

Maria Carolina Jordão Pereira Gonçalves

Authentication and accounting framework for

SDN controller

Dissertation in the context of the Master in Informatics Engineering,
Specialization in Communications, Services, and Infrastructures, advised by Professor Dr.

Bruno Sousa and by Professor Dr. Nuno Antunes and presented to the
Faculty of Sciences and Technology / Department of Informatics Engineering.

July 2022

A
u

th
e

n
ti

ca
ti

o
n

 a
n

d
 a

cc
o

u
n

ti
n

g
fr

am
e

w
o

rk
 f

o
r

SD
N

 c
o

n
tr

o
lle

r
M

ar
ia

 C
ar

o
lin

a
Jo

rd
ão

 P
er

ei
ra

 G
o

n
ça

lv
es

Faculty of Sciences and Technology

Department of Informatics Engineering

Authentication and accounting
framework for SDN controller

Maria Carolina Jordão Pereira Gonçalves

Dissertation in the context of the Master in Informatics Engineering,
Specialization in Communications Services and Infrastructures advised by Prof. Dr. Bruno

Sousa and Prof. Dr. Nuno Antunes and presented to the
Faculty of Sciences and Technology / Department of Informatics Engineering.

July 2022

This page is intentionally left blank.

This document is written in American English

iii

This page is intentionally left blank.

This work falls in the communications, services, and infrastructure specialization area and
it was partially carried out in the Laboratory of Communications and Telematics (LCT)
Group of the Centre for Informatics and Systems of the University of Coimbra (CISUC).

This work is partially supported by the project Adaptive, Intelligent and Distributed As-
surance Platform (AIDA) (POCI-01-0247-FEDER-045907), co-financed by the European
Regional Development Fund (ERDF) through the Operational Program for Competitive-
ness and Internationalisation - COMPETE 2020 and by the Portuguese Foundation for
Science and Technology (FCT), under CMU Portugal.

It is also partially supported by the project METRICS (POCI-01-0145-FEDER-032504),
co-funded by the Portuguese Foundation for Science and Technology (FCT) and by the
the European Regional Development Fund (ERDF) through Portugal 2020 - Operacional
Program for Competitiveness and Internationalisation.

This work has been supervised by Professor Bruno Sousa and Professor Nuno Antunes,
both Assistant Professors at the Department of Informatics Engineering of the Faculty of
Sciences and Technology of the University of Coimbra.

v

This page is intentionally left blank.

Acknowledgements

First, I would like to express my gratitude to my advisors Professor Bruno Sousa and
Professor Nuno Antunes who were always there to guide me throughout this work. Their
insight, wisdom, and guidance were always appreciated and crucial in given moments. I
made some little mistakes, but their patience and willingness to teach me were always
present, which resulted in me learning so much with this work.

In addition, I would like to thank my friends and colleagues, especially for all the sponta-
neous small breaks, fun, and enjoyable lunches, the 5 minutes talk that transformed into
30 minutes or an hour of conversation, the silly videos and music we watched and listened
together and so much more.

At last, I would like to thank my parents for all the love and support I ever received. They
shaped me into the person I am today, a determined, ambitious, independent, and caring
person. I would also like to thank my sister, who was always there guiding me throughout
all stages of my life, especially guiding me as a young adult, whether in personal or academic
matters.

vii

This page is intentionally left blank.

Abstract

These days, network administration has become easier because
of advances in technologies such as Software Defined Networking
(SDN), which offers more flexibility, therefore justifying the in-
crease of its usage in cloud computing. However, SDN showed to
be vulnerable to different attacks, which is concerning since SDN
centralizes network information. To improve user management and
security, several SDN controllers began to add Authorization, Au-
thentication, and Accounting (AAA) services, which include the
integration of protocols such as OAuth 2.0. Nevertheless, the ba-
sic authentication used in these services (e.g. passwords) or the
use of OAuth 2.0 with basic tokens, which are Base64-encoded
username and password, are still extremely vulnerable to various
exploits.

The main objective of this work is to design and evaluate
a framework with authentication and accounting mecha-
nisms in a SDN controller. We started by analyzing which
SDN controller should be chosen for this integration - OpenDay-
light, as well as the identification and authentication approach -
OpenID Connect (OIDC). We introduced the concept of trust lev-
els, through the context information of a user’s device, provided
in the form of OIDC claims and created an algorithm to verify
the context information in the OpenID Provider (OP). An exper-
imental procedure was done to evaluate the addition of context
information in OIDC, which showed good results only presenting
a small additional cost in the overall performance of a OIDC au-
thentication flow.

To begin developing the framework suggested, an architecture for
the framework was proposed and described, highlighting its key
elements: the OpenDaylight controller, the AAA filter, the Re-
lying Party (RP), and Keycloak. Along with the introduction of
the RP component in the controller, we also discuss Keycloak se-
tups and modifications made to the controller’s AAA filter. Fi-
nally, we prepared an experimental setup to retrieve metrics to
analyze the framework, during the authentication process, renewal
of a token, verification of a token, and to analyze the security and
functionality of the roles and context information in OpenDay-
light. We also compared the performance of authenticating in the
standard OpenDaylight and in the framework proposed. The re-
sults obtained showed a small cost in the overall performance
of authentication with OIDC and context information in
OpenDaylight, but a substantial increase in security in the
controller.

Keywords

SDN Controller, OpenID Connect, OpenDaylight, Trust Context
Information, AAA, Keycloak

ix

This page is intentionally left blank.

Resumo

Hoje em dia, a administração de redes tem se tornado mais fácil de-
vido aos avanços em tecnologias como Software Defined Network-
ing (SDN), oferecendo mais flexibilidade nestas, o que justifica o
aumento da sua utilização em computação cloud. No entanto, SDN
mostrou-se vulnerável a diferentes tipos de ataques, o que é preocu-
pante uma vez que um controlador SDN centraliza informação da
rede. Para melhorar a gestão e segurança dos utilizadores , vários
controladores SDN começaram a acrescentar serviços de Autoriza-
ção, Autenticação e Accouting (AAA), que incluem a integração de
protocolos como o OAuth 2.0. No entanto, a autenticação básica
utilizada nestes serviços (ex: password) ou a utilização do OAuth
2.0 com basic tokens, que são username e palavra-passe codifica-
dos na Base64, continuam a ser extremamente vulneráveis a vários
exploits.
O principal objectivo deste trabalho é planear e avaliar
uma framework com mecanismos de autenticação e ac-
couting num controlador SDN. Começámos por analisar qual
o controlador SDN a ser escolhido para esta integração, OpenDay-
light, bem como o mecanismo de autenticação, OIDC. Introduz-
imos também uma ideia de níveis de confiança, através da infor-
mação de contexto de um dispositivo do utilizador, cuja informação
é acrescentada nas claims do OIDC e criámos um algoritmo para
verificar a informação de contexto no dispositivo OP. Foi feito um
procedimento experimental para avaliar a adição de informação
de contexto em OIDC, que mostrou bons resultados apresentando
apenas um pequeno custo no desempenho global de um fluxo de
autenticação OIDC.
Para começar a desenvolver a framework sugerida, foi proposta e
descrita uma arquitectura para a framework, destacando os seus
elementos-chave: o controlador OpenDaylight, o filtro AAA, o Re-
lying Party (RP), e o Keycloak. Juntamente com a introdução
do componente RP no controlador, discutimos também as config-
urações do Keycloak e as modificações feitas no filtro AAA do con-
trolador. Finalmente, foi preparado um procedimento experimen-
tal para obter métricas de modo a analisar a framework, durante
o processo de autenticação, renovação de um token, verificação de
um token, e a analisar a segurança e funcionalidade dos roles e in-
formação de contexto no OpenDaylight. Também comparámos o
desempenho da autenticação no OpenDaylight orginal e na frame-
work proposta. Os resultados obtidos mostraram um pequeno
custo no desempenho global da autenticação com OIDC
e informação de contexto no OpenDaylight, mas um au-
mento substancial da segurança no controlador.

Palavras-Chave

Controlador SDN, OpenID Connect, OpenDaylight, Informação de
Contexto de Confiança, AAA, Keycloak

xi

This page is intentionally left blank.

Contents

1 Introduction 6
1.1 Objectives . 8
1.2 Contributions . 8
1.3 Structure . 9

2 Background and Related Work 11
2.1 Security Features . 11

2.1.1 OAuth 2.0 . 11
2.1.2 OpenID Connect . 14
2.1.3 SAML2.0 . 16
2.1.4 Authorization Authentication and Accounting 17

2.2 Related Work . 18
2.3 Authentication and authorization tools . 20

2.3.1 Authlib . 20
2.3.2 Keycloak . 21

2.4 Software Defined Network Controllers . 23
2.4.1 Open Network Operating System . 24
2.4.2 OpenDaylight . 24
2.4.3 Lighty.io . 25
2.4.4 Open Network Automation Platform 26
2.4.5 Ryu . 26
2.4.6 Comparison . 27

2.5 Software Defined Network & related protocols 27
2.5.1 REST interfaces . 27
2.5.2 OpenFlow . 28
2.5.3 P4 . 28
2.5.4 NetConf . 28

2.6 Summary . 29

3 Research Objectives and Approach 31
3.1 Research Methodology . 31
3.2 Research Objectives . 32
3.3 Approach . 33

3.3.1 Evaluate the impact of the additional parameters with context in-
formation in OIDC . 33

3.3.2 Enable the support of OIDC for authentication and authorization in
SDN controllers . 35

3.3.3 Enable the support of OIDC with an extension for additional param-
eters with context information in an OpenDaylight controller 37

3.4 Use case . 37
3.5 Architecture . 37

xiii

Chapter 0

4 Preliminary Results 40
4.1 Integration . 40
4.2 Evaluation . 42

4.2.1 Scenario . 42
4.2.2 Configuration parameters . 43
4.2.3 Metrics . 44

4.3 Results . 44
4.4 Summary . 46

5 Implementation 47
5.1 Concepts . 47

5.1.1 Roles and Grants . 47
5.2 Components . 49

5.2.1 Keycloak . 49
5.2.2 Relying Party . 56
5.2.3 AAA filter . 57

5.3 Steps for Authentication and Authorization 57
5.3.1 Authentication . 58
5.3.2 Verification of RPT token . 59
5.3.3 Renewal of RPT token . 62

6 Setup and Evaluation 63
6.1 Experimental Setup . 63

6.1.1 Authentication Process . 64
6.1.2 Refresh/Renewing tokens process . 64
6.1.3 Standard authentication and OIDC authentication in OpenDaylight 67
6.1.4 Access denied . 69

6.2 Evaluation Results . 69
6.2.1 Authentication Process . 69
6.2.2 Refresh/Renewing tokens process . 74
6.2.3 Standard authentication and OIDC authentication in OpenDaylight 75
6.2.4 Access denied . 75

6.3 Enhanced security with OIDC . 76
6.3.1 Security with OIDC without context information 77
6.3.2 Security with OIDC and trust context information 77
6.3.3 Comparison of OpenDaylight security integrations 78

7 Conclusion 82
7.1 Future work . 83

A BIANFE: Object identification and authentication in federated scenarios 91

xiv

This page is intentionally left blank.

Acronyms

AAA Authorization Authentication and Accounting. 6, 11, 17, 20, 21, 24–27, 29, 30, 32,
33, 38, 39, 47, 48, 57, 58

AES Advanced Encryption Standard. 22, 34

API Application Programming Interface. 6, 7, 12, 19, 23, 24, 26, 27, 29, 50, 56–58

AS Authorization Server. 12–14, 17

AUSF Authentication Server Function. 18, 29

CLI Command-line Interface. 6, 24, 38, 39

CRUD Create, Read, Update and Delete. 27

FIM Federated Identity Management. 8, 9, 20, 21

GUI Graphical User Interface. 24, 26, 35

HTTP Hypertext Transfer Protocol. 19, 27, 50, 51, 57, 60, 61, 67, 68, 75, 83

HTTPS Hypertext Transfer Protocol Secure. 9, 41

IdP Identity Provider. 16, 17, 20, 26

JWT JSON Web Token. 7, 14, 19, 26

OIDC OpenID Connect. i, ix, xi, xiii, xiv, xix, xx, 3, 6–9, 14–16, 19–23, 26, 29–35, 37,
38, 40–47, 49, 50, 56–58, 62–64, 67, 68, 71, 75–80, 82, 83

ONAP Open Network Automation Platform. 26, 30

ONOS Open Network Operating System. 19, 24, 27

OP OpenID Provider. ix, xi, xix, 9, 14, 15, 19, 26, 32–35, 37, 38, 40–47, 49, 56, 58, 59,
69, 82

PII Personal Identifiable Information. 34

REST Representational State Transfer. 6, 7, 18, 19, 21, 23, 24, 27, 29, 47, 48, 50, 51,
56–61, 64, 67–69, 75, 77, 82, 83

RP Relying Party. 7, 14, 15, 20, 34, 35, 37, 38, 40–43, 45, 47, 49, 56–59, 71, 82

RPT Requesting Party Token. xiv, xix, xx, 7, 23, 47, 49, 53, 56, 57, 59–64, 67–69, 71–75,
77, 78, 82, 83

SAML Security Assertion Markup Language. xix, 16, 17, 19–21, 29, 30

xvi

Acronyms

SDN Software Defined Networking. ix, xi, xiii, xix, 3, 6–9, 11, 18, 19, 21, 23–33, 35,
37–39, 63, 82

SEAF Security Anchor Function. 18

SHA Secure Hash Algorithm. 33, 34

SNMP Simple Network Management Protocol. 26, 28, 29

SP Service Provider. 16, 19

SSO Single Sign-On. xix, 14, 16, 17, 19, 21

TCI Trust Context Information. xx, 37, 42–47, 51–53, 63, 67, 69, 77, 80, 82, 83

TLS Transport Layer Security. 6, 9, 19, 24, 28

UA User-Agent. 7–9, 12, 33, 34

UDM Unified Data Management. 18

UE User equipment. 18

URN Uniform Resource Name. 8

UUID Universally Unique Identifier. 8, 33, 34, 58, 78

VM Virtual Machines. 34

xvii

This page is intentionally left blank.

List of Figures

2.1 Abstract OAuth 2.0 Flow . 13
2.2 Authorization Code Grant . 14
2.3 OpenID Connect Additional Layer . 14
2.4 OpenID Connect Authorization Code Flow 15
2.5 Security Assertion Markup Language (SAML) Single Sign-On (SSO) 17
2.6 5G-AKA Authentication Flow . 18
2.7 Software Defined Networking (SDN) Architecture 23
2.8 OpenDaylight Neon Architecture . 25

3.1 Shiro-Based Authorization . 36
3.2 MDSAL-Based Dynamic Authorization . 36
3.3 SDN Architecture With OpenID Connect (OIDC) Integration 38

4.1 Evaluation Scenario . 42
4.2 Evaluation Scenario Flow . 43
4.3 Token Verification Time On TeaStore . 45
4.4 Token Issue Time On OpenID Provider (OP) Per Policy 45
4.5 Context Verification Time On OP Per Policy 46
4.6 Overall E2E Time Per User . 46

5.1 Roles Registration In OpenDaylight . 49
5.2 Roles In Keycloak . 50
5.3 "admin-role" In Keycloak . 51
5.4 Scopes Mappings Of "admin_cli" Client In Keycloak 51
5.5 Resources Of The "controller" Client In Keycloak 52
5.6 Authorization Scopes Of The "controller" Client In Keycloak 52
5.7 Policies Of The "controller" Client In Keycloak 53
5.8 Permissions Of The "controller" Client In Keycloak 53
5.9 Scope Permission "ScopeDomains" Of The "controller" Client In Keycloak . 54
5.10 Resource Permission "Controlador" Of The "controller" Client In Keycloak 54
5.11 Payload Data Of Requesting Party Token (RPT) 56
5.12 Simplified Architecture OpenDaylight Controller 58
5.13 Simplified Modified Architecture OpenDaylight Controller 59
5.14 Authentication Steps . 60
5.15 Verification Of RPT Token Steps . 61
5.16 Authorization Data In RPT Token . 61
5.17 Renewal Of RPT Token Steps . 62

6.1 Renewal Timeline In A 2 Min Session . 65
6.2 Get Access Token . 71
6.3 Get RPT . 72
6.4 Put User Atributes . 72

xix

Chapter 0

6.5 Verify RPT . 73
6.6 Size Of RPT . 73
6.7 RAM Used (5 Group; 25 Group, 50 Group) 74
6.8 Get New RPT . 74
6.9 RAM Used (5 Group; 25 Group, 50 Group) 75
6.10 Rest Operations With Authentication Time In OpenDaylight Standard And

OpenDaylight With OIDC . 76
6.11 Rest Operations With Authentication In Standard OpenDaylight And Only

Rest Operations In Modified OpenDaylight 76
6.12 [AT-01] - Attack Tree In Standard OpenDaylight 78
6.13 [AT-02] - Attack Tree In OIDC OpenDaylight 79
6.14 [AT-03] - Attack Tree In OIDC OpenDaylight With Support For Trust Con-

text Information (TCI) . 80

xx

This page is intentionally left blank.

List of Tables

2.1 Related Work Overview . 21
2.2 Comparison AAA Support Between controllers 27

3.1 Research Inclusion Criteria . 31
3.2 Trust Context Information Fields . 33

4.1 Configuration Parameters . 44
4.2 TCI Evaluation Metrics . 44

5.1 Role-Endpoint Authorization Mapping . 48
5.2 Keycloak Functional OIDC Clients . 50
5.3 Authorization Configurations Summary . 55

6.1 Scenarios Combination For Authentication And Request 64
6.2 Requests For Authentication Test Set . 65
6.3 Requests For Authentication Test Set (Continue) 66
6.4 Type Of User Instances . 67
6.5 Metrics For Authentication And Request . 67
6.6 Scenarios Combination For Renewal . 67
6.7 Requests For Renewal Test Set . 68
6.8 Metrics For Renewal . 68
6.9 Requests On Standard And Modified OpenDaylight Controller 68
6.10 Metrics For Standard And OIDC Opendaylight Authentication 68
6.11 Scenarios Combination For Access Denied Test Set 69
6.12 Requests For Access Denied Test Set . 70
6.13 Attack Tree Comparison - OpenDaylight Security Integrations 79

1

This page is intentionally left blank.

List of Publications and Tutorials

The work in this dissertation regarding context information in OIDC and OIDC authenti-
cation in a SDN controller is partly based on the work presented in the following publication
and submission:

• Publication: Carolina Gonçalves, Bruno Sousa, Nuno Antunes, "BIANFE: Object
identification and authentication in federated scenarios”, CCNC 2022, poster, Jan-
uary 10, 2022 (appendix A).

– abstract: Federated Identity Management enables convenient mechanisms to
authenticate users and to authorize services, applications to specific users’ re-
sources. SAML and OpenID Connect that relies on OAuth 2.0 are commonly
employed to enable Single-Sign-On features. Despite their wide usage in sev-
eral domains (enterprise, web applications) they only aim to identify entities
like persons and do not consider the different trust levels that a person can have
with its devices, or even with the services provided by organisations participating
or not in federated scenarios. BIANFE stands as a proposal for object identifi-
cation and authentication in federated and non federated scenarios, considering
the trust relations between end- users and the applications/services running in
its devices. As work in progress, BIANFE tackles primarily the identification
issue for objects, considering interoperability and privacy issues.

• Rejected but being reformulated for a new target: Carolina Gonçalves, Bruno
Sousa, Nuno Antunes, "TCI: Context Information for Trust in Federated Environ-
ments", Trust, Security and Privacy of 6G, IEEE Network Special Issue. New
target: 14th IFIP Wireless and Mobile Networking Conference.

– abstract: Current and future networks must tackle identity management of
users in federated scenarios, where the information of users is managed by a
trusted entity. This model is widely employed nowadays in our daily lives, where
we authenticate in third party services using account information in google or
others that provide authorization solutions. Other solutions like OpenID Con-
nect relying on OAuth 2.0 are commonly employed to enable Single-Sign-On
features. Despite their wide usage in several domains (enterprise, web appli-
cations) they only aim to identify entities like persons and do not consider the
different trust levels that a person can have with its devices and the context in
which interactions occur. TCI is as a proposal to convey context information re-
flecting the trust relations between end-users, the applications/services running
in its devices, and with particular contexts where the access to sensitive resources
needs to be authorized. The results demonstrate TCI as a feasible solution to
convey trust with minimal impact, in compliance with OpenID Connect.

• Tutorial: Carolina Gonçalves, Bruno Sousa, Nuno Antunes, "Trusted Federated
Identity Management in services and SDN", 27th IEEE Symposium on Computers
and Communications .

– abstract: Federated Identity Management (FIM) is a topic that has attracted
the research community and enterprises to build different solutions, suited to spe-
cific needs. A few examples include: the Security Assertion Markup Language

3

Chapter 0

(SAML), the Open Authentication (OAuth 2.0), and OpenID Connect (OIDC)
as a solution to support authentication and identification of users.Identity man-
agement solutions include mechanisms and architectures to exchange identity in-
formation between organisations that are federated for authentication purposes.
This has the advantage inherent to the Single Sign On (SSO) process, where
an user does not need to replicate login information over multiple systems.The
evolution of 5G towards 6G will enable multiple access contexts, associated with
the support of heterogeneous networks, with the support edge and cloud com-
puting models. In such context, current FIM solutions mainly focus identity
management and do not consider the possible context environments where ser-
vices require user information for authentication and authorization purposes.

4

This page is intentionally left blank.

Chapter 1

Introduction

The advancement of technologies, such as Software Defined Networking (SDN), has made
network administration easier. The SDN technology offers more flexibility and allows the
administrators to control networks, modify configuration settings, among others from a
centralized location. This technology has also been used in cloud computing and telecom
operators facilitating the planning and operationality of communication networks.

The SDN architecture with a centralized controller has constraints on the flow tables
of various devices, which tend to be vulnerable to distributed denial of service attacks
(DDoS) [1, 2] and other attacks. SDN has become an easy target since it centralizes all
respective network information. There are currently some security features that can be
employed to try to prevent these problems such as access control lists, “honeypot” for SDN
applications and the use of Transport Layer Security (TLS) [3].

SDN controllers can have several applications with different features, such as metrics collec-
tion, and dynamic flow management, among others [4]. These applications are installed us-
ing the management Application Programming Interface (API) provided by the controller
(Web interfaces, Representational State Transfer (REST)-based interfaces, Command-line
Interface (CLI)). These interfaces rely on basic authentication schemes, with username
and password, which in cases where the credentials are stolen either by social engineer-
ing, through spoofing, or another exploit, and these attacks are not detected, the attacker
will have unlimited access to the controller, its resources and will have control over the
respective network. Therefore, we need a more robust authentication mechanism
in SDN controllers to prevent such threats.

