

João Miguel Rainho Mendes

Implementation of an Event Sourcing
Application

Curricular internship – Internship Report

Dissertation in the context of the Master in Informatics Engineering,

specialization in Software Engineering, advised by Prof. Filipe Araújo,
PhD student Jaime Correia and PhD student André Bento, and presented
to the Department of Informatics Engineering of the Faculty of Sciences

and Technology of the University of Coimbra.

July 2022

DEPARTMENT OF INFORMATICS ENGINEERING

João Miguel Rainho Mendes

Implementation of an Event
Sourcing Application

Curricular internship - Internship Report

Dissertation in the context of the Master in Informatics Engineering,
specialization in Software Engineering, advised by Prof. Filipe Araújo, PhD
student Jaime Correia and PhD student André Bento, and presented to the

Department of Informatics Engineering of the Faculty of Sciences and
Technology of the University of Coimbra.

July 2022

Acknowledgements

I would like to thank Professor Filipe Araújo, for the support, advice, and
encouragement during this internship. Likewise, I would also like to thank PhD
students Jaime Correia and André Bento for the advice, support, and feedback
given throughout this internship. I also would like to thank all the individuals
associated with Power Project for their availability and support. Finally, I want
to thank my friends and family for the support given over these past months.

This work is funded by the project POWER (grant number POCI-01-0247-
FEDER-070365), co-financed by the European Regional Development Fund (FEDER),
through Portugal 2020 (PT2020), and by the Competitiveness and International-
ization Operational Programme (COMPETE 2020).

iii

Abstract

With the advancements in technologies the complexity and size of systems
have been increasing. Consequently, there is a need for bigger systems (for ex-
ample banks) to keep a track of the history of requests. This happens because
an administrator cannot easily check the requests processed by the system in real
time. One way to create the history of requests is by using Event Sourcing. Using
this method each request is saved in the log as an atomic event that can also be
used for various operations (for example event reprocessment or an auditing).
But since this method is fairly new there is a lack of expertise.

This internship proposes the implementation of Event Sourcing. To do this
a collaboration between the Department of Informatics Engineering (DEI) and
Altice Labs was formed. The objective of this internship is to implement Event
Sourcing in a system prototype given by Altice Labs, while simultaneously cre-
ating a library of Event Sourcing to help future implementations. To implement
this concept research was made on the state of the art, requirements were defined,
and an architecture of the system was made. Finally, the implementation of Event
Sourcing was performed along with the testing of the system.

With the conclusion of this internship, Event Sourcing was implemented
in the system. With this a high level of understanding of Event Sourcing was
obtained. Furthermore, various scripts to create snapshots of events were created.
Finally, a library was conceived. This library will allow an easier implementation
of Event Sourcing in the future as it has the bases for some of the more complex
operations found in Event Sourcing.

Keywords

Complexity. Event Sourcing. Altice Labs.

v

Resumo

Com o avanço da tecnologia, a complexidade e tamanho dos sistemas tem
vindo a aumentar. Consequentemente, existe uma necessidade pela parte de
maiores sistemas (por exemplo bancos) de manter um histórico de pedidos. Isto
acontece pois um administrador não consegue facilmente ver os pedidos proces-
sados pelo sistema em tempo real. Uma maneira de criar o histórico de pedidos
é usando Event Sourcing. Ao usar este método cade pedido é guardado numa
base de dados como um evento atómico que pode também ser usado para várias
operações (por exemplo o reprocessamento de eventos ou fazer uma auditoria).
No entanto como este método é bastante novo, existe uma falta de experiência.

Este estágio propõe a implementação do Event Sourcing. Para fazê-lo, iniciou-
se uma colaboração entre o Departamento de Engenharia Informática e a Altice
Labs. O objetivo deste estágio curricular é implementar o Event Sourcing num
protótipo de sistema dado pela Altice Labs, e simultaneamente criar uma libraria
de Event Sourcing para ajudar implementações futuras. Para implementar este
conceito foi feita uma pesquisa sobre o estado da arte, foram definidos requisitos,
e foi feita uma arquitetura do sistema. Finalmente, a implementação do Event
Sourcing foi realizada juntamente com o teste do sistema.

Com a conclusão deste estágio, Event Sourcing foi implementado no sis-
tema. Através disto um grande nível de conhecimento sobre Event Sourcing foi
adquirido. Além disso, várias scripts para criar snapshots de eventos foram cri-
adas. Finalmente, uma libraria foi concebida. Esta libraria vai facilitar a imple-
mentação de Event Sourcing no future devido a ter as bases para as operações
mais complexas de Event Sourcing.

Palavras-Chave

Complexidade. Event Sourcing. Altice Labs.

vii

Contents

1 Introduction 1
1.1 Context, Problem, and Motivation 1
1.2 Objectives . 2
1.3 Document Structure . 3

2 Planning 5
2.1 First Semester . 5
2.2 Second Semester . 6
2.3 Risk Assessment . 6
2.4 Threshold of Success . 7

3 State of the art 9
3.1 Concepts . 9

3.1.1 Command Query Responsibility Segregation 9
3.1.2 Event Sourcing . 11
3.1.3 Saga . 14

3.2 Technologies . 16
3.2.1 Support Tools . 16
3.2.2 Databases . 18
3.2.3 Final Remarks . 21

4 Architectural Drivers 23
4.1 Current System . 23

4.1.1 Overall Architecture . 23
4.1.2 Microservices functionalities 25

4.2 Requirements . 26
4.2.1 Requirement02 . 31
4.2.2 Requirement05 . 32

4.3 Restrictions . 32
4.3.1 Technical Restrictions . 33
4.3.2 Business Restrictions . 33

4.4 Quality Attributes . 33

5 Architecture 35
5.1 C4 Diagram . 35

5.1.1 System Context Diagram . 35
5.1.2 Container Diagram . 36

5.2 Analysis . 39

ix

Chapter 0

6 Implementation 41
6.1 Approach . 41

6.1.1 Integrated Development Environment 41
6.1.2 Version Control System . 42
6.1.3 Data analyses . 42
6.1.4 Deployment . 42

6.2 Development . 43
6.2.1 Event . 43
6.2.2 Compensation . 44
6.2.3 Creation of snapshots . 45
6.2.4 Reprocessing Events . 45
6.2.5 Creation of the Event Sourcing Library 46

7 Testing 49
7.1 Unit tests . 49

7.1.1 Test structure . 49
7.1.2 Strategy . 49
7.1.3 Test Suite . 50
7.1.4 Result . 51

7.2 Quality attribute verification . 51
7.3 Scalability Tests . 52

7.3.1 Tools used . 52
7.3.2 Event processing . 52
7.3.3 Event Rollback . 54
7.3.4 Snapshot creation . 56

8 Conclusion 59
8.1 Planned vs Real schedule . 59
8.2 Difficulties . 60

8.2.1 Setting up the system . 61
8.2.2 Snapshots . 61
8.2.3 Rollbacks/Compensations 61

8.3 Future Work . 61
8.3.1 Documentation . 61
8.3.2 Implementing the Axon Framework 62
8.3.3 Upgrading the library . 62

8.4 Final Thoughts . 62

Appendix A Overall Architecture 71
A.1 Data created by the system and their description 71
A.2 Microservices and their functionalities 73
A.3 Databases and their data . 75

x

Acronyms

ALB Altice Labs.

BSON Binary JSON.

CISUC Centre for Informatics and Systems of the University of Coimbra.

CQL Cassandra Query Language.

CQRS Command Query Responsibility Segregation.

DEI Department of Informatics Engineering.

