross validation algorithms that influence
the amount of dataset shift between partitions: SCV, DBSCV, DOBSCV and MSSCV.
This experimental setup is similar to the one done in [12], the main differences consist in
the number of used datasets (9 vs 83) and in also in the used performance metrics (1 vs
4). Finally, in our study, complexity measures [16] were also added to complement the
achieved results something that has not been explored by the previous studies.

To answer the second research question, the original training datasets were also oversam-
pled to test if decreasing the imbalance ratio in the training partition would help increase
the performance even if dataset shift is present. In theory, oversampling the training
dataset should make the minority class easier to classify, but if the concepts in training
and testing are different due to dataset shift, then it is unclear how much these prepro-
cessing algorithms will help in the resolution of this problem. Our study aims to verify in
what cases the use of oversampling algorithms help reduce the joint impact of dataset shift
and imbalance.
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Introduction

While many complexity measures already exist, even when used in conjunction they do not
take into account every aspect that can influence overlap and thus do not give a complete
picture of the dataset complexity. It is still unclear what types of overlap each metric
exactly measures and while different taxonomies have been proposed [16][13] there is a
lack of studies to validate those taxonomies. With is in mind the second goal of this
research work is:

Validate the taxonomy proposed in [13] and study the effect of prepro-
cessing algorithms on the different families encompassed in this taxonomy

With that goal in mind, a new open-source python package that incorporates most state-
of-the-art complexity measures was created, pycol. This package will make it easier to
experiment with the metrics that exist currently, as most existing packages, are missing a
large portion of current measures.

Using the pycol package the following research questions emerged:

• RQ3: What is the validity of the taxonomy proposed in [13]? The cited
study divides overlap complexity measures into four families. This research work
aims to validate the aforementioned taxonomy, by analysing if the match between
metrics and families is correct;

• RQ4: How effective are preprocessing algorithms in what concerns to
overlap reduction? In [13] some preprocessing algorithms are proposed to solve
each family of overlap, but no experiments were produced to validate such fact. In
this research work some of the proposed algorithms are tested to confront theory and
practice [13].

To answer the third and fourth research questions some measures of each family of the
taxonomy were selected along with 5 preprocessing algorithms that in theory address the
types of overlap in question. The results of these measures were compared before and
after the preprocessing is done. We aim to check if the preprocessing algorithms lower
the metrics like expected and what is behaviour of metrics inside the same family. One
scenario that could happen is that all the metrics of a family reduce their values except for
one metric. This probably indicates that this metric it is not measuring the type of overlap
intended, as all the remaining metrics lowered their value as expected. Furthermore, these
results are also backed up by the use of a Random Forest (RF) classifying algorithm. If
the decrease in overlap provided by the preprocessing algorithms is significative, then there
should be a notable increase in performance after preprocessing.

1.3 Document Structure

This document is divided into 3 main sections: (i) State of the Art, where an overview
of the current works on the area of overlap and dataset shift will be presented, as well as
providing the necessary background knowledge to understand both of these problems; (ii)
Experimental Setup and Results, where the experimental setup done for both the study
in overlap and dataset shift is outlined. Furthermore, the results of both experiments
and main takeaways observed as also shown; (iii) Conclusion, where the results of the
experiments conducted are summarized, and steps to take in the future are outlined.
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Chapter 2

State of the Art

In this section, a literature review of the current state of the art on both dataset shift
and overlap in imbalanced contexts will be made. Furthermore, in a separate section, the
overlap taxonomy [13] being studied will be detailed.

2.1 Dataset shift in imbalanced contexts

The problem of dataset shift can be described as a situation where the distributions of the
data of the training and testing sets are different. This phenomenon can happen based on
several reasons, although it is often due to sample selection bias or poor dataset division
algorithms [18], and it can manifest in five different ways:

• Covariate Shift: In this case, the probability distributions of the inputs in the
training and testing set change, but the conditional probabilities of the output values
given the input values remains the same [20];

• Prior probability shift: In this case, the number of instances in each class varies
greatly from training to test set, changing the prior probabilities from one set to the
other [12];

• Concept Shift: Also known as concept drift, happens when the relationship between
the input and the class variables changes over time, common in time series analysis
[11];

• Internal Covariate Shift: This type of shift happens in multi-layered neural net-
work architectures when the distributions produced from one layer to the next are
too different [21];

• Imbalanced Data: Some literature recognizes imbalance as a type of dataset shift
as well. More specifically the process of sampling done to make the minority class
more visible to a model during training. Due to this scenario the imbalance ratio in
the training is no longer the same as in testing which usually leads to performance
increases in the minority class at the cost of decreases in the majority class [22].

Two different approaches can be taken to deal with dataset shift in imbalanced domains
[18]. The first approach deals with intrinsic dataset shift, where the data itself contains
some percentage of shift that degrades the algorithm’s performance, for example the case
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of imbalance mentioned earlier. Some approaches have been proposed to reduce dataset
shift either though pre-processing [23] or with ad hoc algorithms [24][25], neglecting the
imbalance ratio.

The second approach deals with induced dataset shift, typically caused by inappropriate
splitting of a dataset into training and testing sets, which can lead to covariate and prior
probability shift. It is possible to induce covariate shift for example through the use of
a stratified cross validation algorithm which randomly selects samples with no regard for
their distribution in the feature space [12][10]. This study mainly focuses on these cross
validation algorithms which help solve prior probability and covariate shift.

Cross validation (CV) is a common method used to divide the training and testing datasets,
however standard CV does not address any kind of dataset shift. A better method is
Stratified Cross Validation (SCV) which guarantees that the training and testing sets have
the same number of samples of each class. This way the prior probability shift is completely
avoided.

In [26] a new cross validation algorithm is introduced to combat covariate shift, distribution-
balanced stratified cross-validation (DBSCV). This method attempts to separate the data
into the folds not just randomly, but by giving each fold a similar example of the one given
to the previous fold (Figure 2.1). That way, the distribution of each fold will be more
similar when compared to SCV.

Figure 2.1: Example of DBSCV for 2 folds: For each class (blue and red) a starting sample
(0 and 1) is chosen and assigned to the first fold, then the closest examples (2 and 3) are
chosen and assigned to the next fold. This process repeats until there are no samples left.

An optimized version of DBSCV is proposed in [12], distribution optimized balanced strat-
ified cross-validation (DOBSCV). While both algorithms are similar in their goal to reduce
covariate shift by distributing samples of the same class as evenly as possible, DOBSCV
is less sensitive to random choices since after assigning a sample to each of the k folds it
picks a new random sample to start the process again (Figure 2.2).

Another baseline algorithm is also introduced Maximally-shifted stratified cross-validation
(MSSCV), which is the opposite version of DBSCV, instead of assigning the closest sample
to the next fold, it assigns the most distant (Figure 2.3).

In theory, this algorithm should perform the worst out of the ones tested, since it actively
increases the dataset shift between partitions.

Both DBSCV, SCV along with traditional cross validation approaches were tested [26]
in three artificial datasets and 9 real world datasets from the UCI data repository [27]
by measuring the accuracy of a C4.5 decision tree. Results showed that DBSCV provides
better results when compared to the other two CV methods. The experiments on the three
artificial datasets also show a clear advantage for DBSCV, especially when the datasets
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Figure 2.2: Example of DOBSCV for 2 folds: For each class (blue and red) a starting
sample (0 and 1) is chosen and assigned to the first fold, then the closest examples (2 and
3) are chosen and assigned to the next fold. As all the folds have been assigned a sample, a
new starting point is randomly chosen (5 and 8) and the process is repeated until all folds
have been assigned a sample again. The process repeats one more time for the red class as
it still has samples remaining

Figure 2.3: Example of MSSCV for 2 folds: For each class (blue and red) a starting sample
(0 and 1) is chosen and assigned to the first fold, then the most distant examples (8 and 9)
are chosen and assigned to the next fold. This process repeats until there are no samples
left.

have multiple intraclass clusters. The authors propose further work analysing this cross
validation method using other classification algorithms such as neural networks and by
applying different distance metrics.

In [12] DBSCV, DOBSCV, MSSCV and SCV are all employed on 27 binary datasets from
the KEEL repository including real and categorical features, the accuracy of 9 classifiers
was measured on the partitioned datasets. Results confirmed that DBSCV is better suited
to reduce the covariate shift when compared to standard SCV and that covariate shift can
drastically impact the performance of classifiers as MSSCV performed much worse than
the other methods. Finally, results also showed that the optimized version of DBSCV
tends to have results that are slightly better than the regular version.

In [10] DOBSCV and SCV are tested in imbalanced domains, with the goal of validating
that DOBSCV is more suitable as a cross validation strategy. The algorithms were tested
in 66 real-world problems from the KEEL dataset repository, by evaluating the AUC
performance of an SVM, kNN and C4.5 classifier. Results show that DOBSCV obtains
better results overall and in datasets with a high imbalance ratio the difference between
SCV and DOBSCV becomes more apparent. For future work, authors stated the use of
other classification algorithms and the use of different distance metrics as possible directions
to be explored.
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2.2 Overlap in imbalanced contexts

Class overlap can be defined as the existence of instances with different class labels in
the same region of the feature space [13]. Even though these instances belong to different
classes, they share similar feature values, which can make them difficult to classify correctly.

It is common that in imbalanced domains the overlapped region is also severely imbalanced,
containing mainly examples from the majority class, causing the decision boundary to shift
towards the majority class, which is undesired in problems where misclassifications of the
minority class have a very high cost, as it happens in many real world scenarios [6].

In [28] the effect of class overlap versus class imbalance is studied on binary artificial
datasets to understand which of the two has a more negative impact on classification.
Results, show that class overlap, seems to degrade classifier performance more than class
imbalance, as overlap seems to always worsen the results, but imbalance only seems to
affect the performance when overlap is present.

Similar experiments are done in [29] measuring the AUC of a C4.5 decision tree on arti-
ficial datasets with different degrees of overlap and imbalance. The results are similar to
the previous work, as they show that imbalance on its own is not the sole factor to the
decrease of performance of a classifier, and its negative effects are only truly noticeable
when combined with class overlap.

Another study was made in [30], with the objective of measuring the effects of class imbal-
ance and overlap, this time using the performance of kNN classifier on artificial datasets
with different levels of overlap and imbalance. Similar conclusions are reached, in that the
combination of both imbalance and overlap contribute to the degradation of the perfor-
mance of the classifier.

In [31] this domain is studied by testing multiple classifiers: 1NN, MLP, Naive Bayes
(NB), RBF, and C4.5 Decision Tree in order to understand the effect of class overlap and
imbalance on different sets of classifiers. The experiments conducted are divided in two
main scenarios: one where the data imbalance in the overlap region is the same as it the
non overlapped region; a second scenario where the IR in the overlapped region is the
inverse of the ratio on the rest of the dataset. Results show that kNN’s performance is
more dependent on the IR of the overlapped region than on the size of it, and that the
overall imbalance ratio is not as important as the local imbalance ratio and as the size
of the overlapped region. Results also show that the class more represented in overlap
regions tends to be better classified by methods based on global learning, while the class
less represented in such regions tends to be better classified by local methods.

While measuring imbalance has a precise formulation that is mostly agreed upon through
the imbalance ratio, measuring overlap is done through the use of dataset complexity
measures [13]. However, overlap can be influenced by multiple factors, like data typology,
imbalance or dimensionality and most complexity measures do not take into account all of
these factors. So not only do these measures individually not give a complete idea of how
much overlap there is, there is also not an agreed upon set of measures that best works for
most datasets. Beyond these problems there isn’t an agreed upon taxonomy that identifies
which type of overlap each of the metrics is sensitive to.

In the following section, an overview of the taxonomy proposed in [13] will be made. Pre-
senting the complexity measures of each family, listing their advantages and disadvantages,
as well as the different types of overlap each of them measure.
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2.3 Complexity Measures

In [13] a taxonomy of overlap complexity measures is introduced, dividing them according
to the type of overlap they measure: (i) Structural Overlap, (ii) Feature Overlap, (iii)
Instance-Level Overlap, (iv) Multiresoltuion overlap. In the following sections, a brief
explanation of these complexity measures will be done.

2.3.1 Feature Overlap

Feature overlap complexity measures categorize overlap over individual features of the
dataset, by analysing the ability these features have to separate the classes.

F1

The F1 measure calculates the maximum Fisher’s discriminant ratio among all features in
a dataset [14], with the aim to determine how close two classes are (Equation 2.1):

F1 = max(fk) (2.1)

fk =
(µc1 − µc2)

2

σ2c1 − σ2c2
(2.2)

where µci and σci are the mean and standard deviation for feature k of class ci.

In its original formulation F1 is a measure only for binary datasets, however over the years
new formulations [15] have been proposed for multi-class problems, for example Equation
2.3.

fk =

∑nc
i=1 nci ∗ (µci − µ)2∑nc

i=1

∑nci
j=1(xij − µci)

2
(2.3)

in this formulation µci is the mean of feature k for class ci, nci is the number of samples
in class ci, µ is the mean of feature k and xij is the value for feature k for an instance j,
of class ci. In [15] Equation 2.3 is quantified to have O(m · n) computational complexity,
where m is the number of features in the dataset and n is the total number of samples in
the dataset.

As the F1 measure does not have an upper bound, the following formulation was also
proposed in order to bound its values in the interval from 0 to 1 [14]:

F1 =
1

1 +max(fk)
(2.4)

Using equation 2.4, low values of F1 indicate that one feature in the dataset can mostly
separate the present classes, as it shows there exists little overlap between them on at least
one dimension.

Figure 2.4 shows an example of this measure for a 2 dimensional plane, where both feature
axis are used to project the 2D dataset. Out of the two features f1, is able to separate the
dataset better, which means it has a lower fk value.
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(a) Original Dataset (b) Feature Projection

Figure 2.4: F1 example for a 2D dataset. The samples are projected on both features’ axis
in order to determine which of the two features better separates the classes

One problem with this metric is that only one feature is considered for the projection. If
there exists a hyperplane that is oblique to the feature axis and also completely separates
the feature space, its existence will not be reflected on the values of F1 obtained.

Another issue present with this measure is that there is no easy way to extend it for
datasets with categorical features, due to it calculating means and standard deviations for
each feature [32]. This is an issue that will be found in most of the F* complexity measures,
as it will be shown next.

F1v

The F1v measure finds the vector projection that can best separate two classes considering
the two class Fisher criterion dF [15], as shown in Equation 2.5:

dF =
dtBd

dtWd
(2.5)

where B is the between-class scatter matrix, W is the within class scatter matrix and d
is the directional vector where the samples are projected to. Equations 2.6, 2.7 and 2.8
detail how to calculate these values, where µci is the mean vector for all features of class
ci, pci is the proportion of samples in class ci and Σci is the scatter matrix of class ci.

d =W−1(µc1 − µc2) (2.6)

B = (µc1 − µc2)(µc1 − µc2)
t (2.7)

W = pc1 ∗ Σ+ pc2 ∗ Σ (2.8)

Similar to the F1 measure, in order to bound its values in the interval from 0 to 1, the
following formulation is proposed:
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F1v =
1

1 + dF
(2.9)

Lower values of F1v indicate a small amount of overlap between classes, as it signifies that
a linear hyperplane is capable of separating them.

As this measure is only considered for binary classification problems, for multi-class prob-
lems a one-vs-one (OvO) or one-vs-all (OvA) approach must be chosen. For a binary
classification problem [15] quantifies this measure with O(m ·n+m3) temporal complexity
and using an OvO approach a complexity of O(m ·n ·nc+m3 ·nc2), where m is the number
of features in the dataset, n is the number of samples and nc is the number of classes.
So while this measure can be seen as an improvement for F1, it is more computationally
costly.

Finally, much like F1, this measure can not easily be computed for datasets with categorical
features, as it must calculate means and standard deviations.

F2

The F2 measure uses the maximum and minimum values of each feature, fi to calculate
the volume of the overlapped region [15]. The value is normalized by calculating the ratio
between the overlapping interval and the range of both classes, c1 and c2, as shown in
Equation 2.10. Figure 2.5 shows an example of calculation of F2 for a 2 dimensional
dataset.

F2 =
m∏
i=1

overlap(fi)

range(fi)
=

m∏
i=1

max {0,minmax(fi)−maxmin(fi)}
maxmax(fi)−minmin(fi)

(2.10)

where

minmax(fi) = min(max(fi,c1),max(fi,c2))

maxmin(fi) = max(min(fi,c1),min(fi,c2))

maxmax(fi) = max(max(fi,c1),max(fi,c2))

minmin(fi) = min(min(fi,c1),min(fi,c2))

Higher values of F2 correspond to higher complexity and vice-versa. Using this formulation,
if at least one feature of the dataset completely separates both classes, the value of F2 is
0 indicating that the dataset is linearly separable and therefore easy to classify.

The original formulation of this metric does not consider class imbalance, as such in [14]
the following formulation is proposed, which calculates the F2 score per class:

F2ci =
m∏
i=1

max {0,minmax(fi)−maxmin(fi)}
max(fi,ci)−min(fi,ci)

(2.11)

Much like the previous measure to use F2 in a multi-class scenario, an OvO or OvA
approach must be taken. Besides this, Similarly, one of the other problems with this
metric is that symbolic attributes must be converted to numeric in order to compute the
maximum and the minimum values. Considering a OvO decomposition of this problem
the temporal complexity of F2 is O(m · n · nc) [15], where m is the number of features, nc
is the number of classes and n is the number of samples in the dataset.
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Figure 2.5: F2 Example. The area in grey represents the overlap region and its volume is
the value for F2.

F3

For each feature, fi, F3 calculates the number of samples, xj , in regions where two classes
overlap and divides this value by the number of total samples, n, obtaining a ratio of over-
lapped samples. In [14] a different formulation is proposed which calculates the minimum
value of all the ratios of each feature (Equation 2.12). An example of F3 is shown in Figure
2.6

F3 = min(
noverlap(fi)

n
) (2.12)

noverlap(fi) = | {xj ∈ fi : xj > maxmin(fi) ∧ xj < minmax(fi)} | (2.13)

Figure 2.6: F3 Example for both features. The area in grey represents the overlap region
in each feature. F3 is calculated according to how many samples are inside the overlapped
region

The values of F3 are bounded from 0 to 1, where lower values indicate a less complexity,
as there is at least one feature where there are not many samples in the overlap region.

This formulation, once again, does not consider class imbalance, as such even if the mi-
nority class in completely inside the overlap region the values of F3 can still indicate low
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complexity if the ratio of imbalance if high, a different formulation has been proposed in
[14] to combat this problem, calculating F3 per class instead of globally:

F3ci = min(
noverlap,ci(fi)

nci
) (2.14)

Much like F2 described previously, F3 shares the same problems with symbolic features and
multiple class problems for the same reasons. F3 also shares the same temporal complexity
as F2 [15].

F4

While F3 focuses on individual features, F4 calculates the discriminatory power of all
features [14]. As such, a similar procedure to F3 is applied multiple times for each individual
feature. An example of F4 being calculated is shown in Figure 2.7

To start, the most discriminative feature according to the F3 measure is determined, all the
samples that can be correctly separated using this feature are removed from the dataset,
along with the feature chosen. This process is repeated for remaining features and samples
in the dataset, until either there are no more features or no more samples to remove. F4
is then found by calculating the ratio of remaining samples and the total samples in the
original dataset.

Figure 2.7: F4 Example. Similarly to F3 the samples that can be correctly classified by
each individual feature are calculated. Afterwards these samples are removed. This process
is repeated for all features and the remaining samples are used to calculate F4

Much like the F3 measure, F4 is bounded in the interval from 0 to 1 where higher values
indicate higher overlap and vice versa. F4 also shares the same problems has F3 when it
comes to class imbalance, multiclass problems and symbolic attributes. A similar approach
to the one used in F3 can be used to mitigate the problem of class imbalance in each step
of the iteration, as proposed in [14]. Because F4 applies the F3 measure multiple times for
each feature the temporal complexity of this method is O(m2 · n · nc) [15], where m is the
number of features in the dataset and nc is the number of classes. So while this measure
is more powerful than F3 it takes longer to compute.
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Input Noise

The input noise metric determines the amount of samples that fall inside another class’
boundaries [13]. To calculate this, for each class, its boundaries are determined for every
feature, then it counts, for each sample, xi, in how many dimensions a sample falls into
the boundaries of another class. This value is then normalized by n ∗m, where n is the
total amount of samples and m is the amount of features in every sample (Equation 2.15).

IN =

∑n
i o(xi)

n ∗m
(2.15)

where o(xi) is the number of dimensions for sample xi where it falls in the boundaries of
other classes.

This measure shares similar issues with the previously described measures when it comes to
symbolic attributes and class imbalance. This measure calculates a value for each sample
for every feature, therefore the temporal complexity of this method for a binary problem
is O(m · n).

2.3.2 Structural Overlap

This set of measures takes into account the morphology of the data by analysing the
internal structure of the classes.

N1

The N1 measure builds a minimum spanning tree for all the samples in the dataset, by
considering the whole dataset as a complete graph. Afterwards it analyses each edge of
the MST and counts how many of them link vertexes of different classes [14]. An example
of this process is show in Figure 2.8. To normalize this value, it is divided by the total
amount of samples (Equation 2.16).

Figure 2.8: N1 Example. The edges that link two samples of a different class are marked
in purple.

N1 =
1

n
| {xi : ∃(xi, xj) ∈ E ∧ yi ̸= yj} | (2.16)
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where xi is a dataset sample, n is the total number of samples, E represents all the edges
in the MST and yi is the class label of sample xi.

A higher value of N1 indicates that the classes are more intertwined, as many edges on the
MST link two samples of different classes.

Similarly to measures described before, N1 has a bias for the majority class, as the nor-
malization factor does not consider class imbalance. Following the same logic as for the
F2, F3 and F4 metric in [14] a per class N1 metric is proposed to mitigate this problem.

N1ci =
1

nci
| {xi,ci : ∃(xi,ci , xj) ∈ E ∧ ci ̸= yj} | (2.17)

For multi-class domains, this metric can be applied in its presented formulation, as it is
generic enough that the number of classes does not make an impact.

Depending on the distance metric used to calculate the MST, N1 may or may not have
issues with symbolic features, as such these features must either be converted to numerical
ones, or the distance metric must be able to deal with symbolic attributes.

As described in [32] one problem with this metric is that MSTs are not unique for a set
of points, as such different N1 values are obtained depending on the order of samples
presented to the MST algorithm. To combat this problem, it is suggested to run the N1
measure multiple times with the points shuffled each time and calculate the mean of all
runs.

Finally, another problem arises for the instances in the boundary between 2 classes, even
if they are linearly separable, if the samples in the boundary as closer to the samples of
the opposite class rather as samples of its own class, then N1 might have high values even
though the dataset is in practice not complex to classify.

In [15] this measure is calculated to have O(m · n2) temporal complexity, where m is the
number of features in the dataset.