OpenID Connect (OIDC) [5], a federated authentication based on the OAuth 2.0 protocol
[6], is an example of a protocol that can be a better-suited solution to solve the stated
problem and increase the security of SDN controllers since it can both authenticate and
authorize a user. Both OIDC and OAuth 2.0 protocol use access tokens, which are tokens
that allow the user to access the restricted resources in the controller for a limited time,
limiting the attackers’ access even if a token is stolen. These protocols are widespread
in the Internet, for authentication and authorization in websites via Google or Facebook
accounts.

Some SDN controllers started to incorporate Authorization Authentication and Accounting
(AAA) services to have a better user management, including an integration with protocols
such as OAuth 2.0. The integration with this protocol can be found on SDN controllers
including ONAP [7] and OpenDaylight [8].

The major goal of this work is the design and evaluation of an authentica-

6

Introduction

tion and accounting framework for SDN networks with the integration of the
OIDC and OAuth 2.0 protocols. The flexibility of these protocols also presents the
opportunity to add more information regarding the authenticated devices of
an end-user. This opportunity allows the end-user to have different levels of trust
regarding its devices, the User-Agent (UA) (e.g Google Chrome), service, application
and network used. For example, a user can have full trust in an environment with a private
network, while using their personal computer where the UA is Google Chrome whereas in
an environment with a public network the same level of trust cannot be matched.

Current approaches frequently have drawbacks whether using basic authentication with a
username, password combo, or using OAuth 2.0 with the use of basic tokens (like stan-
dard OpenDaylight). These basic tokens are a Base64-encoded username and password,
therefore, do not provide a strong security level. The use of bearer tokens, meaningless
non-signed strings which do not have encoded credentials, or JSON Web Token (JWT),
signed and encrypted tokens with a JSON payload that includes information regarding the
authentication process and some user information, would be an ideal solution to raise the
authentication robustness of the SDN controllers and consequently improve the security of
the network.

In this work, we start by understanding the impact of adding the context information
regarding the authenticated devices of an end-user in a OIDC flow, primarily in a web
context, since most OIDC integrations tend to be in that context. So, we propose a
methodology, Section 3.3.1, in which we indicate the fields that represent the context
information, as well as an algorithm to evaluate those fields and enforce policies accordingly.
The preliminary results of this methodology revealed that the flow of authentication with
OIDC needs to be adjusted to support the context information and the additional fields
did not add a high cost in the REST operations and authentication flow.

To start developing the framework proposed, first is presented an architecture for the
framework, highlighting the main components, OpenDaylight controller, AAA filter, Re-
lying Party (RP), and Keycloak, as well as describing the interactions between them. In
Chapter 5, we introduce the concepts of roles and grants on the controller, and how we
take advantage of those concepts to have a more refined authorization to the different
REST endpoints of the controller. We also describe the configurations on Keycloak and
the modifications done on the AAA filter of the OpenDaylight controller, together with
the creation of the component RP in the OpenDaylight controller.

For Keycloak we detail the OIDC clients created as well the configuration for each one,
as well as introduce the concept of an Requesting Party Token (RPT), Section 5.2.1. For
RP we explain how it uses the Keycloak REST API, to create a bridge of communication
between the controller and Keycloak in Section 5.2.2. Section 5.2.3 describes the work of the
AAA filter and how it manages the received requests. A suggestion of a new architecture
for OpenDaylight is also proposed where the AAA filter is common integration for the
different modules of OpenDaylight, even though its full integration is out of the scope of
this work. At last, we explain the flow of an OIDC authentication with context information,
how the authorization bearer token is verified together with the context information, and
to proceed when a bearer token needs to be renewed.

To evaluate the framework proposed, we prepared an experimental procedure to test dif-
ferent parameters related to authentication, including the verification of a token sent by
an authenticated user, parameters related to the token renewal, compare the behavior of
the same user, "admin" in both an OpenDaylight standard, and the OpenDaylight of this
framework which was modified, and at last, analyze the security and functionality of the
roles added in OpenDaylight and the use of context information to make sensible opera-

7

Chapter 1

tions to the controller. This experimental procedure included a different number of users,
different types of users, and different context information.

The results obtained state no significant differences for the metrics collected regarding the
authentication or renewal procedures, where in most cases even with a different number of
users, or user’s type, or context information the values obtained were very similar (complete
results in Section 6.2). The test set related to security and functionality of roles and
context information showed that the roles added prevented unauthorized requests and the
use of context information prevented sensible operations to be realized under scenarios
with low and average trust. However, when comparing the timing metrics obtained from
the controller of this framework with the standard controller within the same user, the
timing of authentication is almost 8 times higher, as well as operations in the controller
that will also update Keycloak database (e.g creation of a user), are almost 3 times higher.

Even though there is a cost to increase the level of security in the OpenDaylight controller,
all the times obtained were in milliseconds (ms), and none of the values presented went
above a second, which indicates that in a user experience while interacting with the con-
troller, this cost will go almost unnoticed while experiencing twice the security,
benefiting from the integration of OIDC and the use of context information. By following
a methodology of using attack trees to compare different authentication mechanisms while
analyzing the threat range and complexity of the tree, we showed the security gain, since
the attack trees presented an increase in the complexity of the attacks with each security
element introduced in OpenDaylight.

1.1 Objectives

The main objective of this work is to design and evaluate a framework, which incorporates
authentication and accounting mechanisms in SDN controllers. This objective aims to
identify and authenticate end-users who want to access resources in a SDN controller.

To accomplish this goal a security feature such as OIDC was integrated in an SDN controller
- OpenDaylight, with an extension to new parameters to regulate the levels of authorization
based on context information of end-users regarding its devices.

1.2 Contributions

The contributions presented are the ones achieved during the development of this work.

• The current Federated Identity Management (FIM) solutions are primarily concerned
with identity management and do not take into account the context environments in
which services may require user information for authentication and authorization.

– The proposal of a solution for object identification and authentication in fed-
erated scenarios, taking into account the trust relationships between end-users
and applications/services operating on the devices. These ’objects’ can be a
physical device or an application, with associated environments, on which UA
are executed. The Uniform Resource Name (URN) and Universally Unique
Identifier (UUID) standards would be used to identify such ’objects’.

– The proposal of a methodology that takes into account the trust context infor-
mation of a trustor, user, and trustee services, networks, devices, and applica-

8

Introduction

tions in federated environments to address constraints in FIM solutions based on
OIDC, since OIDC simply seeks to identify entities and ignores the many levels
of trust that a person might have with their devices as well as the environment
in which interactions take place. For example, a user may have greater trust in
a home assistance device than in an IoT device that measures temperature on
their home network.

– The proposal of a solution by adding a set of fields to convey context information
expressing a user’s trust in a device, or in a UA accessing services through
networks. It considers the approach of adding a new claim in OIDC. Aside from
establishing basic claims, the OIDC specification also allows for the provision
of extra claims in a standard manner. The verification of this new claim will
result in distinct policies at the OpenID Provider (OP), providing differentiated
access to the resources, in this example, registered user personal information.

• The implementation of OIDC support with an extension for context information in
TeaStore [9] (a basic web store). The experimental procedure in Chapter 4 portrays
the implementation and evaluation of this contribution.

• The implementation of Hypertext Transfer Protocol Secure (HTTPS) in TeaStore.
For the experimental procedure explained in Chapter 4, all entities involved used
HTTPS to communicate with each other. As TeaStore was not able to support
HTTPS and share a TLS certificate for the 6 services it includes, there was close
work done with one of the authors of TeaStore, in order to make it support HTTPS.
Now, TeaStore can support HTTPS communications, which work can be found in
the Github main repository of TeaStore [10].

• Implementation of the framework proposed, OpenDaylight controller with support
for OIDC authentication as well an extension for context information, while using
Keycloak as the OP and to have better user management, Chapter 5.

1.3 Structure

The remaining document is organized as follows:

• Chapter 2 - Provides an overview of the key topics covered by this work, introducing
some concepts such as security features, SDN controllers, and protocols. It also
reviews the related work regarding security features implementations in Web or SDN.

• Chapter 3 - Describes the work’s research objectives and introduces the approach
taken throughout the dissertation work, as well as the methodology used.

• Chapter 4 - Presents the experimental work accomplished in the first semester.

• Chapter 5 - Describes the work conducted in the second semester, and the imple-
mentation of the framework proposed.

• Chapter 6 - Presents the results obtained from the experimental work on the frame-
work, as well as an analyze

• Chapter 7 - Provides the main conclusions, a summary of the results, and the future
work that can be followed.

9

This page is intentionally left blank.

Chapter 2

Background and Related Work

This chapter provides an overview of security features, as well as the related concepts that
are relevant to understanding the topics covered in this thesis. Their functionalities and
characteristics are detailed in order to understand the flow of data while using such security
features, the actors involved, and the objects traded for each request and response.

Five Software Defined Networking (SDN) controllers are introduced, as well as an overview
of their support for Authorization Authentication and Accounting (AAA) services, addi-
tional features, or relevant plugins denoting this controller, and in some cases their archi-
tecture.

Different SDN protocols are also presented to comprehend the communications and oper-
ations occurring with and within an SDN controller and respective switches/devices in the
network. The benefits of such protocols are also detailed.

At last, even though there is limited research from our understanding regarding the im-
plementations of the security features presented in SDN controllers, there is somewhat
research regarding the security features in web implementations. Therefore, in the follow-
ing sections, we also discuss related work to both of these two types of implementations.

2.1 Security Features

Overall, security features have the objective to increase the security of a process, opera-
tion, application, or communication. The security features presented in this section aim
to increase security regarding the authentication and authorization process of individuals.
These features also take extra measures to ensure that the authenticated individuals access-
ing restricted resources are legitimate and not some attacker bypassing security processes.
Some of these features are more tailored to web implementations and others to network
implementations.

2.1.1 OAuth 2.0

OAuth 2.0 is an authorization protocol for access delegation that is defined in RFC 6749 [6].
This security standard is only designed for authorization where a user permits applications
to access its data. The user can also grant access to other applications on his behalf,
without the need to use passwords. Authorization or delegated authorization are terms
used to describe the steps involved in the granting permission process. OAuth 2.0 also

11

Chapter 2

defines measures to revoke the permissions that were given.

In OAuth 2.0 several entities interact with each other [11]. The Resource Owner, often
known as the end-user, is the person who is in charge of the resources. Following, there is
the Client, the consumer of the resources, which is an application that looks for the end-
user approval to access the data on their behalf. The Application Programming Interface
(API) that the Client wants to access on behalf of the end-user is called a Resource Server.
It controls access to resources and who has access to them based on a set of rules. The
User-Agent (UA), which is typically a browser, that interacts with the client to provide
the required information for authorization requests and is used by the Resource Owner
to communicate with the Authorization Server (AS). Finally, the AS is an application in
which the Resource Owner already has an account. The AS should be able to verify a
Client ’s identification and, if necessary, authenticate the end-user.

To fully grasp the concept of OAuth2.0, some concepts need to be explained:

• Scope - A scope defines which data the Client application needs to access. If a
Client needs access to multiple resources, there will be multiple scopes defined.

• Consent - When the AS receives the scopes in the request of the Client, it will verify
with the Resource Owner if they want to give their consent to the Client to access
the data in those scopes.

• Redirect URI - Or callback URL, is the URL that the authorization server will
redirect the end-user to, after giving their consent to the Client.

• Response type - Response type is the type of response the Client is expecting to
receive. In the case of the Authorization code grant, the response type is code.

• Authorization code - An authorization code is a temporary code that the Client
gives the AS in exchange for an Access Token.

• Access Token - An Access Token is a ticket that gives permission to the Client to
communicate with the Resource Server and retrieve data on behalf of the end-user.
The most common access token type used in OAuth 2.0 is the bearer.

• Refresh Token - A Refresh token is a token used for renewing an access token after
its expiration.

Figure 2.1 [12] represents the abstract OAuth 2.0 flow, with the entities mentioned and
the interactions between them. Using the example of a web application, the Client, that
offers log-in via Facebook, it first needs to make an authorization request to the resource
owner, the end-user. The Client then receives an authorization grant, which is a credential
associated with the end-user authorization. Following this first request, the Client makes a
token request to the Facebook AS, while presenting the authorization grant received. The
Facebook AS when it receives this request, authenticates the Client and verifies the autho-
rization grant, responding with an access token if the authorization grant is valid. With
this token, the Client makes a request to the Facebook Resource Server, which includes the
access token and the resources it wants to access. The Facebook Resource Server validates
the token and upon successful verification, responds with the requests fields. The Client,
with the information received, can then authenticate the end-user into their application.

When developers register a Client in the AS, the server generates two components: a client
ID and a client secret, which are used in all subsequent OAuth transactions. The client

12

Background and Related Work

Figure 2.1: Abstract OAuth 2.0 Flow

secret is similar to a password that only the AS and Client know in order to communicate
with each other. The client ID identifies the client in the AS.

Grant types are one of OAuth 2.0’s most important features. A grant type specifies how a
Client application obtains an access token from an OAuth 2.0 AS. This access token allows
a client application to access a resource on behalf of the Resource Owner [13].

The main grant types defined in OAuth 2.0 are the following:

• Authorization code grant - In this grant, there are two requests directed to the AS.
The first request which response is an Authorization Code, and the second request
exchanges the authorization code for an access token

• Implicit grant - In this grant, there is no intermediate step of exchanging an au-
thorization code for an access token. This token is given in the first request. When
the AS issues an access token, it does not authenticate the Client.

• Resource owner credentials grant - In this grant, the Resource Owner ’s cre-
dentials, username, and password are exchanged in a single request for an access
token.

• Client credentials grant - In some cases, where the Client is also the Resource
Owner, the Client ’s credentials (client ID and a client secret) can be used as an
authorization grant, and exchanged for an access token.

• Refresh Token grant - This grant is used to retrieve new access tokens when the
current access token expires

An OAuth 2.0 grant type is represented by numerous requests and responses in order to
receive an access token from the authorization server to access the protected resources.
For example, as mentioned, the Authorization Code grant is divided into two parts [14].
Each part requires an endpoint in the AS to be dealt with it, as shown in Figure 2.2 [14].
The first request, the authorization request, will be directed to the authorization endpoint
in the AS. In this request, along with the client id, and client secret, other parameters are
specified such as the scope that the token is expected to have. A token can have access
to different data items within the Resource Owner, the end-user, hence the possibility of
the definition of multiple scopes. However, the AS does not have to issue a token with
all requested scopes if it is not necessary or if the Resource Owner does not give consent
to the presented scopes. The second request, the access token request, is handled by the
token endpoint in AS, where there the Client exchanges an authorization code for an access
token, with the scopes defined associated with it. At last, with this token, the Client can
access the protected resources on behalf of the end-user.

13

Chapter 2

Figure 2.2: Authorization Code Grant

2.1.2 OpenID Connect

OpenID Connect (OIDC) is an additional security layer on top of OAuth 2.0, Figure 2.3
[15], and defines how OAuth 2.0 can be extended to identify a user. OIDC adds both
profile and login information about the person who is authenticated. OIDC facilitates
Single Sign-On (SSO) (single login used across numerous applications/services), identity
federation, attribute sharing, single logout, and other use cases [13].

Figure 2.3: OpenID Connect Additional Layer

In OIDC, there is the redefinition of some entities. The OpenID Provider (OP), which
corresponds to the OAuth 2.0 AS, is responsible for the authentication, obtaining the
consent and authorization of the end-user. The Relying Party (RP), which corresponds
to the OAuth 2.0 Client, is in charge of establishing a connection with the end-user to
handle the information required for the authentication.

The OIDC scope is a new feature introduced by OIDC that allows authentication as an
extension of the OAuth2.0 protocol. OIDC extends OAuth with the ID Token extension,
which is a security token, a JSON Web Token (JWT), with multiple claims about the
authentication of an end-user [5]. A claim corresponds to some information regarding an
entity that has been stated. Even though JWT is not comprehensive just by looking, the
RP can extract information from it, such as the ID, name, the time of issuing the access
token, the ID Token expiration, and verify if the JWT has been tampered with.

The mandatory fields included in the claims of an ID Token are the following [5]:

• iss - Is a URL that includes the token issuer’s scheme, host, and port number.

• sub - Is a unique subject identifier with local context for the end-user.

14

Background and Related Work

• aud - It corresponds to the OAuth client id, identity to which the ID token is intended
for.

• exp - Expiration time.

• iat - Time on which the token was issued.

Authentication flows are the methods designed for a RP to obtain an access token and
an ID token. An authentication flow is more than a grant type even though it uses grant
types. In OIDC there are three main flows Authorization code flow, Implicit flow, and
Hybrid flow.

The authorization code flow in OIDC, Figure 2.4 [16], is similar to OAuth 2.0 Authorization
code grant. The main differences are that scope of OIDC is specified in the first request,
and the RP receives both an Access Token and an ID Token in the final exchange. The
RP must communicate with the OP’s token endpoint to obtain an ID Token and an access
token. There is also a UserInfo Endpoint, in the OP, where a request made with an access
token will result in the returns of claims about the end-user [17].

At the beginning of the authorization code flow, after verifying the authentication request
from the RP, the OP always verifies whether the user is authenticated, if it has a valid
login session under the OP’s domain or if it has already logged into the OP using the same
web browser [18]. If the user does not have a valid login session, the OP will prompt them
to authenticate, as well as obtain their permission to share the required claims with the
RP.

Figure 2.4: OpenID Connect Authorization Code Flow

The authorization code flow has specific characteristics:

• The redirect URI in the authentication request has to match the one that is already
registered in the OP.

• The value of the state parameter, a simple string added to the authentication request,
must be returned to the RP by the OP in the authentication response.

• The nonce field contains a unique value that the RP adds to the OIDC authentication
request.

• There is only one possible value of response in the authentication code flow, which
is the code.

15

Chapter 2

Nowadays, the main usage of OIDC is for the sign-in process in web applications. Websites
such as SAPO, Yahoo, WordPress, Notion, Trello, Medium, Zoom (Google or Facebook)
and many more [19], support sign-in via identity providers such as Apple, Facebook, Google,
Linkedin, Microsoft, which makes the process of sign-up into an application much easy and
fast, as well lessen the need to create individuals accounts for each web application.

2.1.3 SAML2.0

Security Assertion Markup Language (SAML) is an XML-based framework for sharing
security information between business groups, with the use of a SAML assertion payload.
The SAML 2.0 has been embraced in many enterprise environments since it allows their
applications to authenticate and keep the user’s digital identity in a centralized identity
provider [13]. Cross-domain SSO and identity federation have become the two major
elements of SAML 2.0.

In SAML there are three key actors in any interaction. The first, Identity Provider (IdP)
authenticates and authorizes users. It is a trusted organization and issues SAML assertions
tokens about an authenticated subject. A subject is an entity whose security information
will be exchanged, which is usually the application’s user. When a subject is authenticated,
the results of the subject authentication event are returned in an XML message known as
an authentication response. The authentication assertion payload in this response contains
claims about the authentication and the authenticated user.

The second actor is a Service Provider (SP). It delegates subject authentication to a trusted
IdP. Additionally, acts on information encoded in assertion tokens about an authenticated
subject to decide whether this subject is or not allowed to access a resource.

The User is the third and last actor, which can be a program that wants to access a
resource. The user is usually the first to initiate the protocol by communicating with the
SP.

An assertion is an XML-based statement that conveys information regarding a subject’s
security. A SAML assertion is a claim or statement made by the IdP and trusted by the
SP. There are three types of assertions:

• An authentication assertion that verifies the user’s identity.

• An attribute assertion that carries user-specific information.

• An authorization assertion that specifies what the user is authorized to do.

Cross-domain web SSO is one of the most common SAML scenarios. The Figure 2.5 [13]
shows a SAML SSO where a subject starts by wanting to use an application that serves as
a SAML provider. However, before this interaction can begin, the SP and the IdP must
exchange information to configure and set up a trust relationship. Additional information
can be requested after the initial transaction (these two steps mentioned are not presented
in Figure 2.5). As a result of the initial interaction, a SAML request is generated, as
presented in step 2 of the figure, and user authentication is delegated to an IdP. This
IdP interacts with a user to verify credentials and authenticate them. If successful, the
application receives a SAML assertion. The subject logs in once the program validates the
SAML assertion in the response.

16

Background and Related Work

Figure 2.5: SAML SSO

Identity federation is also a method offered by SAML, as mentioned, where an IdP and
application use a commonly shared identifier for a user. This can be used internally or
across systems.

These days, web applications such as Educast, Zoom (SSO), IEEE Xplore, support SAML
2.0 and consequently SSO, where it is possible to have a federated authentication with the
credentials of an institution, including the University of Coimbra.

2.1.4 Authorization Authentication and Accounting

AAA stands for authentication, authorization, and accounting and is a framework to pro-
vide an additional layer of security. This framework is extremely relevant in network man-
agement and security because we want to prevent unauthorized users to access network
resources and perform actions that require authorization, as well as preserving sensitive
information when necessary. AAA also helps with non-repudiation, since an individual
cannot deny their actions if authentication, authorization, and accounting are in use.

Therefore, AAA controls who is allowed to use network resources, and what they are
authorized to do, and also records the actions done by one accessing the network.

When a user wants to access network resources, the first step is to perform authentication
to identify the individual. In most cases, authentication is done by providing a valid and
unique username and password. In other cases, authentication can be done through a 3rd
party, an external AS. The user’s credentials provided are compared with the stored user’s
credentials. If the credentials do not match, it is denied access to the network. However,
if credentials match, the user is authenticated and gains access to the network.

Following a user authentication, it is necessary to verify its identity and decide which
resources this user should have access to or which operations is the user authorized to
perform. Multiple authenticated users may have different levels of authority in the system.
Authorization helps to decide what Access Control List must be applied, or which role the
user belongs to.

The final step in the AAA framework is accounting. Accounting or auditing keeps track of a
user’s activity and what resources the user consumes during its access, the time spent in the
network as well the services accessed. This logging of information is used for authorization
control, resource utilization, and analysis of the system.

