

João David Marques Santos Ribeiro

A DASHBOARD FOR DECISION SUPPORT IN SELF-
ADAPTIVE CLOUD APPLICATIONS

Dissertation in the context of the Master in Informatics Engineering, specialization in
Software Engineering, advised by Professor Nuno Antunes and José Pereira and

presented to the Department of Informatics Engineering of the Faculty of Sciences
and Technology of the University of Coimbra.

July of 2022

DEPARTMENT OF INFORMATICS ENGINEERING

João David Marques Santos Ribeiro

A Dashboard for Decision Support
in Self-Adaptive Cloud

Applications

Dissertation in the context of the Master in Informatics Engineering,
specialization in Software Engineering, advised by Prof. Nuno Antunes and José

Pereira and presented to the Department of Informatics Engineering of the
Faculty of Sciences and Technology of the University of Coimbra.

July 2022

The work presented in this dissertation was carried out within the Software and
Systems Engineering (SSE) group of the Centre for Informatics and Systems of
the University of Coimbra (CISUC).

This work is partially supported by the project TalkConnect - Voice Architecture
over Distributed Network (reference POCI-01-0247-FEDER-039676) financed by
Fundo Europeu de Desenvolvimento Regional (FEDER) through COMPETE 2020,
from Portugal 2020.

This work has been supervised by Nuno Manuel dos Santos Antunes and José
Alexandre D’Abruzzo Pereira, Professors at the Department of Informatics Engi-
neering of the Faculty of Sciences and Technology of the University of Coimbra.

v

Acknowledgements

I would like to thank professor Nuno Antunes and José Pereira for all the guid-
ance, orientation, and knowledge provided in the course of this dissertation’s
work. Without them, I would not have learned so many things as I did while
working and being guided and supervised by them.

I also would like to thank professors Jorge Granjal and Rui Paiva for all the feed-
back provided in the mid-term presentation which was extremely useful for guid-
ing the work in the second semester.

Also, I would like to thank Miguel Teixeira, Henrique Silva, Paulo Gonçalves,
Pedro Almeida, Carlos Santos, and Francisco Guerra for the amazing group we
created where we interchanged opinions, discussed, learned from each other, and
worked and laughed together.

I want to thank my girlfriend, Inês Bernardes, for all the support, motivation,
patience, and love that were very important at this phase of my life.

Above all, I am grateful to my parents for all the unconditional love, work and
dedication they had that allowed me to be here, at this important phase of my
life, writing this document.

vii

Abstract

Cloud computing has become so popular and widely adopted that plenty of ap-
plications, or parts of it, are hosted in a cloud environment. Furthermore, with
emerging technologies like containers that improve the service offered by clouds,
systems continue to grow and become larger, more fragmented, and more com-
plex. That complexity requires constant monitoring and adaptation to keep up
with demand, and maintain or improve performance without increasing costs
unnecessarily. Also, if a system can self-adapt, management activity becomes
easier as adaptations no longer require supervisors to manually perform them.

Although there are some interesting monitoring solutions, they do not offer au-
tomation of the adaptability part. Thus, self-adaptive enabling tools become
much more attractive as they offer automation of the whole systems manage-
ment activity, from monitoring to adaptations. Among self-adaptive enabling
tools, there are some disadvantages such as environmental restrictions to cloud
providers, the inability to manage more than one system, and the nonexistence
of a complete control loop capable of integrating with any type of system. TMA
(Trustworthiness Monitoring & Assessment Framework) is a monitoring and man-
agement platform that implements a complete control loop capable of providing
any system with self-adaptive capabilities. It dispatches adaptations on systems
based on quality models, which are weighted trees of metrics representing the
requirements of systems. Also, it can manage more than a single system.

In this work it was developed a dashboard for TMA, focusing on functionalities
related to systems monitoring such as the creation and management of charts,
metrics values simulations, and the creation of metrics and quality models. To
support this, TMA’s API component had to be extended and the Analyze com-
ponent automated. Additionally, features for managing adaptation rules were
created so, TMA’s Planning component had its architecture changed and its code
extended and altered.

The dashboard was implemented upon React’s framework, using Semantic UI for
styling, while the TMA components were reprogrammed in the same language
they were written. The choice of development frameworks for the dashboard
was based on multiple factors such as experience, responsiveness, and simplic-
ity. Also, as Maintainability and Usability are attributes the product should have,
React was chosen as it suits both properties. Furthermore, it is a trending tech-
nology, which means there is a lot of support that should ease the development
activity.

Keywords

Cloud applications, self-adaptive systems, TMA, decision support, interface, monitoring

ix

Resumo

A computação em nuvem tornou-se tão popular e amplamente adoptada que
muitas aplicações, ou partes delas, estão alojadas num ambiente cloud. Além
disso, com tecnologias emergentes como os containers que melhoram o serviço
oferecido pelas clouds, os sistemas continuam a crescer e a tornar-se maiores,
mais fragmentados e mais complexos. Essa complexidade requer constante mon-
itorização e adaptação para lidar com a carga, e manter ou melhorar o desem-
penho sem aumentar desnecessariamente os custos. Além disso, se um sistema
se conseguir auto-adaptar, a tarefa de gestão é facilitada, uma vez que deixa de
ser necessário que os supervisores executem as adaptações manualmente.

Embora existam algumas soluções de monitorização interessantes, elas não ofer-
ecem automatização da parte da adaptação. Assim, ferramentas que permitem
auto-adaptação tornam-se muito mais atractivas, uma vez que oferecem automa-
tização de toda a actividade de gestão de sistemas, desde monitorização a adap-
tações. Entre estas ferramentas existem algumas desvantagens, tais como a re-
strição ambiental a fornecedores cloud, incapacidade de gerir mais do que um
sistema e inexistência de um ciclo de controlo completo capaz de se integrar
com qualquer tipo de sistema. O TMA (Trustworthiness Monitoring & Assess-
ment Framework) é uma plataforma de monitorização e gestão que permite auto-
adaptação em sistemas. Ele executa adaptações baseando-se em modelos de qual-
idade, que são árvores de métricas ponderadas que representam os requisitos dos
sistemas. Além disso, o TMA pode gerir mais do que um único sistema.

Neste trabalho foi desenvolvida uma dashboard para o TMA, focada em fun-
cionalidades de monitorização de sistemas como a criação e gestão de gráficos,
simulações de valores de métricas, e criação de métricas e modelos de qualidade.
Para isso, a componente API do TMA teve de ser extendida e a componente An-
alyze de ser automatizada. Adicionalmente, funcionalidades para a gestão das
regras de adaptação foram criadas, por isso a arquitetura da componente Plan-
ning do TMA foi alterada e o seu código alargado e alterado.

A dashboard foi implementada utilizando a framework React, e a framework
Semantic UI para estilização, enquanto que as componentes do TMA foram re-
programadas na mesma linguagem em que foram escritas. A escolha das frame-
works foi baseada em experiência, responsividade e simplicidade. Além disso, a
manutenção e a usabilidade são atributos que o produto deve possuir, daí a es-
colha do React por ser adequado a ambos. Sobre isso, é uma tecnologia popular, o
que significa que há muito suporte e, portanto, a actividade de desenvolvimento
deverá ser facilitada.

Palavras-Chave

aplicações Cloud, sistemas auto-adaptativos, TMA, suporte à decisão, interface, monitor-
ização

xi

List of Publications

The work of this dissertation resulted in the following publication that is submit-
ted for reviewing in a conference:

• João Ribeiro, José Pereira, and Nuno Antunes. "An Experimental Study of
Elasticity in Kubernetes HPA for Microservice Applications", 13º INForum,
Guarda, Portugal, 8-9 September, 2022.

– Abstract: Microservice applications are usually deployed in a cloud environ-
ment, which has a cost per resource used in an Infrastructure as a Service
(IaaS) model. Hence, it is important to allocate only the resources needed
to provide a given quality of service. Container management systems (e.g.,
Kubernetes) can be used to deploy microservice applications. Although cloud
providers have autoscaling services at the instance level, either they do not
have them at the container level, or those services are not easy to use. In
this study, we evaluate the elasticity of Kubernetes Horizontal Pod Autoscaler
(HPA), which adds or removes containers (pods) of a service based on the mean
CPU usage of the deployed ones. To do this assessment, the microservice ap-
plication TeaStore is used, and we created a workload divided into two phases
with diverse operational profiles. Results show that using the self-adaptive
autoscaler HPA increases the throughput by 5%, either when the load exceeds
the threshold that the default configuration can handle or not. Also, as the
HPA scales only the overloaded services, the resources spent for the through-
put speedup show efficiency gains.

xiii

Contents

1 Introduction 1
1.1 Objectives and Approach overview 3
1.2 Document Structure . 4

2 Background 7
2.1 Monitoring Tools . 7

2.1.1 Generic Monitoring Tools . 8
2.1.2 Infrastructure Monitoring Tools 11
2.1.3 Container Monitoring Tools 13
2.1.4 Summary . 13

2.2 Microservices . 14
2.2.1 Monolithic vs Microservices Architecture 15

2.3 Containers . 16
2.3.1 Docker . 17
2.3.2 Kubernetes . 18

2.4 Frontend Development Frameworks 20
2.4.1 Angular . 21
2.4.2 React . 23
2.4.3 Vue.js . 25
2.4.4 Svelte . 26
2.4.5 jQuery . 27
2.4.6 Ember.js . 28
2.4.7 Semantic UI . 31
2.4.8 Frameworks decision . 32

3 State of The Art 35
3.1 Self-Adaptive Systems . 35

3.1.1 TMA . 37
3.1.2 Hogna . 43
3.1.3 Lotus@Runtime . 45
3.1.4 Summary . 47

3.2 Experiment with Kubernetes HPA 48
3.2.1 Experimental Methodology 48
3.2.2 Results and Discussion . 53
3.2.3 Threats to Validity . 57
3.2.4 Summary . 57

4 Requirements 59
4.1 Functional Requirements . 59

xv

Chapter 0

4.1.1 Probe context . 61
4.1.2 Quality Model context . 63
4.1.3 Adaptation context . 64
4.1.4 Decision support extras context 65
4.1.5 Implementation status . 66

4.2 Non-functional requirements and restrictions 67

5 Architecture and Implementation 71
5.1 Architecture . 71
5.2 Implementation . 75

5.2.1 TMA Maintenance . 75
5.2.2 Requirement implementation 77

6 Validation 97
6.1 TMA validation . 97
6.2 Functional requirements validation 98

6.2.1 Validation plan . 99
6.2.2 Results . 104

6.3 Usability validation . 107
6.3.1 Validation plan . 107
6.3.2 Results . 112

6.4 Performance validation . 118
6.4.1 Validation plan . 118
6.4.2 Results . 122

6.5 Maintainability validation . 126

7 Management 131
7.1 Development model . 131
7.2 Requirements management . 132
7.3 Tasks scheduling . 134
7.4 Risk analysis . 137

8 Conclusion and Future Work 141

Appendix A Use cases details 153
A.1 Metrics . 154

A.1.1 Use Case - View Metric information 154
A.1.2 Use Case - Create Metric . 155
A.1.3 Use Case - Create Leaf Attribute Metric 157
A.1.4 Use Case - Update Metric . 157
A.1.5 Use Case - Delete Metric . 159
A.1.6 Use Case - Associate Description to Leaf Attribute Metric . 160
A.1.7 Use Case - Associate Child Metrics 161
A.1.8 Use Case - Preview metrics tree 163

A.2 Quality Models . 163
A.2.1 Use Case - View Quality Model Information 163
A.2.2 Use Case - Create Quality Model 164
A.2.3 Use Case - Update Quality Model 165
A.2.4 Use Case - Delete Quality Model 167

xvi

Contents

A.2.5 Use Case - View Configuration Profile Information 167
A.2.6 Use Case - Create Configuration Profile 168
A.2.7 Use Case - Update Configuration Profile 170
A.2.8 Use Case - Delete Configuration Profile 172
A.2.9 Use Case - Associate Metric to Quality Model 172

A.3 Descriptions . 173
A.3.1 Use Case - View Description Information 173
A.3.2 Use Case - Create Description 174
A.3.3 Use Case - Update Description 175
A.3.4 Use Case - Delete Description 176

A.4 Resources . 177
A.4.1 Use Case - View Resource information 177
A.4.2 Use Case - Create Resource 178
A.4.3 Use Case - Update Resource 180
A.4.4 Use Case - Delete Resource 181
A.4.5 Use Case - Visualize Resource Metrics 182
A.4.6 Use Case - Simulate Resource Metrics 185
A.4.7 Use Case - Plot Plans Alongside Metrics 186
A.4.8 Use Case - Export Chart . 186
A.4.9 Use Case - Associate Configuration Profile to Resource . . . 187
A.4.10 Use Case - Export Chart Configuration 188

A.5 Probes . 189
A.5.1 Use Case - View Probe Information 189
A.5.2 Use Case - Create probe . 190
A.5.3 Use Case - Update Probe . 191
A.5.4 Use Case - Delete probe . 192

A.6 Actuators . 193
A.6.1 Use Case - View Actuator Information 193
A.6.2 Use Case - Create actuator 194
A.6.3 Use Case - Update Actuator 195
A.6.4 Use Case - Delete actuator 196

A.7 Actions . 197
A.7.1 Use Case - View Action information 197
A.7.2 Use Case - Create Action . 198
A.7.3 Use Case - Update Action . 199
A.7.4 Use Case - Delete Action . 201
A.7.5 Use Case - Create Configuration 201
A.7.6 Use Case - Delete Configuration 203
A.7.7 Use Case - Associate Resource to Action 205
A.7.8 Use Case - Associate Actuator to Action 205

A.8 Adaptation Rules . 206
A.8.1 Use Case - View Adaptation Rule Detail 206
A.8.2 Use Case - Create Adaptation Rule 207
A.8.3 Use Case - Update Adaptation Rule 209
A.8.4 Use Case - Delete Adaptation Rule 210

A.9 Plans . 211
A.9.1 Use Case - List occurred plans 211
A.9.2 Use Case - View occurred plan detail 213

xvii

Chapter 0

A.10 Logs . 213
A.10.1 Use Case - Visualize logs . 213
A.10.2 Use Case - View specific logs 214
A.10.3 Use Case - Delete logs . 215

A.11 Dashboard . 216
A.11.1 Use Case - Add chart to Homepage 216
A.11.2 Use Case - Replace chart on Homepage 218
A.11.3 Use Case - Delete chart on Homepage 219

xviii

Acronyms

API Application Programming Interface.

BLOB Binary Large Object.

CISUC Centre for Informatics and Systems of the University of Coimbra.

CLI Command Line Interface.

CPU Central Processing Unit.

CSS Cascading Style Sheet.

DOM Document Object Model.

HPA Horizontal Pod AutoScaler.

HTTP Hypertext Transfer Protocol.

IaaS Infrastructure-As-A-Service.

IP Internet Protocol.

IT Information Technology.

JSX JavaScript Syntax Extension.

MVVM Model-View-ViewModel.

PaaS Platform-As-A-Service.

PDF Portable Document Format.

RAM Random Access Memory.

REST Representational State Transfer.

SaaS Software-As-A-Service.

SEO Search Engine Optimization.

SPA Single Page Application.

SSE Software and Systems Engineering.

TMA Trustworthiness Monitoring & Assessment Framework.

xix

Chapter 0

UC University of Coimbra.

UI User Interface.

VMs Virtual Machines.

YAML YAML Ain’t Markup Language.

xx

List of Figures

2.1 Prometheus architecture (from [16]). 9
2.2 Graphite architecture (from [26]). 10
2.3 Zabbix architecture (from [32]). 12
2.4 Nagios architecture (from [34]). 13
2.5 cAdvisor architecture, integrated with Prometheus and Grafana

(from [36]). 14
2.6 Docker architecture (from [44]). 17
2.7 Kubernetes architecture (from [48]). 19
2.8 Angular architecture (from [50]). 21
2.9 React’s behaviour (from [55]). 24
2.10 Ember’s core building blocks (from [71]). 29

3.1 IBM proposed architecture for self-adaptive systems (from [83]). . . 37
3.2 TMA architecture (from [18]). 38
3.3 Example of a TMA quality model (from [18]). 39
3.4 tma-admin-web’s create action page (from [85]). 41
3.5 tma-admin-web’s create probe page (from [85]). 41
3.6 tma-admin-web’s create resource page (from [85]). 41
3.7 tma-admin-web’s menu page (from [85]). 42
3.8 Hogna architecture (from [86]). 44
3.9 Lotus@Runtime architecture (from [87]). 45
3.10 Self-adaptive systems with Lotus@Runtime (from [87]). 46
3.11 Overview of the experimental methodology followed in this study. 49
3.12 Workload divided in 2 main phases along with its slots identification. 51
3.13 Mean throughput and mean number of pods with HPA when run-

ning the workload . 54
3.14 Mean number of Persistence and WebUI pods with HPA when run-

ning Workload . 56

4.1 Probing Related Use Cases Diagram. 62
4.2 Quality Models Related Use Cases Diagram. 63
4.3 Actuating Related Use Cases Diagram. 64
4.4 Decision Support Extras Use Cases Diagram. 65

5.1 Context architectural diagram. 72
5.2 Trustworthiness Monitoring & Assessment Framework (TMA) and

managed system architecture. 73
5.3 Dashboard, TMA’s API and Planning architecture. 74
5.4 Logs database entity. 76

xxi

Chapter 0

5.5 PlotConfig database entity. 77
5.6 Dashboard top navigation bar . 78
5.7 Dashboard Homepage . 78
5.8 Dashboard’s View Rule Page . 80
5.9 Dashboard’s View Configuration Profile Page 80
5.10 Dashboard’s Create Metric Page . 81
5.11 Dashboard’s List Quality Models Page 82
5.12 Dashboard’s List Quality Models Page 82
5.13 Dashboard’s Simulate Resource Metrics Page 84
5.14 Sequence diagram for forms submission 86
5.15 Payload of createMetric endpoint for the creation of a leaf metric. . . 88
5.16 Payload of createMetric endpoint for the creation of a parent metric. 88
5.17 Payload of createQualityModel endpoint for the creation of a parent

metric. 89
5.18 Payload of createConfigurationProfile endpoint. 90
5.19 Payload of simulateData endpoint. 91
5.20 Payload of addPlotConfig endpoint. 91
5.21 Payload of replacePlotConfig endpoint. 92
5.22 Payload of addRule endpoint. 94

6.1 TalkConnect project’s final quality model. 98
6.2 Usability test form’s semantic differential questions. 111
6.3 Usability test form’s likert scale questions. 112
6.4 Semantic differential questions results. 116
6.5 Likert questions results. 116
6.6 Semantic differential questions results as % of positive answers. . . 117
6.7 Likert questions results as % of positive answers. 117
6.8 Quality model used for the performance validation. 119
6.9 API performance test environment. 120
6.10 Workload applied in the Application Programming Interface (API)

performance test. 121
6.11 Dashboard’s resource consumption after an hour. 123
6.12 Page load results of the dashboard, gotten from Google’s Page-

Speed Insights. 124
6.13 TMA’s API mean throughput in performance test. 124
6.14 Slots 5-8 response time box plot. 125
6.15 Slot 9 response time box plot. 126
6.16 TMA’s API implementation controllers. 127
6.17 TMA’s API MetricController.java endpoints. 127
6.18 Followed Java’s naming and indentation conventions example. . . 128
6.19 Single Page Application (SPA)’s React project structure. 129
6.20 Aggregation method abstract class and an implementation example. 129
6.21 Analyze’s invocation of aggregation method, in red, and opera-

tor’s initialization in the quality model, in green. 130

7.1 Waterfall model steps (adapted from [106]). 132
7.2 Elicited and implemented requirements considering the versions

before and after the addition of new requirements. 133
7.3 Planned Gantt diagram for the first semester. 134

xxii

List of Figures

7.4 Actual Gantt diagram for the first semester. 134
7.5 Planned Gantt diagram for the second semester. 135
7.6 Planned Gantt diagram for the second semester after requirements

changed. 136
7.7 Actual Gantt diagram for the second semester. 136

xxiii

List of Tables

2.1 Comparison of frontend frameworks. 32

3.1 Comparison of self-adaptation tools. 47
3.2 Complete experiment Performance Metrics 53
3.3 Experiment Phase 1 Performance Metrics 55
3.4 Experiment Phase 2 Performance Metrics 55
3.5 Experiment Slots 12 and 14 Performance Metrics 55

4.1 Use cases implementation statuses. 66

6.1 Functional test cases . 100
6.2 Functional test cases results . 104
6.3 Usability test tasks . 108
6.4 Usability test questions . 109
6.5 Usability tasks results . 113
6.6 Usability question results . 114
6.7 TMA’s API performance test workload slot composition. 120
6.8 Response time metrics, in ms, for Slots 5-8 and Slot 9. 125

7.1 Risks Analysis. 137

A.1 Use Case 1.1 - View Metric information 154
A.2 Use Case 1.2 - Create Metric . 155
A.3 Use Case 1.3 - Create Leaf Attribute Metric 157
A.4 Use Case 1.4 - Update Metric . 157
A.5 Use Case 1.5 - Delete Metric . 159
A.6 Use Case 1.6 - Associate Description to Leaf Attribute Metric 160
A.7 Use Case 1.7 - Associate Child Metrics 161
A.8 Use Case 1.8 - Preview metrics tree 163
A.9 Use Case 2.1 - View Quality Model Information 163
A.10 Use Case 2.2 - Create Quality Model 164
A.11 Use Case 2.3 - Update Quality Model 166
A.12 Use Case 2.4 - Delete Quality Model 167
A.13 Use Case 2.5 - View Configuration Profile Information 167
A.14 Use Case 2.6 - Create Configuration Profile 168
A.15 Use Case 2.7 - Update Configuration Profile 170
A.16 Use Case 2.8 - Delete Configuration Profile 172
A.17 Use Case 2.9 - Associate Metric to Quality Model 172
A.18 Use Case 3.1 - View Description Information 173
A.19 Use Case 3.2 - Create Description . 174

xxv

Chapter 0

A.20 Use Case 3.3 - Update Description 175
A.21 Use Case 3.4 - Delete Description . 177
A.22 Use Case 4.1 - View Resource information 177
A.23 Use Case 4.2 - Create Resource . 178
A.24 Use Case 4.3 - Update Resource . 180
A.25 Use Case 4.4 - Delete Resource . 181
A.26 Use Case 4.5 - Visualize Resource Metrics 182
A.27 Use Case 4.6 - Simulate Resource Metrics 185
A.28 Use Case 4.7 - Plot Plans Alongside Metrics 186
A.29 Use Case 4.8 - Export Chart . 187
A.30 Use Case 4.9 - Associate Configuration Profile to Resource 187
A.31 Use Case 4.10 - Export Chart Configuration 189
A.32 Use Case 5.1 - View Probe Information 189
A.33 Use Case 5.2 - Create probe . 190
A.34 Use Case 5.3 - Update Probe . 191
A.35 Use Case 5.4 - Delete probe . 192
A.36 Use Case 6.1 - View Actuator Information 193
A.37 Use Case 6.2 - Create actuator . 194
A.38 Use Case 6.3 - Update Actuator . 195
A.39 Use Case 6.4 - Delete actuator . 196
A.40 Use Case 7.1 - View Action information 197
A.41 Use Case 7.2 - Create Action . 198
A.42 Use Case 7.3 - Update Action . 199
A.43 Use Case 7.4 - Delete Action . 201
A.44 Use Case 7.5 - Create Configuration 201
A.45 Use Case 7.6 - Delete Configuration 203
A.46 Use Case 7.7 - Associate Resource to Action 205
A.47 Use Case 7.8 - Associate Actuator to Action 205
A.48 Use Case 8.1 - View Adaptation Rule Detail 206
A.49 Use Case 8.2 - Create Adaptation Rule 207
A.50 Use Case 8.3 - Update Adaptation Rule 209
A.51 Use Case 8.4 - Delete Adaptation Rule 211
A.52 Use Case 9.1 - List occurred plans . 211
A.53 Use Case 9.2 - View occurred plan detail 213
A.54 Use Case 10.1 - Visualize logs . 213
A.55 Use Case 10.2 - View specific logs . 214
A.56 Use Case 10.3 - Delete logs . 215
A.57 Use Case 11.1 - Add chart to Homepage 216
A.58 Use Case 11.2 - Replace chart on Homepage 218
A.59 Use Case 11.3 - Delete chart on Homepage 219

xxvi

Chapter 1

Introduction

Cloud computing is a model for enabling convenient, on-demand network access
to a shared pool of configurable computing resources (e.g., networks, servers,
storage, applications, and services) that can be rapidly provisioned and released
with minimal management effort or service provider interaction [1].

There are three main cloud service types: Software-As-A-Service (SaaS), Platform-
As-A-Service (PaaS) and Infrastructure-As-A-Service (IaaS) [2]: SaaS is related to
cloud consumers releasing their applications on the cloud, which can then be ac-
cessed from different networks of application users. PaaS is about providing a
development platform which allows cloud consumers to develop cloud services
and applications directly on the cloud. IaaS is a service model that allows cloud
consumers to directly use Information Technology (IT) infrastructure (e.g., pro-
cessing, storage, and networks) provided in the cloud.

Computer science has progressed and new technologies emerged. Virtualization
is one that is highly leveraged by Cloud providers, used to emulate different envi-
ronments, Virtual Machines (VMs), under a single physical machine [3]. In IaaS
cloud service model, resource virtualization is the main concept. It allows the
user to have his own guest operating system on top of the infrastructure provided
by the cloud provider [4]. Thus, it becomes possible to maximize the usage of the
hardware resources through machine sharing and consequently, cloud providers
can boost their revenues and lower prices. As the same machine can have differ-
ent, separated, isolated, and hardware customized environments, customers may
be served with the same machine without having a perception of it.

Nowadays, there is a constant high demand from services, which makes scaling
a great deal for maintaining good performances. However, scaling VMs is not
practical and not so easy since they are heavy and take a long time to boot, as
they contain complete and isolated operative systems.

Meanwhile, Microservices have become more and more popular. It is an architec-
tural design that breaks an application into independent, loosely-coupled, and
individually deployable services [5], where each service holds a specialized set
of related functions. Also, another level of virtualization, containers, has been
created and become a huge trend for usage with microservices architecture [6].

1

Chapter 1

Containers are packages of software that include all that is needed to run an
application including code, dependencies, libraries, and more [7]. To run them
there is a popular software, Docker, which allows the creation and execution of
container images. Containers are similar to VMs, but more lightweight, portable,
and much faster to boot [8] which enable better scalability. Thus, the characteris-
tics of containers and the principles of microservices led to a partnership that is
highly seen nowadays, where microservices applications are composed of mul-
tiple units, deployed in containers. However, the division of functions amongst
several components may generate a high number of smaller ones which increases
complexity.

As complexity grows, a need to run and manage several containers emerges [9].
This is where container orchestrators, like Kubernetes [10] and Docker Swarm [11],
come into the scene. They are responsible for the shutdown, addition, and as-
signment of containers to cluster nodes. A cluster is a set of machines, known as
nodes, that might be spread across the Internet. Right now, cluster and container
management are being offered by cloud providers, like Amazon and Microsoft,
through Kubernetes (Amazon Elastic Kubernetes Service (EKS) [12] and Azure
Kubernetes Service (AKS)[13] respectively).

Microservice-based and other types of applications must have their behavior mon-
itored so that it becomes possible to anticipate or detect production issues, make
decisions to face identified threats and improve performance [14]. Self-adaptation
is a risk mitigation strategy for uncertainties induced by runtime changes [15].
Thus, if applications possess self-adaptation mechanisms, they will be capable of
gathering information from the environment and themselves, reasoning on that
information, and adapting to meet goals. All this without intervention from a
supervisor. Thereby, management activity costs are reduced once supervisors do
not have to be constantly monitoring resources and performing manual adapta-
tions. Currently, one of the most famous open-source monitoring tools is Prometheus
[16] which can be integrated with a powerful tool like Grafana [17] for visualiza-
tion of data.

The obstacles with current monitoring and actuating solutions are limited appli-
cability and the absence of a complete management loop responsible for moni-
toring and adapting systems. This is where TMA [18] becomes useful. TMA is
a cloud monitoring and management platform flexible on the metrics it collects
and on the adaptations it triggers. It works and dispatches adaptations based on
quality models which are weighted metrics trees. TMA allows every system to be
monitored and adapted in every way we want as long as support is given for that
from probes and actuators. Probes are agents that collect metrics from monitored
systems, while actuators are the agents responsible for executing the adaptations
on the managed system. There is a User Interface (UI) developed for TMA, how-
ever, it had the basic purpose of creating noncomplex configuration data. As an
example, the creation of the metrics and quality models, which are more complex
operations within the scope of creating entities, are not present in that interface.
Besides, it seems to be quickly developed without sufficient care about its aspect.
Still, the biggest and main issue of it is the absence of visual features that support
and facilitate the systems management activity.

2

Introduction

TMA is being used in the context of the TalkConnect project, which is a project
that aims at providing a telecommunications system with the ability to add and
remove resources according to demand. Thus, a dashboard would ease the man-
agement of the telecommunications system.

At the moment, decision support features on the current TMA’s interface is nonex-
istent. And functionalities in that sense would be a great help when managing
systems. Thus, the main goal of this dissertation is to plan, design, and develop
a new UI for TMA that provides visual support for the decision process when
managing systems.

1.1 Objectives and Approach overview

The goal of this dissertation is to design and implement a UI, as a dashboard,
which will be used as a decision support tool for TMA’s administrators when
monitoring and managing cloud systems. Also, this interface should allow the
creation of complex TMA’s entities (such as metrics and quality models), and
manage adaptation rules. With that being said, in summary, the objectives for
this work are:

• Create a user interface, in the form of a dashboard, that will allow create
metrics and quality models, create and manage charts of metrics, simulate
metrics values, and manage adaptation rules;

• Extend TMA’s API component;

• Reprogram TMA’s Analyze component to automate the process of analyz-
ing systems metrics with different quality models;

• Change and implement TMA’s Planning component architecture.

TMA is a cloud monitoring and managing platform researched and developed
in the group Software and Systems Engineering (SSE) of University of Coim-
bra (UC) that enables self-adaptation on systems, cloud-hosted or not. The inte-
gration between the interface and TMA happens through the existing TMA-API
component which was complemented to support new features. This means all
interface operations that require communication with TMA are turned into API
requests served by the TMA-API component.

The interface is a web page in the form of a SPA, which is a web application
implementation that only loads a single web document, and then updates the
interface via JavaScript. [19]. It should be available on the network, providing
TMA administrators with the following systems managing features:

• Create and visualize TMA’s database entities such as metrics, quality mod-
els and configuration profiles;

3

Chapter 1

• Plot collected metrics from monitored systems and optionally the plans
alongside;

• Simulate metrics values;

• Export charts as images;

• Export charts configurations;

• Manage homepage charts;

• Manage adaptation rules.

As mentioned before, new endpoints were added to TMA’s API component.
Also, TMA’s Analyze component was automated to read the quality models from
the database instead of having them hard-coded and the processes to apply on the
metrics data were modulated. Respecting TMA’s Planning component, its archi-
tecture was changed. An API server was added to receive requests concerning
adaptation rules and those rules can now be updated on the fly and they are read
and saved on the database instead of a file.

After the implementation of the dashboard and the other TMA components, val-
idation tests were performed on usability, performance, and functionality. Func-
tionality and usability validation was applied on the dashboard, while perfor-
mance was applied on the dashboard and the TMA’s API component.

1.2 Document Structure

The rest of the document is organized as follows:

• Chapter 2: This chapter presents concepts related with this dissertation and
the tool to be developed. First, a set of monitoring tools (generic, infrastruc-
ture, and container) are described. Following, concepts related to trend-
ing technologies used within the Cloud like microservices and containers
are provided. Finally, as a choice of frameworks for this dissertation was
needed, several frontend development frameworks are described, and their
benefits and drawbacks are presented. And at the end a comparison be-
tween those frameworks is made to reason on a choice;

• Chapter 3: This chapter presents the concept of self-adaptive systems and
a set of existing self-adaptive enabling tools. Then, a comparison between
them is made to choose one for this work. Additionally, a work performed
within this dissertation that is related to self-adaptive systems is summa-
rized and at the end, an observation is made on why to use the chosen
self-adaptive enabling tool.

• Chapter 4: This chapter summarizes the functional requirements elicited for
the product with the support of use case diagrams. Also, an implementa-
tion status of those requirements is presented. Following details concerning

4

Introduction

non-functional requirements and design and implementation restrictions
are provided;

• Chapter 5: This chapter initially presents the architecture proposed for the
tool. Then, details about implementation are provided, starting with main-
tenance and ending with the implementation of requirements;

• Chapter 6: This chapter initially describes how a brief validation of TMA
was performed. Then, it explains how the functional and non-functional
requirements were validated along with their results and discussions;

• Chapter 7: This chapter, in the first place, presents and describes the de-
velopment model followed. Then, details on management-related activities
performed such as requirements prioritization and management, planning
of tasks, and risk analysis are presented;

• Chapter 8: This chapter summarizes and highlights the main ideas and re-
sults from this dissertation, and presents future work to be made on the
product developed.

5

Chapter 2

Background

Nowadays, the Cloud is seen as a resource that promotes fairness and cost savings
through its pay-as-you-go business model [1]. Consequently, instead of support-
ing the costs of building and maintaining their infrastructure and data centers,
companies started renting access to cloud infrastructure to provide their services
worldwide [20]. Despite all the main advantages the cloud provides, such as scal-
ing, upfront cost savings, and resource overprovisioning reduction, it also raises
concerns for companies when it comes to security and performance since appli-
cations and systems are dependent on the cloud provider. Besides, the Cloud
is an environment that may be shared by different users and, thus, monitoring
becomes essential for a client to trust the environment and to manage the perfor-
mance of his applications.

In this chapter, concepts the tool to develop is involved with, and that are related
to this internship will be presented. First, a set of monitoring tools are described.
Then, concepts related to trending technologies quite used within the Cloud like
microservices and containers are provided. Finally, several frontend develop-
ment frameworks are described along with their benefits and drawbacks. And a
comparison between them is made to choose the ones to use in the development
of the new interface for Trustworthiness Monitoring & Assessment Framework
(TMA).

2.1 Monitoring Tools

Cloud monitoring is seen as the process of evaluating the state of cloud-provided
infrastructure. Using automated and manual tools, it is possible to manage,
monitor, and evaluate cloud computing architecture, infrastructure, and services.
With these tools, it becomes possible to track the performance, safety, and avail-
ability of crucial cloud apps and services. They allow administrators to moni-
tor the status of cloud-based resources, helping to identify emerging defects and
troubling patterns so minor issues can be prevented from turning into significant
problems [21].

There are different options when it comes to cloud monitoring tools which can

7

Chapter 2

be categorized by the type of cloud services they monitor. However, even being
part of the same category of monitoring tools, they have different characteristics.

The next sections present some of the most popular open-source tools for moni-
toring cloud-based resources, grouped in categories. Those categories are Generic
Monitoring Tools, Infrastructure Monitoring Tools and Container Monitoring Tools.

2.1.1 Generic Monitoring Tools

In this section, tools which are not restricted respecting monitoring are presented.
Meaning, that these tools can be used to monitor any type of system and/or in-
frastructure.

Prometheus

Prometheus is an open-source monitoring solution focused on gathering and an-
alyzing time-series data [22], meaning that data collected from systems are stored
along with their timestamp of recording.

The fundamental data unit used is a metric to which a name, so it can be refer-
enced, and a set of labels are assigned. Labels are arbitrary key-value data pairs
that can be used to filter the metrics in the database [23].

Prometheus presents the following features [16]:

• A multi-dimensional data model with time series data identified by metric
name and key/value pairs;

• A flexible query language, PromQL, to leverage the multi-dimensionality
of the feature above;

• No reliance on distributed storage; single server nodes are autonomous;

• Data collection is based on a pull model over HTTP;

• Support for pushing data through an intermediary;

• Monitoring targets can be discovered either by service discovery or static
configuration;

• Support for multiple modes of graphing and dashboarding.

Prometheus architecture is depicted by Fig. 2.1. Its ecosystem is composed of
multiple components, but some are optional. Following a brief description of
those components is made:

• Prometheus server: Responsible for pulling, processing, and storing data
collected from systems;

8

Background

Figure 2.1: Prometheus architecture (from [16]).

• Client libraries: Code meant to be integrated into the code of an application
to allow exposing, by an Hypertext Transfer Protocol (HTTP) endpoint, the
metrics collected;

• Push Gateway: This component gives support for exposing short-lived
jobs, since they may finish before the Prometheus server pulls the metrics
data. Thus, ephemeral jobs can expose their metrics by sending them to this
gateway;

• Exporters: They work similar to client libraries, by allowing to expose met-
rics. However, these are built especially for cases where is not possible or
feasible to collect metrics directly as with client libraries. Basically, they are
integrations that allow converting existing metrics from third-party systems
into Prometheus metrics;

• Service discovery: Responsible for providing Prometheus server with the
monitoring targets and their endpoints for pulling metrics;

• Alert manager: This component allows sending notifications. According to
rule-based policies defined in the Prometheus server, alerts may be sent to this
component. Then, it charges itself for delivering the notifications through
messaging and mailing services. Besides, these components provide sup-
port for aggregating and muting repetitive alerts, thereby preventing spam
of notifications when multiple events occur in a short time frame;

• PromQL: This is a query language that allows retrieving stored data from
Prometheus server and integrating it with dashboards for building charts and
performing analysis.

9

Chapter 2

Graphite

Graphite is a popular open-source monitoring tool compatible with any type of
system, whether cloud-based or not [24]. It is used to monitor cloud applications,
platforms, and infrastructure.

What Graphite does not do is perform the process of collecting data or store it
persistently, however, it can be integrated with several other tools that do [25].
Thus, Graphite is mainly focused on the operation of storing the data being col-
lected and on rendering graphs of those data as they are received.

Its architecture, presented by Fig. 2.2, is pretty simple and easily explained:

Figure 2.2: Graphite architecture (from [26]).

• Carbon: This is a daemon responsible for listening to incoming time-series
data from clients. Upon receiving, those data is persistently saved on disk
using the Whisper component;

• Whisper: This element is simply a database driver that will allow commu-
nication with a database either to write, update or read data;

• Graphite Webapp: This component provides a User Interface (UI) which
renders graphs on-demand. As soon as data is received by the Carbon com-
ponent, very quickly it becomes available for graphing. Then, this web app
offers several ways to create and display graphs including a simple URL
API for rendering that makes it easy to embed graphs in other webpages
[27].

Although Graphite already provides a UI, it is not that much of a great user expe-
rience provider. However, it is possible to integrate it with more elegant graphing
tools, like Grafana [28].

10

Background

2.1.2 Infrastructure Monitoring Tools

In this section, the tools presented are restricted in their applicability. This means
that these tools can only be used to monitor system resources such as Central
Processing Unit (CPU), Random Access Memory (RAM) and disk.

Zabbix

Zabbix is an open-source monitoring tool used to monitor servers, networks, In-
formation Technology (IT) components, cloud services, and virtual machines. It
provides monitoring metrics such as the network utilization, consumption of disk
space, and CPU load [29].

Zabbix uses a flexible notification mechanism that allows users to configure e-
mail-based alerts for virtually any event, and it offers excellent reporting and
data visualization features based on the stored data [30].

All Zabbix reports, statistics, and configuration parameters are accessible through
a web-based frontend. This frontend allows checking the status of the IT infras-
tructure from anywhere using the Internet.

Zabbix’s architecture can be one of two types, centralized or distributed. Fig. 2.3
presents the distributed version, where the difference is that the Zabbix agents
instead of directly communicating with the Zabbix server, communicate with the
Zabbix Proxy. Having this consideration, a Zabbix architecture is composed of
the following elements [31]:

• Server: This is the central component to which Agents report metrics, in
case of a centralized approach. In the case of following a distributed ap-
proach, Proxies are the ones that send the metrics. This component is the
one that provides access to the central repository in which all configuration,
statistical and operational data are stored;

• Database Storage: This is the component that holds all configuration infor-
mation and the data collected by Zabbix agents;

• Web interface: Component that allows accessing Zabbix from anywhere
through a web-based interface;

• Proxy This component plays the role of intermediary, collecting metrics
from Agents on behalf of the Zabbix server. A proxy is an optional part of
Zabbix deployment, implemented when following a distributed approach
to take advantage of distributing the load from the Server to the Proxies;

• Agent: These components are the ones that actively collect metrics from
targets being monitored. Then, these components report those metrics to
the Server component.

11

Chapter 2

Figure 2.3: Zabbix architecture (from [32]).

Nagios

Nagios is an open-source tool for monitoring systems, networks, and infrastruc-
tures [33]. It periodically invokes plugins hosted on monitored resources to col-
lect and retrieve information about the current state [34].

Upon retrieve of information from plugins, Nagios processes that data against
defined rules and, if a pattern is detected, alerts about the issues found so that
the technical team may perform healing processes.

Nagios follows a server-agent architecture, presented by Fig. 2.4, composed of
the following elements:

• Nagios server: Component installed on a host, responsible for executing a
scheduler that periodically asks for monitoring data from plugins;

• Plugins: Elements which are incorporated into the resources to monitor and
responsible for collecting and sending the data to the server when asked of
them;

• Web interface: Component that provides a graphical visualization of the
state of the resources being monitored, and constantly updated according
to data sent by plugins.

12

Background

Figure 2.4: Nagios architecture (from [34]).

2.1.3 Container Monitoring Tools

In this section, tools that can only be used to monitor containers are presented.

cAdvisor

cAdvisor is an open-source tool that provides resource usage, performance char-
acteristics and related information about the containers running on the cloud [35].

By running a background process that collects and processes information from
containers, this tool becomes very helpful in providing insights about resource
consumption from the code running on the containers. Thus, it aids in identifying
performance bottlenecks and performing changes to enhance the scalability of
systems.

This tool’s architecture is very simple. An instance of cAdvisor runs inside a host
and then it collects metrics from all the containers co-located within that host.
The data collected by a cAdvisor instance can be accessed by a web-based UI.
Fig. 2.5 presents a cAdvisor architecture as just described along with integration
with Prometheus.

At the web UI provided by cAdvisor, the container information that can be seen
are e.g., the container names, their resource usage statistics within the last period,
and the histogram of resource usage. Besides container information, cAdvisor
also collects data respective to the machine which can also be consulted at the
web UI, such as the number of logical core CPUs, memory capacity, and network
devices.

2.1.4 Summary

As seen in Sec. 2.1, monitoring is a very important activity when maintaining
applications or infrastructure. As monitoring consists of having insights into the
system’s current state, it becomes a useful activity to perform so that adjustments

13

Chapter 2

Figure 2.5: cAdvisor architecture, integrated with Prometheus and Grafana
(from [36]).

can be made to deal with threats that may be identified.

However, in that same section, it was also seen that adaptations are not auto-
matically performed. They always have to be triggered manually which requires
allocating more time from IT professionals to the systems management activity.
Nonetheless, some of the tools described may become very handy and helpful
when a system, or infrastructure, needs to be analyzed in depth.