N2

The N2 measure calculates the ratio between the inter and intra class distances [14]. To
this end the distance, d, of every sample, xi, to its nearest neighbour from the same class,
NNc1 is calculated, as well as the distance between every sample to the nearest neighbour
from the opposite class, NNc2 , as showed in Equation 2.18. An example of the calculation
of N2 is shown in Figure 2.9.

r =

∑n
i d(xi, NNc1)∑n
i d(xi, NNc2)

(2.18)

Then the value of N2 is bounded between 0 and 1 by the following formula:

N2 =
r

1 + r
(2.19)

Higher values of N2 indicate a higher overlap, as it signifies that in most cases the distance
between the nearest neighbour from the opposite class is smaller than the distance to the
nearest neighbour of the same class.
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Figure 2.9: N2 Example for 2 samples. The rightmost blue sample is not in the overlap
region, so its nearest neighbours from the same class is closer to it than its nearest neighbour
from the opposite class. The leftmost blue sample is in the overlap region, and it is much
closer to its nearest neighbour of the opposite class. These distances would be calculated
for every sample to obtain the value of N2

N2 shares a similar problem to N1 if the samples are spread over a long, thin structure
across the boundary [32]. Since most samples will be closer to ones of the opposite class,
giving high values of N2 even though the problem might be linearly separable.

To deal with class imbalance, similarly to N1, the following alteration is also proposed in
[14] to calculate N2 on a per class basis:

rc1 =

∑nc1
i d(xi, NNc1)∑nc2
i d(xi, NNc2)

(2.20)

As for symbolic attributes, N2 works the same way as N1 and other distance based com-
plexity measures. This measure shares the same temporal complexity as N1.

T1

T1 recursively expands hyperspheres around each sample in the dataset, each hypersphere
grows until it collides with a hypersphere centred around a sample of different class, at
this point both hyperspheres stop expanding [14]. This algorithm finishes when no more
spheres can be grown, and it removes the hyperspheres that are completely contained inside
another. A example of T1 can be seen in Figure 2.10 and in Appendix B an example of the
full calculation can be found. The value for T1 is then the ratio of the amount of spheres
remaining and the total number of samples, n in the dataset (Equation 2.21)

T1 =
#Hyperspheres

n
(2.21)

If there is a small amount of overlap then the number of hyperspheres is small and the
value of T1 will be close to 0, on the other hand if there is a lot of overlap there will be a
lot of hyperspheres remaining and the value of T1 will be close to 1.

Similarly to measures described before, a per class measure is proposed in [14] to combat
class imbalance.

18



State of the Art

Figure 2.10: T1 example. Each sample extended a sphere centred on itself until it found
another sphere from a sample of the opposite class.

T1 shares similar issues for categorical features as measures described before, since it has
to consider each sample as a hypersphere centre. This geometrical interpretation of the
samples is in part lost when considering categorical attributes.

In [15] the temporal complexity of T1 is calculated as O(m · n2), where m is the number
of features in the dataset. This value is the same as the N1 and N2 metrics.

NSG

NSG is similar to T1 however instead of calculating the ratio between hyperspheres and
total number of samples, it calculates the average of samples per hypersphere [33]:

NSG =
1

#Hyperspheres

#Hyperspheres∑
i

Ni (2.22)

where Ni is the number of samples inside hypersphere i.

Similar adjustments made to T1 can be made to calculate a per class value of NSG,
furthermore it shares the same problem for categorical features, for the same reasons. This
measure also shares the same temporal complexity as T1.

ICSV

Another measure similar to T1 is ICSV, which also computes the hyperspheres that cover
the dataset the same way. The density of each hypersphere is calculated according to the
following equation, where N is the number of samples inside a hypersphere, H, and V is
the volume of the hypersphere [33]:

ρ =
N

V
(2.23)
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Then the ICSV value is given by the standard deviation of the densities of all hyperspheres,
as shown in Equation 2.25, where nH is the number of hyperspheres.

µρ =
1

nH

nH∑
i=1

ρi (2.24)

ICSV =

√√√√ 1

nH

nH∑
i=1

(ρi − µρ)2 (2.25)

High values of ICSV signify great changes in the densities, signifying a more complex
domain.

This measure is complementary to T1 and NSG, as in where these compute some sort
of mean with the hyperspheres, ICSV calculates the standard deviation, which gives a
measure of variation in scale in the feature space [33].

ONB

ONB uses a similar method to T1 to compute its value, by finding a set of hyperspheres
that completely cover the dataset, where each hypersphere stops growing when it finds an
example of the opposite class [34].

After this algorithm is applied, two measures can be computed ONBtot and ONBavg. The
first measure is similar to T1, the ratio between the number of hyperspheres necessary to
cover the dataset and the total number of samples n:

ONBtot =
#Hyperspheres

n
(2.26)

While the ONBtot and T1 measures might seem to calculate the same value, ONBtot uses
a different hypersphere coverage algorithm, where a sample does not need to be completely
covered by another to be removed. This allows it to achieve more minimal coverage and
more optimal boundaries [34].

The second measure determines the average of hyperspheres on a per-class basis, for all
classes in the dataset:

ONBavg =
1

nc

nc∑
i=1

#Hyperspheresci
nci

(2.27)

Both these measures suffer from the same downsides as T1 when it comes to datasets with
categorical features. This measure also shares the same temporal complexity as T1.

LSC

In [15] the local set of a sample xi is defined as the set of points whose distance to xi
is smaller than the distance from xi to the nearest neighbour of the opposite class, also
known as its nearest enemy (Equation 2.28)
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LS(xi) = {xj : d(xi, xj) < d(xi, ne(xi))} (2.28)

where ne(xi) calculates the nearest enemy of xi.

The number of examples in the local set may be an indicator of how close a sample is to
the decision boundary. If the LS cardinality is lower, the example may either be near the
decision boundary or in a region surrounded by examples of the opposite class.

Using 2.28 to calculate the local set of every sample, it is possible to summarize these
values as follows, where n represents the total number of samples:

LSC = 1− 1

n2

n∑
i=1

|LS(xi)| (2.29)

Higher values of LSC indicate a more complex dataset, indicating that on average the
cardinality of the LS is small. In the most complex case the cardinality of all local sets
will be 1, indicating that the classes are completely overlapped, in the scenario the value
for LSC will be 1− 1

n .

LSC can be deeply affected by labelling noise [17] and outliers, as if a single sample is in
a region mostly dominated by examples of the opposite class, these samples will have a
lower cardinality because they are influenced by this single sample.

Another potential problem pointed in [17] is that, as LSC considers the local density of
each sample, it is possible, that samples in the decision boundary can have a very high LS
cardinality if that region is very dense, yielding misleading results. This problem might be
even more amplified in the cases of high imbalance, as such, using a per-class measure as
shown before might be beneficial.

This measure shares the same temporal complexity as T1, N1 and N2 [15].

Clst

This measure follows a similar approach to T1 by determining the number of clusters that
cover the dataset [17]. The algorithm starts by calculating the local set of each sample,
similarly to LSC. Then the samples are ordered in descending order according to the size of
their local set. The samples with highest LS cardinality are chosen to be the cluster core.
If a sample is part of the LS of a cluster core then belongs to that cluster, otherwise if it
does not belong to the LS of any cluster core, a new cluster is created with this sample as
its core. This process is repeated for every sample until all of them have been assigned to
a cluster. The final Clst value is given by Equation 2.30, where n is the number of samples
in the dataset.

Clst =
Clusters

n
(2.30)

Much like LSC, Clst can be heavily affected by labelling noise [17] as such it is proposed
that these outlier values are removed before these metrics are applied.
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DBC

DBC can be seen as an extension of T1 and N1 measures described previously. It starts
by calculating the set of hyperspheres that completely cover the dataset much like in T1,
afterwards using the hypersphere centres it calculates a MST and counts the number of
vertexes of different classes that are linked by an edge, much like in N1. [35] The value for
this measure is the computed as follows:

DBC =
Ninter

#Hyperspheres
(2.31)

where Ninter is the number of vertexes of different classes linked by an edge in the MST,
and #Hyperspheres is the total number of hyperspheres needed to cover the dataset.

This results will give us a good indication of the complexity of the decision boundary, much
like N1, if the value of DBC is high, then there is a high degree of interleaving between
classes.

This measure shares the same issues as N1 described previously, as it uses a similar formu-
lation. And in terms of temporal complexity it combines both the complexity of T1 and
N1.

2.3.3 Instance Level Overlap

These measures analyse the domain on a local level, usually by calculating some value
considering the error of a k nearest neighbour classifier. Many of these measures analyse
each sample individually, and an overall complexity measure is calculated by averaging all
the values.

R-Value

The R-Value calculates the ratio between the points that are in the overlap region and the
total number of points in the dataset [36]. The overlap region is defined by looking at the
set of nearest neighbours for every sample. Samples that are surrounded by others of the
opposite class are considered to be in the overlap region. A sample, xm, of class Ci, i.e.
xim, is considered surrounded by samples of the opposite class, Cj , when the number of its
nearest neighbours that belong to class Cj , |kNN(xim, Cj)| , is above a certain threshold
θ. The following equation translates this idea, where the λ function is equal to 1 if its
argument is above 0 and equal to 0 otherwise.

r(Ci, Cj) =

|Ci|∑
m=1

λ(|kNN(xim, Cj)| − θ) (2.32)

Then using these values we can calculate the R-value, i.e. the number of samples in the
overlapped region, the following way:

R(Ci, Cj) =
r(Ci, Cj) + r(Cj , Ci)

|Ci|+ |Cj |
(2.33)
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Figure 2.11: R-Value Example for two samples for k=5 and θ=1. The samples marked in
dark blue search for its 5 nearest neighbours. The bottom sample is surrounded by samples
of the opposite class so its λ value is equal to 1, while the other sample is surrounded by
others of the same class so its λ is equal to 0. This process is repeated for every sample
and the R-Value is calculated according to the equations mentioned previously

The R-Value ranges from 0 to 1, where 0 indicates that no samples are in the overlapped
region and 1 indicates that the two classes Ci and Cj are completely overlapped.

Using this formulation the results can be biased towards the majority class, as shown
in [37], where even though the value of AUC decreased drastically as the imbalance ratio
increased, the value of R stayed almost constant. These experiments lead to the conclusion
that the contribution of the majority class should not be proportional to the number of
negative instances, since most of its instances are not in the overlapped region.

As such, in a new formulation was proposed to take this factor into account.

Raug =
1

1 + IR
(IR ∗ r(Cneg, Cpos) + r(Cpos, Cneg)) (2.34)

where IR is the imbalance ratio and r(Ci, Cj) is now calculated using:

r(Ci, Cj) =
1

|Ci|

|Ci|∑
m=1

λ(|kNN(xim, Cj)| − θ) (2.35)

In cases where IR=1, this formulation is equal to the one presented previously.

N3

N3 represents the ratio between the number of samples, xi, that have its nearest neighbour,
NNi, belonging to a different class than that of its own and the total number of points in
the dataset, n, i.e. the error rate of a 1NN classifier [14]. Equation 2.36 demonstrates this
concept formally.

N3 =
1

n
| {xi : yi ̸= yNNi} | (2.36)

N3 is bounded in the interval from 0 to 1, where values close to 0 represent a low error
rate and vice-versa. Less complex domains will, in theory, have lower values for N3.
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In [14] a new formulation for N3 was proposed to combat class imbalance, by calculating
N3 on a per-class basis, similarly to N1 and N2 described previously:

N3ci =
1

nci
|
{
xi,ci : yi,ci ̸= yNNi,ci

}
| (2.37)

In [15] the temporal complexity of this measure is calculated to be O(m · n2), where m is
the number of features in the dataset.

N4

The N4 measure starts by creating a new test dataset, by interpolating samples from the
same class from the original dataset. This measure is very useful to use alongside N3 as
it shows how resilient the dataset is to the introduction of new samples. The synthetic
samples have the same class label of the two samples used to create it. For each new
sample, x′

i, its nearest neighbour in the original dataset is determined, NNi, afterwards
their class labels are compared and N4 is computed [14]. Equivalent to predicting the
error rate on the test set, by using the original dataset as the training set. Equation 2.38
describes this process formally and Figure 2.12 shows an example for 3 samples.

N4 =
1

n
|
{
x

′
i : y

′
i ̸= yNNi

}
| (2.38)

Figure 2.12: N4 example showing 3 artificial samples being generated marked at yellow
and dark blue. These artificial samples were interpolated using the two other samples that
they are linked to in the figure. Afterwards these artificial samples are classified using a
1NN classifier and N4 is given by the error of the classifier.

Similarly to N3, values of N4 are bounded in the interval from 0 to 1, where lower values
signify lesser complex domains.

The same formulation for imbalanced domains followed in N3 can be applied to N4 [14]:

N4ci =
1

nci
|
{
x

′
i,ci : y

′
i,ci ̸= yNNi,ci

}
| (2.39)

In [15] the temporal complexity of this measure is calculated to be O(m · n2), where m is
the number of features in the dataset.
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degOver

Similarly to the R Value in [38] the degree of overlap is calculated by calculating the k
nearest neighbours (k=5) of every sample, xi. If all its 5 nearest neighbours belong to the
same class then the sample in is a non overlap region, otherwise the sample belongs to an
overlapped region.

Afterwards the ratio between the overlapping examples, noverlap and the total number of
points, n, is calculated:

degOver =
noverlap
n

(2.40)

Values of degOver are bounded in the interval from 0 to 1, where lower values indicate less
overlapped domains, however this metric suffers from the same problem as R value in the
context of imbalanced domains, as the imbalance ratio is not considered in the formula
presented.

Separability Index

The Separability Index (SI) is similar to N3, however instead of calculating the error rate
of a 1NN classifier, it calculates its accuracy [39][40]:

SI =
1

n
| {xi : yi = yNNi} | (2.41)

This complexity measure suffers from the same drawbacks as N3, as it is its complementary
measure. It is, however, possible to calculate a similar per class value of SI, much like it
was done with N3 to combat the problem of class imbalance. This measure also shares the
same temporal complexity as N3.

kDN

k-Disagreeing Neighbours (kDN) calculates the ratio of the nearest neighbours of a sample,
xi that do not share its class [41]:

kDN(xi) =
1

k
| {xv : yv ̸= yi} | (2.42)

In this equation xv is a sample belonging to the k nearest neighbours of xi. xv has class
label yv and xi has class label yi.

Values close to 0 signify that the sample is surrounded by other samples of its class and is
not in an overlapped region. While values close to 1 may signify that the sample is close
to the decision boundary.

A global measure for the entire dataset can be calculated using the following equation
where n represents the total number of samples in the dataset:

kDNavg =
1

n

n∑
i=1

kDN(xi) (2.43)
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CM

The CM measure is similar to the one previously described, as it considers the k nearest
neighbours for every sample in the dataset. In this case, an example is considered to be in
the overlapped region if more than half of its nearest neighbours are of the opposite class
[14].

CM can then be defined in relation to kDN as follows [13]:

CM =
1

n
| {xi : kDN(xi) > 0.5} | (2.44)

In [14] a variation of CM is defined, that considers only the minority class in the overlapped
region, since class imbalance tends to hide overlap of the less represented class, as mentioned
before. The metric is then defined as:

CM =
1

ncmin

| {xi,cmin : kDN(xi,cmin) > 0.5} | (2.45)

Nearest neighbour approaches like the CM measure can lead to erroneous results for
datasets where the nearest neighbours vary their distances widely, as such the closest
neighbours should have more weight while computing the metric. To that end, in [14] ex-
tensions of CM that use a weighted knn classifier are introduced, weighted CM (wCM) and
dual weighted CM (dwCM). With the wCM measure, each neighbour j of a sample of the
minority class i is given a weight based on their distance. This weight is normalized using
the distance to the closest d(xi, xNN

1 ) and most distant neighbour d(xi, xNN
k ) as follows:

Wij =
d(xi, x

NN
k )− d(xi, x

NN
j )

d(xi, xNN
k )− d(xi, xNN

1 )
(2.46)

dwCM works similarly to CM, however each sample xi is dually weighted, to increase the
robustness to the choice of the value of k, as follows:

Wij =
d(xi, x

NN
k )− d(xi, x

NN
j )

d(xi, xNN
k )− d(xi, xNN

1 )
∗
d(xi, x

NN
k ) + d(xi, x

NN
j )

d(xi, xNN
k ) + d(xi, xNN

1 )
(2.47)

In [14] the CM measures prove to have more correlation to the sensitivity metric when
compared to F1, F2 and N2 when tested in the KEEL and UCI repository datasets. Values
for CM, wCM and dwCM were almost 0 for datasets where the sensitivity was 1 and vice
versa. Out of the 3 variations, the correlation was higher for dwCM.

D3

Another measure very similar to kDN and CM is the D3 measure, which aims to measure
the density of each class in the overlap region [42]. As such, for each class, D3 is defined
as:

D3cj = | {xi : 1− kDN(xi) < 0.5} | (2.48)

High values of D3cj indicates that are few samples of class cj are in the overlap region,
signifying that most samples are in a safe region. Much like the previous metrics, it is
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important to pay special attention to the D3 value of the minority class, since a high value
of D3 in the majority class does not imply the same for the minority class.

Similarly to CM, this measure only considers the neighbours and not the distance to them,
which may lead to better results, as demonstrated in [14].

Borderline examples

When considering the 5 nearest neighbours for all samples, a borderline example in a
dataset, can be defined as one that has 2 or 3 of its nearest neighbours belonging to the
opposite class [43][44]. If the sample has 4 of its nearest neighbours belonging to the
opposite class, it is considered as rare. Additionally, if the sample has all of its neighbours
belonging to the opposite class, it is considered an outlier. Finally, a Safe sample is one
that has only one or no neighbours that belong to the opposite class.

Using this formulation, it is possible to estimate the proportion of the overlapped region, by
calculating the amount of borderline examples in the dataset [13]. The following equation
shows this idea, where nborderline is the number of borderline examples and n is the total
number of samples in the dataset:

Overlap =
nborderline

n
(2.49)

This formulation may be applied to the entire dataset or on a per-class basis, similarly to
what is done in the complexity measures described above.

IPoints

The IPoints measure takes advantage of the definition of local set (LS) clustering defined
previously. In some cases, clusters will only contain one sample. This may indicate that the
LS of these cluster cores share their instances with the LS of other clusters with a higher
LS cardinality [17]. However, there is also the possibility that the LS of that cluster core
only contains the sample itself in its local set, indicating that it is probably surrounded by
samples of the opposite class. When this happens, this sample is considered an Invasive
Point.

The number of Invasive Points is calculated and then normalized with the total number of
samples, n in the dataset:

InvasivePoints =
#InvasivePoints

n
(2.50)

This measure is bounded between 0 and 1 where higher values signify more complex
datasets.

2.3.4 Multi Resolution Overlap

This group of measures uses multi resolution techniques to compute the complexity of
different sized regions of the dataset. Starting by analysing the domain at a more local
level and recursively growing the search space to get a more global picture. This way, a
trade-off is obtained between structural overlap and local overlap [13].
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MRCA

This measure identifies regions of different complexity in the feature space. Each data
sample is assigned a profile space [45] which is used to cluster and subsequently measure
complexity.

To generate the profile space of each sample, x, hyperspheres of different radius, σ, and
centre in x are drawn. Afterwards, a value is calculated taking into account N+

σ (x) which
represents the number of samples of the positive class inside the hypersphere and N−

σ (x)
represents the number of samples of the negative class, as shown in Equation 2.51, where
y(x) is equal to 1 if x belongs to the positive class and −1 otherwise.

ψD(x, σ) = y(x)
N+

σ (x)−N−
σ (x)

N+
σ (x) +N−

σ (x)
(2.51)

ψ can range from -1 to 1 where values closer to -1 indicate that there is a strong imbalance
inside the hypersphere, where most samples have a label different from x. On the other
hand, values close to 1 also indicate a high imbalance inside the hypersphere, but with
class labels of the same class as x. Finally, values close to 0 indicate that the number of
positive and negative samples is balanced inside the hypersphere.

Figure 2.13: Example of a profile calculation using 3 values of σ. For σ1 there is one sample
of the opposite class therefore ψ(x, σ1) = −1. For σ2 there is one sample of the opposite
class, plus 3 samples of the same class therefore ψ(x, σ2) = 0.75. Finally, for σ3 there is
an additional sample of the opposite class so ψ(x, σ3) = 0.6. This process is repeated for
each sample and clustering is performed according to the profiles generated.

Repeating this process for different values of σ the profile for a sample x is defined as
follows:

p = [ψ(x, σ1), ψ(x, σ2), ..., ψ(x, σm)] (2.52)

The set of all profiles p defines the profile space P.

After setting up the profiles for each sample, a centroid based clustering method like k-
means is applied to P. Then, for each cluster, ∆(k), its complexity can be defined as the
average of the Multi Resolution Index (MRI) of each pattern, p, contained in it:

MRI(p) =
1

2m

m∑
j=1

wj ∗ [1− pj ] (2.53)
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wj = 1− j − 1

m
(2.54)

MRI(k) =
1

|∆(k)|
∑
p∈∆k

MRI(p) (2.55)

Lower values for MRI(k) correspond to clusters characterized by a high imbalance that
agrees with the labelling of the hypersphere centres, i.e. ψ = 1. On the other hand, the
worst case happens when MRI(k) is closer to 1, indicating high imbalance, but the labels
are different from the cluster elements, ψ = −1. In cases where the cluster is balanced,
MRI(k) approaches the value 0.5.

Results in [45] show that MRI is successful in sorting the clusters in decreasing order of
complexity, achieving the best performance by using 3 clusters which split the dataset into
high, medium and low complexity clusters.

The calculation for ψ is only valid for binary classification problems, and as such this
metric is invalid for non-binary datasets. Adaptations using One Vs One or One Vs All
can be made similarly to other metrics described previously.

C1 and C2

Similarly to measures described before, The C1 measure also looks at the nearest neigh-
bours of every sample in the dataset. However, instead of looking for a set number of
neighbours like kDN and CM, it iterates over multiple values of k and in each iteration
computes the ratio of neighbours that belong to the same class, Pk(x). Afterwards, an
average is calculated for all values of k. The average is subtracted to 1 so that high values
indicate higher complexity [32]. An example of C1 being calculated for a sample can be
seen in 2.14.

Complexity(xi) = 1−
∑K

k=1 Pk(x)

K
(2.56)

The overall complexity can be calculated by averaging the complexity value obtained for
each sample as follows, where n is the total number of samples in the dataset:

C1 =

∑n
i=1Complexity(xi)

n
(2.57)

One potential downside of this measure is that it does not take into account the distance
to the neighbours in the calculation of Pk(x). So a neighbour that is very close to x will
have the same contribution as a neighbour that is very far away [32].

The C2 measure introduced in [32] aims to correct this potential downside by using the
distance to each neighbour in the calculation of its value, by weighting each neighbour with
the similarity to x.

As such, Pk(x) is calculated as the mean similarity to x considering the neighbours of the
same class as x.

Values of C1 and C2 are bounded between 0 and 1, where high values indicate higher
complexity. In the case of C2, high values of Pk(x) not only indicate that x has many
neighbours of the same class, but also that those neighbours are close to x.
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Figure 2.14: Example of C1 for one sample and k=3. For k=1 the nearest neighbour is
from the opposite class so P1(x) = 0. For k=2 there is an neighbour from each class so
P2(x) = 0.5. Finally, for k=3 there are two neighbours from the opposite class and one
neighbour from the same class so P2(x) = 0.33. The C1 value for this sample is 1− 0.83

3

Purity

This measure recursively partitions feature space into hypercubes at different resolutions
[46][47], each resolution corresponds to the number of hypercubes in the feature space.
With the increase of the resolutions, more hypercubes cover the feature space and there
are fewer samples inside them.

In [46] the data space is divided from resolution 0, where there is no partitioning, to 32,
where each feature axis is divided 32 times. An example of this partitioning can be seen
in figure 2.15.