17

Chapter 2

Since SDN is one of the key technologies of 5G, authentication is also critical to the security
of cellular networks since it allows users and the network to establish mutual authentica-
tion. In the 5G Architecture designed by 3GPP [20], there is an Authentication Server
Function (AUSF) that eases these security processes. In the home network, the AUSF
handles authentication with a User equipment (UE). It decides on UE authentication, but
it uses the help of a backend service to handle the additional computation required for the
authentication data. Unified Data Management (UDM) is the backend entity that picks
an authentication method based on the identifiers received and policy settings, as well
as computing the authentication data needed for AUSF. Finally, there are the Security
Anchor Function (SEAF), which resides in a serving network and acts as a "middleman"
between a UE and its home network throughout the authentication process [21].

Figure 2.6: 5G-AKA Authentication Flow

For example, in the 5G-AKA authentication flow, Figure 2.6 [21], after receiving any
signaling message from the UE, SEAF may begin the authentication procedure by sending
an authentication request to the AUSF. The AUSF checks to see if the providing network
requesting the authentication service is authorized. The AUSF sends an authentication
request to UDM if it is successful. The authentication method is selected, in this case,
5G-AKA, after receiving this request and the data in the request is decrypted [21]. UDM
initiates 5G-AKA by delivering an authentication vector including an AUTH token to
the AUSF. The AUSF generates a hash of the expected response token and transmits
the authentication response, as well as the AUTH token and this computed hash, to the
SEAF. The SEAF saves the hash and delivers the AUTH token to the UE as part of
an authentication request. Using the secret key it shares with the home network, the UE
validates the AUTH token. The UE considers the network to be authenticated if validation
passes. The UE completes the authentication process by calculating and delivering a token
to the SEAF, which the SEAF validates. The SEAF then sends the token to the AUSF
for validation if the token is successful [20]. If the UE’s token is valid, the AUSF generates
a key and delivers it to the SEAF, as well as notifying UDM of the authentication results.

2.2 Related Work

In 2015, Oktian et al. [22] proposed a more secure Representational State Transfer (REST)
Northbound Interface for SDN controllers, using token-based authentication and authoriza-
tion for applications and users, based on OAuth2.0 protocol (more about SDN in the next

18

Background and Related Work

section, 2.4). They discuss the current implementation of OpenDaylight, where a user
exchanges username and password information for an access token, and other implementa-
tions including Floodlight, Open Network Operating System (ONOS), Ryu, or POX which
offered no REST Northbound Interface security. However, the approach of OpenDaylight
can only authenticate the user but not the application. So, their proposal uses delegated
authentication flow, in which the application contributes to the authentication process,
authenticating both the user and the application. Their proposal also provides ID-Based
Cryptography mechanism to replace Transport Layer Security (TLS) and JWT to give
additional security in REST Northbound Interface Messages.

Following this work in 2017, Oktian et al. [23] presented a REST API security framework
for SDN controller based on OAuth 2.0, called OAuthkeeper. Their prototype was im-
plemented on top of ONOS SDN controller and used Bearer Token, which was stored in
the memory of SDN controllers, and offered support for the four grant types provided in
OAuth 2.0 protocol. Additional OAuth 2.0 parameters, such as domain, scope, switch,
and controller, were also supplied by the authors in order to provide more tight access
control. There was an adaptation to the filter module present in ONOS, which was offered
to all REST API endpoints. This filter includes three types of authentication filters, one
for basic authentication, one for form authentication, where it detects if there is a session
present in an Hypertext Transfer Protocol (HTTP) request, and if not OAuthkeeper will
redirect the request to a login page, and at last a token authentication filter, to retrieve an
access token from the HTTP request and verify them. They’ve also carried out practical
tests with the goal of determining how many REST API requests per second ONOS can
manage with their framework incorporated, where they used used Mininet as their net-
work simulation tool to simulate SDN switches and hosts, and Locust to generate a flood
of users to simulate REST API requests from SDN applications to ONOS. They also tested
scenarios with ONOS Basic authentication and ONOS without any REST API security.
Their framework presented a good performance, with minimal overheads, where their work
produces a 15% overhead from the unsecured ONOS to a 3-4% overhead compared to the
default ONOS Basic authentication.

Bonelo [24] work provides a method of integrating dynamically deployed services into
an SSO provider in a federated network of users. CYCLONE-PAM is an authentication
system that allows users to log in to an SSH server using their institution’s SSO credentials.
Their solution is built on extending the PAM process to enable the use of OIDC as an
authentication source. With this approach, their main goal was to provide a user experience
comparable to the one provided by the use of RSA keys, only in this case while using web
browsers and SSO technologies. Only JWT client authentication is supported in their
implementation.

In 2020, Holtmann [25] contributes with a thorough examination of OIDC implementations
and security elements of SSO. Their experimental architecture was mostly Docker-based,
with Burp Suite serving as an intercepting proxy for the local test environment. For their
custom OIDC implementations, the author also employed NodeJS webservers. Four OPs
and five SP implementations were assessed for security throughout the evaluation process,
using known and specific attacks against OIDC implementations. Two specification in-
accuracies were discovered, both of which potentially have security ramifications. More
typical concerns were found with CRLF injections in OP supplied data and Server-Side
Request Forgery.

In 2017, Naik et al. [26] presented an evaluation of the SAML, OAuth 2.0, and OIDC
standards in terms of security resilience and vulnerability, design, and functionality. The
goal was to determine the right use of these standards to protect both the credentials

19

Chapter 2

and digital identity of a user. It also provides an in-depth examination of their security
vulnerabilities. Three separate attacks were carried out in the experimental phase: Denial-
of-Service, Man-In-The-Middle, and Cross-Site Scripting. SAML shows to be vulnerable
to Denial-of-Service attacks and appears to be vulnerable to the other two assaults as
well. OIDC also had certain vulnerabilities, which were mostly caused by bad OAuth 2.0
implementations or logical flaws, or by the presence of a malicious OIDC identity provider.

In 2020, Basney et al. [27] used CILogon, an observatory to monitor authentication dif-
ficulties in a distributed identity federation, to investigate the underlying causes of au-
thentication failures in the system where SAML IdPs and OIDC RP are serving academic
research applications. The findings revealed that OIDC had almost double the failure rate
of SAML, despite OIDC’s claimed simplicity. To mitigate the errors found, it was also
demonstrated that better error messaging may considerably reduce error rates by allowing
problems to be detected and treated more quickly.

In 2017, Méndez et al. [28] presented OpenStack, an open-source cloud software solu-
tion that provides identity services (authentication and authorization) to other modules in
OpenStack. With the use of ABFAB technologies (technology built on AAA, EAP, GSS-
API, and SAML), OpenStack can be incorporated into a federation system with an AAA
infrastructure. This OpenStack federation integration is accomplished by integrating the
ABFAB Relying Party’s capabilities into Keystone’s Apache frontend. The authors also go
through the authentication and authorization workflow, explaining how data is transmitted
between the different entities. The AAA protocol is used to create the trust relationships
between the RP and the IdP . At last, the results of the performance analysis suggest that
the average authentication would be less than 2 seconds in production scenarios.

In 2020, Apte et al. [29] analyzed various protocols for Federated Identity Management
(FIM), such as SAML, OIDC, and OAuth. These protocols are then evaluated and con-
trasted in terms of privacy and OpenStack implementation. During the evaluation, the
authors determined that SAML shares identity attributes without the user’s knowledge,
and stated that user authentication stayed valid even when expressly removed in some cir-
cumstances, posing a greater risk for cross-domain deployment. On the other hand, OAuth
and OIDC user identities were accessible to other parties after obtaining user consent, and
they could be revoked at any time when the user’s access to specified resources is removed.

Grassi et al. [30], authors of the National Institue of Standards and Technology (NIST)
Digital Identity Guidelines, recommend the use of SAML or OIDC technologies to preserve
the confidentiality of a subscriber’s sensitive information (their digital identity), since these
technologies use respectively assertions and claims, which can also be optionally digital
signed.

Table 2.1 presents the related work compiled to provide an easier overview of the different
research works.

2.3 Authentication and authorization tools

2.3.1 Authlib

Authlib is an open-source Python library to build OAuth and OpenID Connect clients and
servers [31]. It offers generic but flexible implementations of RFCs, which include JWS,
JWE, JWK, JWA, JWT, Oauth 2.0 OIDC and more.

Authlib provides support for many framework integrations including Flask, Django, Re-

20

Background and Related Work

Table 2.1: Related Work Overview

Authors Summary

Oktian et al. [22]
• Secure REST Northbound Interface for SDN controllers

• Token-based authentication and authorization for applications and users

Oktian et al. [23]
• REST API security framework for SDN controller based on OAuth 2.0

• Performance analysis

Bonelo [24]

• Authentication system to log in to an SSH server with institution’s SSO
credentials

• Provide similar user experience as using RSA keys but with web browsers
and SSO technologies

Holtmann [25]
• Analysis of OIDC implementation and security elements of SSO

• Vulnerability assessment

Naik et al. [26]

• Evaluation of the SAML, OAuth 2.0, and OIDC regarding security strength
and security vulnerability

• Vulnerability assessment

Basney et al. [27]
• Identify authentication failures in system using SAML and OIDC

• Monitorization of authentication difficulties

Apte et al. [29]
• Analysis of protocols for FIM, such as SAML, OIDC, and OAuth

• Privacy assessment

Méndez et al. [28]

• integration of OpenStack in a federation system with an AAA infrastruc-
ture, using ABFAB technologies

• Performance analysis

Grassi et al. [30]
• Recommend the use of SAML or OIDC to preserve digital identity confi-

dentiality

quests, and more. Besides good documentation, Authlib already provides some examples
of framework integrations with OAuth 2 and OIDC acting as a server and a client, which
can be easily used and modified to support your project.

2.3.2 Keycloak

Keycloak is an Open Source Identity and Access Management which provides SSO, identity
brokering (OIDC and SAML 2.0 Identity Providers), social login, User Federation (LDAP
or Active Directory servers), an Admin and Account Management Console, support for
standard Protocols (OIDC, Oauth 2, SAML) and clustering, and offers fine-grained autho-
rization services [32].

Keycloak has an H2 database embedded however it offers support for Mariadb, Mssql,
Mysql, Oracle, and Postgres. H2 is a very fast database engine and open source. It
supports transactions as well as multi-version concurrency, allows full-text search, and

21

Chapter 2

offers support to Java functions and stored procedures. H2 in an embedded mode offers
faster and easier connections. At last, H2 has strong security features, having encrypted
databased with Advanced Encryption Standard (AES). In addition, Keycloak has two
types of cache. Local cache to store realm, client, role, and user metadata. The second
type of cache stores offline tokens, user sessions, and login failures.

In Keycloak, a set of users, credentials, roles, groups, OIDC clients, and more are encap-
sulated in a Realm. Each Realm has its own set of users, and roles,.. and is only able to
authenticate the users in their Realm. Roles in Keycloak are divided into three categories:

• Realm Role - Roles that belong to a specific realm. Accessible from any client and
can be mapped to any user.

• Client Role - Role that belongs to a specific client. Only accessible from that client
and only mapped to users of that client.

• Composite Role - Role which encapsulates more roles (realm or client roles).

As mentioned, Keycloak offers different access control mechanisms and fine-grained autho-
rization policies for their resources [33]. Regarding a OIDC client, when the Authorization
services are enabled, we are presented with the following concepts:

• Resources - Protected resources.

• Authorization Scopes - Actions performed on the resources.

• Policies - Conditions that must be fulfilled before granting access to a resource.

• Permissions - Associate the resources with policies. These policies must be evalu-
ated to decide if access should be granted.

A resource is a protected resource and it can simply be identified by its name. Authorization
Scopes are also identified by a string, usually represented by a verb, get, view, delete, since
it represents the actions that can be performed on a resource.

There are 9 types of policies, but the more relevant types for this work are Role Policy
and JavaScript Policy. Role policy defines a user role, that can be later associated with a
resource. Therefore, to gain access to that resource a user must have the role specified in the
policy. The JavaScript Policy, allows the flexibility to coding any policy that must return
"$evaluation.grant();" if the conditions are fulfilled. JavaScript policies are disabled by
default in Keycloak, so is necessary to deploy a JAR to enable these scripts.

Permissions have two types, Resource Permission or Scope Permission. A Resource Permis-
sion is defined as the resources to protect using one or more policies. A Scope Permission,
besides defining resources and policies, can also define scopes to associate with that re-
source and therefore control the actions that can be performed to that resource. For any
type of Permission, we must choose a decision strategy. The decision strategy dictates
how the policies associated with given permission are evaluated and how a final decision is
obtained.

• Affirmative - at least one policy must be evaluated as positive for the final decision
to be also positive.

• Unanimous - all policies must be evaluated as positive for the final decision to be
also positive.

22

Background and Related Work

• Consensus - the number of policies evaluated as positive must be greater than the
number of policies evaluated as negative. In case of a tie, the final decision will be
negative.

Besides an access token, refresh token and id token generated by an OIDC authentication,
Keycloak can also generate a Requesting Party Token (RPT) token (not on the specification
of OIDC), which is an access token with all permissions granted by the OIDC client. These
permissions (or authorization data) include the resources and scopes of that OIDC client
that a user has permissions to access. To obtain an RPT, a request to the token endpoint
must be made with the access token previously received in the authentication. This type
of token results in fewer authorization requests since all the permissions needed for a user
is already included in that token.

2.4 Software Defined Network Controllers

SDN represents a new approach for network management that abstracts network resources
for applications and eliminates the need to repeat the same configurations in multiple
devices [4]. Nowadays, with the increase of data centers, SDN’s highly scalable and cen-
tralized network control architecture can offer significant benefits and cost reductions.

Figure 2.7: SDN Architecture

Figure 2.7 [34], represents an SDN Architecture with elements such as an SDN controller,
control, and data plane, network applications and devices, and northbound and southbound
interfaces. The control plane in SDN is software-based which also offers more flexibility
than standard networking. It manages how data packets are forwarded. The data plane
physically handles the traffic depending on the control plane’s configurations, that is it
forwards the packets. Additionally, the centralized software-based controller offers an open
interface that allows the administrators to control networks, alter configuration settings,
and others from a centralized location. This interface could be the interface to the appli-
cations, northbound, or it could be the interface to the devices, southbound.

The northbound interface of the controller gives an abstraction of the network layer and
topology, as well as the network protocols themselves. In addition, REST or JSON are
commonly used in the northbound API which developers are familiar with. In this north-
bound API, applications can quickly be connected to the controller and make network

23

Chapter 2

changes. In the case of the southbound API, the controller uses the OpenFlow interface
(see Section 2.5.2) to manage the network devices.

These SDN applications can define flows on a device, tell them how to respond to a packet
forwarded to the controller, redirect traffic for purposes of inspection, authentication, or
related security tasks [4]. So, the need to secure the controller is extremely high since it
can help maintain the network secure.

The following sections will mention the most used SDN controllers with a special focus on
their security proprieties and support for AAA services.

2.4.1 Open Network Operating System

ONOS has initially been released as an SDN operating system for service provider net-
works [35] with careful attention to high availability, scalability, and performance.

Recently, ONOS added the support for TLS and added authentication mechanisms to
restrict access to ONOS REST API, Graphical User Interface (GUI), and Command-line
Interface (CLI). [36].

• ONOS CLI - To access ONOS CLI, there is a need for a public/private key authen-
tication.

• ONOS GUI - To access ONOS GUI, there is the need to fill a form login.

• ONOS REST API - To access ONOSREST API credentials must be given to perform
a basic authentication.

ONOS uses the Apache Karaf framework [37], where the Apache Karaf authentication
realm is also used by the ONOS CLI, GUI, and REST API. At the moment, ONOS does
not support role-based authorization.

2.4.2 OpenDaylight

OpenDaylight is a modular open-source platform hosted by the Linux foundation for scale-
out: customizing and automating networks of any size and scale [8]. This modular platform
is based on Kafka container, which permits the module to be turned off/on without hin-
dering other modules.

The SDN platform in OpenDaylight is supported by different protocols such, OpenFlow,
OVSDB, NetConf, BGP, and many more. OpenDaylight uses Apache Shiro Java security
framework [38] to provide Cryptography and Session Management and AAA services, which
include Authentication, Authorization, and Accounting.

To support the authentication & authorization schemes, the AAA module in OpenDaylight
uses the Shiro Realms [39]. This AAA module has the role of checking the authenticity
before allowing communication with the network or the modification of any data. Only
authenticated users get access to the resources of the network.

One of AAA module authentication schemes requires a token-claim based authentica-
tion [40] . First, the user does a basic authentication in the controller and if the au-
thentication is successful it receives an access token. With this access, it can access the

24

Background and Related Work

protected resources on the controller (In the recent releases of OpenDaylight, this authen-
tication scheme was removed). OpenDaylight also has role-based control so access to a
restricted resource is only allowed if the user role has enough permissions. With the de-
fault configurations of OpenDaylight, there are two roles, an "admin" role, and a "user"
role. In OpenDaylight, a grant is created when we associate a user with a role. A user with
the admin grant can do all available operations. A user with the grant "user" has more
limitations in the operations it can make, so it can only perform certain operations if it
receives an "admin" grant. In addition, OpenDaylight by default, in their AAA module,
already has a domain called "sdn".

The AAA module records access requests made by a user or an application as part of their
accounting method, through the standard slf4j [41] logging mechanisms that are used in
OpenDaylight.

In addition, OpenDaylight uses H2, a Java SQL database [42] to save their data. H2 works
in an embedded mode in OpenDaylight, which offers a faster and easier connection.

Figure 2.8: OpenDaylight Neon Architecture

Figure 2.8 [43] shows the architecture of the version Neon of OpenDaylight, where the
AAA services, which are not visible in this Figure, belong to the platform services.

2.4.3 Lighty.io

Lighty.io is a kit of several OpenDaylight components that supports and eases the devel-
opment of SDN implementations [44]. Nonetheless, the removal of the Karaf dependence
gave more freedom to the framework of choice, since Lighty.io runs in a plain Java SE
environment. Lighty.io is also a modular system, which has a core module, as well modules
with northbound plugins and southbound plugins. Each application can start and stop
these modules independently.

Some components of Lighty.io for the SDN backend are:

• YANG Tools - Yang is a data modeling language used to model configuration and
define data. Yang Tools is a group of tools and libraries that give support to Java
applications, helping them abstract and process the Yang language.

25

Chapter 2

• MD-SAL - Is a message bus for data and interface models, while providing messaging
and data storage capabilities. The MD-SAL uses YANG as the modeling language
for these models and offers messaging for services based on YANG modeling.

• Northbound plugins

– Restconf
– Netconf

• Southbound plugins

– Simple Network Management Protocol (SNMP)
– Netconf

In terms of security, Lighty.io equally adopted the AAA project [45], which brings the same
advantages and disadvantages associated with the OpenDaylight controller.

2.4.4 Open Network Automation Platform

Open Network Automation Platform (ONAP) is a platform that automates deployment
and management of Virtualized Network Functions [7]. ONAP also offers a project focused
on theSDN controller, SDNC, which controller is based on OpenDaylight.

ONAP also incorporates some of AAA services since ONAP’s SDNC uses a controller
based on OpenDaylight. Even though ONAP uses AAA services, there is no reference to
the service of Accounting. However, the version of the OpenDaylight incorporated is the
aluminium-SR1 where the AAA project only supports Basic authorization header [46].

One of ONAP’s SDN-C subprojects is the SDN-R. The SDN-R release Honolulu [47] offers
an improvement in user management since there was a need to upgrade the insecure basic
authentication of OpenDaylight for Restconf, to an implementation that includes JWT.
To solve those problems, Keycloak [32] was chosen as the new user management system
for ONAP. Keycloak provides a GUI and can also act as an IdP or OP, which allows the
adoption of OIDC and consequently the use of JWT.

This related work of ONAP with Keycloak is of extremely relevance to our work since
the modifications made within ONAP to integrate OIDC and JWT are similar to the
modifications needed to integrate OIDC in OpenDaylight.

2.4.5 Ryu

Ryu is an open-source implementation of a SDN controller. It provides software com-
ponents and APIs that facilitate the control over applications and the creation of new
network management. Ryu supports numerous protocols in the southbound interface, in-
cluding OpenFlow, Netconf, and others. Ryu also has an interesting single process and
multi-threaded architecture design [40]. Each service and application will act on different
threads of the same core process.

Even though Ryu is well known in the research community, it still lacks essential layers
of security. Without an authentication mechanism in the northbound and southbound
interface, every application can send OpenFlow messages, and the risk of spoofing is highly
increased [40]. In the northbound applications, the threat of identity repudiation is also
noticeable with no logging stage.

26

Background and Related Work

2.4.6 Comparison

From the controllers presented, the following table summarizes their ability to support the
different AAA mechanisms.

Table 2.2: Comparison Of AAA Support Between Controllers

Controllers Authentication Authorization Accouting

ONOS Yes No No
OpenDaylight Yes Yes Yes
Lighty.io Yes Yes Yes
ONAP Yes Yes N/A
Ryu No No No

Only OpenDaylight and Lighty.io fully support the different mechanisms of AAA. ONAP
has support for Authentication and Authorization since it integrates some OpenDaylight
components. ONOS only supports basic authentication. Ryu since it’s a more research-
driven SDN controller, at the moment, does not present any support to AAA services.

Following the analysis of each controller and the comparison of different controllers, Open-
Daylight seems to be the most promising controller, as well as having the most detailed
documentation. Therefore, OpenDaylight is going to be the central piece of this work, with
the use of its SDN controller and AAA module.

2.5 Software Defined Network & related protocols

The following SDN protocols are most used to control the packets received by the switches,
and devices, as well as ease the communication of the commands between the controller
and the different network devices.

2.5.1 REST interfaces

REST is a software architecture style that defines a set of methods for developing a web
API. The client and server REST implementations may be done individually without know-
ing about one other, allowing each component to growing independently, as long as one
side knows what type of messages to send to the other. Therefore different clients can hit
the same REST endpoints and do the same activities while using a REST interface. This
is one of the reasons SDN controllers have REST APIs, where SDN applications can hit
the REST endpoints to retrieve a resource in an SDN controller. REST’s main advantage
is statelessness, which means the server doesn’t save information about the client. Instead,
each client request contains all of the information needed by the server to process it. REST
APIs benefit from these limits in terms of scalability and speedy performance [48].

REST APIs use HTTP requests to perform common database activities including creat-
ing, reading, updating, and deleting records (also known as Create, Read, Update and
Delete (CRUD)), for example, on a SDN controller. Metadata, authorizations, unified
resource identifiers (URIs), caching, cookies, and other information are all included in re-
quest headers and parameters in REST API calls [49]. REST APIs employ request and
response headers, as well as standard HTTP status codes (e.g., 200 OK). Payloads are
used to send and receive data that is too big to fit inside a message. The payload can be
in HTML, JSON, or XML format. In an authorized request, for example, a bearer or basic

27

Chapter 2

token must be sent in the Authorization header, and a JSON payload, needed to complete
a specific action, can be sent in the request body.