In any case, as these tools do not provide complete support for the whole man-
agement activity life-cycle, by not including adaptation features, self-adaptive
systems become a need to improve the management task. By being able to apply
self-adaptive capabilities to systems, human resources wasted in the manage-
ment activity can be decreased and allocated elsewhere, to other activities also
important.

2.2 Microservices

Microservices is an architectural style that structures an application as a collec-
tion of services [37]. This type of architecture is meant for building distributed
applications as an application is split into independent, loosely-coupled, and in-
dividually deployable smaller services. This allows each service to be scaled or
updated without disrupting other services that compose the application. Con-
sequently, it enables fast, frequent, and reliable delivery of large and complex
applications [38].

14

Background

2.2.1 Monolithic vs Microservices Architecture

The monolithic architecture is considered to be a traditional way of building sin-
gle and indivisible unit applications [39]. Its set of functionalities is encapsulated
into one single application and, thereby, its modules cannot be executed inde-
pendently, making everything tightly coupled and all logic for handling requests
present in a single process [40].

Usage of basic features from a programming language to divide and organize
the application into classes, functions, and namespaces may be used, but devel-
opers feel frustrated with monolithic applications, even more as they are being
deployed to the cloud. This frustration begins with tied change cycles, once a
change is made to a small part of the application requires the entire monolith to be
rebuilt and deployed. Over time it becomes hard to keep a good modular struc-
ture and even harder to keep changes that only affect one module, within that
specific module. Besides, scaling is applied to the whole application rather than
to parts of it, making the resource requirements greater than what they should be
[41].

Although having its strengths of being a single unit, such as less cross-cutting
concerns (e.g, logging and caching), easier debugging and testing and simpler
deployment and development, monolithic applications have some drawbacks
which motivate the usage of microservices:

• Understanding - Applications may become difficult to understand and mod-
ify and, therefore, development typically slows down;

• Continuous development - Difficult continuous development once a change
made on a small part of the code may require changes on the whole appli-
cation;

• Scalability - Scaling produces unnecessary costs since only a part of the
application is critical and requires extra resources, but the whole has to be
scaled;

• New technology barriers - Requires a long-term commitment to a technol-
ogy stack, making it extremely problematic to apply a new technology since
the whole application has to be rewritten.

Contrarily to these drawbacks, Microservices have the advantages of being inde-
pendent components and having a better scalability and understanding, since
each component has its subset of related functions from the whole application.
Also, resilience and lifecycle automation are other strong and motivating char-
acteristics, once the failure of a component and its development and deployment
do not mess with the functioning of the other components. But like everything,
Microservices has its downsides:

• Complexity - Microservices architecture is a distributed system. That means
multiple connections have to be chosen and set up between all components

15

Chapter 2

and databases which leads to additional care in handling communication
and preventing errors from disrupting other services. Consequently, test-
ing complexity increases as more test cases are needed in each component;

• Solving errors - As there are many communications between multiple units,
finding and tracing errors can consume a lot of time by just looking for those
errors;

• Cross-cutting concerns - Since application functions are spread across mul-
tiple components, cross-cutting concerns (e.g., external configurations, log-
ging, and health checks) must be carefully treated and thought;

• Testing - Once there are multiple units prone to failures, the testing activity
becomes much harder on a microservices application.

Because of all the benefits and downsides of both architectures, it is suggested
to start a project using a monolithic architecture, even though it is foreseen that
microservices should be implemented. The reason for this is that starting devel-
opment with a monolith allows exploring both the complexity of a system and
its component boundaries. Then, if the complexity begins to grow and becomes
hard to handle, it may make sense to convert it into microservices [42].

2.3 Containers

Containers are a solution to the problem of how to get the software to run reliably
when moved from one computing environment to another [43].

A container can be seen as one package that consists of an entire runtime en-
vironment. It accommodates an application and any kind of dependencies and
configuration files needed to run. Thus, a containerized application allows to
abstract from differences in operative systems and underlying infrastructure.

Both Virtual Machines (VMs) and containers represent types of virtualization.
However, while VMs can have a size of some gigabytes, a container is much
lightweight generally possessing tens of megabytes. As a consequence, a single
server supports hosting far more containers than VMs.

Another benefit of using containerized applications is that they can boot up al-
most immediately, while VMs may take several minutes to start their operating
systems and begin running the applications they host. Once containers can then
be instantiated very quickly, resources can be spared by removing containers
when they are not needed anymore and re-add them when they are.

Finally, containerization promotes modularity meaning that instead of running
an entire complex application, only a single module is run. The idea is to follow
the microservices architecture, where an application is split into modules, each
responsible for a subset of related functions from the application as a whole. By
doing this, applications become easier to manage because each module is rela-
tively simple, and changes can be applied to modules without having to rebuild

16

Background

the entire application. And as containers are so lightweight, instead of instantiat-
ing the whole application, it is possible to immediately instantiate parts from the
whole application.

The next sections will present and dive into more detail about some of the most
popular container technologies.

2.3.1 Docker

Docker is an open-source platform for developing, shipping, and running ap-
plications [44]. The platform it provides, along with multiple tools, serves the
purpose of managing the lifecycle of containers.

Docker enables separating the infrastructure from the application code so that
software is quickly delivered. With Docker, infrastructure and applications can
be managed similarly. Leveraging Docker’s methodologies for shipping, testing,
and deploying code quickly, the delay between writing code and running it in
production is reduced.

Docker uses containers and thereby it enables packaging and running applica-
tions in loosely isolated environments. The isolation provided allows running
many containers simultaneously on a given host.

Docker follows a client-server architecture, which is represented by Fig. 2.6, com-
posed of the Docker Client, Docker Host, Docker Objects, and Docker Registry com-
ponents [45]:

Figure 2.6: Docker architecture (from [44]).

• Docker Client: This component is responsible for allowing users to interact
with Docker. The Docker client may be present on the same host as the
Docker daemon or be connected to a daemon on a remote host. Moreover,
a docker client can communicate with multiple daemons.

17

Chapter 2

The Docker client component provides users with a Command Line Inter-
face (CLI) that enables sending commands to the daemon, issuing build,
run, and stoppage of applications. Basically, it provides mechanisms for a
user to direct the pull of images from a registry and have them running on
Docker hosts;

• Docker Host: This component provides an environment to execute and run
applications. It is composed of a Docker daemon, and Docker objects such
as images, containers, networks, and volumes. The daemon element is re-
sponsible for listening to requests and managing Docker objects. The dae-
mon can also communicate with other daemons to manage its services.

The Docker daemon pulls and builds container images as requested by the
client. When a requested image is pulled, it builds a container following a
set of instructions defined in a build file. This file may include instructions
for loading other components before running the container, or instructions
to be sent to the container’s local command line once it is built;

• Docker Objects: Different types of objects are used when assembling the
containerized applications. The main Docker objects are: Images, Containers,
Networking and Volumes.

Images are templates that can be used to build and run containers or serve as
the base for inserting additional behavior to create other images. Moreover,
images are built according to instructions defined by Dockerfiles which are
files containing the steps to build images and insert their dependencies.

Containers are the encapsulated environments in which images are instan-
tiated and applications run. Besides the configurations defined in the im-
ages, when containers are built and run, additional configurations may be
provided.

Networking allows defining different types of networks in which containers
can recognize each other and can talk to.

Volumes are some kind of extensions to the containers’ default behavior, that
allows containers to persist their data even after they terminate;

• Docker Registry: is a service that provides locations where images can be
stored and downloaded. That is, it is a repository that hosts and provides
access to Docker Images. Docker provides one of these repositories called
Docker Hub.

2.3.2 Kubernetes

Kubernetes is an open-source container orchestration platform that automates
many of the manual processes involved in deploying, managing, and scaling con-
tainerized applications [46].

In Kubernetes, the smallest deployable units of computing that can be created
and managed are pods [47] and they are composed of one container or a group of

18

Background

them. Also, pods are created from specifications that are defined in template files,
written in YAML Ain’t Markup Language (YAML).

Essentially, Kubernetes is composed of a cluster that is formed by a set of worker
machines, known as nodes, and a control plane component. The control plane
is responsible for making global decisions about the cluster, managing worker
nodes, and pods. The control plane component can be run on any machine in the
cluster, however, to simplify things, the standard setup hosts all of its compo-
nents on the same machine, and does not allow that machine to host any other
containers that might be created by the user. The worker nodes host and run con-
tainerized applications, more precisely pods which are components that constitute
an application.

Diving into more detail on kubernetes architecture, which is presented by Fig.
2.7, there are 2 major components, as just presented, which are the control plane
and the worker nodes. However, for each of those components there are sev-
eral smaller elements that constitute them. Next, those smaller elements are ex-
plained:

k-proxy

kubelet

sched
schedsched

Control Plane

Node

etcd

Kubernetes cluster

api
api

api

c-c-m
c-c-m

c-c-m

c-m
c-m

c-m

Node Node

k-proxy

kubelet kubelet

k-proxy
Control plane

Scheduler
sched

Cloud controller
manager
(optional) c-c-m

Controller
manager c-m

kubelet
kubelet

kube-proxy
k-proxy

(persistence store)
etcd

etcd

Node

API server
api

Figure 2.7: Kubernetes architecture (from [48]).

• kube-apiserver: This element is part of the control plane and its purpose is
to expose the Kubernetes API. It essentially is the front end for the Kuber-
netes control plane;

• etcd: This element is part of the control plane and is composed of key-value
storage that is used by Kubernetes to save all cluster data;

• kube-scheduler: This element is part of the control plane and it is responsi-
ble for allocating pods on worker nodes, based on additional information it
may have, e.g., resource constraints;

• kube-controller-manager: This element is part of the control plane and it is
in charge of running controller processes, such as detecting and responding
to node failures, ensuring completion of jobs, exposing pods, and control-
ling access to services;

19

Chapter 2

• cloud-controller-manager: This element is part of the control plane and its
function is somehow similar to the kube-controller-manager, but for cloud-
specific controller processes. It allows associating the cluster to a cloud
provider’s API, distinguishing components that interact with that cloud
platform from the ones that do not. Thus, it implements the logic that is
specific to the cloud provider on the components that are linked to it;

• kubelet: This element is part of the worker nodes and it is a process that
ensures containers are running in a Pod. It receives information from all the
pods running on the host and, based on that, it checks that containers are
running and healthy;

• kube-proxy: This element is part of the worker nodes and it is a network
proxy. It maintains network rules that define how communication can, and
cannot, happen with the pods from inside or outside connections of your
cluster;

• Container runtime: This element is part of the worker nodes and it is sim-
ply the software used for running containers, which can be e.g., Docker.

2.4 Frontend Development Frameworks

In this internship, the main goal is to build a UI that will aid in the creation of
TMA’s complex entities (metrics and quality models) and provide decision sup-
port when managing systems to define adaptation rules and plans. The idea is to
have visual features such as the view of metrics trees, charts with metrics values,
and even simulations of the same quality model but with different weights.

However, there is a lack of experience in designing and implementing web pages
and user interfaces. So, it becomes necessary to carefully choose a framework
that can facilitate my development. For that, the general support provided for
developing over that framework must be considered, as well as the existence of
libraries for developing the most complex features, such as the representation of
weighted trees of metrics.

Frameworks have become an essential part of web development. As the stan-
dards of web applications are always rising, so does the complexity of the tech-
nology needed [49]. It is not a good approach to reinvent sophisticated and com-
plex techniques when there are frameworks endorsed by thousands of developers
around the world. Thus, leveraging frameworks is a path that leads to richer and
more interactive web applications.

A Web application has a backend (server-side) and a frontend (client-side). In
this dissertation context, there is already a backend, the TMA’s API component.
Thereby, it makes sense to stay on this track and leverage what has already been
built. Although being necessary to add functionalities and adjust this component
to support what the UI will allow, a frontend framework choice must be made.
Thus, the next sections will present some of the most popular front-end frame-

20

Background

works, along with a description, and at the end, a comparison between them will
be made to make a decision.

2.4.1 Angular

Angular was created and is being maintained by Google. It is an open-source,
JavaScript framework written in TypeScript, that provides a standard structure
for developers to create large applications in a maintainable manner [50]. It is
based on the Model-View-ViewModel (MVVM) pattern, which is composed of
three components [51]: View which defines how data is displayed graphically,
Model which is responsible for accessing different data sources, and ViewModel
which implements the View logic in response to user interactions and coordinates
the interaction between the other two components by passing all the necessary
data. Using MVVM pattern, Angular ensures two-way data binding for immedi-
ate synchronization between the model and the view components, so any change
in the view will instantly reflect in the model and vice-versa.

Angular also provides a feature, called directives which allows developers to pro-
gram special behaviors for the Document Object Model (DOM), thus making it
possible to create rich and dynamic HTML content. There is, too, a hierarchi-
cal dependency injection feature, which makes code components highly testable,
reusable, and easier to control. This feature also helps define code dependencies
as external elements, decoupling components from their dependencies.

Angular applications architecture, depicted by Fig. 2.8, is composed of 8 main
building blocks:

Figure 2.8: Angular architecture (from [50]).

• Modules: Every Angular application has a root module, conventionally
named AppModule, which provides the bootstrap mechanism that launches
the application. An app typically contains many functional modules and in
case we want to use another custom Angular module, then it needs to be

21

Chapter 2

registered inside the app.module.ts file. Organizing code into distinct func-
tional modules aids in managing the development of complex applications,
and in designing for re-usability [52];

• Components: Components define classes holding application logic and
data. Usually, a component is part of the UI;

• Templates: This architecture component combines Angular markup with
HTML to modify HTML elements before they are displayed. Template di-
rectives provide program logic while binding markup connects application
data to the DOM. There are two types of binding: i) Event binding - where a
target is updated with response to user input; ii) Property binding - Allows
assigning values to HTML elements properties;

• Data binding: Data binding allows communication between a template
and its component. It is also important for communication between parent
and child components. Angular allows communications between compo-
nents and the DOM, making it very easy to create interactive applications
without worrying about pulling and pushing the data;

• Directives: They can be seen as markers on the DOM element, giving in-
structions to Angular for attaching a certain behavior to the element, or
even changing it. Directives are classes that add additional behavior to el-
ements. For example, Angular’s built-in directives can be used to manage
forms, lists, styles, and what users see;

• Metadata: This is used by Angular to understand how to process a class.
Metadata are decorations applied to classes from which Angular can con-
figure their expected behavior;

• Services: When you have data or logic that isn’t associated with the view
but has to be shared across components, a service class is created. The class
is always associated with the @Injectible decorator to provide metadata that
allows the service to be injected into components as a dependency. That
is how components are distinguished from services to increase modularity
and reusability;

• Dependency Injection: It allows maintaining component classes lean and
efficient. It is an architecture block responsible for injecting services. Thus,
components can access the services’ set of functionalities.

In the end Angular applications carry some advantages such as:

• Component-based architecture: This allows re-usage and easier maintain-
ability;

• Two-way data binding: This binding ensures any changes in the DOM
(view) get reflected in the application data and vice versa. This leads to
less code writing since developers do not have to worry about manually
updating the view or the application data;

22

Background

• Dependency injection: As services just need to be injected where they are
needed, the writing of modular services is allowed, decoupling them from
components;

• Testing: Since Angular has been built from the start with testability in mind,
testing activities are eased. Tests are first-class tools, and thereby it is possi-
ble to test every part of the application;

• Development support: Since there is a huge community and support ma-
terials, there is a lot of support when developing.

On the other hand, it also has the following downsides:

• Steep Learning Curve: Angular is verbose and complex which makes it
hard to learn. Besides, it is a total dynamic solution with multiple ways of
doing the same operation;

• Bloated code and large size: The complex structure and size of Angular
applications sometimes is the reason why dynamic apps do not perform
well;

• Limited Search Engine Optimization (SEO) capabilities: In terms of search
engine crawlers, Angular provides poor accessibility.

Summing up, Angular seems to be good for creating large-scale, loosely coupled,
and well-structured applications. However, if the application to build is simple,
Angular may be too overwhelming and complex to learn, thus becoming a better
option to use an easier framework.

2.4.2 React

React is considered to be one of the most popular front-end frameworks. In fact, it
is a library, because to be considered as a framework it would need to have a core
package of functionalities usually needed when building a web app and it does
not. Generally, when creating react applications, other React-specific libraries
have to be included [53].

React is an open-source JavaScript component-based library featuring JavaScript
Syntax Extension (JSX) syntax. It was developed by Facebook to deal with main-
tainability problems caused by the app’s continual inclusion of new features [54].
The core feature of React is its virtual DOM with one-way data binding. Due
to the virtual DOM functionality, React is praised for its superior performance.
It is being continuously updated and, at the moment, programming in React no
longer requires classes, instead, hooks can be used to produce cleaner and faster
coding. It is considered to be one of the easiest frameworks to learn thanks to its
user-friendliness and comfortable learning curve.

As pointed out before, React is a library and therefore it does not maintain some
important features. That’s why it must work together with other libraries, such
as for state management, routing, and interaction with APIs.

23

Chapter 2

Although there is a set of suggested practices, React does not have a specific ar-
chitecture. However its behavior can be explained, as illustrated by Fig. 2.9, by
the following set of components and functions:

Figure 2.9: React’s behaviour (from [55]).

• JSX files: JSX is a syntax used by React which extends JavaScript to include
HTML text so that both can co-exist [56]. This allows writing HTML struc-
tures in the same file JavaScript is written, connecting UI design with data
handling. JSX files are used to design components and their behaviour;

• React JSX transformer: Browsers do not understand JSX, thereby it be-
comes essential to have a compiler that converts JSX to regular JavaScript
[57];

• Virtual DOM: The virtual DOM like the Browser’s DOM holds a tree of
objects that represent a view. When a change is made to the tree, or to a
node, that change is firstly processed by the React’s virtual DOM. Then,
this virtual DOM performs an optimized diff of its internal state against the
browsers’ DOM and performs the minimal updates required to keep the UI
consistent [55];

• Browser DOM: It is the actual tree of objects a user will interact with. When
inputs or events are provided, they are passed to React’s DOM to be han-
dled.

We can take away the following advantages of using React as a support for de-
veloping frontends:

• High-speed operations in the DOM allowed by the usage of a Virtual DOM;

24

Background

• Compatibility with other JavaScript libraries to extend and improve the
interaction of the user with the view since React itself is a library;

• Easy to learn and use as there are a lot of tutorials and training materials,
which make it a good choice for beginners or less experienced developers;

• Testability, maintainability, and reusability since React applications are
component-based, thus decoupling functions into well-defined scopes;

• SEO Friendly once the view is rendered in the virtual DOM, but returned
to the browser as a regular web page with the help of React JSX transformer.

Despite having some appealing advantages, it has the following drawbacks:

• Frontend only coverage as React only deals with and supports the devel-
opment of the view and not the backend of an application;

• JSX as a barrier for new developers or inexperienced ones with JavaScript;

• High pace of development which leads to poor and unfinished documen-
tation, besides the constant introduction of new concepts and approaches
to doing things which leads to developers relearning stuff.

Revisiting, React becomes a good choice for saving some time if an interface is
wanted to be created as fast as possible, with maximum interactivity. However, if
developers are not experienced enough with JavaScript or are not committed to
learning it, then an alternative must be chosen.

2.4.3 Vue.js

Vue.js is an open-source library for building interactive web interfaces [58]. To
become a framework other libraries are needed, just as in React. It was designed
by Evan You and emerged from his work at Google where he was making proto-
types with Angular. He extracted what he found good on Angular and created
something lighter.

Since then, Vue.js has been learning from the mistakes and successes of React and
Angular [59], and it possesses the best of both, such as virtual DOM, component-
based architecture, and two-way data binding features.

The main idea behind the Vue development is to deliver a much simpler concept
of a framework, providing the bare minimum of what would be expected from
a JavaScript framework [60]. Vue.js applications can start small and simple, and
then build bigger and better, while another framework would make complexity
the default.

From using Vue.js, the following advantages can be identified:

25

Chapter 2

• Easy Learning Curve and simple applications builiding due to the offer-
ing of basic frontend development tools such as JavaScript, CSS, and HTML.
Thus, learning Vue.js doesn’t require a lot of background, and applications
are designed from scratch. And, if needed, complexity can be added;

• Fast Renderization due to the lightweight nature of Vue.js and the virtual
DOM functionality;

• Extensive and comprehensive documentation that provides instructions
on basic and usually needed features such as routing and state manage-
ment.

However, it presents the following disadvantages:

• Excessive flexibility becomes a problem because developers are allowed to
really start from scratch and then, the incremental implementation of new
features may cause confusion as errors and irregularities start to evolve on
larger projects;

• Too Limited because it does not have as many plug-ins or components as
other frameworks of its kind, even though it has official libraries and com-
munities;

• Too New which leads to a community that is still small and thereby support
for quick error solving may be scarce;

• Language barriers since many of its related projects and users are non-
English speakers, and therefore materials are not understandable [61].

In the end, Vue is seen as a beginner-friendly framework, adequate for building
prototypes, or creating applications that begin simple and may grow bigger and
more complex. However, it is not suited for larger projects since it is relatively
new and there may be a lack of support, and quick problem-solving.

2.4.4 Svelte

Svelte is an open-source component-based Typescript-written JavaScript frame-
work. In fact, it is neither a framework nor a library, but a compiler [62].

Svelte is known as a lightweight front-end development alternative, which al-
lows developers to create projects with much less coding when compared to other
frameworks. It is designed to do as much of the work as it can at build time, rather
than in the browser [63].

Some of the important features of Svelte are the absence of a virtual DOM and the
modularity promoted in the coding process allowing to group different compo-
nents and isolate the template, logic, and view. This modularity allows accessing
variables straight from markup, making the whole development navigation eas-
ier.

26

Background

Svelte also enables writing boilerplate-free code, meaning verbosity is not present.
Thereby code becomes much cleaner, allowing easier and faster creation of com-
ponents. Later, at the build step, the code of those components is processed
by the compiler into lightweight standalone modules in vanilla JavaScript (i.e.
framework-less). These modules are then precisely integrated into the DOM
when the state changes. As a consequence, Svelte does not require high browser
processing and there is no need to spend resources on building a virtual DOM.

The main advantages of using Svelte are:

• Less code: since there are no extra complexities to be added related to ver-
bosity or standards, allowing for a more focused development on business
logic;

• Reactivity and user experience: since, in the first place, it does not use a
virtual DOM that slows the process of updating the interface. Secondly,
because it runs at build time, converting components into highly efficient
imperative code, in vanilla JavaScript, that surgically updates the DOM.
This allows for an application even faster, which consequently improves
the user experience and engagement [64];

• Integration and interoperability: as Svelte is simply a compiler, working at
the component level. So, even if a project is using Vue or React, it is simple
to integrate Svelte components with it [65].

As limitations there are the following:

• Development support: because the community is still small which leads to
less aiding materials being available;

• Debugging and Testing: since there is an absence and lack of mature tools
that can help trace and solve errors.

So, Svelte should be considered as an option for small projects as it is suited
for beginner front-end developers due to its simple coding and needless of ma-
nipulating the DOM, which allows the creation of a fast and reactive product.
Nonetheless, Svelte may not be considered for larger projects because there is
low support for development either provided by tooling or the community.

2.4.5 jQuery

Although considered a framework, jQuery is an open-source, easy-to-use, cross-
platform, and feature-rich JavaScript library. Designed to simplify the client-side
scripting of HTML, it makes HTML document traversal and manipulation, ani-
mation, event handling, and AJAX very simple with an easy-to-use Application
Programming Interface (API) compatible with multiple types of browsers [66].

As jQuery is designed to minimize the time and effort-consuming JavaScript cod-
ing task, it offers multiple built-in options for dealing with event handling. This

27

Chapter 2

leads to shorter fragments of code, that otherwise would be large, and thereby
easy to handle and integrate into any logic part of an application. Released in
2006, jQuery is still being used nowadays [67] and, consequently, its community
is huge, experienced and a lot of support can be found.

Also, jQuery is superior when it comes to handling multi-browser support, mak-
ing it a very attractive option to frontend engineers who do not want to worry
about potential incompatibilities between browsers.

So, jQuery advantages are:

• Browser compatibility: since jQuery offers solutions that promote a correct
functioning of a web page across different browsers;

• Huge and mature community: that provides a lot of materials that can be
used to learn and quickly solve problems that may arise;

• Simplicity: due to its incorporated options which allow shorter codes. With
its open coding standards and simple syntax, web designers can shorten the
time that it takes to deploy a site or application [68].

However, it also presents some drawbacks:

• Heavy library: containing all of its DOM, events, effects, and AJAX compo-
nents which affect the overall performance of a web application [69];

• DOM APIs are considered outdated: as modern browsers can now do the
same work, but much more quickly;

• Absence of a data layer: which makes direct DOM access mandatory to
manipulate it. That increases the complexity of the process when updating
the view.

Considering its benefits and worst aspects, jQuery seems to be an efficient tool for
developing frontends that require cross-browser support. Besides, its set of pro-
vided functionalities facilitates the creation of web pages and enables the deliv-
ery of interactive ones even in 2021. However, unlike many modern frameworks,
jQuery lacks a data layer, so the DOM access is always direct. Consequently, the
process of updating the view becomes more complicated and the code starts to
become larger, decreasing the webpage’s performance. That’s why if the goal is
to build a complex UI, another framework should be a better option.

2.4.6 Ember.js

Ember.js is an open-source and free JavaScript client-side framework used for de-
veloping web applications. It allows building client-side JavaScript applications
by providing a complete solution that contains data management and an appli-
cation flow [70].

28

Background

Ember.js is component-based and well-organized. Some rules must be followed
in the development process which end up restricting and guiding it. Thus, a
standardized structure can be achieved by not allowing much flexibility.

One of its features is the two-way data binding which allows synchronization
between the view and model in real-time. It also has a templating mechanism that
allows developers to minimize the total amount of code that needs to be written.
Moreover, it incorporates some powerful features and components which can be
extended by plenty of available plugins and tools developed by its substantial
community.

There are 5 core concepts on Ember.js, depicted by Fig. 2.10, which are its fun-
damental building blocks: routing, models, services, controllers/templates, and
components [71]:

Figure 2.10: Ember’s core building blocks (from [71]).

• URLs and Routing: routes are features used by Ember.js which allow driv-
ing the application state from the current URL. The Router, from Fig. 2.10,
is responsible for mapping the current URL to one or more route handlers.
Then, those route handlers can render a template, load models for tem-
plates, change models or redirect to new routes [72];

• Models: A model is a representation of an entity. It represents the structure
of a data object, defining the attributes, relationships, and behavior;

• Services: These are objects that live for the duration of the application.
Their function is to provide services to other objects. Whenever a service is
needed to extend a component’s behavior, it should be injected to be made
available;

29

Chapter 2

• Controllers and Templates: Templates are basically the HTML pages. They
define views that can use properties of model instances in the display. Con-
trollers are objects responsible for defining UI logic around the model and
other stuff like query parameters. That logic can then be used in the Tem-
plates to customize the view;

• Components: A component is something like an HTML tag, but customized,
meaning it is formed by HTML elements or even other components. It is
like controllers and templates, but reusable.

From Ember we can take the following advantages:

• Ready-made structure of the application: provided by the framework which
imposes a general application structure and organization for its users. The
goal is to prevent developers from making mistakes that would only con-
fuse their apps [73];

• Stability: because the framework’s constant improvement is the ultimate
aim and backward compatibility is ensured. The upgrade procedure is sim-
ple, consisting first in alerting the user about forthcoming changes via dep-
recation warnings. Furthermore, Ember intends to release a new, stable ver-
sion every six weeks [74];

• Support: provided by its considerable and active community and by the
complete Ember’s official documentation;

• Built-in testing and debugging tools: that supports the development ac-
tivity aiding with error fixing;

• Two-way data binding that allows synchronizing the view with the model,
and thus avoiding writing extra code in situations, such as forms, in which
that synchronization is necessary.

Yet, it has some drawbacks like:

• Conventional and rigid structure which difficult the learning and develop-
ment process [75];

• Heavyweight which affects the overall performance of an application. In
fact, it is one the of heaviest frameworks [76].

So, Ember.js becomes ideal when the goal is to create complex and feature-rich
web applications. Nonetheless, if the project or the team is small, Ember.js may
be too complex and overwhelming.

30

Background

2.4.7 Semantic UI

Semantic UI is a free, open-source front-end development framework designed
for theming, that is a CSS framework. It contains pre-built semantic components
that help create beautiful and responsive layouts using human-friendly HTML
[77].

The framework utilizes concise HTML, treating words and classes as exchange-
able concepts. Classes use syntax from natural languages like noun/modifier
relationships, word order, and plurality to link concepts intuitively [78]. Also,
Semantic UI allows integration with React, Angular, Meteor, and Ember.

The goal of this framework is to ease the frontend development by providing a
human-friendly HTML syntax (semantic method). It delivers a vast set of tools
for configuring themes and CSS.

This framework has the following advantages:

• Self-explanatory code due to the syntax used that is close to a human nat-
ural language;

• Rich and responsive components from the huge set provided, which re-
sults in numerous alternatives for approaching a modern and responsive
design;

• Integration with well-known and used frameworks such as React and An-
gular;

• Documentation that is well organized and structured, with multiple exam-
ples.

However, it presents the following drawbacks:

• Relatively small community which may result in less support for fixing or
solving issues;

• JavaScript knowledge since many of its features are JavaScript dependent,
the developer needs to be well familiarized with the language to solve is-
sues [79].

In the end, Semantic UI is a framework that allows delivering a fast, elegant,
and responsive design of user interfaces. Nonetheless, it may not be good to use
it with inexperienced JavaScript developers, because qualifications are required
for implementing customizations in the application without depending on the
ready-made functions.

31

Chapter 2

2.4.8 Frameworks decision

After studying and analyzing the benefits and drawbacks of the just presented
set of front-end frameworks, a choice must be made on which could be more
helpful to use in the development of the product. And considering the scope of
this dissertation some aspects influence the frameworks decision:

• Support materials that provide sources for quick error solving, and also for
learning purposes;

• Experience with the framework, which turns into a development boost in
the initial phase of the frontend development, since there is past knowledge.
As a consequence, an initial learning phase can be skipped;

• Testing and debugging mature tools which aid in error solving and later at
the validation of the product;

• Simplicity which translates into less code, easier learnability, and faster de-
velopment activities;

• Reactivity and Responsiveness capabilities, since these are the properties
that most define how usable a UI is. Besides, the decision support tool that
is going to be created should achieve just that, good usability, so that a tool
capable of aiding on system’s management activity is built;

• Structured code that enables separating components and concerns, making
the maintainability task a lot easier.

In Table 2.1, a match between each of the frontend frameworks and the decision-
influencing aspects is shown.

Table 2.1: Comparison of frontend frameworks.

Factors Frameworks
Angular React Vue Svelte jQuery Ember Semantic

UI
Support X X X X

Experience X
Testing and
debugging X X X X X -
Simplicity X X X X

Reactivity and
Responsiveness X X X X X X

Structured X X X X X X X

As it can be seen, React is the single framework that fulfills all the aspects meant
to compare among the frameworks. Therefore it becomes undoubtedly the frame-
work choice for implementing the tool of this dissertation.

32

Background

When it comes to Angular, simplicity is the strongest factor for refusal, once it
would slower development and require much more coding and time to learn.

As for Vue, it is still a young framework so, even though it has official libraries,
the community is still small, and thereby support is affected.

In its turn, Svelte could be an interesting choice due to the compiler feature which
speeds up a lot of the renderization processes. However, the community is still
small and, naturally, the available support is affected. Besides, debugging and
testing tools haven’t reached a significant maturity level.

Relatively to jQuery, it doesn’t have a data layer, so accessing the DOM is manda-
tory. Thereby the process of updating the view becomes way more complicated
and thereby simplicity is a downside factor. Moreover, the DOM APIs provided
are considered outdated so the performance might not be optimal and, as a con-
sequence, reactivity and responsiveness may be affected.

Respecting Ember, its heaviness may be harmful to the product performance.
However, the property that makes it be considered less of an option is its rigid
structure of doing things, because it affects the development process time and the
simplicity of the framework, making it harder to learn.

As Semantic UI is a CSS framework, it does not make sense to assess it on testing
and debugging tools. But for the rest, the only disadvantage presented is on
support since it has a relatively small community. Thereby, there may not exist
sufficient support for solving issues that might pop. However, Semantic UI is
very easy to use since its CSS syntax is very close to natural language. Also, it
offers a lot of ready-to-use components and it is a framework that allows building
modern and responsive user interfaces easily and quickly. Moreover, it can be
integrated with React. For all these reasons it makes sense to use it alongside
React to build the frontend product of this dissertation.

33

Chapter 3

State of The Art

There are multiple trends leading organizations to convert their cloud appli-
cations into microservice applications, making them highly scalable and avail-
able [80]. Also, service-oriented architecture, like the microservices, has often
been used as a mechanism for achieving self-adaptiveness on systems [81].

Self-adaptation is a concept that has been present in other domains such as bi-
ology and economics. But in the domain of software, it means that a system
monitors itself and the operating environment, dispatching actions when it de-
tects changes that require adaptation [82]. In the Cloud, those adaptations are
taken according to the demand and are generally associated with the increase
and decrease of resources such as computing power and bandwidth.

In this chapter, more details on what are self-adaptive systems will be presented.
Then, some self-adaptive enabling tools will also be presented and described in
detail. The first tool, and the one this work is related to, is Trustworthiness Mon-
itoring & Assessment Framework (TMA). Its relation with concepts, previously
presented in Chapter 2, like microservices and containers, is also explained. Also,
it is made a comparison between all the tools, including TMA, and a discussion
on why should TMA be used instead of the others. Finally, details of an experi-
ment performed with a self-adaptation enabling tool provided by Kubernetes are
presented.

3.1 Self-Adaptive Systems

Self-adaptive systems can be seen as computing environments capable of self-
managing and adapting to changes according to business policies and objectives.
They can adapt based on observed or sensed situations in the Information Tech-
nology (IT) environment instead of requiring supervision from human resources
to perform the tasks. To be considered as self-adaptive, systems possess one or
more of the following attributes [83]:

• Self-configuring: Components dynamically adjust to changes in the envi-
ronment following policies provided by IT professionals. Those changes

35

Chapter 3

may be e.g., the deployment of new components or removal of existing
ones. Dynamic adaptation helps ensure continuous good performance of
the IT infrastructure;

• Self-healing: Components are capable of detecting system malfunctions
and initiating policy-based corrective actions without disrupting the sur-
rounding IT environment. These actions can be altering their state, or exe-
cuting changes in other environment components. Thus, the whole IT sys-
tem becomes more resilient;

• Self-optimizing: Components can self-optimize to meet end-user or busi-
ness needs. The tuning actions could mean reallocating resources (e.g., in
response to changing workloads) to improve overall utilization, or ensur-
ing that particular business transactions can be quickly completed. This
attribute helps to provide a high-quality service for both the system’s end-
users and a business’s customers. Without this property, when assigned
computing resources are not being fully consumed, there is no easy way
to free excessive allocated resources to be used by lower priority work. In
these situations, customers must buy and maintain separate infrastructure
for each application to meet that application’s most demanding computing
needs;

• Self-protecting: Components can detect the occurrence of undesired behav-
iors and take corrective actions to make themselves less vulnerable. Those
unpleasant behaviors can include unauthorized access and use, virus infec-
tion and proliferation, and denial-of-service attacks. This attribute allows
businesses to continuously ensure security and privacy policies. Thus, it
becomes possible to automate tasks IT professionals must perform to con-
figure, heal, optimize and protect the IT infrastructure.

Considering these properties, IBM proposed a control loop, denominated MAPE-
K, for enabling self-adaptation on systems [83]. MAPE-K is an acronym where
each letter represents one of the main components of the control loop (M-Monitor,
A-Analyze, P-Plan, E-Execute, and K-Knowledge).The general idea consists of
the Monitor that collects metrics, the Analyze that processes those metrics to
identify and predict system states/behaviors, the Plan that creates plans based on
policies and the Analyze’s output, the Execute that is responsible for executing
the plans, and the Knowledge which hosts data shared by the other components.

Fig. 3.1 presents the proposed architecture for the MAPE-K control loop, com-
posed of 5 main components that work together to self-manage a system:

• Monitor: Responsible for providing mechanisms that collect, aggregate, fil-
ter, and report details (such as metrics and topologies) collected from man-
aged resources;

• Analyze: Provides mechanisms that correlate and model complex situa-
tions (for example, time-series forecasting and queuing models). These
mechanisms allow the system to learn about the IT environment and help
predict future situations;

36

State of The Art

Figure 3.1: IBM proposed architecture for self-adaptive systems (from [83]).

• Plan: Provides mechanisms that formulate and create the actions needed
to achieve and assure goals and objectives. The planning mechanism uses
policy information to guide its functions;

• Execute: Responsible for having mechanisms that control and orchestrate
the execution of a plan;

• Knowledge: A repository accessible by the previous components, where
information and data are shared.

Besides these components, there are two more, sensors and effectors, also known
as probes and actuators respectively. The first is responsible for actually collect-
ing raw information from systems states and making them available for the Mon-
itor component. Effectors are the ones responsible for actually performing the
adaptations. They receive orders from the Execute component to assure a plan is
properly executed.

The remaining of this section will present systems that either implement the
MAPE-K control loop or implement any self-adaptive capability.

3.1.1 TMA

TMA is a platform that follows a microservice architecture, implementing a MAPE-
K control loop [18]. Functions from that control loop are distributed by the multi-
ple components that compose TMA: monitor, analyze, planning, execute and knowl-
edge.

The overall functioning of the platform starts with probes, which correspond to the
MAPE-K’s sensors, collecting data from resources and sending it to the monitor.
Then, the data received by monitor is persisted in the database provided by the
knowledge component. Next, analyze processes the data gathered and calculates

37

Chapter 3

scores through quality models. These scores are then compared against thresh-
olds by planning, which in cases of disrespect generates plans for the system to
adapt. Execute gets these plans and makes them happen, invoking actuators. Ba-
sically, it orchestrates the whole adaptation, making the calls, while actuators are
the ones who actually perform the adaptations.

To assure that communication among the components is resistant to possible fail-
ures and handled reliably, a fault-tolerant mechanism is used. For that, Apache
Kafka is used and topics are created so that components can publish information
to them or subscribe to receive messages.

Each of the components that constitute TMA has a Dockerfile that details every
single software package needed to create the respective Docker container image.
Those Docker images correspond to containers that are then used in YAML Ain’t
Markup Language (YAML) files. These files have several specifications which are
used by Kubernetes to understand how to deploy and manage the containers.
Docker is a technology that eases the process of dealing with containers, from
creation to execution phase, while Kubernetes is an open-source platform that
allows managing and orchestrating multiple containers inside a network.

Following it is presented the architecture of TMA on Fig. 3.2 and the behavior of
the components that represent the MAPE-K control loop are detailed:

Figure 3.2: TMA architecture (from [18]).

• Monitor - Component, deployed using the web microframework Flask, that
provides a Representational State Transfer (REST) Application Program-
ming Interface (API) for probes to post observations (JSON messages) from
the managed elements. The message contains a data type, that can be a mea-
surement (e.g., memory allocated, CPU usage) or an event (e.g., the scale-
up process has started). While measurements are numeric values used to

38

State of The Art

calculate scores based on quality Models (QM), events are occurrences. Ad-
ditionally to the data type, a probe’s message contains the value and time
of the observation.

When data from probes is received, it is validated according to a JSON
schema. If the schema isn’t respected, the message, and consequently the
data, is discarded and an error message is returned to the probe.

After verifying the message’s schema is valid, the data is enqueued, in a re-
liable way, at the FaultToleranteQueue in a topic named “topic-monitor”, to
assure it will be later stored in the Knowledge component. The persistence of
the probed data in Knowledge is accomplished through a component called
DataLoader. That component pulls data from the monitor topic and executes
a data normalization process, making it correct for insertion in the Knowl-
edge database.

To ensure secure communication between probes and the Monitor compo-
nent, SSL/TLS encryption is used. Thereby, probes must possess the Moni-
tor’s digital certificate to be able to communicate with it;

• Analyze - This component is responsible for evaluating the data gathered
by Monitor, applying quality models. In the decision-making (adaptation)
process, it may become necessary to consider several properties of a system.
Thus, this component uses quality models which are structured weighted
trees of quality attributes. This allows to reason about adaptations on mul-
tiple sources of information. Basically, quality models are used to aggregate
the measurements from a system and come up with a final score that reflects
a system state based on a set of properties (e.g., security and performance).
Fig. 3.3 presents an example of a quality model that could be applied.

Figure 3.3: Example of a TMA quality model (from [18]).

During execution, Analyze aggregates the measurements from a resource,
calculates metrics values for each of the nodes that compose the quality
model tree, and finally, it outputs a score for the root node metric, made
upon multiple sources.

The data collected from probes are read from the Knowledge component
and the calculated values are also stored in it. These values are also sent to

39

Chapter 3

a topic, called “topic-planning”, in the FaultTolerantQueue to be consumed
by Planning;

• Planning - This service is responsible for checking the scores calculated by
Analyze, retrieved from the topic “topic-planning” at the FaultTolerantQueue,
and compare them against thresholds. When threshold conditions are veri-
fied, and an adaptation is needed, Planning has to come up with a plan. An
adaptation plan is a set of actions that are meant to be executed to assure
defined goals.

There are different adaptation decision approaches, e.g., models, rules/policies,
goals, or utility [84]. TMA uses a business rules management system called
Drools, which is a Java-based tool, thus following a rule-based approach.

When an adaptation plan is created, Execute is going to be informed by a
message sent to the topic “topic-execute” at the FaulTolerantQueue;

• Execute - It is the component responsible for invoking the actions of the
adaptation plan defined by the Planning component, once notified through
the topic "topic-execute".

TMA can interact with the managed element (target of the adaptations)
through Actuators. Each actuator provides a REST API which may be in-
voked by the Execute to perform any adaptation. All communication be-
tween Execute and the actuators is done securely, since messages are en-
crypted using the keys of both the Execute and the actuator involved;

• Knowledge- This is the component responsible for storing all of TMA’s
data, such as measurements and events collected from probes, quality mod-
els definitions, metrics scores, resource information, and adaptation plans.

Its implementation contains a MySQL DBMS (knowledge database) and a
block-storage solution Ceph. There is also a part of Knowledge, the Dat-
aLoader, which is responsible for saving in the database the values collected
from probes.

Besides the main components of TMA just presented, there is another service
called tma-admin-api, implemented in Java using the Spring framework, which
provides a REST API for inserting data into the Knowledge database, and other
features meant to ease the configuration of the platform, such as generation of
keys and getting lists of probes and resources.

There is also another service, a web page developed in Angular, named tma-
admin-web that uses the API component to provide a User Interface (UI) for
TMA’s administrators. Here there are available functionalities like the genera-
tion of keys for actuators, and the creation of TMA’s database entities such as
resources, descriptions, probes, actions, and actuators. Besides not having a min-
imal carefully designed aspect, this interface has the single purpose of creating
noncomplex TMA configuration data on the database as Fig. 3.4, 3.5, 3.6 and 3.7
depict. As the figures show, clearly this web page was not thought to support the
decision process when managing systems since it does not have any feature in
that sense.

40

State of The Art

Figure 3.4: tma-admin-web’s create action page (from [85]).