Figure 2.15: Example of partitioning the feature space used for the calculation of purity
for 3 resolutions. At resolution B=0 no partitioning is done. At B=1 4 cells are generated
and the purity for each of these cells is calculated. Finally, at B=3, there are 16 cells and
the purity of each one is calculated. As the resolution increases the value of purity of each
cell should increase as well

At each resolution, the purity of each cube is calculated according to the following formu-
lation:
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SHt =

√√√√ Kl

Kl − 1

Kl∑
i=1

(pil −
1

Kl
)2 (2.58)

pil =
xil∑Kl
i=1 xil

(2.59)

where Kl is the number of classes, Hl is the number of hypercubes, and xil is the number
of samples of class i in the cube Hl.

The overall purity measure is calculated with a weighted sum of the purity of all hypercubes:

SH =

H∑
l=1

SHl
∗ nl
n

(2.60)

where n is the total number of samples and nl is the number of samples in the hypercube
l.

The value of SH is calculated for every resolution, r, and multiplied by a weight factor
of 1

2r . Afterwards, the AUC curve is calculated considering the curve SH vs normalized
resolution (the resolution scaled between 0 and 1). The value is bounded between 0 and 1
where higher values represent less overlapped problems and vice versa. It is expected that
the purity will increase as the resolution increases, as each hypercube will be of smaller
size.

One downside of this measure is that if in a given hypercube, two clusters of different
classes with the same number of samples are present, then this measure will be 0 even
though the clusters might be completely separable.

Neighbourhood Separability

This measure is similar to Purity in the sense that it also splits the feature space into
hypercubes according to a resolution parameter. However, this measure is more sensitive
to the shape of the decision boundaries [46] and does not suffer from the same issue
mentioned above.

In each hypercube Hl, for each sample xj its k nearest neighbours are found and the
proportion of the neighbours that belong to the same class is calculated, pkj . This is
repeated for several values of k, from 1 to the maximum number of samples of the same
class as xj in that hypercube. Afterwards it is possible to plot, for every sample, a curve
of pkj vs normalized values of k and calculate the area under that curve, ϕj . Thus, the
average neighbourhood separability of each hypercube is calculated as:

pl =
1

nl

nl∑
j=1

ϕj (2.61)

Then, similarly to purity, the overall value of the measure for a resolution, r, is calculated
taking the weighted sum of all hypercubes, which then weighted by 1

2r .

SNN =
H∑
l=1

pl ∗
nl
n

(2.62)
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Finally, the AUC is calculated for the plot of SNN vs the normalized resolution. The values
are bounded between 0 and 1, where values closer to 1 represent more overlapped domains.

2.4 Conclusions

While multiple works have been made on the topic of dataset shift, few tackle the issue
with the context of imbalance in mind [18]. As pointed out in [10] there may be several
external factors that affect the performance of a classification algorithm, other than dataset
shift, and it would be beneficial to study several factors simultaneously to understand their
impact.

The few studies that research both dataset shift and imbalance try to reduce the amount
of dataset shift by using cross validation algorithms. Usually these algorithms are opti-
mizations made to SCV that further reduce the amount of shift. As for imbalance the
majority of studies confront the idea that when imbalance is high the effects of dataset
shift are more notable, massively degrading the classifiers’ performance. Despite coming
to this conclusion they fail to test strategies such as the use of preprocessing algorithms to
reduce the IR on the training partition to see if it is possible to combat the joint effects of
imbalance and dataset shift.

In the context of overlap, a taxonomy was presented showing different families of overlap
and measures belonging to each family. It is clear that overlap can have multiple facets,
however is it unclear if the taxonomy proposed truly captures these facets. Furthermore,
alongside finding a set of measures that capture these dimensions of overlap, it is important
to explore methods that reduce overlap in each of these dimensions. Despite this, there
is a lack of studies attempting to propose a taxonomy for measuring overlap or validating
existing ones. Moreover, there is also a lack of studies that study algorithms that attempt
to reduce overlap, especially in imbalanced contexts.
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Chapter 3

Experimental Setup and Results

In this section the experimental setup and results of the experiments performed for overlap
and dataset shift are shown. The section is divided into three main subsections, one for
dataset shift and the remaining two for overlap. The subsection about dataset shift starts
with the details from experimental setup, followed by the results of the experiments done
to answer the first and second research questions. The first subsection on overlap, focuses
on the validation of the pycol package. Finally, the second section on overlap follows a
similar structure to the previous section about dataset shift.

3.1 Dataset Shift

This section starts by detailing the setup for the experiments performed on the problem of
dataset shift, which goes into detail about the algorithms and datasets used as well as the
justification behind these choices. This section then follows with the results and discussion
where the first two research questions are answered.

3.1.1 Experimental Setup

The experimental setup was divided into two phases as shown in Figure 3.1: (i) Partitioning
and Oversampling; (ii) Complexity and Performance measures extraction. Each of the
phases will be explained in more detail hereafter.

The 83 real datasets used were collected from the KEEL repository, more specifically the
datasets were taken from the Imbalanced Datasets For Classification section. The main
characteristics of the datasets are summarized in Table 3.1.

As the table shows the datasets vary in imbalance ratio (IR), while some have relatively
lower values like the bupa dataset with 1.38, the more extreme cases have values above
20. The large range and variety of IRs should help to understand the combined effects of
imbalance and dataset shift. Furthermore, these datasets are all binary and range from 3
to 20 features, which are in all cases continuous.

In the first phase, the datasets are partitioned into 5 folds using the four cross validation
methods described previously: Stratified Cross Validation (SCV), Distributed Balanced
Stratified Cross Validation (DBSCV), Distributed Optimized Balanced Stratified Cross
Validation (DOBSCV) and Maximally Shifted Stratified Cross Validation (MSSCV).
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Figure 3.1: Experimental setup for the dataset shift experiments

Datasets Size Features IR
bupa 345 6 1.38

pageblocks-1-3vs4 472 10 1.57
glass1 214 9 1.82

ecoli-0vs1 220 7 1.86
wisconsin 683 9 1.86

pima 768 8 1.87
cmc1vs2 961 9 1.89

iris0 150 4 2.00
glass0 214 9 2.06
german 1000 20 2.33
yeast1 1484 8 2.46

haberman 306 3 2.78
vehicle2 846 18 2.88
vehicle1 846 18 2.90
vehicle3 846 18 2.99

glass-0-1-2-3vs4-5-6 214 9 3.20
transfusion 748 4 3.20

vehicle0 846 18 3.25
ecoli1 336 7 3.36

newthyroid1 215 5 5.14
ecoli2 336 7 5.46

balance-scaleBvsR 337 4 5.88
balance-scaleBvsL 337 4 5.88

segment0 2308 19 6.02
glass6 214 9 6.38
yeast3 1484 8 8.10
ecoli3 336 7 8.60

pageblocks0 5472 10 8.79
ecoli-0-3-4vs5 200 7 9.00

yeast-2vs4 514 8 9.08
ecoli-0-6-7vs3-5 222 7 9.09
ecoli-0-2-3-4vs5 202 7 9.10
glass-0-1-5vs2 172 9 9.12

yeast-0-3-5-9vs7-8 506 8 9.12
yeast-0-2-5-6vs3-7-8-9 1004 8 9.14
yeast-0-2-5-7-9vs3-6-8 1004 8 9.14

ecoli-0-4-6vs5 203 7 9.15
ecoli-0-1vs2-3-5 244 7 9.17

ecoli-0-2-6-7vs3-5 224 7 9.18
glass-0-4vs5 92 9 9.22

ecoli-0-3-4-6vs5 205 7 9.25
ecoli-0-3-4-7vs5-6 257 7 9.28

Datasets Size Features IR
yeast-0-5-6-7-9vs4 528 8 9.35

vowel0 988 13 9.98
ecoli-0-6-7vs5 220 7 10.00
glass-0-1-6vs2 192 9 10.29

ecoli-0-1-4-7vs2-3-5-6 336 7 10.59
ecoli-0-1vs5 240 7 11.00
glass-0-6vs5 108 9 11.00

glass-0-1-4-6vs2 205 9 11.06
glass2 214 9 11.59

ecoli-0-1-4-7vs5-6 332 7 12.28
cleveland-0vs4 173 14 12.31
ecoli-0-1-4-6vs5 280 7 13.00
shuttle-c0-vs-c4 1829 9 13.87

yeast-1vs7 459 8 14.30
glass4 214 9 15.46
ecoli4 336 7 15.8

abalone9-18 731 8 16.4
dermatology-6 358 34 16.9
thyroid-3vs2 703 21 18.00
glass-0-1-6vs5 184 9 19.44

pageblocks-1vs3-4-5 5144 10 21.27
shuttle-6vs2-3 230 9 22.00

yeast-1-4-5-8vs7 693 8 22.10
pageblocks-1-2vs3-4-5 5473 10 22.69

glass5 214 9 22.78
yeast-2vs8 482 8 23.10

flare-F 1066 11 23.79
car-good 1728 6 24.04

pageblocks-1vs4-5 5116 10 24.20
car-vgood 1728 6 25.58

kr-vs-k-zero-onevsdraw 2901 6 26.63
yeast4 1484 8 28.10

winequality-red-4 1599 11 29.17
poker-9vs7 244 10 29.50

yeast-1-2-8-9vs7 947 8 30.57
abalone-3vs11 502 8 32.47

yeast5 1484 8 32.73
kr-vs-k-threevseleven 2935 6 35.23
winequality-red-8vs6 656 11 35.44
abalone-17vs7-8-9-10 2338 8 39.31

abalone-21vs8 581 8 40.50

Table 3.1: Datasets used for the Dataset Shift Experiments

The partitioning phase is particularly relevant to answer the first research question posed,
regarding the use of cross validation algorithms to reduce dataset shift, also comparing the
results obtained with the ones in [12] where the same algorithms were used. Due to the
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random component of these methods, for each one, the cross-validation was performed 30
times, creating 30 versions for each pair of dataset/CV method.

The following oversampling algorithms, implemented in the KEEL framework, are then
applied to all versions of the datasets: ROS, SMOTE, Safe-Level SMOTE, Borderline-
SMOTE, ADASYN, AHC, ADOMS, SMOTE-TL and SMOTE-ENN.

The oversampling phase is important to answer RQ2 regarding the interaction between
dataset shift and imbalance. To that end experiments were made analysing the differences
between the performance of classifiers on the original and oversampled datasets. Fur-
thermore, another set of experiments wese also conducted analysing these classifiers with
respect to the imbalance ratio of the original datasets. The idea behind oversampling the
datasets is to test if increasing the representativity of the minority class would increase the
performance despite the existence of shift in the data.

By the end of this phase there exists 99600 datasets: the original 83 x 4 cross validation
methods x30 versions x9 oversampling algorithms and the originals.

For the second phase the following complexity measures F1, F1v, F2, F3, F4, N1, N2, N3,
N4, T1, T2 [8] were calculated from the 99600 datasets by using the ECol tool. Using these
complexity measures will help to justify the results obtained, particularly when comparing
the performance obtained with the different CV algorithms.

Finally, all the datasets were classified with the following set of algorithms: SVM, C4.5
Decision Tree, kNN and Naive Bayes, implemented in WEKA. The following measures
were then extracted from the test datasets: Precision, Recall, F-Measure and AUC. These
4 classifiers were picked to test with a variety of classification paradigms, the existence of
dataset shift and imbalance could show different behaviours depending on the classification
paradigm used.

3.1.2 Results and Discussion

RQ1: Is DOBSCV a cross validation algorithm that reduces more dataset shift
in comparison to DBSCV, SCV and MSSCV?

This section presents the experiments made to answer RQ1, starting by showing box plots
of the cross validation algorithms versus some performance metrics taken. Statistical tests
are also conducted to complement the initial analysis. Finally, the results of the complexity
measures are also shown.

The initial set of experiments started by analysing the C4.5 and kNN classifiers, to test if
the experiments performed in [12] maintained the same results. Figures 3.2-3.3 show the
graph of the performance vs cross validation method, for the F measure and AUC measures
obtained in the test datasets.

These results show a similar outcome to [12], where datasets partitioned with DBSCV and
DOBSCV provide the best results out of the four cross validation algorithms used. When
analysing both figures we can see that out of the four algorithms these two distinguish
themselves slightly from SCV while MSSCV provides the worst results overall. However,
the performance of the DOBSCV did not outperform (they seem to be somewhat equal)
DVSCV which contradicts the results of [12],

These results were similar for the other remaining classifiers (full results can be found in
the appendix A in Figure A.3 and Figure A.4).
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Figure 3.2: Method of Cross Validation vs Performance for the C4.5 decision tree

Figure 3.3: Method of Cross Validation vs Performance for the kNN

Before presenting the results of the statistical tests, Table 3.2 shows the ranking perfor-
mance metrics for the C4.5 Decision Tree, grouped by Oversampling Algorithm and Cross
Validation method (similarly, the full results can be consulted in appendix A in tables
A.1-A.4).

The table shows that among the 4 algorithms DBSCV or DOBSCV always perform both
at the top for every metric and every oversampling algorithm either ranking 1º or 2º. The
most common scenario is that DBSCV performs 1º for most metrics, but there are some
cases. where DBSCV and DOBSCV tie as both perform 1º on two metrics and 2º on the
remaining two. Consulting Table A.4 in appendix A with the averages, results show that
DBSCV slightly outperformed DOBSCV in most cases. It is also possible to notice that
the use of an oversampling algorithm greatly increases the performance of the classifier,
about 12% compared to the original datasets used. Finally, SCV and MSSCV consistently
performed 3º and 4º respectively, which is consistent with the results in [12].

A non-parametric Friedman test for each of the oversampling algorithms was conducted
for a significance level of p < 0.05, for the F Measure values, to assess statistical differences
between the CV algorithms. Afterwards post-hoc tests were conducted for the oversampling
algorithms when statistical differences were found. The results of these statistical tests can
be found in the appendix A (Tables A.5 - A.15), and they confirm the same ideas observed
in the exploratory analysis done previously.

For all the oversampling algorithm analysed, clear differences are found between every CV
algorithm, except for the comparison between DBSCV and DOBSCV. These two algo-
rithms are shown to not be statistically different, with the lowest p-value being 0.3403 in
the original datasets. This is illustrated in Table 3.2 where the 1º and 2º place is usually
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Algorithm CV F-Measure Precision Recall AUC Avg

ADASYN-I

DBSCV 1 1 1 1 1
DOBSCV 2 2 2 2 2
MSSCV 4 4 4 4 4

SCV 3 3 3 3 3

ADOMS-I

DBSCV 2 2 1 1 1.5
DOBSCV 1 1 2 2 1.5
MSSCV 4 4 4 4 4

SCV 3 3 3 3 3

AHC-I

DBSCV 2 1 1 1 1.25
DOBSCV 1 2 2 2 1.75
MSSCV 4 4 4 4 4

SCV 3 3 3 3 3

Borderline_SMOTE-I

DBSCV 2 2 1 1 1.5
DOBSCV 1 1 2 2 1.5

MSSCV 4 4 4 4 4
SCV 3 3 3 3 3

Original

DBSCV 1 1 1 1 1
DOBSCV 2 2 2 2 2
MSSCV 4 4 4 4 4

SCV 3 3 3 3 3

ROS-I

DBSCV 1 1 1 1 1
DOBSCV 2 2 2 2 2
MSSCV 4 4 4 4 4

SCV 3 3 3 3 3

SMOTE-I

DBSCV 1 2 1 1 1.25
DOBSCV 2 1 2 2 1.75
MSSCV 4 4 4 4 4

SCV 3 3 3 3 3

SMOTE_ENN-I

DBSCV 2 2 1 1 1.5
DOBSCV 1 1 2 2 1.5

MSSCV 4 4 4 4 4
SCV 3 3 3 3 3

SMOTE_TL-I

DBSCV 1 2 1 1 1.25
DOBSCV 2 1 2 2 1.75
MSSCV 4 4 4 4 4

SCV 3 3 3 3 3

Safe-Level_SMOTE-I

DBSCV 1 2 1 1 1.25
DOBSCV 2 1 2 2 1.75
MSSCV 4 4 4 4 4

SCV 3 3 3 3 3

Table 3.2: Ranking for the Performance Measures for C4.5 Decision tree for all datasets,
grouped by oversampling algorithm and cross validation method. Highlighted are the best
performing algorithms according to the average ranking of the 4 performance metrics

occupied by these two algorithms, with none occupying the first position consistently.

If we assume, the amount of dataset shift in the data is tied to the performance of the
classification algorithm, then two possible explanations can be found:

• (i) DOBSCV does not reduce the amount of dataset shift in comparison to DBSCV,
and therefore it does not outperform it, like what was expected;

• (ii) DOBSCV does reduce the amount of dataset shift, but not significantly enough
to show statistical differences.

Of the two options, the results lead more towards the first explanations, since when look-
ing at the exploratory analysis, it appears that datasets partitioned with DOBSCV are
responsible for giving slightly lower performance measures.

In what concerns to data complexity, the results show the absolute differences between
the complexity measures of the training and testing sets, grouped by the cross validation
method. If the cross validation method is attempting to combat dataset shift, then, the
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difference between the complexity of the training and testing sets should be lower than for
datasets split with a cross validation algorithm that does not take this factor into account,
since both the training and testing partitions should have equal representation. Due to
the lack of studies linking overlap and dataset shift it is unclear how the different families
behave exactly, which is something this experiment also aims to make clearer. We are
particularly interested in analysing the values obtained by DBSCV and DOBSCV which
showed previously to be comparable. If the two algorithms are similar as the previous
experiments have indicated then the values of the complexity measures found should be
similar as they would be splitting the datasets the same way.

The results for this experiment can be seen in Table 3.3, the measures are grouped into
families according to the taxonomy defined in the state of the art. T2 does not belong to
any of these families, so it is analysed separately.

F1 F1v F2 F3 F4 N3 N4 N1 N2 T1 T2
DBSCV 0.008 0.0236 0.0379 0.2001 0.1893 0.0431 0.0062 0.0496 0.0541 0.0382 0.0914

DOBSCV 0.0098 0.0269 0.038 0.2067 0.1963 0.0351 0.0063 0.0451 0.0451 0.0406 0.0914
MSSCV 0.1013 0.0889 0.0606 0.3614 0.2761 0.0341 0.0283 0.0448 0.0449 0.1112 0.0914

SCV 0.0139 0.0363 0.0417 0.223 0.2038 0.0156 0.0083 0.0295 0.0256 0.0458 0.0914

Table 3.3: Difference between the complexity measures of the training and test partition
by cross validation method of the original datasets

The results show that for algorithms like MSSCV, designed for inducing dataset shift,
the differences between the training and testing set are much larger in comparison to the
remaining algorithms, noticeable especially in the case of the feature level metrics F1, F1v,
F3, F4. As for the remaining families there are minor differences for MSSCV shown in the
case of N4 in the instance level family and some more significant differences in the case of
T1 in the structural family.

Overall, it appears that no matter the type of overlap, the CV algorithm that most stands
out is always MSSCV, having always at least one metric per family with significant differ-
ences. Furthermore, for an algorithm like SCV which only take into account prior prob-
ability shift, the differences between partitions are slightly higher than for the remaining
two algorithms, especially for the measures mentioned above, which corresponds to what
is seen in the previous studies.

More importantly, the results show that both DBSCV and DOBSCV obtain very similar
values for most complexity measures observed, confirming the idea that the optimization
done to DOBSCV is not enough to reduce dataset shift as the difference between the
training and testing partition is almost the same regardless of which algorithm was used
to split them.

It is also interesting to note the T2 values obtained. This metric indicates the average
number of samples per dimension, and it was the same for all cross validation algorithm.
This is because all CV algorithms distribute the same number of samples per fold, so the
average number of samples per dimension will the same, regardless of the CV algorithm
used. Because of this, the T2 metric proves to be not very useful when trying to quantify
the amount of dataset shift.

On the other hand the remaining measures are helpful at identifying covariate shift, but
not prior probability, since these metrics focus only on the distribution of the samples on
the feature space and not on the proportion of samples in each class. As far as the best
set of metrics to measure covariate shift, it appears that the feature overlap metrics along
with T1 show the greatest differences when the amount of shift increases as pointed out
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previously. These metrics are very sensitive to noisy samples than the remaining ones
which might explain why the higher differences are found.

In conclusion the main takeaways from the experiments using complexity measures are:

• (i) MSSCV presents the highest differences for every family of measures among all
algorithms, this is consistent with the results presented in the literature;

• (ii) SCV which only takes into account prior probability shift making the differences
between partitions higher than DBSCV and DOBSCV;

• (iii) DBSCV and DOBSCV are very close in values for most of the measures studied,
which further confirms the idea that the two algorithms induce the same amount
dataset shift;

• (iv) The feature metrics along with T1 seem to be the best metrics to detect dataset
shift, probably due to the fact that they are very sensitive to the existence of noisy
samples.

RQ2: What is the impact that imbalance and dataset shift have on the perfor-
mance of classifiers. Can oversampling algorithms increase their performance?

This section details the results obtained for the experiments made in an attempt to answer
RQ2 about the interaction between dataset shift and imbalance. Similarly to the previous
section, the experiments start by showing some box plots of the oversampling algorithms
versus some performance metrics. These results are then validated using statistical tests.
Finally, results are also shown for the experiments comparing performance versus the
imbalance ratio of datasets.

First, an experiment for the kNN classifier was conducted to measure the differences be-
tween oversampled datasets and the original one (Figure 3.4) with the goal of understanding
if the determining factor on the performance was the oversampling algorithm used or the
cross validation algorithm. In theory using an oversampling algorithm should reduce the
imbalance ratio of the training dataset and make it, so the minority class is more visible
during training process which would boost the performance of classifiers. On the other
hand because the process is done after the dataset is split into training and testing set
it will do nothing to combat dataset shift, so if a concept that is not initially present in
training, but it exists in testing, then oversampling will hardly make the two sets more
equal in order to reduce dataset shift.

In the previous section it was already established that the choice of a CV algorithm does
influence the performance of a classification algorithm, if the use of an oversampling algo-
rithm does matter then noticeable differences will also be found between the original and
oversampled datasets.

The results show that the use of an oversampling algorithm does not necessarily increase
the performance of the classifier, for example the case of SMOTE-TL and SMOTE-ENN
which give slightly worse results as seen in Figure 3.4.

The experiments performed may lead to the conclusion that the performance of a classifier
is more influenced by the amount of dataset shift than the amount of imbalance presented
in the data.

To confirm this idea, we can observe the results of another classifier, the C4.5 decision tree,
already studied previous section (Figure 3.5).
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Figure 3.4: Oversampling Algorithm vs Performance for the kNN classifier

Figure 3.5: Oversampling Algorithm vs Performance for the C4.5 Decision Tree

The results for this classifier contradict the initial idea that the use of an oversampling
algorithm does not affect the performance of the classifier, while the difference is not as
noticeable as with the choice of a CV algorithm, there appears to be a slight difference
between the original and oversampled datasets, especially in the F measure, where the box
plot of the original datasets shows as noticeable lower average.

Similar experiments for the remaining classifiers were conducted and can be found in the
appendix A (Figure A.1 and Figure A.2). Overall the results are similar in the sense that
depending on the classifier, the degree of imbalance can have an impact on performance,
however, the amount of dataset shift always impacts the performance of the classifiers.