2.5.2 OpenFlow

In classic SDN, the OpenFlow protocol is the standard southbound protocol. It specifies
how the SDN controller and the switch/device communicates. The OpenFlow protocol
must be supported by any device that wishes to communicate with an SDN controller.

For example, a flow table abstraction is presented by a switch: and each table contains
entries that map packets to actions (can be dropped, modify, or others) [4]. If a switch
receives a packet and it does not have any matching entry in its flow tables, then it sends
that packet to the controller in a message [50]. The controller sends the operations (a
set of actions to the flow tables), for the packet received back to the switch through the
OpenFlow protocol. The switch adds an entry for these actions and this packet in the table.
This allows network managers to split traffic, control flows for maximum performance, and
begin testing new configurations and applications.

Finally, if the OpenFlow communications are configured in a TLS connection an extra
layer of security is provided, preventing spoofing and DoS attacks on the controller and/or
network.

2.5.3 P4

P4 is an open-source programming language designed to tell networking devices, such as
switches, routers, NICS, etc, how to handle incoming packets. Its purpose is to serve as an
interface between the controller and the network devices. The language itself is declarative
and has a syntactic structure akin to C. For efficient execution, the language is designed
to be compiled into run-time format [4].

P4 has a few characteristics that show how it can help improve make network decisions on
different devices.

• Supports matches and action - Matches represent the matching tables that define
what the arriving packets will be compared against. Actions are the action tables
that specify what should be done with the packet when it has been matched.

• Reconfigurability - Once switches are deployed, programmers should be able to alter
the way they parse and process the packets.

• Protocol independence - Switches should not be bound to any network protocols.

• Target Independence - Any program written in P4 is independent of the underlying
hardware

P4 can be used as a programming language for security middleware, while being used to
generate actions, tables, and rules, operating as a type of firewall [51].

2.5.4 NetConf

NetConf was developed in the last decade to replace protocols like SNMP, which were
mostly used to monitor networks rather than to configure them. Netconf is designed

28

Background and Related Work

for network configuration, but it can also be used to manage network faults. Netconf is
increasingly being used as the southbound API for SDN applications [4].

The adoption of XML, an XML-encoded Remote Procedure, brings many advantages such
as the flexibility of constructing data structures, the availability of free toolkits and APIs,
human readability, and the convenience of transport over existing secured channels [52].

Netconf has different attributes that help stand out against SNMP or other protocols [4]:

• Security - Netconf operates over a secure channel.

• Organization - Netconf separates configuration and operational data.

• Announcement of capabilities - The device supporting a Netconf server, in its first
interaction with a client, announces all the YANG models it supports.

• Operations - Netconf procedures are Remote Procedure Calls, which can be used by
the SDN controller to pass a set of parameters.

2.6 Summary

This chapter introduced security features such as OAuth 2.0, OIDC, SAML and AAA.
The different entities of OAuth 2.0 and OIDC were presented, as well as the OAuth 2.0
Authorization code grant and the OIDC Authorization Code Flow respectively. In both
methods, an access token is received in the final step of the Grant or flow to be able to
access restricted resources. OIDC provides the ability to extend OAuth 2.0 to identify a
user and therefore have login and profile information about the logged end-user.

In SAML subsection, all the actors present in the interactions were detailed as well as
the explanation of the concept of cross-domain web single sign-on. At last in the AAA
subsection, the importance of having AAA services in the network was described, to prevent
access to users not allowed in the network. Additionally, AUSF is a portrait of AAA services
in the 3GPP 5G Architecture.

Five SDN controllers were also presented in this chapter, as well as their support for AAA
services. OpenDaylight, was originally the platform with more support for AAA service
and it served as a foundation for other implementations in other controllers as mentioned,
such as Lighty.io being a modular system of OpenDaylight components, and ONAP having
a controller based on OpenDaylight. With Table 2.2, it was showed that OpenDaylight
and Lighty.io have full AAA support, where Ryu does not support AAA services at al.

In the last section of this chapter, it was described three SDN protocols, OpenFlow, P4, and
Netconf, and REST interfaces. These SDN protocols help with communication between
devices and controllers (OpenFlow), the applicability of the logical decisions in the network
(P4), and therefore a better organization of the latter (Netconf). Consequently, with a
better grip on what decisions to take depending on the packets received or the state of the
network, it will lead to an optimized, organized, and more secure network.

Additionally, in this chapter, related work regarding security features in SDN controllers
and web implementations were presented. The OAuth 2.0 related work was more aligned
with our work, where OIDC and SAML related work was more focused on web implemen-
tations and security vulnerabilities. The research around SAML, also showed that SAML
might not be the best protocol in terms of security or privacy, which supports our work
regarding the choice of OIDC as the protocol to be used.

29

Chapter 2

From the related work presented, is noticeable the shortage of related work regarding
integrations of security features such as OAuth2.0, OIDC and SAML in SDN controllers.
SDN controllers are extremely vulnerable in most cases presented however, there is no
improvement or increase in research work regarding these issues. This lack of research can
serve as a motivation for our work.

Regarding the related work of AAA, is not common to see research work on its use on
web integrations when compared to OAuth 2.0, OIDC or SAML since it is a framework for
network management and security. The use of AAA can be seen within SDN controllers,
such as OpenDayLight, ONAP and Lighty.Io as previously mentioned.

30

Chapter 3

Research Objectives and Approach

This chapter describes the main objectives of this work as well as the methodology used
and the decisions made, before presenting the architecture of our work and the respective
workflow. In Section 3.1 we present the research methodology used and in Section 3.2
we start by identifying and describing the research objectives. Following, in Section 3.3,
the methodology of this work is presented in detail to explain the procedures needed to
accomplish the objectives listed, including the justifications for some decisions made in this
section. At last, in Section 3.5, the architecture of our work and the workflow are shown,
including the interactions between the different entities.

3.1 Research Methodology

This dissertation started with an exploration of research papers, journals, and more in
websites such as IEEE Explore [53], Research gate [54], Elsevier [55], Academia [56], and
Google Scholar [57], summarized in Table 3.1. On these websites, there was a search
around the keywords of SDN, controllers, authentication, authorization, OAuth 2.0, OIDC
and security. Ten articles were found in total, which were reduced to five articles since
these were the only ones with relevant information regarding SDN controllers and their
security features. The search realized gave insight regarding the SDN controllers most
talked about in terms of containing authentication mechanisms as well as other security
features.

Table 3.1: Research Inclusion Criteria

Criteria Values

Website IEEE Explore, Research gate, Elsevier,Academia, Google Scholar
Date 2012-present
Concepts controller, SDN, security features
Keywords SDN, controller, authentication, authorization, OAuth 2.0, OIDC and security

Combination SDN OIDC, SDN OAuth 2.0, SDN controller authentication, SDN controller autho-
rization, SDN controller security

With the SDN controllers found on the articles, which are mentioned in Section 2.4, we
start analyzing the official documentation of each, if existing. This analysis consisted
in understanding the community support these implementations had, if they were open-
source, if their documentation was rich, if they were still producing new releases, as well as
understanding the components and security features of the most recent release presented.

31

Chapter 3

For each SDN controller, which presented some security features, such as OIDC, OAuth
2.0, or AAA services, we verified how these features were being used and implemented. In
the case of OIDC support, we verified how the integration was made and which OP was
used, recurring to their official documentation and if needed, we examined the source code
if available. For some controllers, we also tried to run their official code. In the case of
using OAuth 2.0, we searched for the use of bearer tokens or basic tokens also in their
documentation or source code. At last, if only AAA services were specified, we searched
for which authentication and authorization mechanism were being used, consulting their
documentation and source code.

3.2 Research Objectives

The main goal of this work is to design and evaluate a framework with authentication and
accounting mechanisms in SDN controllers, in order to authenticate end-users accessing
SDN resources. To fulfill this objective, this was divided into the following sub-objectives:

1. Evaluate the impact of the additional parameters with context information
in OIDC.

First it is necessary to understand how to manipulate the workflow in OIDC to
include additional parameters related to a user’s device context information in the
claim field. The resultant workflow shall be first assessed in a web scenario since
most of the OIDC integrations tend to be in a web context. Secondly, it is necessary
to evaluate different context values which will result in different levels of trust. From
this analysis, we should be able to understand the impact of the addition of context
information in OIDC.

2. Enable the support of OIDC for authentication and authorization in SDN
controllers

Since we want to design a framework with authentication and accounting mechanisms
in SDN controllers, it is essential to first integrate OIDC in an SDN controller,
OpenDaylight, to offer such mechanisms. For this integration, there is some analysis
needed regarding the workflow, the usage of filters in OpenDaylight, which OP to
use, and much more.

3. Evaluate the impact of OIDC support in SDN controllers

We shall assess the impact on both performance and security of OIDC support in
SDN controllers.

4. Enable the support of OIDC with an extension for additional parameters
with context information in an OpenDaylight controller

The first two sub-objectives need to be accomplished in order to complete this sub-
objective. With a framework with authentication and accounting mechanisms in
SDN controllers, and a prepared modified workflow in OIDC to include additional
parameters, the only thing left is to combine them. To make this combination work,
another analysis must be made, regarding the OP to use, to support both context
information with a modified workflow in OIDC and a communication with a SDN
controller.

5. Evaluate the impact of OIDC support with an extension for context in-
formation in OpenDaylight

32

Research Objectives and Approach

We want to evaluate the impact resulting from a OIDC support in an SDN con-
troller with an extension for context information, in both performance and security
compared to a standard integration of OIDC in SDN controllers.

3.3 Approach

This section presents the approach taken to accomplish some of the sub-objectives men-
tioned. For the sub-objective regarding the addition of context information in OIDC,
Section 3.3.1 shows how the context information is added in the claims of OIDC, as well
this information is verified in a OP. Section 3.3.2 describes which entities are going to be
involved to provide OIDC support in OpenDayLight controller, as well the new flow for
authentication in OpenDaylight and the authorization mechanisms used, and the AAA
filters that will be created. Finally, Section 3.3.3 explains some of the difficulties that were
encountered to integrate OIDC with context information in an OpenDayLight controller
and the need for a further investigation of this combination.

3.3.1 Evaluate the impact of the additional parameters with context
information in OIDC

As mentioned in the first sub-objective, we will extend OIDC to include context information
regarding a user’s device in order to provide different levels of trust depending on the level
of trust that the user has in the context associated with a device. For example, a personal
device used to authenticate an application in the private home network of the user will
have more trust and will be considered with a higher level of security, in comparison to
the context when the personal device can be used in a public WiFi network.

OIDC besides defining standard claims allows the specification of additional claims, to
define these different levels of trust, Table 3.2 presents the fields that characterize the
context information of a user’s device and will be specified as additional claims in OIDC.
Some of these values are represented by string values, others are represented by Universally
Unique Identifier (UUID)v5 values. UUID is used to generate unique identifiers, which
facilitates the association of user-assigned names with unique identifiers, and the use of
v5 is justified by its increase of security since this version uses Secure Hash Algorithm
(SHA)-1 algorithm to encode the strings.

Table 3.2: Trust Context Information Fields

Field Required Description Values

deviceID Yes Identification (ID) of physical device UUIDv5
appID Yes Identification of application or UA UUIDv5

appEnvType No Type of environment where UA/app runs
(e.g., OS, k8s, docker, VM) String

serviceID Yes ID of service with user interaction UUIDv5
networkID No Identification of network UUIDv5

networkType Yes Type of network {Trusted,
unTrusted}

Starting with a deviceID, this field represents the ID of a physical device. That is, if the
device used by the end-user is called "Galaxy S20", then, deviceID will take the UUID
value of the encoded string "Galaxy S20". The field of appID represents the ID of an
application or a UA. If the value of the UA is "google chrome", the appID will have the

33

Chapter 3

UUID of this string. In the case of appEnvType, the value of this field corresponds to the
type of environment where the UA or the application is running. It could be the case of
applications running in Docker or Virtual Machines (VM) environments. The serviceID is
the UUID of the name of the service being used by the user and networkID is the UUID
of the name of the network the user is connected to. At last, the networkType is the type
of network, that is, if we are dealing with a private or trusted network, the network type
will have the value of Trusted, while in the case of a public or non trusted network, the
value would be unTrusted.

The table also presents the mandatory fields of context information, which are the deviceID,
appID, serviceID, and networkType. These four fields give a general representation of the
context of a user’s device, therefore being mandatory.

Therefore the inclusion of these claims requires a few changes in a normal workflow of
OIDC authorization code flow. The first change is in the initial request to the OP, where
the user must also pass along these new fields with the respective values. When the request
reaches the OP, besides the standard verification of credentials and specific parameters of
OIDC, there must also be a verification of the context information, in order to establish
the level of trust for this authentication.

The output of the Algorithm 1, which verifies the context information, enforces the policy
to apply according to the level of trust. The values of context information will be compared
with the values of context that were registered in the OP upon the creation of an RP. The
algorithm starts by verifying if all the mandatory context information claims are present
in the request and if those values have an exact match with the values registered in the
OP, and the network is trusted, then it will be set a policy pAll. This policy will make
the inclusion of all 25 available userinfo fields in the ID token [17] (name, email, gender,
phone_number, street address, postal code,...). If only the deviceID and appId have an
exact match, but the value of serviceID is null, then we will have one of two outputs. If the
network type is trusted, the policy set is pLessTrust. This policy will make the inclusion
of 9 userinfo fields in the ID token (sub, name, email, formatted, street address, street
address, postal code, country, locality, region). If the network type is unTrusted, then
the output is the policy pUnTrust. This policy will only make the inclusion of 3 userinfo
fields in the ID token (sub, name, email). If either the set of mandatory claims is empty
or if the policy is still null at the end of the algorithm, then the authorization request is
rejected. If the dictionary with the context information received in the request, is null,
that means, the authorization request is a standard OIDC authorization request, and the
policy set is pOIDC. This policy will make the OP take the standard decisions regarding
an authorization request.

Following the successful verification of the different parameters, the OP will present the
consent page to the user and normally resume the workflow of OIDC. The ID token will
include the fields of user information that were decided with the policy set in the context
verification.

So the context information claims will result in the type of user information, Personal
Identifiable Information (PII), an ID Token will contain according to both the context
information received and the policy set. Since these claims are included in requests of the
OIDC workflow, we must encrypt the context information whether with the use of SHA-2
or AES algorithms, so that only the OP can decrypt and understand the values of such
claims.

To design and evaluate the new workflow, first in a web context, it is necessary to choose
a service to integrate with OIDC. The service will be TeaStore [9] and the implementation

34

Research Objectives and Approach

Algorithm 1: Policies Set In The Verification Of Context Information
Input: Dictionary D with context information claims received in the first request

M mandatory fields
Output: Policy P

1 P=null
2 if D isNotEmpty then
3 if len(M) == len(MandatorySet) then
4 if D[deviceID] and D[appID] hasExactMatch then
5 if D[serviceID] hasExactMatch then
6 if D[networkID] or D[appEnvType] hasExactMatch then
7 if D[networkType] == Trusted then
8 P=pAll
9 end

10 end
11 end
12 if D[serviceID] == null then
13 switch networkType do
14 case Trusted do P=pLessTrust;
15 case unTrusted do P=pUnTrust;
16 end
17 end
18 end
19 end
20 end
21 else
22 P=pOIDC
23 end

of a OP and RP will be supported by the AuthLib [31] OpenSource Python library. The
service and OpenSource project that was chosen is justified in Section 4.

3.3.2 Enable the support of OIDC for authentication and authorization
in SDN controllers

In the following sub-objective, to integrate OIDC in the OpenDaylight controller, we first
need to choose the OP. Keycloak is going to serve as the OP in this implementation since it
can support OIDC and it has very complete user management. In Keycloak, it is possible
to give users roles and set their credentials and their user attributes. It is also possible to
create a realm [58], in this case, with the same name as the default domain of OpenDaylight
"sdn". A OP supported by AuthLib was also considered, however it does not offer already
a complete GUI interface for user management and does not include the support for users
roles. It is possible to implement features with OauthLib, however, it would take more
time.

So, if there is a OP, it is also necessary a RP in the controller in order to communicate and
exchange information with the OP. A class in the OpenDaylight controller must be created
to handle these interactions with Keycloak. This OIDC must be registered in Keycloak.

The second modification needed is in the database of OpenDaylight since, at the end of a
OIDC flow (recall Authorization code flow in OIDC, Section 2.1.2), the RP will receive the
access token, the expiration time and issue time of the respective token, the refresh token,
and ID token of the authenticated user. So, the database, which is an H2 database (Java

35

Chapter 3

SQL database), needs to be modified to also support these new fields.

The version of OpenDaylight that will be used, Silicon (v0.14.4), supports two authoriza-
tion mechanisms, Shiro-Based Authorization [38] and MDSAL-Based Dynamic Authoriza-
tion (recall mention of MDSAL in Section 2.4.3). Shiro uses the shiro.ini URLs, where to
each endpoint defined in the configurations, a filter can be created and specified to handle
the requests of that endpoint. For the same endpoint, the roles of a user allowed to make
a request are also indicated. This filter can be coded and therefore we have better control
over the way the filter deals with the different requests. For example, Figure 3.1, indicates
that all requests made to /**/operations/cluster-admin** will be handled by the au-
thcBasic filter. Following is also specified that the only role allowed to that endpoint is
the role "admin".

Figure 3.1: Shiro-Based Authorization

MDSAL-Based Dynamic Authorization is similar but it uses the MDSALDynamicAutho-
rizationFilter to restrict access to the resources endpoints. The users with suitable roles can
define the list of policies with a simple request. Figure 3.2 [39], presents the request with an
updated list of policies to limit access to the different OpenDaylight endpoints. In this ex-
ample, only users with the role of "admin" can access the resource /Restconf/modules/*
and perform one of the operations described.

Figure 3.2: MDSAL-Based Dynamic Authorization

So, our work will use Shiro-Based Authorization for the filter in the controller, and it will
use features of Keycloak that are similar to MDSAL-Based Dynamic Authorization regard-
ing the resources, associated with policies. Therefore, a new Shiro-Based Authorization
filter must be created on the controller to deal with the requests of this new integration.
This filter will sort and process the requests, according to the parameters sent in the
request.

• If a request comes without any credentials or tokens, the response will ask the user

36

Research Objectives and Approach

to provide at least one of the two.

• If a request has some credentials, such as username/password, the filter will under-
stand that the user is not authenticated since the user did not provide a bearer token.
It will, therefore, redirect the request to the RP class, to start the authentication
process.

• If the user provides a bearer token, the token in the header of this request is extracted
and validated. If valid, then the filter will allow the user to access the endpoint
specified in the request.

The architecture and the workflow of this integration are explained in detail in the following
Section, 3.5.

3.3.3 Enable the support of OIDC with an extension for additional pa-
rameters with context information in an OpenDaylight controller

For this sub-objective, to replace the standard workflow of OIDC in the second sub-
objective with the modified OIDC workflow which includes context information, it is neces-
sary some modifications in the OP previously chosen, Keycloak. One of these modifications
includes the extension of the database of Keycloak to register fields related to context in-
formation.

To integrate the modified OIDC workflow, the user in the authentication request, besides
its credentials, must also provide the context information in the request body.

3.4 Use case

A use case for the work proposed is the administrative activities in the network that need
interaction with the OpenDaylight controller. As different operations may require different
levels of authority, we need to differentiate those levels and therefore have fitted roles. As
seen from the state of the art, nowadays, authentication based on passwords is not sufficient
to provide enough security for a central component of a network. So a solution for that
problem is the use of federated mechanisms, such as OAuth 2.0 and OIDC.

Trust Context Information (TCI) is relevant for the use case when a user needs to perform
a sensitive administrative operation. However, the context of the device used for that
operation may not allow the operation to occur, if the context is not considered trustable
enough.

The automatic detection or verification of the authenticity of the context information, even
though it is important, is out of the scope of this work. We will assume that the context
information sent by the users during this work is authentic.

3.5 Architecture

In this section, an SDN architecture with an OIDC integration is presented, as well as
the workflow between the different entities shown in Figure 3.3. Not all entities in this
figure are going to be presented in the workflow of this work, including the network devices

37

Chapter 3

since we will not be working with the Southbound Interface, and the SDN applications,
since every request is going to be made directly from the user interaction with the CLI of
OpenDaylight.

The first relevant entity is the User, which is the end-user who wants to access the restricted
resources of a SDN controller. Following, we have CLI which is the interface used by
the user to interact with the SDN controller. Inside the SDN controller we have the
AAA filter, which will regulate the authentication and authorization mechanisms. That is,
according to the user’s roles and credentials, it will decide if the user request is denied or
allowed and passed to the RP, or if the user is already authenticated, it will allow direct
communication to retrieve or manipulate the restricted resources of the SDN controller.
The other component inside an SDN controller is the RP, which is necessary to authenticate
the users that do not have valid tokens. On the side of the SDN controller, there is the H2
database, as previously mentioned. At last, Keycloak is the OP of this work, which will
communicate with the RP inside the SDN controller in order to authenticate the users and
provide the necessary tokens for a user to access the SDN controller resources. Keycloak
also has a database.

Figure 3.3: SDN Architecture With OIDC Integration

Regarding the workflow, a user starts by making a request directly in the CLI of the SDN
controller. This request is directed to the AAA filter, where, if the user provided a bearer
token, the token is going to be verified in order to authenticate the user. If the token
is valid, the AAA filter just needs to check the user’s roles to understand if the user is
authorized to perform the intended operation. If the user has the necessary permissions,
the operation is performed, and the user obtains a response in the CLI. This operation
is also logged since the SDN controller also has accounting mechanisms. If the user does
not provide a bearer token but instead provides credentials for authentication, then the
request received by the AAA filter will be directed to the RP, which will communicate
with Keycloak to authenticate and receive the necessary user’s tokens. These tokens are

38

Research Objectives and Approach

stored in the SDN controller database for future use. Upon receiving the valid tokens, a
response to the client is presented in the CLI with the respective access token, which now
allows the user to make requests to access the resources of the SDN controller. In the case
where a user does not provide a bearer token in the request or does not give the necessary
information for authentication, the AAA filter will decline the request and give a response
to the user, indicating that the user needs to give a valid bearer token or credentials in the
request (workflow in more detail in Section 5.3).

39

Chapter 4

Preliminary Results

This chapter presents the activities and the outputs related to the first sub-objective:
Evaluate the impact of the additional parameters with context information in OIDC. First,
the integration done in both TeaStore, OP and RP will be presented, followed by the
evaluation scenario, metrics, configurations, and finally the presentation of the results.
The results presented are based on the work achieved in Appendix A.