Figure 3.5: tma-admin-web’s create probe page (from [85]).

Figure 3.6: tma-admin-web’s create resource page (from [85]).

41

Chapter 3

Figure 3.7: tma-admin-web’s menu page (from [85]).

For implementing probes and actuators there are base scripts in java, python, and
C#, which reflect how they should behave and be constructed. These base scripts
can be used as starting points to further expand their behaviors and implement
own probes and actuators. Also, there are some developed probes and actuators
ready to use if they fit the needs.

TMA relation with Microservices and Containers

TMA’s architecture follows the microservices principles, separating the systems
monitoring and adaptation tasks it performs across multiple and smaller compo-
nents. Essentially, each of those components is a container responsible for per-
forming a related set of TMA’s functions. For example, the Analyze component
deals with the data processing and calculation of metrics values, while Planning
is only responsible for applying rules and triggering adaptation plans. Also, as
TMA is split into different services, each can be scaled individually and indepen-
dently from the others. Meaning that if a sector of the management loop is more
loaded than the others, it can be scaled to deal with demand.

In its implementation, TMA makes use of both container technologies, Docker
and Kubernetes.

First, Docker is initially used to build container images for each of the microser-
vices composing TMA. There is a Dockerfile for each service that specifies how
the image is built, including all the code and necessary dependencies of that com-
ponent. Those Dockerfiles are run to consequently build the images. In case
changes are made to a component’s code, its Dockerfile needs to be rerun to re-
build and update the container image.

After generating the images, they can be shared on Docker Hub which is a repos-
itory of public and private images provided by Docker. The advantage of using
the DockerHub is to make the TMA’s components images available anywhere so

42

State of The Art

that separated deployments of TMA can be maintained elsewhere.

Finally, Kubernetes is used to deploy, run and manage the components Docker
images in a cluster. For that, there are YAML files that hold descriptions of how
those images should be run, restarting policies, available resources, and other
kinds of configuring information.

3.1.2 Hogna

Hogna is a platform that allows deploying self-managing web applications on the
cloud. To begin, it enables deploying applications through the automation of a
series of steps, such as starting and configuring instances. After that, it provides
continuous monitoring of the deployment where the data collected is analyzed
according to a performance model. Finally, adaptation plans are created and ex-
ecuted. Furthermore, the components involved in the process of deployment to
the adaptation can be customized to fit the needs [86].

Hogna authors claim that the platform provides the following set of features:

• Automatic setup of a topology at a cloud provider, by specifying and de-
scribing the cloud network layout at a file descriptor;

• A monitoring component that manages all the monitors and extracts met-
rics from them periodically, thereby allowing continuous monitoring of the
deployed topology. This component may extract metrics from a cloud-
specific monitoring API or agents attached to topology instances;

• A performance model upon which metrics collected are analyzed and plans
formulated;

• A mechanism that allows inserting logic into the analyzing and planning
phases.

This platform’s architecture, represented by Fig. 3.8, can be seen as 2 subsystems.
The first is composed of the monitoring engine, analytical performance model,
execution engine, and the management logic for the deployed application. The
second subsystem is optional and constituted of components found useful in sup-
porting testing activities.

To understand Hogna’s functioning, details on the primary subsystem compo-
nents are given next:

• Management Component: This is the core component of Hogna, where a
MAPE control loop is applied. Periodically, recently collected metrics are
extracted. Then, those metrics along with a performance model are passed
to the analyzer. The results from the analyzer are then sent to the planner
which will create a set of actions that need to be performed so that identified
issues can be corrected. The plan is later sent to the execution engine which
will be in charge of performing it;

43

Chapter 3

Figure 3.8: Hogna architecture (from [86]).

• Performance model: This is a built-in element provided by Hogna. Based
on the definition of this model, the analyzer and planner make their deci-
sions;

• Monitoring Component: This component manages a set of monitors, and
it is responsible for continuously extracting metrics from them. It has its
own internal loop, composed of the steps described in Fig. 3.8, which starts
with the request of metrics from the set of monitors. Once data arrives, it is
normalized and then inserted into a database.

The set of monitors is loaded automatically from the topology configuration
file and each monitor is associated with an instance in the topology;

• Analyze Component: This component is responsible for evaluating the
state of a managed resource. Based on the metrics received, the topology
description, and the performance model, it calculates a system status. That
status is then communicated to the planner.

From source, Hogna provides an analyzer that operates using threshold
rules to decide if the system is or isn’t overloaded or underloaded;

• Planning Component: This unit is responsible for coming up with a se-
quence of actions that will resolve issues identified by the analyzer. That
sequence of actions constitutes a plan that will later be sent to the execution
engine.

From source, Hogna only provides add and remove instances operations;

• Execution engine: This is the component responsible for performing the
theoretical plans designed by the planner.

44

State of The Art

3.1.3 Lotus@Runtime

Lotus@Runtime is an extensible tool that uses models at runtime to monitor and
verify self-adaptive systems [87].

This tool maintains a probabilistic system model which defines the probabilities
of occurrence of certain system actions. The tool then monitors the execution
traces of a self-adaptive system and updates the probabilities of the model.

During runtime, the probabilistic model is checked against some system actions
to verify that properties still hold. If a property is violated according to the prob-
abilistic model, the self-adaptive system can be informed by a notification mech-
anism provided by Lotus@Runtime.

Thus, Lotus@Runtime provides real-time monitoring of applications through the
execution traces generated by a self-adaptive system and allows verifying during
runtime certain system properties.

Lotus@Runtime architecture can be seen on Fig. 3.9 and it is composed of the
following elements:

Figure 3.9: Lotus@Runtime architecture (from [87]).

• MonitorComponent: This component is responsible for monitoring a sys-
tem by reading its generated execution traces. A trace is a sequence of vis-
ible actions which represent events and a set of traces is a log. The moni-
toring operation is performed by reading the log file, where each line repre-
sents an execution trace.

This component can monitor the traces either periodically in a time defined
by the user or by reading the log file when it changes;

45

Chapter 3

• LotusModelComponent: This element is responsible for maintaining a model
updated from the information collected by the MonitorComponent. It also
provides services that allow other components to receive the updated model;

• ModelCheckerComponent: As the probabilistic model is updated, this com-
ponent is responsible for performing runtime verifications so that it be-
comes possible to find violations of properties defined by the user. In case
the result violates a property, the notification service should be invoked;

• NotifierComponent: This component is in charge of publishing properties
violations in an event bus, which can later be read and used in the planning
phase of a self-adaptive system to design adaptation plans;

• ConfigurationComponent: This component is simply in charge of hosting,
in a centralized way, configuration parameters that will be read from other
components. Those parameters are configuration file name, log file path,
model file path, optionally the time to check for new traces, and the list of
properties to be verified at runtime.

How Lotus@Runtime allows for self-adaptiveness is through the flow represented
by Fig. 3.10. It all begins with the monitoring process that collects traces from the
system. Then, the information collected is used in the updating process to up-
date the probabilistic model. After that, in the verification phase, the probabilistic
model is checked against properties defined by the user.

Figure 3.10: Self-adaptive systems with Lotus@Runtime (from [87]).

If a property is violated, the next step is the notification process that will trans-
mit the violation data to an external component. This component that receives
the violation details will be in charge of the planning phase of the self-adaptive
system. Then, another external component will be responsible for performing, at
the execution phase, the plan designed.

46

State of The Art

3.1.4 Summary

After studying and analyzing a set of different tools that provide self-adaptation
capabilities to systems, following there is a discussion and a comparison to jus-
tify the use of TMA. To reason about this choice the following properties were
considered:

• Complete control loop: the tool implements a control loop that covers the
whole systems management activity from monitoring to adaptation;

• Environment flexibility: the tool can be applied to any system within any
type of environment being it cloud or not, public or private;

• Monitoring flexibility: data collected from systems when monitoring can
be of any type;

• Unlimited applicability: a single instance of the tool can provide self-adaptation
to a variety of systems or several components of the same system. This
means that the tool is not restricted to a maximum number of systems or
any other restriction.

In Table 3.1, a match between each of the self-adaptive tools and the properties
considered is shown.

Table 3.1: Comparison of self-adaptation tools.

Properties Tools
TMA Hogna Lotus@Runtime

Complete
control loop X X

Environment
flexibility X X X

Monitoring
flexibility X X X

Unlimited
applicability X

As Table 3.1 depicts, TMA is the only tool that fulfills all the properties considered
for the comparison between self-adaptive tools.

Concerning TMA, it has a complete control loop by implementing the logic that
crosses the whole management activity lifecycle (monitor, analyze, plan and exe-
cute). Also, TMA has no restrictions in the types of environment it can be used.
And, when monitoring, any type of data can be collected from systems being the
only requirement to implement that collection on probes. Ultimately, it also has
no restrictions on the number of systems it can manage at the same time by ap-
plying different quality models to different systems or parts of the same system.

47

Chapter 3

Hogna, like TMA, implements a complete control loop, has flexibility in the mon-
itoring data types, and can be applied to any environment. However, it is tied to
a topology defined in a configuration file, meaning that it can not be applied to
other systems at the same time. Also, with Hogna, the same performance model
is applied to the whole setup, which means that parts of the system can’t be indi-
vidually managed, only the setup as a whole.

Looking at Lotus@Runtime, it presents benefits on the environment applicabil-
ity since there are no restrictions. Also, its monitoring flexibility is attractive as
it operates by reading traces from the monitored system and those traces could
be anything the user wanted. However, Lotus@Runtime presents downsides re-
specting the control loop and the limits where it is applicable. To begin with, this
tool does not implement the logic from the planning and execution phases of the
management control loop. Instead, it leaves that implementation to be performed
by the user. Finally, it seems to be applicable to a single system, meaning that an-
other instance of the tool has to be run for each new system being monitored.

As analyzed and mentioned above, TMA is the tool that most suits the needs.
Consequently, it makes sense to choose it as the self-adaptation enabling tool of
this work.

3.2 Experiment with Kubernetes Horizontal Pod Au-
toScaler (HPA)

In the context of this dissertation, an experiment was made to study the elasticity
provided by a Kubernetes self-adaptation enabling tool, HPA, for a microservice
application. Elasticity is the degree to which a system can autonomously adapt
to workload changes by adjusting the resources consumed to the current demand
as closely as possible [88].

Kubernetes provides a feature for run-time demands called HPA. It can dispatch
scaling actions based on CPU consumption, memory utilization, or custom met-
rics [89] collected from pods by a tool called metrics-server (https://gith
ub.com/kubernetes-sigs/metrics-server). Scaling decisions are made by
HPA upon collected metrics through a formula and defined thresholds. Scale-
ups are performed immediately, while scale-downs take longer by considering
the highest value calculated for the number of pod replicas in the last N seconds
(stabilization period). By default, N is 300 seconds. This is to avoid destroying
pods when the load decreases transiently.

3.2.1 Experimental Methodology

This section presents the steps followed in the experiment to evaluate HPA on
scaling the microservice application TeaStore. The goal was to assess the elasticity
of Kubernetes HPA when applied to modern microservice applications. For that,
it was selected metrics that demonstrate the level of throughput growth, and it

48

https://github.com/kubernetes-sigs/metrics-server
https://github.com/kubernetes-sigs/metrics-server

State of The Art

was established a relation between it and the extra resources consumed when the
demand increases.

The followed methodology consists of 5 steps, as illustrated in Figure 3.11, and
they are described in the following sections.

Select microservice application to be
used and that can be deployed using

Kubernetes

Set up application on a Kubernetes
environment

 Perform limit experiments to
find out time limit for transactions,

upper limit for number of transactions
and pods resources consumption

Run the experimental plan and collect
metrics

Define workloads and set up an
experimental plan

A B C

DE

Figure 3.11: Overview of the experimental methodology followed in this study.

A - Select Microservice Application

Considering the objective to assess Kubernetes HPA elasticity, we started by choos-
ing a representative application that can also be deployed into a Kubernetes clus-
ter. We decided on using TeaStore [90], as it can be deployed using Kubernetes,
besides being used by several studies about microservices and scaling approaches
(e.g., [91], [92]). TeaStore is an online store for tea and tea-related utilities [90]. It
has been created to represent a modern and flexible microservice application so
that researchers can use it to simulate a real-world application.

TeaStore is composed of six services: WebUI, Image, Auth, Recommender, Per-
sistence, and the Registry service that interact with each other through REST op-
erations. Through Registry, the other services register themselves to make them
known and accessible by each other. The Registry is kept updated through heart-
beat messages. Besides the Registry service, the WebUI is responsible for provid-
ing the end-user frontend interface, making it the entry point for the workload
requests. Image processes images and returns them to WebUI to generate the
pages to be returned to users. Auth deals with verification of login and session
data of users. Recommender is responsible for providing recommendations of
products based on customer behavior. Finally, Persistence is responsible for all
the accesses to the relational database of TeaStore. The database stores all the
information needed by TeaStore, such as users, products, and orders. TeaStore’s
architecture can be found in detail in [90].

When TeaStore is deployed on Kubernetes using the default configuration, seven
pods are created. They are Auth, Db, Image, Persistence, Recommender, Registry and
WebUI. The names identify the service they represent.

B - Kubernetes Setup with Microservice Application

The second step consists of creating a Kubernetes cluster to deploy the microser-
vice application. For that, it was set up a cluster composed of a control plane (4

49

Chapter 3

vCPU and 16GB RAM) and three worker machines (4 vCPU, 16GB/16GB/12GB
RAM respectively).

Then, it was defined the limits that each service’s pod could consume. These lim-
its (specified using the Kubernetes units) were distributed equally across the seven
pods that compose TeaStore, where limits of 1000m for CPU and 4Gi for memory
were defined. The CPU unit m represents the unit millicore. For example, 1000m
indicates the consumption of the whole (100%) processing time of a single CPU.

C - Define the workload limits

Preliminary experiments were performed to discover and define important as-
pects of the experiment. With the objective of performing an experiment as real
as possible, and as TeaStore represents an e-commerce website, it was searched
on the literature for information on how the requests of an e-commerce web-
site are distributed (database writes and reads). Zhang et al. presented differ-
ent workloads, which vary on the distributions of the type of interactions that
are performed [93]. Those workload distributions have as a baseline the TPC-W
benchmark, which simulates the database transactions of an e-commerce website.
At last, it was decided to follow the distribution composed of 95% of interactions
that only perform read operations and 5% of interactions that perform both read
and write operations.

TeaStore provides two different transactions: i) browse (containing only read op-
erations), and ii) buy (containing both read and write operations). Hence, we
defined the proportions of the transactions to be submitted on the experiments
as 95% of browse transactions and the remaining 5% of buy transactions. The re-
quests that compose each of these transactions are available at https://github.c
om/DescartesResearch/TeaStore/tree/master/examples/httploadgenerator.
The buy transaction is composed of 13 requests, from which 11 are the same as
the ones that form the browse transaction. The other 2 requests are the ones that
write in the database. After this, it was investigated the time a transaction needs
to be completed, the maximum number of transactions a default deployment of
TeaStore (1 pod per service) can handle, and the number of resources consumed
by the pods. It was found that when the system starts becoming overloaded,
about 75% of the transactions will last at most 3 seconds. Thereby, we defined
that transactions would take a maximum of 3 seconds.

Teastore provides workload emulators, however they can not control the pace at
which transactions are started. Therefore, a throttle mechanism was created to
make sure each user performs transactions at a constant pace, in our case, every
3 seconds. We also adjusted the timeouts of the requests that compose the trans-
action by a value proportional to the division of those 3 seconds by the number
of requests. It was observed that the default deployment could handle up to 35
simultaneous users.

After these preliminary experiments, we decided to reassign resources to pods
as it was observed a significantly much lower consumption than the provided
limits. Hence, for our final experiments (step E of Fig. 3.11), it was defined the

50

https://github.com/DescartesResearch/TeaStore/tree/master/examples/httploadgenerator
https://github.com/DescartesResearch/TeaStore/tree/master/examples/httploadgenerator

State of The Art

default deployment to be used. Each pod starts with one replica, and most of
them (Auth, Db, Image, Persistence, and WebUI) have 1000m of CPU and 2Gi of
Memory each, while Recommender and Registry have 250m of CPU, and 1Gi of
Memory each.

D - Define Experiment Configuration

To evaluate TeaStore, we defined a workload with some abrupt load variations
intending to represent a possible realistic load of an e-commerce website. Fig. 3.12
presents this workload, with the number of simultaneous users per experiment
slot, where each slot lasts for 5 mins. The workload simulates the traffic behav-
ior of a real website and has a slight variation in the number of website visitors,
resulting in the peaks and valleys that can be observed. Also, to represent pe-
riods of high load, it was designed the period from the slots 11 to slot 14, with
abrupt transitions in the number of simultaneous users. Each user starts a new
transaction every 3 seconds.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Slot number

0
5

10
15
20
25
30
35
40
45
50
55
60

Lo
ad

 (
Nº

 Tr
an

sa
ct

io
ns

 /
3

se
co

nd
s)

phase 1 phase 2

Workload

Figure 3.12: Workload divided in 2 main phases along with its slots identification.

The workload is divided into 2 phases, in which the phase 1 has a lower demand
(Slots 1 to 10), while the phase 2 has a higher one (Slots 11 to 20). Lower demand
means that the maximum number of simultaneous users is 35, which is the limit
of load found for the default deployment. Fig. 3.12 shows the workload divided
into phases.

Based on the analysis of the measurements of all services of TeaStore in the pre-
vious step, we decided to have two services (Persistence and WebUI) managed by
HPA, as both consume almost all CPU that they have available when 35 users
are performing actions at the same time. The other services were not consuming
half of the resources that were available to them. Using HPA, both Persistence and
WebUI services can vary between 1 and 4 replicas (pods), and the threshold that
we used to trigger the adaptation was 80% of CPU usage.

51

Chapter 3

To evaluate the workload and its phases, two types of metrics are used: one is
performance metrics, and the rate of successful requests (REST operations submitted
to TeaStore) and transactions (set of requests that compose a complete activity in
TeaStore, such as buying a product) are used. The other type is resource allocation
metrics, and we use the ratio (indicated by R in Equation (3.1)) between the in-
creased throughput and the additional resources consumed when using HPA. If
R is higher than 1, then the throughput growth is larger than the resource growth.
If less than 1, then the reverse happens. If equal to 1, then both grow in the same
proportion.

R =
ThroughputSpeedup

ResourceIncrease
(3.1)

We decided to estimate the number of resources consumed by a higher value than
the actual consumption. For that, in each slot, the highest registered number of
pod replicas is considered constant. The increased throughput rate (Throughput-
Speedup (3.2)) is calculated based on the performance metric Successful Transac-
tions rate. Dividing this metric from the experiments with HPA by the experi-
ments without, we calculate the ThroughputSpeedup.

ThroughputSpeedup =
throughputWithHPA

throughputWithoutHPA
(3.2)

The additional resources consumed rate only considers the CPU usage
(ResourceIncrease (3.3)), as we noticed in the previous step (described by Sec-
tion 3.2.1) that memory consumption barely increases. On the contrary, CPU con-
sumption quickly increases until it reaches its allocated maximum.

ResourceIncrease is calculated by dividing the number of resources consumed
on the experiments with HPA by the experiments without. The numerator is
given by the sum of each slot’s resource consumption. The resource consumption
of a slot is given by the sum of each service’s resource consumption within that
slot (number of pod replicas x pod’s cpu). The denominator has an equivalent
expression to the numerator however, as adaptation is not used, the number of
pod replicas is constant across the experiment. Thereby its value can be calculated
through the product between the number of slots (S) and the default deployment
resource consumption (TotalConstantResources), which is equal to the sum of
each pod’s CPU.

ResourceIncrease =
∑S

s=1 ∑P
pod #Replicass × CPUpod

S ∗ TotalConstantResources
(3.3)

E - Run Experiments and Analyze Results

Finally, we ran the experiments and collected the respective metrics as planned.
In each experiment, a warm-up period of 20 minutes (same period as used by
Eismann et al. [91]) at a constant load of 5 Transactions / 3 seconds is run before

52

State of The Art

the predefined workload. For each configuration, we have 30 runs of 2 hours (20
minutes warm-up + 100 minutes of actual workload time). Each configuration is
defined by its auto-scaling ability (with or without HPA).

3.2.2 Results and Discussion

In this section it is presented the results and discussion for both performance and
resource consumption metrics. The results do not include the warmup period
present at the beginning of each run. Also, all the results in this section are the
mean values considering all experiment runs, including tables and figures. In our
case, all the 30 runs without HPA, and 30 runs with HPA.

Results for Performance Metrics

Table 3.2 shows the results for the complete experiment. We focus the analysis on
transactions instead of requests because each transaction is a set of requests, and
some of them are computationally heavy. When the service gets overloaded the
transactions will fail at those heavier requests. Thus, the successful transactions
is a more informative indicator of a correct service delivery.

Table 3.2: Complete experiment Performance Metrics

Configuration
Metric

Successful
Transactions (%)

Successful
Requests (%)

No Adaptation 86.08 95.08
HPA 91.50 96.58

From Table 3.2, using HPA we get about 5% more throughput (Successful Transac-
tions) than without using HPA. This was the minimum expected behavior when
using HPA. Nevertheless, the throughput increase does not seem considerable.
But looking at Fig. 3.13 we see that only 2 of the 20 slots (seconds 3300 to 3660 and
3900 to 4200) impose a load that cannot be handled by the default deployment. It
indicates the throughput growth with HPA is a good improvement considering
that only a small part of the experiment requires scaling.

The higher peaks in the workload will increase resource consumption and trigger
a scale up which might take some time. This may occur primarily due to the time
it takes the metrics server to update the resource consumption values, and then
to the time it takes new replicas to get ready. For this workload, this behavior
could not have been predicted, as the load increases abruptly. In a different sce-
nario where the workload increases smoothly, it would be possible to proactively
dispatch an adaptation.

Moreover, immediately after the slot with the highest peak, another slot with a
low load comes followed by a very high one (slots 12 to 14, around seconds 3300

53

Chapter 3

0
30

0
60

0
90

0
12

00
15

00
18

00
21

00
24

00
27

00
30

00
33

00
36

00
39

00
42

00
45

00
48

00
51

00
54

00
57

00
60

00

Time (seconds)

0
5

10
15
20
25
30
35
40
45
50
55
60

M
ea

n
Nº

 o
f t

ra
ns

ac
tio

ns
/p

od
s

Workload
Throughput_no_HPA
Throughput_HPA
Nº pods webui
Nº pods persistence

Figure 3.13: Mean throughput and mean number of pods with HPA when run-
ning the workload

to 4200). This will lead HPA to scale down after the first high peak at slot 12.
As HPA has a stabilization period of 5 minutes, which is the same as the dura-
tion of workload slots, the scale down action will be triggered at the start of the
second highest load peak (slot 14, second 3900 in Fig. 3.13), thereby harming per-
formance. Also, scale-up actions will be taken later than when they should, since
metrics-server takes 60 seconds to update the resources consumption. This de-
lay can be seen through the number of WebUI pods which takes a while to in-
crease at slots 12 and 14, between seconds 3300 to 3600 and 3900 to 4200. The
delay to scale up will also delay scale downs due to the stabilization period of
HPA. Hence, the over provisioning state will last longer as it can be seen at slot
15 (seconds 4200 to 4500).

Interestingly, the Persistence service was not scaled as many times as WebUI and
did not follow its number of replicas as initially thought, like Fig. 3.14 depicts.
Also, WebUI service was consistently scaled in the moments of high load, reach-
ing its maximum number (4) of replicas.

Observing the Successful Transactions (Txs) on phase 1 (Table 3.3), we can see that
the behavior of the system is the same with or without HPA. That is because,
in phase 1, the maximum value of simultaneous users reached is 30 being the
maximum tolerable 35. Thus, HPA did not take any action.

On the other hand, the results on phase 2 (Table 3.4) stand out better, meaning
there is an improvement when HPA is used. Although phase 2 includes a major-
ity of slots where HPA will not make a difference, an improvement close to 9% is
achieved.

In terms of workload phases, the impact of using HPA only becomes visible in
phase 2, in the slots that go over the limit tolerable by the default deployment.
Hence, Table 3.5 presents the performance metrics in those slots, where an im-
provement close to 17% is reached in the critical load moments.

54

State of The Art

Table 3.3: Experiment Phase 1 Performance Metrics

Configuration
Metric

Successful
Transactions (Txs) (%)

Successful
Requests (Reqs) (%)

No Adaptation 99.89 99.86
HPA 99.89 99.86

Table 3.4: Experiment Phase 2 Performance Metrics

Configuration
Metric

Successful Txs (%) Successful Reqs (%)
No Adaptation 75.44 90.86

HPA 84.90 93.76

Table 3.5: Experiment Slots 12 and 14 Performance Metrics

Configuration
Metric

Successful Txs (%) Successful Reqs (%)
No Adaptation 52.73 87.95

HPA 69.71 92.02

55

Chapter 3

0
30

0
60

0
90

0
12

00
15

00
18

00
21

00
24

00
27

00
30

00
33

00
36

00
39

00
42

00
45

00
48

00
51

00
54

00
57

00
60

00

Time (seconds)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

M
ea

n
Nº

 o
f p

od
s

Nº pods webui
Nº pods persistence

Figure 3.14: Mean number of Persistence and WebUI pods with HPA when run-
ning Workload

Looking at the throughput growth (Table 3.5) and how the services scaled (Fig. 3.14),
we find interesting that the growth was not higher since there were resources left.
Regarding WebUI, the highest mean number of pods was closer to 3.5 meaning
that, in the most demanding period, almost half of the runs had 3 replicas while
the other half had 4 replicas. Thereby, the service shouldn’t need more than 4
replicas to handle the load. As for Persistence, it never needed more than 2 repli-
cas when it could scale up to 4.

That being said, the number of each service pods handling the load was suppos-
edly enough, but the proportion of Successful Transactions did not turn out to be
as good as we thought it would. Some of the reasons that might led to these re-
sults could be scale downs in moments of high load and delayed deploys of new
replicas, caused by HPA stabilization and metrics-server periods respectively.
Also, the functioning of TeaStore may be a problem.

Based on the results, we can observe that the growth of throughput can be ana-
lyzed in various contexts but, if we consider the whole experiment, throughput
had a growth of approximately 5%.

Results Considering Resource Consumption

For resource consumption, we used the ratio R (3.1), which measures the through-
put increase in comparison to how much resources were provided. The value ob-
tained for the metric was 0.94. This result means that the proportion of added
resources resulted in a lower proportion of throughput growth.

Although the metric result represents a bad value, meaning that we waste more
resources to gain few on throughput, we point out that this value is an above esti-
mate and, still, close to 1. Considering this and the problems identified in the per-
formance metric results, we highlight that some adjustments on the metrics-server

56

State of The Art

and HPA stabilization periods could improve the results. Thus, making the extra
resources compensate for the throughput growth.

We can conclude that the proportion of throughput speedup costs almost the
same or more proportion in extra resources. In this case, the proportion of through-
put growth costs more 6% in extra resources using HPA. Thus, we could say this
behavior is not elastic.

3.2.3 Threats to Validity

In this section, it is presented some points that may affect the validity of the re-
sults. The first is the use of a single system under test since we focused the assess-
ment of HPA efficiency on a single application, TeaStore. Although it is well doc-
umented and increasingly adopted, there is space for further experiments with
other microservice applications.

The second threat is the use of a private cloud environment. As the analy-
sis is made upon a local Kubernetes cluster, the obtained results could be com-
pared with the ones from a similar experiment in a public cloud environment
(e.g.,EKS [12]).

Other threats identified are the HPA stabilization and metrics server configura-
tions that were used. As for the stabilization period, it was used the default value
of 5 minutes that clearly did not fit the workload. Regarding the metrics-server,
it was used an update frequency of 60 seconds, which may not be the best, as it
may take longer to detect a CPU usage increase. Thus, adaptation may have been
delayed and the number of successful transactions not been as high as it could.

3.2.4 Summary

To perform the experiment the % of successful transactions (set of requests that
compose a complete activity in TeaStore, such as buying a product) were ana-
lyzed. Also, a formula representing a relation between the throughput gains and
the increase of resources during the experiment was used. From the analysis of
the results obtained it was noticed more transactions are served when HPA is
used to scale application components in high load periods. It was also seen, from
the formula’s results, that the independent scaling of the services led to ineffi-
cient increases in production resources as this increase did not compensate for
the throughput growth.

The results showed that the use of self-adaptation allows the increase of perfor-
mance, throughput in this case. Also, concerning the formula used to present
a relation between throughput gains and increase of resources, it did not show
expected results which would be a greater throughput increase when extra re-
sources were added. However, the experiment performed did not try more than
one configuration for HPA. Since the experiment performed collected metrics
from pods every 60 seconds, that may have delayed the adaptations. That could
be the reason why the formula’s results were not the expected as shorter met-

57

Chapter 3

rics collection periods could and should have been tested. Besides, those shorter
periods could have also resulted in a greater increase in throughput.

Kubernetes HPA is a self-adaptation enabling tool that allows scaling actions to
meet demand and improve performance. However, as seen in this experiment,
this is a very restrictive tool, only applicable to Kubernetes environments, and
that only allows scaling pods as adaptations. For these reasons, it makes sense
to use more flexible and wider applicable self-adaptation enabling tools, such as
TMA.

58

Chapter 4

Requirements

In this chapter, the functional requirements are summarized and explained while
non-functional requirements and implementation restrictions are also addressed.
Respecting the functional requirements, a lot of effort was spent detailing them.
Thereby, inserting them in this chapter would occupy a lot of space. For these
reasons, they had to be summarized, but the detailed information can be found
and read in Appendix A.

For the elicitation process of functional requirements, a use cases approach was
used. Use cases are descriptions of how users will accomplish goals using the
system [94]. They define how the interactions will happen, defining requests and
responses both from the users and the system.

Use cases are beneficial because they help explain and define how the system
should behave and identify what could go wrong in the interactions with the
users. Besides, they allow establishing the cost and complexity of a system, which
can then be used to negotiate which functions are built [95].

The summarized expected functional behavior of the system will be explained
with the help of use case diagrams. However, and as explained before, since
the descriptions of the use cases are too long, for additional and more detailed
information Appendix A should be consulted.

4.1 Functional Requirements

Before diving into the enumeration and explanation of functional requirements,
some Trustworthiness Monitoring & Assessment Framework (TMA) concepts
must be first introduced and explained:

• Resources: Resources are the monitored systems from which raw data is
collected. A system may have several components being monitored which
translate into multiple resources. For example, a microservices application
could have each of its services deployed as containers, and each of those
containers is considered a resource to monitor independently. Other exam-

59

Chapter 4

ples could be the monitoring of resource consumption from a machine con-
taining multiple Virtual Machines (VMs), where each one of them could be
considered a resource and monitored independently, or we could consider
the guest machine as a single resource to monitor;

• Descriptions: Descriptions are used to identify and describe raw data col-
lected by Probes. Also, Metrics which are leaf attributes on a Quality Model
tree use these descriptions to describe the data they are related to. For ex-
ample, CPU consumption could be a leaf metric that would be associated
with a Description that would refer to % CPU data collected from Probes;

• Probes: Probes are the components in charge of gathering raw information
from systems states. They collect raw data from monitored resources which
are then used to compute the metrics values;

• Metrics: Metrics are what compose the Quality Models. They represent
the properties of a system and thereby they are what is monitored. They
can be of 2 types: Metric and Leaf Metric. The first has its values calculated
based on weights applied to its child metrics. Leaf Metrics have their values
calculated by processing raw data collected by probes;

• Quality Models: Quality Models define hierarchical trees of metrics. To
those trees are applied configuration profiles to create weighted metrics
trees that are then used to calculate scores to reflect systems states;

• Configuration Profiles: These components define weights to apply for each
metric of a Quality Model tree;

• Actuators: Actuators are responsible for executing adaptations on a system.
Thereby they are what assures adaptation plans are executed by receiving
orders from TMA’s Execute component;

• Actions: Actions define requests associated with actuators that are invoked
to trigger adaptations on Resources. Actions may have configurations which
are the parameters that customize an Action to be performed in different
manners. This means that there an Action can be executed multiple times
but with different values for its configurations;

• Adaptation Rules: Adaptation Rules are conditions that when violated
generate the creation of plans. TMA’s Planning is the component responsi-
ble for verifying these rules;

• Plans: Plans are created by adaptation rules and they represent an ordered
execution of actions. These Plans are orchestrated by TMA’s Execute com-
ponent;

• Logs: Logs are important events on TMA’s platform that need to be saved
to provide an alternative view on its management.

The requirements of the dashboard to be created can be grouped and then cate-
gorized into 4 topics using TMA’s related concepts:

60

Requirements

• Probe context: groups related functionalities to the systems monitoring pro-
cess. Therefore, the TMA’s concepts Resources, Descriptions and Probes are
here tied together. Resources represent systems or parts of them, Descrip-
tions detailed information on what is collected from monitored systems, and
Probes the units that are responsible for collecting the descriptions from sys-
tems. As systems are represented in this category, functionalities related to
the visualization of metrics and performed adaptations are included;

• Quality Model context: groups related functionalities to the management
of the TMA’s concept Quality Models. As this concept is coupled with config-
uration profiles and metrics concepts to represent weighted trees of metrics,
all of these concepts had to be included. Configuration profiles define the
weights applied on the tree while Metrics are the base and core unit of those
trees;

• Adaptation context: reunites a set of functions focused on adaptations.
Hence, the tma’s concepts of Actions, Actuators, Configurations and Adapta-
tion rules are presented here. Actions define operations to execute on sys-
tems and they are constituted by Actuators, which are responsible for exe-
cuting the actions on the systems, and Configurations, which define parame-
ters used to personalize the operations performed by actuators. Adaptation
Rules define conditions that may trigger adaptations;

• Decision support extras context: although the extras may sound like re-
quirements that could not be present in the product, they represent addi-
tional functionalities to ease the management of systems and help in the
decision process.

In the following sections, each of the 4 categories just presented will have their
set of requirements summarized. As pointed out before, the details of each use
case can be found in Appendix A of this document.

4.1.1 Probe context

For this category the requirements, presented by Fig. 4.1, include functionalities
for reading, creating, updating and deleting Resources, Descriptions and Probes.

Resources are the monitored systems and, for each of them, there is a configuration
profile applied to control the current state. So, this association had to exist as
functionality so that it becomes possible to know what quality model, with which
weighting, has to be applied when managing a certain resource. Besides, the
configuration profile for a resource is not fixed because later there may exist a
need for updating it. Thus, the possibility of changing it was also added as a
requirement.

As this context defines probing-related functions, functionalities for visualizing
the values of metrics from a system are located in this context. Basically, through
charts, it is possible to see the metrics values from a resource over time. Option-
ally, alongside the metrics, an indication of adaptation plans that took place can

61

Chapter 4

also be viewed. These charts can then be exported for any purposes the user in-
tends, such as articles and presentations. Also, as the product is a dashboard, a
requirement for exporting those chart configurations to a file was added. Thus,
that file can later be used to add charts to the homepage to facilitate the monitor-
ing activity on systems. Besides, those files can be manually altered to generate
new charts that can be added to the homepage.

There is also an option for simulating metrics values from a resource. When this
option is chosen, users perform a simulation where they are allowed to change
some of the weights of the metrics tree associated with the resource and see what
would be the new values for the metrics, if those weights were applied.

Probe context

Administrator

4.1 - View
Resource

Information

4.2 - Create
Resource

4.3 - Update
Resource

4.4 - Delete
Resource<<extend>>

<<extend>>

4.5 - Visualize
Resource Metrics

4.7 - Plot Plans
Alongside Metrics

<<extend>>

4.8 - Export Chart
<<extend>>

3.1 - View
Description
Information

3.2 - Create
Description

3.3 - Update
Description

3.4 - Delete
Description<<extend>>

<<extend>>

1.8 - Preview
metrics

tree<<include>>

4.6 - Simulate
Resource Metrics

<<extend>>

4.9 - Associate
Configuration Profile

to Resource
<<include>>

<<extend>>

<<include>>

5.1 - View Probe
Information

5.2 - Create probe

5.3 - Update Probe

5.4 - Delete Probe <<extend>>

<<extend>>

4.10 - Export Chart
Configuration

<<extend>>

Figure 4.1: Probing Related Use Cases Diagram.

62

Requirements

4.1.2 Quality Model context

The requirements elicited within this category, presented by Fig. 4.2, include
functionalities for reading, creating, updating and deleting Quality Models, Con-
figuration Profiles and Metrics.

In the creation of Metrics it may be possible to create a leaf metric and, therefore,
associating it to a description had to be added as a requirement because those
metrics use the data collected from systems to have their value calculated. As
there are hierarchies of metrics, associations between parent and child metrics
also had to be a requirement.

Quality Models are the representations of metrics trees so, there is a requirement
for the association between a quality model and the metric it wants to use as a root
node. However, for the same quality model, there may exist different weightings
to be applied. Thus, for a given quality model multiple configuration profiles can
be viewed or created.

Quality Model context

Administrator

2.1 - View
Quality Model
Information

2.2 - Create
Quality Model

2.3 - Update
Quality Model

2.4 - Delete
Quality Model

<<extend>>

<<extend>>

2.7 - Update
Configuration

Profile

2.5 - View
Configuration Profile

Information
2.6 - Create

Configuration
Profile

2.8 - Delete
Configuration Profile

<<extend>>

<<extend>>

<<extend>>

1.1 - View metric
information

1.2 - Create metric

1.4 - Update Metric

1.5 - Delete Metric<<extend>>

<<extend>>

1.8 - Preview
metrics

tree

1.6 - Associate
Description to Leaf

Attribute Metric

1.7 - Associate
Child Metrics

<<include>>

<<include>>

<<include>>

<<extend>>

<<include>>

<<include>>

2.9 - Associate
Metric to Quality

Model

<<include>>

<<include>>

<<include>>

<<extend>>

<<include>> <<include>>

1.3 - Create Leaf
Attribute Metric

<<extend>>

Figure 4.2: Quality Models Related Use Cases Diagram.

The update functionalities are essentially metadata editing, except for configura-
tion profiles where updating the weights of a metrics tree is allowed. Updating
metrics is also not only about metadata because parent and child associations can
be performed if the metric being updated is not a leaf attribute and is not associ-

63

Chapter 4

ated with a quality model that has been used.

Finally, there is a use case that is many times incorporated in others which is the
“Preview metrics tree”. This is one of the most important features of the product
to develop as it assists in many other functionalities. It provides a graphical view
for the user when performing interactions related to quality model concepts.

4.1.3 Adaptation context

Once again the requirements, presented by Fig. 4.3, include functionalities for
reading, creating, updating and deleting, but this time considering Actions, Actu-
ators and Adaptation Rules.

Adaptation context

Administrator

7.1 - View Action
Information

7.2 - Create Action

7.3 - Update Action

7.4 - Delete Action<<extend>>

<<extend>>

6.1 - View Actuator
Information

6.2 - Create
actuator

6.3 - Update
Actuator

6.4 - Delete
Actuator<<extend>>

<<extend>>

7.7 - Associate
Resource to

Action
7.8 - Associate

Actuator to
Action

<<include>><<include>>

7.5 - Create
Configuration

7.6 - Delete
Configuration

<<extend>>

<<include>>

<<extend>>

8.1 - View
Adaptation Rule

Detail

8.2 - Create
Adaptation Rule

8.3 - Update
Adaptation Rule

8.4 - Delete
Adaptation Rule<<extend>>

<<extend>>

Figure 4.3: Actuating Related Use Cases Diagram.

An Action is always associated with a monitored Resource and an Actuator that
performs adaptations. So, those associations had to be elicited on the require-
ments. Also, an Action has Configurations which represent customized parame-
ters accepted by an Actuator to perform operations. Thus, the product should
allow to create and delete, if necessary, Action’s configurations.

64

Requirements

Moreover, what triggers the creation of adaptation plans, which are formed by
a set of actions, are the Adaptation Rules. So, the system should allow users to
manage those conditions that trigger adaptations, by creating, editing, or deleting
them.

4.1.4 Decision support extras context

The requirements drawn from this category are represented by Fig. 4.4. It es-
sentially contains a set of features the system must have to improve the systems
management activity. Therefore, the system to develop should allow listing of
performed adaptation plans and consulting details of them, such as actions per-
formed, with which configurations, and using which actuator.

Decision support extras context

Administrator

9.1 - List occurred
plans

9.2 - View
occurred
plan detail

<<extend>>

10.1 - Visualize logs

10.3 - Delete logs

10.2 - View
specific logs

<<extend>>

11.1 - Add chart to
Homepage

11.2 - Replace
chart on

Homepage

11.3 - Delete chart
on Homepage

Figure 4.4: Decision Support Extras Use Cases Diagram.

Furthermore, the system should have a logs mechanism that will provide users
with information from overall system behavior, giving insights e.g., on quality
models changes and adaptation plans. The system should also provide filtering
options to allow visualizing logs of a specific kind instead of all of them. And
in case the database starts increasing due to these logs, it should be possible to
delete some that are not considered to be needed anymore.

Finally, as the main goal is to develop a dashboard, requirements for managing
(add, replace, and delete) charts on a homepage were added. These features have
the purpose of providing an easy and fast accessibility point for users to monitor
their systems.

65

Chapter 4

4.1.5 Implementation status

The use case requirements presented in the previous sections are all the require-
ments elicited, however, as foreseen, not all of them would and could have been
implemented during this dissertation. That is why priorities were assigned to use
cases based on their influence on the success of the main goal of the dissertation,
the creation of the dashboard. Thus, Table 4.1 presents the use cases ids, names,
priorities, and implementation statuses.

Table 4.1: Use cases implementation statuses.

Id Name Priority Implemented
1.1 View Metric information Must Yes
1.2 Create Metric Must Yes
1.3 Create Leaf Attribute Metric Must Yes
1.4 Update Metric Won’t No
1.5 Delete Metric Won’t No
1.6 Associate Description to Leaf Attribute Met-

ric
Must Yes

1.7 Associate Child Metrics Must Yes
1.8 Preview metrics tree Must Yes
2.1 View Quality Model Information Must Yes
2.2 Create Quality Model Must Yes
2.3 Update Quality Model Won’t No
2.4 Delete Quality Model Won’t No
2.5 View Configuration Profile Information Must Yes
2.6 Create Configuration Profile Must Yes
2.7 Update Configuration Profile Won’t No
2.8 Delete Configuration Profile Won’t No
2.9 Associate Metric to Quality Model Must Yes
3.1 View Description Information Could No
3.2 Create Description Could No
3.3 Update Description Won’t No
3.4 Delete Description Won’t No
4.1 View Resource information Could No
4.2 Create Resource Could No
4.3 Update Resource Won’t No
4.4 Delete Resource Won’t No
4.5 Visualize Resource Metrics Must Yes
4.6 Simulate Resource Metrics Must Yes
4.7 Plot Plans Alongside Metrics Must Yes
4.8 Export Chart Must Yes
4.9 Associate Configuration Profile to Resource Could No
4.10 Export Chart Configuration Must Yes
5.1 View Probe Information Could No
5.2 Create probe Could No
5.3 Update Probe Won’t No

66

Requirements

Id Name Priority Implemented
5.4 Delete probe Won’t No
6.1 View Actuator Information Could No
6.2 Create actuator Could No
6.3 Update Actuator Won’t No
6.4 Delete actuator Won’t No
7.1 View Action information Could No
7.2 Create Action Could No
7.3 Update Action Won’t No
7.4 Delete Action Won’t No
7.5 Create Configuration Could No
7.6 Delete Configuration Could No
7.7 Associate Resource to Action Could No
7.8 Associate Actuator to Action Could No
8.1 View Adaptation Rule Detail Must Yes
8.2 Create Adaptation Rule Must Yes
8.3 Update Adaptation Rule Won’t No
8.4 Delete Adaptation Rule Must Yes
9.1 List occurred plans Should No
9.2 View occurred plan detail Should No
10.1 Visualize logs Should No
10.2 View specific logs Should No
10.3 Delete logs Won’t No
11.1 Add chart to Homepage Must Yes
11.2 Replace chart on Homepage Must Yes
11.3 Delete chart on Homepage Must Yes

Only and all the requirements set with the "Must" priority were implemented.