ES Event Sourcing.

FCTUC Faculty of Sciences and Technology at the University of Coimbra.

GUI Graphical User Interface.

HTTP Hypertext Transfer Protocol.

IDE Integrated Development Environment.

JSON JavaScript Object Notation.

RDBMS relational database management system.

TCP Transmission Control Protocol.

UC University of Coimbra.

VCS Version Control System.

xi

List of Figures

2.1 Schedule of the first Semester . 5
2.2 Schedule of the second Semester . 6

3.1 Command Query Responsibility Segregation (CQRS) example [21] 10
3.2 Event example [13] . 11
3.3 Event Sourcing system example [16] 12
3.4 Saga example . 15
3.5 Foreign key example [20] . 18
3.6 Embedded data in MongoDB [19] . 19
3.7 Reference table in MongoDB [19] . 19
3.8 MongoDB Compass [36] . 20

4.1 Diagram of the System . 25
4.2 Legend for the System Diagram . 25

5.1 System Context . 36
5.2 Legend for the System Context . 36
5.3 Container Diagram . 38
5.4 Container Diagram Legend . 39

7.1 Average time spent to process requests in each scenario 53
7.2 Average time spent in each scenario with event deletion 55
7.3 Average time spent in each scenario with compensation events cre-

ation . 55
7.4 Average time for snapshot creation in each scenario 57

8.1 Original Schedule of the second Semester 59
8.2 Real Schedule of the second Semester 60

xiii

List of Tables

3.1 Pros and Cons of Orchestration . 16
3.2 Pros and Cons of Choreography . 16

4.1 REQ01 - Creating an Event . 26
4.2 REQ02_01 - Creating a Compensation Event 27
4.3 REQ02_02 - Deleting an event . 28
4.4 REQ03 - Automatically creating a snapshot 29
4.5 REQ04 - Changing the conditions for the snapshot 29
4.6 REQ05_01 - Reprocessing events by id 30
4.7 REQ05_02 - Reprocessing events by date 31

6.1 ReprocessConverter functions and purposes 47
6.2 ReprocessHandler functions and purposes 47
6.3 RollbackConverter functions and purposes 47
6.4 RollbackHandler functions and purposes 48
6.5 Processor functions and purposes . 48

7.1 Test and their results . 50
7.2 Test and their results-continuation 51
7.3 Response time table for Event processing 53
7.4 Response time table for Event Rollback with deletion 54
7.5 Response time table for Event Rollback with a Compensation Event 56
7.6 Response time table for Snapshot creation 57

A.1 Data types and their descriptions (First Part) 71
A.2 Data types and their descriptions (Second Part) 72
A.3 Microservices and their functionalities (First Part) 73
A.4 Microservices and their functionalities (Second Part) 74
A.5 Databases and their data . 75

xv

Chapter 1

Introduction

This report represents the project associated with a Master’s Degree in Soft-
ware Engineering from the Faculty of Sciences and Technology at the University
of Coimbra (FCTUC), in the curricular year of 2021/2022. This project is tak-
ing place in the Centre for Informatics and Systems of the University of Coimbra
(CISUC) at the Department of Informatics Engineering (DEI) of the University of
Coimbra. This project is also associated with Altice Labs (ALB) in the context of
the Power Project and was done with their cooperation.

1.1 Context, Problem, and Motivation

In recent times, the software systems are getting ever more complex [28][27],
and because of this companies have to waste an increasing amount of money just
to manage the performance of their system [29][30]. Furthermore, this applies to
all kinds of systems, from small apps to multilayered systems. More precisely, the
ALB system has some clear flaws that could be fixed to upgrade it. Namely, it is
impossible to see what happened in the system in a clear and simple way (similar
to doing an auditing), and the possibility to check information regarding the user
or the requests processed at a given date. A good way to apply the points stated
above is by using a methodology named Event Sourcing (ES).

While using ES, each action is saved as an event that is automatically saved
in a database as a part of a sequence of events. For instance, we can imagine
a bicycle selling system. In this system when a bicycle is sold the only thing
that is done is update the current number of bicycles. But with ES an event is
also saved, this event can contain different information about the operation. For
instance, details of the buyer, the date on which the bicycle was bought, the id of
the bicycle, and, how much time the system took to process the whole operation.
By doing this, the developers can see how their systems reacts to tasks in real-time
and the flow of events that made the system get to its current state. Additionally,
since each event is a single operation, it is possible to accurately check the state
of the system and its users at a given time, when a system error occurred, and,

1

Chapter 1

if necessary, make a compensation. But this compensation in itself is a complex
operation, as will be further explored later in the report. There can be various
ways of compensating an action, and there does not exist a method that is clearly
superior to every other.

Nevertheless, the concept of ES is fairly new in the tech industry. Conse-
quently, there does not exist a great understanding and expertise on it. In or-
der to gain expertise, the Department of Informatics Engineering(DEI) will be
involved with ALB in the Project Power. The latter will be in charge of producing
a working prototype for a Charging System (a system that handles the increase
and decrease of cellphone credit) in which the intern will implement ES.

Regarding the prototype mentioned above, it is responsible for the manage-
ment of various transactions. More precisely, debit, credit, and reservation op-
erations. When a request arrives on the system the information will go through
various microservices where it will be analysed and transformed for different
purposes. In this path, two different microservices possess databases that are re-
sponsible for keeping the user’s data which will be accessed and altered if need
be. Furthermore, it will be in those microservices that ES will be implemented.

1.2 Objectives

The main objective of this internship is to upgrade the charging system for
the Power Project. For this upgrade, the concepts of ES will be utilized. That
is to say, that while the system is working normally (resolving credit, debit, and
reservations requests) there are operations that must be done, namely:

• When a request arrives at the system an atomic event corresponding to the
request needs to be formed and saved in a database one hundred percent of
the time.

• In the case of an error/rollback in the transactions, the system must be capa-
ble of creating a rollback/compensation event or deleting the original event
one hundred percent of the time.

• In order to reload the system in a fast manner, periodic system snapshots
must be created. This needs to always happen when the trigger decided by
the user activates.

A secondary objective is the creation of an ES library, as there is not much in-
formation on it and to help future implementations. To achieve this the objectives
stated above will be implemented in the most modular way possible.

Because the work will be done in a prototype created by ALB and only mod-
ified by the intern, it is necessary to reach solutions that will please both parties
while not compromising the performance of the system. In the case of ALB they
expect an implementation of ES that works for their current system. Hence, it

2

Introduction

is expected by them that all of the main functionalities of ES (described in sec-
tion 3.1.2) are working correctly. Regarding the objective of DEI, as mentioned
before, it is expected that by the end of the internship a library of ES is created.
In addition to this, it is required for the intern to apply changes or add new func-
tionalities if they are required by the ALB team. As such, there may exist some
restrictions in the implementation or there might exist the need to redo certain
parts of the project.

All this being said, the intern will be responsible for searching for various
ways of applying the concepts, technologies that can be used, defining require-
ments, and implementing the solution. At the end of the internship, it is expected
that the prototype will be running with no issues and a library of ES is created,
tested, and can be used without issues.

1.3 Document Structure

This report is divided into the following chapters:

• Chapter 2 is dedicated to the planning of the project schedule. It contains
a description of the planning done for the first and second semester, more-
over, some diagrams are also provided to help further the understanding
of the planning. In addition to this, a part of Chapter 2 is focused on risk
management and the threshold of success.

• Chapter 3 is focused on the research done by the intern. It contains research
done on various topics of importance to this internship, additionally, there
is also a comparison between various technologies that could be used and
a final decision on which technology is going to be used.