Furthermore, statistical tests showing the differences between the oversampled and orig-
inal datasets were also conducted. For that, all the oversampled datasets were grouped
up into a single category and a Wilcoxon test was conducted, at a p < 0.05 significance
level, comparing them to the original. Table 3.4 show the test results for all the classifica-
tion algorithms. The expected results should match the ones observed in the exploratory
analysis where for global algorithms like the C4.5 decision tree, the difference between the
oversampled and original datasets will be significative. While for local algorithms such as
kNN no difference between approaches should be found.

The results show that the difference between the using oversampled datasets is dependent
on the classification algorithm in question, which is somewhat expected. In particular, the
SVM has clear differences no matter the CV algorithm, with MSSCV being slightly lower.
The C4.5 algorithm presents more interesting results, where all the p-values are around
the 0.05 level of significance, except for the MSSCV algorithm which is much lower, at
a p-value of 0.01. As for the other 2 classification algorithms, there is no CV method
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Classifier Algorithm Z Value p-value

SVM

DBSCV 551.0 0.0001
DOBSCV 539.0 0.0001
MSSCV 339.0 0.0

SCV 531.0 0.0001

kNN

DBSCV 1203.0 0.9785
DOBSCV 1192.0 0.9262
MSSCV 983.0 0.1795

SCV 1177.0 0.8553

NB

DBSCV 1055.0 0.3619
DOBSCV 1060.0 0.3778
MSSCV 1087.0 0.3628

SCV 1089.0 0.369

C4.5

DBSCV 923.0 0.0615
DOBSCV 907.0 0.0496
MSSCV 826.0 0.0148

SCV 906.0 0.0489

Table 3.4: Results for the classifiers

where statistical differences were found. Although it is interesting to notice that the lower
p-values are always found for the MSSCV algorithm.

In conclusion the observed results showed that:

• (i) Increasing the amount of shift always significantly degraded the performance of the
classifier, the amount of imbalance only affect the performance of certain classifiers;

• (ii) Global classifiers like C4.5 and SVM are more affected by imbalance than local
ones like kNN, with the exception to the rule being Naive Bayes which is resilient to
imbalance despite its global approach. However, this is consistent with the literature,
where this classifier has showed some resilience to this factor.

To further explore this topic, some experiments were conducted with MSSCV and DBSCV,
analysing the original datasets and their imbalance ratio. In theory, as the imbalance ratio
increases, the difference in performance between the training and testing partitions should
increase. Furthermore, for algorithms like MSSCV, large difference values should be seen
for lower imbalance ratios when compared to DBSCV. The results of this experiment can
be seen in Figures 3.6 and 3.7. The theorized outcome matches what is shown by the two
figures mentioned. Particularly while DBSCV does present some high differences, even
for lower imbalance ratios below 5, for these same imbalance values, MSSCV has a much
higher concentration of values with F-Measure differences above 0.8 as demonstrated by
the spread of points in each figure. As the imbalance ratio value increases, the differences
between CV algorithms become less significant, with both algorithms following a similar
trend of increasing the F-measure differences between partitions. It should be noted that
even for the higher imbalance ratio values, MSSCV almost always seems to have higher
values.

The main conclusions achieved with this experiment analysing the imbalance ratios were:

• (i) As literature suggests, between dataset shift and imbalance the determining factor
that most degrades an algorithm’s performance is dataset shift, however when both
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issues are combined the consequences are much more evident;

• (ii) If a bad partitioning algorithm which induces high dataset shift is used the
difference in performance between partitions can be high even for low IR;

• (iii) For very high IRs (30-40) the choice of CV algorithm stops being as important.
This is because the classification algorithm will perform poorly regardless of the
partitioning method. But a method that induces less shift is still a better choice
overall.

Figure 3.6: Imbalance Ratio vs Difference in performance for DBSCV

Figure 3.7: Imbalance Ratio vs Difference in performance for MSSCV
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3.2 Overlap - pycol Package

With the goal of making it easier to experiment with most state-of-the-art complexity
measures, a new Python package was created, pycol 1, which implemented the 28 measures
described in the previous Complexity Measures section, along with other measures like L1,
L2 and L3 [16] which are not found in the taxonomy.

3.2.1 Implementation Details

This package was created using Pymfe as its base, starting by implementing all the mea-
sures it already had. Afterwards, the remaining measures were implemented from scratch
using the formulation provided in their original research article, adding 17 new complexity
measures.

The per class versions of some metrics listed previously, like F1 and N1 for example,
were also be implemented, similarly to the ImbCol package. Also, for measures that were
originally thought only for binary contexts, a one vs one and one vs all approach can be
selected via function parameters.

Distance based complexity measures, like kDN and D3 for example, used the HEOM [48]
distance function so that datasets with categorical attributes can also be evaluated. This
approach is not valid for measures like F1 which calculate means and standard deviation
of each feature, so currently these measures are not usable for datasets with these types of
features.

As for the dataset file format, currently the pycol package uses the arff format, however
in the future other formats can be considered to make the package easier to use.

3.2.2 Validation

The validation of the implemented measures was divided into two groups. The first group
was used for the measures already implemented in pymfe, these measures were compared
to the results given by the ones implemented in pycol package. The remaining measures
without an available implementation were tested in artificial datasets. Table 3.5 shows
which measures are implemented in both pycol, pymfe, DCoL and ECoL.

The artificial datasets were created using the data generator introduced in [49]. With this
generator, it is possible to create data clusters of variable size and topology. The generator
divides the creation of samples in multiple regions, the number of regions, their size, shape
and location can all be configured by the user. For each type of shape available, there is an
algorithm that uniformly fills the area inside with safe and borderline samples. Afterwards,
the area around the region is populated with rare and outlier examples.

Results for the first group of measures were compared in 4 of the KEEL repository datasets.
The characteristics of these datasets are shown in Table 3.6 and the comparison is presented
in Table 3.7. For non-binary datasets, the OvO results are summarized using a mean.

All measures except F1 and N2 give the exact same result in both packages for every
dataset, indicating the implementation is indeed valid for at least those. As for F1, the
difference in results is due to a slight change in the implementation where the means of
each feature is not normalized, justifying variations between both approaches. Finally, for

1https://github.com/DiogoApostolo/pycol
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Measure pycol pymfe DCoL ECoL
F1 Yes Yes Yes Yes
F1v Yes Yes Yes Yes
F2 Yes Yes Yes Yes
F3 Yes Yes Yes Yes
F4 Yes Yes Yes Yes
N1 Yes Yes Yes Yes
N2 Yes Yes Yes Yes
N3 Yes Yes Yes Yes
N4 Yes Yes Yes Yes
L1 Yes Yes Yes Yes
L2 Yes Yes Yes Yes
L3 Yes Yes Yes Yes

LSC Yes Yes Yes Yes
T1 Yes Yes Yes Yes

NSG Yes No No No
ICSV Yes No No No
ONB Yes No No No
Clst Yes No No No
DBC Yes No No No

R-Value Yes No No No
degOver Yes No No No

SI Yes No No No
kNN Yes No No No
CM Yes No No No
D3 Yes No No No

IPoints Yes No No No
MRCA Yes No No No

C1 Yes No No No
C2 Yes No No No

Purity Yes No No No
Sep. Index Yes No No No

Table 3.5: Data complexity Packages and implemented measures

Name #Samples #Features #Classes
newthyroid 215 5 3

ecoli 335 7 8
balance 625 4 3
titanic 2200 4 2

Table 3.6: KEEL repository dataset characteristics

N2 the differences are also very small between the two packages, which is likely due to
the default distance metrics used in each approach, which are slightly different in terms of
normalization.

For the second group of measures, three sets of test were made. In the first set of tests,
simple artificial datasets were created where it was possible to manually calculate the
expected value of each of the metrics, this process is exemplified in Appendix B for the
T1, Augmented R-Value and Purity measures.

45



Chapter 3

newthyroid ecoli balance titanic
Measure pycol pymfe pycol pymfe pycol pymfe pycol pymfe

F1 0.5429 0.5124 N.A 0.5677 0.8342 0.8306 0.8370 0.9030
F1v 0.0498 0.0498 0.1240 0.1240 0.2292 0.2292 0.4356 0.4356
F2 0.0005 0.0005 0.000 0.0000 1.000 1.0000 1.000 1.000
F3 0.1349 0.1349 0.9569 0.9569 0.5980 0.5980 1.000 1.000
N1 0.1023 0.1023 0.3035 0.3035 0.2752 0.2752 0.3198 0.3198
N2 0.2368 0.2478 0.4160 0.3966 0.4036 0.4231 0.0270 0
N3 0.0279 0.0279 0.2083 0.2083 0.2128 0.2128 0.2221 0.2221
N4 0.0093 0.0093 0.1398 0.1398 0.1312 0.1312 0.4329 0.4329
LSC 0.7702 0.7702 0.9741 0.9741 0.9663 0.9663 0.9999 0.9999
T1 0.2279 0.2279 0.7529 0.7529 0.3648 0.3648 0.004 0.004

Table 3.7: Complexity measures results for the KEEL datasets

The second set of tests starts by creating two clusters of different classes with each 750
samples. The overlapped region between these clusters is increased until the two clusters
are completely overlapped (Figure 3.8).

Ideally, if the complexity measures are implemented correctly, its values will indicate higher
complexity as the overlapped region increases. Results for the second group of metrics in
each of the artificial datasets are presented in Table 3.8.

Figure 3.8: Artificial dataset with increasing regions of overlap

Overall, the results show that all the metrics have values according to the expected, as when
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Measure Test 1 Test 2 Test 3 Test 4
R value 0.003 0.114 0.2953 0.7107

D3 [2,3] [89,82] [232,211] [532,534]
CM 0.003 0.114 0.2953 0.7106
kDN 0.0052 0.095733 0.24067 0.584133
DBC 0.0096 0.2181 0.5776 0.8535
SI 0.99667 0.7180 0.5776 0.6773

input noise 0.499 0.5927 0.7410 0.9983
borderline 0.8 14.93 40.73 98.067
deg overlap 0.0147 0.1753 0.4346 0.9993

C1 0.1328 0.2003 0.3037 0.5011
C2 0.1664 0.2267 0.3199 0.5031
Clst 0.004 0.122 0.3366 0.7147

purity 0.0228 0.0247 0.0181 0.0001
neigh. sep. 0.2965 0.26976 0.2237 0.1228

Table 3.8: Complexity Measure Results in the Artificial Datasets

the overlapped region increases, the values tend to increase also. A notable exception to
this rule are the SI, purity and neighbourhood separability measures, however this measures
work differently from the rest where smaller values indicate higher complexity, so the values
presented still indicate that the implementation is valid.

After these metrics were validated with the second set of tests, a third set of more complex
artificial datasets was used, which were taken from [49]. Table 3.9 presents the character-
istics of the datasets and a 2D view of the datasets is presented in Figure 3.9:

Name #Samples #Features #Classes Class Ratio
cirles-2d 800 2 2 1:3

spheres-2d 3000 2 2 1:1
paw3-2d 1000 2 2 1:9
paw3-3d 1500 2 3 1:7

Table 3.9: Second set of artificial dataset characteristics

Overall, this second set of datasets present very clear local regions where little overlap is
present, except for circles-2d which have a more considerable amount of overlap in each of
the three main clusters of the minority class (Table 3.9).

As most of the experimented metrics take into account the local region around each sample,
it is expected that the values for the measures will represent lower complexity, except input
noise which is a feature based metric and should have high values, since none of the two
features is able to linearly separate any of the datasets. The results of these experiments
are present in Table 3.10 and are mostly within expectations, as most of the measures
are corresponded to low complexity. The measures between 0 and 1 are lower than 0.5,
when 1 represents high complexity, and closer to 1 when in the opposite case. Also, as
expected, input noise, being a feature based metric gives very high values, representing
high complexity. The two measures that got results which defied expectations were purity
and neighbourhood separability, which both have similar formulations. However, being
multi-resolution metrics it is most likely due to the need for better parametrization which
is very dataset dependent.
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(a) circles-2d (b) spheres-2d

(c) paw3-2d (d) paw3-3d

Figure 3.9: Second set of artificial datasets

Measure circles-2d spheres-2d paw3-2d paw3-3d
R value 0.2050 0.01967 0.0819 0.0799

D3 [41,123] [29,30] [39,84] [11,69]
CM 0.205 0.01967 0.082 0.08
kDN 0.2557 0.0334 0.1433 0.1366
DBC 0.3632 0.0538 0.2347 0.2095
SI 0.87625 0.9893 0.8393 0.927

input noise 0.9568 0.7958 0.9886 0.9760
borderline 33.625 5.433 16.7333 16.888
deg overlap 0.5787 0.0923 0.3800 0.3600

C1 0.1864 0.08047 0.0 1.9047
C2 0.3256 0.3682 0.0111 0.1815
Clst 0.2987 0.02467 0.1653 0.1590

purity 0.024 0.008 0.003 0.037
neigh. sep. 0.2214 0.2881 0.0360 0.2568

Table 3.10: Complexity measure results in the second set of artificial datasets
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3.3 Overlap - Taxonomy Validation

After the validation of the implemented metrics in pycol, the next step consists in the
validation of the taxonomy presented in [13] which illustrates the state of the art of the
overlap families. Furthermore, another important aspect is to better understand what
preprocessing algorithms work best for each type of complexity.

In theory certain types of preprocessing algorithms are equipped to deal with a specific
types of overlap. In [13] some proposals are made with algorithms for each type of overlap
in the taxonomy. For example, it is suggested that cleaning algorithms proposed in [50]
NB-Basic and NB-Tomek are good at dealing with instance overlap since in their cleaning
process they exclusively uses local information from the neighbourhood of each sample.

The overall idea is to select a few algorithms that address each type of overlap and look
at how the metrics react before and after the preprocessing. For example, in theory a
dataset with high instance overlap should lower its instance metrics significantly after a
cleaning algorithm is used, but the remaining metrics should maintain the same results as
this algorithm is not meant to address the other families. Furthermore, if the reduction
of these metrics is truly significative there should be a notable increase in performance
when comparing the results of a classifier before and after preprocessing. If that is not the
case then it could indicate that the metric is not measuring the type of overlap that was
initially expected, or that this type of overlap does not affect the classifier being studied.

Another potential outcome is if out of all metrics of the same family one among them does
not reduce its value significantly after preprocessing, while the others all reduce their value
as expected. This could indicate that this metric does not belong in this family of the
taxonomy, as all the other metrics reacted as expected and this metric remained the same
indicating that it is not measuring the same type of overlap as the others.

3.3.1 Experimental Setup

In order to understand if the complexity metrics are indeed measuring the type overlap that
is assigned to them in the taxonomy the following setup was followed: (i) Preprocessing,
the datasets were processed using multiple oversampling and cleaning algorithms, each
algorithm tries to reduce at least one of the types of overlap identified in the taxonomy.
(ii) Complexity Extraction, where the complexity measures of both the original and the
preprocessed datasets are taken. (iii) Classification/Performance Extraction, this process
happens at the same time as the complexity extraction, both the preprocessed and original
datasets are classified by a random forest and the performance of the model is measured
using the F-Measure.

The main idea behind this process is that a preprocessing algorithm that reduces a specific
type of overlap should lower the values of the complexity metrics of that family. Fur-
thermore, when analysing the performance of the classification algorithms there should be
higher boosts in performance for the datasets that had their complexity reduced.

The following preprocessing algorithms were considered: NB-Basic [50], NB-Tomek [50],
SMOTE-ENN, MWMOTE [51], Feature Selection. NB-Basic and NB-Tomek are both
cleaning algorithms, with NB-Tomek being an alteration to make NB-Basic more efficient
at removing overlapped samples. It is expected that these two algorithms address primar-
ily instance level overlap due to being neighbourhood based approaches. SMOTE-ENN
is also expected to primarily reduce instance overlap for the same reason, but being an
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oversampling algorithm instead of a cleaning approach different results could occur. MW-
MOTE is an oversampling algorithm which considers the distribution of clusters on top of
local information, and as such is expected to reduce both local and structural complexity.
Finally, the Feature selection process aims at selecting the most discriminative features in
the dataset and removing the remaining ones. This process should increase the feature
overlap slightly, but it is predicted that the classification algorithms will perform equally
or slightly better despite this.

As for the complexity measures used, three to four measures of each family were selected
from the ones implemented in the package. The multi-resolution family was excluded from
this study due to the fact it requires too much parametrization for each metric, finding
good parameters for these metrics is too dependent on the dataset used, and initial results
were very inconsistent. For the Feature metrics F1, F1v and the imbalanced version of F3
and F4 were picked. For the instance level metrics the imbalanced version of N3 and N4
alongside Augmented R (AugR) and kDN were chosen. The choice of these metrics was
based on the objective of studying the sensitivity of metrics prepared for imbalance such
as AugR in comparison to metrics like kDN which do not take this into account. Most of
the remaining instance metrics were excluded as many are very similar to kDN and AugR
and would not add much to the study. Finally, for the structural metrics the imbalanced
version of N1, N2 alongside ONB were chosen. Usually T1 is used for structural metrics
however ONB was opted as it is a considerable optimization in comparison. When the
imbalance version of a metric was used two values were obtained one for the majority class
and another for the minority class, as we are mostly interested in the minority class that
value was chosen.

The datasets used were all taken from the imbalance section of the KEEL repository.
A total of 53 binary datasets were chosen with high imbalance ratios. After complexity
extraction two groups of datasets were formed according to the families of complexity
measures they represented. Ideally three groups would be formed one for each of the
families being studied, but it was only possible to find 2 groups one with instance and
structural overlap high and feature overlap low, and another with high feature overlap and
lower values for instance and structural overlap.

Dataset groups

The first group presents both high structural and instance overlap in at least one of the
metrics while showing lower values for the feature overlap. While the values for the feature
overlap might be higher for F1 and F3, the values are always be relatively low for F1v and
F4 which represent more complete versions of both previously mentioned metrics. Table
3.11 shows the values for the instance, structural and feature complexity metrics.

dataset N3 N4 kDN AugR N1 N2 ONB F1 F1v F3 F4
glass-0-1-4-6_vs_2 0.9167 0.6667 0.1264 0.0833 0.9166 0.6361 0.4772 0.7568 0.3632 0.5417 0.0000
yeast-1-4-5-8_vs_7 0.8571 0.9048 0.0807 0.0494 0.9523 0.6107 0.4900 0.8506 0.5775 0.8313 0.5617
glass-0-1-6_vs_2 0.8333 0.8333 0.1526 0.1037 1.0000 0.5857 0.4735 0.7793 0.3439 0.5704 0.0963
glass-0-1-5_vs_2 0.8333 0.6667 0.1719 0.0992 1.0000 0.6368 0.4854 0.8787 0.3863 0.4959 0.0826
glass2 0.6667 0.6667 0.1333 0.0867 0.8333 0.5877 0.4430 0.7524 0.3892 0.5267 0.0600
yeast-1_vs_7 0.7143 0.5714 0.1050 0.0652 0.7619 0.5661 0.4629 0.7116 0.2786 0.7671 0.4627

Table 3.11: Complexity metrics for the group I datasets

For all datasets the values of N3 and N4 are above 0.5, and while the values of kDN appear
to be quite low it should be noted that the highest value obtained was about 0.3. The
values of AugR are also relatively low, but the highest value for any dataset was around
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0.26.

Similarly to the previous family all datasets present a high value (above 0.5) for at least
one of the structural metrics. Particularly all datasets have very high values for N1 and
with slightly lower values for N2. Finally, even though the values for ONB are all below
0.5 the highest values for this metric were around 0.51, meaning that these are very high
values considering the sample.

As mentioned, while the values of F1 and F3 can be high for some datasets, a corre-
sponding low value for F1v and F4 are usually found, most likely indicating low feature
complexity. The exception to this rule is yeast-1-4-5-8_vs_7 which has values slightly
above 0.5. However, as the values for the instance and structural families are very high,
which compensates for the high feature overlap.

The second group represents datasets with a low instance and structural overlap, but high
feature level overlap, the opposite of the previous group. These datasets have at least
one high feature level metric with high values, with the main focus being on the F1v and
F4 metrics. Table 3.12 present the instance, structural and feature level overlap for the
selected datasets.

dataset N3 N4 kDN AugR N1 N2 ONB F1 F1v F3 F4
pima 0.4947 0.4149 0.3193 0.2658 0.6117 0.4966 0.4447 0.6568 0.3463 0.9926 0.9591
yeast-0-2-5-6_vs_3-7-8-9 0.3286 0.5714 0.1048 0.0625 0.5571 0.4287 0.3108 0.6073 0.1887 0.8935 0.7898
yeast-0-2-5-7-9_vs_3-6-8 0.2143 0.2429 0.0511 0.0327 0.3429 0.3771 0.1649 0.3675 0.1126 0.8707 0.7486
yeast-0-5-6-7-9_vs_4 0.4722 0.4722 0.1086 0.0838 0.6944 0.5041 0.3460 0.4329 0.1987 0.9189 0.6973
ecoli-0-1-4-7_vs_2-3-5-6 0.4286 0.1905 0.0703 0.0339 0.4762 0.4448 0.2968 0.6395 0.1005 0.8856 0.6822

Table 3.12: Complexity metrics for the group II datasets

For the instance level metrics the values found were all below 0.5 for all the datasets. It
should be noted however that values above 0.2 for both kDN and AugR might appear
small, but these were some of the highest values found in all the datasets, potentially
revealing some drawbacks of the these metrics’ sensitivity. However, even if these values
are considered high the remaining instance and structural level metrics are all low.

As for the structural level overlap similar values are below 0.5 were chosen. Some datasets
still have a somewhat high value for N1, but present a lower value for N2 and ONB, so
they were still selected for this category.

Finally, as previously mentioned, for the feature level overlap, the goal was to find datasets
with both high F1v and F4. All the datasets shown present a F4 of above 0.6, an F3 of
above 0.8, which will make up for ideal higher values of F1v which were not found in any
dataset.

3.3.2 Results

This section shows the results of the complexity measures before and after the preprocessing
algorithms were applied to the datasets. Alongside this the results of the RF classifier are
also shown for every preprocessing algorithm used.

Unlike the Results section in the dataset shift section, the discussion and answers to the
research questions are presented in a separate subsection following this one, since the results
being shown help to answer both research questions and conclusions can only be drawn
after all results are presented.

The sections analysing the complexity measures show tables for the datasets of group I
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and group II. These tables highlight in green decreases of metrics of more than 10% and
in red increases of more than 10% after the use of a preprocessing algorithm.