4.1 Integration

As mentioned in Section 3.3.1 the service chosen to integrate OIDC with is TeaStore. "The
TeaStore emulates a basic web store for automatically generated, tea and tea supplies. (...)
The TeaStore is a distributed micro-service application featuring five distinct services plus
a registry" [10]. However, the authentication in TeaStore is only supported in a form-based
fashion, thus not supporting OAuth or OIDC authentication flows. Consequently, many
modifications were necessary:

• Database and classes modified

The database in Teastore suffered some alterations since it needed to save the tokens
and all the parameters involved in OIDC regarding a user. The user’s classes were
also changed to support the retrieval and modification of those parameters.

• Create endpoint for context information

In Teastore, there was a creation of an endpoint called "context" to receive the
context information regarding a user’s device.

• Create endpoint for token

In Teastore, there was an endpoint creation called "token" to receive the OIDC tokens
generated by the OP.

• Password Changed

To differentiate the users that were authenticated through OIDC or through a basic
form, for the users that chose OIDC authentication, the field of password was changed
to "openid".

• Login

40

Preliminary Results

After TeasTore receives the user’s tokens generated by the OP, it stores them in the
database and also validates the user’s token. If the user has the password as "openid"
and if the access token is valid then the user is authenticated and can access TeaStore.

• Request verification

Every time a user loads a webpage, the function isLoggedIn is called, where, similar
to the previous modification, if the user has the password "openid" and if the access
token is valid then the request is valid.

• Refresh Token

When a request is verified and 50% of an access token lifetime has passed, TeaStore
will use the user’s refresh token to access a RP and request new tokens. The new
tokens are also stored once received. It was decided a new token request after a
lifetime of 50% since if the token has a short life, and if we do not know when the next
request and next verification will come, the access token will rapidly become invalid
and consequently, the user will need to go through the process of authentication once
more.

All entities that will be mentioned in this section use Hypertext Transfer Protocol Se-
cure (HTTPS) to communicate with each other. Even though TeaStore was not able to
support HTTPS, as previously mentioned, one of the contributions of this work was the
improvement of TeaStore to support HTTPS communications.

The implementation of the OP and RP was supported by the AuthLib Python library,
as previously mentioned. The use of AuthLib was mainly justified since this open-source
Python library offers more flexibility to modify if necessary the OIDC flow or other li-
braries it contains. So, some libraries offered by the AuthLib were modified to support the
addition of the context information in OIDC. The RP was modified to include the context
information regarding a user’s device in the initial request. The context information was
also encrypted with a Fernet key [59] to provide data confidentiality. Besides the standard
functions supporting an OIDC authentication code flow, implemented in the RP, was also
added a function to handle the refresh token, where the client communicates with the OP
and exchanges a refresh token for new access and refresh token.

In the OP, the modifications included the addition of the algorithm described in Sec-
tion 3.3.1 upon the reception of the first authentication request. In this function, the
values of context received are decrypted with the use of Fernet library, before processing
them in the verification algorithm. To make the comparisons with the registered values of
context in the algorithm, the client class in the OP was also changed in order to save the
context information registered upon the creation of a RP. Two libraries of OP were modi-
fied, where the first one was changed to verify the policy set at the end of the algorithm of
context verification, and therefore decide which user’s attributes the ID Token will have.
To support the 25 user’s attributes specified in OIDC (recall the mention of claims about
the end-user in Section 2.1.2), the user class was also changed to support and save data
of those fields. The second library was changed to include a refresh token alongside the
tokens received by the client.

41

Chapter 4

4.2 Evaluation

4.2.1 Scenario

Figure 4.1 represents the scenario of our evaluation for the first sub-objective. The entities
of this scenario are a OP, a RP, a TeaStore service with support for OIDC authentication,
locust to and ElasticSearch. Every entity is a Docker [60] container, including the individual
services of TeaStore. TeaStore, OP and RP were all in the same physical machine, while
locust and elastic search were in a distinct physical machine each.

To evaluate our scenario, it was used two tools present in the Figure 4.1, Locust, and
ElasticSearch. Locust [61] is a load testing tool, that can swarm web services like TeaStore
with many users and requests. It was possible to define a user behavior, where it interacted
with TeaStore and OP and RP, in the different steps of the OIDC flow. In locust, we created
datasets with users and context information, which correspond to different environments,
where the user can interact with TeaStore. Consequently, the context information datasets
included the three available policies. In the end, locust presents different metrics related
to the requests performed.

ElasticSearch [62], a free and open analytic engine, will be used to monitor the different
dockers’ containers and retrieve different metrics. In particular, those assessing resource
consumption (e.g., CPU usage).

Figure 4.1: Evaluation Scenario

Figure 4.1 also demonstrates the communications between each entity. TeaStore always
uses the OIDC client to communicate with the OP. Locust besides making requests to
the TeaStore, if needed can make requests directly to the RP and OP, considering the
modeling of user behavior in the authentication flows.

Figure 4.2 shows the overall evaluation scenario flow between the different entities, exclud-
ing ElasticSearch. Locust can define a user behavior interacting with TeaStore through a
User Agent, therefore in this image, only the name of User Agent appears. To simplify the
mention of the trust-related with the context information, the acronym TCI will be used
throughout the rest of this dissertation.

The flow of our scenario starts by making a POST request from locust to TeaStore, con-
taining the TCI of a user’s device. TeaStore upon receiving this information also requests

42

Preliminary Results

Figure 4.2: Evaluation Scenario Flow

with the same TCI, to the RP. Following this interaction, locust makes a get request to the
login endpoint of TeaStore, where the request is redirected to the RP. The RP proceeds to
make an authentication request with the TCI previously received, and the OP verifies all
the parameters and TCI, responding with a consent request if the verification is successful.
The consent request reaches locust, where locust gives a consent reply to the RP. The RP
delivers the reply to the OP, where it verifies the message received. If successful, it gen-
erates the tokens, access token, refresh token, id token, and other parameters, delivering
that information to TeaStore. TeaStore verifies the token received and if valid, the user is
authenticated. After being authenticated, locust can make different Get and Post requests
in the TeaStore to complete different operations, ending the flow with a Post request to
log out.

4.2.2 Configuration parameters

Regarding the configuration parameters for our evaluation, Table 4.1 indicates the param-
eters and the respective values. For the access token lifetime, three values will be used,
30, 60, and 600 seconds, in order to have scenarios with more refresh token requests and
others with fewer requests. The number of users also varies between 10, 50, and 100, to
have environments with fewer simultaneous requests than others. Another parameter in-
cludes the policy related to the TCI of each user in the datasets that were created. In the
end, two scenarios were tested, in order to compare the results. The scenario with OIDC
acts as a baseline for comparison, with the TCI scenario that includes a modified flow with
TCI on top of a OIDC standard implementation.

43

Chapter 4

Table 4.1: Configuration Parameters

Parameter Description Values

Tlife Token lifetime 30s, 60s, 600s
nUsers Number of users 10, 50, 100
polABAC Policies to be applied by OP pALL, pLeTrust, pUnTrust
Scen Scenario w/ and without context info OIDC, TCI

4.2.3 Metrics

Table 4.2 presents the metrics collected for the evaluation of the current work. In the
OP, two different metrics were collected. TT issue represents the time of issuing a token in
milliseconds after the OP receives a consent reply. TTCIvalidation is the time it takes to
validate the TCI in the implemented Algorithm 1. In TeaStore, TTvalidation is measured
in milliseconds as well and measures the time it takes to validate if an access token is
still valid. Locust supports multiple metrics, but the ones collected were SuccessRate,
ResponseT ime and ContentSize. At last, in ElasticSearch was collected the percentage
of CPU used and memory usage of the dockers, as well as the number of packets TX-
transmitted and RX-received. These monitoring metrics are not going to be presented in
the next section - results, since they did not bring any more relevant information.

Table 4.2: Evaluation Metrics

Metric Description Measured

TTissue Time to issue a token (ms) OIDC OP
TTCIvalidation Time to validate TCI (ms)
TTvalidation Time to validate a token (ms) TeaStore
SuccessRate Success Rate of requests (%)

LocustResponseT ime Response time (ms)
ContentSize Request Content Size (bytes)
cpu Percentage of CPU

Monitoring ElasticSearchmem Percentage of memory
net Packets TX and RX

4.3 Results

Figure 4.3 shows the time in ms for token verification in TeaStore, for different types of
token lifetime and a different number of users both in a scenario without context parameters
and in a scenario with context parameters. Tokens with a shorter lifetime, 30 seconds,
tend to have more refresh operations, so since this refresh process occurs when the token
is verified in TeaStore, the time for this operation will be longer, than tokens with a
longer lifetime, 600 seconds, since it is not necessary to perform refresh operations so
often. In terms of the relationship between OIDC and TCI scenarios, the values obtained
are generally similar, since, in this operation of getting new tokens, there is no direct
involvement with context information. In terms of user variability, we verify that the
greater the number of users performing requests, the higher the verification time obtained
is. These values can be justified since, in this operation, different services in TeaStore are
involved, Auth service and Web service. During this process, there is also a communication
with the database of TeaStore to retrieve the user’s tokens.

Figure 4.4 evaluates the issue time of a token in OP and shows whether it is different

44

Preliminary Results

OIDC TCI

30 60 600 30 60 600

0.2

0.4

0.6

Token Lifetime
V

er
ifi

ca
tio

n
of

 T
ok

en
s'

 E
xp

ira
tio

n
(m

s)

Users 10 50 100

Figure 4.3: Token Verification Time On TeaStore

between OIDC or TCI scenarios. It also shows the time considering the number of users or
even different policies, the token issue time relies on an average of close to 40ms. This is
expected since the issue part of the token is not related to context information. The issue
of a token does not depend on the policy set, as well as on the number of users.

OIDC TCI

pOIDC pALL pLeTrust pUnTrust
0

25
40
50
60
70

100

125

150

ABAC policy

To
ke

n
is

su
e

tim
e

(m
s)

Users 10 50 100

Figure 4.4: Token Issue Time On OP Per Policy

Figure 4.5 shows the context parameters having a significant impact on the verification
time of the context information. In the case of the policy for a regular OIDC scenario, this
does not include any of the context fields so the time obtained for this operation is close
to 0ms. These results obtained for TCI scenarios vary between 4 and 8 ms. Even though
the values are high compared to the scenario of OIDC, they are justified by the fact that
these context values need to be unencrypted (since when they are sent encrypted from the
RP to the OP), and then all the fields have to be checked, whether they are mandatory
fields or not. However, between a different number of users, these values do not vary much,
since even for a small or higher number of users, this verification for TCI scenarios, will
be equal. Between different policies, the values are also similar because the verification of
the fields is independent of the values in those fields and consequently the policy set.

The last Figure 4.6 presents the response time per user. This measure corresponds to
the time between the request which sends context information from the TeaStore to the
RP until TeaStore receives the different tokens at the end of an authentication code flow.
Or, in the case of a standard OIDC authorization code flow, from the first request from
TeaStore to the RP until TeaStore receives the generated tokens. The most notorious

45

Chapter 4

OIDC TCI

pOIDC pALL pLeTrust pUnTrust
0
1
2
3
4
5
6
7
8

10

15

ABAC policy

T
im

e
to

 v
er

ify
 c

on
te

xt
 in

fo
rm

at
io

n
(m

s)

Users 10 50 100

Figure 4.5: Context Verification Time On OP Per Policy

difference is with the rise in the number of users which has a bigger impact than the type of
scenario. The number of users impact can also be justified since, during an authentication
flow, different services in TeaStore are involved, as well communications with the TeaStore
database are established. The small impact introduced by TCI is due to the size of the
exchanged messages since they include more information than messages without context
variables and the process of verification context in the OP.

OIDC TCI

pOIDC pALL pLeTrust pUnTrust

15.0

17.5

20.0

22.5

ABAC PolicyA
ve

ra
ge

 E
2E

 R
es

po
ns

e
T

im
e

(p
er

 u
se

r)
 (

s)

Users 10 50 100

Figure 4.6: Overall E2E Time Per User

All the results presented show that the integration of context information in OIDC does
not add a high cost to operations therefore this implementation can be seen as a feasible
solution to increase the security in OIDC as well as give the users different levels of trust
regarding the context of the device used to authenticate.

4.4 Summary

Despite the promising results, the real benefit of using context information needs further
evaluation and more objective metrics. The preliminary evaluation only considers the
comparison with the standard OIDC implementation and does not assess the benefits of
using context information to protect the assets of users or even assets related to network
management.

46

Chapter 5

Implementation

This chapter presents the work to implement and enable the support for OIDC authen-
tications in the OpenDaylight controller, with and without the extension for TCI. The
success of this implementation depends on the help of Keycloak as the OP as previously
mentioned, the AAA filter in the controller, and the creation of an RP in the controller,
as the communication bridge between the OP and Keycloak.

The modifications and configurations done on the different components of the architecture
presented in Section 3.5 and illustrated in Figure 3.3 are described, as well as the flow of
the authentication process, verification, and renewal of an RPT token.

5.1 Concepts

The concepts of roles and grants were briefly introduced in Section 2.4.2 but a more detailed
explanation is needed to understand how the implementation of this framework works.

5.1.1 Roles and Grants

By default, in OpenDaylight there are only two types of roles: "admin" or "user". Addi-
tionally, in OpenDaylight, the definition of a grant stands by the association of a role to a
user. When a user is created with the role "user", in OpenDaylight, there is the creation of
a user and the creation of a grant, to associate the role "user" with the user just created.
However, as explained, a user with this grant "user" does not contain enough permissions
to make requests to restricted resources in the controller. Therefore, it must be given a
grant with the role of "admin", to gain enough permissions to access those resources (i.e.
restricted resources in OpenDaylight are the resources behind the REST endpoints, so for
the AAA module, "http://ip:port/auth/v1/users" is the user store in OpenDaylight which
is a restricted resource as well as "http://ip:port/auth/v1/roles", the role store).

Nonetheless, having only two user roles, where a user with the grant "admin" has
all the privileges does not meet the security requirements in SDN management
use cases. More detailed and specific roles must be created in the controller. For example,
two users, A and B, both have a grant "user". Using the restricted resources presented
in the previous paragraph as an example, user A can have an additional grant that only
allows it to access the user store, while user B can have a grant that only allows it to access
the role store.

47

Chapter 5

Therefore, the idea of having a role for each REST endpoint the controller offers a more
refined and secure solution. In the AAA module in OpenDaylight, which is the module
we are working, there are 4 REST endpoints: users, roles, grants, and domains REST
endpoint. For this implementation, it was decided that for each endpoint there could be
a role called "grantedUser", "grantedRole", "grantedGrants", "grantedDomains", besides
the standard role of user and admin.

This same idea can be applied to other modules in the OpenDaylight. In the Netconf and
Restconf module in the controller, there are REST endpoints for topology management, so
the existence of a role "grantedTopology" would also ensure the security that only the users
with this grant or users with the grant of "admin" could make requests to the topology
REST endpoint.

For example, a new user A was created and associated with the role "user". However, this
user wants to access the role REST endpoint (e.g "http://ip:port/auth/v1/roles") even
though it does not have enough permissions. In order to gain the permissions required,
another user, B, registered in the controller who has a grant "grantedGrants", therefore
can access the grants REST endpoint (e.g "http://ip:port/auth/v1/grants"), would need
to make a request to that grants endpoint, to associate the role "grantedRole" with user
A. Only then, user A would have enough permissions to access the role REST endpoint in
the AAA module.

Eventually, a user with the grant of "admin" can access any REST endpoint in the con-
troller, and if there were administrative REST endpoints, it could access them too. How-
ever, if we wanted a user to be able to reach any REST endpoint in the controller excluding
the administrative REST endpoints, we would need to associate that user with all the exis-
tent roles that have permissions to access the different endpoints in the controller. Instead,
if we create a role called "grantedAll", a user who receives this grant, would be able to
access all REST endpoints with a single role, without having the same permissions as
"admin", and therefore without having access to administrative REST endpoints.

Table 5.1 summarizes the role-endpoint mapping suggested.

Table 5.1: Role-Endpoint Authorization Mapping

Module Role Endpoint

AAA grantedUser http://ip:port/auth/v1/users
AAA grantedRole http://ip:port/auth/v1/roles
AAA grantedGrants http://ip:port/auth/v1/grants
AAA grantedDomains http://ip:port/auth/v1/domains

Netconf/Restconf grantedTopology http://ip:port/restconf/config/network-topology:network-
topology/topology/topology-netconf/node/new-netconf-device

All grantedAll any
All admin any

In the framework presented, there must be a registration of all the roles mentioned in
the database of the controller at the initialization of the controller, excluding the role
of "admin" and "user" that is already registered by default. When working with other
modules in OpenDaylight, we must also register the roles that restrict the respective REST
endpoints at the initialization of the controller, Figure 5.1.

48

Implementation

Figure 5.1: Roles Registration In OpenDaylight

5.2 Components

5.2.1 Keycloak

Keycloak is being used as an OP and a user management interface in this implementation.
Therefore, its database regarding users and roles must be synchronized with the controller’s
database. To maintain this synchronization, a third element, RP, is used to establish a
communication between Keycloak and the controller, which is explained in the next section.

Even though in Keycloak, the term grants does not exist like in OpenDaylight, the concept
of a grant can be portrayed in Keycloak as the assignment of a role to a user, which portrays
the same functionality. So for every role and user that exist in the controller, it must also
exist in Keycloak, therefore the necessity for databases synchronization. In future work,
the goal is to keep all the user’s information only in the Keycloak database, since the user
management is performed primarily in Keycloak. The controller would only need to have
information regarding a userid and its refresh token, for the token renewal procedure. With
the lack of available documentation online for OpenDaylight, it was not possible to make
yet this transition, therefore in this implementation, we are working with some duplicates
on the Keycloak database and the OpenDaylight controller. The duplicated data consists
of users ids and user’s tokens (RPT token and refresh token) and roles.

Since there are many configurations in Keycloak, here is the list of steps for a better
understanding (recall Section 2.3.2 to comprehend the configurations terms in Keycloak
that will be presented in each step):

1. Creation of a realm "sdn".

2. Creation of roles.

3. Creation of the default user with the "admin" role.

4. Configuration of an administrative OIDC Client "admin-cli".

5. Creation of a OIDC client to authenticate the controller’s users "controller".

6. Configuration of the authorization data in the "controller" client.

In this implementation, the first step is to create a realm in Keycloak. It was created a
realm called "sdn".

The second step is the creation of the same roles existent in the controller, as Figure 5.2
shows. Keycloak by default, upon creation of a realm already creates some roles, therefore
the following Figure shows more roles than the ones on the controller. The role "admin-
role" is a role that was created by us but will be explained in the next step. The role
"authorization" is also a role created for this implementation and it will be explained in
the fifth step.

49

Chapter 5

Figure 5.2: Roles In Keycloak

The third step is the creation of a user called "admin@sdn" through Keycloak register
form, where we also put some information regarding username, first name, last name, and
password. This user is then given the role "admin" to match the default admin user that
exists in the OpenDaylight controller.

Before advancing to the next step, in this implementation, Keycloak must have at
least these two functional OIDC clients, as listed in Table 5.2:

Table 5.2: Keycloak Functional OIDC Clients

OIDC Client Function

"admin-cli" User management Operations over Keycloak Admin REST API
"controller" OpenID authentication

The fourth step shows the configuration of the first OIDC client which is a default
Keycloak "admin-cli" that is used to retrieve access tokens that give permissions to operate
standard user management operations via HTTP request, using the Keycloak Admin REST
API [63], instead of using the Keycloak user management interface. However, if this client
is used with the default configurations, the access tokens generated do not have enough
permissions to create users, delete users, create roles, put roles, and more. These limitations
were found over trial and error, and to overcome these problems other sources other than
the official documentation were used. As discovered, additional configurations are necessary
for this client starting with the creation of a Composite role using the subset of "Client
Roles" in the option of composite roles in Keycloak. The created role uses the associated
roles from the available roles in the subset of "Client Roles". For example, the creation of
a role called "admin-role" encapsulates the roles "view users, query-groups, query-realms,
query-users," of the client "realm-management" as Figure 5.3 suggests.

Then, in the configurations of the "admin-cli" OIDC client, it is necessary to specify that
every user that gets an access token from this client, will have this role of "admin_role"
included in the token. This attribution is done by assigning this role in the "Scope" and
"Service Account Roles" tab of the client configuration, see Figure 5.4 for more details.

The fifth step is the creation of the second client, a standard OIDC client named "con-
troller", with the option for authorization enabled in its configurations. This option will
give a similar sense of security as the MDSAL-Based Dynamic Authorization in the con-
troller, in which are resources specified with the type of HTTP operations that can be
performed (e.g., GET, POST, PUT, DELETE).

In the last step, we specify the resources for this client "controller" which are all the

50

Implementation

Figure 5.3: "admin-role" In Keycloak

Figure 5.4: Scopes Mappings Of "admin_cli" Client In Keycloak

REST endpoints of the controller that we want to restrict, Figure 5.5.

Additionally, it is also defined the resource "Controlador", which indicates the permission
associated with the basic access to the controller. A resource of "Context" is also defined
for the permissions regarding the TCI in the authentication, which will be explained in the
following paragraphs.

There are also authorization scopes created that are going to be associated with the re-
sources created, Figure 5.6. So we create the basic four HTTP operations as authoriza-
tion scopes get, put, post, delete. We also create an authorization scope of trustAverage,
trustHigh, and trustLow, which correspond to the policy assigned after evaluating the TCI
for an authentication and authorization process.

51

Chapter 5

Figure 5.5: Resources Of The "controller" Client In Keycloak

Figure 5.6: Authorization Scopes Of The "controller" Client In Keycloak

Following we create policies, and for this implementation, role policies and javascript poli-
cies. So, for each type of user role it is created a role policy, as depicted in Figure 5.7 (The
policy "authorization" is related to the role "authorization" given to new users, as the
basic role to access the resource "Controlador" which is the controller). For the evaluation
of the TCI it is also created javascript policies, one for the High trust policy, Average trust
policy, and Low trust policy. Each javascript policy contains part of Algorithm 1 described
in Chapter 4, corresponding to the evaluation of the policy in question. "ContextHigh"
policy contains line from 1-8 of the Algorithm 1, "ContextAverage" policy contains lines
from 1-14 1, and "ContextLow" policy contains lines from 1-15 of the Algorithm 1.