• Chapter 4 is dedicated to the Architectural Drivers. It provides a descrip-
tion of the current system, the functional requirements, and their restric-
tions and quality attributes.

• Chapter 5 contains the architecture of the system, presented in the form of
a C4 Model.

• Chapter 6 describes the tools and processes utilized in the system’s devel-
opment, as well as a detailed description of the system’s modules.

• Chapter 7 explains the testing performed on the system as well as an anal-
ysis of the findings.

• Chapter 8 consists of an analysis of the internship, more concretely, what
were the plans versus what was done, work that can be done in the future,
difficulties in this internship, and finally, some thoughts on this internship.

3

Chapter 2

Planning

In this chapter, the internship schedule and the risks that may occur while
doing the internship will be explained. The internship is divided into two semesters,
which have completely different purposes. Both chapters will have a Gantt chart
to help the visualization of the time and tasks, this chart was done using Gantt
Project [32].

2.1 First Semester

The supervisors performed the planning for the first semester. Firstly, the
application was defined and took one month. Secondly, the research was done
on the state of the art and the technologies that would be used, and this occu-
pied roughly one month. In the next two weeks, the requirements were defined.
After this, the system architecture was defined in one month. Lastly, the testing
process was defined in two weeks. The remaining time was used to write the
intermediate report. This can be observed in Figure 2.1, the Gantt chart.

Figure 2.1: Schedule of the first Semester

To decide when the meetings should occur, we used an Agile [2] method-
ology, more precisely SCRUM [3]. In particular, every week a meeting would be
done with the intern and with the three supervisors. In every meeting, it would
be discussed what was done in the last week, any doubts the intern might have,
and what was supposed to be done next week. Additionally to this meeting,
another weekly meeting would be done with the ALB team. In these meetings,
the details of the project would be discussed. For example, what concepts were
supposed to be used, or the requirements of the project.

5

Chapter 2

As time progressed, some changes to the requirements of the project were
done. This affected the planning by having the necessity to revisit the require-
ments and change them. Nevertheless, there were no major adjustments to the
planning proposal.

2.2 Second Semester

Afterwards the intermediate presentation, the plan was to setup and do an
analysis of the system, this would take two weeks. After this initial step, the
implementation of the solution would start. This was planned to occupy three
months. Succeeding the end of the implementation, testing was done. It was
planned to take one month. Finally, after both the implementation and testing
were finished, the intern would dedicate the rest of the time, roughly one month,
to the elaboration of the final report.

To help visualize what was said above, a Gantt chart is shown in Figure 2.2.

Figure 2.2: Schedule of the second Semester

In the second semester, as well as in the first, weekly meetings were done.
As said in the section above, this follows SCRUM [3]-like rules. More precisely,
there were weekly meetings with the supervisors and with the ALB team. The
purpose of these meetings was to discuss what was done in the week before, see
if it was done correctly and what changes needed to be done, if any, and plan for
the next week.

Finally, like with every project, there are hazards that could prevent the plan
from being carried out. To counteract this, a risk analysis was carried out, which
is detailed in the next section.

2.3 Risk Assessment

This section details some of the dangers that could jeopardize the curricular
internship’s success.

Some potential risks that were found in the first semester:

6

Planning

• Collaboration with external groups may cause developmental delays. This
project is involved with an external entity, namely, ALB. Since the intern will
apply the Event Sourcing (ES) concepts in a prototype provided by ALB,
any delays with the prototype will delay the implementation. A possible
mitigation plan is for the intern to create a smaller system while the pro-
totype is not delivered, in which the intern might be able to test possible
implementations.

• Delays in access to infrastructures. Due to the necessity of hardware to
allocate this service, it is expected that these will be provided by the De-
partment of Informatics Engineering (DEI). The implementation will be de-
layed if the system is not set up properly, correctly, and on time. Free tier
infrastructures could be employed as a mitigating strategy.

• Changes in requirements. As there are going to be a great number of meet-
ings with the stakeholders to discuss the project’s state it is entirely possible
that there may be changes. These changes will, naturally, create a delay in
the life-cycle of the project. A feasible answer is to switch from the existing
implementation method to a truly Agile [2] one, like SCRUM [3]. Follow-
ing the SCRUM [3] method rules, the intern would develop and present
prototypes with more frequency in an attempt to get more feedback.

2.4 Threshold of Success

This section details all the conditions that must be met in the internship for
it to be considered a success.

The following goals must be completed:

• The time period allotted for system development cannot exceed the time
allotted for the curricular internship.

• All of the system features described in this document must be implemented,
tested, and ready for deployment.

• The created system must meet the quality criteria defined in this document.

7

Chapter 3

State of the art

In this chapter, the research performed on the technologies and concepts
related to the project will be described. It starts with section 3.1 which introduces
the basic concept of CQRS, followed by ES and Saga’s. These concepts were cho-
sen because, in the case of CQRS, it has a strong connection to ES, this will be
explained in the next section. In the case of Saga’s, besides being a way to co-
ordinate microservices, they are already implemented in the current version of
the system. After these concepts are explained, a study and comparison of the
technologies employed will be presented in section 3.2.

3.1 Concepts

In this section, there are descriptions of concepts that will be used in the
curricular internship. More precisely, section 3.1.1 will be CQRS, section 3.1.2 will
explore ES. Finally, in section 3.1.3 the topic of Saga’s will be briefly introduced.

3.1.1 Command Query Responsibility Segregation

Command Query Responsibility Segregation (CQRS) is a simple pattern.
Typically, we use the same database with the same data model for both consult-
ing (reading) and updating (writing), and although this works well for traditional
software architectures in more complex ones this might prove challenging.

CQRS tries to cater to more complex architectures where having the same
data model brings more complexity than having a different one. In other words,
in CQRS we have two different models, one for writing data and one for reading
data. In these systems, there are two types of actions, commands that update data
and queries that read data. These actions are asynchronous, they must be based
on tasks instead of data and the query must never change the database. Regard-
ing the data models, by having two different models it is possible to cater them
for specific purposes.

9

Chapter 3

Concerning the number and size of the database, they can be catered for
their needs. In terms of numbers, more reading databases can exist if there is an
advantage, for example, if the database needs to be close to the system applica-
tions. In some extreme cases, the two databases are even physically separated
to boost system performance. The same can be said about the size, it is very
common for the reading database to be bigger than the writing one as reading
operations occur on a much larger scale than updating operations.

In order to have synchronicity between the reading and writing databases,
the simplest solution is to create an event that updates the reading model when-
ever there is a writing operation.

As expected, having this approach which differs from the standard CRUD [4]
approach brings both benefits and drawbacks that will be enumerated in the next
section.

Figure 3.1: CQRS example [21]

Advantages

• Scalability and Optimization: Since the reading and writing actions are
independent, it is possible to personalize the size of the database and its
model for different needs.

• Security: It is easier to guarantee that the writing database is only being
altered by certain entities.

• Simpler Consultation: We can save time by retaining the material in a read-
ing model rather than a model for both reading and writing.

10

State of the art

Disadvantages

• Complexity: Due to having two models instead of one the system may be-
come more complex.

• Messaging: Although CQRS does not usually need a messaging service, if
there is a need for one additional attention is required for duplicated mes-
sages or even error messages.

• Consistency: As a result of having a single model for reading the informa-
tion it may become obsolete without a constant updating method.

When to Use

To conclude, there are situations where the use of CQRS is more appro-
priate. These are when the System has a lot of user traffic, when the Number
of information writing and reading differs greatly, and in Big Systems where
there are multiple developers teams.