NB-Basic Comparison

In this section the comparison between the complexity metrics of the two groups will be
examined before and after the preprocessing of the NB-Basic algorithm. It is expected that
the values of the instance lower significantly [13] as this algorithm uses local information
with nearest neighbour approaches to remove overlapped samples. Table 3.13 shows the
difference between the two approaches for the 3 families examined.

dataset preproc N3 N4 kDN AugR N1 N2 ONB F1 F1v F3 F4
glass-0-1-4-6_vs_2 original 0.9167 0.6667 0.1264 0.0833 0.9166 0.6361 0.4772 0.7568 0.3632 0.5417 0.0000
glass-0-1-4-6_vs_2 NB-Basic 0.2500 0.0000 0.1500 0.0714 0.4166 0.4530 0.1287 0.3537 0.1761 0.3929 0.0000
yeast-1-4-5-8_vs_7 original 0.8571 0.9048 0.0807 0.0494 0.9523 0.6107 0.4900 0.8506 0.5775 0.8313 0.5617
yeast-1-4-5-8_vs_7 NB-Basic 0.3810 0.4762 0.0806 0.0645 0.5238 0.4791 0.3012 0.7793 0.3439 0.5704 0.0963
glass-0-1-6_vs_2 original 0.8333 0.8333 0.1526 0.1037 1.0000 0.5857 0.4735 0.7793 0.3439 0.5704 0.0963
glass-0-1-6_vs_2 NB-Basic 0.1667 0.0833 0.1276 0.0690 0.3333 0.3810 0.1793 0.4665 0.1790 0.4655 0.0000
glass-0-1-5_vs_2 original 0.8333 0.6667 0.1719 0.0992 1.0000 0.6368 0.4854 0.8787 0.3863 0.4959 0.0826
glass-0-1-5_vs_2 NB-Basic 0.2500 0.0000 0.2450 0.1250 0.5000 0.4349 0.1369 0.6452 0.1158 0.3500 0.0000
glass2 original 0.6667 0.6667 0.1333 0.0867 0.8333 0.5877 0.4430 0.7524 0.3892 0.5267 0.0600
glass2 NB-Basic 0.2500 0.0000 0.1424 0.1061 0.5833 0.4501 0.0879 0.3676 0.1512 0.3636 0.0000
yeast-1_vs_7 original 0.7143 0.5714 0.1050 0.0652 0.7619 0.5661 0.4629 0.7116 0.2786 0.7671 0.4627
yeast-1_vs_7 NB-Basic 0.4286 0.2381 0.1043 0.0929 0.52384 0.4764 0.2997 0.5379 0.1377 0.5571 0.1571

Table 3.13: Complexity measure values for before and after NB-Basic for the group I
datasets

As expected the instance level metrics lowered significantly, specifically when looking at
N3 and N4, however the same can not be said for kDN and AugR which seemed to either
maintain their value or increase slightly.

As for the structural metrics there was also a clear decrease on all values, especially for
N1 and ONB. While it was expected a decrease due to the removal of some samples which
would simplify the structure of the dataset, the values lowered a lot more than it was
initially expected.

Finally, for the feature level metrics also benefited from a decrease which was more sig-
nificant than expected. However, the decrease was not as high as for some structural and
instance level metrics analysed previously.

The results of this preprocessing algorithm are also shown for the datasets in group II
in tables 3.14. Overall it is expected that the instance overlap metrics were lowered as
they were with the previous datasets, but, because these values are already low to begin
with, this should not cause a performance increase when analysing the performance of the
classifier. As far as the other two families, following the literature [13], there should be a
small decrease in structural overlap, but there should be no significant decrease in feature
overlap as this method does not seek to address it, however the results from group I suggest
that significative decreases in both can be seen.

The results seen for the instance level metrics are within expectations. The values lowered
to almost zero in most cases, similarly to the datasets in group I. Even in the cases where
one of the metrics did not reduce its value significantly, the remaining three more than
compensated for it.

As for the structural metrics there was a significant decrease of N1 in most cases while,
N2 and ONB decreased but not as significantly. Although it should be noted that out of
the 3 metrics N1 was the one that presented the highest values, so it is expected that the
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dataset preproc N3 N4 kDN AugR N1 N2 ONB F1 F1v F3 F4
pima original 0.4947 0.4149 0.3193 0.2658 0.6117 0.4966 0.4447 0.6568 0.3463 0.9926 0.9591
pima NB-Basic 0.0106 0.0000 0.0311 0.0311 0.0372 0.2819 0.3160 0.2431 0.1274 0.0881 0.0000
yeast-0-5-6-7-9_vs_4 original 0.4722 0.4722 0.1086 0.0838 0.6944 0.5041 0.3460 0.4329 0.1987 0.9189 0.6973
yeast-0-5-6-7-9_vs_4 NB-Basic 0.0556 0.1111 0.0452 0.0407 0.1111 0.3720 0.1466 0.2995 0.0686 0.8281 0.1448
ecoli-0-1-4-7_vs_2-3-5-6 original 0.4286 0.1905 0.0703 0.0339 0.4762 0.4448 0.2968 0.6395 0.1005 0.8856 0.6822
ecoli-0-1-4-7_vs_2-3-5-6 NB-Basic 0.1905 0.0476 0.0392 0.0270 0.2857 0.3409 0.1864 0.4003 0.0619 0.8716 0.6014
yeast-0-2-5-6_vs_3-7-8-9 original 0.3286 0.5714 0.1048 0.0625 0.5571 0.4287 0.3108 0.6073 0.1887 0.8935 0.7898
yeast-0-2-5-6_vs_3-7-8-9 NB-Basic 0.0857 0.1714 0.0721 0.0697 0.1857 0.2753 0.1273 0.4731 0.1353 0.7787 0.3402
yeast-0-2-5-7-9_vs_3-6-8 original 0.2143 0.2429 0.0511 0.0327 0.3429 0.3771 0.1649 0.3675 0.1126 0.8707 0.7486
yeast-0-2-5-7-9_vs_3-6-8 NB-Basic 0.0571 0.2286 0.0173 0.0165 0.1143 0.2589 0.0728 0.3175 0.0914 0.7546 0.4969

Table 3.14: Complexity measure values for before and after NB-Basic for the group II
datasets

others would not decrease as much.

Finally, the feature level metrics lowered in a much more significant way than expected. As
mention previously, this algorithm was only meant to address the instance level overlap,
however it seems that it also has a strong effect in reducing the feature level overlap metrics
as well. The decrease was even more noticeable than the one seen for group I, although
this is probably due to the fact that these values were much higher to begin with.

Similar results can be found in Appendix C for NB-Tomek (Table C.1 and Table C.2),
another cleaning approach that follows a similar process.

MWMOTE Comparison

MWMOTE is an oversampling algorithm which focuses on data clusters and the overall
structure of the dataset and not just the nearest neighbours of each sample like the previ-
ously mentioned cleaning approaches. Therefore, it is expected that this dataset reduces
mainly the structural overlap of the datasets.

Table 3.15 shows the differences between the complexity measures of the original and
oversampled datasets.

dataset preproc N3 N4 kDN AugR N1 N2 ONB F1 F1v F3 F4
glass-0-1-4-6_vs_2 original 0.9167 0.6667 0.1264 0.0833 0.9167 0.6362 0.4773 0.7568 0.3632 0.5417 0.0000
glass-0-1-4-6_vs_2 MWMOTE 0.0343 0.0806 0.1571 0.1290 0.1947 0.2217 0.1542 0.7576 0.2574 0.7500 0.1828
yeast-1-4-5-8_vs_7 original 0.8571 0.9048 0.0807 0.0494 0.9524 0.6108 0.4900 0.8506 0.5775 0.8313 0.5617
yeast-1-4-5-8_vs_7 MWMOTE 0.0000 0.6992 0.0559 0.0527 0.6877 0.0018 0.0591 0.8533 0.5376 0.9118 0.7710
glass-0-1-6_vs_2 original 0.8333 0.8333 0.1526 0.1037 1.0000 0.5859 0.4736 0.7793 0.3439 0.5704 0.0963
glass-0-1-6_vs_2 MWMOTE 0.0171 0.0542 0.1597 0.1285 0.2160 0.2250 0.1444 0.7792 0.2376 0.7642 0.3419
glass-0-1-5_vs_2 original 0.8333 0.6667 0.1719 0.0992 1.0000 0.6369 0.4855 0.7524 0.3892 0.5267 0.0600
glass-0-1-5_vs_2 MWMOTE 0.0251 0.1080 0.1731 0.1445 0.2226 0.2382 0.1832 0.8762 0.2840 0.7202 0.3815
glass2 original 0.6667 0.6667 0.1333 0.0867 0.8333 0.5877 0.4438 0.7524 0.3892 0.5267 0.0600
glass2 MWMOTE 0.0193 0.0618 0.1494 0.1341 0.1913 0.2167 0.1484 0.7514 0.2646 0.7428 0.3729
yeast-1_vs_7 original 0.7143 0.5714 0.1050 0.0652 0.7619 0.5662 0.4629 0.7116 0.2786 0.7671 0.4627
yeast-1_vs_7 MWMOTE 0.0000 0.5753 0.0689 0.0663 0.4656 0.0053 0.0841 0.7078 0.2931 0.8754 0.6775

Table 3.15: Complexity Measure values before and after MWMOTE for the group I
datasets

The reduction of the instance level metrics was very significative, especially for the case
of N3 and N4 where the reduction was even larger than the cleaning algorithms analysed
before. On the other hand the kDN and AugR metrics maintained the same values after
the preprocessing algorithm was used.

The value of the structural level metrics decreased significantly, more so than any of the
cleaning algorithms analysed previously. This is to be expected has mentioned previously
this algorithm takes into consideration structural properties of the datasets.
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Finally, the feature level overlap metrics also went according to what was expected to
where no significant decrease was found between the two approaches, in fact in most cases
the metrics increased drastically, especially the value of F3 and F4.

It is interesting to note the difference between this oversampling approach and the previ-
ously examined cleaning approaches when it comes to the feature overlap metrics, where
the cleaning methods tend to reduce the amount of feature overlap, the contrary is observed
for an oversampling approach.

Although this difference between approaches is noticeable, it is not yet clear if it changes
the performance of the classification algorithms. For example, it is still possible that even
though the feature overlap increased with this approach, that a classification algorithm
will perform better after this preprocessing method was performed, when compared to a
cleaning approach. Potentially signifying that the feature overlap metrics do not provide
much information about how overlapped a domain is.

Similarly to the previous sections the results for the preprocessing of the datasets in group
II is also shown (Table 3.16). Much like the previously shown algorithms, MWMOTE does
not address feature overlap in any meaningful capacity. On the other hand it is expected a
decrease on the structural and instance overlap metrics like what was observed for datasets
in group I.

dataset preproc N3 N4 kDN AugR N1 N2 ONB F1 F1v F3 F4
pima original 0.4947 0.4149 0.3193 0.2658 0.6117 0.4966 0.4447 0.6568 0.3463 0.9926 0.9591
pima MWMOTE 0.2277 0.2151 0.2892 0.2224 0.3944 0.4350 0.3883 0.6285 0.3285 0.9928 0.9662
yeast-0-5-6-7-9_vs_4 original 0.4722 0.4722 0.1086 0.0838 0.6944 0.5041 0.3460 0.4329 0.1987 0.9189 0.6973
yeast-0-5-6-7-9_vs_4 MWMOTE 0.0000 0.3780 0.0578 0.0508 0.4365 0.0063 0.0704 0.4336 0.2032 0.8889 0.7372
ecoli-0-1-4-7_vs_2-3-5-6 original 0.4286 0.1905 0.0703 0.0339 0.4762 0.4448 0.2968 0.6395 0.1005 0.8856 0.6822
ecoli-0-1-4-7_vs_2-3-5-6 MWMOTE 0.0344 0.0591 0.0754 0.0538 0.1040 0.1885 0.1053 0.5304 0.1307 0.9173 0.6963
yeast-0-2-5-6_vs_3-7-8-9 original 0.3286 0.5714 0.1048 0.0625 0.5571 0.4287 0.3108 0.6073 0.1887 0.8935 0.7898
yeast-0-2-5-6_vs_3-7-8-9 MWMOTE 0.0001 0.5244 0.0674 0.0663 0.2798 0.0057 0.0721 0.6173 0.1987 0.9035 0.7800
yeast-0-2-5-7-9_vs_3-6-8 original 0.2143 0.2429 0.0511 0.0327 0.3429 0.3771 0.1649 0.3675 0.1126 0.8707 0.7486
yeast-0-2-5-7-9_vs_3-6-8 MWMOTE 0.0001 0.3062 0.0350 0.0371 0.1592 0.0061 0.0437 0.3655 0.1322 0.8991 0.8255

Table 3.16: Complexity Measure values before and after MWMOTE for the group II
datasets

The instance level metrics had a similar behaviour to the algorithms analysed before, where
most of them decreased a fair amount. The amount by which the values decreased is not
as significative as the ones observed in the NB-Basic and NB-Tomek algorithms or even as
significative as the decreases seen on the datasets of group I. Granted the initial values of
these datasets were not nearly as high.

Similarly to the instance level metrics the decrease seen for these datasets was not as
significative as the ones seen for this group with the previous algorithms. Furthermore,
the decrease was also not nearly as significative as the one seen for the datasets of group
I, using this same algorithm, but similarly to the instance level metrics the values of the
original datasets were not nearly as high in comparison to group I.

As for feature overlap metrics the results match the expected outcome, where for the most
part no decrease was seen in any of the metrics, in some cases the values even increased
after the algorithm was applied. This behaviour is very similar to what was seen in the
datasets of group I analysed previously.

SMOTE-ENN

Similar to the previous algorithm, SMOTE-ENN also introduces new samples in the
dataset, however after oversampling a cleaning approach is also undertaken to remove
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overlapped samples. Both these oversampling and cleaning approach are done taking into
consideration the nearest neighbours of the samples and not any structural information
provided by the dataset and as such there should not be a big decrease in structural
overlap like it was found with the MWMOTE method.

Table 3.17 shows the results for the complexity measures before and after SMOTE-ENN
is applied for the datasets of group I.

dataset preproc N3 N4 kDN AugR N1 N2 ONB F1 F1v F3 F4
glass-0-1-4-6_vs_2 original 0.9167 0.6667 0.1264 0.0833 0.9167 0.6362 0.4773 0.7568 0.3632 0.5417 0.0000
glass-0-1-4-6_vs_2 SMOTE-ENN 0.0161 0.2177 0.1273 0.1094 0.1452 0.1540 0.1161 0.7720 0.2639 0.7383 0.0352
yeast-1-4-5-8_vs_7 original 0.8571 0.9048 0.0807 0.0494 0.9524 0.6108 0.4900 0.8506 0.5775 0.8313 0.5617
yeast-1-4-5-8_vs_7 SMOTE-ENN 0.0000 0.3848 0.1105 0.1005 0.1022 0.0816 0.0820 0.8093 0.4889 0.9114 0.7697
glass-0-1-6_vs_2 original 0.8333 0.8333 0.1526 0.1037 0.1022 0.0816 0.0820 0.7793 0.3439 0.5704 0.0963
glass-0-1-6_vs_2 SMOTE-ENN 0.0000 0.2000 0.1342 0.1111 0.1417 0.1516 0.1314 0.7852 0.2238 0.7613 0.2840
glass-0-1-5_vs_2 original 0.8333 0.6667 0.1719 0.0992 1.0000 0.6369 0.4855 0.8787 0.3863 0.4959 0.0826
glass-0-1-5_vs_2 SMOTE-ENN 0.0000 0.1414 0.1317 0.1202 0.1717 0.1210 0.1188 0.8934 0.2774 0.6971 0.3413
glass2 original 0.6667 0.6667 0.1333 0.0867 0.8333 0.5877 0.4438 0.7524 0.3892 0.5267 0.0600
glass2 SMOTE-ENN 0.0150 0.1429 0.1181 0.1033 0.1504 0.1513 0.1286 0.7595 0.2446 0.7269 0.1107
yeast-1_vs_7 original 0.7143 0.5714 0.1050 0.0652 0.7619 0.5662 0.4629 0.7116 0.2786 0.7671 0.4627
yeast-1_vs_7 SMOTE-ENN 0.0000 0.3390 0.1123 0.1231 0.1199 0.1011 0.0973 0.6710 0.2745 0.8735 0.7032

Table 3.17: Complexity Measure values before and after SMOTE-ENN for the group I
datasets

Similar results are found between this approach and MWMOTE where N3 and N4 decrease
notably but kDN and AugR more or less maintain the same values. When compared to
the basic cleaning approaches it seems that N3 and N4 find a larger decrease, similar to
what was observed with MWMOTE as well.

The results obtained for the structural metrics were very similar to the ones obtained with
MWMOTE, however as mentioned previously this algorithm does not take into account
structural properties of the dataset, so there should not have been a big decrease like what
was observed previously with MWMOTE.

Finally, for the feature overlap metrics, a similar effect was found to the previous oversam-
pling method, where no notable decrease was observed, with some cases even increasing
the value.

The results for the group II datasets using this algorithm were also analysed and are shown
in Table 3.18. Overall the results expected somewhat similar to the ones theorized for
MWMOTE with a predicted decrease in the already small values of instance and structural
overlap. The results for feature overlap are not as clear to predict as this algorithm both
oversamples and cleans the dataset, and as such it is possible that it decreases feature
overlap like what was observed for the cleaning approaches or that it maintains/increases
it like it was seen for the MWMOTE oversampling approach.

dataset preproc N3 N4 kDN AugR N1 N2 ONB F1 F1v F3 F4
pima original 0.4947 0.4149 0.3193 0.2658 0.6117 0.4966 0.4447 0.6568 0.3463 0.9926 0.9591
pima SMOTE-ENN 0.0800 0.5400 0.2193 0.1764 0.3900 0.3001 0.1868 0.4634 0.2271 0.8455 0.7618
yeast-0-5-6-7-9_vs_4 original 0.4722 0.4722 0.1086 0.0838 0.6944 0.5041 0.3460 0.4329 0.1987 0.9189 0.6973
yeast-0-5-6-7-9_vs_4 SMOTE-ENN 0.0031 0.2086 0.0648 0.0591 0.0675 0.1203 0.0786 0.4187 0.1755 0.9212 0.7803
ecoli-0-1-4-7_vs_2-3-5-6 original 0.4286 0.1905 0.0703 0.0339 0.4762 0.4448 0.2968 0.6395 0.1005 0.8856 0.6822
ecoli-0-1-4-7_vs_2-3-5-6 SMOTE-ENN 0.0000 0.1061 0.0397 0.0315 0.0657 0.0826 0.0506 0.6223 0.1073 0.9056 0.6707
yeast-0-2-5-6_vs_3-7-8-9 original 0.3286 0.5714 0.1048 0.0625 0.5571 0.4287 0.3108 0.6073 0.1887 0.8935 0.7898
yeast-0-2-5-6_vs_3-7-8-9 SMOTE-ENN 0.0017 0.4307 0.0865 0.0766 0.0842 0.0852 0.0819 0.5862 0.2378 0.9298 0.8702
yeast-0-2-5-7-9_vs_3-6-8 original 0.2143 0.2429 0.0511 0.0327 0.3429 0.3771 0.1649 0.3675 0.1126 0.8707 0.7486
yeast-0-2-5-7-9_vs_3-6-8 SMOTE-ENN 0.0000 0.2620 0.0406 0.0397 0.0527 0.0686 0.0444 0.3639 0.1204 0.9016 0.8310

Table 3.18: Complexity Measure values before and after SMOTE-ENN for the group II
datasets

Both the instance and structural metrics behaved as expected as both decreased somewhat
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in comparison to its original values.

Overall the result for the feature overlap metrics was still a positive as most of the values
still decreased, however most likely due to the nature of the oversampling part of the
algorithm the decrease in value was not nearly as much as the ones seen by the cleaning
approaches. However, unlike MWMOTE there was still a noticeable decrease overall.

Feature Selection (FS)

The idea behind this preprocessing method is to reduce the amount of redundant features.
While removing these features will probably increase the feature based metrics it is unclear
if the performance of classifiers will be affected by this increase. Table 3.19 shows the results
for the group I datasets before and after this pre-processing method, while Table 3.20 shows
the results for group II.

dataset preproc N3 N4 kDN AugR N1 N2 ONB F1 F1v F3 F4
glass-0-1-4-6_vs_2 orig 0.9167 0.6667 0.1264 0.0833 0.9167 0.6362 0.4773 0.7568 0.3632 0.5417 0.0000
glass-0-1-4-6_vs_2 FS 0.8333 0.7500 0.1250 0.0694 0.9167 0.8072 0.5114 0.4507 0.3010 0.3819 0.3819
yeast-1-4-5-8_vs_7 orig 0.8571 0.9048 0.0807 0.0494 0.9524 0.6108 0.4900 0.8506 0.5775 0.8313 0.5617
yeast-1-4-5-8_vs_7 FS 0.9048 0.8571 0.0790 0.0432 1.0000 0.9387 0.5074 0.7265 0.5043 0.9177 0.9177
glass-0-1-6_vs_2 orig 0.8333 0.8333 0.1526 0.1037 1.0000 0.5859 0.4736 0.7793 0.3439 0.5704 0.0963
glass-0-1-6_vs_2 FS 0.6667 0.5000 0.1096 0.0963 0.7500 0.4287 0.4116 0.4033 0.2939 0.2815 0.2815
glass-0-1-5_vs_2 orig 0.8333 0.6667 0.1719 0.0992 1.0000 0.6369 0.4855 0.8787 0.3863 0.4959 0.0826
glass-0-1-5_vs_2 FS 0.6667 0.7500 0.1405 0.1074 0.9167 0.6837 0.4255 0.4958 0.3220 0.3967 0.3967
glass2 orig 0.6667 0.6667 0.1333 0.0867 0.8333 0.5877 0.4438 0.7524 0.3892 0.5267 0.0600
glass2 FS 0.9167 0.3333 0.1320 0.1133 1.0000 0.8460 0.5054 0.4339 0.3729 0.2200 0.2200
yeast-1_vs_7 orig 0.7143 0.5714 0.1050 0.0652 0.7619 0.5662 0.4629 0.7116 0.2786 0.7671 0.4627
yeast-1_vs_7 FS 0.8571 0.7143 0.1056 0.0745 0.9048 0.5668 0.4635 0.4732 0.2419 0.7422 0.7422

Table 3.19: Complexity measure values before and after Feature Selection for the group I
datasets

dataset preproc N3 N4 kDN AugR N1 N2 ONB F1 F1v F3 F4
pima original 0.4947 0.4149 0.3193 0.2658 0.6117 0.4966 0.4447 0.6568 0.3463 0.9926 0.9591
pima FS 0.4628 0.3936 0.3156 0.2509 0.6489 0.3893 0.4284 0.5252 0.3229 0.9870 0.9870
yeast-0-5-6-7-9_vs_4 original 0.4722 0.4722 0.1086 0.0838 0.6944 0.5041 0.3460 0.4329 0.1987 0.9189 0.6973
yeast-0-5-6-7-9_vs_4 FS 0.5000 0.5833 0.1038 0.0811 0.6944 0.3200 0.3276 0.3613 0.1584 0.8135 0.8135
ecoli-0-1-4-7_vs_2-3-5-6 original 0.4286 0.1905 0.0703 0.0339 0.4762 0.4448 0.2968 0.6395 0.1005 0.8856 0.6822
ecoli-0-1-4-7_vs_2-3-5-6 FS 0.3810 0.4762 0.0661 0.0508 0.4762 0.3135 0.2614 0.3705 0.1001 0.7839 0.7839
yeast-0-2-5-6_vs_3-7-8-9 original 0.3286 0.5714 0.1048 0.0625 0.5571 0.4287 0.3108 0.6073 0.1887 0.8935 0.7898
yeast-0-2-5-6_vs_3-7-8-9 FS 0.5571 0.5143 0.1085 0.0696 0.7286 0.3508 0.3680 0.5032 0.1458 0.9233 0.9233
yeast-0-2-5-7-9_vs_3-6-8 original 0.2143 0.2429 0.0511 0.0327 0.3429 0.3771 0.1649 0.3675 0.1126 0.8707 0.7486
yeast-0-2-5-7-9_vs_3-6-8 FS 0.2286 0.1714 0.0494 0.0256 0.3143 0.1926 0.1459 0.2730 0.1022 0.8168 0.8168

Table 3.20: Complexity measure values before and after Feature Selection for the group II
datasets

Like it was expected the value of metrics like F4 increased drastically, on the other hand F1
and F3 seems to remain the same or decrease slightly. As for the remaining families some
values seemed to increase slightly while others decreased, but these variations were not
significative enough and most measures remained the same before and after preprocessing.