4.2 Non-functional requirements and restrictions

Design and implementation restrictions are those constraints that are imposed
on the design solution and thereby must be fulfilled when designing and imple-
menting the product. They are typically imposed by the customer, by the devel-
opment organization, or by external regulations. They may be imposed on the
hardware, software, data, operational procedures, interfaces, or any other part of
the system [96].

For the product to be developed, a dashboard, the following restrictions were
identified:

• The product should be developed as a web page;

• It must be accessible over the Network;

67

Chapter 4

• It must be deployable through Kubernetes;

• No direct communication with TMA components. Requests must pass through
the TMA-API component.

Non-functional requirements, also known as quality attributes, represent prop-
erties a system should have [97]. This type of requirement influences design/implementation
decisions. The ones identified in this scope are:

• Usability - The focus of this requirement will not be on tasks of the dash-
board that are direct and simple (e.g., creating a leaf attribute metric, and
creating a quality model). Instead, the focus will be on tasks requiring some
effort and attention from users, such as simulating metrics, plotting met-
rics, and management of the Homepage plots. The focus is on these tasks
because they represent features that most contribute to the product (dash-
board) value. Also, a quantitative and qualitative assessment will be per-
formed. Therefore, for technological users that comprehend the goals of
TMA and know how it works at a high level, in a first interaction with the
dashboard the following requirements should be fulfilled:

– Every user should complete 80 % of the planned tasks;

– Tasks completed should be done with the maximum of 3 errors;

– Tasks do not take longer to complete than the expected maximum du-
ration;

– 100 % of the users can correctly identify 6 out of the 8 parameters that
constitute the exported chart configuration files and their types of data;

– 75 % of the users can tell when simulations can be performed;

– 75 % of the users can tell the period and what is going to be simulated
when they are at the simulation window;

– An average of 75 % positive answers is received from users on a quali-
tative form’s questions.

• Performance - Since it is a React application, the web app will have its pro-
cessing at the client side because the product will be a Single Page Applica-
tion (SPA). Also, as the frontend works along with the TMA’s API, these two
entities have their performance linked. However, the product is meant to
be used by users with technological knowledge, more precisely, knowledge
concerning TMA. That means the product is not intended to have many
users, but instead a small group of them. That being said, both the frontend
and the Application Programming Interface (API) need to fulfill require-
ments in different aspects:

– Having the dashboard’s homepage full with live data plots, CPU con-
sumption should not be higher than 1 virtual CPU and RAM consump-
tion should not be higher than 250 MB;

– The web page should not take longer than 3 seconds to be loaded since
it is the majority loading time users wait before leaving [98];

68

Requirements

– A single kubernetes pod of the API, consuming at maximum 1 virtual
CPU, should be capable of handling, at minimum, 100 requests per
second.

• Maintainability - There are plans for using this tool, so maintainability
must be kept in mind when developing the product as it is intended to be
changed, enhanced, and maybe restructured over time. Additionally, errors
may arise and the task of fixing them should be eased. Thus, facilitating the
process of future changes to the product must be assured.

Thus, to ensure maintainability, when developing, high cohesion and loose
coupling approaches should be followed, besides naming and other tech-
nologies conventions. Clear comments and documentation should also be
created so that it becomes easier to track code to be improved or corrected.

69

Chapter 5

Architecture and Implementation

In this chapter, architecture and implementation are presented, described, and
explained. First, the architecture is addressed beginning with a contextual view.
Then, other and more detailed perspectives are shown to complement the archi-
tecture’s description. Finally, implementation insights are given starting with
Trustworthiness Monitoring & Assessment Framework (TMA)’s maintenance,
followed by the components changed and implemented during the dissertation.

5.1 Architecture

This section presents the proposed architecture for the product, starting with
high-level diagrams and ending with more detailed ones. To create and design
those diagrams the C4 model [99] was used. It stands for context, containers,
components, and code. This model is composed of hierarchical diagrams that
can be used to describe software architecture at different zoom levels [100].

To fully understand the architecture that is going to be proposed in this section,
the context in which the solution is inserted must be understood first. Fig. 5.1
presents that context.

From a high-level perspective, there are 2 main types of interactions that take
place in the environment involving TMA. The first is the interactions a user, TMA
Administrator, has with TMA for configuring the platform and performing sys-
tems management activities. The other type of interaction is the monitoring and
adaptation activities performed autonomously by TMA to adapt monitored sys-
tems.

Now that the context has been presented, it is time to dive deeper into details of
how exactly the solution to be developed fits in the environment since it will be
part of TMA’s platform. To understand that, the architectural diagram presented
by Fig. 5.2 describes in more detail how TMA is composed as well as the managed
system environment.

TMA is fundamentally composed of a MAPE-K control loop, explained in sec-

71

Chapter 5

TMA Administrator
[Person]

IT technician familiar with how

TMA operates, responsible
for supervising systems and

configuring them on TMA to allow
self-adaptation

Legend

User

Software System

External Software System

TMA
[Software System]

Manages systems by monitoring and
adapting them. Provides users

with decision support tools

Managed System
[Software System]

System that is monitored
and adapted by TMA

Performs database operations,
manages adaptation rules,
manages quality models,

consults logs,
plots metrics and exports charts,

simulates quality models and
consults adaptation details

Monitors and adapts

Figure 5.1: Context architectural diagram.

tion 3.1.1, and other elements that complement the platform and that loop. Also,
it implements a microservices architecture, which means each component that
composes TMA can leverage containerization. Therefore, those components are
implemented as containers to take advantage of the benefits the technology and
microservices offer.

In the control loop there are the Monitor, Analyze, Planning, Execute and Knowl-
edge elements. As described before, Monitor is responsible for receiving data
from systems and persisting it at the Knowledge. Those data are then processed
using quality models and saved persistently by the Analyze. Planning reads the
processed data, which represents systems states, and compares it against a set
of rules. In case of violations of those rules, plans are created and their details
saved on the Knowledge. Later, Execute will read the details of the plans and or-
chestrate adaptations. Knowledge is just the repository for the configurations of
TMA and other data that is needed for the components to perform monitoring
and adaptations of systems.

Outside the control loop, but still a part of TMA system, there are the TMA-API
and Dashboard elements. TMA-API is a classic Application Programming In-
terface (API) that provides functionalities through endpoints which can be in-
voked by the Dashboard to provide users with functionalities. Basically, TMA-API
is responsible for creating, reading, updating and deleting data on the Knowledge
database, and applying any logic to serve requests.

Externally to the TMA system, but integrated with, there are Probes and Actua-
tors. Probes are components in charge of collecting data from managed systems
and sending it to TMA’s Monitor. Actuators are agents that execute actions to
perform adaptations on managed systems. They expose endpoints which are in-
voked by TMA’s Execute with provided configurations which define what and
how the actuator will act.

Next, and observing Fig. 5.3, more details on the architecture of the Dashboard,

72

Architecture and Implementation

TMA Administrator
[Person]

IT technician familiar with how

TMA operates, responsible
for supervising systems and

configuring them on TMA to allow
self-adaptation

System
[Software System]

System that is monitored
and adapted by TMA

TMA
[Software System]

Knowledge
[Container : MySQL]

Persistently stores TMA configuration
data and other data necessary

to other components

TMA-API
[Container: Java and

Spring Boot]

Provides Decision Support tool
functionalities via an API

Decision
Support tool

[Container: Nginx, React,
Semantic UI and JavaScript]

Provides a user interface with

decision support and
platform configuration

features

Performs API calls to
[HTTP]

Planning
[Container: Java]

Compares metrics values calculated
by Analyze against defined

adaptation rules and creates
plans.

Execute
[Container: Java]

It orchestrates the execution
of created plans by invoking

actuators and providing
them with configurations

Monitor
[Container: Python and Flask]

Exposes an endpoint for receiving
probes data which will then be

saved in
Knowledge's database

Analyze
[Container: Java]

Based on the data collected by

probes, applies quality models to
calculate metrics

from managed systems.

Probes
[Component:]

They monitor a system by collecting
data from it and sending it to

TMA's Monitor

Actuators
[Component:]

They execute actions on systems

to perform adaptations

Performs database operations,
manages adaptation rules,
manages quality models,

consults logs,
plots metrics and exports charts,

simulates quality models and
consults adaptation details

[HTTP]

Gets quality models and probed data from;
Calculates and persists scores for metrics on

Sends adaptation rules management requests to

Managed System
[Software System]

Collect data from Perform adaptations on

Sends data collected to

Persists probed data on

Gets metrics' scores from;
Persists adaptation plans on

Gets plans information from

Gives orders and instructions to

Legend

User

Containarized Microservices

External Components

External Software System

Creates, updates and deletes
data on;

Reads data from

Figure 5.2: TMA and managed system architecture.

73

Chapter 5

TMA’s API, and TMA’s Planning components are presented. An important note
regarding this figure is that it presents the architecture designed to support all
the requirements elicited. However, due to time restrictions and prioritization of
functional requirements, the TMA’s API components "Log Controller" and "Plan
Controller" were not implemented.

Knowledge
[Container : MySQL]

Persistently stores TMA's configuration and
operational data

Performs API calls to
[HTTP]

Legend

Containarized Microservices

Components

TMA-API
[Java and Spring Boot]

Quality Model Controller
[Component: Spring Boot Rest Controller]

Allows managing Quality Models and their
configuration profiles

Metric Controller
[Component: Spring Boot Rest Controller]

Allows managing metrics, consulting their values
for a given resource, and simulating their values

by simulating weights of a resource's Quality
Model

Description Controller
[Component: Spring Boot Rest Controller]

Allows managing the descriptions metrics
represent

Probe Controller
[Component: Spring Boot Rest Controller]

Allows managing Probes integrated with TMA

Resource Controller
[Component: Spring Boot Rest Controller]

Allows managing resources monitored and
managed by TMA

Action Controller
[Component: Spring Boot Rest Controller]

Allows managing Actions and their
configurations which are used to construct

adaptations

Actuator Controller
[Component: Spring Boot Rest Controller]

Allows managing Actuators integrated with TMA

Adaptation Rule Controller
[Component: Spring Boot Rest Controller]

Allows managing adaptation rules used by
TMA's Planning component

Log Controller
[Component: Spring Boot Rest Controller]

Allows listing, filtering and deletion of logs

Creates, updates and deletes
data on;

Reads data from
[JDBC]

Plan Controller
[Component: Spring Boot Rest Controller]

Allows listing and consulting details on
performed adaptation plans

Dashboard
[Container]

Single Page Application (SPA)
[Component: JSX, JavaScript, React

and Semantic UI]

Interface that allows users to configure TMA and
provides decision support features

API Module
[Component: JavaScript]

Performs communications with the TMA-API to
retrieve data necessary for the interface

Uses

Tree Structure Module
[Component: React]

Library providing diagrams construction that
allows the interface to generate metric trees and

facilitate the interaction with them

Uses

Planning
[Container]

Planning Logic
[Component: Java]

Loads the Adaptation Rules from a file and
applies them to metrics values calculated by
Analyze and, if needed, creates plans. When

notified of rule changes, it updates its rules set.

Adaptation Rules Updater
[Component: Java and Spring Boot]

Receives commands from TMA-API to manage
the rules present in the Adaptation Rules file

Loads, changes, and stores
it on the database

Loads from database and applies
Adaptation
Rules FIle

[BLOB]

Holds

Notifies of changes on Adaptation Rules

Sends adaptation rules management requests to
[HTTP]

Web Server
[Component: Nginx]

Returns the Single Page Application (SPA) to
users when the website is visited

Serves

Chart Module
[Component: React]

Library providing generation of charts that allows
the interface to plot probed and metric data

values, as well as plans occurrences

Uses

PDF Generator Module
[Component: React]

Library providing generation of pdf files that
allows the interface to export a plot image as a

pdf file

Uses

Figure 5.3: Dashboard, TMA’s API and Planning architecture.

Respecting the Dashboard, which is the main goal of this dissertation, it is a Sin-
gle Page Application (SPA) provided to users through an Nginx Web Server.
The SPA interface is written in JavaScript Syntax Extension (JSX), implemented
using React components and Semantic UI for styling as defined in Section 2.4.8.
To provide the elicited functionalities, this interface makes use of other elements:
PDF Generator Module, Chart Module,API Module, and Tree Structure Mod-
ule. PDF Generator Module is a library that provides functionalities to the genera-
tion of Portable Document Format (PDF) files, which will be used by the interface
to export a plot as an image in a PDF file. Chart Module is also a library, which
will allow the interface to generate charts with probed and metric data values,
as well as plan occurrences. The Tree Structure Module is a library that allows the
interaction with and creation of metrics trees to be presented on the interface.
Finally, the API Module consists of JavaScript code responsible for dealing with
communications with TMA’s API.

Using the API Module, the SPA performs requests to different controllers that
compose TMA’s API, where each controller holds a set of related endpoints. The
information retrieved from these endpoints allows the SPA to provide features to

74

Architecture and Implementation

TMA Administrators through a User Interface (UI). Those features consist of man-
aging TMA database for configuring the platform, and performing management
activities such as: consulting logs; visualizing and exporting charts; managing
and simulating quality models; consulting adaptation plans details; managing
adaptation rules.

Considering adaptation rules, there is a file saved as a Binary Large Object (BLOB)
in the Knowledge database. When changes to those rules are performed at the
SPA, requests are sent to TMA-API. However, they will not be served there, but
instead by another API server that is present in TMA’s Planning. This API is
represented by the element Adaptation Rules Updater which will then update
the adaptation rules file and notify Planning Logic element of those changes.
Planning Logic initially loads the rules from the file present in the database to
decide on creating or not adaptation plans. As notifications of changes in the
rules arrive, this element will update its current adaptation rules set.

5.2 Implementation

At a first glance, this section will provide adjustments that were made on TMA
due to maintenance purposes. These adjustments could have their origins in
found issues on the platform or in the necessity of features for the product de-
veloped.

Then, details drawn from requirements implementation are presented.

5.2.1 TMA Maintenance

Before beginning to develop the product of this dissertation, TMA was experi-
mented to further understand its concepts, operations, and what it was missing
for supporting the new UI.

Minding one of the features the product should have, a logging system, a new
entity has been added to the TMA database to support it. The goal of having
a logging system is to give TMA administrator a global insight on what is hap-
pening on the platform and help him trace related actions on a specific managed
element or errors if that becomes necessary. This is achieved by creating a cen-
tralized point of access for consulting all the logs from the platform. Thereby, this
is a feature that supports the management of systems and TMA’s platform.

This new entity is presented on Fig. 5.4 and the data meaning of its elements is
described next:

• id: It is the primary key, a unique identifier of each log, and is automatically
incremented;

• logTime: It is the time the log happens;

75

Chapter 5

Figure 5.4: Logs database entity.

• origin: It is the subject that dispatches the log. For example, it can be a Plan
or a Quality Model;

• originId: It is an identifier related to the subject that dispatched the log. For
example, in the case of a Plan, it is the planID;

• description: It is a text that clarifies the log, something readable that makes
it easy to understand what the log is about. For example, in the Plan’s case,
something like "Executing Plan activated by the rule MyRule";

• previousValue: This is an identifier of the old value related to a context.
For example, in Quality Models’ context, it is the previous value of some
weight. In the case of a Plan, it could be the previous number of instances
of a resource;

• newValue: This is an identifier of the new value related to a context. For
example, in Quality Models’ context, it is the new value of some weight. In
the case of a Plan, it could be the new number of instances of a resource;

• component: It is an identifier of the component of the TMA architecture
that is logging e.g., Analyze, Planning, Executer, or Monitor;

• logGroupId: It is an identifier of a group of logs that had the same pur-
pose through a number identifier that is automatically assigned and incre-
mented. For example, when changing the weights of 2 nodes on the Quality
Model two logs are created and they will have this parameter with the same
number identifier;

• target: This is a name identifying the target of some action in a context.
For example, in the context of changing a Resource’s instance number, the
target identifies the name of the Resource;

• targetId: This is a number that identifies the target of some action in a con-
text. For example, in the context of changing a Resource’s instance number,
targetId is the corresponding Id in the Resource database table.

Also, concerning the features related to the management of homepage charts,
another entity was added to the TMA database. This new entity contains infor-
mation necessary to generate a chart at the homepage of the dashboard. The new
database table is presented on Fig. 5.5 and the data meaning of its elements is
described next:

76

Architecture and Implementation

Figure 5.5: PlotConfig database entity.

• plotConfigId: It is the primary key, a unique identifier of each plotConfig,
and is automatically incremented;

• configObject: It is a JavaScript object containing several configuration pa-
rameters necessary to generate a chart at the dashboard;

• plotConfigName: It is a name associated to the plot configuration which
will be presented in the dashboard along with the generated chart.

Additionally, there was a known TMA’s issue related with plans. An adaptation
plan with more than one action would only execute the first one. Although the
platform supported several actions at the database level, it did not have support
when executing the adaptation plan. In practice, different plans with a single
action would have to be created to perform the desired operations instead of a
single one with multiple actions. Thereby, it was added support for more than
one action per adaptation plan by rewriting the Planning and Execute components
code.

5.2.2 Requirement implementation

This section presents implementation details on the goal product of this disser-
tation, the Dashboard. Also, creating this product affects how other components
operate. Therefore, details on changes made to TMA’s API, Analyze, and Plan-
ning components are also presented next.

Dashboard

To comply with the defined implementation restrictions on Section 4.2, the dash-
board has a Dockerfile that generates an image containing an Nginx server that
will reply to incoming requests by returning the code that composes the SPA. Af-
ter generating the Docker image, the dashboard can be deployed in a Kubernetes
cluster through a YAML Ain’t Markup Language (YAML) file that will expose the
web server outside the cluster, at the Internet Protocol (IP) address of the machine
hosting the server in port 31000. The code elements created for this component
are available at the repository https://github.com/Jodao/tma-dashboard.

As mentioned before in Section 2.4.8, to create the dashboard’s interface React and
Semantic UI frameworks were used. Although Semantic UI is a Cascading Style
Sheet (CSS) framework used for styling, it has a specific library (https://react.semantic-
ui.com/) for integrating with React. That library provides React components that

77

https://github.com/Jodao/tma-dashboard

Chapter 5

can be customized through defined parameters so that a component can be ren-
dered in different ways. Thus, those components, along with others built on my
own, were used to assemble the interface. Also, Semantic UI allows theme cus-
tomization which was used to get components rendered in the same way across
the interface.

When a client receives the SPA, it always displays the homepage. To navigate
to other sections within the SPA, there is a fixed top bar navigation presented by
Fig. 5.6. When it is clicked a new page is rendered according to the icon clicked.
Using react-router-dom library, this navigation bar and other buttons present in
the pages allow the navigation between the following pages, which provide the
following functionalities:

Figure 5.6: Dashboard top navigation bar

• Homepage: This is the landing page, presented by Fig. 5.7 of the SPA where
configuration files can be imported to add or replace charts up to a maxi-
mum of 6. Also, those charts can be removed. The charts on this page will
request their data from TMA’s API once or continuously (each second) de-
pending on if they are time interval or live plots, respectively;

Figure 5.7: Dashboard Homepage

• Create Rule Page: On this page, a phased form is presented to create an
adaptation rule. Initially, the interface performs a request to the TMA’s API
to retrieve a list of the resources being monitored and which have actions
associated in the database. Then, it presents a DropDown for the user to
choose one resource from the list received and to which the adaptation rule
is going to be created. Once the choice is confirmed, the interface performs

78

Architecture and Implementation

another request to the API to retrieve the weighted metrics tree (configura-
tion profile) associated with the resource.

Then, in the next step of the form, the metrics tree is rendered along with
other form fields. These fields request a name for the rule, a DropDown
selection of a metric from those on the tree (from which the rule’s condition
will use the value), a DropDown selection of the condition’s operator, and a
condition’s threshold. Also, there is a preview of the rule condition that gets
updated according to inputs. When this step of the form is confirmed, the
interface performs another request to the TMA’s API to retrieve the actions
(and their configurations) associated with the resource chosen initially on
the form, and it renders the last phase of the form.

Now, from a DropDown, actions can be selected to incorporate the adapta-
tion plan. Also, to set the execution order of those actions there are buttons
to increase/decrease priority. If an action is accidentally added there is a
button to remove it from the plan and send it back to the DropDown. If
any action requires configurations, they will appear on the interface with
the identification of the action they are associated with, and values for them
will be required to finish the creation of the rule;

• List Rules Page: In this page, initially a request is made to TMA’s API to
retrieve the list of adaptation rules used by TMA’s Planning. Then, that list
is rendered as a table along with a text input bar that can be used to filter
the results by the rule’s name. Here, there is a button that allows navigation
to Create Rule Page and clicking in a table row navigates to View Rule Page;

• View Rule Page: In this page a rule’s name and code is shown, as depicted
by Fig. 5.8, after performing a request for that information to TMA’s API.
The code consists of the rule’s condition and the adaptation plan creation.
Also, there is an option to delete the rule;

• Create Configuration Profile Page: On this page, it is presented the quality
model’s (to which the profile is going to be created and associated) id, name,
and corresponding metrics tree. Also and alongside, there is a form, shaped
like a table, to be filled with the configuration profile’s weights to apply on
each node of the metrics tree. As weights get filled, the metrics tree gets
updated accordingly. When the button to create the configuration profile is
pressed, a validation will be performed on the sum of the weights of each
parent’s child, to verify if it is equal to 1;

• View Configuration Profile Page: This page, shown in Fig. 5.9, presents the
id and name of the configuration profile and associated quality model. Also,
the profile’s weighted metrics tree is shown, and alongside it is presented a
table with each tree node’s weight;

• Create Metric Page: In this page, which is depicted by Fig. 5.10, a form is
presented to create a metric. Before rendering the form, requests are sent
to TMA’s API to retrieve lists of descriptions and metrics that will be nec-
essary to perform associations. There is an option that can be toggled to
switch between the form to create a leaf metric and a parent metric. Each

79

Chapter 5

Figure 5.8: Dashboard’s View Rule Page

Figure 5.9: Dashboard’s View Configuration Profile Page

80

Architecture and Implementation

of the forms is composed of text inputs and DropDown choices. In the leaf
metric’s form, the fields requested are selections for the description to as-
sociate, aggregation operator, normalization method and kind, and the in-
sertion of the number of samples, minimum and maximum thresholds. In
the case of creating a parent metric, a metrics tree is generated and updated
according to the child metrics chosen. In case the chosen children produce
conflicts, the tree is not shown and an informative message appears. For
instance, a metric could appear more than once in the tree and that should
not be allowed. That would happen if that metric and a parent of it were
chosen to be children;

Figure 5.10: Dashboard’s Create Metric Page

• List Metrics Page: In this page a list of metrics retrieved from TMA’s API
is rendered as a table along with a text input bar that can be used to filter
the results by the metric’s id or name. Here there is a button that allows
navigation to Create Metric Page and clicking in a table row navigates to
View Quality Model Page;

• View Metric Page: This page presents a metric’s information depending
on if it is a leaf or parent metric. For both, the id, name, and an indica-
tion of being or not a leaf metric are shown. But for leaf metrics specific
information regarding them (associated description, aggregation operator,
number of samples, normalization method and kind, minimum and maxi-
mum thresholds) is presented, while for a parent metric its metrics tree is
presented;

• Create Quality Model Page: On this page, a simple form requesting the
name and a metric to associate the quality model is presented. Before ren-
dering the form, a request is made to TMA’s API to retrieve the list of met-
rics that are not associated with a quality model. Also, whenever the metric
association is chosen/changed a request is made to TMA’s API, to receive
the selected metric’s tree data to be rendered;

81

Chapter 5

• List Quality Models Page: This page, presented by Fig. 5.11, renders a ta-
ble with the list of quality models retrieved from TMA’s API along with two
text input bars that can be used to filter the results by metric’s id or name
and quality model’s id or name. Here, there is a button that allows navi-
gation to Create Quality Model Page and clicking in a table row navigates to
View Quality Model Page;

Figure 5.11: Dashboard’s List Quality Models Page

• View Quality Model Page: This page, shown in Fig. 5.12, presents meta-
data information regarding the quality model (id and name) and its metrics
tree. Also, a list with the configuration profiles associated is presented in
the form of a table. From here, there is a button that allows navigation to
Create Configuration Profile Page and clicking in a table row navigates to View
Configuration Profile Page;

Figure 5.12: Dashboard’s List Quality Models Page

82

Architecture and Implementation

• Plot Resource Metrics Page: On this page, a phased form is presented to
accomplish the goal of generating charts to visualize probed and metric data
and occurrences of adaptation plans.

Initially, the interface performs a request to the TMA’s API to retrieve a list
of the resources being monitored. Then, it presents a DropDown for the user
to choose one resource from the list received and a selection between plot-
ting raw or metric data. The first is data collected by probes, while the second
corresponds to values calculated by TMA’s Analyze component. Once the
choices are made and confirmed, the interface performs another request to
the API to retrieve the weighted metrics tree (configuration profile) associ-
ated with the resource.

Then, in the next step of the form, the metrics tree is rendered along with
other form fields. These fields require a selection of a metric from those
composing the tree and the indication if a live plot is wanted or not. If not, a
timestamp interval must be defined. For the case metric data was chosen at
the first phase of the form, additionally, there is an option to add adaptation
plans on the chart that can be toggled. As for the raw data option, the
metrics allowed to be chosen are the tree’s leaves because it is the probed
data that will be shown and not the metrics values.

After confirming the inputs on the second phase of the form, a chart is gen-
erated according to the options defined. If the live plot option was chosen
then, at each second, a request for the last-minute values will be sent to
TMA’s API and the chart will get updated. Also, and for the case metric
data option was chosen, if there are data values plotted on the chart, a but-
ton to navigate to Simulate Resource Metrics Page is shown. If there are no
data values to be plotted either in the time interval defined or in the live
plot, a message to the user is presented. This message alerts that there is no
data available, but if the live plot option was chosen and any data arrives in
the database, it will be presented on the chart;

• Simulate Resource Metrics Page: This page, shown in Fig. 5.13, is only
accessible from a plot with metric values in the Plot Resource Metrics Page
and, here, simulations of metric values can be performed. So, when the
user arrives at this page, information regarding the chart he was seeing,
which now respects the simulation, is presented, as well as the chart. This
information presents the time interval of the simulation, the metric being
simulated, and the resource metric data and simulation are associated with.
Also, part of the resource’s weighted metrics tree, which includes the met-
ric being simulated and its descendants, is presented. There is a table too,
that contains the metrics names, original weights, and simulation weights
(which initially have values equal to original weights) from that part of the
tree.

The simulation weights are editable, in a form style. After setting the de-
sired weights for the simulation and confirming them, a validation is per-
formed on the parent’s child’s weights to verify that the sum of the weights
is equal to 1. If the weights are valid, then a request is sent to TMA’s API to
retrieve the simulated metrics values which are added to the chart.

83

Chapter 5

Figure 5.13: Dashboard’s Simulate Resource Metrics Page

84

Architecture and Implementation

In the pages where there are filters, every time they are applied, requests are sent
to TMA’s API. Also, there is a JavaScript component (DropDownDataFormat.js
file) that converts data received from the TMA’s API into the format acceptable
by the DropDown component provided by Semantic UI. The format in which the
data is converted depends on the type of entity to be represented. Thus, when a
component needs to convert an entity’s data to be presented in a DropDown, the
corresponding entity’s method is invoked from this component.

Whenever there are forms, a component (ValidInputs.js file) providing methods
to validation of inputs is used. It contains, for instance, validation of strings,
DropDown selections, timestamps, and floats. If these inputs are not valid, then
a message alerting for their incorrectness is given along with a tip on how to
complete them.

To complement these pages, there is a JavaScript component (ApiModule.js file)
with multiple methods that deal with communications with TMA’s API. These
component’s methods are invoked across the pages by other components to re-
ceive and send data to the TMA’s API. To ease and deal with the Hypertext Trans-
fer Protocol (HTTP) requests, performed to the TMA’s Representational State
Transfer (REST) API, the axios library was used.

Fig. 5.14 presents a sequence diagram that describes the behavior just presented
above between a dashboard’s page with ValindInputs and ApiModule when a form
is filled and submitted by the user.

To generate charts across the interface a component (Plot.js file) was created. This
component uses a chart generation library, chart.js, to ease the creation of charts
and it adapts the fonts according to the size of the chart. Also, it incorporates a
button for exporting the charts as images in PDF files. To generate the PDF files,
jspdf library is used.

Concerning the rendering of metric trees (weighted or not), two components
were built (TreeRender.js and TreeLabel.js files). Along with a diagram creation
library, reaflow, TreeRender component generates trees where the nodes repre-
sent metrics names and the edges may have weights. It also allows to zoom
in and zoom out the generated tree and provides means for adding and updat-
ing the tree’s nodes and edges in forms. TreeLabel component is used to override
reaflow’s default labeling, to allow labeling tree’s root node and edges as wanted.

Finally, to optimize the load performance of the SPA, code splitting (https://reac
tjs.org/docs/code-splitting.html) was applied to each page. Meaning that
each page accessible through navigation will only be loaded when it is needed
for the first time.

TMA’s API

In this section, a list containing endpoints added to TMA’s API and their behavior
is presented. This list contains all the endpoints the Dashboard, just described in
the previous section, uses to provide its functionalities.

85

https://reactjs.org/docs/code-splitting.html
https://reactjs.org/docs/code-splitting.html

Chapter 5

opt
[valid == False]

opt
[valid == True]

Returns validation
status

Dashboard's
page

Fills form fields

Clicks form submit button

ValidInputs ApiModule TMA's API

Requests for
input validation

Invokes method with form data

Returns response

Sends received form
data in request to

Returns received response from API

Presents API response

User

Presents error
message on

invalid form fields

Figure 5.14: Sequence diagram for forms submission

86

Architecture and Implementation

To provide its functionalities, TMA’s API communicates with TMA’s Knowledge
database to retrieve data. The added endpoints return the following status codes:

• 200, if the request succeeds, along with a message informing the success or
any data necessary to retrieve related to the request;

• 400, if something is wrong with the request such as the parameters received.
Also, there are validations performed on some of the endpoints, and, when
those validations fail this status code is returned along with a message in-
forming why;

• 500, if there are communication problems internally, either with the database
or with TMA’s Planning API. When this occurs, a message informing of
where the connection failed is returned.

Following the added endpoints are presented and described:

• getMetrics: This is a GET endpoint that returns a list of metrics. It can
receive filter and createQualityModel parameters. If a filter parameter is
received, the metrics returned must match it on their ids or names. If the
createQualityModel parameter is received, then the metrics to be returned are
the ones that are not associated to quality models;

• getMetrics/[id]: This is a GET endpoint that returns information regarding
a metric. The [id] path parameter is the metric’s database id. The metric
returned can either be a parent metric or a leaf metric. For both, the id and
name are retrieved. Concerning a parent metric, additionally, the metrics
tree and the children aggregation operator are returned. As for a leaf metric,
information about associated raw data and how to process it are returned;

• createMetric: This is a POST endpoint that creates a metric. As a payload
(illustrated by Fig. 5.15 and 5.16), it receives a metric that contains a name
and other pieces of information depending on if the metric is a leaf or a par-
ent. In the case of being a leaf, additionally, it receives an associated descrip-
tion id, a metric aggregation operator, the number of samples, a normaliza-
tion method, a normalization kind, a minimum threshold, and a maximum
threshold. For the case of being a parent, it receives a list of metric ids of
its children, and an attribute aggregation operator. In both cases, before the
creation, a validation of the uniqueness of the name is made. If this val-
idation fails, a response is returned informing that the name is already in
use. Concerning parent metrics, there is also a validation made on the set
of child metrics. If there is a metric that is already the parent of the child
set received, the response returned informs of that situation, and the parent
metric is not created;

• getDescriptions: This is a GET endpoint that returns a list of descriptions. It
can receive a filter parameter, in which case the descriptions returned must
match on their ids or names;

87

Chapter 5

Figure 5.15: Payload of createMetric endpoint for the creation of a leaf metric.

Figure 5.16: Payload of createMetric endpoint for the creation of a parent metric.

88

Architecture and Implementation

• getQualityModels: This is a GET endpoint that returns a list of quality mod-
els. It can receive qualityModelsFilter and metricsFilter parameters. These
parameters are combined to return quality models that either match quali-
tyModelsFilter on their ids or names, or have their associated metric’s id or
name matching metricsFilter;

• getQualityModels/[id]: This is a GET endpoint that returns information
(id, name, associated metrics tree, and a list of the associated configuration
profiles) regarding a quality model. The [id] path parameter is the quality
model’s database id;

• createQualityModel: This is POST endpoint that creates a quality model.
As a payload (illustrated by Fig. 5.17), it receives a quality model with a
name and associated metric. Before the creation, a validation of the unique-
ness of the name is made. If this validation fails, a response is returned
informing that the name is already in use;

Figure 5.17: Payload of createQualityModel endpoint for the creation of a parent
metric.

• createConfigurationProfile: This is a POST endpoint that creates a con-
figuration profile for a given quality model. As a payload (illustrated by
Fig. 5.18), it receives a configuration profile containing a name, the asso-
ciated quality model id, and a list of metric ids with associated weights.
Before the creation, the name for the configuration profile is verified to be
unique for the associated quality model. If this validation fails, a response
is returned informing that the name is already in use;

• getConfigurationProfile/[id]: This is a GET endpoint that returns informa-
tion (id, name, associated quality model’s id, and list of metrics weights)
regarding a configuration profile. The [id] path parameter is the configura-
tion profile’s database id;

• getResources: This is a GET endpoint that returns a list of currently mon-
itored resources. It can receive a createRule parameter, in which case the
resources returned must have actions associated in the database;

• getResources/[id]/weightedTree: This is a GET endpoint that returns a re-
source’s associated metrics tree and its weights. The [id] path parameter is
the resource’s database id;

• getConfigurationProfile/[id]/listOfMetrics: This is a GET endpoint that re-
turns the list of metrics of a configuration profile. The [id] path parameter
is a configuration profile’s database id;

89

Chapter 5

Figure 5.18: Payload of createConfigurationProfile endpoint.

• getResources/[id]/data: This is a GET endpoint that returns a resource’s
raw/metric data values along with their timestamp. Optionally, a list of
plan ids and the time of occurrence of those plans may be returned. The [id]
path parameter is the resource’s database id. This endpoint receives the pa-
rameters metricId, dataType, startDate, endDate, addPlansInfo. The metri-
cId is the id of the metric from which the data will be retrieved. The dataType
defines if the data values to be returned are raw data collected from probes
or metric values calculated by analyze, where the parameter value will be
"raw" and "metric" respectively. The parameters startDate and endDate are
epoch values which define the time interval from which the values will be
returned. Finally, addPlansInfo is a boolean that when set to true will make
the endpoint to add a list of plan ids and their timestamps;

• simulateData: This is a PATCH endpoint that receives simulation configu-
rations which are applied to calculate and return a list of simulated met-
ric values. To perform the simulation, and as a payload (illustrated by
Fig. 5.19), it receives a resourceId, a time interval, a metrics tree, and the list
of simulation weights. From the metrics tree leaves metrics, the time inter-
val and the resourceId, the raw data from when and from which resource to
perform the simulation is identified. Then, applying the received simulation
weights to the metrics tree nodes, the simulated metric values are returned
along with their timestamps;

• getPlotsConfigs: This is a GET endpoint that returns a list of plot configu-
rations along with their ids and names;

• addPlotConfig: This is a POST endpoint that creates and saves a plot con-
figuration in the database. As payload (illustrated by Fig. 5.20), it receives
a plot configuration containing a name, and the configuration object of a
chart. Before saving the data, a validation is performed on the uniqueness

90

Architecture and Implementation

Figure 5.19: Payload of simulateData endpoint.

of the name. If this validation fails, a response is returned informing that
the name is already in use;

Figure 5.20: Payload of addPlotConfig endpoint.

• replacePlotConfig: This is PUT endpoint that updates a plot configuration
in the database. As payload (illustrated by Fig. 5.21), it receives a plot con-
figuration containing the id of the plot to replace, a name, and a chart’s
configuration object. The database entity containing the id received gets
its information updated. Before replacing a plot’s data, a validation is per-
formed on the uniqueness of the received name. If this validation fails, a
response is returned informing that the name is already in use;

91

Chapter 5

Figure 5.21: Payload of replacePlotConfig endpoint.

• deletePlotConfig/[id]: This is a DELETE endpoint that deletes a plot config-
uration. The [id] path parameter is the plot configuration’s database id to
be removed;

• getActions: This is a GET endpoint that returns a list of actions and their
configurations. It can receive a resourceId parameter to retrieve the actions
associated to a resource;

• "getRules": This is a GET endpoint that acts as an intermediate. It redirects
the request to TMA’s Planning API to retrieve the list of adaptation rules.
Then, when the response is received, it is returned to the original request.
If communication with TMA’s Planning fails, a 500 status code is returned
informing of that communication problem;

• "getRules/[ruleName]": This is a GET endpoint that acts as an intermediate.
It redirects the request to TMA’s Planning API to retrieve the code of an
adaptation rule. Then, when the response is received, it is returned to the
original request. If communication with TMA’s Planning fails, a 500 status
code is returned informing of that communication problem;

• "addRule": This is a POST endpoint that acts as an intermediate. It redirects
the request to TMA’s Planning API to create an adaptation rule. Then, when
the response is received, it is returned to the original request. If communi-
cation with TMA’s Planning fails, a 500 status code is returned informing of
that communication problem;

• "removeRule/[ruleName]": This is a DELETE endpoint that acts as an in-
termediate. It redirects the request to TMA’s Planning API to remove an
adaptation rule. Then, when the response is received, it is returned to the
original request. If communication with TMA’s Planning fails, a 500 status
code is returned informing of that communication problem;

TMA’s Analyze

TMA’s Analyze is a Java application responsible for applying configuration pro-
files of quality models on data collected from resources by probes. To recall, qual-
ity models represent trees of metrics while configuration profiles the weights to

92

Architecture and Implementation

apply on each tree’s node. However, before the development of the dashboard,
this process was hard-coded, meaning that the management of quality models
and their configuration profiles could not be performed without modifying the
program.

Therefore, to automate the process of adding/removing resources to monitor,
as well as the management of their quality models and configuration profiles,
TMA’s Analyze implementation was changed.

Now, Analyze processes the raw data collected by probes and calculates the met-
rics values every 30 seconds. This idle time can be changed if needed. The pro-
cess to calculate metrics values starts with requests to the database to retrieve the
resources being monitored and their quality models and configuration profiles.
This is the main change when compared to the previous version: the reading
from quality models and their profiles from the database instead of having them
hard coded.

When the models have been loaded, Analyze applies to each resource its qual-
ity model considering the last 30-second data collected by probes. To calculate
the quality model values, the quality model tree is traversed until leaf nodes
are reached. For that, the process of going down the tree starts by visiting the
root node’s children, then the children of its children, and so on. When a leaf
is reached, the aggregation and normalization methods and operators, defined in
the creation of leaf metrics, are applied to the probed data, and the value obtained
is associated with the leaf metric. As these leaves get their values calculated, their
parents get their metric values calculated by applying the configuration profile’s
defined weights. This process is applied until the root node metric is reached
and its value also calculated. Finally, after these metric values have been calcu-
lated, the data is persisted in the database and the process is restarted for the next
resource.

The methods for aggregating and processing data are extensions of Java abstract
classes. The goal of this approach is to ease the creation and integration of new
aggregation and normalization methods and operators.

TMA’s Planning

One of the goals of the Dashboard was to allow the management of adaptation
rules. Considering that, a few changes had to be made on TMA’s Planning which
is implemented in Java.

To begin with, the adaptation rules were being read from a file, and, as everything
from TMA’s operational data is saved in the database, the first thing done was
to save and read adaptation rules from a BLOB in the database. Also, TMA’s
components are meant to run in containers, and, if so, when Planning’s container
would die, the rules file would be lost. Thus, saving the rules in the database is
safer to not lose any configurations.

Considering the goal of managing adaptation rules, a REST API was added to
this component using Spring Boot. The existing endpoints and their functions

93

Chapter 5

are:

• getRules: This is a GET endpoint that returns a list of the adaptation rules
names from the database BLOB. It can receive a filter parameter, in which
case the adaptation rules returned must match their names;

• getRules/[ruleName]: This is a GET endpoint that returns the information
(name, code’s condition and adaptation plan creation) of an adaptation rule
from the database BLOB. The [ruleName] path parameter is the adaptation
rule’s name;

• addRule: This is a POST endpoint that adds an adaptation rule to the database
BLOB. As payload (illustrated by Fig. 5.22), it receives a rule containing a
name for the rule, a list of actions and its configurations data for the adap-
tation plan, and a metricId, resourceId, operator and threshold for defining
the rule’s condition. Before adding the rule, a validation is performed on
the uniqueness of the name. If this validation fails, a response is returned
informing that the name is already in use;

Figure 5.22: Payload of addRule endpoint.

• removeRule/[ruleName]: This is a DELETE endpoint that removes an adap-
tation rule from the database BLOB. The [ruleName] path parameter is the
name of the adaptation rule to delete.

94

Architecture and Implementation

Also, Planning can be seen to be composed of two components: the logic com-
ponent and the API component. Whenever the API receives a request that gets
completed and updates the adaptation rules database BLOB, the logic component
is notified that there are updates in the rules.

The logic component applies rules to calculated metrics values within a period
and, at each period’s time, it verifies if it has received a notification. If it has,
it reads the database BLOB, updates the adaptation rules set and removes the
notification. To produce these notifications a Java Atomic Boolean variable is used.
This is a variable held by the logic component that is passed on the initialization
of the API component. The use of an Atomic Boolean is to synchronize the access
to the variable’s value between both components.

95

Chapter 6

Validation

The goal of this dissertation is to develop a dashboard for Trustworthiness Mon-
itoring & Assessment Framework (TMA) that will aid the management of sys-
tems and support the decision process. For that, functional and non-functional
requirements were elicited. Thus, it becomes necessary to confirm that what has
been implemented complies with those requirements.

For validating what has been developed, validation was performed on imple-
mented functional requirements as well as on the non-functional defined in Sec-
tion 4.2.