3.1.2 Event Sourcing

Event Sourcing (ES) is an emerging way to persist data and process opera-
tions that has been gaining more and more popularity in recent times. In some
systems, when there is a change of state, the system will process the requests and
make necessary changes to the databases if needed. But with ES there are more
steps to this process. When the system performs an action, an event is created.
An event is an atomic, immutable, simple object that represents a single action
in the system and has the necessary data to perform the action if there is a need
to. Also, it will not influence the database keeping the system information. These
events are kept and will be processed only at the right time. Additionally, they
are specifically made for their corresponding system and only have meaning for
specialists in that domain. Some event examples can be seen in Figure 3.2 .

Figure 3.2: Event example [13]

11

Chapter 3

Due to the nature of these events, they are not kept in the same database
as other information. More concretely, in Event Source systems there are nor-
mally databases specialized in safeguarding the events created by the system and
databases specialized in safeguarding data in a more standard way (CQRS, Sec-
tion 3.1.1).

In ES systems (Figure 3.3), we can also find an Event Handler. This Event
Handler has the logic behind the system handling, that is to say, that all of the op-
erations needed for the events are there. Some of the operations are the creation
of events, the connection to the database, and, fetching and processing events.
These handlers can be of two types, transaction scrips [14] and domain mod-
els [15]. One way to go is using a transaction script, but this is not always the
more appropriate option as transaction scripts are the go-to for simple applica-
tions, while domain models are catered for systems that are more complex.

Figure 3.3: Event Sourcing system example [16]

With all this explained, there are some operations that can be done when
the events are properly saved on the database.

Operations

All of the operations characteristics of ES revolve around the saved events
in the log with the three main ones being [13]:

• Complete Rebuild: By reading all of the history of the events and perform-
ing the corresponding actions we can get to the current state of the applica-
tion on an empty shell.

• Temporal Query: Similarly to the Complete Rebuild, it involves rerunning
the events in the database, the main difference is that in the Temporal Query

12

State of the art

the rerun is only until a certain timestamp or event. Sometimes it gets more
complex depending on multiple time-lines, similarly to branches.

• Event Replay: If a past event was incorrect and there exists a need to rectify
it we can go through the log in the reverse order, find the incorrect event,
change it and run the new events and all that came after. Despite the fact
that this is the standard method, it has drawbacks that will be discussed
later. In the same way that we can rectify the events, it is also possible to
change their order.

Advantages

With the knowledge of what is ES and the main Operations we can deduce
a list of advantages:

• Easy Implementation and Management: Since the events are relatively
simple and contain all the information needed to perform the action there is
no need for them to actively change the database until the performed action
is supposed to happen.

• Analysis of the System: With the way the events are saved, in particular
by respecting the temporal order, and since they are of a simple nature,
we can pinpoint certain things. For example, the behavior of the system,
bugs/errors that may happen, and user tendencies.

• Performance and Scalability: Due to the nature of events they are im-
mutable and need a simple operation of addition (no update or delete) to
be saved. This permits that while the system creates and adds events to the
database in the background, the process that originated them continues.

• Easy Understanding: Comparatively to a database, reading an event log is
much easier due to the low complexity of it.

Disadvantages

Although there are advantages with ES there are also disadvantages that
come with it:

• Difficulty in updating the format: Since the event information is perma-
nent, we cannot update the events. Consequently, if there is any need to
change the system information we need to add a compensation event to ev-
ery event in the log. Or in a worse case, we might need to change the format
of every event.

• Difficulty with threads: Temporal Consistency in the log is everything.
Knowing this, the use of threads brings an issue. They may try to access
a resource at the same time, which will bring inconsistency to the events.

13

Chapter 3

• No standard approach with databases: Currently, there are no standard
ways of reading events. This may cause the developer to expend more time
than if a standard approach to saving information was used.

• Event Flux: Depending on the number of events in the log, replaying through
all of them can take a long time. While doing snapshots of the current state
of the system may help to attenuate this. It is expected that every operation
that requires seeing past events to take some time.

When to Use

To conclude, as a result of all the advantages and disadvantages of ES there
are several scenarios that are more appropriate for their use. The three identified
scenarios [13] are When it is necessary to create an audit log, When there is a
need to restore the system to a previous state, and When there is a need to do
compensatory actions.

Relation with CQRS

CQRS is commonly used with ES due to their natures. More precisely, when
using these two techniques together the event log serves as the default writing
model in CQRS. Consequently, when the reading model needs to be updated,
we can run the event log to get a representation of the current state. Addition-
ally, due to the nature of events as described in section 3.1.2, the scalability and
performance will be further maximized.

3.1.3 Saga

Using an architecture with microservices is becoming the norm for large-
scale systems, however, there is a problem with how to handle transactions that
span multiple services in a consistent way.

A transaction represents a single operation performed by a user. It contains
the change of state of an entity and all the necessary information for that change
of state to happen (for example, the time of day, location, etc...). They follow the
ACID [22] properties. These are atomicity, consistency, isolation, and durability.
While they have these characteristics this alone does not bring data consistency.
It is also necessary to manage the transactions.

The Saga pattern fixes that issue. Using a sequence of local transactions (an
atomic action performed by a single user of a Saga), each local transaction up-
dates the information in the database of a single service and serves as the trigger
for the next local transaction to happen. That is to say, a transaction in the mi-
croservice A will trigger the next transaction in the microservice B, and so on
until the last location transaction is done, as can be seen in Figure 3.4. However,

14

State of the art

if a single local transaction fails all the previous actions are undone and a com-
pensatory action will occur.

Figure 3.4: Saga example

Local transactions are divided into three types:

• Pivot: The first transaction, if it is applied the Saga must run until the end.

• Retryable: The transaction following the Pivot and that always succeeds.

• Compensatory: Reversible transactions that have the opposite effect of a
past transaction.

There are two types of Sagas that are more commonly used, Choreographed,
and Orchestrated. They differ in the approach to the transaction coordination,
and both have some flaws and benefits, Table 3.1 and Table 3.2, which will be
explained in the next subsection.

Orchestrated

In orchestrated Saga’s there exists a centralized object (orchestrator) that
tells all the users what transactions to execute based on certain events. For exam-
ple if the microservice A behaves in a specific manner the orchestrator will order
the other microservices to behave in a specific way. Additionally, the orchestrator
is also responsible for compensatory transactions.

15

Chapter 3

Orchestration pros and cons
Pros Cons
Useful when control over the transac-
tions is needed

Reliance on an orchestrator

Good for complex workflows Makes the workflow more complex
Not reliant on a single point
Does not have a reliance on other
users (no cyclic dependencies)

Table 3.1: Pros and Cons of Orchestration

Choreographed

In choreographed Saga’s all the user’s transactions trigger the next transac-
tion in other services, more precisely, a point of control does not exist.

Choreography pros and cons
Pros Cons
Does not require additional imple-
mentation

Difficult testing

Not reliant on a single point Reliance on other users (cyclic depen-
dency)

Good for simple workflows Complex workflow due to dependen-
cies

Table 3.2: Pros and Cons of Choreography

3.2 Technologies

In this section, research will be presented, more precisely, a brief introduc-
tion to the advantages of frameworks, if they are needed for the project, and also
a study of databases that might be used, including a brief description of each one.
After this what technology will be used in the project will be decided.

3.2.1 Support Tools

Due to ES being a relatively new approach to handle data there are not a
great number of support tools available to use. Nevertheless, there exist some
strong options that will be presented shortly.

16

State of the art

Event Store

Event Store is a database designed exclusively to keep events. Developed
by Event Store Ltd, it is available in an opensource version and a paid one.