3.3.3 Classifier Performance

This section details the performance of the Random Forest classifier used before and after
all the preprocessing algorithms (SMOTE-ENN, NB-Basic, NB-Tomek, MWMOTE and
Feature Selection) were used as well as the difference between both scenarios. These results
are presented in Tables 3.21-3.24 except NB-Tomek which can be found in appendix C
(Table C.3) due to obtaining similar results to NB-Basic. These tables are sorted from
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the highest difference to lowest, thus it is expected that for MWMOTE, SMOTE-ENN,
NB-Basic and NB-Tomek datasets from group I rank among the highest. While for Feature
Selection it is expected that some datasets show slight increases due to the reduction of
dimensionality, despite the increase in feature overlap.

Dataset Difference original SMOTE-ENN
glass-0-1-6_vs_5 0.7778 0.0222 0.8000
glass-0-1-6_vs_2 0.5401 0.0222 0.5623
cleveland-0_vs_4 0.4833 0.0167 0.5000
glass-0-1-4-6_vs_2 0.4286 0.0000 0.4286
glass2 0.3079 0.0889 0.3968
glass5 0.2778 0.4000 0.6778
ecoli3 0.2356 0.4587 0.6943
yeast-0-5-6-7-9_vs_4 0.2281 0.3446 0.5727
ecoli-0-3-4-6_vs_5 0.1508 0.7883 0.9390
yeast-1-4-5-8_vs_7 0.1006 0.0000 0.1006
ecoli-0-3-4_vs_5 0.0874 0.9066 0.9939
glass-0-1-5_vs_2 0.0369 0.0000 0.0369
yeast3 0.0368 0.6719 0.7087
glass-0-4_vs_5 0.0333 0.9667 1.0000
vehicle1 0.0291 0.5114 0.5405
ecoli-0-1_vs_5 0.0282 0.8146 0.8428
yeast-0-2-5-6_vs_3-7-8-9 0.0223 0.5845 0.6068
ecoli-0-1-4-7_vs_5-6 0.0209 0.6415 0.6624
ecoli-0_vs_1 0.0120 0.9880 1.0000
newthyroid2 0.0039 0.8947 0.8986
vehicle2 0.0008 0.9914 0.9921
glass-0-1-2-3_vs_4-5-6 0.0001 0.8552 0.8553
glass-0-6_vs_5 0.0000 1.0000 1.0000
iris0 0.0000 1.0000 1.0000
shuttle-c2-vs-c4 0.0000 1.0000 1.0000
vowel0 -0.0012 0.9824 0.9812

Dataset Difference original SMOTE-ENN
ecoli1 -0.0057 0.7398 0.7342
ecoli-0-1-4-6_vs_5 -0.0122 0.6970 0.6848
vehicle0 -0.0139 0.9326 0.9187
ecoli2 -0.0146 0.8119 0.7973
yeast-2_vs_4 -0.0191 0.8310 0.8120
page-blocks-1-3_vs_4 -0.0238 0.9441 0.9203
new-thyroid1 -0.0283 0.9474 0.9191
yeast-0-2-5-7-9_vs_3-6-8 -0.0354 0.8532 0.8177
ecoli-0-6-7_vs_3-5 -0.0365 0.8298 0.7933
vehicle3 -0.0411 0.5390 0.4980
ecoli-0-4-6_vs_5 -0.0414 0.9055 0.8641
ecoli-0-1-4-7_vs_2-3-5-6 -0.0443 0.8983 0.8540
ecoli-0-1_vs_2-3-5 -0.0460 0.6925 0.6466
ecoli-0-1-3-7_vs_2-6 -0.0478 0.5778 0.5300
ecoli-0-6-7_vs_5 -0.0480 0.8322 0.7842
pima -0.0892 0.6512 0.5620
glass0 -0.0906 0.7171 0.6265
ecoli-0-2-6-7_vs_3-5 -0.0990 0.8727 0.7737
yeast-2_vs_8 -0.1032 0.4786 0.3753
glass6 -0.1094 0.9333 0.8239
ecoli-0-3-4-7_vs_5-6 -0.1166 0.9974 0.8808
glass4 -0.1365 0.7302 0.5937
yeast-1_vs_7 -0.1368 0.4949 0.3581
glass1 -0.1376 0.7201 0.5825
yeast-0-3-5-9_vs_7-8 -0.1583 0.4626 0.3043
ecoli4 -0.2559 0.8848 0.6289

Table 3.21: Performance of Random Forest before and after preprocessing using SMOTE-
ENN. The datasets from group I are marked in bold

For the results with SMOTE-ENN (Table 3.21), most datasets from group I are on the
top of the table presenting the highest differences. The standout from group I is yeast-
1_vs_7 which seemed to get worse after preprocessing showing up at the bottom of the
list. Furthermore, some other datasets such as cleveland-0_vs_4, glass5, ecoli3, yeast-0-
5-6-7-9_vs_4 and ecoli-0-3-4-6_vs_5 also have with high differences, even above yeast-1-
4-5-8_vs_7, a dataset which is part of group I.

The datasets from group II show up mostly on the bottom or middle of the table as they
seem to remain unchanged after the preprocessing, which is in accordance to what was
expected. The exception to this rule is the aforementioned yeast-0-5-6-7-9_vs_4 which
shows differences almost as large as other datasets in group II.

A similar pattern is observed with the datasets preprocessed with NB-Basic (Table 3.22),
the members of group I mostly find themselves at the top of the table, except for yeast-
1_vs_7 which shows almost no change. Furthermore, the same datasets seen in the previ-
ous preprocessing method that did not belong to group I are once again at the top of the
table indicating that potentially, these datasets have some characteristic that causes them
to show high differences.

As for the results with MWMOTE (Table 3.23), once more the same datasets from group
I show up at the top of the table, indicating a very consistent behaviour when a technique
is used that reduced their high structural and instance overlap. Similarly, the same outlier
datasets that do not belong to group I are also found again among the top differences,
solidifying the consistent behaviour found previously.
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Dataset Difference original NB-Basic
cleveland-0_vs_4 0.6889 0.0167 0.7056
glass-0-1-5_vs_2 0.3900 0.0000 0.3900
glass-0-1-4-6_vs_2 0.3642 0.0000 0.3642
glass-0-1-6_vs_2 0.3359 0.0222 0.3581
ecoli-0-1-3-7_vs_2-6 0.3222 0.5778 0.9000
glass2 0.3189 0.0889 0.4078
glass-0-1-6_vs_5 0.3094 0.0222 0.3316
yeast-1-4-5-8_vs_7 0.2346 0.0000 0.2346
ecoli-0-1_vs_2-3-5 0.1601 0.6925 0.8527
yeast-0-5-6-7-9_vs_4 0.1105 0.3446 0.4551
yeast3 0.0854 0.6719 0.7573
newthyroid2 0.0770 0.8947 0.9717
ecoli1 0.0602 0.7398 0.8000
new-thyroid1 0.0463 0.9474 0.9937
glass-0-1-2-3_vs_4-5-6 0.0405 0.8552 0.8957
glass-0-4_vs_5 0.0333 0.9667 1.0000
ecoli-0-1_vs_5 0.0188 0.8146 0.8334
yeast-2_vs_8 0.0140 0.4786 0.4926
glass-0-6_vs_5 0.0000 1.0000 1.0000
iris0 0.0000 1.0000 1.0000
shuttle-c2-vs-c4 0.0000 1.0000 1.0000
ecoli-0-4-6_vs_5 -0.0012 0.9055 0.9043
ecoli-0-1-4-6_vs_5 -0.0100 0.6970 0.6871
vehicle1 -0.0180 0.5114 0.4934
ecoli3 -0.0197 0.4587 0.4390
glass6 -0.0274 0.9333 0.9059

Dataset Difference original NB-Basic
ecoli2 -0.0442 0.8119 0.7677
yeast-1_vs_7 -0.0621 0.4949 0.4327
yeast-0-2-5-7-9_vs_3-6-8 -0.0660 0.8532 0.7872
ecoli-0-6-7_vs_5 -0.0667 0.8322 0.7656
ecoli4 -0.0720 0.8848 0.8128
ecoli-0-3-4_vs_5 -0.0729 0.9066 0.8337
glass5 -0.0731 0.4000 0.3269
vehicle3 -0.0776 0.5390 0.4614
ecoli-0-1-4-7_vs_5-6 -0.0785 0.6415 0.5630
ecoli-0-3-4-6_vs_5 -0.0807 0.7883 0.7076
ecoli-0-6-7_vs_3-5 -0.0807 0.8298 0.7491
ecoli-0_vs_1 -0.0917 0.9880 0.8963
yeast-0-2-5-6_vs_3-7-8-9 -0.0936 0.5845 0.4909
vowel0 -0.1066 0.9824 0.8758
yeast-2_vs_4 -0.1097 0.8310 0.7213
glass0 -0.1121 0.7171 0.6049
ecoli-0-2-6-7_vs_3-5 -0.1167 0.8727 0.7560
pima -0.1256 0.6512 0.5257
glass1 -0.1333 0.7201 0.5868
yeast-0-3-5-9_vs_7-8 -0.1964 0.4626 0.2663
vehicle0 -0.1999 0.9326 0.7327
glass4 -0.2557 0.7302 0.4744
ecoli-0-1-4-7_vs_2-3-5-6 -0.3048 0.8983 0.5935
page-blocks-1-3_vs_4 -0.3506 0.9441 0.5935
ecoli-0-3-4-7_vs_5-6 -0.4168 0.9974 0.5806
vehicle2 -0.6665 0.9914 0.3248

Table 3.22: Performance of Random Forest before and after preprocessing using NB-Basic.
The datasets from group I are marked in bold

Dataset Difference original MWMOTE
glass-0-1-6_vs_5 0.9629 0.0222 0.9851
cleveland-0_vs_4 0.4733 0.0167 0.4900
glass-0-1-6_vs_2 0.4441 0.0222 0.4663
glass2 0.3239 0.0889 0.4128
glass5 0.2726 0.4000 0.6726
glass-0-1-4-6_vs_2 0.2017 0.0000 0.2017
ecoli3 0.1908 0.4587 0.6495
glass-0-1-5_vs_2 0.1109 0.0000 0.1109
ecoli-0-3-4-6_vs_5 0.0993 0.7883 0.8875
vehicle1 0.0974 0.5114 0.6088
ecoli-0-1-4-7_vs_5-6 0.0880 0.6415 0.7294
ecoli-0-1_vs_2-3-5 0.0822 0.6925 0.7747
yeast-0-5-6-7-9_vs_4 0.0817 0.3446 0.4263
vehicle3 0.0747 0.5390 0.6138
glass-0-4_vs_5 0.0333 0.9667 1.0000
yeast3 0.0281 0.6719 0.7000
ecoli-0-4-6_vs_5 0.0203 0.9055 0.9257
yeast-2_vs_4 0.0194 0.8310 0.8505
pima 0.0191 0.6512 0.6703
ecoli-0-1-4-6_vs_5 0.0185 0.6970 0.7155
glass-0-1-2-3_vs_4-5-6 0.0179 0.8552 0.8731
ecoli-0-3-4_vs_5 0.0164 0.9066 0.9229
yeast-1-4-5-8_vs_7 0.0075 0.0000 0.0075
ecoli-0-2-6-7_vs_3-5 0.0065 0.8727 0.8792
yeast-1_vs_7 0.0019 0.4949 0.4968
newthyroid2 0.0014 0.8947 0.8962

Dataset Difference original MWMOTE
glass-0-6_vs_5 0.0000 1.0000 1.0000
iris0 0.0000 1.0000 1.0000
shuttle-c2-vs-c4 0.0000 1.0000 1.0000
vehicle0 -0.0017 0.9326 0.9309
glass1 -0.0018 0.7201 0.7182
glass0 -0.0021 0.7171 0.7149
yeast-0-2-5-6_vs_3-7-8-9 -0.0023 0.5845 0.5821
ecoli-0-1_vs_5 -0.0036 0.8146 0.8111
yeast-0-2-5-7-9_vs_3-6-8 -0.0042 0.8532 0.8490
vehicle2 -0.0056 0.9914 0.9858
page-blocks-1-3_vs_4 -0.0074 0.9441 0.9368
new-thyroid1 -0.0088 0.9474 0.9386
ecoli1 -0.0099 0.7398 0.7300
vowel0 -0.0134 0.9824 0.9690
ecoli-0-6-7_vs_5 -0.0175 0.8322 0.8147
ecoli2 -0.0180 0.8119 0.7939
ecoli-0_vs_1 -0.0195 0.9880 0.9685
ecoli-0-6-7_vs_3-5 -0.0196 0.8298 0.8102
ecoli-0-1-4-7_vs_2-3-5-6 -0.0421 0.8983 0.8562
yeast-0-3-5-9_vs_7-8 -0.0491 0.4626 0.4135
yeast-2_vs_8 -0.0547 0.4786 0.4238
ecoli-0-1-3-7_vs_2-6 -0.0587 0.5778 0.5190
glass6 -0.1145 0.9333 0.8188
glass4 -0.1419 0.7302 0.5883
ecoli-0-3-4-7_vs_5-6 -0.1835 0.9974 0.8139
ecoli4 -0.2632 0.8848 0.6216

Table 3.23: Performance of Random Forest before and after preprocessing using MW-
MOTE. The datasets from group I are marked in bold

Finally, the results for Feature Selection (Table 3.24) are within expectation. While the
values of the feature metrics increased, the performance of the classifier in most datasets
tended to remain the same. There were some exceptions in the case of glass5 and glass-0-
1-6_vs_5 which saw a increase in 0.3 and ecoli-0-1-4-7_vs_2-3-5-6 which decreased 0.4.
But in comparison to the remaining algorithms most datasets tended to maintain the same
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Dataset Difference original FS
glass5 0.3000 0.0000 0.3000
glass-0-1-6_vs_5 0.3000 0.0000 0.3000
glass-0-1-6_vs_2 0.2857 0.0000 0.2857
glass-0-1-4-6_vs_2 0.1333 0.0000 0.1333
ecoli4 0.1231 0.8000 0.9231
ecoli-0-1-4-6_vs_5 0.0606 0.6667 0.7273
yeast-2_vs_4 0.0419 0.7857 0.8276
ecoli-0-6-7_vs_5 0.0333 0.8000 0.8333
page-blocks-1-3_vs_4 0.0078 0.9333 0.9412
cleveland-0_vs_4 0.0000 0.0000 0.0000
ecoli-0-1-3-7_vs_2-6 0.0000 0.6667 0.6667
ecoli-0-1_vs_2-3-5 0.0000 0.7273 0.7273
ecoli-0-1_vs_5 0.0000 0.9091 0.9091
ecoli-0-2-6-7_vs_3-5 0.0000 0.9091 0.9091
ecoli-0-3-4-6_vs_5 0.0000 0.8000 0.8000
ecoli-0-3-4_vs_5 0.0000 0.9091 0.9091
ecoli-0-4-6_vs_5 0.0000 0.9091 0.9091
ecoli-0-6-7_vs_3-5 0.0000 0.8333 0.8333
ecoli-0_vs_1 0.0000 0.9787 0.9787
ecoli3 0.0000 0.5000 0.5000
glass-0-1-5_vs_2 0.0000 0.0000 0.0000
glass-0-4_vs_5 0.0000 1.0000 1.0000
glass2 0.0000 0.3333 0.3333
glass4 0.0000 0.8000 0.8000
glass6 0.0000 0.9333 0.9333
iris0 0.0000 1.0000 1.0000

Dataset Difference original FS
new-thyroid1 0.0000 0.9474 0.9474
newthyroid2 0.0000 0.8889 0.8889
shuttle-c2-vs-c4 0.0000 1.0000 1.0000
yeast-1-4-5-8_vs_7 0.0000 0.0000 0.0000
yeast-2_vs_8 0.0000 0.5000 0.5000
glass0 -0.0393 0.7222 0.6829
pima -0.0465 0.6216 0.5752
ecoli1 -0.0472 0.7556 0.7083
yeast3 -0.0493 0.6829 0.6337
vowel0 -0.0532 0.9818 0.9286
ecoli-0-3-4-7_vs_5-6 -0.0769 1.0000 0.9231
ecoli2 -0.0800 0.8000 0.7200
glass-0-1-2-3_vs_4-5-6 -0.1108 0.8966 0.7857
yeast-0-2-5-7-9_vs_3-6-8 -0.1164 0.8571 0.7407
ecoli-0-1-4-7_vs_5-6 -0.1273 0.7273 0.6000
yeast-1_vs_7 -0.1282 0.4615 0.3333
vehicle0 -0.1286 0.9421 0.8136
yeast-0-5-6-7-9_vs_4 -0.1688 0.4545 0.2857
yeast-0-2-5-6_vs_3-7-8-9 -0.1733 0.5333 0.3600
vehicle3 -0.1768 0.5000 0.3232
glass-0-6_vs_5 -0.2000 1.0000 0.8000
vehicle1 -0.3072 0.5000 0.1928
yeast-0-3-5-9_vs_7-8 -0.3211 0.3211 0.0000
glass1 -0.3288 0.6692 0.3404
vehicle2 -0.3698 0.7848 0.4151
ecoli-0-1-4-7_vs_2-3-5-6 -0.4000 0.4000 0.0000

Table 3.24: Performance of Random Forest before and after preprocessing using FS

performance before and after preprocessing which is precisely what was expected.

Outlier Group

When analysing the performance of the classifiers in the previous section some datasets
which didn’t belong to group I seemed to consistently show up with high differences between
the original and the preprocessed dataset.

This section will go into some detail analysing those datasets trying to understand why
values observed were obtained, by looking at their complexity metrics before and after
preprocessing.

Table 3.25 shows the complexity measures for the outlier datasets divided by instance,
structural and feature overlap metrics.

dataset N3 N4 kDN AugR N1 N2 ONB F1 F1v F3 F4
cleveland-0_vs_4 0.4000 0.9000 0.0704 0.0720 0.5000 0.5052 0.5109 0.3346 0.0535 0.7760 0.0000
ecoli-0-1-3-7_vs_2-6 0.4000 0.4000 0.0386 0.0355 0.6000 0.3609 0.3260 0.3845 0.0395 0.2081 0.0000
glass-0-1-6_vs_5 0.1429 0.1429 0.0477 0.0308 0.7143 0.4232 0.2427 0.3819 0.1542 0.1462 0.0000
glass5 0.4286 0.1429 0.0517 0.0397 0.7143 0.4232 0.2427 0.4328 0.1054 0.1391 0.0000
ecoli3 0.6000 0.1600 0.1102 0.0975 0.6800 0.5684 0.3698 0.3661 0.1623 0.4449 0.2161

Table 3.25: Instance overlap values for the outlier datasets

When analysing the instance overlap metrics the only high value obtained is N4 for
cleveland-0_vs_4, which could help explain why this dataset always showed very high
differences when a preprocessing algorithm that addressed instance overlap was used. As
for the remaining datasets none show high values for any of the metrics, so their high
differences can not be justified by the amount of instance overlap present.

As for structural metrics cleveland-0_vs_4 has average values for N1 and N2 and while its
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ONB value is also in the middle of the scale, it is worth noting that values above 0.5 were
rarely found indicating that for this metric a value such as this could already indicate a
very high structural overlap.

Furthermore, the remaining datasets have at least one of the structural complexity metrics
above 0.5. In some cases such as ecoli3 both N1 and N2 are above this threshold.

Except for cleveland-0_vs_4 which has high instance and a somewhat high structural
overlap, the remaining 4 datasets all have average instance overlap and relatively high
structural overlap.

Finally, for the feature overlap, the values are more or less the same as the datasets found
in group I with overall low F1v and F4 scores. In most cases all the datasets in this group
also have very low F1 and F3 scores except for cleveland-0_vs_4 which has a relatively
high F3.

The outlier datasets found, except for cleveland-0_vs_4 which could be considered part of
group I, can be joined in a third group of high structural overlap, average instance overlap
and low feature overlap. It is expected that after preprocessing that the structural metrics
will go down, which will justify why such high differences were found between the original
and the preprocessed datasets.

In the appendix C the values before and after preprocessing for MWMOTE, SMOTE-
ENN, NB-Tomek and NB-Basic (Tables C.4-C.7) can be seen. These results effectively
reflect what was already seen in the dataset from group I, where notable reductions were
seen for instance and structural overlap for every algorithm. Furthermore, the feature
overlap values also lowered significantly for the cleaning approaches also similar to what
was observed with the group I datasets.
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3.3.4 Discussion

RQ3: What is the validity of the complexity measure taxonomy?

At first glance it might seem apparent that the instance and structural metrics are linked,
since in a lot of cases it is notable that when the instance overlap increases/decreases,
the structural overlap follows the same behaviour. This fact could be indicative of two
possibilities: (i) There is a lack of variety of datasets openly available in online repositories
in regard to the different families of measures; (ii) The instance and structural overlap
metrics are inherently linked and as such when the instance overlap is high, the structural
overlap follows to have high values as well.

After careful observation an outlier group was found that presents relatively high structural
overlap with lower values for instance overlap, indicating that it may be possible to find
one without the other. Although the difference between the values of these two families is
not as noticeable as the difference found between instance and feature overlap for datasets
in group I. Which still indicates the possibility that there is a limit to how much structural
metrics can vary given a value for instance metrics. Even if it is possible to find cases
where these two families of complexity exist separately there is a need for more datasets
to be made available that distinguish not only between these two families, but, if possible,
but between the four families of the taxonomy. That way more experiments could be done
isolating each of the families a priori which could better help understand the behaviour of
these metrics and preprocessing algorithms.

As far as the sensibility of the metrics is concerned, it is important to note that even
though all metrics are on a scale from 0 to 1, where in theory 0.5 would indicate an average
complexity scenario, some metrics do not behave this way. For example, ONB presents its
highest values at around 0.5, which is in theory average complexity, but these values are
usually accompanied by high values for N1 and N2. This indicates that 0.5 is already a
high value for ONB, which might be due to the fact that this metric gives a singular value
for both classes. Even though this value is weighted to account for class imbalance the
majority class can still heavily influence the final result. Meaning values higher than 0.5
can only be achieved if most samples in the majority class are also overlapped, which is
not the case in a lot of scenarios.

A similar argument can be used for the kDN and AugR metrics which do not seem to
achieve high values overall, only obtaining results around 0.2-0.3. These values are usually
accompanied by high results for N3 and N4. Since kDN and AugR also show a singular
value for both classes they can be heavily influenced by the majority class samples that
are not overlapped, not allowing the metric to achieve high results. This implies that
values around 0.2-0.3 already potentially indicate a high overlap scenario. Furthermore,
both of these metrics seemed to be more resilient to the use of preprocessing algorithms
unlike N3 and N4 which always lowered. While this could be indicative that kDN and
AugR are in the wrong overlap family, this is most likely due to the effects of imbalance, as
explained previously. As such it is safe to assume that the four instance measures analysed
belong to the correct family of the taxonomy. The same argument can be made for the
structural metrics (N1, N2 and ONB) as datasets in group I saw a consistent reduction for
the intended preprocessing algorithms and had a matching high performance with the RF
classifier. Although, considering the possibility that the instance and structural family are
linked, some of these metrics may be measuring both types of overlap simultaneously.