Finally, we can create permissions, both resource and scopes permissions, as depicted in
Figure 5.8. Scope permissions associate the policies created with the authorization scopes
and resources.

For example, as in the Figure 5.9, the creation of a scope permission "scopeDomains" that
associates the resource "Domains", with the different authorization scopes allowed "GET",
"PUT", "POST", "DELETE", and the role policies that can access this resource, in this

52

Implementation

Figure 5.7: Policies Of The "controller" Client In Keycloak

Figure 5.8: Permissions Of The "controller" Client In Keycloak

case, "admin", "grantedall", "grantedDomains". For the TCI, it is also created 3 different
scope permissions, where for example, the resource "Context" is associated with the scope
"trustHigh" and the javascript policy created for the High Trust Evaluation.

Resource permissions associate the resource with the policies created. For example, it
created resource permission for the resource of "Controlador", which applies all the role
policies of the different types of users existent, Figure 5.10.

Table 5.3 comes in need to summarize all the policies, permissions, scopes, and resources
that were configured, since the number of configurations can be overwhelming.

All this work for the authorization is only acknowledged if there is a request of an RPT
token with the access token received in the authentication since an RPT is a token equal
to the access token, however, includes all the permissions (authorization data) that a user
has regarding the resources it can access, as depicted in Figure 5.11.

Finally, the users of this framework will use an RPT token in the authorization header of
the requests to the controller since when the decryption of this token occurs, it becomes
easier to understand what resources the user has permissions to access and what operations
can it do (decryption process explained in more detail in Section 5.3.2).

53

Chapter 5

Figure 5.9: Scope Permission "ScopeDomains" Of The "controller" Client In Keycloak

Figure 5.10: Resource Permission "Controlador" Of The "controller" Client In Keycloak

54

Implementation

Table 5.3: Authorization Configurations Summary

Permissions Resource Authorization
Scopes Policies

controlador Controlador -

grantedDomains

grantedUsers

grantedRoles

grantedAll

grantedGrants

authorization

grantedTopolofy

Admin

scopeDomains Domains

get

post

put

delete

grantedDomains

grantedAll

Admin

scopeGrants Grants

get

post

put

delete

grantedGrants

grantedAll

Admin

scopeRoles Roles

get

post

put

delete

grantedRoles

grantedAll

Admin

scopeTopology Network-
Topology

get

post

put

delete

grantedTopolofy

grantedAll

Admin

scopeUsers Users

get

post

put

delete

grantedUsers

grantedAll

Admin

trustAverage Context trustAverage contextAverage
trustHigh Context trustHigh contextHigh
trustLow Context trustLow contextLow

55

Chapter 5

Figure 5.11: Payload Data Of RPT

5.2.2 Relying Party

The RP is the instance that establishes a communication between the controller and Key-
cloak, mostly through the use of the Keycloak REST API. The use of the Keycloak REST
API is to maintain the database regarding user management of the Keycloak synchronized
with the database of the controller and its entries of users, and roles. RP is also a cru-
cial component of a OIDC authentication since it is used to authenticate the users in the
controller while communicating with the OP Keycloak.

In order to use the Keycloak REST API, the RP must have the credentials, client id,
and secret, of a client in Keycloak with administrative roles ("admin-cli", recall Section
5.2.1). These credentials and the grant_type "client_credentials" are used to request an
access token with administrative permissions, which will be used to make user management
requests to Keycloak through the Keycloak REST API.

The RP must also have the credentials, client id, and secret, of the OIDC client in Keycloak
that is going to be used to authenticate the users in the controller, (client "controller"),
since the RP is also responsible to receive the user’s credentials and initialize the autho-
rization code flow with Keycloak to authenticate that user.

Additionally, the RP needs to have the public key of the RSA key used for the encryption of
the access and RPT tokens, regarding the OIDC client in Keycloak used for authentication

56

Implementation

(client "controller"), since it needs to decrypt the token to evaluate the content of the
authorization data, as well as the expiry date and its authenticity (step explained in detail
in Section 5.3.2).

5.2.3 AAA filter

The new AAA filter created, based on Shiro-Based Authorization, will intercept all requests
made to the controller. As mentioned previously, it will then proceed to verify if the request
contains credentials and redirects the request to the RP for authentication of the user
Section 5.3.1, or if it receives a request with a bearer token in the authorization header,
will redirect the request to the RP to verify the authenticity of the token and its validity,
as well as the user permissions contained in the RPT token, which is explained in Section
5.3.2.

If the token is valid, as well as the permissions, the request made by the user is allowed,
and therefore the HTTP operation can proceed. The AAA filter is also responsible to
redirect the request to the right module of the controller. So, if a user requests the user
REST endpoint in the AAA module, then the AAA filter, will then call the user REST
endpoint instances to deal with the request after the verification of the token.

OpenDaylight is divided into modules and therefore can work independently from each
module, or altogether. Nevertheless, this means that when working with other Open-
Daylight modules, the new AAA filter is not available since it is only present in the AAA
module, and therefore the request to the REST endpoints of that module will not be caught
by the new AAA filter. This indicates that the filter would only be able to intercept the
requests made to the AAA module, as Figure 5.12 (inspired by [64]) suggests, assuming
the RESTful API A and northbound plugin A belongs to the AAA module.

So, our implementation suggests and proposes a new OpenDaylight architecture as well,
as Figure 5.13 suggests, where there is a AAA filter and a RESTful API common for all
modules, meaning that the AAA filter would catch all requests made, whether the request
made by a user was to an AAA module REST endpoint or a netconf/restconf module
REST endpoint. In other words, We would introduce a central point for authentication,
authorization, and policy enforcement in the AAA filter for all operations. This would also
improve the security overall of the controller since we only have a single point of entry in
the northbound. However, there is also the need to guarantee the existence of the AAA
filter and REST API when the modules are working independently.

For the experimental phase of this implementation, we assume a scenario where this new
architecture already exists, and therefore as previous Figures of Keycloak configuration
have shown, for the REST endpoints regarding the topology management in the netconf
and restconf modules, we have already specified roles in Keycloak and controller, as well
resources, policies and permissions in the authorization of the OIDC client in Keycloak,
which give users permissions to access and request the topology endpoints.

5.3 Steps for Authentication and Authorization

For each step, there will be a diagram with the steps that are performed as well as a
description of different operations for a better understanding.

57

Chapter 5

Figure 5.12: Simplified Architecture OpenDaylight Controller

5.3.1 Authentication

As briefly explained in Section 3.5 the AAA filter can receive different types of requests,
whether with credentials, with a bearer token, or without any of the two. Upon receiving a
request that includes user credentials, it will also verify if the request contains any context
information (context information data sent by the user in a JSON format). As Figure 5.14
suggests, if the request contains context information then, both credentials and context
information are then passed to the RP, otherwise only the user’s credentials are passed.
The RP has the responsibility of authenticating the user whose credentials were sent in
the request.

If the request contains context information then the RP must first make a request to
Keycloak using the Keycloak REST API and fill the user attributes with these values of
context received. The context information sent to the user attributes is first converted from
a string into a UUID, following the same logic for the experimentation with TeaStore. If the
request does not contain context information then the RP must send a request with empty
fields to clean previous context information stored in the user attributes from previous
authentications.

Following, the RP will finally start the authorization code flow, using the credentials of the
user received and the credentials of the OIDC client used for authentication. Originally,
in an authorization code flow, following the authentication request, the OP responds with
a login form, for the user to fill and proceed with the authentication and begin a valid
login session. However, since this authentication is not done through a web context, the
RP will receive this login form response and will automatically fill the form with the user’s
credentials received and submit the form, acting as the user. If everything is successful,

58

Implementation

Figure 5.13: Simplified Modified Architecture OpenDaylight Controller

the RP will then receive a code which will exchange through a request to the OP, receiving
access, refresh and id token.

However, this access token does not contain the authorization data that is needed to allow
a user to make a successful request to the controller, this token needs to be exchanged
for an RPT token. To retrieve an RPT token, the RP must send a grant type specified
as "urn:ietf:params:oauth:granttype:uma-ticket", an audience and client id, and the access
token received as the bearer token in the authorization header. The response of this request
will generate a RPT token and a refresh token associated with the RPT token, which is
stored in the database of the controller, in the entry of the user authenticated. The id
token received from the previous request is also stored in the database. In the end, the
RPT token is returned to the user as the token to be used in the authorization header for
future requests to the controller.

5.3.2 Verification of RPT token

The first step of the verification of the RPT token is its decryption with the public key
mentioned above in the possession of the RP, as per presented in Figure 5.15. Secondly,
we verify the username in the decrypted token and we verify if the username contains
the "@sdn" at the end of the username. If the "@sdn" is present, then we know that
this user was created in this controller, since all users by default in OpenDaylight when
created, have a "@sdn" suffix in its userid (this is concerning the only domain existent in
the controller called "sdn"). In Keycloak, when a user is created through the Keycloak
REST API, the username will already include an "@sdn" suffix to match the configuration

59

Chapter 5

Figure 5.14: Authentication Steps

of the controller and to match the name of the Keycloak realm "sdn". Therefore, while
evaluating the decrypted token, if the username does not contain the "@sdn" suffix, this
means the user is not registered in this controller, so it does not have permission to make
any request to this controller.

Following the username, the expiration time claim in the RPT is retrieved and evaluated.
If the remaining lifetime of the token is already less than half, the operation of requesting
new tokens for the user will be realized (Section 5.3.3). Otherwise, if the token still has
enough lifetime, then we must try to retrieve the context claims in the user attributes of the
RPT token. If these context claims are present, we know that the user was authenticated
with context information and therefore we need to evaluate it.

For example, as Figure 5.16 present (RPT token is partitioned for better visualization), in
the permissions field of the authorization data of the RPT token, there will be a resource
with the name "Context" and the scope will specify the trust policy that was assigned by
Keycloak in the evaluation of the context data. If the policy assigned is trustLow, then
the user can only make a GET request. If the policy assigned is trustAverage, then the
user can only make GET and PUT requests. If the policy assigned is trustHigh, then all
types of requests are allowed. So, additionally, we evaluate the HTTP operation of the
request made by the user. If the type of request is allowed, then the verification of the
permissions to access the REST endpoint specified in the request is followed. If we find
a match between the resources detailed in the RPT token of the user and the endpoint
in the request, then the user is allowed to make this request. With a trustHigh policy

60

Implementation

Figure 5.15: Verification Of RPT Token Steps

Figure 5.16: Authorization Data In RPT Token

in the resource "Context", and imagining that a user is making a POST request to the
grants REST endpoint, the user is allowed to make a POST to this endpoint because of
the policy assigned, and since it has the "Grants" resource specified in the permissions of
the RPT token, there is a match between the resource and the request endpoint, so the
user’s request is allowed.

If a user does not contain context claims in the user attributes of the token, then we
must only verify for each resource specified in the authorization data in the RPT token
of the user, if a match is found with the resource the user is trying to access with his
request. If a match is found, we must also verify if the HTTP operation is in the allowed
scopes for that resource. For example, imagining that this RPT token did not include the
context information resource, using the same example as the previous paragraph, the RPT
token contains the Grants resource, Figure 5.16 , and the scopes of that resource include
the POST operation. Therefore the user has permission to make a POST to the grants
endpoint.

61

Chapter 5

5.3.3 Renewal of RPT token

Figure 5.17: Renewal Of RPT Token Steps

During the process of the RPT token verification, if the remaining lifetime of the token is
already equal or less than half then a renewal token request will be automatically made
to the Keycloak, to maintain the active session of the user (same logic applied for the
experimentation with TeaStore, recall Section 4). This value of 50% remaining lifetime
before renewal was decided for this implementation, but this value could be 75% or any
other justifiable value. For this refresh token operation, Figure 5.17, we need to send the
refresh token of the user, the grant type specified of "refresh_token", the client id, and
secret of the OIDC client. To retrieve the user’s refresh token, the username recovered from
the decrypted token during the verification process will be used to query the entry of the
user on the controller database. Since the refresh token saved is the one generated along
the RPT token, the response of the renewal token request will also be a new RPT and
refresh token, instead of an access token and refresh token. These new tokens are saved in
the controller database and the new RPT token is returned to the user in addition to the
response of the request that the user made. In addition, the limitations for the number
of renewal procedures using the same refresh token is dependent on the configurations
established on Keycloak. If the option of revocation for refresh is active, each refresh token
can only be used once. If this option is not active, the refresh token can be used until its
expiration time.

62

Chapter 6

Setup and Evaluation

This chapter presents the setup prepared for the experimental phase, in order to evaluate
the performance and security of OIDC support in OpenDayLight, as well as security gains
with the use of context information.

The documented results compare the standard OpenDaylight (i.e. username and pass-
word), the support for OIDC and the support of OIDC with context information.

6.1 Experimental Setup

As explained in the use case, Section 3.4, both the context information of the device used
to perform operations and levels of authority are relevant for this work.

Therefore, the experimental setup includes four distinct types of test sets prepared, in order
to analyze different metrics and different procedures in the controller. The first, Authen-
tication Process, gives insight about an OIDC authentication in the controller, as well
as the verification of an RPT token received by the user and used in the authentication
header in the following requests. The Refresh/Renewing token process analyses the
process of obtaining a new RPT token, in a token renewal request, within different session
times. The third section, Standard authentication and OIDC authentication in
OpenDaylight, compares an authentication followed by a request, made by an admin,
both in the original OpenDaylight controller and in the modified OpenDaylight controller.
The last set, Access Denied, has the goal to verify the security and functionality of the
roles added in OpenDaylight and the use of TCI while making sensible operations in the
OpenDaylight.

For all the different tests done, the tokens always have a lifetime of 60 seconds and the
test is run 3 times. To test with different scenarios of TCI, it was prepared a file with
two different entries for each type of context information. Upon the authentication, one
of the entries is arbitrarily chosen according to the respective scenario being tested and
sent along with the user credentials. These tests are made with the help of Locust, to
automate the user’s requests. The number of users for the two first sets of tests was 5,
25, and 50, being 50 already a high value for the use case presented where administrative
operations occur in a SDN controller. For the third test set, we only used the "admin"
user in OpenDaylight and for the final set, we only used 5 users.

OpenDaylight was instrumented to gather performance metrics (i.e. time to execute a
certain operation), while the other metrics related to resource usage like CPU utilization,

63

Chapter 6

and amount of memory used, were collected with the user processes scrapper in Prometheus
[65]. The specific metrics are presented in the following sections.

6.1.1 Authentication Process

The first set of tests was instrumented to analyze the impact of OIDC in the authentication
process. For such analysis, there are different groups of users, 5, 25 and 50 depicted in
Table 6.1. Each type of user will do an authentication followed by REST operations in
different context scenarios.

Table 6.1: Scenarios Combination For Authentication And Request

Parameter Values

Number of users 5+, 25∗, 50△

Type of user admin+,∗,△, grantedToplogy+,∗,△, grantedRoles+,∗,△, grantedGrants+,∗,△,
grantedUsers+,∗,△, grantedDomains∗,△, grantedAll∗,△

Context No context+,∗,△, Low context+,∗,△, Average context+,∗,△, High context+,∗,△

Tables 6.2 and 6.3, present the requests that each type of user does in the group of 5, 25,
50 users, for the different scenarios of context (in order of rows: no context, low context,
medium context, high context).

Table 6.4, represents the number of instances for each type, in each group of 5, 25, and 50
users.

Before running each group test with 5 users, 25 users, and 50 users, we have to register
and create through a POST request to the controller the respective 5, 25 and 50 users, in
order to be able to authenticate them and perform operations.

Considering, the number of instances per user type, and the different context scenarios, in
total, for each 5, 25, and 50 groups, we have 72 requests with no context, 62 requests with
low context, 66 requests with medium context, and 66 with high context.

The impact in the authentication process was measured considering the following metrics,
Table 6.5:

6.1.2 Refresh/Renewing tokens process

The second set of experiments aims to assess the impact of the renewal process, considering
the tests with 5, 25, and 50 users, with different types of users, as well as with sessions
lasting 2 and 4 minutes, as depicted in Table 6.6. As we see in Table 6.6, there is no
reference to scenarios with different because on this second set we will be only running
with no context information. The reason for this decision is based on the fact that this
second set was prepared after running the experiments of the first set, Section 6.1.1 and
the metric "Get RPT" did not show an impact on whether we used different context
information or not (see results in Section 6.2.1).

As mentioned in Section 6.1, each token has a lifetime of 60s and as explained in Section
5.3.3, the renewal process will be triggered if the remaining lifetime of the token is half
or less (e.g 30s or less). So, therefore, in a 2 minutes session, there will be 3 renewal
occurrences for each user as presented in Figure 6.1.

The same logic is applied to a session of 4 minutes, where there is the first authentication

64

Setup and Evaluation

Table 6.2: Requests For Authentication Test Set

Type user 5 group operations 25 group operations 50 group operations

6x get domains

6x post domains

6x post grants

6x get users

2x get users 1x get users

admin

6x get domains

6x get roles

6x get grants

6x get users

6x get topology

2x get users

2x get grants

1x get users

1x get grants

6x get domains

6x get roles

6x get users

2x get users 1x get users

6x post domains

6x post topology

6x post users

2x post users 1x get users

8x get topology 2x get topology 1x get topology

grantedToplogy

8x get topology 2x get topology 1x get topology

8x get topology

8x put topology

2x get topology

2x put topology

1x get topology

1x put topology

8x delete topology 2x delete topology 1x delete topology

8x get roles

8x post roles

2x get roles

2x post roles

1x get roles

1x post roles

grantedRoles

8x get roles 2x get roles 1x get roles

8x get roles 2x get roles 1x get roles

8x post roles

8x delete roles

2x post roles

2x delete roles

1x post roles

1x delete roles

Figure 6.1: Renewal Timeline In A 2 Min Session

65

Chapter 6

Table 6.3: Requests For Authentication Test Set (Continue)

Type user 5 group operations 25 group operations 50 group operations

8x get grants

8x delete grants

2x get grants

2x delete grants

1x get grants

1x delete grants

grantedGrants

8x get grants 2x get grants 1x get grants

8x get grants 2x get grants 1x get grants

8x post grants

8x delete grants

2x post grants

2x delete grants

1x post grants

1x delete grants

8x post users 2x post users 1x post users

grantedUsers

8x get users 2x get users 1x get users

8x put users

8x get users

2x post users

2x get users

1x post users

1x get users

8x delete users 2x delete users 1x delete users

2x get domains

2x post domains

1x get domains

1x post domains

grantedDomains

2x get domains 1x get domains

2x get domains 1x get domains

2x post domains 1x post domains

2x post grants 1x post grants

grantedAll

2x get domains

2x get roles

1x get domains

1x get roles

- 2x get roles 1x get roles

- 2x post topology 1x post topology

and then 7 renewals for each user.

Table 6.7, presents the requests that each type of user does in the group of 5, 25, 50
users. In a session of 2 minutes, these requests are made 4 times (authentication followed
by request, and 3 renewals followed by requests each). In a session of 4 minutes, these
requests are made 8 times (authentication followed by request, and 7 renewals followed by
requests each).

Table 6.4 also represents the number of instances for each type, on each group of 5, 25,
and 50 users for the renewals test set. Following the same logic as the previous test set,

66

Setup and Evaluation

Table 6.4: Type Of User Instances

Type user 5 group 25 group 50 group

admin 1 3 6
grantedToplogy 1 4 8
grantedRoles 1 4 8
grantedGrants 1 4 8
grantedUsers 1 4 8
grantedDomains 1 3 6
grantedAll 1 3 6

Table 6.5: Metrics For Authentication And Request

Metric Description Unit

Get access token time it takes to generate an access token from the start of
an authorization code flow ms

Get RPT time it takes to request a RPT token in Keycloak after re-
ceiving an access token ms

Put user attributes the time it takes to put the user’s attributes in Keycloak,
when using context information in authentication request ms

Verify RPT the time it takes to verify an RPT received by the controller
in a authorization header ms

Size of RPT the size of an RPT bytes
N. Process executing the number of normal processes executing in user mode elementary unit
RAM used the amount of memory RAM used bytes

Table 6.6: Scenarios Combination For Renewals

Parameter Values

Number of users 5+, 25∗, 50△

Type of user admin+,∗,△, grantedToplogy+,∗,△, grantedRoles+,∗,△, grantedGrants+,∗,△,
grantedUsers+,∗,△, grantedDomains∗,△, grantedAll∗,△

Time of session 120+,∗,△, 240+,∗,△

the 5, 25 and 50 users are created through a POST request to the controller before the
experimentation.

Considering, the number of instances per user type, and the number of repetitions for each
session, in total, we have 288 requests in a 2 minutes session for each 5, 25, and 50 groups
and 576 requests in a 4 minutes sessions also for each group.

The impact in the refresh process was measured considering the following metrics, Table
6.8:

6.1.3 Standard authentication and OIDC authentication in OpenDay-
light

The third set of tests aims to establish a comparison between the standard authentication
(i.e., on username and password) and the OIDC authentication in OpenDaylight. This
comparison relies on an admin authenticating and making REST operations on the stan-
dard OpenDaylight and the modified OpenDaylight with OIDC augmented with TCI. In
this set there are only two HTTP operations, get and post in the three REST endpoints
documented in Table 6.9.

67

Chapter 6

Table 6.7: Requests For Renewal Test Set

Type user 5 group operations 25 group operations 50 group operations

admin

6x get domains

6x post domains

6x post grants

6x get users

2x get users 1x get users

grantedToplogy 8x get topology 2x get topology 1x get topology

grantedRoles
8x get roles

8x post roles

2x get roles

2x post roles

1x get roles

1x post roles

grantedGrants
8x get grants

8x delete grants

2x get grants

2x delete grants

1x get grants

1x delete grants

grantedUsers 8x post users 2x post users 1x post users

grantedDomains -
2x get domains

2x post domains

1x get domains

1x post domains

grantedAll - 2x post grants 1x post grants

Table 6.8: Metrics For Renewal

Metric Description Unit

Get new RPT time taken to generate a new RPT in a renewal token request
to Keycloak ms

N. Process executing the number of normal processes executing in user mode elementary unit
RAM used the amount of memory RAM used bytes

Table 6.9: Requests On Standard And Modified
OpenDaylight Controller

Parameter Values

Endpoint request Domains+, Users∗, Grants△

Type of user admin+,∗,△

HTTP operation get+,∗,△, post+,∗,△

In the third set, the following metrics were considered, Table 6.10:

Table 6.10: Metrics For Standard And OIDC Opendaylight Authentication

Metric Description Unit

Authentication: the time it takes to authenticate a user in OpenDaylight
controller ms

REST request time taken to complete REST operations in Opendaylight ms

68

Setup and Evaluation

6.1.4 Access denied

For the last set of tests, the goal was to analyze the security and functionality of the roles
added in OpenDaylight and the use of TCI while making sensible operations. So, there
are two cases we want to analyze in this section. The first case is when a user does not
have the right permissions to access a specific restricted endpoint in OpenDaylight. And
the second one is when a user has the right permissions to make a sensible operation on
the controller however the context of the authentication does not portray high trust.