Event Store supports three connection protocols, gRPC [23], Transmission
Control Protocol (TCP), and Hypertext Transfer Protocol (HTTP), this latter one
being the less used of the three due to performance issues, and thus will not be
explored in great detail. The clients supported by this database vary depend-
ing on the type of protocol used. .NET, Java, Node.js, Go, and Rust are officially
supported when using gRPC, furthermore, there are community made clients for
Ruby and Elixir. When using a TCP connection, the supported clients are .NET,
JVM client, Haskell, furthermore there exist community made clients for Node.js,
Elixir, Java 8, Go, and PHP.

As was already said, with Event Store we can store events in a database.
These events are then saved in streams that can be accessed and modified with
costume commands such as $all (returns all the events for a respective stream)
and $maxcount (specifies the number of seconds an event can live for). Further-
more, support for technical issues is also available, although it is necessary to
pay, and ranges from an answer in the Next business day response to 2 or 8 hours
response.

Axon Framework

Axon Framework is an opensource framework used to implement ES and
CQRS. This tool supports the Java programming language and enables the con-
nection to their server Axon Server. Using the framework the developer will be
able to focus on the high-level functionalities as the base work is already done.

What differentiates Axon from other tools available on the market is the
explicit and extensive documentation [24], recurrent updates, and while normal
ES permits the user to check how the system is behaving through time. Axon
also has a Dispatch Interceptor and Handle Interceptor that permits the system to
intercept a message before it is dispatched and while it is being handled. On the
other side, to use this framework the Axon Server is also needed. Furthermore,
while they have the basic concept of an event, the concept of a compensation
event is not implemented.

No support tools

Although there are numerous advantages to the utilization of support tools
they are not a guarantee of success.

17

Chapter 3

Greg Young [9], an expert on CQRS and ES dislikes its use when coupled
with the topics. In two of his talks [10] [11], he justifies this by saying that they
bring unnecessary dependencies and complexity to the systems, or in his words,
they bring "magic". This "magic" is the capability of the support tool to do certain
tasks, and in a failure situation, the developer might not understand how the task
is made, making it much harder to fix. In addition, the system is already reliant
on the support tool so its removal can be time consuming.

Decision

While a support tool may be beneficial, the cons are bigger than the pros. If
one were to be used the dependencies and complexity of the system would go up
unnecessarily. As such, an ES support tool will not be used.

3.2.2 Databases

MySQL

MySQL is an opensource SQL relational database management system (RDBMS) [8]
developed in 1995 and later being acquired by Oracle in 2010.

Being an RDBMS MySQL saves the information in different tables, let’s take
the example of a customer and its products orders. Obviously, they have differ-
ent data and are at different tables, but to connect them, a relation is built. That
is to say, the respective primary key of the customer (normally a unique number
given to him) is also present as a foreign key (Figure 3.5) in the product order
table. This gives MySQL a high degree of flexibility and maintenance since data
updates need to affect only one table and are easily controlled by developers.

Figure 3.5: Foreign key example [20]

When MySQL was implemented it was not designed with the concept of a
data center in mind, instead, it is a single-noded system that must rely on shard-

18

State of the art

ing. However, these solutions are manual and add to the complexity, lowering
the performance and having a negative impact on the overall scalability of the
system.

MongoDB

MongoDB is an opensource NoSQL database developed by MongoDB Inc..
It supports various data formats, this happens because in MongoDB each record
is saved in Binary JSON (BSON) [5] that later can be retrieved in a JavaScript Ob-
ject Notation (JSON) [6] format. Enabling the flexibility of data formats and are
capable of having arrays, documents, and arrays of documents saved.

In MongoDB there are two types of structures [19], Embedded Data in which a
type of data can be stored inside a different data type (Figure 3.6), and, References
in which there is a reference data table with the relation between two different
data sets (Figure 3.7).

Figure 3.6: Embedded data in MongoDB [19]

Figure 3.7: Reference table in MongoDB [19]

They use the concept of sharding [7]. Which is to say that the data is dis-
tributed in various machines to speed up the deployment of very large informa-

19

Chapter 3

tion sets. Thus increasing scalability and having a safety net in case of error.

Regarding data availability, there exists one master node with some slave
nodes, in the eventuality that the master node goes down one of the slave’s nodes
will take its place, however, this can take a while.

For their user usage, the most common utilizations come through the com-
mand line, or through the MongoDB Graphical User Interface (GUI), Compass (Fig-
ure 3.8), in which the user can visualize the schema, create queries, and validate
BSON Schemas.

However, there exists some negatives, the size file is limited to 16 Mb which
can be a hindrance in higher density data. In addition, with the wrong indexing,
the speed will go down drastically, and managing the indexes can be time con-
suming. Finally, since there are no join functions that exist in some SQL databases
the users have to do it manually.

Figure 3.8: MongoDB Compass [36]

Cassandra

Cassandra is an opensource NoSQL database released in 2008 and devel-
oped by Apache Software Foundation.

It is similar to MongoDB in the way that there are no foreign keys and in-
stead a reference data table is used.

20

State of the art

Regarding the data format, the developers made a new query language
called Cassandra Query Language (CQL), it is similar to SQL, making the queries
used also similar, reducing the learning curve.

In terms of data accessibility, Cassandra has various master nodes inside of
a cluster, due to this, when a master node goes down one is always available to
take its place and by doing this there exists practically no downtime.

Decision

Due to its scalability, the type of database that will be used is MongoDB. Ad-
ditionally, since the data is saved in BSON files, there is a high degree of flexibility
that comes with it.

3.2.3 Final Remarks

In conclusion, although using a Support Tool made for ES could be helpful
in reducing the workload for the developer since some features would be im-
plemented automatically, the negatives would have more impact, namely, the
scalability and dependencies of the system would be increased. Knowing this the
choice made is to use a normal database to save the events created.

Regarding the choice of databases, the chosen one is MongoDB. This database
will permit the system to be scalable and to have a high degree of flexibility in the
creation of events.

21

Chapter 4

Architectural Drivers

This chapter contains information regarding the current state of the system
and its Architectural Drivers, that is to say, the requirements that have an im-
pact on the architecture, such as the functional requirements, the technical and
business restrictions, and the quality attributes.

4.1 Current System

As refereed before, in this project the intern will implement ES in an already
built system made by Altice Labs (ALB), as such this section will provide a de-
scription of the system. This system is composed of ten microservices that will be
described in a latter part of this thesis.

4.1.1 Overall Architecture

This system’s purpose is charging. More precisely, it allows the connected
users to request debit (removing money from their account) or credit (adding
money to the account) operations and even creating/making reservations (re-
versing money to be used in a future operation).

There are four main event types that will be used in this internship:

• Create: This operation creates a new account in the system.

• Delete: This operation deletes an account.

• Topup: This operation adds balance to an account.

• Voice: This operation removes balance from an account (this balance cannot
go below 0).

23

Chapter 4

As it is possible to see in Figure 4.1 the system is composed of ten distinct
microservices all with distinct functionalities that produce different types of in-
formation. Of the ten that can be observed, there are two stateful [31] services,
these are the Record Management Service and the Balance Management Service. These
two are connected to a MongoDB database, as it will be necessary to fetch infor-
mation for the system use.

Regarding the communication between microservices, it is mostly done us-
ing a Kafka stream and a consumer producer model (that is to say, some microser-
vices produce information for the others to consume)[12]. The communication
not done using a Kafka stream is done using an HTTP communication proto-
col. The only communication done using an HTTP communication protocol is
between the Eligibility Service and the Rule Execution Service.