In this chapter, the validation plans and their results will be presented in the
following sections. These sections will address the functional requirements and
then, the non-functional (Usability, Performance, and Maintainability). Before
presenting these validation plans and their results, first, it will be described how
validation of TMA was performed.

6.1 TMA validation

In the context of a project, TalkConnect, TMA was used to provide self-adaptation
to a telecommunications system, specifically the ability to add and remove re-
sources according to demand.

It was decided that a resource consumption model, from which the final ver-
sion is presented by Fig. 6.1, was going to be used based on Central Process-
ing Unit (CPU), Random Access Memory (RAM) and the number of containers
of the critical telecommunication system service. Thus, as the system services
were deployed in Docker containers, a probe capable of gathering CPU and RAM
usage, and the number of containers from the critical telecommunication ser-
vice was developed. The code of this probe can be consulted at the repository
https://github.com/nmsa/tma-framework-m/tree/master/development/prob
es/probe-docker-CPU_MEM_usage.

At that time, it was needed an actuator to allow adaptations to the system’s ser-
vice. Due to errors found, initially, maintenance had to be made on the actuator’s

97

https://github.com/nmsa/tma-framework-m/tree/master/development/probes/probe-docker-CPU_MEM_usage
https://github.com/nmsa/tma-framework-m/tree/master/development/probes/probe-docker-CPU_MEM_usage

Chapter 6

Operator: +

w3 = 1.0

A4: Total Resource
Consumption

A1: Ratio of CPU usage of
the Container

A2: Ratio of Memory usage
of the Container

w2 = 0.10w1 = 0.90

w4 = 1.0

A3: Container Count

Operator: ÷

Resource Consumption
per Container Score

Figure 6.1: TalkConnect project’s final quality model.

base code present at the repository https://github.com/nmsa/tma-framework-
e/tree/master/development/libraries/python-actuator-base. The project
partner was responsible for developing the actuator, to which there is no access,
based on examples present in a TMA’s repository (https://github.com/nmsa/
tma-framework-e/tree/master/development/actuators).

After the development and integration of the probe and the actuator, some tests
were made. First, it was validated that TMA was able to add and remove in-
stances of the telecommunication’s system service. Then, load tests were per-
formed to understand the thresholds at which adaptations should be triggered
to handle the demand. Finally, and after those adjustments that are presented
by the weights in Fig. 6.1, the load tests were repeated and it was validated that
TMA was allowing self-adaptation on the telecommunication system to meet
demand. This means that when the system’s service was scaled, the throughput
increased.

Thus, it was validated that TMA indeed enables self-adaptation on systems, as
long as probes and actuators are created to perform the desired monitoring and
adaptations.

6.2 Functional requirements validation

Firstly, this section will present and explain the plan defined to validate the im-
plementation of the functional requirements presented in Section 4.1. Then, the
results obtained are presented and analyzed.

98

https://github.com/nmsa/tma-framework-e/tree/master/development/libraries/python-actuator-base
https://github.com/nmsa/tma-framework-e/tree/master/development/libraries/python-actuator-base
https://github.com/nmsa/tma-framework-e/tree/master/development/actuators
https://github.com/nmsa/tma-framework-e/tree/master/development/actuators

Validation

6.2.1 Validation plan

To validate the implemented functional requirements, a black box testing ap-
proach was used, more precisely equivalence class partitioning and boundary
value analysis. Black box is a technique of testing without having any knowl-
edge of the internal working of the application, only examining the fundamental
aspects of the system [101]. Equivalence class partitioning splits the range of
the input values into equivalent partitions that represent the spectrum of accept-
able values, while boundary value analysis tests the boundaries of those parti-
tions [102]. Black box techniques were used because the main product is a user
interface and thus, the focus is on testing functionalities.

Since the product developed is a web page, specifically a dashboard, the format of
the test cases is somehow different from the ones usually seen when, for example,
the outcome of a code function is being validated. Thus, in this specific case, the
elaboration of test cases was not straight forward as writing input values because
the tests involve actions in the interface.

For defining how to validate what was implemented, the following test coverage
was applied:

-All use cases prioritized as Must are tested, except for the ones related to the management
of adaptation rules. One test case is created for all different types of input classes perceived
from the user’s perspective. If applicable, boundary test cases will be applied considering
the context. Also, where it is applicable, as individual inputs may not be independent of
each other, as they are processed together such as in forms, all different combinations of
inputs are tested.

In Table 6.1 the test cases elaborated are presented. For each test case its id, asso-
ciated use cases ids, input, and expected outcome are shown. One important note
for the comprehension of the test cases is that the number of the test case identi-
fies a functionality being tested. For instance, "1.2" and "1.3" represent different
functionalities to test. The first number of the test case id represents the category
of the test, where the numbers used follow the ones from the Appendix A:

• 1 - Metrics;

• 2 - Quality Models;

• 4 - Resources;

• 11 - Dashboard.

As for the representation of different input classes and their test cases within a
functionality being tested, the test case id should start with the same preceding
number. For example "1.2.x.y", where "1.2" represents a functionality being tested
in the Metrics category. The ".x" part represents different input classes for that
functionality, while the ".y" are test cases for that same input class (defined by
".x"). For example, the test case ids "1.2.1.1" and "1.2.1.2" represent the testing
for a given functionality in the Metrics category (initial "1.2" part), where the

99

Chapter 6

initial "1.2.1" part represents an input class for that functionality being tested,
and "1.2.1.1" and "1.2.1.2" test cases for that input class.

Table 6.1: Functional test cases

Use
Case

Id

Test
Case Id Input Expected Outcome

1.1 1.1.1.1 Select a metric that is not a leaf attribute and has a
tree height of 1.

Metric’s name, id, attribute aggregation operator
and indication that the metric is not a leaf

attribute are presented, as well as the respective
metric tree structure.

1.1 1.1.1.2 Select a metric that is not a leaf attribute and has a
tree height of 2.

Metric’s name, id, attribute aggregation operator
and indication that the metric is not a leaf

attribute are presented, as well as the respective
metric tree structure.

1.1 1.1.1.3 Select a metric that is not a leaf attribute and has a
tree height of 3.

Metric’s name, id, attribute aggregation operator
and indication that the metric is not a leaf

attribute are presented, as well as the respective
metric tree structure.

1.1 1.1.2 Select a metric that is a leaf attribute

Metric’s name, id, aggregation operator,
description associated, number of samples,
normalization method, normalization kind,

minimum threshold, maximum threshold and an
indication that the metric is a leaf attribute are

presented.

1.2, 1.7 1.2.1.1 Create a parent metric without filling any field. Error messages alerting for filling the mandatory
fields in which form.

1.2,
1.3, 1.6 1.2.1.2 Create a leaf attribute metric without filling any

field.
Error messages alerting for filling the mandatory

fields in which form.

1.2, 1.7 1.2.2.1 Create a parent metric without one field, repeating
it for each field.

Error message alerting for filling the field that is
not filled, and in which form.

1.2,
1.3, 1.6 1.2.2.2 Create a leaf attribute metric without one field,

repeating it for each field.
Error message alerting for filling the field that is

not filled, and in which form.

1.2, 1.7 1.2.3.1 Create a parent metric after incorrectly filling one
field, repeating it for each field.

Error message on the field that is incorrectly
filled, presenting information on how to fill it.

1.2,
1.3, 1.6 1.2.3.2 Create a leaf attribute metric after incorrectly

filling one field, repeating it for each field.
Error message on the field that is incorrectly

filled, presenting information on how to fill it.

1.2 1.2.4.1 Create a parent metric with a name that is already
in use by another metric.

A message alerting for the unavailability of the
name is presented.

1.2, 1.3 1.2.4.2 Create a leaf attribute metric with a name that is
already in use by another metric.

A message alerting for the unavailability of the
name is presented.

1.2 1.2.5.1 Create a parent metric filling all the required fields
correctly, with 1 child metric

A success message is presented and metric
information is correctly inserted in TMA’s

database.

1.2 1.2.5.2 Create a parent metric filling all the required fields
correctly, with 2 child metrics

A success message is presented and metric
information is correctly inserted in TMA’s

database.

1.2 1.2.5.3 Create a parent metric filling all the required fields
correctly, with 3 child metrics

A success message is presented and metric
information is correctly inserted in TMA’s

database.

1.2, 1.3 1.2.6.1 Create a leaf attribute metric filling all the required
fields correctly.

A success message is presented and metric
information is correctly inserted in TMA’s

database.

1.7,
1.8

1.3.1.1
When creating a parent metric, add and remove
child metrics, where the childs have a tree height

of 0.

The tree representation is coherent with the
selected childs.

1.7,
1.8

1.3.1.2
When creating a parent metric, add and remove
child metrics, where the childs have a tree height

of 1.

The tree representation is coherent with the
selected childs.

1.7,
1.8

1.3.1.3
When creating a parent metric, add and remove
child metrics, where the childs have a tree height

of 2.

The tree representation is coherent with the
selected childs.

1.8,
2.1

2.1.1.1 Select a quality model where its root node has a
tree height of 0.

Quality Model’s id, name, associated metric,
metrics tree structure and list of associated

configuration profiles are presented.

1.8,
2.1

2.1.1.2 Select a quality model where its root node has a
tree height of 1.

Quality Model’s id, name, associated metric,
metrics tree structure and list of associated

configuration profiles are presented.

100

Validation

Use
Case

Id

Test
Case Id Input Expected Outcome

1.8,
2.1

2.1.1.3 Select a quality model where its root node has a
tree height of 2.

Quality Model’s id, name, associated metric,
metrics tree structure and list of associated

configuration profiles are presented.

1.8,
2.5

2.2.1.1 Select a configuration profile from a quality model
that has a root node with a tree height of 0.

The corresponding configuration profile weights
are correctly presented on the quality model’s

metrics tree.

1.8,
2.5

2.2.1.2 Select a configuration profile from a quality model
that has a root node with a tree height of 1.

The corresponding configuration profile weights
are correctly presented on the quality model’s

metrics tree.

1.8,
2.5

2.2.1.3 Select a configuration profile from a quality model
that has a root node with a tree height of 2.

The corresponding configuration profile weights
are correctly presented on the quality model’s

metrics tree.

2.6 2.3.1.1
Go to the page for creating a configuration profile
for a quality model that has a root node with a tree

height of 0.

A form requesting the name and the weights for
the quality model’s metrics tree nodes is

presented.

2.6 2.3.1.2
Go to the page for creating a configuration profile
for a quality model that has a root node with a tree

height of 1.

A form requesting the name and the weights for
the quality model’s metrics tree nodes is

presented.

2.6 2.3.1.3
Go to the page for creating a configuration profile
for a quality model that has a root node with a tree

height of 2.

A form requesting the name and the weights for
the quality model’s metrics tree nodes is

presented.

2.6 2.4.1.1
Create a configuration profile without filling any

field, for a quality model that has a root node with
a tree height of 0.

Error messages alerting for filling the mandatory
fields in which form.

2.6 2.4.1.2
Create a configuration profile without filling any

field, for a quality model that has a root node with
a tree height of 1.

Error messages alerting for filling the mandatory
fields in which form.

2.6 2.4.1.3
Create a configuration profile without filling any

field, for a quality model that has a root node with
a tree height of 2.

Error messages alerting for filling the mandatory
fields in which form.

2.6 2.4.2.1
For a quality model that has a root node with a
tree height of 0, create a configuration profile

without filling one field, repeating it for each field.

Error message alerting for filling the field that is
not filled, and in which form.

2.6 2.4.2.2
For a quality model that has a root node with a
tree height of 1, create a configuration profile

without filling one field, repeating it for each field.

Error message alerting for filling the field that is
not filled, and in which form.

2.6 2.4.2.3
For a quality model that has a root node with a
tree height of 2, create a configuration profile

without filling one field, repeating it for each field.

Error message alerting for filling the field that is
not filled, and in which form.

2.6 2.4.3.1

For a quality model that has a root node with a
tree height of 0, create a configuration profile after

incorrectly filling one field, repeating it for each
field.

Error message on the field that is incorrectly
filled, presenting information on how to fill it.

2.6 2.4.3.2

For a quality model that has a root node with a
tree height of 1, create a configuration profile after

incorrectly filling one field, repeating it for each
field.

Error message on the field that is incorrectly
filled, presenting information on how to fill it.

2.6 2.4.3.3

For a quality model that has a root node with a
tree height of 2, create a configuration profile after

incorrectly filling one field, repeating it for each
field.

Error message on the field that is incorrectly
filled, presenting information on how to fill it.

2.6 2.4.4.1

For a quality model that has a root node with a
tree height of 1, create a configuration profile

where a tree level has the sum of its sibling metrics
different than 1, repeating it for the other levels.

A message alerting that a metric’s child weights
is not equal to 1 is presented

2.6 2.4.4.2

For a quality model that has a root node with a
tree height of 2, create a configuration profile

where a tree level has the sum of its sibling metrics
different than 1, repeating it for the other levels.

A message alerting that the sum of sibling
metrics weights is not equal to 1 is presented

2.6 2.4.5.1
Create a configuration profile with a name that is
already in use by another configuration profile for

the same quality model.

A message alerting for the unavailability of the
name is presented.

2.6 2.4.5.2
Create a configuration profile with a name that is

already in use by another configuration profile but
for another quality model.

A success message is presented and
configuration profile information is correctly

inserted in TMA’s database.

2.6 2.4.6.1
For a quality model that has a root node with a
tree height of 0, create a configuration profile

filling all the required fields correctly

A success message is presented and
configuration profile information is correctly

inserted in TMA’s database

101

Chapter 6

Use
Case

Id

Test
Case Id Input Expected Outcome

2.6 2.4.6.2
For a quality model that has a root node with a
tree height of 1, create a configuration profile

filling all the required fields correctly

A success message is presented and
configuration profile information is correctly

inserted in TMA’s database

2.6 2.4.6.3
For a quality model that has a root node with a
tree height of 2, create a configuration profile

filling all the required fields correctly

A success message is presented and
configuration profile information is correctly

inserted in TMA’s database

2.2, 2.9 2.5.1.1 Create a quality model without filling any field. Error messages alerting for filling the mandatory
fields in which form.

2.2, 2.9 2.5.1.2 Create a quality model without filling one field,
repeating it for each field.

Error message alerting for filling the field that is
not filled, and in which form.

2.2, 2.9 2.5.1.3 Create a quality model after incorrectly filling one
field, repeating it for each field.

Error message on the field that is incorrectly
filled, presenting information on how to fill it.

2.2, 2.9 2.5.1.4 Create a quality model with a name that is already
in use by another quality model.

A message alerting for the unavailability of the
name is presented.

2.2 2.5.2.1
Create a quality model filling all the required

fields correctly and associating a metric which has
a tree height of 0.

A success message is presented and quality
model information is correctly inserted in TMA’s

database

2.2 2.5.2.2
Create a quality model filling all the required

fields correctly and associating a metric which has
a tree height of 1.

A success message is presented and quality
model information is correctly inserted in TMA’s

database

2.2 2.5.2.3
Create a quality model filling all the required

fields correctly and associating a metric which has
a tree height of 2.

A success message is presented and quality
model information is correctly inserted in TMA’s

database

1.8, 2.9 2.6.1.1
While creating a quality model, for the metric

association select and remove metrics that have a
tree height of 0.

The tree representation is coherent with the
selected metric.

1.8, 2.9 2.6.1.2
While creating a quality model, for the metric

association select and remove metrics that have a
tree height of 1.

The tree representation is coherent with the
selected metric.

1.8, 2.9 2.6.1.3
While creating a quality model, for the metric

association select and remove metrics that have a
tree height of 2.

The tree representation is coherent with the
selected metric.

1.8,
4.5

4.1 While setting the chart configuration, select a
resource and the metric data type.

Associated metrics tree to the resource is
presented and the list of selectable metrics match

the ones in the tree.

4.5 4.2.1.1 Generate a metric live plot with values available.

Plot is generated with a metric data label and
values available are displayed. The plot presents

the last minute values. Also, the plot keeps
getting updated according to the values being

produced.

4.5 4.2.1.2 Generate a metric live plot with no values
available.

Plot is generated with a metric data label but no
values are displayed. The plot presents the last

minute values. Also, the plot keeps getting
updated but still with no values being displayed.

4.5 4.2.2.1 Generate a metric time interval plot with values
available.

Plot is generated with a metric data label and
values available are displayed. The x axis has its

values within the time interval.

4.5 4.2.2.2 Generate a metric time interval plot with no
values available.

Plot is generated with a metric data label but no
values are displayed. The x axis has its values

within the time interval.

4.5, 4.7 4.2.3.1 With values available, generate a live plot setting
the option to plot plans alongside metric values.

Plot is generated with metric data and plans
labels and values available are displayed. Plans

data overlap with metrics data and the plot
presents the last minute values. Also, the plot
keeps getting updated according to the values

being produced.

4.5, 4.7 4.2.3.2
With no values available, generate a live plot

setting the option to plot plans alongside metric
values.

Plot is generated with metric data and plans
labels but no values are displayed. Plot presents

the last minute values. Also, the plot keeps
getting updated but still with no values being

displayed.

4.5, 4.7 4.2.4.1
With values available, generate a time interval plot

setting the option to plot plans alongside metric
values.

Plot is generated with metric data and plans
labels and values available are displayed. Plans

data overlap with metrics data and the x axis has
its values within the time interval.

4.5, 4.7 4.2.4.2
With no values available, generate a time interval

plot setting the option to plot plans alongside
metric values.

Plot is generated with metric data and plans
labels but no values are displayed. Plans data

overlap with metrics data and the x axis has its
values within the time interval.

102

Validation

Use
Case

Id

Test
Case Id Input Expected Outcome

4.8 4.3.1.1 Export a time interval plot with metrics values. A pdf file is created with the generated plot.

4.8 4.3.1.2 Export a time interval plot with metrics and plans
values. A pdf file is created with the generated plot.

4.8 4.3.2.1 Export a live plot as soon as the plot is generated. A pdf file is created with the plot at the moment
the export button was pressed.

4.8 4.3.2.2 Export a live plot ∼10 seconds after the plot is
generated.

A pdf file is created with the plot at the moment
the export button was pressed.

4.10 4.4.1 Export a plot configuration from a live plot.
A text file is generated containing the

corresponding plot configurations. The
configuration “livePlot” is set to true.

4.10 4.4.2 Export a plot configuration from a time interval
plot.

A text file is generated containing the
corresponding plot configurations. The

configuration “livePlot” is set to false, while the
“startDate” and “endDate” properties are equal
to the time interval defined to generate the plot

being exported.

4.6 4.5.1 Go to the simulation page.

Information regarding the simulation is
presented: configuration profile weights,

resource, time interval and a plot with original
metrics values. Also, there is a form for filling the

simulation weights.

4.6 4.6.1 On the simulation page, fill the weights in the
simulation form.

The simulation configuration profile tree
representation gets updated with the weights

being introduced.

4.6 4.7.1.1
For a configuration profile of a quality model that

has a root node of height 0, perform simulation
without filling any field.

Error messages alerting for filling the mandatory
fields in which form.

4.6 4.7.1.2
For a configuration profile of a quality model that

has a root node of height 1, perform simulation
without filling any field.

Error messages alerting for filling the mandatory
fields in which form.

4.6 4.7.2.1
For a configuration profile of a quality model that

has a root node of height 0, perform simulation
without filling one field, repeating it for each field.

Error message alerting for filling the field that is
not filled, and in which form.

4.6 4.7.2.2
For a configuration profile of a quality model that

has a root node of height 1, perform simulation
without filling one field, repeating it for each field.

Error message alerting for filling the field that is
not filled, and in which form.

4.6 4.7.3.1

For a configuration profile of a quality model that
has a root node of height 0, perform simulation
after incorrectly filling one field, repeating it for

each field.

Error message on the field that is incorrectly
filled, presenting information on how to fill it.

4.6 4.7.3.2

For a configuration profile of a quality model that
has a root node of height 1, perform simulation
after incorrectly filling one field, repeating it for

each field.

Error message on the field that is incorrectly
filled, presenting information on how to fill it.

4.6 4.7.4.1

For a configuration profile of a quality model that
has a root node of height 1, perform simulation

where a tree level has the sum of its sibling metrics
different than 1, repeating it for the other levels.

A message alerting that the sum of sibling
metrics weights is not equal to 1 is presented

4.6 4.7.4.2

For a configuration profile of a quality model that
has a root node of height 2, perform simulation

where a tree level has the sum of its sibling metrics
different than 1, repeating it for the other levels.

A message alerting that the sum of sibling
metrics weights is not equal to 1 is presented

4.6 4.7.5.1
For a configuration profile of a quality model that

has a root node of height 0, perform simulation
filling all the required fields correctly.

The simulation plot gets updated with the
simulation data series alongside the original

values.

4.6 4.7.5.2
For a configuration profile of a quality model that

has a root node of height 1, perform simulation
filling all the required fields correctly

The simulation plot gets updated with the
simulation data series alongside the original

values.

4.6 4.7.6 After performing a simulation, rechange some of
the weights and perform a new simulation

The simulation data series gets updated on the
plot according to the new weights.

11.1 11.1 Select option to add chart to the homepage Form to select the location of the configuration
file

11.1 11.2.1.1 Adding a chart to the homepage, insert a name
that already exists for another chart configuration.

A message alerting for the unavailability of the
name is presented.

11.1 11.2.1.2
Adding a chart to the homepage, don’t introduce

or incorrectly fill the name for the plot
configuration.

Error message alerting for filling the mandatory
fields in which form.

103

Chapter 6

Use
Case

Id

Test
Case Id Input Expected Outcome

11.1 11.2.2.1 Add a live chart to the homepage.
Everytime the Homepage is loaded, the added

chart appears and the chart keeps getting
updated each second.

11.1 11.2.2.2 Add a time interval chart to the homepage. Everytime the Homepage is loaded, the added
chart appears.

11.2 11.3.1 Select the option to Replace a chart and Select
option to replace a chart and cancel the operation There is no chart replacement.

11.2 11.3.2.1 Replace a chart configuration, inserting a name
that already exists for another chart configuration.

A message alerting for the unavailability of the
name is presented.

11.2 11.3.2.2 Replace a chart configuration, giving it the name
of the chart being replaced.

A message alerting for the unavailability of the
name is presented.

11.2 11.3.2.3 Replace a chart configuration, not inserting the
name.

Error message alerting for filling the mandatory
fields in which form.

11.2 11.3.3.1 Replace a live chart by time interval chart.
The corresponding chart slot on the homepage
renders a new chart that is not getting updated

every second.

11.2 11.3.3.2 Replace a time interval chart by a live chart.
The corresponding chart slot on the homepage

renders a new chart that gets updated each
second.

11.3 11.4.1.1 Delete a time interval chart in the first slot, where
there are at least 2 charts on the Homepage.

The chart gets deleted from the Homepage and
the charts after it are relocated to the previous

slot.

11.3 11.4.1.2 Delete a live chart in the first slot, where there are
at least 2 charts on the Homepage.

The chart gets deleted from the Homepage and
the charts after it are relocated to the previous

slot.

11.3 11.4.2.1 Delete a time interval chart between two other
charts.

The chart gets deleted from the Homepage and
the charts after it are relocated to the previous

slot.

11.3 11.4.2.2 Delete a live chart between two other charts.
The chart gets deleted from the Homepage and
the charts after it are relocated to the previous

slot.

11.3 11.4.3.1 Delete a time interval chart in the last slot, where
there are at least 2 charts on the Homepage.

The chart gets deleted from the Homepage and
the charts after it are relocated to the previous

slot.

11.3 11.4.3.2 Delete a live chart in the last slot where there are at
least 2 charts on the Homepage.

The chart gets deleted from the Homepage and
the charts after it are relocated to the previous

slot.

11.3 11.4.4.1 Delete the only chart of the homepage, where that
chart is a time interval one.

No charts remain on the Homepage and there is a
button to add a chart.

11.3 11.4.4.2 Delete the only chart of the homepage, where that
chart is a live one.

No charts remain on the Homepage and there is a
button to add a chart. Also, requests stop being

sent to TMA’s API.

6.2.2 Results

All the test cases planned in the previous section succeeded as the results from
the tests, presented in Table 6.2, show. This means that within what has been
tested, the dashboard is functionally valid.

Table 6.2: Functional test cases results

Test Case Id Pass / Fail
1.1.1.1 Pass
1.1.1.2 Pass
1.1.1.3 Pass
1.1.2 Pass

104

Validation

Test Case Id Pass / Fail
1.2.1.1 Pass
1.2.1.2 Pass
1.2.2.1 Pass
1.2.2.2 Pass
1.2.3.1 Pass
1.2.3.2 Pass
1.2.4.1 Pass
1.2.4.2 Pass
1.2.5.1 Pass
1.2.5.2 Pass
1.2.5.3 Pass
1.2.6.1 Pass
1.3.1.1 Pass
1.3.1.2 Pass
1.3.1.3 Pass
2.1.1.1 Pass
2.1.1.2 Pass
2.1.1.3 Pass
2.2.1.1 Pass
2.2.1.2 Pass
2.2.1.3 Pass
2.3.1.1 Pass
2.3.1.2 Pass
2.3.1.3 Pass
2.4.1.1 Pass
2.4.1.2 Pass
2.4.1.3 Pass
2.4.2.1 Pass
2.4.2.2 Pass
2.4.2.3 Pass
2.4.3.1 Pass
2.4.3.2 Pass
2.4.3.3 Pass
2.4.4.1 Pass
2.4.4.2 Pass
2.4.5.1 Pass
2.4.5.2 Pass
2.4.6.1 Pass
2.4.6.2 Pass
2.4.6.3 Pass
2.5.1.1 Pass
2.5.1.2 Pass
2.5.1.3 Pass
2.5.1.4 Pass
2.5.2.1 Pass
2.5.2.2 Pass
2.5.2.3 Pass
2.6.1.1 Pass
2.6.1.2 Pass

105

Chapter 6

Test Case Id Pass / Fail
2.6.1.3 Pass

4.1 Pass
4.2.1.1 Pass
4.2.1.2 Pass
4.2.2.1 Pass
4.2.2.2 Pass
4.2.3.1 Pass
4.2.3.2 Pass
4.2.4.1 Pass
4.2.4.2 Pass
4.3.1.1 Pass
4.3.1.2 Pass
4.3.2.1 Pass
4.3.2.2 Pass
4.4.1 Pass
4.4.2 Pass
4.5.1 Pass
4.6.1 Pass

4.7.1.1 Pass
4.7.1.2 Pass
4.7.2.1 Pass
4.7.2.2 Pass
4.7.3.1 Pass
4.7.3.2 Pass
4.7.4.1 Pass
4.7.4.2 Pass
4.7.5.1 Pass
4.7.5.2 Pass
4.7.6 Pass
11.1 Pass

11.2.1.1 Pass
11.2.1.2 Pass
11.2.2.1 Pass
11.2.2.2 Pass
11.3.1 Pass

11.3.2.1 Pass
11.3.2.2 Pass
11.3.2.3 Pass
11.3.3.1 Pass
11.3.3.2 Pass
11.4.1.1 Pass
11.4.1.2 Pass
11.4.2.1 Pass
11.4.2.2 Pass
11.4.3.1 Pass
11.4.3.2 Pass
11.4.4.1 Pass
11.4.4.2 Pass

106

Validation

During development, a lot of informal testing was done, based on intuition and
internal knowledge of the components’ behavior and code. Thereby, some of the
test cases described and executed, for example, the forms testing, had already
been tested before.

6.3 Usability validation

This section presents and explains, primarily, the validation plan for the usability
requirements presented in Section 4.2. Then, the results obtained are presented
and analyzed.

6.3.1 Validation plan

Usability requirements were elicited concerning tasks that require some effort
and attention from users, such as simulating metrics, plotting metrics, and man-
agement of the Homepage plots. The focus of usability on these tasks is due to
the importance of those features in the product value. Thus, the goal is to find out
if the positioning of page elements within the dashboard should be rethought, re-
designed, and reimplemented, or if their current placement is good enough for
allowing future users to properly manage systems.

The dashboard is a very restrictive product meant to be used by technical people
that have a generalized understanding of TMA. Thereby the tests are applied to
a single user profile and they would be conducted with a very small group of
people, in this case, work colleagues that have a minimal understanding of TMA
and how it works. Therefore, the user profile defined for these usability tests is:

• Technological individual;

• Comprehension of TMA’s goal;

• Knowledge of how TMA works at a high level concept.

Qualitative and quantitative assessments were made on usability. For that, a set
of tasks to perform was created for the usability tests considering the following
categories:

1. Plot metric data (and plan data);

2. Simulate metrics data;

3. Management of Homepage plots.

107

Chapter 6

The defined set of tasks is presented in Table 6.3 where each task has an id as-
sociated with one of the categories above, a brief description of what the task is
about, notes alerting the moderator for something needed during the task, the
minimal execution of steps and the expected max duration. These last two prop-
erties were assigned to aid in the quantitative evaluation. The task execution is
sequential, meaning that they must be executed one after another. This is manda-
tory because the defined minimal steps needed to be taken to complete the tasks
have the sequential execution of tasks in mind.

Table 6.3: Usability test tasks

Id Description Notes Minimal Execution of Steps

Expected
max

duration
(seconds)

1.1 Plot raw data in a
defined interval

Data generated
previously and
interval told by

moderator

1. Press “Resources” on navigation bar

2. Select a Resource and data type “Raw Data” op-
tion

3. Press "Confirm"

4. Select any metric to visualize data

5. Insert start and end timestamp

6. Press "Confirm"

150

1.2 Plot metric data in a
defined interval

Data generated
previously and
interval told by

moderator

1. Press the top bar on the “1st step” of the form

2. Select metric data type

3. Press “Confirm”

4. Select which metric to visualize data

5. Insert start and end timestamp

6. Press “Confirm”

120

1.3 Plot live metric data No data available

1. Press the top bar on the “2nd step” of the form

2. Enable the option of live plot

3. Press "Confirm"

60

1.4 Plot live metric data
along with plans

No data
available. When
completing this
task start probe.

1. Press the top bar on the “2nd step” of the form

2. Enable the option to plot plans

3. Press "Confirm"

30

1.5 Export plot config
1. Press button to export plot config

15

1.6 Download chart
1. Press button to download chart

15

108

Validation

Id Description Notes Minimal Execution of Steps

Expected
max

duration
(seconds)

2.1 Go to simulation page
Previously

started probe at
task 1.4 1. Press button to simulate metrics

15

2.2
Insert simulation

weights and calculate
simulation

1. Insert simulation weights

2. Press “Simulate” button

60

3.1 Add a plot to the
homepage

File generated on
Task 1.5 must be

used.

1. Press “Home” on navigation bar

2. Press “+ Plot configuration” button

3. Select exported configuration file

4. Insert nonexistent plot configuration name

5. Press the button to save

60

3.2

Replace previously
added plot

configuration with the
same configuration file

but edit it to not add
plans in the plot

1. Edit configuration file, changing “ad-
dPlansInfo” configuration to false

2. Press “Replace configuration” button

3. Select the edited file

4. Insert new name

5. Press “replace” button

60

3.3
Remove added and
then replaced plot

config from Homepage 1. Press red “X” button
20

Also, during the tests, in some of the tasks questions would be asked to the users.
These questions are present in Table 6.4 with an id, the associated task id, the
question itself, and the answer. The goal was to understand if the interface pro-
vided sufficient feedback and information for the users to understand what was
happening.

Table 6.4: Usability test questions

Question Id Task
Id Question Answer

1 1.3 Can you tell me what is happening? Why
are there no points plotted?

There is no data available. Also, that information is
presented on the interface.

2 1.4 Is there any difference to the previous plot? Yes, there is a label for the plans data series.

3 2.1 Can you tell me when you can apply
simulations?

Only when there is data available whether live or in
a time interval plot. And applied to metric data only,

not raw data.

4 2.1 Can you tell me when and to what the
simulation is going to be applied?

Must indicate the simulation parameters that appear
on the top of the page.

5 2.2 What happened after you pressed the
button to simulate?

The chart got updated with a new series that
corresponds to the simulated values using the

inserted weights.

109

Chapter 6

Question Id Task
Id Question Answer

6 3.2
Can you tell me what constitutes the chart

configuration file and the types of data
associated to each parameter in that file?

• resourceId: number that identifies the re-
source;

• dataType: string that identifies if the chart
values are raw or metric data;

• metricId: number that identifies the metric;

• startDate: timestamp in epoch that defines
the start of the time interval from which val-
ues are presented in the chart;

• endDate: timestamp in epoch that defines
the end of the time interval from which val-
ues are presented in the chart;

• livePlot: boolean that defines if the chart will
keep updating its values;

• addPlansInfo: boolean that defines if plans
series is presented on the chart;

• metricLabel: string to be presented on the
chart’s y axis label.

At the end of the test, and offline, users would also complete an anonymous form
to provide a qualitative evaluation of the product. The offline and anonymity
purposes are to not influence the test users when giving their opinion about the
product’s functionalities they just tested. The form is composed of 5 semantic
differential scale questions, depicted by Fig. 6.2, and 5 Likert scale questions, pre-
sented by Fig. 6.3. Likert scales are useful for stating how much people agree or
disagree with a particular statement, while semantic differential scales are used
for people to decide how much of a trait or quality an item has for them [103].
In both types of questions, an even number of possible answers were set to force
their decision to be negative or positive. Thus, there can not be neutral positions.

Considering the usability requirements defined in Section 4.2, for a first interac-
tion with the dashboard, the metrics to validate within these usability tests are:

1. Every user completes 80 % of the planned tasks.

2. There is a maximum of 3 errors in completed tasks;

3. Tasks do not take longer than the expected maximum duration;

4. 75 % of the users can correctly answer question 3;

5. 75 % of the users can correctly answer question 4;

6. 100 % of the users can correctly identify 6 out of the 8 parameters of question
6.

7. An average of 75 % positive answers in offline form’s questions is received.

110

Validation

Figure 6.2: Usability test form’s semantic differential questions.

111

Chapter 6

Figure 6.3: Usability test form’s likert scale questions.

Other tasks and questions are not considered in the metrics above, but they would
be analyzed as well. That is done because there may be other problems in the in-
terface that were not the focus of these tests, but could be detected during the
tests.

Before executing the tests some conditions must be assured:

• Create a quality model of Resource consumption, based on CPU and RAM,
to be considered during and presented before starting the tests;

• Have previously generated data for the quality model;

• Have a probe ready to start collecting data from a system and a demo actu-
ator running;

• Define a dummy adaptation rule to keep triggering the creation of plans to
invoke a demo actuator.

The tests would be moderated and conducted remotely with a total of 4 users,
recording the sessions for data gathering and analysis purposes.

6.3.2 Results

The usability tests were run with a total of 4 users and the sessions were recorded
for posterior analysis and data collection. The results concerning the quantitative
evaluation are presented in Table 6.5 and Table 6.6, which respect to tasks and
questions respectively.

112

Validation

Table 6.5: Usability tasks results

Task
Id

User
Id Duration (s) Nº Extra

steps
Nº

Errors Completed Notes

1 70 0 0 yes

2 52 0 1 yes Error inserting the form timestamps, but the
product alerted for that.

3 57 0 0 yes

1.1

4 110 0 0 yes

Unlike the other users that were relatively fast for
a first interaction, this one took a longer time to

complete the task. But that was already expected
since it was the first interaction with the product.
As a consequence he navigated a lot through the

interface to understand what to do.
1 50 0 0 yes

2 60 1 0 yes The user did an extra step because he did not
even try to use form steps to go back.

3 37 1 0 yes The user did an extra step because he did not
even try to use form steps to go back.1.2

4 59 1 0 yes The user did an extra step because he did not
even try to use form steps to go back.

1 5 0 0 yes

2 12 0 0 yes The user tried to use the form steps, which
worked.

3 10 1 0 yes The user did an extra step because he did not
even try to use form steps to go back.1.3

4 14 1 0 yes The user did an extra step because he did not
even try to use form steps to go back.

1 15 0 0 yes
2 5 0 0 yes

3 9 1 0 yes The user did an extra step because he did not
even try to use form steps to go back.1.4

4 12 1 0 yes The user did an extra step because he did not
even try to use form steps to go back.

1 3 0 0 yes
2 3 0 0 yes
3 2 0 0 yes1.5
4 5 0 0 yes
1 2 0 0 yes
2 4 0 0 yes
3 2 0 0 yes1.6

4 5 0 0 yes
1 4 0 0 yes
2 7 0 0 yes
3 2 0 0 yes2.1

4 9 0 0 yes
1 27 0 0 yes
2 12 0 0 yes

3 20 0 1 yes
Tried to insert weights for a parent metric’s

childs that were not equal to 1. The interface
alerted for that.2.2

4 21 0 1 yes
Tried to insert weights for a parent metric’s

childs that were not equal to 1. The interface
alerted for that.

1 17 0 0 yes
2 40 0 0 yes
3 27 0 0 yes3.1

4 25 0 0 yes
1 30 0 0 yes
2 35 0 0 yes

3 57 0 1 yes

Tried to use the same name from the task before.
That is not allowed and the dashboard alerted
the user that the name introduced was already

being used.
3.2

4 44 0 1 yes

Tried to use the same name from the task before.
That is not allowed and the dashboard alerted
the user that the name introduced was already

being used.
1 3 0 0 yes
2 2 0 0 yes
3 3 0 0 yes3.3

4 2 0 0 yes

113

Chapter 6

Table 6.6: Usability question results

Question Id User Id Answer
1 correct
2 correct
3 correct

1

4 correct
1 correct
2 correct
3 correct

2

4 correct
1 incorrect
2 incorrect
3 incorrect

3

4 incorrect
1 correct
2 correct
3 correct

4

4 correct
1 correct
2 correct
3 correct

5

4 correct
1 correct
2 correct
3 correct

6

4 correct

The metrics to validate in these tests were:

1. Every user completes 80 % of the planned tasks.

2. There is a maximum of 3 errors in completed tasks;

3. Tasks do not take longer than the expected maximum duration;

4. 75 % of the users can correctly answer question 3;

5. 75 % of the users can correctly answer question 4;

6. 100 % of the users can correctly identify 6 out of the 8 parameters of question
6.

7. An average of 75 % positive answers in offline form’s questions is received.

114

Validation

From the results on Table 6.5, it is visible that requirements 1, 2, and 3 were satis-
fied as every user performed every task within the maximum expected duration.
Also, a maximum of 1 error occurred per task and when those errors occurred, the
product prevented the continuation of the task and alerted the user of the prob-
lem. It was also seen that half of the users did not try to verify the existence of
shortcuts in the functionality to plot resource metrics, even though they existed.

Observing Table 6.6, it is possible to say that requirements 5 and 6 were also
satisfied, since every user responded correctly to questions 4 and 6. Regarding
question 6, every user identified correctly all the parameters from the plot con-
figuration file. Also, the other questions were all answered correctly, except for
question 3 where any user could do it. Thereby requirement 4 was not satisfied.
These results considering question 3 that the users could not understand when
simulations can be applied, which is when a metric’s values are being consulted
in a chart, whether in a time interval or live, and there is data available. Even
though the users were able to perform the task of going to the simulation page,
they did not understand when they could do it. They just knew how to get to the
simulations because a button was there. To provide better accessibility and clar-
ity to this feature, a more direct option could be added to the menu. There, users
would have to complete a form that would be verified after submission against
the necessary restrictions to enter the simulation page.

Although not present in either of the results tables because the tasks were com-
pleted successfully, it was seen during the tests that users struggled a little at the
first task when they had to choose between "Raw Data" and "Metric Data", and
even some of them commented it during the test. So, another change that could
be made is to change the naming of the "Raw Data" option to "Probed Data".
Thus, it will be more clear that this option relates to data collected from probes
while the other to data processed by TMA’s Analyze component.

Concerning the last test metric to validate, the number 7, the results of the form’s
semantic differential and Likert scale questions are presented by Fig. 6.4 and
Fig. 6.5 respectively. For semantic questions the answers "1" and "2" were con-
sidered positive, as for the Likert they were the "Agree" and "Partially agree"
answers. Based on this, the % of positive answers for semantic differential and
Likert questions was calculated and can be seen in Fig. 6.6 and Fig. 6.7 respec-
tively. In summary, all questions, no matter the type, had at least 75 % of positive
answers, except for the semantic differential question "How would you classify
the clarity of when it is possible to apply simulations?" which only had 25 %. This
exception reflects the problem mentioned above when requirement 4 ("75 % of the
users can correctly answer question 3") was not satisfied. Performing the mean
on the % of positive answers from all questions, a value of 82.5 % is achieved.
Thereby, requirement 7 was also satisfied.

In the end, it could be said that the product is usable since 6 out of 7 requirements
were satisfied. However, it presents a serious usability problem on the access to
the feature of simulating metrics, which must be corrected.

115

Chapter 6

Figure 6.4: Semantic differential questions results.

Figure 6.5: Likert questions results.

116

Validation

Figure 6.6: Semantic differential questions results as % of positive answers.

Figure 6.7: Likert questions results as % of positive answers.

117

Chapter 6

6.4 Performance validation

This section presents and explains, primarily, the validation plan for the perfor-
mance requirements presented in Section 4.2. Then, the results obtained are pre-
sented and analyzed.

6.4.1 Validation plan

The requirements elicited on performance concern mostly the dashboard, but also
the performance of TMA’s API. Those requirements are:

1. Having the dashboard’s homepage full with live data plots, CPU consump-
tion should not be higher than 1 virtual CPU and RAM consumption should
not be higher than 250 MB;

2. The web page should not take longer than 3 seconds to be loaded;

3. A single kubernetes pod of the Application Programming Interface (API),
consuming at maximum 1 virtual CPU, should be capable of handling, at
minimum, 100 requests per second.

For each requirement, where it was necessary data collected from probes or data
calculated by TMA’s Analyze, an element was set to be monitored based on the
quality model of the Fig. 6.8 and dummy rules that resulted in demonstration
adaptations (prints in actuator’s console) were used.

For the first requirement, the plan defined was:

1. Open Google Chrome browser with only 1 tab open;

2. In the tab open the dashboard’s Single Page Application (SPA);

3. Navigate to the homepage in the SPA;

4. Add 6 different live plots;

5. Leave it running where each second, for each plot, requests will kept being
made to update the charts values;

6. After an hour, using Chrome Task Manager tool, check consumption levels
of CPU and RAM for the tab.

Concerning the second requirement, the plan defined was:

1. Host SPA web server;

2. Open ports to make the server accessible from any network;

118

Validation

Figure 6.8: Quality model used for the performance validation.

3. Find out public Internet Protocol (IP) address;

4. Use Google’s PageSpeed Insights (https://pagespeed.web.dev/) to ana-
lyze the load time.

For both the first and second requirements, the environment used had the follow-
ing specifications:

• CPU: Intel(R) Core(TM) i5-8250U CPU @ 1.60GHz 1.80 GHz

• RAM: 8 GB DDR4 2400 MHz

• Disk: Micron SSD 240 GB

Considering the third requirement, an experimental setup composed of 4 ma-
chines was used. One of them was used to generate load on the API, which is
the machine used for requirements 1 and 2. The other 3 machines compose the
Kubernetes cluster hosting TMA and their resources and main configurations are
presented next:

• Control-plane (formerly known as master) machine with 4 vCPU, 16 GB
RAM and 40 GB Disk, that will be hosting an actuator as well;

• 2 worker machines with 4 vCPU, 16 GB RAM and 120 GB Disk, where one
of them will be hosting the API’s pod limited to the maximum consumption
of 1 CPU. The other worker will have the database pod and a probe sending
data from another container present in the same environment to TMA.