For such analysis, the group of 5 users is sufficient to analyze these cases and are presented
in Table 6.11. Each type of user will do an authentication followed by REST operations
in different context scenarios.

Table 6.11: Scenarios Combination For Access Denied Test Set

Parameter Values

Number of users 5+

Type of user admin+, grantedToplogy+, grantedRoles+, grantedGrants+, grantedUsers+,
grantedDomains+, grantedAll+

Context No context+, Low context+, Average context+, High context+

Table 6.12 presents the requests that each type of user does in the group of 5 for the different
scenarios of context (in order of rows: no context, low context, medium context, high
context). For the scenarios with no context and high context, the focus is on the security
portrayed by the roles and permissions, since in these scenarios all types of operations
are allowed, and for the scenarios of low context and average context, the focus is on the
context information for more sensible operations (For example, a grantedUsers in a low
context scenario tries to make a POST request to the users REST endpoint).

Before running each group test with 5 users, we have to register and create through a
POST request to the controller the respective 5 users, to be able to authenticate them and
perform operations.

Considering, the number of instances per user type (1 for each), and the different context
scenarios, in total, 20 requests are being made to the controller.

The only measurements made for this set are the receiving of success or unauthorized
response.

6.2 Evaluation Results

The results obtained from the experimental setup are presented per test set in the following
sections. For all boxplots presented, ’x’ represents the mean.

6.2.1 Authentication Process

The authentication process performance is assessed in terms of getting an access token,
"Get access token", and obtaining a RPT token, "Get RPT", which are the result of
successful authentication, and sending context information to an OP for later evaluation,
"Put user attributes". Following the successful authentication, the performance of verifying
an RPT, "Verify RPT", and the size of that token, "Size of RPT", is also assessed.

69

Chapter 6

Table 6.12: Requests For Access Denied Test
Set

Type user 5 group operations

1x get roles

grantedToplogy

1x put topology

1x post topology

1x get roles

1x delete topology

grantedRoles

1x delete roles

1x post roles

1x delete topology

1x get domains

grantedGrants

1x post grants

1x delete grants

1x get domains

1x post grants

grantedUser

1x put user

1x post user

1x post grants

1x put user

grantedDomain

1x delete domains

1x post domains

1x put user

Figure 6.2 presents the time in ms of obtaining an access token, since the beginning of an
authorization code flow in the OpenDaylight controller. The introduction of context has
a low impact on the authentication process since the average time for the majority of the
cases is below 175ms. With the number of users increasing the time tends to decrease,
showing some effect of Keycloak caching. Regarding the type of user, I would say that the

70

Setup and Evaluation

difference is low with a tendency to have higher variation with admin, grantedRoles, and
grantedDomains.

Figure 6.2: Get Access Token

The time, in ms, needed to get an RPT token is represented in the Figure 6.3. The average
time obtained for the majority of the cases is between 13-15ms. This value is extremely low
compared to the previous figure, where we obtain an access token, however, the previous
metric measures the complete OIDC flow, whereas the "Get RPT" metric only measures
the exchange of an access token for an RPT token. Regarding the different user groups,
the differences are low, where the caching factor of Keycloak is not as noticeable as in the
previous Figure 6.2. Compared to the ’no context’ scenario, the scenarios with context
information also result in a similar performance introducing almost no impact. Regarding
the type of user, the difference is also low with a tendency to have higher variation with
admin, grantedTopology, and grantedUsers.

Figure 6.4, represents the time needed in ms, to send the context information from the
RP to Keycloak, to update the user’s attributes. When comparing the different scenarios,
even updating the user’s attributes with diverse context information, no impact is shown.
For most cases, the average presented is around 5ms. Regarding the type of user, the
difference is extremely low with a tendency to have higher variation with grantedGrants,
and grantedUsers.

The time in ms, it takes to verify a RPT token received by the controller is presented in
Figure 6.5. For almost all cases, the average of verifying a token is between 1.5-2.5ms.
This process of verification time of an RPT token is almost similar in the tests no matter
the different configurations for the type of users. During this process of verification, when
context information is present, there is an additional step to verify the policy assigned in
the RPT token, however, it does not show impact since the performance for all types of
context or no context is similar.

The size of an RPT token is represented in Figure 6.6. Even with the increase in users, the
values obtained are very identical. Regarding the type, the admin and grantedAll tokens
are bigger, because they have more authorization data. For the different scenarios with

71

Chapter 6

Figure 6.3: Get RPT

Figure 6.4: Put User Atributes

context, the scenarios with context information will directly translate into more data in
the token than the authentications done without context information.

For the 5 group set, the "admin" used for testing was the "admin" previously created
in Keycloak and contains information such as first name and last name as mentioned in
Section 5.2.1. For the group of 25,50 as explained in the experimental setup, the users are
created through requests to the controller and the only information given to Keycloak is
the username and password. Since the "admin" instances of 25 and 50 do not contain that
extra information as the "admin" used in the groups of 5, the size of their tokens is just a
little smaller compared to the latter.

72

Setup and Evaluation

Figure 6.5: Verify RPT

Figure 6.6: Size Of RPT

The next Figure 6.7 presents the RAM used. The processes that were executing in user
mode during the different tests are extremely similar to all cases, therefore there is no need
for a graph. The RAM consumed, presents a slight increase with 25 and 50 respectively,
when compared with the RAM consumed for the tests with 5 users, which is expected,
since 25 and 50 brings a bigger load to the system.

73

Chapter 6

Figure 6.7: RAM Used (5 Group; 25 Group, 50 Group)

6.2.2 Refresh/Renewing tokens process

The Refresh/Renewing tokens process performance is assessed in terms of getting a new
RPT token, "Get new RPT".

Figure 6.8 represents the time in ms needed to obtain a new RPT token in a renewal token
request to Keycloak, in a session of 2 minutes and 4 minutes respectively. The refresh time
is almost similar for the sessions with 2 and 4 minutes, having an average for almost all
cases between 10 and 12.5 ms. The results with 4 minutes are more stable (in a 4 minute
session there are more renewals so we can see some of the effects of caching in Keycloak)
and the admin type user overall tends to present higher values for the refresh.

Figure 6.8: Get New RPT

Figure 6.9 presents the RAM used. The processes that were executing in user mode during
the different tests are extremely similar to all cases also in the refresh scenarios, therefore
there is no need for a graph. The RAM consumed, presents higher peaks with 25 and 50,
when compared with the RAM consumed for the tests with 5 users, which is expected,
with a bigger load into the system.

74

Setup and Evaluation

Figure 6.9: RAM Used (5 Group; 25 Group, 50 Group)

6.2.3 Standard authentication and OIDC authentication in OpenDay-
light

The standard authentication and OIDC authentication in Opendaylight performance is
assessed in terms of comparing diverse REST operations plus the time of the authentication.

For the tests with the default admin in the OpenDaylight controller default and the one
modified for this work, Figure 6.10 shows the cost of some REST operations and au-
thentication from the admin type of users. Even though the value of the OIDC
authentication of the "admin" is not highlighted in the figure, the value we
collected was 411 ms. The most noticeable factor here is the values of the operations
with the admin default in the modified OpenDaylight controller being much higher than
the values in the standard OpenDaylight controller. This increase is expected, even though,
the values presented are in ms, a complete authentication goes through a lot of steps un-
til a user received a RPT token. However, to increase the security in the OpenDaylight
controller, a small cost in performance must be given. Regarding the HTTP operation
cost, get operations to have a slightly lower cost than post operations as expected, and the
REST operations to the user endpoint are the ones with bigger values, especially the post
to the user endpoint. This is expected because, besides the registration of a user in the
controller, it also reads the role in the JSON data received in the HTTP request, and it
also creates a grant for that user with that role. In the OpenDaylight controller modified,
there are two additional operations which are the registration of the user in Keycloak, and
the association of a role to that user as well.

With the removal of the OIDC authentication cost in the OpenDaylight controller modified,
Figure 6.11, shows a closure look at the time of the rest operations. All values obtained
previously with the admin in the controller modified are almost 10 times lower in this
new Figure, except the post request for the user endpoint, as already explained, there are
multiple operations within that request. So, the cost of these operations themselves is not
high, but the authentication cost to retrieve a RPT token to use on the REST operation
is the only downfall, in order to have better security.

6.2.4 Access denied

The Access denied performance is assessed in terms of obtaining a successful or an unau-
thorized response.

As expected from our framework, all the requests return a response with the following
message: Access not allowed or token not valid, please authenticate again

75

Chapter 6

Figure 6.10: Rest Operations With Authentication Time In OpenDaylight Standard And
OpenDaylight With OIDC

Figure 6.11: Rest Operations With Authentication In Standard OpenDaylight And Only
Rest Operations In Modified OpenDaylight

6.3 Enhanced security with OIDC

This section evaluates the impact on the security of adding OIDC support in an OpenDay-
light controller as well as the support for OIDC with an extension for context information.

76

Setup and Evaluation

6.3.1 Security with OIDC without context information

From the state of art analyzed in the previous chapter, OIDC was the authentication mech-
anism that presents more security advantages when compared to others such as OAuth 2.0
and basic authentication schemes. In this scenario, the replacement of the basic authen-
tication mechanism in OpenDaylight with OIDC, using Keycloak improves the security
of the controller. The security gains rely on the generation of a RPT token with all the
authorization data of a user, which, at any point can be revoked.

Additionally, the results presented in the previous section, showed that this increase in
security would have a partial impact on the time of the authentication when compared to
the standard mechanism in OpenDayligth. However, the advantages of having the user’s
permissions on a simple RPT token, helps the following request be more secure and in
general fast, since, for every REST operation, there is no need for authentication, since a
token has a specified lifetime.

Broders et al, in [66] proposed the use of modeling techniques, including Attack trees, to
compare the security of two authentication mechanisms, where this approach showed a de-
tailed analysis of threat coverage of authentication mechanisms as well as their complexity.
Following the approach proposed, we also constructed some Attack Trees 1 with the goal
of "Authenticated user makes unwanted sensible operations in OpenDaylight",
with a few simple exploits presented (i.e, sensible operations could be the creation of a
grant to associate a user with the role "admin", remove devices in a topology).

Therefore, Figure 6.12 represents the proposed Attack Tree [AT-01] in the standard Open-
Daylight. This small tree shows that to achieve the goal of this attack, they need to send
fake/stolen credentials to be able to authenticate or send personal credentials that are
authorized, but they are abusing their privileges or have more privileges than they should,
and make a request to a restricted endpoint.

Figure 6.13 represents the proposed Attack Tree [AT-02] in OpenDaylight with OIDC and
we can see the increase of the tree with the increase of the complexity of the attack. To
be able to do an operation in OpenDaylight with OIDC, first, we need to authenticate,
and following we send the RPT token received in the authorization header of the wanted
request. Therefore, there are three ways to be able to have an RPT token but all of
them are complex. First, they need to send the fake/stolen credentials or send personal
credentials, while abusing their privileges and obtaining a valid RPT token, which can be
revoked at any time and has a lifetime duration. Second, they could try to forge an RPT
token with a valid signature, but for that, they need the private key of the signatures which
is stored securely in the Keycloak. The last option, is they steal an RPT token through
the use of different exploits.

6.3.2 Security with OIDC and trust context information

As explained in the Research Methodology the concept of TCI and as presented in the
use case, TCI can bring a more sense of trust to the user as well to the framework in
use. Sensible operations to the controller will only be possible if the context information
of the user’s device is evaluated as of high trust. The results obtained in the previous
section showed that even when working with different types of context information, the
performance in general of different operations is very similar, not causing a significant
impact. Therefore, as the controller is a critical and central point in a network, besides

1The modeling of all attacks was not a part of the scope of this thesis

77

Chapter 6

Figure 6.12: [AT-01] - Attack Tree In Standard OpenDaylight

having a secure authentication method, such as OIDC, restricting its access based on the
context of the device used for authentication brings an extra layer of security.

The Attack Tree in Figure 6.14 represents the proposed Attack Tree [AT-03] in OpenDay-
light with OIDC and support for trust context information, and the exponential growth of
complexity is evident. Completing the previous Attack Tree presented, 6.13, if the attacker
uses a forged or stolen RPT token, this token must include context information of high
trust to be able to make a successful sensible operation in the Controller. If the user is
trying to use the fake/stolen credentials or send personal credentials, they also need to
send context information of high trust in the authentication request. And if the user is not
authorized to do sensible operations that need to be made in a context of high trust, then
the attacker only has two ways to find the right context information. The first is by trial
and error, and the second one is to gain access to Keycloak user management interface or
database and use the context information stored in the Javascript Policy of High Trust.
And even after, discovering the context information, since they are stored as UUID, the
attacker needs to decode the UUID, in order to send the context information in String
format in the authentication request.

6.3.3 Comparison of OpenDaylight security integrations

Table 6.13, shows the security of each integration in OpenDaylight, by analyzing the com-
plexity of each Attack Tree, while comparing the number of OR’s and AND’s in a tree.
The increase in the number of OR’s indicates the growth of a tree, and the increase in the

78

Setup and Evaluation

Figure 6.13: [AT-02] - Attack Tree In OIDC OpenDaylight

number of AND’s represents the increase in the complexity of the tree since more exploits
or attacks need to be combined to achieve the final goal. As proposed by this work, the
security of OpenDaylight increases with each security element introduced, where our final
integration, shows to be a more difficult target to have a successful attack.

Table 6.13: Attack Tree Comparison - OpenDaylight Security Integrations

Integration Nº of OR’s Nº of AND’s

Standard Opendaylight 4 1
Opendaylight with OIDC 6 1
Opendaylight with OIDC and context information support 13 5

79

Chapter 6

Figure 6.14: [AT-03] - Attack Tree In OIDC OpenDaylight With Support For TCI

80

This page is intentionally left blank.

Chapter 7

Conclusion

Nowadays, SDN is even more crucial in network management with the increase of its usage
in cloud computing, as well as being one of the key technologies in 5G networks. However,
the basic authentication it possesses is vulnerable to different kinds of exploits. Therefore,
the main goal of this work is to design and evaluate a framework, which incorporates robust
authentication and accounting mechanisms in SDN controllers.

To accomplish the proposed objective, we started by analyzing different authentication
mechanisms, where the chosen one was OIDC which uses bearer tokens. The search for a
SDN controller to make the integration with OIDC was also extensive. OpenDayLight was
the SDN controller chosen based on the documentation available and the superior support
for authentication modules.

It also introduced the idea of trust, with the use of a user’s device context information
to regulate different levels of trust towards the authentication. Each level of trust will
correspond to a policy set during the verification of the context information received by the
OP during the authentication request. Each policy will result in the presence of different
user information inside an ID token, where the higher trust values the more information
can be included.

The results obtained evaluated the impact of introducing fields in the claims of OIDC
regarding a user’s device context information, which indicated a small cost. The relevant
values of cost in OIDC with TCI, compared with a standard OIDC implementation, were
mainly found in the time taken to verify the different values of context in OP since a
standard version of OIDC does not have values of context that must be verified. Measures in
TeaStore, with a different number of users, showed some variance in terms of performance,
justified by the interaction of different services during an operation.

In the second semester, we started developing the framework proposed, based on the ar-
chitecture designed and introduced in the first semester, with the OpenDaylight controller,
AAA filter, RP, and Keycloak. Then, we introduced the ideas of roles and grants on the
controller and how to define a more precise authorization to the various REST endpoints
of the controller. We also discussed the setups on Keycloak, the adjustments made to the
controller’s AAA filter, the addition of the RP component, the processes for authentication,
where to redirect each request that is received on the controller, and how to validate a RPT
token, while proposing additionally, a new architecture for the OpenDaylight controller.

We created an experimental procedure to test various authentication-related parameters,
such as the verification of a token sent by an authenticated user and retrieve metrics related
to a token renewal, before comparing the behavior of different REST requests for the

82

Conclusion

same user, "admin", in both the standard OpenDaylight and the modified OpenDaylight
of this framework. We also analyzed the security and functionality of the roles added
in OpenDaylight and the use of TCI to make sensible operations (e.g. create grant to
associate a user with the role of "admin", remove devices in a topology), to the controller.
In this experimental procedure, we varied the number of users, the type of users as well
the context of the authentication.

From the results obtained, we observed that even with a different number of users, user
type, or context information, the values obtained were very similar in most cases. No major
differences were found for the metrics related to authentication and the renewal procedure,
except for the "Size of the token" metric, which is expected to have differences since each
user type with different context information, will result in more or fewer authorization data
stored in a RPT. The test set related to the access denied showed that the roles added
prevented unauthorized requests and the use of context information prevented sensible
operations to be realized under scenarios where the trust in the context information is low
or average.

The major differences were found using the same user "admin" and comparing the timings
acquired from the controller of these two frameworks, it can be shown that the timing of
authentication is approximately 8 times longer and some requests to the controller that
also cause modifications in Keycloak are almost 3 times longer.

Although there is a cost associated with increasing the level of security in the OpenDay-
light controller, which is less than a second overall, the results obtained were expected and
this increase is justified as it gives bigger security by having the advantages of a OIDC au-
thentication and having the trust policies established in regards to the context information
of the authentication.

This security gain was proven following a methodology of using attack trees to compare
different authentication mechanisms while analyzing the threat scope and complexity of
the tree. The attack trees designed showed that the security of OpenDaylight increased
with the introduced TCI by showing an increase in the required complexity of the attacks
(i.e. an increase of AND’s).

7.1 Future work

Future work includes the restructuration of the OpenDaylight architecture as proposed, to
have a central point in the controller, the AAA filter, for all types of operations, where the
authentication, authorization, policy enforcement, and verification of the token can occur,
before a REST request is authorized.

Additionally, this work can lead to the removal of the database of the controller regarding
the AAA services, since all the user management is majority realized by Keycloak. There
would only be the need to have an entry for each userid, with its respective refresh token,
to maintain the user’s session valid in longer sessions, by renewing the RPT token.

All the requests performed in OpenDayligth were HTTP requests and not HTTPS requests
since the controller didn’t have support for it. A new security measure to add to the
controller is the addition of support to HTTPS requests, which would give another layer
of security by using encryption.

At last, the automation of the detection of the context information is something to explore
so we can guarantee its authenticity. This automation and the use of the TCI in OIDC

83

Chapter 7

could lead up to be useful for future projects since nowadays there are more examples of
users authenticating in the same application under different context scenarios.

84

References

[1] Abdallah Moubayed, Ahmed Refaey, and Abdallah Shami. Software-defined perimeter
(sdp): State of the art secure solution for modern networks. IEEE Network, 33(5):226–
233, 2019.

[2] Shi Dong, Khushnood Abbas, and Raj Jain. A survey on distributed denial of service
(ddos) attacks in sdn and cloud computing environments. IEEE Access, 7:80813–
80828, 2019.

[3] Ahmed Sallam, Ahmed Refaey, and Abdallah Shami. On the security of sdn: A
completed secure and scalable framework using the software-defined perimeter. IEEE
Access, 7:146577–146587, 2019.

[4] P. Goransson, C. Black, and T. Culver. Software Defined Networks: A Comprehensive
Approach. Elsevier Science, 2016.

[5] Openid connect. https://openid.net/specs/openid-connect-core-1_0.html#
CodeFlowAuth. Accessed: 2021-09-20.

[6] Oauth 2.0 rfc. https://datatracker.ietf.org/doc/html/rfc6749. Accessed: 2021-
09-20.

[7] Open network operating system. https://www.onap.org/. Accessed: 2021-09-30.

[8] Opendaylight. https://www.opendaylight.org/. Accessed: 2021-09-27.

[9] Jóakim von Kistowski, Simon Eismann, Norbert Schmitt, André Bauer, Johannes
Grohmann, and Samuel Kounev. TeaStore: A Micro-Service Reference Application
for Benchmarking, Modeling and Resource Management Research. In Proceedings of
the 26th IEEE International Symposium on the Modelling, Analysis, and Simulation
of Computer and Telecommunication Systems, MASCOTS ’18, September 2018.

[10] Teastore. https://github.com/DescartesResearch/TeaStore. Accessed: 2021-10-
17.

[11] Oauth 2.0 section 1. https://datatracker.ietf.org/doc/html/rfc6749#
section-1.1. Accessed: 2021-09-20.

[12] Oauth 2.0 section 1.2. https://datatracker.ietf.org/doc/html/rfc6749#
section-1.2. Accessed: 2021-09-20.

[13] Yvonne. Wilson and Abhishek Hingnikar. Solving Identity Management in Modern
Applications Demystifying OAuth 2.0, OpenID Connect, and SAML 2.0. 1st ed. 2019.
edition, 2019.

[14] Oauth 2.0 section 4.1. https://datatracker.ietf.org/doc/html/rfc6749#
section-4.1. Accessed: 2021-09-20.

85

https://openid.net/specs/openid-connect-core-1_0.html#CodeFlowAuth
https://openid.net/specs/openid-connect-core-1_0.html#CodeFlowAuth
https://datatracker.ietf.org/doc/html/rfc6749
https://www.onap.org/
https://www.opendaylight.org/
https://github.com/DescartesResearch/TeaStore
https://datatracker.ietf.org/doc/html/rfc6749#section-1.1
https://datatracker.ietf.org/doc/html/rfc6749#section-1.1
https://datatracker.ietf.org/doc/html/rfc6749#section-1.2
https://datatracker.ietf.org/doc/html/rfc6749#section-1.2
https://datatracker.ietf.org/doc/html/rfc6749#section-4.1
https://datatracker.ietf.org/doc/html/rfc6749#section-4.1

Chapter 7

[15] Spring boot 2.1: Outstanding oidc, oauth 2.0, and reactive
api support. https://developer.okta.com/blog/2018/11/26/
spring-boot-2-dot-1-oidc-oauth2-reactive-api. Accessed: 2021-09-25.

[16] Openid authorization code flow. https://openid.net/specs/
openid-connect-core-1_0.html#CodeFlowAuth. Accessed: 2021-09-25.

[17] Openid claims. https://openid.net/specs/openid-connect-core-1_0.html#
Claims. Accessed: 2021-10-10.

[18] Siriwardena P. OpenID Connect in Action. Manning, 2021.