For the choice of programming language and database, JAVA and MongoDB
were chosen with the main objective of scalability.

24

Architectural Drivers

Figure 4.1: Diagram of the System

Figure 4.2: Legend for the System Diagram

4.1.2 Microservices functionalities

In this section, the functionalities of each microservice will be explained (Ta-
ble A.3, Table A.4), and each data type created by the microservices will be pre-

25

Chapter 4

sented with a brief description (Table A.1, Table A.2), and finally a description of
the databases used (Table A.5).

4.2 Requirements

In this section, we can find the requirements needed for this project. They
serve as a way to better understand what will be implemented in the system, the
conditions necessary and, alternative scenarios. In this case, all the requirements
are related to ES.

REQ01 - Creating an Event
Level Sea
Actor Microservice
Objective While the microservice performs the needed actions, events are

created and stored in the database
Preconditions

• Connection to the database

Postconditions

• The created event is stored in the database

Main scenario

1. An action arrives at the actor

2. While the action is being performed an event is created

3. The created event is stored in the database after the action
is processed

Alternative scenario 3a. There is no access to the database
3a.1. The system will notify the programmer and will try

to establish a connection

Table 4.1: REQ01 - Creating an Event

26

Architectural Drivers

REQ02_01 - Creating a Compensation Event
Level Sea
Actor Microservice
Objective The microservice creates the compensatory event and stores it in

the database
Preconditions

• Connection to the database

• The microservice needs to rectify a previous action

Postconditions

• The created events are stored in the database

Main scenario

1. An action arrives at the actor

2. While the action is being performed an event is created

3. The event is kept in cache

4. The process of the action ends

5. A compensation event is created through the event kept in
cache

6. The original event and compensation are stored in the
database

Alternative scenario 6a. There is no access to the database
6a.1. The system will notify the programmer and will try

to establish a connection

Table 4.2: REQ02_01 - Creating a Compensation Event

27

Chapter 4

REQ02_02 - Deleting an event
Level Sea
Actor Microservice
Objective The microservice deletes the event
Preconditions

• Connection to the database

• The microservice rectifies a previous action

Postconditions

• The event is deleted

Main scenario

1. An action arrives at the actor

2. While the action is being performed an event is created

3. The created event is stored in the database

4. After the action is nullified, the event is deleted

Alternative scenario 3a. There is no access to the database
3a.1. The system will notify the programmer and will try

to establish a connection
4a. There is no access to the database

4a.1. The system will notify the programmer and will try
to establish a connection

Table 4.3: REQ02_02 - Deleting an event

28

Architectural Drivers

REQ03 - Automatically creating a snapshot
Level Sea
Actor Microservice
Objective The microservice creates a snapshot of the event database
Preconditions

• Connection to the database

Postconditions

• The created snapshot is stored

Main scenario

1. The system checks if the conditions for creating a snapshot
are met (for example, the time of day)

2. The system checks all the accounts ids

3. For each id a folder is created

4. For each id a snapshot is created

5. The snapshot is saved in the respective folder

6. The event database is cleared

Alternative scenario 1a. The condition is not valid
1a.1 The actor keeps processing actions

4a. The snapshot is not created
4a.1. The system will input the result on a log

Table 4.4: REQ03 - Automatically creating a snapshot

REQ04 - Changing the conditions for the snapshot
Level Cloud
Actor Programmer
Objective The condition for the snapshot condition must be changed and

applied
Preconditions

• There exists a condition

Postconditions

• The condition is changed

Main scenario

1. The actor changes the condition

2. The change is applied

Alternative scenario 1a. The condition is not valid
1a.1. The system will display an error message notifying

the actor

Table 4.5: REQ04 - Changing the conditions for the snapshot

29

Chapter 4

REQ05_01 - Reprocessing events by id
Level Cloud
Actor Administrator
Objective The events are reprocessed
Preconditions

• A snapshot of the microservice event database exists

• There exists an event log

• There exists a "blank" microservice

• There exists a connection to the database

Postconditions

• All the events are reprocessed

Main scenario

1. The actor chooses the id of the account that will be recu-
perated

2. The system will access the snapshot with the correct id

3. The events of the snapshots are restored updating the
database

4. The actor chooses to reprocess events in the microservice

Alternative scenario 2a. A snapshot matching the correct id does not exist
2a.1. The system will display an error message notifying

the actor
4a. An error occurs while processing the events

4a.1. The system will notify the programmer and the mi-
croservice stops processing the events

Table 4.6: REQ05_01 - Reprocessing events by id

30

Architectural Drivers

REQ05_02 - Reprocessing events by date
Level Cloud
Actor Administrator
Objective The events are reprocessed
Preconditions

• A snapshot of the microservice event database exists

• There exists an event log

• There exists a "blank" microservice

• There exists a connection to the database

Postconditions

• All the events are reprocessed

Main scenario

1. The actor chooses the date

2. The system will access the snapshot matching that date

3. The account information present in the snapshot will be
restored by updating the database

4. All the snapshots regarding that account that were made
after the chosen date will be accessed

5. The events of the snapshots are restored updating the
database

6. The actor chooses to reprocess events in the microservice

Alternative scenario 2a. A snapshot matching the correct date does not exist
2a.1. The system will display an error message notifying

the actor
4a. A snapshot matching the correct id does not exist

4a.1. The system will display an error message notifying
the actor

6a. An error occurs while processing the events
6a.1. The system will notify the programmer and the mi-

croservice stops processing the events

Table 4.7: REQ05_02 - Reprocessing events by date

In these Requirements, we have two tasks that have two ways of being done,
namely REQ02 and REQ05. In the case of REQ02, this happened due to the meet-
ings with the ALB team that occurred in the first semester. In the case of REQ05,
this was done to have a more complete system.

4.2.1 Requirement02

In those meetings, one of the topics discussed was how to tackle the com-
pensatory events that were needed for this system. We reached two main ap-
proaches, REQ02_01 which involves creating a compensatory event that is the

31

Chapter 4

opposite of the event that needs compensation, and REQ02_02, which is deleting
the event that is rollbacked. Both approaches have consequences that influence
the system.

In the case of REQ02_01, since there does not exist a need to backtrack the
event log the microservice is always available to process new events, reducing the
risk of a bottleneck and having no need to dedicate time to reprocessing events.
On the other hand, since we had a new event to the event log its size will grow
which can be a downside, as a bigger event log impacts negatively the creation
of snapshots (REQ04) and the creation of a copy of the system (REQ05_01 and
REQ05_02) due to the need to process more events.

Regarding REQ02_02, we also have no need to reprocess the events. Fur-
thermore, since we delete an event the event log size will not be affected. On the
other hand, since the event was deleted, it is not possible for the developers to
see what happened in the system.

One thing that must be pointed out is the impact of the event log on REQ03.
Depending on its size it can influence it positively or negatively. This happens be-
cause a greater number of events will change the time needed to process them all.

In conclusion and due to all of these nuances, both of the methods will be
applied and compared in section 6.2.2. The superior method will be applied in
the final version of the system.

4.2.2 Requirement05

For REQ05, two ways were created to give the administrator more options.
While doing the reprocessing by id is the standard and easier manner, the admin-
istrator might want to see the changes in the system as a whole. On the other
hand, reprocessing by date it is a more lengthy method, and, it gives another
viable and useful function to the administrator.

Contrary to REQ02, both options will be present in the final version of the
system. This happens because one is not clearly better than the other, since they
serve different purposes.