As for the feature metrics, most values consistently increased or decreased, after the use of
the preprocessing algorithms. Even for cases where a decrease/increase was not expected,
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it could be justified by the choice of preprocessing algorithm and not by virtue of the met-
rics’ properties. These results indicate their correct placement in the taxonomy. Despite
this, the feature level metrics seemed to provide a very lacking picture of how complex
the problem truly was, as even when there were increases to their values, the classifica-
tion algorithm still achieved higher performances after preprocessing, like in the case of
MWMOTE and Feature Selection preprocessing algorithms.

Finally, it is worth mentioning again that the multi-resolution metrics were not experi-
mented with, due to the lack of consistent values obtained, caused by the difficulty in
parameterization. While in theory these measures could provide a better picture of a
dataset’s complexity by using both global and local information, they are not very prac-
tical to use in studies where a lot of datasets are used at once, as each dataset needs a
specific set of parameters.

Knowing this the main takeaways from these experiments were:

• (i) The structural and instance level overlap metrics might be linked, as both families
seem to behave in the same way;

• (ii) There is a lack of variety of datasets available representative of the 3 families of
overlap analysed;

• (iii) Augmented R-Value and kDN seemed to behave differently from N3 and N4.
This is not necessarily indicative that they measure different types of overlap, as it
is most likely due to the effects of imbalance;

• (iv) While in theory only values above 0.5 should indicate high overlap, metrics like
ONB already indicate this scenario with values between 0.4 - 0.5. This is most likely
due to the existence of imbalance which is known to hide the effects of overlap. This
shows the usefulness of splitting the metrics into two values, one for the majority
class and one for the minority;

• (v) Feature level metrics appear to not be as relevant as the remaining two families
studied. This was especially notable with the case of the Feature Selection algorithm
which saw these metrics increase, but the performance of the classifier remained
mostly the same before and after preprocessing.

RQ4: How effective are preprocessing algorithms in what concerns to overlap
reduction?

Another point to analyse is how the preprocessing methods were expected to behave and
how they actually worked in practice. Out of the 5 preprocessing techniques used (NB-
Basic, NB-Tomek, and SMOTE-ENN, MWMOTE and Feature Selection) it was expected
that techniques that only consider a local neighbourhood such as NB-Basic, NB-Tomek and
SMOTE-ENN would mainly reduce instance level overlap [13] and MWMOTE which also
considers structural information would have a bigger effect on the reduction of structural
metrics as well.

The observed results showed that, when compared to the cleaning algorithms, MWMOTE
reduced instance overlap somewhat similarly, for the datasets in group I. While when look-
ing at the values of N3 it might seem that MWMOTE performed better, no differences are
seen for kDN. Furthermore, AugR and N4 show a higher reduction when the cleaning ap-
proaches are used. So overall no approach seems superior to the other when only observing
these values.
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On the other hand, like it was expected MWMOTE was able to reduce structural overlap
much more than the cleaning algorithms. However, when compared to SMOTE-ENN
both seem to reduce structural overlap significantly. In many cases SMOTE-ENN even
surpasses MWMOTE in reducing the value of these metrics. This last result is unexpected
as SMOTE-ENN does not actively deal with structural issues as MWMOTE attempts
to. It is clear that even algorithms like NB-Basic and NB-Tomek which do not consider
structural overlap still address it just by virtue of removing samples from the dataset,
removing complexity from the structure. Therefore, it is not impossible that SMOTE-
ENN was also able to address structural problems present in the dataset.

It is also interesting to note that while cleaning approaches were only meant to reduce
instance overlap a fair reduction was also seen in the feature overlap metrics. While it is
true that this algorithm only cares about local information, by removing invasive samples
each feature becomes more discriminative. As such, it follows that the feature metrics also
lower, since their values are tied to the discriminative power of the dataset features. On
the other hand, when looking at an oversampling algorithm like MWMOTE, which inserts
samples in the dataset, the opposite effect was seen and a lot of the values for the feature
metrics increased as a consequence.

When analysing the performance increase of the classification algorithms after preprocess-
ing we notice that MWMOTE and SMOTE-ENN provide higher performance increases
when compared to the cleaning algorithms. So even though the cleaning algorithms reduce
feature overlap, this reduction is not reflected in the performance of the classification algo-
rithms. This confirms that out of the 3 families studied feature overlap is the one that gives
the least amount of information on the complexity of datasets. This idea makes sense as
feature metrics consider entire features as a whole, completely ignoring local information,
making them heavily affected by noisy samples and small disjuncts.

It was also expected that datasets from group I would rank among the top when either of
the cleaning algorithms, SMOTE-ENN or MWMOTE were used. These algorithms would
address instance and structural overlap present in these datasets which would cause a large
performance boost. This was more or less what was observed, while these datasets ranked
mostly at the top showing very large performance boosts, there were some among group
I which consistently ranked towards the bottom showing almost no increase, like yeast-
1_vs_7. When analysing the results of the complexity measures for this dataset before
and after preprocessing it is clear to see why, the values of the instance and structural
metrics did not decrease nearly enough when compared to the remaining datasets in group
I. As such the performance barely changes which is consistent with the results obtained
for the classifier.

On the other hand the outlier group ranked among the top datasets showing the highest
difference alongside the datasets of group I. However, when analysing these datasets we
can see most of them have a very strong structural overlap component that decreases after
preprocessing. This would explain why there is such a high performance boost in the first
place.

To summarize, the main takeaways from these experiments were:

• (i) Cleaning approaches are very effective at reducing feature overlap since by remov-
ing noisy samples from the dataset each feature becomes much more discriminative.
On the other hand, oversampling approaches have the opposite effect, where they
increase feature overlap;

• (ii) Neighbourhood based approaches are very effective at reducing instance overlap
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as stated in [13]. However, they are also surprisingly effective at reducing structural
overlap even with algorithms that do not take into account structural properties of
the dataset.
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Chapter 4

Conclusion

As some works previously have identified, the presence of imbalance in conjunction with
other problems like dataset shift and overlap can greatly degrade the performance of data
analysis algorithms. This work was particularly motivated on trying to understand the rela-
tionship between an algorithm’s performance degradation and dataset shift in imbalanced
contexts. Furthermore, this study was also motivated on tying to get a better under-
standing of how the current set of overlap complexity measures behaves in the presence of
imbalance.

The experiments done with dataset shift confronts the results obtained in [12], where four
cross validation algorithms which induce different degrees of dataset shift are analysed.
The same algorithms are tested, but this research expands on the mentioned experiments
with a larger dataset pool, analysing different performance metrics, experimenting with
oversampling algorithms to measure the impact of imbalance and by backing up the results
with dataset complexity measures, providing a more complete coverage.

The results obtained somewhat agree with the ones in [12], where partitioning methods
that induce more dataset shift like MSSCV and SCV cause the classification algorithms to
obtain worse performances than partitioning algorithms that more actively combat dataset
shift such as DBSCV and DOBSCV. Where this study disagrees with the results in [12]
is where DOBSCV does not outperform DBSCV like it was expected. Results showed, in
fact, that the two algorithms do not appear to have any statistical differences, potentially
indicating that DOBSCV does not reduce dataset shift when compared to DBSCV like
intended. This idea is supported by the analysis done using the complexity measures,
where datasets partitioned with DBSCV and DOBSCV show very similar values between
the training and testing partitions, which indicates both combat dataset shift similarly.

Finally, the experiments done with the oversampling algorithms showed that between im-
balance and dataset shift, the factor that most degrades the performance of classification
algorithms is dataset shift. While, imbalance does cause a degradation in performance in
some algorithms such as the C4.5 decision tree and SVM, the kNN and Naive Bayes are not
so much affected by the use of an oversampling algorithms, however, dataset shift always
degrades an algorithms’ performance regardless of the classification algorithm used.

Future work in this area could consist in extending this study for more classifiers similar
to what was done in [12] and analysing in more detail the differences between DBSCV and
DOBSCV, to better understand why no statistical differences were found between the two
algorithms. Furthermore, a new CV algorithm could also be proposed that attempts to
decrease dataset shift even further.
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The experiments with overlap started by creating a new complexity measure package py-
col which incorporates multiple complexity measures including the most common ones
introduced in [16] to newer ones which were not implemented in any complexity measure
package. The package also implements the imbalanced version of some metrics proposed
in the literature along with one vs one and one vs all approaches for all metrics.

Experiments were performed using this package in order to validate the taxonomy proposed
in [13]. A total of 52 imbalanced datasets from the KEEL repository were selected with
varying imbalance ratios. And multiple pre-processing methods were chosen that try to
reduce the different types of overlap according to the taxonomy.

These experiments helped in validating the taxonomy proposed when it came to feature
overlap metrics as most of them had a similar behaviour. However, an interesting behaviour
was seen for the instance and structural metrics that appear to be somewhat connected. It
is unclear if these two families are always linked or if it is due to the datasets used. It does
make sense that the structural metrics increase when the instance overlap grow as most of
them are built on the concept of distance and nearest neighbour approaches which is the
same concept the instance metrics are built upon.

A better understanding of the preprocessing algorithms was also obtained. The cleaning
approaches which in theory only tackle instance overlap ended up being able to reduce the
3 families studied. Oversampling algorithms seem to work for both instance and structural
overlap suggesting once again the connection between these two families. Finally, these
experiments confirmed that feature overlap is not the most important out of the families
as even in scenarios where it increases, the performance of classification algorithms can
increase as well, showing the need for more local approaches rather than global. Eventually
the multi resolution metrics could work better for this, but experiments showed that these
metrics are very sensitive to parametrization and are not easy to use in scenarios like
this one where multiple datasets are tested, as each dataset would need a different set of
parameters.

Future work in this area could be done in trying to better understand the parameterization
needed for multi resolution metrics. Experiments can also be done testing with measures
in the pycol package which were not used in this study. Furthermore, more preprocess-
ing algorithms can be experimented with, to further understand the relationship between
instance and structural metrics. If these metrics are independent, more datasets should
be made available distinguishing between these types of overlap. Even if they are linked
there must be an effort to publish datasets where it is made clear what type of overlap is
present.

Despite the lack of datasets representative of each overlap family, the pycol package can
make experimentation much easier now, so that a further understanding of overlap and
overlap complexity measures can be obtained.
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Appendix A

Dataset shift

Exploratory Analysis Figures

This section contains the remaining figures used for exploratory analysis for the SVM and
Naive Bayes classifier, analysing both the impact of the cross validation and preprocessing
method chosen.

Figure A.1 and Figure A.2 show the box plots of the oversampling techniques vs perfor-
mance for these two classifiers. Similarly, Figure A.3 and Figure A.4 show the box plots
for the cross validation algorithms vs performance.

Figure A.1: Oversampling Algorithm vs Performance for SVM

Similarly to what was shown in the results section, depending on the classifier the reducing
the imbalance through the use of an oversampling method has different effects, sometimes
increasing the performance, like the case of the SVM, and in the case of the Naive Bayes
the results are inconsistent.

On the other hand, when we observe the cross validation methods (Figure A.3 and Figure
A.4), we see the same effect shown before. Where datasets split with MSSCV cause the
worse performance for the classifiers and DBSCV and DOBSCV are the best performing
out of the four tested.
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Figure A.2: Oversampling Algorithm vs Performance for Naive Bayes

Figure A.3: Cross Validation Algorithm vs Performance for SVM

Figure A.4: Cross Validation vs Performance for Naive Bayes

Statistical Analysis Tables

In this section, the remaining tables used for the statistical analysis of dataset shift are
show, Tables A.1-A.4 show the averages for the F-Measure, Precision, Recall and AUC,
for all the classification algorithms. MSSCV is highlighted, showing consistently worse
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performances, like how it was described in the Results and Discussion Section.

Algorithm CV F-Measure Precision Recall AUC

ADASYN-I

DBSCV 0.5642 0.4981 0.7948 0.8661
DOBSCV 0.5606 0.4972 0.7899 0.865
MSSCV 0.5154 0.5018 0.6958 0.8161

SCV 0.5532 0.4921 0.7784 0.8569

ADOMS-I

DBSCV 0.5494 0.4855 0.8067 0.871
DOBSCV 0.547 0.4851 0.8019 0.8699
MSSCV 0.5021 0.4915 0.727 0.8157

SCV 0.538 0.48 0.7885 0.8618

AHC-I

DBSCV 0.5748 0.5033 0.8037 0.8693
DOBSCV 0.573 0.5029 0.8004 0.868
MSSCV 0.524 0.5125 0.7112 0.817

SCV 0.565 0.4979 0.7897 0.8595

Borderline_SMOTE-I

DBSCV 0.5791 0.5414 0.7355 0.8569
DOBSCV 0.5747 0.5381 0.7289 0.856
MSSCV 0.5159 0.52 0.6496 0.8085

SCV 0.5656 0.5278 0.7209 0.8478

Original

DBSCV 0.5812 0.5931 0.6496 0.8741
DOBSCV 0.5781 0.5892 0.6463 0.8732
MSSCV 0.4994 0.5519 0.5698 0.82

SCV 0.5681 0.5835 0.6362 0.8653

ROS-I

DBSCV 0.5678 0.4867 0.8178 0.8756
DOBSCV 0.567 0.4876 0.815 0.8744
MSSCV 0.5244 0.5093 0.7184 0.8209

SCV 0.5593 0.4837 0.803 0.8648

SMOTE-I

DBSCV 0.598 0.5393 0.805 0.8726
DOBSCV 0.5946 0.5376 0.7993 0.8712
MSSCV 0.5322 0.5294 0.7024 0.8196

SCV 0.5835 0.5291 0.7846 0.8625

SMOTE_ENN-I

DBSCV 0.5987 0.5498 0.7988 0.8732
DOBSCV 0.5954 0.5496 0.7928 0.8717
MSSCV 0.531 0.5319 0.6922 0.8205

SCV 0.5839 0.54 0.7774 0.8624

SMOTE_TL-I

DBSCV 0.5952 0.5371 0.8143 0.8728
DOBSCV 0.5918 0.5371 0.8082 0.8715
MSSCV 0.5359 0.5265 0.7154 0.8213

SCV 0.5818 0.5283 0.7948 0.863

Safe-Level_SMOTE-I

DBSCV 0.5666 0.4831 0.8228 0.8744
DOBSCV 0.5655 0.483 0.8193 0.8734
MSSCV 0.5266 0.5057 0.7336 0.8223

SCV 0.5598 0.4811 0.8098 0.8657

Table A.1: Performance Measures for Naive Bayes

Algorithm CV F-Measure Precision Recall AUC

ADASYN-I

DBSCV 0.5642 0.4981 0.7948 0.8661
DOBSCV 0.5606 0.4972 0.7899 0.865
MSSCV 0.5154 0.5018 0.6958 0.8161

SCV 0.5532 0.4921 0.7784 0.8569

ADOMS-I

DBSCV 0.5494 0.4855 0.8067 0.871
DOBSCV 0.547 0.4851 0.8019 0.8699
MSSCV 0.5021 0.4915 0.727 0.8157

SCV 0.538 0.48 0.7885 0.8618

AHC-I

DBSCV 0.5748 0.5033 0.8037 0.8693
DOBSCV 0.573 0.5029 0.8004 0.868
MSSCV 0.524 0.5125 0.7112 0.817

SCV 0.565 0.4979 0.7897 0.8595

Borderline_SMOTE-I

DBSCV 0.5791 0.5414 0.7355 0.8569
DOBSCV 0.5747 0.5381 0.7289 0.856
MSSCV 0.5159 0.52 0.6496 0.8085

SCV 0.5656 0.5278 0.7209 0.8478

Original

DBSCV 0.5812 0.5931 0.6496 0.8741
DOBSCV 0.5781 0.5892 0.6463 0.8732
MSSCV 0.4994 0.5519 0.5698 0.82

SCV 0.5681 0.5835 0.6362 0.8653

ROS-I

DBSCV 0.5678 0.4867 0.8178 0.8756
DOBSCV 0.567 0.4876 0.815 0.8744
MSSCV 0.5244 0.5093 0.7184 0.8209

SCV 0.5593 0.4837 0.803 0.8648

SMOTE-I

DBSCV 0.598 0.5393 0.805 0.8726
DOBSCV 0.5946 0.5376 0.7993 0.8712
MSSCV 0.5322 0.5294 0.7024 0.8196

SCV 0.5835 0.5291 0.7846 0.8625

SMOTE_ENN-I

DBSCV 0.5987 0.5498 0.7988 0.8732
DOBSCV 0.5954 0.5496 0.7928 0.8717
MSSCV 0.531 0.5319 0.6922 0.8205

SCV 0.5839 0.54 0.7774 0.8624

SMOTE_TL-I

DBSCV 0.5952 0.5371 0.8143 0.8728
DOBSCV 0.5918 0.5371 0.8082 0.8715
MSSCV 0.5359 0.5265 0.7154 0.8213

SCV 0.5818 0.5283 0.7948 0.863

Safe-Level_SMOTE-I

DBSCV 0.5666 0.4831 0.8228 0.8744
DOBSCV 0.5655 0.483 0.8193 0.8734
MSSCV 0.5266 0.5057 0.7336 0.8223

SCV 0.5598 0.4811 0.8098 0.8657

Table A.2: Performance Measures for kNN
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Algorithm CV F-Measure Precision Recall AUC

ADASYN-I

DBSCV 0.5856 0.4849 0.8684 0.8498
DOBSCV 0.5839 0.4845 0.8649 0.8477
MSSCV 0.5421 0.4919 0.7852 0.7828

SCV 0.5802 0.485 0.8568 0.8424

ADOMS-I

DBSCV 0.5901 0.4982 0.848 0.8479
DOBSCV 0.5909 0.5002 0.8471 0.8475
MSSCV 0.5461 0.5039 0.7722 0.781

SCV 0.5843 0.4979 0.837 0.8411

AHC-I

DBSCV 0.6006 0.5086 0.8505 0.8514
DOBSCV 0.6016 0.5095 0.851 0.8519
MSSCV 0.5574 0.5136 0.7794 0.7901

SCV 0.5957 0.5084 0.8427 0.8461

Borderline_SMOTE-I

DBSCV 0.6105 0.5326 0.8271 0.843
DOBSCV 0.6117 0.5352 0.8247 0.8425
MSSCV 0.5467 0.5123 0.7439 0.7745

SCV 0.603 0.5294 0.813 0.8356

Original

DBSCV 0.4215 0.5819 0.3686 0.678
DOBSCV 0.4187 0.5735 0.3678 0.6773
MSSCV 0.3402 0.418 0.3376 0.6478

SCV 0.4092 0.5583 0.3613 0.6734

ROS-I

DBSCV 0.606 0.5177 0.855 0.852
DOBSCV 0.6051 0.5171 0.8521 0.8512
MSSCV 0.5508 0.5084 0.7741 0.7855

SCV 0.5978 0.5135 0.8425 0.8448

SMOTE-I

DBSCV 0.6149 0.5303 0.8573 0.854
DOBSCV 0.6147 0.5315 0.8554 0.8529
MSSCV 0.5614 0.5211 0.7786 0.7893

SCV 0.6085 0.5289 0.8463 0.847

SMOTE_ENN-I

DBSCV 0.614 0.5309 0.8453 0.8512
DOBSCV 0.6141 0.5323 0.844 0.8506
MSSCV 0.5547 0.5183 0.7657 0.7853

SCV 0.6077 0.5295 0.8351 0.8449

SMOTE_TL-I

DBSCV 0.604 0.507 0.8848 0.8505
DOBSCV 0.6035 0.5077 0.8814 0.8491
MSSCV 0.559 0.5075 0.8025 0.7886

SCV 0.599 0.507 0.8716 0.8442

Safe-Level_SMOTE-I

DBSCV 0.6055 0.5142 0.8588 0.8538
DOBSCV 0.6048 0.5146 0.8568 0.8526
MSSCV 0.5531 0.5098 0.7763 0.7867

SCV 0.5991 0.5139 0.8467 0.8464

Table A.3: Performance Measures for SVM

Algorithm CV F-Measure Precision Recall AUC

ADASYN-I

DBSCV 0.5856 0.4849 0.8684 0.8498
DOBSCV 0.5839 0.4845 0.8649 0.8477
MSSCV 0.5421 0.4919 0.7852 0.7828

SCV 0.5802 0.485 0.8568 0.8424

ADOMS-I

DBSCV 0.5901 0.4982 0.848 0.8479
DOBSCV 0.5909 0.5002 0.8471 0.8475
MSSCV 0.5461 0.5039 0.7722 0.781

SCV 0.5843 0.4979 0.837 0.8411

AHC-I

DBSCV 0.6006 0.5086 0.8505 0.8514
DOBSCV 0.6016 0.5095 0.851 0.8519
MSSCV 0.5574 0.5136 0.7794 0.7901

SCV 0.5957 0.5084 0.8427 0.8461

Borderline_SMOTE-I

DBSCV 0.6105 0.5326 0.8271 0.843
DOBSCV 0.6117 0.5352 0.8247 0.8425
MSSCV 0.5467 0.5123 0.7439 0.7745

SCV 0.603 0.5294 0.813 0.8356

Original

DBSCV 0.4215 0.5819 0.3686 0.678
DOBSCV 0.4187 0.5735 0.3678 0.6773
MSSCV 0.3402 0.418 0.3376 0.6478

SCV 0.4092 0.5583 0.3613 0.6734

ROS-I

DBSCV 0.606 0.5177 0.855 0.852
DOBSCV 0.6051 0.5171 0.8521 0.8512
MSSCV 0.5508 0.5084 0.7741 0.7855

SCV 0.5978 0.5135 0.8425 0.8448

SMOTE-I

DBSCV 0.6149 0.5303 0.8573 0.854
DOBSCV 0.6147 0.5315 0.8554 0.8529
MSSCV 0.5614 0.5211 0.7786 0.7893

SCV 0.6085 0.5289 0.8463 0.847

SMOTE_ENN-I

DBSCV 0.614 0.5309 0.8453 0.8512
DOBSCV 0.6141 0.5323 0.844 0.8506
MSSCV 0.5547 0.5183 0.7657 0.7853

SCV 0.6077 0.5295 0.8351 0.8449

SMOTE_TL-I

DBSCV 0.604 0.507 0.8848 0.8505
DOBSCV 0.6035 0.5077 0.8814 0.8491
MSSCV 0.559 0.5075 0.8025 0.7886

SCV 0.599 0.507 0.8716 0.8442

Safe-Level_SMOTE-I

DBSCV 0.6055 0.5142 0.8588 0.8538
DOBSCV 0.6048 0.5146 0.8568 0.8526
MSSCV 0.5531 0.5098 0.7763 0.7867

SCV 0.5991 0.5139 0.8467 0.8464

Table A.4: Performance Measures for C4.5
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The following table shows the results from the non-parametric Friedman test done for
the 4 cross validation algorithms, for every oversampling algorithm as well as the original
datasets. The tables show if the test was below or above the threshold of 0.05 significance
level:

Algorithm F Value Lower Thres.
ADASYN-I 162.3151 Yes
ADOMS-I 138.4347 Yes

AHC-I 147.2931 Yes
Borderline_SMOTE-I 149.8662 Yes

Original 108.859 Yes
ROS-I 172.039 Yes

SMOTE-I 167.5986 Yes
SMOTE_ENN-I 162.9456 Yes
SMOTE_TL-I 150.0558 Yes

Safe-Level_SMOTE-I 161.719 Yes

Table A.5: Results of the Friedman test comparing the CV Algorithms for each Oversam-
pling Algorithm

The following tables show the post hoc tests done for the C4.5 Decision tree, for every
pre-processing algorithm used, the DBSCV and DOBSCV algorithms are highlighted to
show that among the CV methods these two were always statistical similar:

DBSCV DOBSCV SCV MSSCV
DBSCV 1.0 0.4159 0.001 0.001

DOBSCV 0.4159 1.0 0.001 0.001
MSSCV 0.001 0.001 1.0 0.001

SCV 0.001 0.001 0.001 1.0

Table A.6: Post Hoc test results for ADASYN-I

DBSCV DOBSCV SCV MSSCV
DBSCV 1.0 0.9 0.001 0.001

DOBSCV 0.9 1.0 0.001 0.001
MSSCV 0.001 0.001 1.0 0.001

SCV 0.001 0.001 0.001 1.0

Table A.7: Post Hoc test results for ADOMS-I

DBSCV DOBSCV SCV MSSCV
DBSCV 1.0 0.734 0.001 0.001

DOBSCV 0.734 1.0 0.001 0.001
MSSCV 0.001 0.001 1.0 0.001

SCV 0.001 0.001 0.001 1.0

Table A.8: Post Hoc test results for AHC-I
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DBSCV DOBSCV SCV MSSCV
DBSCV 1.0 0.6421 0.001 0.001

DOBSCV 0.6421 1.0 0.001 0.001
MSSCV 0.001 0.001 1.0 0.001

SCV 0.001 0.001 0.001 1.0

Table A.9: Post Hoc test results for Borderline SMOTE-I

DBSCV DOBSCV SCV MSSCV
DBSCV 1.0 0.3964 0.001 0.001

DOBSCV 0.3964 1.0 0.001 0.0042
MSSCV 0.001 0.001 1.0 0.001

SCV 0.001 0.0042 0.001 1.0

Table A.10: Post Hoc test results for the original datasets

DBSCV DOBSCV SCV MSSCV
DBSCV 1.0 0.3403 0.001 0.001

DOBSCV 0.3403 1.0 0.001 0.001
MSSCV 0.001 0.001 1.0 0.001

SCV 0.001 0.001 0.001 1.0

Table A.11: Post Hoc test results for ROS-I

DBSCV DOBSCV SCV MSSCV
DBSCV 1.0 0.4948 0.001 0.001

DOBSCV 0.4948 1.0 0.001 0.001
MSSCV 0.001 0.001 1.0 0.001

SCV 0.001 0.001 0.001 1.0

Table A.12: Post Hoc test results for SMOTE-I

DBSCV DOBSCV SCV MSSCV
DBSCV 1.0 0.5502 0.001 0.001

DOBSCV 0.5502 1.0 0.001 0.001
MSSCV 0.001 0.001 1.0 0.001

SCV 0.001 0.001 0.001 1.0

Table A.13: Post Hoc test results for SMOTE-ENN-I

DBSCV DOBSCV SCV MSSCV
DBSCV 1.0 0.7156 0.001 0.001

DOBSCV 0.7156 1.0 0.001 0.001
MSSCV 0.001 0.001 1.0 0.001

SCV 0.001 0.001 0.001 1.0

Table A.14: Post Hoc test results for SMOTE-TL-I

DBSCV DOBSCV SCV MSSCV
DBSCV 1.0 0.2733 0.001 0.001

DOBSCV 0.2733 1.0 0.001 0.001
MSSCV 0.001 0.001 1.0 0.001

SCV 0.001 0.001 0.001 1.0

Table A.15: Post Hoc test results for Safe-Level-SMOTE-I
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Metric Validation

In this section, the validation process of the complexity measures will be detailed. with
that goal in mind, three of the developed measures will be shown. These measures serve
as an example for the process of validation which was performed for all measures.

T1

As stated, before, the T1 measure defines boundaries around each sample in the dataset
by finding its nearest enemy and drawing hyperspheres around them. After that process
is complete, the hyperspheres which are completely contained inside another are removed.

Figure B.1 shows a simple example of the hyperspheres that would be created, before the
removal processes.

Figure B.1: Simple T1 test

In this example, there are a total of 7 samples which each generate their hypersphere, out
of all of them only one is completely contained inside another, which should be removed.
Figure B.2 shows the effect of removing the overlapped spheres.

Out of a total of 7 samples, 6 hyperspheres remain after removal, as such using the formula
described previously, T1 should be equal to 6/7 which was the value obtained by the pycol
package.

Another example can be seen in B.3, in this example no circles are completely contained
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Figure B.2: Simple T1 test, after removal

inside another, as such the none is removed contrary to what happened in the previous
example. The expected value for pycol in this case is 1.0, since every sample has a circle
surrounding it, which was the value obtained.

Figure B.3: Second T1 test

Augmented R-Value

The R value measure is a distance based measure which uses the nearest neighbours of all
samples to determine how many are in the overlapped region. The parameters picked for
this test is a neighbourhood of k=3 and a threshold of 1. In other words, if more than 1
neighbour out of the 3 nearest ones is of a different class, that sample is, according to this
measure, in the overlapped region.

Figure B.4 shows an example of dataset used for this test. Out of the seven samples
present, four of them are in the overlapped region, according to the parameters describes
previously. The three orange samples, and the leftmost blue sample.

As such, according to equation 2.35 the r(Cmin, Cmaj) is 3/3 and r(Cmaj , Cmin) is 1/4.
Considering the imbalance ratio which is 0.75, the augmented r value according to 2.34
should be 1/(1+ 0.75) ∗ (1/4+ 0.75 ∗ 1) = 0.5714, which is precisely the value obtained by
the pycol package.
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Figure B.4: Simple R Value test

Following the same logic, we can look at the second example in figure B.5, presented below:

Figure B.5: Second simple R Value test

In this case, the imbalance ratio and the number of samples is the same, if the same
parameters for k and theta are maintained, the same number of samples for blue are in the
overlapped region, however this time only two of the orange samples are in the overlapped.
Following the previously mentioned equations, r(Cmin, Cmaj) is 2/3 and r(Cmaj , Cmin) is
1/4. As such, the augmented r value for this dataset is 1/(1 + 0.75) ∗ (1/4 + 0.75 ∗ 2/3) =
0.4285, which is the value obtained by the package.

Purity

For the purity test, we first start by looking at if the divisions made at each resolution are
being done correctly, for the sake of this example the dataset used will be a very small one,
and the resolution will only go up to 2, which generates nine hypercubes. The results for
the resolution of 0 to 2 can be seen in Figures B.6-B.7.

As it is possible to see at each point, the feature space is being split into evenly spaced
areas in every dimension, starting with a resolution of 0, where there is no partitioning,
and ending with a resolution of 2 where there are 9 cells present.
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Figure B.6: Purity test with resolution=0

Figure B.7: Purity test with resolution=1

Figure B.8: Purity test with resolution=2

Afterwards, each sample is assigned the cell it is in and a class count for each cell is made.
To make this process easier, we assign labels to each cell: Cell 0-0 is the leftmost and
downmost, cell 1-0 is the cell directly to the right of 0-0 and 0-1 is the one directly above.

As the figures show, for the resolution of 0, cell 0-0 (the only existing cell) should have
the following class counts, 4 blue samples and 3 orange ones, which constitutes the whole
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dataset. For the resolution of 1, cell 0-0 should have 3 instances of the blue class, cell 1-0
should have 2 of the orange class and 1 of the blue, cell 1-1 should have 1 of the orange,
while cell 0-1 should be empty. Finally, for the resolution of 3, cell 0-0 should have 2 of the
blue class, 2-0 should have one of each class, cell 0-1 one of the blue class, cells 2-1 and 2-2
one of the orange class, with the remaining cell having none samples. For all resolutions,
these were the assignments made by the package.

The next step would be to calculate the purity of each cell according to the equation 2.58.
To not extend this example too much further, it will only focus on the resolution of 2.
Cells 0-0, 0-1 2-1 and 2-2 should have a purity of 1 (all the samples are the same) while
cell 2-0 should have a purity of 0 (has an equal number of samples from each class), which
were the values obtained by the package.

These values are averaged taking into account the number of samples in each cell, giving
the overall purity values for this resolution of 0.71428, which when weighted according to
equation 2.60 gives a weighted purity of 0.17857.
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Taxonomy Validation

This section shows the results for the taxonomy validation that were left out of the overlap
section. Starting by showing the complexity metrics before and after the use of NB-Tomek
and then showing the results of the Random Forest algorithm before and after NB-Tomek
was performed. After that the results for the outlier group are shown before and after
preprocessing is applied.

NB-Tomek Comparison

dataset preproc N3 N4 kDN AugR N1 N2 ONB F1 F1v F3 F4
glass-0-1-4-6_vs_2 original 0.9167 0.6667 0.1264 0.0833 0.9167 0.6362 0.4773 0.7568 0.3632 0.5417 0.0000
glass-0-1-4-6_vs_2 NB-Basic 0.4167 0.0833 0.1778 0.1222 0.7500 0.5286 0.1955 0.5517 0.2757 0.4111 0.0000
yeast-1-4-5-8_vs_7 original 0.8571 0.9048 0.0807 0.0494 0.9524 0.6108 0.4900 0.8506 0.5775 0.8313 0.5617
yeast-1-4-5-8_vs_7 NB-Basic 0.4286 0.3810 0.0840 0.0605 0.5714 0.4745 0.3023 0.7237 0.3560 0.7402 0.3523
glass-0-1-6_vs_2 original 0.8333 0.8333 0.1526 0.1037 1.0000 0.5859 0.4736 0.7793 0.3439 0.5704 0.0963
glass-0-1-6_vs_2 NB-Basic 0.4167 0.0000 0.1831 0.1084 0.8333 0.4546 0.1673 0.6003 0.2139 0.4940 0.0000
glass-0-1-5_vs_2 original 0.8333 0.6667 0.1719 0.0992 1.0000 0.6369 0.4855 0.8787 0.3863 0.4959 0.0826
glass-0-1-5_vs_2 NB-Basic 0.5000 0.0833 0.2521 0.1370 0.9167 0.5318 0.2240 0.7563 0.1827 0.3562 0.0000
glass2 original 0.6667 0.6667 0.1333 0.0867 0.8333 0.5877 0.4438 0.7524 0.3892 0.5267 0.0600
glass2 NB-Basic 0.3333 0.0000 0.1579 0.1368 0.5833 0.5053 0.1792 0.5501 0.2249 0.4316 0.0000
yeast-1_vs_7 original 0.7143 0.5714 0.1050 0.0652 0.7619 0.5662 0.4629 0.7116 0.2786 0.7671 0.4627
yeast-1_vs_7 NB-Basic 0.4762 0.2857 0.1010 0.0765 0.6190 0.4649 0.3429 0.6393 0.1626 0.6429 0.2704
yeast-0-3-5-9_vs_7-8 original 0.5429 0.5429 0.1442 0.1014 0.8286 0.5186 0.4069 0.7806 0.2968 0.8310 0.5944

Table C.1: Complexity measure values before and after NB-Tomek for the group I datasets

dataset preproc N3 N4 kDN AugR N1 N2 ONB F1 F1v F3 F4
pima original 0.4947 0.4149 0.3193 0.2658 0.6117 0.4966 0.4447 0.6568 0.3463 0.9926 0.9591
pima NB-Tomek 0.0372 0.0160 0.1196 0.0959 0.1117 0.3379 0.2389 0.3447 0.1751 0.5388 0.3105
yeast-0-5-6-7-9_vs_4 original 0.4722 0.4722 0.1086 0.0838 0.6944 0.5041 0.3460 0.4329 0.1987 0.9189 0.6973
yeast-0-5-6-7-9_vs_4 NB-Tomek 0.1111 0.1111 0.0565 0.0471 0.1944 0.3775 0.1547 0.3063 0.0893 0.8863 0.5569
ecoli-0-1-4-7_vs_2-3-5-6 original 0.4286 0.1905 0.0703 0.0339 0.4762 0.4448 0.2968 0.6395 0.1005 0.8856 0.6822
ecoli-0-1-4-7_vs_2-3-5-6 NB-Tomek 0.1905 0.2381 0.0531 0.0339 0.3333 0.3543 0.2193 0.5569 0.0845 0.8757 0.5989
yeast-0-2-5-6_vs_3-7-8-9 original 0.3286 0.5714 0.1048 0.0625 0.5571 0.4287 0.3108 0.6073 0.1887 0.8935 0.7898
yeast-0-2-5-6_vs_3-7-8-9 NB-Tomek 0.1429 0.3000 0.0794 0.0553 0.2857 0.2801 0.1641 0.5020 0.1482 0.8266 0.4950
yeast-0-2-5-7-9_vs_3-6-8 original 0.2143 0.2429 0.0511 0.0327 0.3429 0.3771 0.1649 0.3675 0.1126 0.8707 0.7486
yeast-0-2-5-7-9_vs_3-6-8 NB-Tomek 0.0571 0.2000 0.0227 0.0195 0.1143 0.2580 0.0753 0.3293 0.0923 0.8425 0.6602

Table C.2: Complexity measure values before and after NB-Tomek for the group II datasets
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NB-Tomek Performance

dataset diff original NB-Tomek
glass-0-1-6_vs_5 0.5000 0.0222 0.5222
cleveland-0_vs_4 0.4833 0.0167 0.5000
glass-0-1-4-6_vs_2 0.4677 0.0000 0.4677
glass-0-1-6_vs_2 0.4197 0.0222 0.4419
glass2 0.3863 0.0889 0.4752
glass-0-1-5_vs_2 0.2702 0.0000 0.2702
ecoli-0-1-3-7_vs_2-6 0.2444 0.5778 0.8222
glass5 0.1889 0.4000 0.5889
ecoli3 0.1260 0.4587 0.5847
yeast-0-5-6-7-9_vs_4 0.1177 0.3446 0.4623
yeast3 0.0897 0.6719 0.7616
newthyroid2 0.0733 0.8947 0.9680
glass-0-1-2-3_vs_4-5-6 0.0638 0.8552 0.9191
ecoli1 0.0562 0.7398 0.7960
yeast-0-2-5-6_vs_3-7-8-9 0.0476 0.5845 0.6321
new-thyroid1 0.0435 0.9474 0.9909
ecoli2 0.0371 0.8119 0.8490
glass-0-4_vs_5 0.0333 0.9667 1.0000
ecoli-0-1_vs_5 0.0333 0.8146 0.8480
ecoli-0-1-4-7_vs_5-6 0.0326 0.6415 0.6741
ecoli-0-1-4-6_vs_5 0.0323 0.6970 0.7293
vehicle1 0.0221 0.5114 0.5336
yeast-2_vs_8 0.0177 0.4786 0.4963
ecoli-0-4-6_vs_5 0.0036 0.9055 0.9091
ecoli-0-6-7_vs_5 0.0036 0.8322 0.8359
glass-0-6_vs_5 0.0000 1.0000 1.0000

Dataset Difference original NB-Tomek
glass6 0.0000 0.9333 0.9333
iris0 0.0000 1.0000 1.0000
shuttle-c2-vs-c4 0.0000 1.0000 1.0000
yeast-1-4-5-8_vs_7 0.0000 0.0000 0.0000
ecoli-0-3-4-6_vs_5 -0.0017 0.7883 0.7866
ecoli-0-6-7_vs_3-5 -0.0078 0.8298 0.8220
ecoli-0-2-6-7_vs_3-5 -0.0098 0.8727 0.8629
yeast-1_vs_7 -0.0197 0.4949 0.4752
glass0 -0.0221 0.7171 0.6950
yeast-2_vs_4 -0.0248 0.8310 0.8062
ecoli-0-1_vs_2-3-5 -0.0255 0.6925 0.6670
yeast-0-2-5-7-9_vs_3-6-8 -0.0462 0.8532 0.8070
ecoli-0_vs_1 -0.0492 0.9880 0.9388
ecoli-0-1-4-7_vs_2-3-5-6 -0.0519 0.8983 0.8464
vehicle3 -0.0529 0.5390 0.4861
ecoli-0-3-4_vs_5 -0.0551 0.9066 0.8515
yeast-0-3-5-9_vs_7-8 -0.0632 0.4626 0.3994
glass4 -0.0730 0.7302 0.6571
pima -0.0737 0.6512 0.5775
vowel0 -0.1067 0.9824 0.8757
vehicle0 -0.1227 0.9326 0.8099
glass1 -0.1486 0.7201 0.5714
ecoli4 -0.1489 0.8848 0.7360
ecoli-0-3-4-7_vs_5-6 -0.1886 0.9974 0.8088
page-blocks-1-3_vs_4 -0.3535 0.9441 0.5906
vehicle2 -0.9417 0.9914 0.0496

Table C.3: Performance of Random Forest before and after preprocessing using NB-Tomek.
The datasets from group I are marked in bold

Outlier group Comparison

dataset preproc N3 N4 kDN AugR N1 N2 ONB F1 F1v F3 F4
cleveland-0_vs_4 orig 0.4000 0.9000 0.0704 0.0720 0.5000 0.5052 0.5109 0.3346 0.0535 0.7760 0.0000
cleveland-0_vs_4 NB-Basic 0.2000 0.5000 0.0531 0.0313 0.3000 0.2582 0.2778 0.2377 0.0285 0.6719 0.0000
ecoli-0-1-3-7_vs_2-6 orig 0.4000 0.4000 0.0386 0.0355 0.6000 0.3609 0.3260 0.3845 0.0395 0.2081 0.0000
ecoli-0-1-3-7_vs_2-6 NB-Basic 0.4000 0.0000 0.0224 0.0132 0.3000 0.1114 0.2170 0.2775 0.0313 0.1316 0.0000
glass-0-1-6_vs_5 orig 0.1429 0.1429 0.0477 0.0308 0.7143 0.4232 0.2427 0.3819 0.1542 0.1462 0.0000
glass-0-1-6_vs_5 NB-Basic 0.0000 0.1429 0.0175 0.0000 0.1429 0.2666 0.1637 0.2501 0.0197 0.0777 0.0000

Table C.4: Complexity measure values before and after NB-Basic for the outlier group
datasets

dataset preproc N3 N4 kDN AugR N1 N2 ONB F1 F1v F3 F4
glass-0-1-6_vs_5 orig 0.1429 0.1429 0.0477 0.0308 0.7143 0.4232 0.2427 0.3819 0.1542 0.1462 0.0000
glass-0-1-6_vs_5 MWMOTE 0.0000 0.0033 0.0191 0.0203 0.0325 0.0609 0.0449 0.3819 0.1161 0.5486 0.0000
glass5 orig 0.4286 0.1429 0.0517 0.0397 0.5714 0.4898 0.3065 0.4328 0.1054 0.1391 0.0000
glass5 MWMOTE 0.0000 0.0019 0.0284 0.0313 0.0481 0.0742 0.0339 0.3651 0.0935 0.5309 0.0000
cleveland-0_vs_4 orig 0.4000 0.9000 0.0704 0.0720 0.5000 0.5052 0.5109 0.3346 0.0535 0.7760 0.0000
cleveland-0_vs_4 MWMOTE 0.0000 0.1864 0.0450 0.0493 0.0435 0.1388 0.2633 0.2543 0.0476 0.8783 0.0000
ecoli3 orig 0.6000 0.1600 0.1102 0.0975 0.6800 0.5684 0.3698 0.3661 0.1623 0.4449 0.2161
ecoli3 MWMOTE 0.0000 0.2686 0.0733 0.0783 0.3684 0.0108 0.0869 0.3680 0.1293 0.6896 0.5047

Table C.5: Complexity measure values before and after MWMOTE for the outlier group
datasets
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dataset preproc N3 N4 kDN AugR N1 N2 ONB F1 F1v F3 F4
glass-0-1-6_vs_5 orig 0.1429 0.1429 0.0477 0.0308 0.7143 0.4232 0.2427 0.3819 0.1542 0.1462 0.0000
glass-0-1-6_vs_5 SMOTE-ENN 0.0000 0.0000 0.0187 0.0203 0.0325 0.0472 0.0447 0.3819 0.1286 0.5488 0.0000
glass5 orig 0.4286 0.1429 0.0517 0.0397 0.5714 0.4898 0.3065 0.4328 0.1054 0.1391 0.0000
glass5 SMOTE-ENN 0.0000 0.0000 0.0285 0.0313 0.0486 0.0699 0.0382 0.3907 0.0993 0.5347 0.0000
cleveland-0_vs_4 orig 0.4000 0.9000 0.0704 0.0720 0.5000 0.5052 0.5109 0.3346 0.0535 0.7760 0.0000
cleveland-0_vs_4 SMOTE-ENN 0.0000 0.2347 0.0385 0.0376 0.0510 0.0920 0.1431 0.2851 0.0449 0.8592 0.0000
ecoli3 orig 0.6000 0.1600 0.1102 0.0975 0.6800 0.5684 0.3698 0.3661 0.1623 0.4449 0.2161
ecoli3 SMOTE-ENN 0.0000 0.0962 0.0754 0.0811 0.0913 0.1247 0.0883 0.3518 0.1130 0.6874 0.5036

Table C.6: Complexity measure values before and after SMOTE-ENN for the outlier group
datasets

dataset preproc N3 N4 kDN AugR N1 N2 ONB F1 F1v F3 F4
glass-0-1-6_vs_5 orig 0.1429 0.1429 0.0477 0.0308 0.7143 0.4232 0.2427 0.3819 0.1542 0.1462 0.0000
glass-0-1-6_vs_5 NB-Tomek 0.0000 0.4286 0.0353 0.0252 0.3286 0.2905 0.1741 0.3520 0.1058 0.1345 0.0000
glass5 orig 0.4286 0.1429 0.0517 0.0397 0.5714 0.4898 0.3065 0.4328 0.1054 0.1391 0.0000
glass5 NB-Tomek 0.0000 0.0000 0.0500 0.0303 0.3286 0.2862 0.1589 0.3152 0.0443 0.0985 0.0000
cleveland-0_vs_4 orig 0.4000 0.9000 0.0704 0.0720 0.5000 0.5052 0.5109 0.3346 0.0535 0.7760 0.0000
cleveland-0_vs_4 NB-Tomek 0.3000 0.7000 0.0712 0.0548 0.4000 0.4700 0.3556 0.2612 0.0480 0.6849 0.0000
ecoli3 orig 0.6000 0.1600 0.1102 0.0975 0.6800 0.5684 0.3698 0.3661 0.1623 0.4449 0.2161
ecoli3 NB-Tomek 0.0800 0.0000 0.0159 0.0050 0.1200 0.3381 0.0770 0.2301 0.0644 0.3532 0.0000
ecoli-0-1-3-7_vs_2-6 orig 0.4000 0.4000 0.0386 0.0355 0.6000 0.3609 0.3260 0.3845 0.0395 0.2081 0.0000
ecoli-0-1-3-7_vs_2-6 NB-Tomek 0.4000 0.2000 0.0294 0.0245 0.3000 0.3320 0.2253 0.2872 0.0401 0.1595 0.0000

Table C.7: Complexity measure values before and after NB-Tomek for the outlier group
datasets
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