The test environment of requirement 3 is presented in Fig. 6.9. First, TMA is
configured to monitor and adapt an element (a pod’s container running in the
same machine as the probe), receiving data from a probe and executing adapta-
tion plans based on dummy rules that will always be activated. For monitoring
the element, the quality model from Fig. 6.8 is used. Thus, it becomes possible to

119

https://pagespeed.web.dev/

Chapter 6

TMA

Load Generator

Generates load onTMA API

Executes adaptation plan

Sends data collected
from container inside

machine to

Control-plane

Worker 1 Worker 2

Probe

Actuactor

Hosts

Figure 6.9: API performance test environment.

generate data necessary for performing some of the requests that define the load
test.

The load is generated by the machine running JMeter (https://jmeter.apache.org/),
and its demand is composed of 12 slots which are described by Table 6.7 and pre-
sented graphically in Fig. 6.10. Initially, there is a warmup period of 8 minutes
where demand increases each slot (with a duration of 2 minutes) by 10 req/s,
starting with 10 req/s. Then, the test itself starts with 50 req/s, increasing by
50 each slot (that lasts 3 minutes) until a final load of 400 req/s is reached. The
length of the test is 32 minutes (1920 seconds) and it will be run 5 times.

Table 6.7: TMA’s API performance test workload slot composition.

Slot Req/s Duration(s)
1 10 120
2 20 120
3 30 120
4 40 120
5 50 180
6 100 180
7 150 180
8 200 180
9 250 180

10 300 180
11 350 180
12 400 180

120

Validation

Figure 6.10: Workload applied in the API performance test.

As for the requests to perform on the test, they were selected based on the ones
the dashboard performs when a user is using it. Also, the request set created
intends to interact with every section of the dashboard. For instance, homepage
chart management, visualization of adaptation rules, and plotting of data. For
that, a set of 21 requests was created, where 4 of them update the database. The
distribution of database reads and writes on the requests tried to follow the rela-
tion 80%/20%, respectively. It was defined like that since it is expected that the
TMA’s API will receive far more read requests than writes when the dashboard
is being used. The sequential request execution is shown next:

1. Get homepage charts;

2. Get descriptions;

3. Create leaf metric;

4. Get metrics;

5. Get single parent metric;

6. Get single leaf metric;

7. Create parent metric;

8. Get quality models;

9. Get single quality model;

10. Get configuration profile;

121

Chapter 6

11. Get metrics for quality model creation;

12. Create quality model;

13. Get active resources;

14. Get resource configuration profile;

15. Get configuration profile metrics list;

16. Get resource raw data;

17. Get resource metric data with plans;

18. Perform simulation on metric data;

19. Replace homepage chart;

20. Get rules;

21. Get rule code.

Some aspects must be noted regarding the execution of this request set. First,
requests 7 and 12 are dependent on the success of request 3. So, if request 3
fails, they are not executed. Also, request 19 is set to be executed with a 10%
probability. Besides, each request has a connect timeout of 300 milliseconds and
a response timeout of 1 second. These values were defined based on the ones
observed in the initial experiments when the TMA’s API was not overloaded,
and when the test request set was being built and JMeter features were being
tested.

6.4.2 Results

The planned validation tests for performance were run and their results were
obtained and processed. The requirements to validate were:

1. Having the dashboard’s homepage full with live data plots, CPU consump-
tion should not be higher than 1 virtual CPU and RAM consumption should
not be higher than 250 MB;

2. The web page should not take longer than 3 seconds to be loaded;

3. A single kubernetes pod of the API, consuming at maximum 1 virtual CPU,
should be capable of handling, at minimum, 100 requests per second.

To validate requirement 1, the homepage of the dashboard was left running for an
hour, full of different live charts. During the experiment, Google Chrome’s Task
Manager tool was left open to monitor the CPU and RAM consumption values.
Additionally to what was defined in the plan, the Window’s Resource Monitor
tool was used to get the mean CPU usage of the whole experiment run. The

122

Validation

results, from both tools, are presented in Fig. 6.11. While Chrome’s tool presents
CPU usage considering 1 virtual CPU (which means values can be greater than
100%), the Window’s tool presents the CPU usage considering the total number
of virtual CPUs of the machine. As the CPU of the machine where the test was
run has 4 cores, and 8 threads, the number of virtual CPUs is 8. That means that
each machine’s virtual CPU corresponds to 12.5% (100% ÷ 8 virtual CPUs) of the
CPU. The "CPU Média" value from the figure is from Window’s tool and it is the
average CPU usage for the whole experiment, which has the value of 4.86, less
than a half of 12.5. That means that the average usage of the dashboard tab was
less than half of a virtual CPU. Besides, the value presented by Chrome’s tool
is showing the same results, 45.1 % of 1 virtual CPU. That is still less than half
of a CPU. Also, from Fig. 6.11 it can be seen that the dashboard, at the end of
the experiment, was consuming less than 100 MB. Thereby the requirement 1 is
satisfied.

Figure 6.11: Dashboard’s resource consumption after an hour.

Concerning requirement 2, after a server has been successfully set up for the dash-
board and the traffic allowed, Google’s PageSpeed Insights was used to analyze
the page load time. Fig. 6.12 shows those results where a positive score was ob-
tained, besides a page-load of 0.9 seconds for the "First Contentful Paint" metric
and 1 second considering the "Largest Contentful Paint" metric. "Largest Con-
tentful Paint" represents the time it takes for the largest text or image asset to
load, while the "First Contentful Paint" is the same but applied to the first asset
loaded [104]. Also, even if considering the "Time To Interactive" metric, which
has the value of 1.4 seconds, the requirement 2 is satisfied.

Finally, for requirement 3, the throughput results of the load test are presented in
Fig. 6.13. This figure presents the mean throughput considering 5 runs. As it can
be observed, the TMA’s API could handle until 200 req/s, but when the load in-

123

Chapter 6

Figure 6.12: Page load results of the dashboard, gotten from Google’s PageSpeed
Insights.

creased to 250 TMA’s API pod reached its maximum CPU capacity. That resulted
in the throttle of the service and the consequent performance degradation.

Figure 6.13: TMA’s API mean throughput in performance test.

Additionally, to better analyze performance, and considering the 5 runs, metrics

124

Validation

related to response time are presented in Table 6.8. This table considers the ex-
periment from the beginning of the workload (without warm-up), at slot 5, until
the end of slot 8 (480-1200s), and slot 9 (1200-1380s). As the table shows, and
based on the mean and standard deviation, the response time between slots 5 to
8 is usually less than 100 ms, when the maximum reached within that interval
was 653 ms. This means that in those slots performance was good as requests
were being served in less than 700 ms and usually at times smaller than 100 ms.
However, the same can not be said about Slot 9, which was when requests started
to fail until the end of the experiment. Looking at the the response time results
from Table 6.8, the mean value is 939.69. And this is a value very close to the
timeout of 1 second set to the requests. The deviation and the fact of the value
not being higher than 1000 is due to the successful requests at the beginning of
the slot. To complement this analysis, Fig. 6.14 and Fig. 6.15 present the box plots
for response time in slots 5-8 and slot 9. From these box plots, we can see that
75% of the response times are lower than a value smaller than 100 ms in slots 5-8.
As for slot 9, the median value is slightly higher than 1000 ms and 50 % of the
response times are above it. With that being said, requirement 3 of performance
is also satisfied.

Table 6.8: Response time metrics, in ms, for Slots 5-8 and Slot 9.

Slot slice Mean Standard
deviation Min Max

5-8 48.32 18.68 19 653
9 939.69 294.36 19 2040

Response time
0

100

200

300

400

500

600

Ti
m

e
(m

s)

Figure 6.14: Slots 5-8 response time box plot.

In summary, all the performance requirements were fulfilled and therefore the
product, in terms of performance, is valid.

125

Chapter 6

Response time
0

250

500

750

1000

1250

1500

1750

2000

Ti
m

e
(m

s)

Figure 6.15: Slot 9 response time box plot.

6.5 Maintainability validation

Maintainability was also one of the non-functional requirements defined for the
product since there are plans for using TMA and the dashboard developed. How-
ever, this requirement was more related to programming methodologies to follow
such as modularity, conventions, high cohesion, and loose coupling.

TMA and the created dashboard are intended to be changed, enhanced, and
maybe restructured in the future. Additionally, errors may arise and the task of
fixing them should be eased. For those reasons, facilitating the process of changes
to the product was something to keep in mind when developing.

The following of this section will present maintainability aspects that were fol-
lowed and used for developing the components of this dissertation.

Considering high cohesion and loose coupling, there are some examples that fol-
lowed that principle in the extension of TMA’s API and the creation of the dash-
board. Regarding the API, and as Fig. 6.16 shows, different controllers are hold-
ing a set of related endpoints. For example, the MetricController.java, from which
the endpoints are presented in Fig. 6.17, is responsible for requests related to
metrics, such as creation and listing. The same applies to the other controllers.
Concerning the SPA implementation, the principle of loose coupling and high
cohesion can also be seen in created components like DropDownDataFormat and
ValidInputs, which were explained in Section 5.2.2. The first component holds a
set of functions to convert different entities’ data, received from the TMA’s API,
into a format acceptable by the DropDown component provided by Semantic UI.
The ValidInputs component is composed of a set of functions that allows the val-
idation of different types of inputs present in the interface.

With respect to conventions, those were followed in the Java programming of
the TMA’s API, Analyze and Planning components, as well as in the SPA project
structure. The point of using conventions is to facilitate the comprehension of the

126

Validation

Figure 6.16: TMA’s API implementation controllers.

Figure 6.17: TMA’s API MetricController.java endpoints.

127

Chapter 6

code, and the type of components involved. For instance, in Java there are nam-
ing conventions for classes, interfaces, variables, methods, and so on. The Java
code implemented followed naming and indentation conventions and Fig. 6.18
presents just an example. Regarding the SPA, it is written in React, and React
applications have well-structured and organized projects, usually having 2 com-
mon folders, components, and pages. Fig.6.19 demonstrates that a well-defined
organization and structure were used for the dashboard’s project. Created com-
ponents are inside the "components" folder, while each navigable page is placed
under the "pages" folder. The "semantic-ui" folder contains Semantic UI them-
ing properties that had to be defined to provide a coherent and consistent design
across the dashboard. The "configurations" folder holds the information regard-
ing the path of TMA’s API. Finally, "utils" folder contains components that be-
come useful in multiple parts (components and pages) of the dashboard. This
folder includes, for example, the APIModule, ValidInputs and DropDownDataFor-
mat components.

Figure 6.18: Followed Java’s naming and indentation conventions example.

Finally, the modularity principle was followed in the implementation of TMA’s
Analyze processing methods. In short, for leaf metrics, Analyze uses methods
for normalizing data collected from probes and aggregating it. Also, it uses other
methods for calculating the values for parent metrics from their children. There
are some methods implemented however, a need to add new methods and types

128

Validation

Figure 6.19: SPA’s React project structure.

of aggregations may arise in the future. Therefore, to allow those additions, An-
alyze makes use of abstract classes. When it reads the quality models from the
database, Analyze associates the abstract class variable with an instance of a class
that implements the abstract method. Thus, Analyze’s logic code does not need to
be changed, because it always invokes the same method. Instead, a class extend-
ing the abstract is the one responsible for implementing the method’s logic. In
Fig. 6.20 the declaration of the abstract class used for the leaf metrics aggregation
operator is shown, along with a concrete implementation for it, the average oper-
ator. In Fig. 6.21, a piece of the Analyze’s code invoking the aggregation method
from a quality model’s leaf node is shown in red, as in green it is presented the
initialization of that method in the quality model.

Figure 6.20: Aggregation method abstract class and an implementation example.

In the end, maintainability practices were followed to ensure that the understand-
ing of the code implemented is facilitated and that any necessary future changes
can be performed at minimal cost and effort.

129

Chapter 6

Figure 6.21: Analyze’s invocation of aggregation method, in red, and operator’s
initialization in the quality model, in green.

130

Chapter 7

Management

In this chapter activities and concepts related to the management activity of the
product developed are presented. The topics going to be presented are develop-
ment methodology, requirements prioritization and management, tasks schedul-
ing, and risk analysis.

7.1 Development model

In this dissertation Waterfall was selected as the development model to follow.

Waterfall is a sequential software development model, where progress flows steadily
through the phases of a project towards the conclusion. Moreover, it involves
documenting a project in advance, including all the features, variations, and out-
comes [105].

The goal of using this methodology is to conduct a controlled process where steps
of the methodology are concluded, and from there and beyond not revisited any-
more. The idea is to collect all the necessary knowledge in advance and from
there precisely plan and estimate the tasks until completion. That is why a lot of
effort was spent on detailing the requirements.

The sequential phases in the Waterfall model, presented by Fig. 7.1, are [106]:

• Requirements Analysis: Here, all possible requirements of the system to
be developed are captured and an analysis of those that should be imple-
mented is done;

• System Design: This is the phase where the architecture for the product is
studied and created based on the requirements;

• Implementation: Step of the methodology where the system is built accord-
ing to the architecture and requirements;

• Testing: At this phase, all the units developed in the implementation phase
are tested for detecting errors;

131

Chapter 7

Requirements
Analysis

System Design

Deployment

Implementation

Maintenance

Testing

Figure 7.1: Waterfall model steps (adapted from [106]).

• Deployment: Once the testing phase is finished successfully, the product is
deployed in an environment or released into the market;

• Maintenance: During production, issues might come up and they need to
be fixed. In this phase, those identified issues are fixed, and continuous
improvement of the product is performed.

7.2 Requirements management

Along with the use cases approach for eliciting requirements, the MoSCoW method
was used to rank the use cases and establish development priorities among them.
As the descriptions, the prioritization of the use cases can be consulted in Ap-
pendix A.

The goal of prioritizing is to understand the most critical requirements, in what
order to develop them, and what not to deliver if there is pressure on resources
[107]. To distribute priorities across the use cases, this method uses 4 types of
priority which have the following meanings according to [108]:

• Must have: represent non-negotiable needs for the project, product, or re-
lease in question. If the product won’t work without that use case or the
release becomes useless without it, then the functionality is a “must-have”;

• Should have: are essential needs to the product but not vital as the must
requirements. If they are left out, the product still functions, however, they
may add significant value;

132

Management

• Could have: another way of describing this category is nice-to-haves. This
type of priority means that the requirements are not necessary to the core
function of the product. When compared with “should-have”, they have a
much smaller impact on the outcome if left out;

• Will not have: this priority allows to define functionalities that will not be
included in a specific release of a product, thus the team knows they are not
a priority for this specific time frame. They also help control the scope of
the project once requirements implementation negotiations are made upon
the MoSCoW prioritization method.

A few weeks after the start of the development of the dashboard, important (Must
have) requirements were noticed to be missing. The requirements not foreseen
were related to the management of charts on a homepage. Thus, requirements
with the ids 4.10, 11.1, 11.2, and 11.3 were elicited at this phase of the project and
were assigned the Must priority. Consequently, that led to a rearrangement of
some of the other requirements priorities. The list of occurred transitions in the
priority of requirements is presented next:

• Must to Should: Requirements 9.1, 9.2, 10.1, and 10.2;

• Should to Could: Requirements 3.1, 4.1, 5.1, 6.1, and 7.1;

Fig. 7.2 presents a summary of the number of requirements elicited within each
priority, before and after the addition of the new requirements. Also, it is shown
the number of implemented requirements for each priority.

Figure 7.2: Elicited and implemented requirements considering the versions be-
fore and after the addition of new requirements.

133

Chapter 7

7.3 Tasks scheduling

For planning the length of activities Gantt diagrams were used. The diagram pre-
sented on Fig. 7.3 contains the planned length of activities for the first semester.

Figure 7.3: Planned Gantt diagram for the first semester.

However, during this semester the requirements and state-of-the-art analysis took
more time than expected. For that reason, the tasks “Definition of the proposed
approach” and “Definition of the architecture” had a shorter time to be com-
pleted. Also, the start of the activity “Write the Dissertation Plan” had to be
started sooner due to incompatibilities with other projects on the planned start
date. Fig. 7.4 presents the actual start time and length of the defined tasks in the
first semester.

Figure 7.4: Actual Gantt diagram for the first semester.

The planned activities for the second semester are presented in Fig. 7.5. The
idea was to initially adjust some aspects concerning non-functional requirements
and architecture, using the feedback received from the middle-term presentation.
Then, it would be configured a dummy React App so that a communication ba-
sis between the dashboard and TMA-API could be established. From there on,
the development would start with the creation and listing of the quality model’s
related entities, as well as with the reprogramming of Trustworthiness Monitor-
ing & Assessment Framework (TMA)’s Analyze. Then, functionalities related to
plotting and simulating metrics would be developed. At that point, the main fea-
tures related to the monitoring of systems would be completed and, thereby, a
first validation phase would be performed on what was implemented. Next, the
functionalities concerning the management of adaptation rules would be created,

134

Management

followed by the implementation of listing and consulting of adaptation plans
and logs. Also, the listing and consulting of details from other TMA’s entities
(Description, Resource, Probe, Action, and Actuator) would be developed next.
Finally, a validation of the functionalities implemented after the first validation
phase would be performed, where the writing of a paper should be started and
meanwhile the writing of the dissertation document.

Figure 7.5: Planned Gantt diagram for the second semester.

However, some adjustments had to be made to the plan when requirements changed.
Those changes are reflected in Fig. 7.6. In short, the new elicited requirements’
implementation was added before the first validation phase, and the task of im-
plementing the listing and consulting of details of TMA’s entities (Description,
Resource, Probe, Action, and Actuator) was excluded.

Even with the adjustments made when requirements changed, the plan could
not be followed entirely. The actual activities performed and their duration is
presented in Fig. 7.7. Basically, the first validation phase planned was not per-
formed, since some of the previous tasks took more than expected to implement,
such as the preview of the weighted metrics tree and the proper generation of
charts and their exportation. Also, the task of implementing the listing and con-
sulting of details from adaptation plans and logs could not be performed. That
happened because previous tasks, such as the management of homepage charts,
took more than expected, and an additional task was performed to give a brand-
ing design to the dashboard. Finally, and during the development phase, some
errors had to be corrected, but this activity extended a little further to the end of
the implementation phase, and that delayed the start of the following activities.

135

Chapter 7

Figure 7.6: Planned Gantt diagram for the second semester after requirements
changed.

Figure 7.7: Actual Gantt diagram for the second semester.

136

Management

7.4 Risk analysis

In the management of this product, a risk analysis was conducted based on the
risk management framework proposed by Christopher Alberts and Audrey Do-
rofee [109]. The methods presented for risk statement, identification, and mitiga-
tion were used to draw the risks of this dissertation and plans to mitigate them.
Like the framework, continuous risk assessment was performed. Thus, in the first
semester, the first draft of risks was created, and they were revisited and updated
monthly.

Table 7.1 shows, for each identified risk, an id, a condition, a consequence, a
mitigation plan, and a date of identification.

Table 7.1: Risks Analysis.

Id Condition Consequence Mitigation
Plan

Date of
Identi-
fication

R-1

Functional
requirements

elicited need new
features on TMA’s

Analyze and
Planning core
components.

May lead to more
time than estimated
to implement those

features.

Firstly
implement the

features
concerning the

Analyze, as
they contribute
most to product

value.

15/10/
2021

R-2

TMA was created
some years ago

and has not been
maintained and

updated.

Might lead to the
presence of

unknown bugs
which causes

delays in the GUI
development.

Found bugs
should not take

more than 1
day to fix. If

they do, begin
to develop
other GUI

functionalities
that do not
involve the

malfunction.

15/10/
2021

R-3

I have never
developed a GUI

unless for
academic purposes

with basic
functionalities.

May lead to less
quality of the

product.

Research for
frameworks

that may ease
building the

GUI. Compare
their suitability
for the project

and
compatibility.

15/10/
2021

137

Chapter 7

Id Condition Consequence Mitigation
Plan

Date of
Identi-
fication

R-4

I have little or no
experience with

frontend
frameworks.

May lead to extra
time in

development due to
learning purposes.

Look for
tutorials that

teach the
concepts and
usage of the

chosen
frameworks.

15/10/
2021

R-5

TMA components’
Dockerfiles do not

specify the
versions of the

technologies used
at the time they

were created.

Might lead to errors
of currently

unsupported
features, delaying

the development as
compatible

technologies
versions have to be

found.

Deploy TMA
before

developing
starts, and if

errors come up
due to

deprecated
features, look

for the
technology
version that

supports them
and specify it in
the Dockerfile.

15/11/
2021

R-6

The dashboard
implementation

requires the use of
other libraries.

May lead to
integration

problems, delaying
development.

Try to use well-
documented,
exemplified,
and popular

libraries.

15/02/
2022

R-7

The performance
validation will use

JMeter, which I
never used, to

generate load on
TMA’s API.

May lead to delays
in setting up and,

consequently,
executing the

validation task.

Look for
tutorials to ease

the task of
building the

load script for
JMeter.

15/02/
2022

R-8

New requirements
have been elicited

and they are a
priority.

May lead to the
impossibility of

implementing some
planned

requirements.

Perform
estimation for

new
requirements

and, if
necessary,

negotiate and
exclude

requirements
not so

important from
the plan.

15/03/
2022

138

Management

Id Condition Consequence Mitigation
Plan

Date of
Identi-
fication

R-9

Requirements are
taking longer to
implement than

expected.

May lead to delay
of the following
planned tasks.

Exclude the
task of

performing a
first product

validation from
the plan.

15/04/
2022

R-10

Performance
validation test is

taking longer than
expected to set up.

May lead to
unfinished and

incomplete tests at
the planned end for
the validation task.

Stop doing
parallel

validations on
the product,

and stop
writing the

dissertation.
Focus on

figuring out the
problems and
setting up the
performance

test
environment.

15/05/
2022

From the risks presented all have been mitigated.

Risk R-1 was mitigated when the development ended since at that time both
TMA’s Analyze and Planning were already reprogrammed.

Risk R-2 stopped being a risk when maintenance had to be performed on TMA
and it was integrated with success in the TalkConnect project. The success of the
project meant that TMA was validated.

Risk R-3 has been mitigated while performing this document where analysis of
frontend frameworks has been made.

As for R-4, since the identification of the risk, the framework chosen to imple-
ment the product of this dissertation, React, was used in another project in the
first semester. So, its concepts have already been learned. In that same recent
project, a CSS framework was also used. Thereby, using Semantic UI (which will
be integrated with React), should not be hard to learn and use, once its documen-
tation structure is similar to the one from the other CSS framework.

Respecting R-5, the mitigation plan was performed and issues were found and
corrected.

Concerning R-6, the mitigation plan was followed. However, delays due to the
integration of libraries were still a common existence.

139

Chapter 7

Regarding risks R-7, R-8, R-9 they were mitigated following the plans. R-8 is
related to the requirements priority change when new, and more important, re-
quirements were elicited. As mentioned before in this chapter, that resulted in the
exclusion of the implementation of listing and consulting of details from TMA’s
Description, Resource, Probe, Action, and Actuator entities. As for R-9, it was still
a risk for a while, where its mitigation plan was applied twice. First, when the
first validation phase was removed from the plan, and, secondly when the listing
and consulting of details from adaptation plans and logs were removed from the
plan.

With respect to R-10, it was mitigated when the plan was applied, but that could
not be the case. The situation was that multiple tasks were being performed in
parallel and each time a performance test was left running, errors of various kinds
were showing up. Thus, the mitigation plan is just defined to set the focus on
executing the performance tests successfully.

140

Chapter 8

Conclusion and Future Work

In the past few years, Cloud usage has increased largely. And under such a com-
plex environment as the Cloud, monitoring systems become an important activ-
ity to perform since applications are exposed to multiple events that may cause
disruptions to services.

More than just monitoring, if self-adaptive capabilities can be implemented on
systems, the amount of work to be performed by Information Technology (IT)
supervisors can be reduced. This happens as manual adaptations stop being re-
quired for systems to adapt. Thus, professionals’ time can be spent on other tasks.

Nonetheless, either in monitoring or in configuring self-adaption actions for sys-
tems, it is important to have tools that can support the analysis of collected system
data and provide insights on how to better configure adaptations.

The project of this dissertation had the goal of providing all the mentioned as-
pects through a dashboard for decision support, served as a Single Page Applica-
tion (SPA). This dashboard is built for integration with Trustworthiness Monitor-
ing & Assessment Framework (TMA), a framework that allows self-adaptiveness
capabilities on systems. The support tool, meant to integrate with TMA, pro-
vides graphical features that aid supervisors in managing systems, such as visu-
alizing weighted quality models, plotting data collected from managed systems,
performing simulations, and management of adaptation rules. To accommodate
the dashboard’s functionalities, TMA’s database schema had a few changes, and
some of its components, such as the Application Programming Interface (API),
the Analyze, and the Planning, also had to be changed.

Validation was performed on the dashboard’s functionality, with black box test-
ing techniques, and quality attributes. These attributes are usability, performance,
and maintainability and, except for the latter which was based on following prac-
tices and conventions, tests were planned and executed. The validation results
showed that within the tests performed the product is functionally valid and the
performance requirements are satisfied. Concerning usability, it can be said the
product is usable, although it presents a problem related to the clarity in the ac-
cess to the feature that allows simulating metrics.

For future work, the final requirements assigned with the "Should" priority will

141

Chapter 8

be implemented to complement the support provided by the dashboard. Also,
improvements in the usability of the product will be made, starting from the
problem related to the simulation of metrics identified in the validation tests.

142

References

[1] Peter M. Mell and Timothy Grance. Sp 800-145. the nist definition of cloud
computing. Technical report, Gaithersburg, MD, USA, 2011.

[2] Tharam Dillon, Chen Wu, and Elizabeth Chang. Cloud computing: Issues
and challenges. In 2010 24th IEEE International Conference on Advanced In-
formation Networking and Applications, pages 27–33, 2010.

[3] What is virtualization? https://opensource.com/resources/virtualiz
ation. Accessed: 2021-12-01.

[4] Imran Ashraf. An overview of service models of cloud computing. Interna-
tional journal of multidisciplinary and current research, 2, 2014.

[5] Florian Auer, Valentina Lenarduzzi, Michael Felderer, and Davide Taibi.
From monolithic systems to microservices: An assessment framework. In-
formation and Software Technology, 137:106600, 2021.

[6] Fred Douglis and Jason Nieh. Microservices and containers. IEEE Internet
Comput., 23:5–6, 2019.

[7] Why should you use microservices and containers?, 2018. https://develo
per.ibm.com/articles/why-should-we-use-microservices-and-conta
iners/. Accessed: 2021-12-15.

[8] What are containers? https://www.netapp.com/devops-solutions/what
-are-containers/. Accessed: 2021-12-15.

[9] Container orchestration. https://www.vmware.com/topics/glossary/con
tent/container-orchestration. Accessed: 2021-12-15.

[10] Production-grade container orchestration. https://kubernetes.io/. Ac-
cessed: 2022-01-21.

[11] Swarm mode overview. https://docs.docker.com/engine/swarm/. Ac-
cessed: 2022-01-21.

[12] Amazon elastic kubernetes service (eks). https://aws.amazon.com/eks/.
Accessed: 2022-01-21.

[13] Azure kubernetes service (aks). https://azure.microsoft.com/en-us/se
rvices/kubernetes-service/#overview. Accessed: 2022-01-21.

143

https://opensource.com/resources/virtualization
https://opensource.com/resources/virtualization
https://developer.ibm.com/articles/why-should-we-use-microservices-and-containers/
https://developer.ibm.com/articles/why-should-we-use-microservices-and-containers/
https://developer.ibm.com/articles/why-should-we-use-microservices-and-containers/
https://www.netapp.com/devops-solutions/what-are-containers/
https://www.netapp.com/devops-solutions/what-are-containers/
https://www.vmware.com/topics/glossary/content/container-orchestration
https://www.vmware.com/topics/glossary/content/container-orchestration
https://kubernetes.io/
https://docs.docker.com/engine/swarm/
https://aws.amazon.com/eks/
https://azure.microsoft.com/en-us/services/kubernetes-service/#overview
https://azure.microsoft.com/en-us/services/kubernetes-service/#overview

Chapter 8

[14] Top 12 advantages of effective it monitoring software, 2018. https://www.
cloudradar.io/blog/top-12-advantages-of-effective-it-monitorin
g. Accessed: 2021-12-15.

[15] Nadeem Abbas, Jesper Andersson, and Danny Weyns. Asple: A methodol-
ogy to develop self-adaptive software systems with systematic reuse. Jour-
nal of Systems and Software, 167:110626, 2020.

[16] Overview. https://prometheus.io/docs/introduction/overview/.
Accessed: 2022-01-19.

[17] https://grafana.com/. Accessed: 2022-01-21.

[18] José Pereira, Rui Silva, Nuno Antunes, Jorge Silva, Breno Bernard França,
Regina Moraes, and Marco Vieira. A platform to enable self-adaptive cloud
applications using trustworthiness properties. pages 71–77, 06 2020.

[19] Spa (single-page application). https://developer.mozilla.org/en-US/
docs/Glossary/SPA. Accessed: 2022-06-23.

[20] What is cloud computing? everything you need to know about the cloud
explained. https://www.zdnet.com/article/what-is-cloud-computing-
everything-you-need-to-know-about-the-cloud/. Accessed: 2021-12-27.

[21] 30 cloud monitoring tools: The definitive guide for 2021. https://phoeni
xnap.com/blog/cloud-monitoring-tools. Accessed: 2021-12-29.

[22] List of 13 best open source & free monitoring tools. https://devopscube.c
om/best-opensource-monitoring-tools/. Accessed: 2022-01-19.

[23] What is prometheus and why is it so popular? https://www.cloudsav
vyit.com/15124/what-is-prometheus-and-why-is-it-so-popular/.
Accessed: 2022-01-19.

[24] Overview. https://graphiteapp.org/. Accessed: 2022-01-19.

[25] Top 16 open source cloud monitoring tools in 2022. https://roboticsbiz.
com/top-16-open-source-cloud-monitoring-tools-in-2021/. Accessed:
2022-01-19.

[26] Graphite. https://www.aosabook.org/en/graphite.html. Accessed:
2022-01-19.

[27] Overview. https://graphite.readthedocs.io/en/latest/overview.htm
l. Accessed: 2022-01-19.

[28] Graphite vs. grafana: Build the best monitoring architecture for your appli-
cation. https://www.overops.com/blog/graphite-vs-grafana-build-t
he-best-monitoring-architecture-for-your-application/. Accessed:
2022-01-19.

[29] What is zabbix? https://www.educba.com/what-is-zabbix/. Accessed:
2022-01-19.

144

https://www.cloudradar.io/blog/top-12-advantages-of-effective-it-monitoring
https://www.cloudradar.io/blog/top-12-advantages-of-effective-it-monitoring
https://www.cloudradar.io/blog/top-12-advantages-of-effective-it-monitoring
https://prometheus.io/docs/introduction/overview/
https://grafana.com/
https://developer.mozilla.org/en-US/docs/Glossary/SPA
https://developer.mozilla.org/en-US/docs/Glossary/SPA
https://www.zdnet.com/article/what-is-cloud-computing-everything-you-need-to-know-about-the-cloud/
https://www.zdnet.com/article/what-is-cloud-computing-everything-you-need-to-know-about-the-cloud/
https://phoenixnap.com/blog/cloud-monitoring-tools
https://phoenixnap.com/blog/cloud-monitoring-tools
https://devopscube.com/best-opensource-monitoring-tools/
https://devopscube.com/best-opensource-monitoring-tools/
https://www.cloudsavvyit.com/15124/what-is-prometheus-and-why-is-it-so-popular/
https://www.cloudsavvyit.com/15124/what-is-prometheus-and-why-is-it-so-popular/
https://graphiteapp.org/
https://roboticsbiz.com/top-16-open-source-cloud-monitoring-tools-in-2021/
https://roboticsbiz.com/top-16-open-source-cloud-monitoring-tools-in-2021/
https://www.aosabook.org/en/graphite.html
https://graphite.readthedocs.io/en/latest/overview.html
https://graphite.readthedocs.io/en/latest/overview.html
https://www.overops.com/blog/graphite-vs-grafana-build-the-best-monitoring-architecture-for-your-application/
https://www.overops.com/blog/graphite-vs-grafana-build-the-best-monitoring-architecture-for-your-application/
https://www.educba.com/what-is-zabbix/

References

[30] What is zabbix. https://www.zabbix.com/documentation/current/en/ma
nual/introduction/about. Accessed: 2022-01-19.

[31] Zabbix overview. https://www.zabbix.com/documentation/current/en/
manual/introduction/overview. Accessed: 2022-01-19.

[32] Zabbix architectures. https://subscription.packtpub.com/book/netwo
rking-and-servers/9781785289262/1/ch01lvl1sec09/zabbix-archite
ctures. Accessed: 2022-01-19.

[33] Nagios tutorial: What is nagios tool? architecture & installation. https:
//www.guru99.com/nagios-tutorial.html. Accessed: 2022-01-20.

[34] Nagios - architecture. https://www.tutorialspoint.com/nagios/nagios
_architecture.htm. Accessed: 2022-01-20.

[35] What is cadvisor? how does it work? explained. . . . https://www.scaleyou
rapp.com/what-is-cadvisor-how-does-it-work-explained/. Accessed:
2022-01-20.

[36] Containers metrics with prometheus and grafana. https://pramodshehan
.medium.com/containers-metrics-in-prometheus-and-grafana-38955
5499eb8. Accessed: 2022-01-20.

[37] What are microservices? https://microservices.io/. Accessed: 2021-12-
28.

[38] Microservices and containers. https://avinetworks.com/what-are-mic
roservices-and-containers/.Accessed: 2021-12-15.

[39] Microservices vs monolith: which architecture is the best choice for your
business? https://www.n-ix.com/microservices-vs-monolith-which-a
rchitecture-best-choice-your-business/. Accessed: 2021-12-28.

[40] Francisco Ponce Mella, Gastón Márquez, and Hernán Astudillo. Migrating
from monolithic architecture to microservices: A rapid review. 09 2019.

[41] Microservices. https://martinfowler.com/articles/microservices.ht
ml. Accessed: 2021-12-28.

[42] Monolithfirst. https://martinfowler.com/bliki/MonolithFirst.html.
Accessed: 2021-12-28.

[43] What are containers and why do you need them? https://www.cio.com/ar
ticle/247005/what-are-containers-and-why-do-you-need-them.html.
Accessed: 2022-01-18.

[44] Docker overview. https://docs.docker.com/get-started/overview/.
Accessed: 2022-01-18.

[45] Docker architecture. https://www.aquasec.com/cloud-native-academy
/docker-container/docker-architecture/. Accessed: 2022-01-18.

145

https://www.zabbix.com/documentation/current/en/manual/introduction/about
https://www.zabbix.com/documentation/current/en/manual/introduction/about
https://www.zabbix.com/documentation/current/en/manual/introduction/overview
https://www.zabbix.com/documentation/current/en/manual/introduction/overview
https://subscription.packtpub.com/book/networking-and-servers/9781785289262/1/ch01lvl1sec09/zabbix-architectures
https://subscription.packtpub.com/book/networking-and-servers/9781785289262/1/ch01lvl1sec09/zabbix-architectures
https://subscription.packtpub.com/book/networking-and-servers/9781785289262/1/ch01lvl1sec09/zabbix-architectures
https://www.guru99.com/nagios-tutorial.html
https://www.guru99.com/nagios-tutorial.html
https://www.tutorialspoint.com/nagios/nagios_architecture.htm
https://www.tutorialspoint.com/nagios/nagios_architecture.htm
https://www.scaleyourapp.com/what-is-cadvisor-how-does-it-work-explained/
https://www.scaleyourapp.com/what-is-cadvisor-how-does-it-work-explained/
https://pramodshehan.medium.com/containers-metrics-in-prometheus-and-grafana-389555499eb8
https://pramodshehan.medium.com/containers-metrics-in-prometheus-and-grafana-389555499eb8
https://pramodshehan.medium.com/containers-metrics-in-prometheus-and-grafana-389555499eb8
https://microservices.io/
https://avinetworks.com/what-are-microservices-and-containers/
https://avinetworks.com/what-are-microservices-and-containers/
https://www.n-ix.com/microservices-vs-monolith-which-architecture-best-choice-your-business/
https://www.n-ix.com/microservices-vs-monolith-which-architecture-best-choice-your-business/
https://martinfowler.com/articles/microservices.html
https://martinfowler.com/articles/microservices.html
https://martinfowler.com/bliki/MonolithFirst.html
https://www.cio.com/article/247005/what-are-containers-and-why-do-you-need-them.html
https://www.cio.com/article/247005/what-are-containers-and-why-do-you-need-them.html
https://docs.docker.com/get-started/overview/
https://www.aquasec.com/cloud-native-academy/docker-container/docker-architecture/
https://www.aquasec.com/cloud-native-academy/docker-container/docker-architecture/

Chapter 8

[46] What is kubernetes? https://www.redhat.com/en/topics/containers/
what-is-kubernetes. Accessed: 2022-01-18.

[47] Pods. https://kubernetes.io/docs/concepts/workloads/pods/. Ac-
cessed: 2022-01-18.

[48] Kubernetes components. https://kubernetes.io/docs/concepts/overvi
ew/components/. Accessed: 2022-01-18.

[49] 10 best web development frameworks. https://hackr.io/blog/web-deve
lopment-frameworks. Accessed: 2022-01-05.

[50] What is angular?: Architecture, features, and advantages. https://www.
simplilearn.com/tutorials/angular-tutorial/what-is-angular.
Accessed: 2022-01-05.

[51] John Kouraklis. MVVM as Design Pattern. 10 2016.

[52] Angular architecture overview. https://medium.com/@bhavikagarg8/an
gular-architecture-overview-1e7cc7483a0. Accessed: 2022-01-05.

[53] Is react a library or a framework? here’s why it matters. https://www.fr
eecodecamp.org/news/is-react-a-library-or-a-framework/. Accessed:
2022-01-05.

[54] Best front end frameworks for web development of 2021: The complete
guide. https://medium.com/geekculture/best-front-end-frameworks
-for-web-development-of-2021-the-complete-guide-ec30098fd1d0.
Accessed: 2022-01-05.

[55] React: Create maintainable, high-performance ui components. https://de
veloper.ibm.com/tutorials/wa-react-intro/. Accessed: 2022-01-06.

[56] What is jsx? https://www.reactenlightenment.com/react-jsx/5.1.htm
l. Accessed: 2022-01-06.

[57] Introducing the new jsx transform. https://reactjs.org/blog/2020/09
/22/introducing-the-new-jsx-transform.html. Accessed: 2022-01-06.

[58] Getting started. https://012.vuejs.org/guide/index.html Accessed:
2022-01-06.

[59] Vue.js is good, but is it better than angular or react? https://www.valuec
oders.com/blog/technology-and-apps/vue-js-comparison-angular-r
eact/ Accessed: 2022-01-06.

[60] What is vue.js? the pros and cons of vue.js in 2022. https://trio.dev/blo
g/why-use-vue-js. Accessed: 2022-01-06.

[61] What is vue.js? the pros and cons of vue.js framework. https://www.spac
eo.ca/what-is-vue-js-and-its-pros-and-cons/. Accessed: 2022-01-21.

[62] What are the best frontend frameworks to use in 2021? https://www.idea
motive.co/blog/best-frontend-frameworks. Accessed: 2022-01-05.

146

https://www.redhat.com/en/topics/containers/what-is-kubernetes
https://www.redhat.com/en/topics/containers/what-is-kubernetes
https://kubernetes.io/docs/concepts/workloads/pods/
https://kubernetes.io/docs/concepts/overview/components/
https://kubernetes.io/docs/concepts/overview/components/
https://hackr.io/blog/web-development-frameworks
https://hackr.io/blog/web-development-frameworks
https://www.simplilearn.com/tutorials/angular-tutorial/what-is-angular
https://www.simplilearn.com/tutorials/angular-tutorial/what-is-angular
https://medium.com/@bhavikagarg8/angular-architecture-overview-1e7cc7483a0
https://medium.com/@bhavikagarg8/angular-architecture-overview-1e7cc7483a0
https://www.freecodecamp.org/news/is-react-a-library-or-a-framework/
https://www.freecodecamp.org/news/is-react-a-library-or-a-framework/
https://medium.com/geekculture/best-front-end-frameworks-for-web-development-of-2021-the-complete-guide-ec30098fd1d0
https://medium.com/geekculture/best-front-end-frameworks-for-web-development-of-2021-the-complete-guide-ec30098fd1d0
https://developer.ibm.com/tutorials/wa-react-intro/
https://developer.ibm.com/tutorials/wa-react-intro/
https://www.reactenlightenment.com/react-jsx/5.1.html
https://www.reactenlightenment.com/react-jsx/5.1.html
https://reactjs.org/blog/2020/09/22/introducing-the-new-jsx-transform.html
https://reactjs.org/blog/2020/09/22/introducing-the-new-jsx-transform.html
https://012.vuejs.org/guide/index.html
https://www.valuecoders.com/blog/technology-and-apps/vue-js-comparison-angular-react/
https://www.valuecoders.com/blog/technology-and-apps/vue-js-comparison-angular-react/
https://www.valuecoders.com/blog/technology-and-apps/vue-js-comparison-angular-react/
https://trio.dev/blog/why-use-vue-js
https://trio.dev/blog/why-use-vue-js
https://www.spaceo.ca/what-is-vue-js-and-its-pros-and-cons/
https://www.spaceo.ca/what-is-vue-js-and-its-pros-and-cons/
https://www.ideamotive.co/blog/best-frontend-frameworks
https://www.ideamotive.co/blog/best-frontend-frameworks

References

[63] All about svelte, the much-loved, state-driven web framework. https:
//thenewstack.io/all-about-svelte-the-much-loved-state-driven-
web-framework/. Accessed: 2022-01-07.

[64] Ember vs svelte: Comparing performance, architecture and more. https:
//www.simform.com/blog/ember-vs-svelte/. Accessed: 2022-01-12.

[65] Top 5 front-end javascript framework in 2022. https://staticmania.co
m/blog/top-5-front-end-java-script-framework-in-2022. Accessed:
2022-01-12.

[66] jquery. https://www.javatpoint.com/what-is-jquery. Accessed: 2022-
01-12.

[67] Why outdated jquery is still the dominant javascript library. https://then
ewstack.io/why-outdated-jquery-is-still-the-dominant-javascrip
t-library/. Accessed: 2022-01-13.

[68] 11 benefits of jquery that every web designers should know of. https:
//tekslate.com/11-benefits-jquery-every-web-designers-know.
Accessed: 2022-01-13.

[69] What is jquery: An intro for beginners. https://www.coursereport.com/b
log/what-is-jquery. Accessed: 2022-01-13.

[70] Emberjs - overview. https://www.tutorialspoint.com/emberjs/emberjs
_overview.htm. Accessed: 2022-01-13.