4.3 Restrictions

Restrictions are rules that the architecture must abide by, in other words,
there does not exist flexibility regarding these rules (in some cases there exists a
very low degree of flexibility). Pre-existing projects, internship decisions, and,

32

Architectural Drivers

deadlines are examples.

4.3.1 Technical Restrictions

Technical Restrictions are those that have more influence on the Architec-
ture. Some examples of these, are programming languages, protocols, and tech-
nologies.

The Technical Restrictions identified for this project are:

• Certain concepts must be used

– Description: In this project, ES, CQRS, and, Saga’s must be used.

– Flexibility Points: None.

– Alternatives: None.

4.3.2 Business Restrictions

Business Restrictions are those that, while not having a direct influence on
the Architecture can still have an impact on it.

The Business Restrictions identified for this project are:

• Development Time

– Definition: The development time for this project must not exceed the
duration of the internship.

– Flexibility Points: The internship time can be extended.

– Alternatives: None.

4.4 Quality Attributes

The non-functional needs of the system, often known as quality attributes,
will be discussed in this section. Each quality attribute will have a brief de-
scription and their impact on the system will be categorized (H for High, M for
Medium, and, L for low).

For the architecture of the system, the following quality qualities are the
most important:

33

Chapter 4

• Scalability (H): If the system is under an above average workload, if more
resources are added to it, it is expected (under normal circumstances) an
increase in its performance.

- How to evaluate: When the system is complete, his performance will be
evaluated in different working environments.

• Portability (H): If there is a need to create a new system (for example in
REQ05), the programmer in charge of the creation must be able to do it
without changing the source code.

- How to evaluate: A test shall be made in which a copy of the system is
created, and this copy will have to work identically to the original.

• Performance (M): Under normal circumstances, the database must be able
to process at least one insert or one read per second.

- How to evaluate: The capability of the database will be tested in different
working environments.

34

Chapter 5

Architecture

This section describes the system architecture. To achieve the documenta-
tion, the C4 model was used and resulted in several images. Furthermore, the
last section of this chapter is reserved for an analysis of the architecture. This is
done to see if it complies with the requirements specified in Chapter 4.

5.1 C4 Diagram

5.1.1 System Context Diagram

In this section, we can find the highest level diagram created. This diagram
exemplifies how an average user of the system interacts with it. As we can see
in Figure 5.1, the only interaction is between the user and the system. The user
can make various operations, more precisely, debit, credit, and, reservations. Be-
sides this, there are no external systems that interact with the prototype. This is
demonstrated in Figure 5.1 and with the associated legend, Figure 5.2.

35

Chapter 5

Figure 5.1: System Context

Figure 5.2: Legend for the System Context

5.1.2 Container Diagram

The next diagram is more detailed than the previous one. In this diagram,
it is possible to see the various containers in a high level way. It also shows
the choices regarding technologies and how the containers communicate. This is
demonstrated in Figure 5.3 and with the associated legend, Figure 5.4.

As can be seen in Figure 5.3 there are three major choices for the color:
blue, grey, and, red. They, respectively, symbolize the services that will not need
change, the services that are going to change, and, the new infrastructures that
will be added. Almost all of the communications between services are done us-
ing Kafka Streams (section 4.1.1). Regarding the flow within the system, it can be
seen in Figure 5.3. The user requests will be processed by the various microser-
vices. The most important ones are the Balance Management Service, and Record
Management Service as these are the ones where ES will be applied.

36

Architecture

In the Balance Management Service the requests are processed. To do this it
will read and update the data present in the Balance Management Service database (Read-
ing Model). Additionally, some changes to this service will be made that will en-
able it to create Events and store them in the Balance Management Service database (Writ-
ing Model) for later use. After all of this, it will send a reply to the Charging Event
Disassembler.

Regarding the Record Management Service, it is responsible for updating the
values that represent the information about the customers. Like what happened
in the above mentioned service, events are going to be created and because of
this it will be necessary to introduce a new database for this service, in which
all the events are going to be stored, this being the Record Management Service
database (Writing Model).

37

Chapter 5

Figure 5.3: Container Diagram

38

Architecture

Figure 5.4: Container Diagram Legend

5.2 Analysis

In this section, the architecture will be analysed to see if it complies with the
Architectural Drivers in section 4.

• Requirements (section 4.2)

– REQ01, REQ02_01, REQ02_02 are all available in the Balance Manage-
ment Service and Record Management Service. The events created are go-
ing to be kept in their respective databases, Balance Management Service
database (Writing Model) and Record Management Service database (Writ-
ing Model).

– REQ03, REQ04, REQ05_01, and REQ05_02 will be present in the ma-
chine hosting the system.

• Restriction (section 4.3)

– In this project, the concepts of Event Sourcing, CQRS, and Saga’s will
be utilized.

• Quality Attributes (section 4.4)

– Scalability (H): The chosen technology, MongoDB, has proven that it is
scalable [18].

– Portability (H): This is guaranteed by REQ03 and REQ05, which re-
spectively produce a snapshot and inserts it into a new environment.

– Performance (M): The chosen technology, MongoDB, has proven that
it is scalable [17].

39

Chapter 6

Implementation

This chapter describes the implementation of Event Sourcing (ES) on the
system. At the start, the tools and practices used in the development will be
explained. After that, there will be a brief description of how the system was
deployed. Finally, the implementation done in the second semester will be ex-
plained. This is going to be subdivided into different sections.

6.1 Approach

This section is dedicated to the tools and procedures used during the intern-
ship to construct the system. It explains why a certain Integrated Development
Environment (IDE) was chosen for the system implementation, how the Version
Control System (VCS) was designed, how the data was analysed, and how the
system was deployed.

6.1.1 Integrated Development Environment

An IDE is a piece of software that allows you to edit source code and may
also include tools to assist you in the development of applications, such as a com-
piler or a debugger. Throughout this whole internship, the default IDE used was
IntelliJ [33], by JetBrains. While this IDE can be more resource demanding for
a machine, it has features that make this disadvantage worth it, namely a code
completion system and a debugger. Furthermore, it is possible to integrate ver-
sion control, and a database system while having a great number of plugins that
the user can add. It is important to highlight that some of these functions are only
available in the premium version. This was the version used in this internship, as
JetBrains gives a special offer to students and teachers [34], allowing them to use
their IDE for free.

41

Chapter 6

6.1.2 Version Control System

To store and manage the source code for this project, a VCS was used. In a
VCS, whenever someone is changed a commit is created. This allows the tracking
of the project history. Furthermore, if needed the project state can be reverted to a
previous commit or even restored. The VCS used in this project was GitHub [35],
as in the current times it is the standard. This is due to GitHub having a good
performance and extensive documentation. Regarding the repository, the intern
created a personal repository dedicated entirely to this project.

6.1.3 Data analyses

To accurately and reliably analyze the results, MongoDB Compass [36] was
used throughout the second semester. Although with IntelliJ [33] it is possible
to integrate MongoDB this was not used as MongoDB Compass offers more fea-
tures. As explained in section 3.2.2, with Compass we can visualize what happens
in the database in real time, query the information, and check for outliers.

6.1.4 Deployment

This system is deployed on a single machine from the University of Coim-
bra (UC). In this section, the current deployment will be explained.

UC provided one machine to use in this internship. This machine has 4 CPU
cores, 8GB of RAM, and 100 GB of storage. Currently, this machine contains all
the scripts created throughout this internship, and can host all of the microser-
vices of the system described in section 5. Despite this, for implementation pur-
poses, some of them are not run on the machine.