[19] Google-sign-in. https://www.wappalyzer.com/technologies/social-logins/
google-sign-in. Accessed: 2021-10-20.

[20] Etsi ts 123 501 version 16.6.0. - system architecture for the 5g system
(5gs). https://www.etsi.org/deliver/etsi_ts/123500_123599/123501/16.06.
00_60/ts_123501v160600p.pdf.

[21] A comparative introduction to 4g and 5g authentication. https://www.cablelabs.
com/insights/a-comparative-introduction-to-4g-and-5g-authentication.
Accessed: 2021-10-3.

[22] Yustus Eko Oktian, SangGon Lee, HoonJae Lee, and JunHuy Lam. Secure your
northbound sdn api. In 2015 Seventh International Conference on Ubiquitous and
Future Networks, pages 919–920, 2015.

[23] Yustus Eko Oktian, Sang-Gon Lee, and JunHuy Lam. Oauthkeeper: An authorization
framework for software defined network. Journal of Network and Systems Manage-
ment, 26(1):147–168, Jan 2018.

[24] Erik Berdonces Bonelo. OpenID Connect Client Registration API for Federated Cloud
Platforms. Master’s thesis, Aalto University. School of Science, 2017.

[25] Lauritz Holtmann. Single Sign-On Security:Security Analysis of real-life OpenID Con-
nect Implementations. Master’s thesis, RUHR-UNIVERSITAT BOCHUM, 2020.

[26] Nitin Naik and Paul Jenkins. Securing digital identities in the cloud by selecting an
apposite federated identity management from saml, oauth and openid connect. In
2017 11th International Conference on Research Challenges in Information Science
(RCIS), pages 163–174, 2017.

[27] Jim Basney, Phuong Cao, and Terry Fleury. Investigating root causes of authenti-
cation failures using a saml and oidc observatory. In 2020 IEEE 6th International
Conference on Dependability in Sensor, Cloud and Big Data Systems and Application
(DependSys), pages 119–126, 2020.

[28] Alejandro Pérez Méndez, Gabriel López Millán, Rafael Marín López, David W. Chad-
wick, and Ioram Schechtman Sette. Integrating an aaa-based federation mechanism for
openstack—the classe view. Concurrency and Computation: Practice and Experience,
29(12):e4148, 2017. e4148 CPE-16-0379.

[29] Tejaswini Apte and Jatinderkumar R. Saini. A comprehensive and critical analysis
of cross-domain federated identity management deployments. In Milan Tuba, Shyam
Akashe, and Amit Joshi, editors, ICT Systems and Sustainability, pages 365–372,
Singapore, 2021. Springer Singapore.

86

https://developer.okta.com/blog/2018/11/26/spring-boot-2-dot-1-oidc-oauth2-reactive-api
https://developer.okta.com/blog/2018/11/26/spring-boot-2-dot-1-oidc-oauth2-reactive-api
 https://openid.net/specs/openid-connect-core-1_0.html#CodeFlowAuth
 https://openid.net/specs/openid-connect-core-1_0.html#CodeFlowAuth
https://openid.net/specs/openid-connect-core-1_0.html#Claims
https://openid.net/specs/openid-connect-core-1_0.html#Claims
https://www.wappalyzer.com/technologies/social-logins/google-sign-in
https://www.wappalyzer.com/technologies/social-logins/google-sign-in
https://www.etsi.org/deliver/etsi_ts/123500_123599/123501/16.06.00_60/ts_123501v160600p.pdf
https://www.etsi.org/deliver/etsi_ts/123500_123599/123501/16.06.00_60/ts_123501v160600p.pdf
https://www.cablelabs.com/insights/a-comparative-introduction-to-4g-and-5g-authentication
https://www.cablelabs.com/insights/a-comparative-introduction-to-4g-and-5g-authentication

References

[30] Paul A. Grassi, Michael E. Garcia, and James L. Fenton. Nist: Digital identity
guidelines. June 2017.

[31] Authlib - the ultimate python library in building oauth and openid connect servers.
https://docs.authlib.org/en/latest/index.html. Accessed: 2021-10-15.

[32] Keycloack. https://www.keycloak.org/. Accessed: 2021-10-10.

[33] Keycloak - managing resource servers. https://www.keycloak.org/docs/latest/
authorization_services/index.html#_resource_server_overview. Accessed:
2021-12-5.

[34] Sdn architecture. https://www.researchgate.net/figure/
SDN-architecture-exclusive-the-management-plane_fig12_315382372. Ac-
cessed: 2021-09-23.

[35] Open network operating system. https://opennetworking.org/onos/. Accessed:
2021-09-30.

[36] Sandra Scott-Hayward. Trailing the snail: Sdn controller security evolution. 11 2017.

[37] Apache karaf. https://karaf.apache.org/. Accessed: 2021-10-3.

[38] Apache shiro. https://shiro.apache.org/. Accessed: 2021-10-3.

[39] Opendaylight authentication authorization & accounting. https://docs.
opendaylight.org/projects/aaa/en/latest/dev-guide.html. Accessed: 2021-09-
27.

[40] Ramachandra Kamath Arbettu, Rahamatullah Khondoker, Kpatcha Bayarou, and
Frank Weber. Security analysis of opendaylight, onos, rosemary and ryu sdn con-
trollers. In 2016 17th International Telecommunications Network Strategy and Plan-
ning Symposium (Networks), pages 37–44, 2016.

[41] Slf4j. https://www.slf4j.org/. Accessed: 2021-10-5.

[42] H2 database. https://www.h2database.com/html/main.html. Accessed: 2021-10-
25.

[43] Opendaylight architecture. https://www.opendaylight.org/wp-content/uploads/
sites/14/2019/03/OpenDaylight-Architecture-.png. Accessed: 2021-10-4.

[44] Lighty.io. https://lighty.io/. Accessed: 2021-09-29.

[45] Lighty.io authentication authorization & accounting. https://lighty.io/
aaa-integration/. Accessed: 2021-09-29.

[46] Open network operating system oauth provider. https://wiki.onap.org/display/
DW/OAuth+Provider+Implementation. Accessed: 2021-09-30.

[47] Open network operating system honolulu. https://wiki.onap.org/display/DW/
SDN-R+Release+Honolulu. Accessed: 2021-09-30.

[48] Rest. https://restfulapi.net/. Accessed: 2021-10-15.

[49] Rest red hat. https://www.redhat.com/en/topics/api/what-is-a-rest-api. Ac-
cessed: 2021-10-15.

87

https://www.keycloak.org/
https://www.keycloak.org/docs/latest/authorization_services/index.html#_resource_server_overview
https://www.keycloak.org/docs/latest/authorization_services/index.html#_resource_server_overview
 https://www.researchgate.net/figure/SDN-architecture-exclusive-the-management-plane_fig12_315382372
 https://www.researchgate.net/figure/SDN-architecture-exclusive-the-management-plane_fig12_315382372
https://opennetworking.org/onos/
https://karaf.apache.org/
https://shiro.apache.org/
https://docs.opendaylight.org/projects/aaa/en/latest/dev-guide.html
https://docs.opendaylight.org/projects/aaa/en/latest/dev-guide.html
https://www.slf4j.org/
https://www.h2database.com/html/main.html
https://www.opendaylight.org/wp-content/uploads/sites/14/2019/03/OpenDaylight-Architecture-.png
https://www.opendaylight.org/wp-content/uploads/sites/14/2019/03/OpenDaylight-Architecture-.png
https://lighty.io/
https://lighty.io/aaa-integration/
https://lighty.io/aaa-integration/
https://wiki.onap.org/display/DW/OAuth+Provider+Implementation
https://wiki.onap.org/display/DW/OAuth+Provider+Implementation
https://wiki.onap.org/display/DW/SDN-R+Release+Honolulu
https://wiki.onap.org/display/DW/SDN-R+Release+Honolulu
https://restfulapi.net/
https://www.redhat.com/en/topics/api/what-is-a-rest-api

Chapter

[50] Alexander Shalimov, Dmitry Zuikov, Daria Zimarina, Vasily Pashkov, and Ruslan
Smeliansky. Advanced study of sdn/openflow controllers. In Proceedings of the 9th
Central & Eastern European Software Engineering Conference in Russia, CEE-SECR
’13, New York, NY, USA, 2013. Association for Computing Machinery.

[51] Péter Vörös and Attila Kiss. Security middleware programming using p4. In Theo
Tryfonas, editor, Human Aspects of Information Security, Privacy, and Trust, pages
277–287, Cham, 2016. Springer International Publishing.

[52] James Yu and Imad Al Ajarmeh. An empirical study of the netconf protocol. In 2010
Sixth International Conference on Networking and Services, pages 253–258, 2010.

[53] Ieee xplore. https://ieeexplore.ieee.org/Xplore/home.jsp. Accessed: 2021-9-27.

[54] Research gate. https://www.researchgate.net/. Accessed: 2021-9-27.

[55] Elsevier. https://www.elsevier.com/. Accessed: 2021-9-27.

[56] Academia. https://www.academia.edu/. Accessed: 2021-9-27.

[57] Google scholar. https://scholar.google.com/. Accessed: 2021-9-10.

[58] Keycloack server administration guide. https://www.keycloak.org/docs/latest/
server_admin/index.html#configuring-realms. Accessed: 2021-10-1.

[59] Fernet. https://cryptography.io/en/latest/fernet/. Accessed: 2021-11-2.

[60] Docker. https://www.docker.com/. Accessed: 2021-10-26.

[61] Locust. https://locust.io/. Accessed: 2021-11-10.

[62] Elasticsearch. https://www.elastic.co/pt/. Accessed: 2021-11-10.

[63] Keycloak admin rest api. https://www.keycloak.org/docs/latest/server_
development/index.html#admin-rest-api. Accessed: 2021-12-22.

[64] Sdn series part six. https://thenewstack.io/
sdn-series-part-vi-opendaylight/. Accessed: 2022-03-29.

[65] Prometheus. https://prometheus.io/. Accessed: 2022-5-5.

[66] Nicolas Broders, Célia Martinie, Philippe Palanque, Marco Winckler, and Kimmo
Halunen. A generic multimodels-based approach for the analysis of usability and se-
curity of authentication mechanisms. In International Conference on Human-Centred
Software Engineering, pages 61–83. Springer, 2020.

88

https://ieeexplore.ieee.org/Xplore/home.jsp
https://www.researchgate.net/
https://www.elsevier.com/
https://www.academia.edu/
https://scholar.google.com/
https://www.keycloak.org/docs/latest/server_admin/index.html#configuring-realms
https://www.keycloak.org/docs/latest/server_admin/index.html#configuring-realms
https://cryptography.io/en/latest/fernet/
https://www.docker.com/
https://locust.io/
https://www.elastic.co/pt/
https://www.keycloak.org/docs/latest/server_development/index.html#admin-rest-api
https://www.keycloak.org/docs/latest/server_development/index.html#admin-rest-api
https://thenewstack.io/sdn-series-part-vi-opendaylight/
https://thenewstack.io/sdn-series-part-vi-opendaylight/
https://prometheus.io/

Appendices

89

This page is intentionally left blank.

Appendix A

BIANFE: Object identification and
authentication in federated scenarios

91

BIANFE: Object identification and authentication in
federated scenarios

Carolina Gonçalves
University of Coimbra, CISUC, DEI

Coimbra, Portugal
mariapg@student.dei.uc.pt

Bruno Sousa
University of Coimbra, CISUC, DEI

Coimbra, Portugal
bmsousa@dei.uc.pt

Nuno Antunes
University of Coimbra, CISUC, DEI

Coimbra, Portugal
nmsa@dei.uc.pt

Abstract—Federated Identity Management enables convenient
mechanisms to authenticate users and to authorize services,
applications to specific users’ resources. SAML and OpenID
Connect that relies on OAuth 2.0 are commonly employed to
enable Single-Sign-On features. Despite their wide usage in
several domains (enterprise, web applications) they only aim to
identify entities like persons and do not consider the different
trust levels that a person can have with its devices, or even
with the services provided by organisations participating or
not in federated scenarios. BIANFE stands as a proposal for
object identification and authentication in federated and non
federated scenarios, considering the trust relations between end-
users and the applications/services running in its devices. As work
in progress, BIANFE tackles primarily the identification issue for
objects, considering interoperability and privacy issues.

Index Terms—Federated Identity Management, OpenID Con-
nect, UUID, OAuth 2.0, Object

I. INTRODUCTION

Federated Identity Management (FIM) has attracted the
research community and enterprises to build several solutions,
such as [1]: Kerberos, the Security Assertion Markup Lan-
guage (SAML), Shibboleth, Open Authentication (OAuth 2.0),
and OpenID Connect (OIDC.

Identity management solutions include mechanisms and ar-
chitectures to exchange identity information between organisa-
tions that are federated for authentication purposes. Solutions
such as SAML are mainly suited for enterprise contexts to
enable Single-Sign-On (SSO), while OIDC is more generic
being also suited for generic contexts [2]. OAuth 2.0 only
supports authorisation of resources, while SAML and OIDC
also support authentication of users.

The identity information in FIM solutions is commonly
referred as claims or SAML assertions, and contains user
unique identifiers, Private Identifiable Information (PII) items,
such as email address, phone number. The major issue with
existent FIM solutions is that they aim to identify entities like
persons and do not consider the different trust levels that a
person can have with its devices, or even with the services
provided by organisations participating or not in federated
environments.

The Object Identifier - OID is commonly employed for
naming nodes in the Internet, to name objects in X.509 cer-
tificates, as identifiers in databases, in management protocols
like SNMP [3]. The Universal Unique Identifier - UUID

is employed to identify uniquely resources, for instance to
provide unique values for primary keys in tables, or to identify
objects in operating systems.

The Uniform Resource Name (URN) can be combined with
other mechanisms, like the OID [4], and UUID [5]) to convey
identifiers in a standard fashion and to provide interoperability
between heterogeneous systems.

BIANFE is as a proposal for object identification and
authentication in federated scenarios, considering the trust
relations between end users and the applications running
in its devices. BIANFE tackles primarily the identification
issue for objects, considering interoperability issues. This
paper presents the preliminary approaches being considered in
BIANFE. The contributions of BIANFE are: 1- A proposal to
identify objects in environments, where multiple organizations
are set up in a federated mode (i.e. relying on a common
identity provider); 2- A proposal to authenticate, authorise
resources considering the trust relations between persons and
objects/services; 3- An approach compatible with OIDC to
enable the identification of distinct entities.

II. BIANFE: OBJECTS IDENTIFICATION AND
AUTHENTICATION

BIANFE considers ’objects’ as an entity that can be physical
(e.g., device) or virtual (e.g., application), with associated
environments (i.e., mapping to a specific operating system or
virtualization platform), on which user agents are executed.
User agents, or web browsers, make the interface with the
end-user, to gather its consent on authorizing the access from
a service to a specific resource (e.g., email address).

A. Problem statement & Use case

The use case described in Fig. 1 illustrates an user with
multiple devices on which user agents (UAs) can connect to
diverse services. UAs can run on distinct environments of
a device, which can represent the operating systems (e.g.,
Windows, Linux), where a browser (e.g. Firefox) runs. The
environment can also be associated with virtualised contexts.
For instance, a user agent based on the curl tool can run
inside a docker container, or even run as a microservice in
kubernetes (K8s).

The user has different trust levels regarding its devices, and
with the respective user agents. A simple example can consider

1

Edge A.1

Cloud

Authorization
Server

Service Cloud
Functions

Service Edge
Functions
domain A

Edge B.1 Service Edge
Functions
domain B

Edge C.n Service Edge
Functions
domain C

Edge A.n Service Edge
Functions
domain A

End - User

Ta
bl

et

Ph
on

e

en
v

B

User Agent A
User Agent A

en
v

C

en
v

C

La
pt

op

 en

v
C

User Agent

en
v

D

VM
senv E
User

Agent
en
v

D

VM
senv E
User

Agent
en
v

D

VM
s

en
v

E

User Agent

User Agent

en
v

A

User Agent A
User Agent A
User Agent

Fig. 1. Use case and associated problem statement

the Eve user person:Eve that has an Android mobile phone -
device:android and an iPhone device - device:iphone. Eve may
tend to trust more on the iPhone device given the full control
of Apple in terms of hardware and software.

B. Identification of objects with URN and UUIC

The URN, as per RFC 4122 [5] is a feasible solution to
identify objects, persons and the respective trust relations. In
particular, by allowing an user to specify generic trust relations
(i.e trusting in a device), or providing detailed information
regarding the environment on which the user agent runs
(i.e., trusting in a specific device and the windows operating
system).

The advantage of the URN is the human interoperability. For
instance, the person Eve to identify the trust of the Google
Chrome in the android device could use the URN in the
listing 1 at line 1, while the URN in line 3 identifies the Google
Chrome user agent running in the iPhone device.

Listing 1. URNs for Google Chrome in android and iPhone devices
1 urn:person:Eve:device:android:userAgent:googleChrome

3 urn:person:Eve:device:iphone:userAgent:googleChrome

A more granular identification can be formulated by includ-
ing the detailed information of the environment, for instance,
for the the cloud device B, as illustrated in listing 2. The
details in this example include the identification of the K8s
cluster and POD (group of containers).

Listing 2. URN with information of the environment
urn:person:Eve:device:cloudDevB:environment:k8sProd:

subenvironment:PODA:subenvironment:dockerA:userAgent
:PythonRequests

UUID supports multiple options to generate unique identi-
fiers [5]: UUID v1 generates identifiers based on the Medium
Access Control - MAC address of an host, the date and time
values and a random value; UUID v3 and v5 provide the means
to generate unique identifiers relying on a namespace identifier
(e.g., domain name) and on generic names assigned by the
user; UUID v4 provides unique identifiers relying solely on
random numbers.

Both UUID v1 and v4 are not suitable for the purpose of
BIANFE due to the randomness effect. In addition, the MAC

address of a device is not considered a reliable identifier [3].
The main difference between UUID v3 and v5 relies on the
hashing algorithm, where v5 stands as the most secure option
by employing the SHA-1 algorithm.

UUID v5 requires two parameters to generate a
unique identifier, the namespace and a string with
the name assigned by the end user. The namespace
is commonly represented in the form a UUID (e.g.,
306bb302-bc09-438a-9a49-21f7b02f3060), or can rely on
pre-defined identifiers for fully qualified domain names
(DNS), URLs, OID or X.500 distinguished names. The
listing 3, illustrates how the UUID can be generated, via the
genBianfeID() function, for the user agent running in a
environment and on a specific device.

Listing 3. Example of UUID for the Google Chrome
1 # See https://docs.python.org/3/library/uuid.html
2 import uuid
3 nameUA=’urn:person:Eve:device:android:userAgent:

googleChrome’
4 nameSpace= uuid.NAMESPACE_DNS
5 def genBianfeID(nameSpace, nameUA):
6 bianfeID=uuid.uuid5(uuid.NAMESPACE_DNS, urnUA)
7 return bianfeID

III. CONCLUSIONS & NEXT STEPS

BIANFE stands as a proposal for object identification and
authentication in federated scenarios, considering the trust
relations between end users and applications/services running
in the devices. BIANFE tackles primarily the identification
issue for objects and persons by proposing an approach that
relies on URN and UUID standards. The next steps for
BIANFE include its integration with the OIDC standardised
flows (e.g. Authentication Code flow), to include the BIANFE
identifiers in scenarios with services provided in federated
environments.

ACKNOWLEDGMENT

This work is funded by project AIDA (POCI-01-0247-
FEDER045907), co-financed by the European Regional De-
velopment Fund (ERDF) through the Operacional Program for
Competitiveness and Internationalisation (COMPETE 2020)
and by the Portuguese Foundation for Science and Technology
(FCT) under CMU Portugal, and by National Funds through
the Portuguese funding agency FCT - Fundação para a Ciência
e a Tecnologia with grant SFRH/BD/129771/2017 and within
project UIDB/50014/2020.

REFERENCES

[1] A. Rasiwasia, “A Framework To Implement OpenID Connect Protocol
For Federated Identity Management In Enterprises,” Ph.D. dissertation,
2017.

[2] N. Naik and P. Jenkins, “Securing digital identities in the cloud by select-
ing an apposite Federated Identity Management from SAML, OAuth and
OpenID Connect,” in International Conference on Research Challenges
in Information Science (RCIS). IEEE, may 2017, pp. 163–174.

[3] D. R. E. Downs and et al., “On the utility of identification schemes for
digital earth science data: An assessment and recommendations,” Earth
Science Informatics, vol. 4, no. 3, pp. 139–160, 2011.

[4] M. H. Mealling, “A URN Namespace of Object Identifiers,” RFC 3061,
Feb. 2001.

[5] P. J. Leach, R. Salz, and M. H. Mealling, “A Universally Unique
IDentifier (UUID) URN Namespace,” RFC 4122, Jul. 2005.

2

	Introduction
	Objectives
	Contributions
	Structure

	Background and Related Work
	Security Features
	OAuth 2.0
	OpenID Connect
	SAML2.0
	Authorization Authentication and Accounting

	Related Work
	Authentication and authorization tools
	Authlib
	Keycloak

	Software Defined Network Controllers
	Open Network Operating System
	OpenDaylight
	Lighty.io
	Open Network Automation Platform
	Ryu
	Comparison

	Software Defined Network & related protocols
	REST interfaces
	OpenFlow
	P4
	NetConf

	Summary

	Research Objectives and Approach
	Research Methodology
	Research Objectives
	Approach
	Evaluate the impact of the additional parameters with context information in oidc
	Enable the support of oidc for authentication and authorization in sdn controllers
	Enable the support of oidc with an extension for additional parameters with context information in an OpenDaylight controller

	Use case
	Architecture

	Preliminary Results
	Integration
	Evaluation
	Scenario
	Configuration parameters
	Metrics

	Results
	Summary

	Implementation
	Concepts
	Roles and Grants

	Components
	Keycloak
	Relying Party
	AAA filter

	Steps for Authentication and Authorization
	Authentication
	Verification of RPT token
	Renewal of rpt token

	Setup and Evaluation
	Experimental Setup
	Authentication Process
	Refresh/Renewing tokens process
	Standard authentication and oidc authentication in OpenDaylight
	Access denied

	Evaluation Results
	Authentication Process
	Refresh/Renewing tokens process
	Standard authentication and oidc authentication in OpenDaylight
	Access denied

	Enhanced security with OIDC
	Security with oidc without context information
	Security with oidc and trust context information
	Comparison of OpenDaylight security integrations

	Conclusion
	Future work

	BIANFE: Object identification and authentication in federated scenarios