[71] 5 essential ember concepts. https://emberigniter.com/5-essential-emb
er-concepts/. Accessed: 2022-01-13.

[72] Introduction. https://guides.emberjs.com/release/routing/. Ac-
cessed: 2022-01-13.

[73] Rotan Sharma. Importance of ember.js and its advantages explained! http
s://www.whatech.com/development/blog/590637-importance-of-embe
r-js-and-its-advantages-explained. Accessed: 2022-01-13.

[74] Benefits of using emberjs for frontend web development. https://coresu
mo.com/benefits-of-using-emberjs-for-frontend-web-development/.
Accessed: 2022-01-14.

[75] List of 10 best front end frameworks to use for web development. https:
//www.monocubed.com/best-front-end-frameworks/. Accessed: 2022-01-
13.

[76] Angular, ember and vue: Is choosing a framework simply a matter of taste?
https://jaxenter.com/angular-ember-or-vue-choice-135987.html.
Accessed: 2022-01-13.

[77] Semantic ui guide. https://www.freecodecamp.org/news/semantic-ui-
guide/. Accessed: 2022-01-17.

147

https://thenewstack.io/all-about-svelte-the-much-loved-state-driven-web-framework/
https://thenewstack.io/all-about-svelte-the-much-loved-state-driven-web-framework/
https://thenewstack.io/all-about-svelte-the-much-loved-state-driven-web-framework/
https://www.simform.com/blog/ember-vs-svelte/
https://www.simform.com/blog/ember-vs-svelte/
https://staticmania.com/blog/top-5-front-end-java-script-framework-in-2022
https://staticmania.com/blog/top-5-front-end-java-script-framework-in-2022
https://www.javatpoint.com/what-is-jquery
https://thenewstack.io/why-outdated-jquery-is-still-the-dominant-javascript-library/
https://thenewstack.io/why-outdated-jquery-is-still-the-dominant-javascript-library/
https://thenewstack.io/why-outdated-jquery-is-still-the-dominant-javascript-library/
https://tekslate.com/11-benefits-jquery-every-web-designers-know
https://tekslate.com/11-benefits-jquery-every-web-designers-know
https://www.coursereport.com/blog/what-is-jquery
https://www.coursereport.com/blog/what-is-jquery
https://www.tutorialspoint.com/emberjs/emberjs_overview.htm
https://www.tutorialspoint.com/emberjs/emberjs_overview.htm
https://emberigniter.com/5-essential-ember-concepts/
https://emberigniter.com/5-essential-ember-concepts/
https://guides.emberjs.com/release/routing/
https://www.whatech.com/development/blog/590637-importance-of-ember-js-and-its-advantages-explained
https://www.whatech.com/development/blog/590637-importance-of-ember-js-and-its-advantages-explained
https://www.whatech.com/development/blog/590637-importance-of-ember-js-and-its-advantages-explained
https://coresumo.com/benefits-of-using-emberjs-for-frontend-web-development/
https://coresumo.com/benefits-of-using-emberjs-for-frontend-web-development/
https://www.monocubed.com/best-front-end-frameworks/
https://www.monocubed.com/best-front-end-frameworks/
https://jaxenter.com/angular-ember-or-vue-choice-135987.html
https://www.freecodecamp.org/news/semantic-ui-guide/
https://www.freecodecamp.org/news/semantic-ui-guide/

Chapter 8

[78] Semantic ui. https://semantic-ui.com/. Accessed: 2022-01-17.

[79] Best css frameworks to look forward in 2021. https://www.lambdatest.c
om/blog/best-css-frameworks-2021/. Accessed: 2022-01-17.

[80] Yuqiong Sun, Susanta Nanda, and Trent Jaeger. Security-as-a-service for
microservices-based cloud applications. In 2015 IEEE 7th International Con-
ference on Cloud Computing Technology and Science (CloudCom), pages 50–57,
2015.

[81] Elisabetta Di Nitto, Carlo Ghezzi, Andreas Metzger, Mike Papazoglou, and
Klaus Pohl. A journey to highly dynamic, self-adaptive service-based ap-
plications. Autom. Softw. Eng., 15:313–341, 12 2008.

[82] Vivek Nallur and Rami Bahsoon. A decentralized self-adaptation mecha-
nism for service-based applications in the cloud. IEEE Transactions on Soft-
ware Engineering, 39(5):591–612, 2013.

[83] David Sinreich. An architectural blueprint for autonomic computing. 2006.

[84] Christian Krupitzer, Felix Maximilian Roth, Sebastian VanSyckel, Gregor
Schiele, and Christian Becker. A survey on engineering approaches for self-
adaptive systems. Pervasive Mob. Comput., 17:184–206, 2015.

[85] José Pereira, Rui Silva, Naghmeh Ivaki, Nuno Antunes, and Breno
de França. D3.5 – monitoring instruments and platform implementation.
https://www.atmosphere-eubrazil.eu/sites/default/files/ATMOSPH
ERE_D3_5_v2.pdf Accessed: 2021-12-28.

[86] Cornel Barna, Hamoun Ghanbari, Marin Litoiu, and Mark Shtern. Hogna:
A platform for self-adaptive applications in cloud environments. In 2015
IEEE/ACM 10th International Symposium on Software Engineering for Adaptive
and Self-Managing Systems, pages 83–87, 2015.

[87] Davi Monteiro Barbosa, Rômulo Gadelha De Moura Lima, Paulo Henrique
Mendes Maia, and Evilásio Costa. Lotus@runtime: A tool for runtime mon-
itoring and verification of self-adaptive systems. In 2017 IEEE/ACM 12th In-
ternational Symposium on Software Engineering for Adaptive and Self-Managing
Systems (SEAMS), pages 24–30, 2017.

[88] Nikolas Roman Herbst, Samuel Kounev, and Ralf Reussner. Elasticity in
cloud computing: What it is, and what it is not. In 10th International Con-
ference on Autonomic Computing (ICAC 13), pages 23–27, San Jose, CA, June
2013. USENIX Association.

[89] Google. Kubernetes Horizontal Pod Autoscaler, 2014. Accessed: 2022-02-
20.

[90] Jóakim von Kistowski, Simon Eismann, Norbert Schmitt, André Bauer, Jo-
hannes Grohmann, and Samuel Kounev. TeaStore: A Micro-Service Refer-
ence Application for Benchmarking, Modeling and Resource Management

148

https://semantic-ui.com/
https://www.lambdatest.com/blog/best-css-frameworks-2021/
https://www.lambdatest.com/blog/best-css-frameworks-2021/
https://www.atmosphere-eubrazil.eu/sites/default/files/ATMOSPHERE_D3_5_v2.pdf
https://www.atmosphere-eubrazil.eu/sites/default/files/ATMOSPHERE_D3_5_v2.pdf

References

Research. In Proceedings of the 26th IEEE International Symposium on the Mod-
elling, Analysis, and Simulation of Computer and Telecommunication Systems,
MASCOTS ’18, September 2018.

[91] Simon Eismann, Cor-Paul Bezemer, Weiyi Shang, Dušan Okanović, and
André van Hoorn. Microservices: A performance tester’s dream or night-
mare? In Proceedings of the ACM/SPEC International Conference on Perfor-
mance Engineering, ICPE ’20, page 138–149, 2020.

[92] Sriyash Caculo, Kanishka Lahiri, and Subramaniam Kalambur. Charac-
terizing the scale-up performance of microservices using teastore. In 2020
IEEE International Symposium on Workload Characterization (IISWC), pages
48–59, 2020.

[93] Xi Zhang, Alma Riska, and Erik Riedel. Characterization of the e-commerce
storage subsystem workload. In 2008 Fifth International Conference on Quan-
titative Evaluation of Systems, pages 297–306. IEEE, 2008.

[94] What is a use case? - definition & examples. https://study.com/academ
y/lesson/what-is-a-use-case-definition-examples.html. Accessed:
2022-01-15.

[95] Use cases. https://www.usability.gov/how-to-and-tools/methods/use
-cases.html. Accessed: 2022-01-15.

[96] Sanford Friedenthal, Alan Moore, and Rick Steiner. Chapter 17 - residen-
tial security system example using the object-oriented systems engineering
method. In Sanford Friedenthal, Alan Moore, and Rick Steiner, editors, A
Practical Guide to SysML (Third Edition), The MK/OMG Press, pages 417–
504. Morgan Kaufmann, Boston, third edition edition, 2015.

[97] Nonfunctional requirements. https://www.scaledagileframework.com/n
onfunctional-requirements/. Accessed: 2022-01-17.

[98] How fast should my website load? https://www.dotcom-tools.com/w
eb-performance/blog/how-fast-should-my-website-load/. Accessed:
2022-02-10.

[99] The c4 model for visualising software architecture. https://c4model.com/.
Accessed: 2022-01-24.

[100] The c4 model for software architecture. https://www.infoq.com/articles
/C4-architecture-model/. Accessed: 2022-01-24.

[101] Mohd Ehmer and Farmeena Khan. A comparative study of white box,
black box and grey box testing techniques. International Journal of Advanced
Computer Science and Applications, 3, 06 2012.

[102] Asma Bhat and S. M. K. Quadri. Equivalence class partitioning and bound-
ary value analysis - a review. In 2015 2nd International Conference on Comput-
ing for Sustainable Global Development (INDIACom), pages 1557–1562, 2015.

149

https://study.com/academy/lesson/what-is-a-use-case-definition-examples.html
https://study.com/academy/lesson/what-is-a-use-case-definition-examples.html
https://www.usability.gov/how-to-and-tools/methods/use-cases.html
https://www.usability.gov/how-to-and-tools/methods/use-cases.html
https://www.scaledagileframework.com/nonfunctional-requirements/
https://www.scaledagileframework.com/nonfunctional-requirements/
https://www.dotcom-tools.com/web-performance/blog/how-fast-should-my-website-load/
https://www.dotcom-tools.com/web-performance/blog/how-fast-should-my-website-load/
https://c4model.com/
https://www.infoq.com/articles/C4-architecture-model/
https://www.infoq.com/articles/C4-architecture-model/

Appendix

[103] Semantic differential scale: Definition, examples. https://www.statisti
cshowto.com/semantic-differential-scale/. Accessed: 2022-06-27.

[104] Manick Bhan. A technical guide to google’s pagespeed insights reports,
2018. https://www.statisticshowto.com/semantic-differential-scal
e/. Accessed: 2022-06-30.

[105] Product development: The waterfall methodology (model) in software de-
velopment. https://learn.marsdd.com/article/product-developme
nt-the-waterfall-methodology-model-in-software-development/.
Accessed: 2022-01-21.

[106] Sdlc - waterfall model. https://www.tutorialspoint.com/sdlc/sdlc_wat
erfall_model.htm. Accessed: 2022-01-21.

[107] Moscow method. https://www.projectsmart.co.uk/tools/moscow-meth
od.php. Accessed: 2022-01-17.

[108] Moscow prioritization. https://www.productplan.com/glossary/mosco
w-prioritization/. Accessed: 2022-01-17.

[109] Christopher Alberts and Audrey Dorofee. Risk management framework.
Technical Report CMU/SEI-2010-TR-017, Software Engineering Institute,
Carnegie Mellon University, Pittsburgh, PA, 2010.

150

https://www.statisticshowto.com/semantic-differential-scale/
https://www.statisticshowto.com/semantic-differential-scale/
https://www.statisticshowto.com/semantic-differential-scale/
https://www.statisticshowto.com/semantic-differential-scale/
https://learn.marsdd.com/article/product-development-the-waterfall-methodology-model-in-software-development/
https://learn.marsdd.com/article/product-development-the-waterfall-methodology-model-in-software-development/
https://www.tutorialspoint.com/sdlc/sdlc_waterfall_model.htm
https://www.tutorialspoint.com/sdlc/sdlc_waterfall_model.htm
https://www.projectsmart.co.uk/tools/moscow-method.php
https://www.projectsmart.co.uk/tools/moscow-method.php
https://www.productplan.com/glossary/moscow-prioritization/
https://www.productplan.com/glossary/moscow-prioritization/

Appendices

151

Appendix A

Use cases details

In this document, the multiple use cases identified in the diagrams are described
in detail. Here, the use cases are organized by categories where they most belong.
Those categories are: Quality Models, Metrics, Resources, Probes, Actuators, Ac-
tions, Adaptation Rules, Plans and Logs.

Following there is a description of each category that resumes in a simple way
what it represents:

1. Metrics: Metrics are what compose the Quality Models. They represent
properties of a system and thereby they are what is monitored.

2. Quality Models: Quality Models define hierarchical trees of metrics that
may have available multiple configuration profiles which define weights
for each metric. Selecting a Quality Model, and consequently a configura-
tion profile for it, originates a weighted tree that can then be used to calcu-
late scores to reflect a system’s state. So, this state is represented through a
number, score, that will reflect the health of a system according to a defined
Quality Model.

3. Descriptions: Descriptions are used to identify and describe data collected
by Probes. Also, Metrics which are leaf attributes on a Quality Model tree
use these descriptions to describe the data they are related to.

4. Resources: Resources are the monitored subjects. Metrics are gathered from
these objects. A system that is being monitored may have several resources
or even be composed by a single resource.

5. Probes: Probes are the components in charge of gathering raw informa-
tion from systems states. Basically, they collect raw data from monitored
resources which is then used to compute the metrics values.

6. Actuators: Actuators are responsible for executing adaptations on a system.
Thereby they are what assures adaptation plans are executed.

7. Actions: Actions define what is going to be changed by actuators and in
which part of the system (resource). Actions have configurations which are

153

Appendix A

the parameters to be changed. There might be different actions that change
the same configurations but in different values.

8. Adaptation Rules: Adaptation Rules create plans to be executed when a
condition is triggered. This condition is a comparison between gathered
metrics’ data and some threshold value. TMA’s Planning is the component
responsible for verifying these rules.

9. Plans: Plans are created by adaptation rules and they represent an ordered
execution of actions. These Plans are orchestrated by TMA’s Execute com-
ponent.

10. Logs: Logs are important events on TMA’s platform that need to be saved
in order to provide an alternative view on its management.

11. Dashboard: This section presents a dashboard’s inherent functionalities
that become important in the context of TMA.

A.1 Metrics

A.1.1 Use Case - View Metric information

Table A.1: Use Case 1.1 - View Metric information

Name: View Metric information
Primary
Actor: Administrator

Priority: Must
Stakeholders
and Interests:

Administrator wants to view a Metric’s metadata infor-
mation and corresponding tree of metrics

Preconditions: Administrator navigates on the dashboard to the Met-
rics’ section and selects the option to view information

Main Success
scenario:

1. The System presents a list of metrics

2. Administrator selects a Metric

3. System displays the id, name, block level of the se-
lected Metric and triggers Use Case - Preview met-
rics tree

4. Extension Points: Use Case - Update Metric / Use
Case - Delete Metric

154

Use cases details

Extensions:

1a. Database is inaccessible:

• 1a.1 The System presents a message, saying that
the list of metrics could not be retrieved because
database is inaccessible

• 1a.2 Administrator is redirected to the homepage

3a. Metric is a Leaf Attribute:

• 3a.1 System displays name, block level, aggre-
gation operator, description associated, number
of samples, normalization method, normalization
kind, minimum threshold, maximum threshold
and an indication that the metric is a leaf attribute

• 3a.2 Use case continues at step 4

Minimal
guarantee: Metric’s information can not be seen

Success
guarantee:

Detailed information on a Metric can be seen, with extra
information in case it is a leaf attribute

A.1.2 Use Case - Create Metric

Table A.2: Use Case 1.2 - Create Metric

Name: Create Metric
Primary
Actor: Administrator

Priority: Must
Stakeholders
and Interests: Administrator wants to add a metric to TMA

Preconditions: Administrator navigates on the dashboard to the Met-
ric’s section and selects the option to create

155

Appendix A

Main Success
scenario:

1. System presents a form with name, block level and
an option of setting the metric to leaf attribute to
be completed

2. System triggers Use Case - Associate child metrics

3. Administrator fills the form

4. System verifies that the option for creating a leaf
attribute is not set, the name is unique and not
empty, and that block level is not empty

5. System creates the metric

6. System presents a message saying that the metric
was created

7. System redirects Administrator to homepage

Extensions:

2a. Administrator selects option for setting the metric as
a leaf attribute:

• 2a.1 Extension Point: Use Case - Create Leaf At-
tribute Metric

• 2a.2 Use case continues at step 5

4a. Block level/name is empty or name is not unique:

• 4a.1 The system presents a message, saying that
the name field can not be empty or that it already
exists, or that block level can not be empty, de-
pending on what generated this extension

• 4a.2 The use continues at step 3

4b. The database is inaccessible:

• 4b.1 The System presents a message, saying that
the name introduced could not be verified to be
unique because database is inaccessible

• 4b.2 Use case continues at step 7

Minimal
guarantee:

TMA’s database remains the same when it comes to met-
rics

Success
guarantee: A new Metric is added to the TMA’s database

156

Use cases details

A.1.3 Use Case - Create Leaf Attribute Metric

Table A.3: Use Case 1.3 - Create Leaf Attribute Metric

Name: Create Leaf Attribute Metric
Primary
Actor: Administrator

Priority: Must
Stakeholders
and Interests:

Administrator wants to add a leaf attribute metric to
TMA

Preconditions: System triggered Use Case - Create Metric

Main Success
scenario:

1. System presents another form fields to be com-
pleted: aggregation operator, number of samples,
normalization method, normalization kind, mini-
mum threshold, maximum threshold fields to be
completed

2. Administrator fills the form

3. System triggers Use Case - Associate Description
to Leaf Attribute Metric

4. System verifies that the fields of the form are not
empty and match the type and restrictions

Extensions:

4a. Fields are empty or do not match their types and
restrictions:

• 4a.1 The system presents a message, informing the
type of input required, depending on what gener-
ated this extension

• 4a.2 The use continues at step 2

Minimal
guarantee: System will hold the inserted field inputs

Success
guarantee:

Form fields of Leaf Attribute Metric are filled and the
association to a description made

A.1.4 Use Case - Update Metric

Table A.4: Use Case 1.4 - Update Metric

Name: Update Metric
Primary
Actor: Administrator

Priority: Won’t

157

Appendix A

Stakeholders
and Interests:

Administrator wants to update the information of a
metric

Preconditions: System triggered Use Case - View Metric Information

Main Success
scenario:

1. Administrator selects the option to edit

2. The System presents editable information on the
name field

3. Extension point: Use Case - Associate child met-
rics

4. Administrator updates metric’s name

5. The system verifies that the name field is unique
and not empty

6. The system updates the metric

7. The system presents a message, saying the metric
was successfully updated

158

Use cases details

Extensions:

2a. The metric being updated is a LeafAttribute:

• 2a.1 The system presents, besides the name, ed-
itable aggregation operator, number of samples,
normalization method, normalization kind, min-
imum threshold and maximum threshold fields

• 2a.2 Administrator updates name, metric’s ag-
gregation operator, number of samples, normal-
ization method, normalization kind, minimum
threshold and maximum threshold

• 2a.3 The System verifies that the updated fields are
not empty and match the type and length restric-
tions of the database

• 2a.4 Use case continues at step 5

5a. Name field is empty or already exists:

• 5a.1 The system presents a message, saying that
the name field can not be empty or that it already
exists, depending on what generated this exten-
sion

• 5a.2 The use continues at step 2

6a. Database is inaccessible:

• 6a.1 The System presents a message, saying that
the metric could not be updated because database
is inaccessible

• 6a.2 System redirects Administrator to the home-
page

Minimal
guarantee:

Selected metric’s information remains the same as the
beginning of the use case

Success
guarantee: The selected metric’s information is updated

A.1.5 Use Case - Delete Metric

Table A.5: Use Case 1.5 - Delete Metric

Name: Delete metric
Primary
Actor: Administrator

Priority: Won’t

159

Appendix A

Stakeholders
and Interests:

Administrator wants to delete a metric that has never
been used and that is not a parent of another metric

Preconditions:
System triggered Use Case - View Metric information
Selected Metric has no MetricData associated in the database
Selected Metric does not have a parent Metric
Selected Metric is not associated to a Quality Model

Main Success
scenario:

1. Administrator selects the option to delete

2. System deletes selected metric

3. System presents a message saying that the metric
was deleted

4. System redirects Administrator to the homepage

Extensions:

2a. TMA’s database is inaccessible:

• 2a.1 The System presents a message, saying that
the metric could not be deleted because database
is inaccessible

• 2a.2 Use case continues at step 4

Minimal
guarantee: None metric is deleted from TMA’s database

Success
guarantee:

The deletion of a selected Metric, that has no associated
data, is not a parent metric and is not associated to a
Quality model, is accomplished

A.1.6 Use Case - Associate Description to Leaf Attribute Metric

Table A.6: Use Case 1.6 - Associate Description to Leaf Attribute Metric

Name: Associate Description to Leaf Attribute Metric
Primary
Actor: Administrator

Priority: Must

Stakeholders
and Interests:

Administrator wants to associate the description that
the metric being created, which is a leaf attribute, is
about

Preconditions:

160

Use cases details

Main Success
scenario:

1. System presents a list of descriptions

2. Administrator selects a description

3. System presents a preview on the name, data type
and unit information of the selected description

4. Administrator confirms the selection

5. System associates selected description to the met-
ric being created

Extensions:

1a. Database is inaccessible:

• 1a.1 The System presents a message, saying that
the list of metrics could not be retrieved because
database is inaccessible

• 1a.2 System redirects Administrator to the home-
page

3a. Database is inaccessible:

• 3a.1 The System presents a message, saying that
the details of the selected description could not be
retrieved because database is inaccessible

• 3a.2 System redirects Administrator to the home-
page

4a. Administrator wants to change its description selec-
tion:

• 4a.1 Use case continues at step 2

Minimal
guarantee:

Success
guarantee:

Selected description is associated to the metric being
created

A.1.7 Use Case - Associate Child Metrics

Table A.7: Use Case 1.7 - Associate Child Metrics

Name: Associate Child Metrics
Primary
Actor: Administrator

Priority: Must

161

Appendix A

Stakeholders
and Interests:

Administrator wants to associate child metrics to a par-
ent one

Preconditions:

• System triggered Use Case - Create metric or Use
Case - Update Metric

• Metric is not associated to a Quality Model that
has been used

Main Success
scenario:

1. System presents a list of metrics

2. Iteratively, Administrator selects metrics from the
list to be associated as childs of the current metric
and triggers Use Case - Preview metrics tree

3. System associates selected metrics as childs of the
current

Extensions:

1a. Database is inaccessible:

• 1a.1 The System presents a message, saying that
the metrics information could not be retrieved be-
cause database is inaccessible

• 1a.2 System redirects Administrator to the home-
page

1b. When updating a metric:

• 1b.1 System presents a list of metrics without the
ones that are already associated and triggers Use
Case - Preview metrics

• 1b.2 Use case continues at step 2

2a. Administrator wants to remove an associated child
metric:

• 2a.1 Administrator removes metric from list of
child metrics to be associated and triggers Use
Case - Preview metrics

• 2a.2 Use case continues at step 2

Minimal
guarantee: Child metric associations can not be performed

Success
guarantee: Child metrics are associated to a metric

162

Use cases details

A.1.8 Use Case - Preview metrics tree

Table A.8: Use Case 1.8 - Preview metrics tree

Name: Preview metrics tree
Primary
Actor: Administrator

Priority: Must
Stakeholders
and Interests:

Administrator wants to graphically visualize the tree
composition of a root metric

Preconditions:
• There is at least one metric

• A root node/metric is received

Main Success
scenario:

1. System loads information of the tree structure for
the root node given

2. System presents graphically, a tree structure of
the metrics tree, identifying which metric goes in
which node of the tree

Extensions:

1a. Database is inaccessible:

• 1a.1 The System presents a message, saying that
the tree structure for the root node given could not
be retrieved because database is inaccessible

• 1a.2 System redirects Administrator to the home-
page

Minimal
guarantee: Preview of the metrics tree can not be seen

Success
guarantee: A tree of metrics can be visualized

A.2 Quality Models

A.2.1 Use Case - View Quality Model Information

Table A.9: Use Case 2.1 - View Quality Model Information

Name: View Quality Model Information
Primary
Actor: Administrator

163

Appendix A

Priority: Must
Stakeholders
and Interests:

Administrator wants to view a Quality Model’s meta-
data and metrics tree

Preconditions:
Administrator navigates on the dashboard to the Qual-
ity Model’s section and selects the option to see detailed
information.

Main Success
scenario:

1. The system presents a list of Quality Models

2. Administrator selects a Quality Model

3. The System presents the id, name, description, and
list of associated configuration profiles of the se-
lected Quality Model and triggers Use Case - Pre-
view metrics tree

4. Extension Points: Use Case - Update Quality
Model / Use Case - Delete Quality Model / Use
Case - View Configuration Profile Information /
Use Case - Create Configuration Profile

Extensions:

1a. / 3a. Database is inaccessible:

• 1a.1 / 3a.1 The System presents a message, saying
that the Quality Model’s information could not be
retrieved because database is inaccessible

• 1a.2 / 3a.2 The System redirects Administrator to
homepage

Minimal
guarantee: Quality Model’s information can not be seen

Success
guarantee:

The metadata and tree of metrics of the selected Quality
Model is shown

A.2.2 Use Case - Create Quality Model

Table A.10: Use Case 2.2 - Create Quality Model

Name: Create Quality Model
Primary
Actor: Administrator

Priority: Must
Stakeholders
and Interests: Administrator wants to create a Quality Model

Preconditions: Administrator navigates on the dashboard to the Qual-
ity Model’s section and selects the option for creating.

164

Use cases details

Main Success
scenario:

1. System presents a form with name and description
fields to be completed and triggers Use Case - As-
sociate Metric to Quality Model

2. Administrator fills the form

3. The System verifies that the name field is unique
and not empty, and that a metric has been associ-
ated to the quality model being created

4. The system persists the Quality Model

5. The system presents a message saying that the
Quality Model was created

6. The system redirects the Administrator to the
homepage

Extensions:

3a. Name field is empty or already exists:

• 3a.1 The system presents a message, saying that
the name field can not be empty or that it already
exists, depending on what generated this exten-
sion

• 3a.2 The use continues at step 2

3b. Administrator did not associate a metric to the qual-
ity model being created:

• 3b.1 The system presents a message, saying that a
metric must be associated to the quality model

• 3b.2 The use continues at step 4

5a. Database is inaccessible:

• 5a.1 The System presents a message, saying that
the quality model could not be created because
database is inaccessible

• 5a.2 The use case continues at step 8

Minimal
guarantee: No Quality Model is created

Success
guarantee:

The Quality Model is created and persisted at TMA’s
database

A.2.3 Use Case - Update Quality Model

165

Appendix A

Table A.11: Use Case 2.3 - Update Quality Model

Name: Update Quality Model
Primary
Actor: Administrator

Priority: Won’t
Stakeholders
and Interests:

Administrator wants to update metadata of a Quality
Model

Preconditions: System triggered Use Case - View Quality Model

Main Success
scenario:

1. The Administrator selects the option to edit the
Quality Model

2. The System presents editable information on the
name and description fields of the Quality Model

3. Administrator updates Quality Model’s name and
description

4. The system verifies that the name field is unique
and not empty

5. The system updates the Quality Model

6. The system presents a message, saying the quality
model was updated

Extensions:

4a. Name field is empty or already exists:

• 4a.1 The system presents a message, saying that
the name field can not be empty or that it already
exists, depending on what generated this exten-
sion

• 4a.2 The use continues at step 3

5a. Database is inaccessible:

• 5a.1 The System presents a message, saying that
the quality model could not be updated because
database is inaccessible

• 5a.2 System redirects Administrator to the home-
page

Minimal
guarantee: There is no change on the selected Quality Model

Success
guarantee: The selected Quality Model is updated

166

Use cases details

A.2.4 Use Case - Delete Quality Model

Table A.12: Use Case 2.4 - Delete Quality Model

Name: Delete Quality Model
Primary
Actor: Administrator

Priority: Won’t
Stakeholders
and Interests:

Administrator wants to delete a Quality Model that has
never been used, or that is not being used.

Preconditions:

• System triggered Use Case - View Quality Model
Information

• Selected Quality Model has not been used once or
is not being used

Main Success
scenario:

1. Administrator chooses the option to delete

2. System deletes the selected Quality Model

3. System presents a message, saying that the Qual-
ity Model was deleted

4. System redirects Administrator to the homepage

Extensions:

2a. Database is inaccessible:

• 2a.1 The System presents a message, saying that
the Quality Model could not be deleted because
database is inaccessible

• 2a.2 The use case continues at step 4

Minimal
guarantee: None Quality Model is deleted from TMA’s database

Success
guarantee:

The deletion of a selected Quality Model, which has not
been used once, is accomplished

A.2.5 Use Case - View Configuration Profile Information

Table A.13: Use Case 2.5 - View Configuration Profile Information

Name: View Configuration Profile Information
Primary
Actor: Administrator

Priority: Must

167

Appendix A

Stakeholders
and Interests:

Administrator wants to view a Quality Model’s config-
uration profile information of his

Preconditions: Use Case - View Quality Model Information

Main Success
scenario:

1. Administrator selects a configuration profile

2. System triggers Use Case - Preview metrics tree
and, to its outcome, adds the weights of the se-
lected configuration profile

3. Extension Points: Use Case - Update Configura-
tion Profile / Use Case - Delete Configuration Pro-
file

Extensions:

1a. / 3a. Database is inaccessible:

• 1a.1 / 3a.1 The System presents a error message,
saying that the database is inaccessible

• 1a.2 / 3a.2 The System redirects Administrator to
homepage

Minimal
guarantee:

Configuration profile’s weights for the Quality Model’s
metrics tree is not shown

Success
guarantee:

Configuration profile’s weights for the Quality Model’s
metrics tree can be seen

A.2.6 Use Case - Create Configuration Profile

Table A.14: Use Case 2.6 - Create Configuration Profile

Name: Create Configuration Profile
Primary
Actor: Administrator

Priority: Must
Stakeholders
and Interests:

Administrator wants to create a configuration profile for
a Quality Model

Preconditions: Use Case - View Quality Model Information

168

Use cases details

Main Success
scenario:

1. Administrator selects the option for creating a con-
figuration profile for the selected Quality Model

2. The system presents a name field to be filled

3. System triggers Use case - Preview metrics tree
and presents a form to fill in the weights for the
tree

4. Administrator fills in the name and the weights
fields

5. System verifies that a name was written, it is not
used by another configuration profile for the same
quality model and that a node’s child weights is
equal to 1

6. The system persists the association of the configu-
ration profile to the Quality Model

7. The system presents a success message informing
the configuration profile was created

8. The system triggers Use case - View Quality Model
Information

169

Appendix A

Extensions:

5a. Administrator does not fill in the configuration pro-
file name:

• 5a.1 The system presents a message asking for the
user to introduce a name for the configuration pro-
file

• 5a.2 The use case continues at step 4

5b. Administrator introduces a name in use by another
configuration profile for the same quality model:

• 5b.1 The system presents a message asking for the
user to introduce another name, because the intro-
duced one is already in use

• 5b.2 The use case continues at step 4

5c. The Administrator incorrectly fills in the configura-
tion profile weights:

• 5c.1 The system presents information about the er-
ror nature

• 5c.2 The use case continues at step 4

6a. Database is inaccessible:

• 6a.1 The System presents a message, saying that
the configuration profile could not be created be-
cause database is inaccessible

• 6a.2 The use case continues at step 8

Minimal
guarantee: No configuration profile is created

Success
guarantee:

The configuration profile is created and associated to a
Quality Model at TMA’s database

A.2.7 Use Case - Update Configuration Profile

Table A.15: Use Case 2.7 - Update Configuration Profile

Name: Update Configuration Profile
Primary
Actor: Administrator

Priority: Won’t
Stakeholders
and Interests:

Administrator wants to update a configuration profile’s
name and nodes weights

Preconditions: Use Case - View Configuration Profile

170

Use cases details

Main Success
scenario:

1. The Administrator selects the option to edit the
configuration profile

2. System triggers Use Case - Preview metrics tree

3. The System presents editable information on the
configuration profile’s name and the weights as-
signed to each metrics tree node

4. Administrator updates configuration profile’s
name and weights

5. The system verifies that the name is not null and
that each node’s weight is not 0 and that a node’s
child weights is equal to 1

6. The system updates the configuration profile

7. The system presents a message, saying the update
was successful

8. The system redirects the Administrator to the
homepage

Extensions:

5a. Name field was submitted as null:

• 5a.1 The system presents a message, saying that
the name for the configuration profile must be
filled

• 5a.2 The use continues at step 4

5b. Administrator incorrectly fills in the configuration
profile weights:

• 5b.1 The system presents information about the er-
ror nature

• 5b.2 The use continues at step 4

6a. Database is inaccessible:

• 6a.1 The System presents a error message, saying
that the database is inaccessible

• 6a.2 The use case continues at step 9

Minimal
guarantee: There is no change on the selected configuration profile

Success
guarantee:

The selected configuration profile has its name and
nodes weights updated

171

Appendix A

A.2.8 Use Case - Delete Configuration Profile

Table A.16: Use Case 2.8 - Delete Configuration Profile

Name: Delete Configuration Profile
Primary
Actor: Administrator

Priority: Won’t
Stakeholders
and Interests:

Administrator wants to delete a configuration profile of
a Quality Model that is not being used

Preconditions:
• Use Case - View Configuration Profile

• Selected configuration profile is not being used

Main Success
scenario:

1. Administrator chooses the option to delete

2. System deletes the selected configuration profile
from TMA’s database

3. System presents a message, saying that the config-
uration profile was successfully deleted

4. The system redirects the Administrator to the
homepage

Extensions:

2a. Database is inaccessible:

• 2a.1 The System presents a error message, saying
that the database is inaccessible

• 2a.2 The use case continues at step 4

Minimal
guarantee:

Configuration profile is not deleted from TMA’s
database

Success
guarantee:

The deletion of the selected configuration profile is ac-
complished

A.2.9 Use Case - Associate Metric to Quality Model

Table A.17: Use Case 2.9 - Associate Metric to Quality Model

Name: Associate Metric to Quality Model
Primary
Actor: Administrator

Priority: Must

172

Use cases details

Stakeholders
and Interests:

Administrator wants to define the root node of the met-
rics tree that represents the Quality Model

Preconditions:
• There is at least one metric

• System triggered Use Case - Create Quality Model

Main Success
scenario:

1. System presents a list of metrics

2. Administrator selects a metric

3. System triggers Use Case - Preview metrics tree

4. System associates selected metric to the quality
model being created

Extensions:

1a. Database is inaccessible:

• 1a.1 The System presents a message, saying that
the list of metrics could not be retrieved because
database is inaccessible

• 1a.2 System redirects Administrator to the home-
page

3a. Administrator wants to change its metric selection:

• 3a.1 Administrator selects another metric

• 3a.2 Use case continues at step 3

Minimal
guarantee: System holds the value of the last selected metric

Success
guarantee:

Selected metric is associated to the quality model being
created

A.3 Descriptions

A.3.1 Use Case - View Description Information

Table A.18: Use Case 3.1 - View Description Information

Name: View Description Information
Primary
Actor: Administrator

Priority: Could

173

Appendix A

Stakeholders
and Interests:

Administrator wants to view a Description’s informa-
tion

Preconditions:
Administrator navigates on the dashboard to the De-
scription’s section and selects the option to view infor-
mation

Main Success
scenario:

1. System presents a list of Descriptions

2. Administrator selects a Description

3. System displays id, datatype, name and unit of the
selected Description

4. Extension Points: Use Case - Update Description/
Use Case - Delete Description

Extensions:

1a. Database is inaccessible:

• 1a.1 System presents a message, saying that
the descriptions could not be gathered because
database is inaccessible

• 1a.2 System redirects Administrator to the home-
page

Minimal
guarantee: Description’s information can not be seen

Success
guarantee: Detailed information on a Description can be seen

A.3.2 Use Case - Create Description

Table A.19: Use Case 3.2 - Create Description

Name: Create Description
Primary
Actor: Administrator

Priority: Could
Stakeholders
and Interests: Administrator wants to add a description to TMA

Preconditions: Administrator navigates on the dashboard to the De-
scription’s section and selects the option to create

174

Use cases details

Main Success
scenario:

1. System presents a form with datatype, name and
unit fields to be completed

2. Administrator fills the form

3. System verifies that the form was well filled

4. System creates the description with given
datatype, name and unit

5. System presents a message saying that the descrip-
tion was created

6. System redirects Administrator to homepage

Extensions:

3a. Some parameter is not correctly filled:

• 3a.1 The system verifies that a parameter was
badly defined

• 3a.2 The system presents a message, saying that a
parameter was badly defined, along with informa-
tion on why

• 3a.3 The use continues at step 2

4a. The database is inaccessible:

• 4a.1 The System presents a message, saying that
the description could not be created because
database is inaccessible

• 4a.2 Use case continues at step 6

Minimal
guarantee:

TMA’s database remains the same when it comes to de-
scriptions

Success
guarantee: A new Description is added to the TMA’s database

A.3.3 Use Case - Update Description

Table A.20: Use Case 3.3 - Update Description

Name: Update Description
Primary
Actor: Administrator

Priority: Won’t
Stakeholders
and Interests:

Administrator wants to update the information of a de-
scription

175

Appendix A

Preconditions: System triggered Use Case - View Description Informa-
tion

Main Success
scenario:

1. Administrator selects the option to edit

2. The System presents editable information on the
datatype, name and unit of the selected descrip-
tion

3. Administrator updates description’s information

4. System verifies that all of description’s informa-
tion were well set

5. The System updates the description’s information

6. System presents a message saying that the descrip-
tion was updated

7. System redirects Administrator to the homepage

Extensions:

4a. Some parameter is not correctly filled:

• 4a.1 The system verifies that a parameter was
badly defined

• 4a.2 The system presents a message, saying that a
parameter was badly defined, along with informa-
tion on why

• 4a.3 The use continues at step 3

5a. TMA’s database is inaccessible:

• 5a.1 The System presents a message, saying that
the description could not be updated because
database is inaccessible

• 5a.2 Use case continues at step 7

Minimal
guarantee:

Selected description’s information remains the same as
the beginning of the use case

Success
guarantee: The selected description’s information is updated

A.3.4 Use Case - Delete Description

176

Use cases details

Table A.21: Use Case 3.4 - Delete Description

Name: Delete Description
Primary
Actor: Administrator

Priority: Won’t
Stakeholders
and Interests: Administrator wants to delete a description

Preconditions: System triggered Use Case - View Description Informa-
tion

Main Success
scenario:

1. Administrator selects the option to delete

2. System deletes selected description

3. System presents a message saying the description
was deleted

4. System redirects Administrator to the homepage

Extensions:

2a. TMA’s database is inaccessible:

• 2a.1 The System presents a message, saying that
the description could not be deleted because
database is inaccessible

• 2a.2 Use case continues at step 4

Minimal
guarantee: None description is deleted from TMA’s database

Success
guarantee: The selected description is deleted from TMA’s database

A.4 Resources

A.4.1 Use Case - View Resource information

Table A.22: Use Case 4.1 - View Resource information

Name: View Resource information
Primary
Actor: Administrator

Priority: Could
Stakeholders
and Interests: Administrator wants to view a Resource’s information

Preconditions:
Administrator navigates on the dashboard to the Re-
source’s section and selects the option to view informa-
tion

177

Appendix A

Main Success
scenario:

1. System presents a list of resources

2. Administrator selects a resource

3. System displays id, name, type and address of the
selected Resource

4. Extension Points: Use Case - Update Resource /
Use Case - Delete Resource

Extensions:

1a. Database is inaccessible:

• 1a.1 System presents a message, saying that the re-
sources could not be gathered because database is
inaccessible

• 1a.2 System redirects Administrator to the home-
page

Minimal
guarantee: None kind of information can be seen

Success
guarantee: Detailed information on a Resource can be seen

A.4.2 Use Case - Create Resource

Table A.23: Use Case 4.2 - Create Resource

Name: Create Resource
Primary
Actor: Administrator

Priority: Could
Stakeholders
and Interests: Administrator wants to add a Resource to TMA

Preconditions: Administrator navigates on the dashboard to the Re-
source’s section and selects the option to create

178

Use cases details

Main Success
scenario:

1. System presents a form with name, type and ad-
dress fields to be filled in

2. Administrator fills the form

3. System triggers Use Case - Associate Configura-
tion Profile to Resource

4. System verifies that the form was well filled and
that the association to a configuration profile was
done

5. System creates the resource with given name, type
and address

6. System presents a message saying that the re-
source was created

7. System redirects Administrator to homepage

Extensions:

4a. Some form parameter is not correctly filled:

• 4a.1 The system verifies that a parameter was
badly defined

• 4a.2 The system presents a message, saying that a
parameter was badly defined, along with informa-
tion on why

• 4a.3 The use continues at step 2

4b. Configuration Profile’s association is missing:

• 4b.1 System presents a message, saying that a con-
figuration profile association must be performed

• 4b.2 The use continues at step 3

5a. The database is inaccessible:

• 5a.1 The System presents a message, saying that
the resource could not be created because database
is inaccessible

• 5a.2 Use case continues at step 7

Minimal
guarantee:

TMA’s database remains the same when it comes to re-
sources

Success
guarantee: A new Resource is added to the TMA’s database

179

Appendix A

A.4.3 Use Case - Update Resource

Table A.24: Use Case 4.3 - Update Resource

Name: Update Resource
Primary
Actor: Administrator

Priority: Won’t
Stakeholders
and Interests:

Administrator wants to update the information of a re-
source

Preconditions: System triggered Use Case - View Resource Information

Main Success
scenario:

1. Administrator selects the option to edit

2. The System presents editable information on the
name, type and address fields of the selected re-
source

3. Administrator updates resource’s information

4. Extension Point: Use Case - Associate Configura-
tion Profile to Resource

5. System verifies that all of resource’s information
were well set

6. The System updates the resource’s information

7. System presents a message saying that the re-
source was updated

8. System redirects Administrator to the homepage

180

Use cases details

Extensions:

4a. Configuration Profile’s association is missing:

• 4a.1 System verifies that configuration profile as-
sociation is missing

• 4a.2 System presents a message, saying that a con-
figuration profile association must be set

• 4a.3 Use case continues at step 4

5a. Some form parameter is not correctly filled:

• 5a.1 The system presents a message, saying that
with information on why a parameter is badly de-
fined

• 5a.2 Use case continues at step 3

6a. TMA’s database is inaccessible:

• 6a.1 The System presents a message, saying
that the resource could not be updated because
database is inaccessible

• 6a.2 Use case continues at step 8

Minimal
guarantee:

Selected resource’s information remains the same as the
beginning of the use case

Success
guarantee: The selected resource’s information is updated

A.4.4 Use Case - Delete Resource

Table A.25: Use Case 4.4 - Delete Resource

Name: Delete resource
Primary
Actor: Administrator

Priority: Won’t
Stakeholders
and Interests: Administrator wants to delete a resource

Preconditions: System triggered Use Case - View Resource information

181

Appendix A

Main Success
scenario:

1. Administrator selects the option to delete

2. System deletes selected resource

3. System presents a message saying that the re-
source was deleted

4. System redirects Administrator to the homepage

Extensions:

2a. TMA’s database is inaccessible:

• 2a.1 The System presents a message, saying that
the resource could not be deleted because database
is inaccessible

• 2a.2 Use case continues at step 4

Minimal
guarantee: None resource is deleted from TMA’s database

Success
guarantee: The selected resource is deleted from TMA’s database

A.4.5 Use Case - Visualize Resource Metrics

Table A.26: Use Case 4.5 - Visualize Resource Metrics

Name: Visualize Resource Metrics
Primary
Actor: Administrator

Priority: Must
Stakeholders
and Interests:

Administrator wants to visualize, graphically, probing
values gathered from a managed resource

Preconditions:
Administrator navigates on the dashboard to the re-
sources’ section and selects the option to visualize re-
source metrics

182

Use cases details

Main Success
scenario:

1. The system loads from TMA’s database the list of
resources associated to the Administrator

2. Administrator selects a resource

3. System triggers Use Case - Preview metrics tree
with the root node of the metrics tree associated
to the selected resource

4. System presents the list of metrics that compose
the metrics tree

5. Administrator selects a metric from the list

6. System awaits an input for the live time window

7. Administrator introduces the time window for vi-
sualizing metric values being collected

8. The system presents, in real time, the selected met-
ric’s values being collected from the chosen re-
source in the specified time window

9. Extension Points: Use Case - Plot plans alongside
metrics, Use Case - Export charts, Use Case - Simu-
late resource metrics, Use Case - Export chart con-
fig

183

Appendix A

Extensions:

2a. The Administrator wants to change the selected re-
source:

• 2a.1 The Administrator changes the resource selec-
tion

• 2a.2 The use case continues at step 3

5a. The Administrator wants to change metric:

• 5a.1 The Administrator selects other metric

• 5a.2 The use case continues at step 6

6a. The Administrator does not want to see live met-
rics being collected, but instead the values gathered in a
time interval:

• 6a.1 System provides a form to specify a start and
end timestamps

• 6a.2 Administrator provides the timestamps

• 6a.3 The system presents the selected metric’s val-
ues collected from the chosen resource in the spec-
ified time interval

• 6a.4 Use case continues at step 9

7a. The Administrator wants to change introduced live
time window:

• 7a.1 The Administrator introduces new time win-
dow

• 7a.2 The use case continues at step 8

8a. The system can not get the values due to some error:

• 8a.1 The system alerts the Administrator that the
values could not be gathered and suggests trying
it later.

• 8a.2 The system redirects Administrator to the
homepage

Minimal
guarantee: Nothing is shown to the Administrator

Success
guarantee:

The System presents to the Administrator live values
from a resource’s metric in a specified time window

184

Use cases details

A.4.6 Use Case - Simulate Resource Metrics

Table A.27: Use Case 4.6 - Simulate Resource Metrics

Name: Simulate Resource Metrics
Primary
Actor: Administrator

Priority: Must

Stakeholders
and Interests:

Looking at collected metrics presented in a chart, Ad-
ministrator may find util simulating metrics values in
order to analyze what would be the behavior of the sys-
tem with other weights applied to the metrics tree

Preconditions: System triggered Use Case - Visualize resource metrics

Main Success
scenario:

1. Administrator selects the option to simulate re-
source metrics

2. System saves the current time interval and metrics
values of the current chart

3. System presents the configuration profile’s nodes
and its weights in an editable manner, and the list
of metrics that match the nodes

4. Administrator alters some of the weights to per-
form a simulation

5. Administrator confirms the operation to simulate

6. System recalculates values of the metric within the
saved time interval for the selected resource, and
presents the results in a new chart

7. Extension Point: Use Case - Export charts

Extensions:

3a. TMA’s database is inaccessible:

• 3a.1 The System presents a message, saying that
the weights of the configuration profile could not
be gathered because database is inaccessible

• 3a.2 Administrator is redirected to the homepage

4a. The Administrator wants to rechange weights that
he already changed:

• 4a.1 The Administrator rechanges the weights

• 4a.2 The use case continues at step 5

185

Appendix A

Minimal
guarantee: Simulating a different weighted tree can not be done

Success
guarantee:

The System presents to the Administrator the simula-
tion’s chart of applying a different weighted tree on the
resource’s metrics collected

A.4.7 Use Case - Plot Plans Alongside Metrics

Table A.28: Use Case 4.7 - Plot Plans Alongside Metrics

Name: Plot Plans Alongside Metrics
Primary
Actor: Administrator

Priority: Must
Stakeholders
and Interests:

Administrator wants to visualize, besides metrics val-
ues, plans that took place

Preconditions: System triggered Use Case - Visualize resource metrics

Main Success
scenario:

1. Administrator selects the option to identify plans
that took place in the time interval

2. The system loads from TMA’s database the list of
plans that were performed in the graphic time in-
terval

3. The system presents in addition to the metric val-
ues, the plans that occurred in the time interval

Extensions:

2a. TMA’s database is inaccessible:

• 2a.1 The System presents a error message, saying
that the database is inaccessible

• 2a.2 The System does not add the occurrence of
plans on the metrics plot

Minimal
guarantee: The plot presents, at least, the metrics values

Success
guarantee:

The System presents to the Administrator the metric
values and the plans that took place in the defined time
interval

A.4.8 Use Case - Export Chart

186

Use cases details

Table A.29: Use Case 4.8 - Export Chart

Name: Export Chart
Primary
Actor: Administrator

Priority: Must
Stakeholders
and Interests:

Administrator wants to export charts containing metrics
values and their associated plans for posterior analysis.

Preconditions: System triggered Use Case - Visualize resource metrics

Main Success
scenario:

1. Administrator selects the option to export the
chart to pdf

2. The system converts the chart into a pdf file and
saves it on Administrator’s device

Extensions:

2a. There is an error while converting/saving the image:

• 2a.1 The use case ends

Minimal
guarantee: Chart can not be exported

Success
guarantee:

The System converts the metrics and plans chart into a
pdf file and saves it on Administrator’s device

A.4.9 Use Case - Associate Configuration Profile to Resource

Table A.30: Use Case 4.9 - Associate Configuration Profile to Resource

Name: Associate Configuration Profile to Resource
Primary
Actor: Administrator

Priority: Could
Stakeholders
and Interests:

Administrator wants to define the configuration profile
that is going to be used for a resource

Preconditions:

• Administrator has, at least, one configuration pro-
file

• System triggered Use Case - Create Resource or
Update Resource

187

Appendix A

Main Success
scenario:

1. System presents the list of configuration profiles
the Administrator has

2. Administrator selects a configuration profile

3. System triggers Use Case - Preview metrics tree
with the root metric associated to the selected con-
figuration profile

4. Administrator confirms the selection

5. System associates selected configuration profile to
the resource

Extensions:

1a. Database is inaccessible:

• 1a.1 The System presents a message, saying that
the list of configuration profiles of the user could
not be retrieved because database is inaccessible

• 1a.2 System redirects Administrator to the home-
page

4a. Administrator wants to change its configuration
profile selection:

• 4a.1 Administrator selects another configuration
profile

• 4a.2 Use case continues at step 3

5a. Database is inaccessible:

• 5a.1 The System presents a message, saying that
the configuration profiles could not be associated
to the resource because database is inaccessible

• 5a.2 System redirects Administrator to the home-
page

Minimal
guarantee: No configuration profile can be associated to a resource

Success
guarantee: Selected resource has a configuration profile associated

A.4.10 Use Case - Export Chart Configuration

188

Use cases details

Table A.31: Use Case 4.10 - Export Chart Configuration

Name: Export Chart Configuration
Primary
Actor: Administrator

Priority: Must

Stakeholders
and Interests:

Administrator wants to export the configuration of a
chart to later add it on the homepage. Thus, he can
easily monitor a system and also, directly and manu-
ally change some parameters to produce other charts of
interest.

Preconditions: System triggered Use Case - Visualize resource metrics

Main Success
scenario:

1. Administrator selects the option to export the
chart configuration

2. The system generates a readable configuration file
with the options introduced to generate the cur-
rent chart

Extensions:
Minimal

guarantee: The chart configuration file is generated.

Success
guarantee: The same as the Minimal guarantee.

A.5 Probes

A.5.1 Use Case - View Probe Information

Table A.32: Use Case 5.1 - View Probe Information

Name: View Probe Information
Primary
Actor: Administrator

Priority: Could
Stakeholders
and Interests: Administrator wants to view Probe’s Information

Preconditions:
Administrator navigates on the dashboard to the
Probe’s section and selects the option to see detailed in-
formation.

189

Appendix A

Main Success
scenario:

1. The system presents a list of Probes

2. Administrator selects a Probe

3. The System presents information on the id, name,
password, token and token expiration of the se-
lected Probe

4. Extension Points: Use Case - Update Probe/ Use
Case - Delete Probe

Extensions:

1a. Database is inaccessible:

• 1a.1 The System presents a message, saying that
the probes could not be gathered because database
is inaccessible

• 1a.2 The System redirects Administrator to home-
page

Minimal
guarantee: Probe’s information can not be seen

Success
guarantee: The information of the selected probe is shown

A.5.2 Use Case - Create probe

Table A.33: Use Case 5.2 - Create probe

Name: Create probe
Primary
Actor: Administrator

Priority: Could
Stakeholders
and Interests:

Administrator wants to register a new developed probe
in TMA

Preconditions: Administrator navigates on the dashboard to the
probes’ section and selects the option to create

190

Use cases details

Main Success
scenario:

1. System presents a form with name, password, to-
ken and token expiration fields to be filled

2. Administrator fills the form

3. System verifies that the form was well filled

4. System creates probe with given name, password,
token and token expiration

5. System presents a message saying that the probe
was created

6. System redirects the Administrator to the home-
page

Extensions:

3a. The Administrator incorrectly fills in the Probe pa-
rameters:

• 3a.1 The system presents information about the er-
ror nature

• 3a.2 The use case continues at step 2

4a. Database is inaccessible:

• 4a.1 The System presents a message, saying that
the probe could not be created because database is
inaccessible

• 4a.2 The use case continues at step 6

Minimal
guarantee:

There is no change in the database when it comes to
Probes

Success
guarantee:

The register of a new probe is accomplished and the
database is updated accordingly

A.5.3 Use Case - Update Probe

Table A.34: Use Case 5.3 - Update Probe

Name: Update Probe
Primary
Actor: Administrator

Priority: Won’t
Stakeholders
and Interests: Administrator wants to update a Probe’s Information

Preconditions: System triggered Use Case - View Probe Information

191

Appendix A

Main Success
scenario:

1. Administrator selects the option to edit

2. The System presents editable information on the
name, password, token and token expiration of the
selected probe

3. Administrator updates probe’s information

4. System verifies that the parameters are well filled

5. System updates the probe’s information

6. System presents a message, saying the probe was
updated

7. System redirects the Administrator to the home-
page

Extensions:

4a. Some parameter is not correctly filled:

• 4a.1 The system verifies that a parameter was
badly defined

• 4a.2 The system presents a message, saying that a
parameter was badly defined, along with informa-
tion on why

• 4a.3 The use continues at step 3

5a. Database is inaccessible:

• 5a.1 The System presents a message, saying that
the probe could not be updated because database
is inaccessible

• 5a.2 The use case continues at step 7

Minimal
guarantee: There is no change on the selected probe

Success
guarantee: The selected probe is updated

A.5.4 Use Case - Delete probe

Table A.35: Use Case 5.4 - Delete probe

Name: Delete probe
Primary
Actor: Administrator

192

Use cases details

Priority: Won’t
Stakeholders
and Interests:

Administrator wants to delete a probe previously regis-
tered in TMA.

Preconditions: System triggered Use Case - View Probe Information

Main Success
scenario:

1. Administrator chooses the option to delete

2. System deletes selected probe

3. System presents a message saying that the probe
was deleted

4. System redirects Administrator to the homepage

Extensions:

2a. Database is inaccessible:

• 2a.1 The System presents a message, saying that
the probe could not be deleted because database is
inaccessible

• 2a.2 The use case continues at step 4

Minimal
guarantee: None probe is deleted from TMA’s database

Success
guarantee:

The deletion of a probe is accomplished and the
database is updated accordingly

A.6 Actuators

A.6.1 Use Case - View Actuator Information

Table A.36: Use Case 6.1 - View Actuator Information

Name: View Actuator Information
Primary
Actor: Administrator

Priority: Could
Stakeholders
and Interests: Administrator wants to view Actuator’s information

Preconditions:
Administrator navigates on the dashboard to the Actu-
ator’s section and selects the option to see detailed in-
formation.

193

Appendix A

Main Success
scenario:

1. The system presents a list of Actuators

2. Administrator selects an Actuator

3. The System presents information on the address
and public key of the selected Actuator

4. Extension Points: Use Case - Update Actuator /
Use Case - Delete actuator

Extensions:

1a. Database is inaccessible:

• 1a.1 The System presents a message, saying
that the actuators could not be gathered because
database is inaccessible

• 1a.2 The System redirects Administrator to home-
page

Minimal
guarantee: Actuator’s information can not be seen

Success
guarantee: The information of the selected actuator is shown

A.6.2 Use Case - Create actuator

Table A.37: Use Case 6.2 - Create actuator

Name: Create actuator
Primary
Actor: Administrator

Priority: Could
Stakeholders
and Interests:

Administrator wants to register a new developed actu-
ator in TMA.

Preconditions: Administrator navigates on the dashboard to the actua-
tor’s section and selects the option to register.

194

Use cases details

Main Success
scenario:

1. System presents a form with address and public
key fields to be filled

2. Administrator fills the form

3. System verifies that the form was well filled

4. System creates actuator

5. System presents a message saying that the actua-
tor was created

6. System redirects Administrator to homepage

Extensions:

3a. The Administrator fills in incorrectly some parame-
ter:

• 3a.1 The system presents information about the er-
ror nature

• 3a.2 The use case continues at step 2

5a. Database is inaccessible:

• 5a.1 The System presents a message, saying that
the actuator could not be created because database
is inaccessible

• 5a.2 The use case continues at step 6

Minimal
guarantee: None actuator is registered in TMA’s database

Success
guarantee:

The register of a new actuator is accomplished and the
database is updated accordingly

A.6.3 Use Case - Update Actuator

Table A.38: Use Case 6.3 - Update Actuator

Name: Update Actuator
Primary
Actor: Administrator

Priority: Won’t
Stakeholders
and Interests:

Administrator wants to update an Actuator’s Informa-
tion

Preconditions: System triggered Use Case - View Actuator Information

195

Appendix A

Main Success
scenario:

1. Administrator selects the option to edit

2. The System presents editable information on the
address and public key of the selected actuator

3. Administrator updates actuator’s information

4. System verifies that the parameters are well filled

5. System updates actuator’s information

6. The system presents a message, saying the actua-
tor was updated

7. The system redirects the Administrator to the
homepage

Extensions:

4a. Some parameter is not correctly filled:

• 4a.1 The system verifies that a parameter was
badly defined

• 4a.2 The system presents a message, saying that a
parameter was badly defined, along with informa-
tion on why

• 4a.3 The use continues at step 3

5a. Database is inaccessible:

• 5a.1 The System presents a message, saying
that the actuator could not be updated because
database is inaccessible

• 5a.2 The use case continues at step 7

Minimal
guarantee: There is no change on the selected actuator

Success
guarantee: The selected actuator is updated

A.6.4 Use Case - Delete actuator

Table A.39: Use Case 6.4 - Delete actuator

Name: Delete actuator
Primary
Actor: Administrator

Priority: Won’t

196

Use cases details

Stakeholders
and Interests:

Administrator wants to delete an actuator previously
registered in TMA.

Preconditions: System triggered Use Case - View Actuator Information

Main Success
scenario:

1. Administrator chooses the option to delete

2. The system deletes selected actuator

3. The System presents a message saying that the ac-
tuator was deleted

4. The system redirects Administrator to the home-
page

Extensions:

2a. Database is inaccessible:

• 2a.1 The System presents a error message, say-
ing that the actuator could not be deleted because
database is inaccessible

• 2a.2 The use case continues at step 4

Minimal
guarantee: None actuator is deleted from TMA’s database

Success
guarantee:

The deletion of an actuator is accomplished and the
database is updated accordingly

A.7 Actions

A.7.1 Use Case - View Action information

Table A.40: Use Case 7.1 - View Action information

Name: View Action information
Primary
Actor: Administrator

Priority: Could
Stakeholders
and Interests: Administrator wants to view an Action’s information

Preconditions: Administrator navigates on the dashboard to the Ac-
tion’s section and selects the option to view information

197

Appendix A

Main Success
scenario:

1. The System presents a list containing actions’ ids
and names

2. Administrator selects an Action

3. System displays id and name of the selected Ac-
tion, a list of configurations with their ids, key-
name and domain values, and associated actua-
tor’s id, actuators’ address, resource’s id and re-
source’s name

4. Extension Points: Use Case - Update Action / Use
Case - Delete Action

Extensions:

1a / 3a. Database is inaccessible:

• 1a.1 / 3a.1 The System presents a message, saying
that the database is inaccessible

• 1a.2 / 3a.2 System redirects Administrator to the
homepage

Minimal
guarantee: None kind of information can be seen

Success
guarantee: Detailed information on an Action can be seen

A.7.2 Use Case - Create Action

Table A.41: Use Case 7.2 - Create Action

Name: Create Action
Primary
Actor: Administrator

Priority: Could
Stakeholders
and Interests: Administrator wants to add an action to TMA

Preconditions: Administrator navigates on the dashboard to the Ac-
tion’s section and selects the option to create

198

Use cases details

Main Success
scenario:

1. System presents a form with name field and actu-
ator and resource associations

2. Administrator fills in the name

3. System triggers Use Case - Associate Resource

4. System triggers Use Case - Associate Actuator

5. System verifies that the form and associations
were well done

6. System persists action

7. System presents a message saying that the action
was created

8. System redirects Administrator to homepage

Extensions:

5a. Some parameter is not correctly filled:

• 5a.1 The system verifies that a parameter was
badly defined

• 5a.2 The system presents a message, saying that a
parameter was badly defined, along with informa-
tion on why

• 5a.3 The use continues at step 2

6a. The database is inaccessible:

• 6a.1 The System presents a message, saying that
the action could not be created because database
is inaccessible

• 6a.2 Use case continues at step 9

Minimal
guarantee:

TMA’s database remains the same when it comes to ac-
tions

Success
guarantee:

A new Action is added to the TMA’s database along
with its resource and actuator associations

A.7.3 Use Case - Update Action

Table A.42: Use Case 7.3 - Update Action

Name: Update Action

199

Appendix A

Primary
Actor: Administrator

Priority: Won’t
Stakeholders
and Interests:

Administrator wants to update the information of an ac-
tion

Preconditions: System triggered Use Case - View Action Information

Main Success
scenario:

1. Administrator selects the option to edit

2. The System presents editable information on the
name of the selected Action

3. Extension Points: Use Case - Create Configura-
tion / Use Case - Delete Configuration

4. Administrator updates Action’s information

5. System verifies that all of action’s information
were well set

6. The System updates the action

7. System presents a message saying that the action
was updated

8. System redirects Administrator to the homepage

Extensions:

5a. Some parameter is not correctly filled:

• 5a.1 The system verifies that a parameter was
badly defined

• 5a.2 The system presents a message, saying that a
parameter was badly defined, along with informa-
tion on why

• 5a.3 The use continues at step 3

6a. TMA’s database is inaccessible:

• 6a.1 The System presents a message, saying that
the action could not be updated because database
is inaccessible

• 6a.2 Use case continues at step 7

Minimal
guarantee:

Selected action’s information remains the same as the
beginning of the use case

Success
guarantee: The selected action’s information is updated

200

Use cases details

A.7.4 Use Case - Delete Action

Table A.43: Use Case 7.4 - Delete Action

Name: Delete action
Primary
Actor: Administrator

Priority: Won’t
Stakeholders
and Interests: Administrator wants to delete an action

Preconditions:

• Action to be deleted can not be being used on
adaptation rules by TMA’s Planning

• System triggered Use Case - View Action Informa-
tion

Main Success
scenario:

1. Administrator selects the option to delete

2. System deletes selected action along with its con-
figurations and plans’ associated data

3. System presents a message saying that the action
and any related data were deleted

4. System redirects Administrator to the homepage

Extensions:

2a. TMA’s database is inaccessible:

• 2a.1 The System presents a message, saying that
the action and any related data could not be
deleted because database is inaccessible

• 2a.2 Use case continues at step 4

Minimal
guarantee:

None action or associated data are deleted from TMA’s
database

Success
guarantee:

The selected action, its configurations and associated
data are deleted from TMA’s database

A.7.5 Use Case - Create Configuration

Table A.44: Use Case 7.5 - Create Configuration

Name: Create Configuration
Primary
Actor: Administrator

201

Appendix A

Priority: Could
Stakeholders
and Interests: Administrator wants to add configurations for an action

Preconditions: Administrator is updating an action

Main Success
scenario:

1. Administrator selects the option to add configura-
tions for the current action

2. System presents a empty list of configurations for
the current action and an option for creating a con-
figuration

3. Administrator selects the option to create a config-
uration

4. System presents a form with keyname and domain
fields

5. Administrator fills the form

6. System verifies that the form was well filled

7. System creates configuration for the action

8. System presents a message saying that the config-
uration was created and added to the action’s list

9. Administrator navigates back to the screen where
the action can be updated

202

Use cases details

Extensions:

2a. Configurations may have been added for the action
before:

• 2a.1 System presents a list with the existing config-
urations for the action and an option for creating a
new configuration on this list

• 2a.2 Use case continues at step 3

6a. Some parameter is not correctly filled:

• 6a.1 The system verifies that a parameter was
badly defined

• 6a.2 The system presents a message, saying that a
parameter was badly defined, along with informa-
tion on why

• 6a.3 The use continues at step 5

7a. The database is inaccessible:

• 7a.1 The System presents a message, saying that
the configuration could not be created because
database is inaccessible

• 7a.2 System redirects Administrator to the home-
page

9a. Administrator wants to keep adding configurations
for the current action:

• 9a.1 Use case continues at step 2

Minimal
guarantee:

Selected Action has no changes on the configurations
available for it

Success
guarantee: Configurations are created for the selected action

A.7.6 Use Case - Delete Configuration

Table A.45: Use Case 7.6 - Delete Configuration

Name: Delete Configuration
Primary
Actor: Administrator

Priority: Could
Stakeholders
and Interests:

Administrator wants to delete a configuration for an ac-
tion

203

Appendix A

Preconditions:

• Administrator is updating an action

• There is at least one configuration for the current
action

• Configuration to be deleted can not be being used
on adaptation rules by TMA’s Planning

Main Success
scenario:

1. Administrator selects the option to delete configu-
rations for the current action

2. System presents a list of configurations for the cur-
rent action and an option for deleting a configura-
tion

3. Administrator selects the option to delete a config-
uration

4. System deletes the configuration for the current
action and any plan’s associated data

5. System presents a message saying that the config-
uration for the current action was deleted

6. Administrator navigates back to the screen where
the action can be updated

Extensions:

4a. TMA’s database is inaccessible:

• 4a.1 The System presents a message, saying that
the configurations and associated plan’s data
could not be deleted because database is inacces-
sible

• 4a.2 System redirects Administrator to the home-
page

6a. Administrator wants to keep deleting configurations
for the current action:

• 6a.1 Use case continues at step 3

Minimal
guarantee:

Configuration and plan’s associated data will always be
both deleted, they can never be deleted apart.

Success
guarantee:

Configurations for an action and associated plan’s data
are deleted.

204

Use cases details

A.7.7 Use Case - Associate Resource to Action

Table A.46: Use Case 7.7 - Associate Resource to Action

Name: Associate Resource to Action
Primary
Actor: Administrator

Priority: Could
Stakeholders
and Interests: Administrator wants to associate an action to a resource

Preconditions: Administrator is creating an action

Main Success
scenario:

1. System presents a list of resources containing
name and id

2. Administrator selects a resource

3. System associates the action to the selected a re-
source at the frontend

Extensions:

1a. TMA’s database is inaccessible:

• 1a.1 The System presents a message, saying that
the resources could not be gathered because
database is inaccessible

• 1a.2 System redirects Administrator to the home-
page

Minimal
guarantee:

No association can be done between the currently being
created action and a resource.

Success
guarantee:

The action being created is associated to a resource at
the frontend

A.7.8 Use Case - Associate Actuator to Action

Table A.47: Use Case 7.8 - Associate Actuator to Action

Name: Associate Actuator to Action
Primary
Actor: Administrator

Priority: Could
Stakeholders
and Interests:

Administrator wants to associate an action to an actua-
tor

Preconditions: Administrator is creating an action

205

Appendix A

Main Success
scenario:

1. System presents a list of actuators containing their
addresses and ids

2. Administrator selects an actuator

3. System associates the action to the actuator at the
frontend

Extensions:

1a. TMA’s database is inaccessible:

• 1a.1 The System presents a message, saying
that the actuators could not be gathered because
database is inaccessible

• 1a.2 System redirects Administrator to the home-
page

Minimal
guarantee:

No association can be done between the currently being
created action and an actuator.

Success
guarantee:

The action being created is associated to an actuator at
the frontend

A.8 Adaptation Rules

A.8.1 Use Case - View Adaptation Rule Detail

Table A.48: Use Case 8.1 - View Adaptation Rule Detail

Name: View Adaptation Rule Detail
Primary
Actor: Administrator

Priority: Must
Stakeholders
and Interests:

Administrator wants to view information on an adapta-
tion rule

Preconditions:

• TMA’s Planning is running

• Administrator navigates on the dashboard to the
Adaptation Rule’s section and selects the option
to view a rule’s information

206

Use cases details

Main Success
scenario:

1. The System presents to the Administrator the list
of adaptation rules names used by TMA’s plan-
ning component

2. Administrator selects a rule

3. System displays condition of adaptation and the
adaptation plan of the selected rule

4. Extension Points: Use Case - Update Adaptation
Rule / Use Case - Delete Adaptation Rule

Extensions:

1a. TMA’s planning is unreachable:

• 1a.1 The system presents a message, saying TMA’s
Planning is unreachable

• 1a.2 The Administrator is redirected to the home-
page

Minimal
guarantee: None kind of information can be seen

Success
guarantee:

Adaptation condition and plan of a Rule are presented

A.8.2 Use Case - Create Adaptation Rule

Table A.49: Use Case 8.2 - Create Adaptation Rule

Name: Create Adaptation Rule
Primary
Actor: Administrator

Priority: Must
Stakeholders
and Interests:

Administrator wants to add an adaptation rule to
TMA’s Planning

Preconditions:

• TMA’s Planning is running

• Administrator navigates on the dashboard to the
Adaptation Rule’s section and selects the option
to create

207

Appendix A

Main Success
scenario:

1. The System loads information from actions and
their configurations and presents a screen for an
adaptation rule creation.

2. Administrator writes a name for the rule, sets the
condition that triggers the adaptation, and itera-
tively chooses, by order of execution, the actions
and their configurations to form the adaptation
plan, filling in the values of actions’ configura-
tions.

3. System verifies that all parameters were well set

4. The system adds the new adaptation rule to the set
held by TMA’s Planning component

5. The System presents a message saying that the
rule was added to TMA-Planning’s set of adapta-
tion rules

6. System redirects Administrator to the homepage

208

Use cases details

Extensions:

1a. The database is inaccessible and information can not
be retrieved:

• 1a.1 The System presents a message, saying that
the actions and configurations could not be re-
trieved because database is inaccessible

• 1a.2 Use case continues at step 6

3a. Some parameter is not correctly filled:

• 3a.1 The system verifies that a parameter was
badly defined

• 3a.2 The system presents a message, saying that a
parameter was badly defined, along with informa-
tion on why

• 3a.3 The use continues at step 2

4a. TMA’s planning is unreachable:

• 4a.1 The system presents a message, saying that
the rule could not be added to the set of adaptation
rules held by TMA’s Planning because the compo-
nent is unreachable

• 4a.2 The use continues at step 6

Minimal
guarantee: TMA’s Planning set of Rule’s remains the same

Success
guarantee:

A new adaptation rule is added to the set held by TMA’s
Planning component

A.8.3 Use Case - Update Adaptation Rule

Table A.50: Use Case 8.3 - Update Adaptation Rule

Name: Update Adaptation Rule
Primary
Actor: Administrator

Priority: Won’t
Stakeholders
and Interests:

Administrator wants to update the information of an
adaptation rule

Preconditions:

• TMA’s Planning is running

• System triggered Use Case - View Adaptation Rule
Detail

209

Appendix A

Main Success
scenario:

1. Administrator selects the option to edit

2. The System presents editable information on the
name and configuration values of the selected
adaptation rule

3. Administrator updates adaptation rule’s informa-
tion

4. System verifies that all of adaptation rule’s infor-
mation were well set

5. The System updates the adaptation rule’s informa-
tion on TMA’s Planning

6. System presents a message to the Administrator
saying that the adaptation rule was updated

7. System redirects Administrator to the homepage

Extensions:

4a. Some parameter is not correctly filled:

• 4a.1 The system verifies that a parameter was
badly defined

• 4a.2 The system presents a message, saying that a
parameter was badly defined, along with informa-
tion on why

• 4a.3 The use continues at step 3

5a. TMA’s planning is unreachable:

• 5a.1 The system presents a message, saying that
the adaptation rule could not be updated because
TMA’s Planning is unreachable

• 5a.2 The use continues at step 7

Minimal
guarantee:

Selected adaptation rule’s information remains the same
as the beginning of the use case

Success
guarantee:

TMA-P updates the information of the edited adapta-
tion rule

A.8.4 Use Case - Delete Adaptation Rule

210

Use cases details

Table A.51: Use Case 8.4 - Delete Adaptation Rule

Name: Delete Adaptation Rule
Primary
Actor: Administrator

Priority: Must
Stakeholders
and Interests:

Administrator wants to delete an adaptation rule on
TMA-P

Preconditions:

• TMA’s Planning is running

• System triggered Use Case - View Adaptation Rule
Detail

Main Success
scenario:

1. Administrator selects the option to delete

2. System deletes selected adaptation rule from the
existing set of TMA’s Planning component

3. System presents a message saying that the adap-
tation rule was deleted from the set held by TMA-
Planning

4. System redirects Administrator to the homepage

Extensions:

2a. TMA’s planning is unreachable:

• 2a.1 The system presents a message, saying that
the adaptation rule could not be deleted from the
set held by TMA Planning because it is unreach-
able

• 2a.2 The use continues at step 4

Minimal
guarantee:

TMA’s Planning set of adaptation rules remains the
same

Success
guarantee:

The selected adaptation rule is deleted from the set held
by TMA’s Planning

A.9 Plans

A.9.1 Use Case - List occurred plans

Table A.52: Use Case 9.1 - List occurred plans

Name: List occurred plans

211

Appendix A

Primary
Actor: Administrator

Priority: Should

Stakeholders
and Interests:

Administrator wants to visualize a brief list with lit-
tle information on the adaptation plans that have been
made

Preconditions:

• A plan took place

• Administrator navigates on the dashboard to the
Plan’s section

Main Success
scenario:

1. Administrator selects the option to view occurred
plans

2. The system loads the list of all plans that were
done

3. The system presents the list of plans with informa-
tion about its id and timestamp

4. Extension Point: Use Case - View occurred plan
detail

Extensions:

2a. Administrator knows the id or timestamp of a plan:

• 2a.1 The Administrator adds filters on the oc-
curred plans, such as id or time they took place

• 2a.2 The system loads from TMA’s database the
list of plans that match the filters added by the Ad-
ministrator

• 2a.3 Use case continues at step 3

2b. / 2a.2a TMA’s database is inaccessible:

• 2b.1 / 2a.2a.1 The System presents a error mes-
sage, saying that the database is inaccessible

• 2b.2 / / 2a.2a.2 The System redirects Administra-
tor to the homepage

Minimal
guarantee: None information is given on occurred plans

Success
guarantee:

The System, respecting Administrator’s filters, presents
a list of plans that have been made along with a brief
information on their ids and time of occurrence

212

Use cases details

A.9.2 Use Case - View occurred plan detail

Table A.53: Use Case 9.2 - View occurred plan detail

Name: View occurred plan detail
Primary
Actor: Administrator

Priority: Should
Stakeholders
and Interests:

Administrator wants to visualize, in detail, what actions
and configurations were applied in an occurred plan

Preconditions: System triggered Use Case - List occurred plans

Main Success
scenario:

1. Administrator selects one of the plans on the list

2. The system presents a detailed information on
the selected plan such as: id, timestamp, actions
taken, actions’ configurations and values used, as
well as order of actions execution

Extensions:

2a. TMA’s database is inaccessible:

• 2a.1 The System presents a message, saying that
the plan’s detailed information could not be re-
trieved because database is inaccessible

• 2a.2 The System redirects the Administrator to the
homepage

Minimal
guarantee:

Administrator is redirected to the homepage in case
detailed information can not be retrieved from the
database

Success
guarantee:

The System presents to the Administrator the detail of
an occurred plan, including actions taken and their con-
figuration values

A.10 Logs

A.10.1 Use Case - Visualize logs

Table A.54: Use Case 10.1 - Visualize logs

Name: Visualize logs
Primary
Actor: Administrator

Priority: Should

213

Appendix A

Stakeholders
and Interests:

Administrator wants to visualize the logs TMA pro-
duced in order to gather information on the manage-
ment of the platform and monitored resources

Preconditions:

• TMA produced logs

• Administrator navigates on the dashboard to the
Logs section

Main Success
scenario:

1. Administrator selects the option to view logs

2. The system presents the logs

3. Extension Point: Use Case - View specific logs

Extensions:

2a. TMA’s database is inaccessible:

• 2a.1 The System presents a message, saying that
the logs could not be retrieved because database is
inaccessible

• 2a.2 The system redirects the Administrator to the
homepage

Minimal
guarantee: None logs are presented

Success
guarantee:

All logs are presented

A.10.2 Use Case - View specific logs

Table A.55: Use Case 10.2 - View specific logs

Name: View specific logs
Primary
Actor: Administrator

Priority: Should

Stakeholders
and Interests:

Administrator wants to visualize specific logs TMA pro-
duced in order to gather a more detailed information
on the management of the platform and monitored re-
sources

Preconditions:
• TMA produced logs

• System triggered Use case - Visualize logs

214

Use cases details

Main Success
scenario:

1. Administrator applies filters on the logs at
time/description/component/origin

2. The system presents the logs filtered

Extensions:

2a. TMA’s database is inaccessible:

• 2a.1 The System presents a message, saying that
the logs could not be filtered because database is
inaccessible

• 2a.2 The system redirects the Administrator to the
homepage

Minimal
guarantee: Logs can not be seen

Success
guarantee:

Logs are presented and they match the filters applied

A.10.3 Use Case - Delete logs

Table A.56: Use Case 10.3 - Delete logs

Name: Delete logs
Primary
Actor: Administrator

Priority: Won’t
Stakeholders
and Interests:

Administrator wants to delete logs from TMA in order
to save some space as they are not needed anymore

Preconditions:

• TMA produced logs

• Administrator navigates on the dashboard to the
Logs section

215

Appendix A

Main Success
scenario:

1. Administrator selects the option to delete

2. System provides a form where starting and end
dates must be filled

3. Administrator fills the start and end dates

4. The system deletes the logs between the start and
end dates defined

5. The system presents a message saying that the logs
were deleted

6. The system redirects the Administrator to the
homepage

Extensions:

4a. TMA’s database is inaccessible:

• 4a.1 The System presents a message, saying that
the logs could not be deleted because database is
inaccessible

• 4a.2 The use case continues at step 6

Minimal
guarantee: No logs are deleted from TMA’s database

Success
guarantee:

The logs created between the start and end dates speci-
fied are deleted

A.11 Dashboard

A.11.1 Use Case - Add chart to Homepage

Table A.57: Use Case 11.1 - Add chart to Homepage

Name: Add chart to Homepage
Primary
Actor: Administrator

Priority: Must

Stakeholders
and Interests:

Administrator wants to import a chart config file to
the homepage so that he can directly and easily access
charts from monitored resources.

Preconditions: A valid chart configuration file exists

216

Use cases details

Main Success
scenario:

1. Administrator selects the option to import the
chart configuration

2. System asks for the selection of a file

3. Administrator selects a file

4. System reads the file contents and asks for a name
to be associated with the chart

5. Administrator introduces a name for the chart and
selects the option to save

6. System saves the read chart configuration and its
associated name in the database and generates the
chart

Extensions:

3a. Administrator wants to cancel the operation:

• 3a.1 Administrator cancels the file selection

• 3a.2 The use case ends

5a. Administrator does not fill the name:

• 5a.1 System alerts for the mandatory insertion of a
name for the chart

• 5a.2 The use case continues at step 5

5b. Administrator introduces a name that is associated
with another chart:

• 5b.1 System alerts Administrator that the name
introduced is being used with another chart and
asks for another name

• 5b.2 The use case continues at step 5

6a. The database is inaccessible:

• 6a.1 The System presents a message, saying that
the configuration could not be created because
database is inaccessible

• 6a.2 Use case continues at step 5

Minimal
guarantee: No chart is added to the homepage nor to the database

217

Appendix A

Success
guarantee:

A chart is added to the homepage and, consequently, on
the database.

A.11.2 Use Case - Replace chart on Homepage

Table A.58: Use Case 11.2 - Replace chart on Homepage

Name: Replace chart on Homepage
Primary
Actor: Administrator

Priority: Must
Stakeholders
and Interests:

Administrator wants to replace a chart with another be-
cause the current one is no longer needed.

Preconditions:
• A valid chart configuration file exists

• There is a chart at the homepage

Main Success
scenario:

1. Administrator selects the option to replace the
chart configuration

2. System asks for the selection of a file

3. Administrator selects a file

4. System reads the file contents and asks for a name
to be associated with the chart

5. Administrator introduces a name for the chart and
selects the option to replace

6. System replaces the old chart configuration and
associated name by the new ones and generates
the chart with the new configuration

218

Use cases details

Extensions:

3a. Administrator wants to cancel the operation:

• 3a.1 Administrator cancels the file selection

• 3a.2 The use case ends

5a. Administrator does not fill the name:

• 5a.1 System alerts for the mandatory insertion of a
name for the chart

• 5a.2 The use case continues at step 5

5b. Administrator introduces a name that is associated
with another chart or with the replaced one:

• 5b.1 System alerts Administrator that the name
introduced is being used with another chart and
asks for another name

• 5b.2 The use case continues at step 5

6a. The database is inaccessible:

• 6a.1 The System presents a message, saying that
the configuration could not be created because
database is inaccessible

• 6a.2 Use case continues at step 5

Minimal
guarantee:

No chart is replaced in the homepage nor in the
database

Success
guarantee:

A chart is replaced in the homepage and, consequently,
in the database.

A.11.3 Use Case - Delete chart on Homepage

Table A.59: Use Case 11.3 - Delete chart on Homepage

Name: Delete chart on Homepage
Primary
Actor: Administrator

Priority: Must
Stakeholders
and Interests:

Administrator wants to delete a chart because it is no
longer needed.

Preconditions: There is a chart

219

Chapter 8

Main Success
scenario:

1. Administrator selects the option to delete the chart
configuration

2. System deletes the chart configuration and associ-
ated name

Extensions:

2a. The database is inaccessible:

• 2a.1 The System presents a message, saying that
the configuration could not be deleted because
database is inaccessible

• 2a.2 Use case continues at step 5

Minimal
guarantee:

No chart is replaced in the homepage nor in the
database

Success
guarantee:

A chart is replaced in the homepage and, consequently,
in the database.

220

	Introduction
	Objectives and Approach overview
	Document Structure

	Background
	Monitoring Tools
	Generic Monitoring Tools
	Infrastructure Monitoring Tools
	Container Monitoring Tools
	Summary

	Microservices
	Monolithic vs Microservices Architecture

	Containers
	Docker
	Kubernetes

	Frontend Development Frameworks
	Angular
	React
	Vue.js
	Svelte
	jQuery
	Ember.js
	Semantic UI
	Frameworks decision

	State of The Art
	Self-Adaptive Systems
	TMA
	Hogna
	Lotus@Runtime
	Summary

	Experiment with Kubernetes hpa
	Experimental Methodology
	Results and Discussion
	Threats to Validity
	Summary

	Requirements
	Functional Requirements
	Probe context
	Quality Model context
	Adaptation context
	Decision support extras context
	Implementation status

	Non-functional requirements and restrictions

	Architecture and Implementation
	Architecture
	Implementation
	TMA Maintenance
	Requirement implementation

	Validation
	tma validation
	Functional requirements validation
	Validation plan
	Results

	Usability validation
	Validation plan
	Results

	Performance validation
	Validation plan
	Results

	Maintainability validation

	Management
	Development model
	Requirements management
	Tasks scheduling
	Risk analysis

	Conclusion and Future Work
	Appendix Use cases details
	Metrics
	 Use Case - View Metric information
	 Use Case - Create Metric
	 Use Case - Create Leaf Attribute Metric
	 Use Case - Update Metric
	 Use Case - Delete Metric
	 Use Case - Associate Description to Leaf Attribute Metric
	 Use Case - Associate Child Metrics
	 Use Case - Preview metrics tree

	Quality Models
	 Use Case - View Quality Model Information
	 Use Case - Create Quality Model
	 Use Case - Update Quality Model
	 Use Case - Delete Quality Model
	 Use Case - View Configuration Profile Information
	 Use Case - Create Configuration Profile
	 Use Case - Update Configuration Profile
	 Use Case - Delete Configuration Profile
	 Use Case - Associate Metric to Quality Model

	Descriptions
	 Use Case - View Description Information
	 Use Case - Create Description
	 Use Case - Update Description
	 Use Case - Delete Description

	Resources
	 Use Case - View Resource information
	 Use Case - Create Resource
	 Use Case - Update Resource
	 Use Case - Delete Resource
	 Use Case - Visualize Resource Metrics
	 Use Case - Simulate Resource Metrics
	 Use Case - Plot Plans Alongside Metrics
	 Use Case - Export Chart
	 Use Case - Associate Configuration Profile to Resource
	 Use Case - Export Chart Configuration

	Probes
	 Use Case - View Probe Information
	 Use Case - Create probe
	 Use Case - Update Probe
	 Use Case - Delete probe

	Actuators
	 Use Case - View Actuator Information
	 Use Case - Create actuator
	 Use Case - Update Actuator
	 Use Case - Delete actuator

	Actions
	 Use Case - View Action information
	 Use Case - Create Action
	 Use Case - Update Action
	 Use Case - Delete Action
	 Use Case - Create Configuration
	 Use Case - Delete Configuration
	 Use Case - Associate Resource to Action
	 Use Case - Associate Actuator to Action

	Adaptation Rules
	 Use Case - View Adaptation Rule Detail
	 Use Case - Create Adaptation Rule
	 Use Case - Update Adaptation Rule
	 Use Case - Delete Adaptation Rule

	Plans
	 Use Case - List occurred plans
	 Use Case - View occurred plan detail

	Logs
	 Use Case - Visualize logs
	 Use Case - View specific logs
	 Use Case - Delete logs

	Dashboard
	 Use Case - Add chart to Homepage
	 Use Case - Replace chart on Homepage
	 Use Case - Delete chart on Homepage