Regarding the IP address, the current one is 10.17.0.159. To access this ma-
chine the ssh protocol [37] was used. For this, a private and public key were cre-
ated by the intern and copied to the machine. On top of that, OpenVPN was also
used to access DEI internal network [38]. Furthermore, some microservices were
deployed on the intern personal machine for implementation purposes. Since
these microservices needed to communicate with the microservices inside the
machine, some ports were opened to outside access, namely, port 22 (SSH ac-
cess), port 27017 (MongoDB), and, port 9092 (Kafka).

To deploy this system, Docker [39] and Docker compose were used. With
this method the various microservices were containerized and can be, built, de-
ployed, ran, updated, and stooped in a fast and easy manner. Concerning Docker
compose, this technology uses a YAML [40] file, that enables the specification of
various factors in the deployment and configuration of the microservices (envi-
ronment variables, open ports, etc...).

42

Implementation

6.2 Development

In this section, the development in the second semester will be explained.
The topics explored will be events and their compensation, how the snapshots
are being created, and finally, how the reprocessing of events happens.

6.2.1 Event

The most important concept for this internship. As ALB already had cre-
ated an event class to use in this system there was no need for the intern to create
one. This event is then added to the database when the microservice finishes the
processing. It is not added when the event arrives because there is always a pos-
sibility that the event is rollbacked (a different method was created for this), or it
is invalid (the event would have to be removed).

Regarding the data contained in the event, it has:

• _id: an event token identifier.

• consumedTimestamp: an integer that represents the time when the request
was consumed by the microservice.

• createdTimestamp: an integer that represents the time when the request
was created.

• entryTimestamp: an integer that represents the time when the user made
an operation to the system.

• eventCreatedTimestamp: an integer that represents the time when the event
was created.

• eventId: a string identifier created by the microservice.

• eventNumber: an integer that represents the number of events processed
by the microservice.

• optimistic: a boolean that defines if the event is always processed (cannot
be rollbacked or is invalid).

• origin: a string identifier that represents the origin of the request.

• payload: This is an embedded data that contains:

– _t: a string identifier that represents the model of the request.

– accountId: a string that represents the id of the account that will have
its balance changed.

– bucketId: a string that represents which account bucket suffered an
alteration.

43

Chapter 6

– operation: a string that represents the type of the event.

– reservation: a boolean, this boolean is true if the operation decrements
balance from the account, and is false if it does not.

– value: an integer, this represents the value added/removed from the
account.

• readTimestamp: an integer that represents when was the last time the event
was read by the system.

• requestId: a string that represents the request id.

• retryNumber: an integer that represents the number of times that the sys-
tem tried to process the event.

• sagaId: a string that represents the saga of which this event is a part.

• sagaTimeout: an integer that represents the time needed for the saga to
timeout.

• topicPartition: a string that represents the topic of this event.

6.2.2 Compensation

In this section, the two ways of compensation are going to be explained, and
in the end, there will be a brief conclusion.

Deleting the Event

To apply this method it was only needed to delete the event generated by
the microservice when the processing ended. While this process is indeed faster
and simpler it raises a problem. This being, while analyzing of the system it is as
if the event never entered the system. This can change the analysis to something
that is not true as it permanently deletes some requests made by users.

Compensation Event

This method is harder to implement. As always, we only add the compen-
sation event when the processing for the original one has ended. In cases where
the system processes a great number of events without interruptions, they would
be kept in a list and added after they all were processed.

Regarding the content of the compensation event, it consists of the inverse
that happens when processing a normal event. While we can change the type of
event (for example, a adding balance event will create a remove balance event)
this is not optimal as in some cases there can be events that do not have an in-
verse. What was done was changing the quantity added in events that change

44

Implementation

the balance. For instance, an event that added 5€ would be changed to adding
-5€. But this does not work for events that create or delete accounts. To invert
the events it was needed to change the type. For instance, a create account event
would be changed to a remove account event. All this being said, the method to
invert events depends heavily on the system.

Comparing the two approaches

As said before, these two methods affect the event log in a different manner.
But knowing that just deleting the original event impacts negatively the analysis
of the system (an ES major advantage), it was decided to keep the Compensation
Event method on the system.

6.2.3 Creation of snapshots

Since the creation of snapshots is a periodic procedure, a tool called Cron [41]
was used. With Cron we can schedule different operations to be performed pe-
riodically. In this case, a script that created the snapshots is running at midnight
of each day. This script takes all the events in the database and organizes them in
folders with a matching id and day. For example, all the events regarding the ac-
count with the id 0 that happened on 10-06-2022 will be kept in the folder named
id0-10-06-2022. Furthermore, the details of the account will also be saved for the
reprocessing of events. After this process, the events are then deleted from the
database to prevent event duplication in the snapshots and to control the size of
the database.

It was done this way to better organize the events as with various accounts
it can become hard to track events. Additionally, by keeping the date we can also
retrieve events by date. In order to keep the events consistent, while the script is
creating the snapshots and the folder the system cannot process events. Instead,
they will be kept on cache and processed after all the snapshots are created. Fur-
thermore, a log of this process is also created so the user can see if any problems
occurred. Finally, to change the time at which the snapshots are created, it is only
necessary to change the Cron configuration file.

6.2.4 Reprocessing Events

The reprocessing of events is a two-stage operation. To accomplish this a
script was created that takes the events stored in the snapshots and copies them to
the database. This script needs two arguments, an integer that says if the events
are to be restored by id or date, and the id or date depending on the integer
chosen. Since the script behaviour changes depending on the first argument, it
works in two different ways:

• By id: The user inputs an id, for example the id 0, and all the events in

45

Chapter 6

folders that correspond to the account with id 0 are copied to the database.
If no folder corresponds to that id an error message will show up.

• By date: The user inputs a date, and if there is a folder with that date, all
the events in that folder and folders with date past that will be copied to
the database. Furthermore, since the date might not be the account cre-
ation date the account details on that date will also be copied. For example,
the user inputs the date 10-06-2022, all accounts from 10-06-2022 will be re-
stored and the events from 10-06-2022 onward will be copied. If there is no
folder corresponding to the date an error message will show up.

After this first part was done and the events are in the database the mi-
croservice will process them. This can be done when starting the microservice
and inputting a number that corresponds to the reprocessing action. When the
reprocessing is over the microservice will behave as normal.

6.2.5 Creation of the Event Sourcing Library

Overview

As stated before, a library of ES was also created using Maven. This library’s
focus is to tackle the most difficult aspects of ES not present in other libraries,
namely the event reprocessing and the compensation actions. Although it only
tackles these aspects it is possible to include more functions (for example an event
creation if needed or the access to the database).

To implement it various interfaces[44] were created. With these interfaces
we can call the methods with empty bodies. These methods are going to be
used with the main class of the library. With the interfaces created the next thing
needed were the handlers. In the handlers we can find the initializations of meth-
ods that the main class needs. This detail is important, it is not the methods
contained in the interface, instead the methods belong to the main class.

Regarding the main class in itself (named processor), it contains an Instance
so we can call and use it in other projects, it also contains the interfaces created.
Lastly, we can also find the functions that are going to be used by the users.

The functions present in this library work through callbacks. For exam-
ple, the processRollbackEvent that is used for the compensation events first checks
through the sagaId of the event if there is no event present with that respective Id.
If no event is found, it adds the original event and then uses a function named
converEventToRollbackEvent to convert the event and then add it. This last func-
tion must be in the client system and can be changed to suit its needs. Both the
aspect of event reprocessing and the compensation actions work this way.

46

Implementation

Finally, the installation and usage of this library. It can be installed by copy-
ing and pasting it in the Maven directory of the machine or IntelliJ can be used
as it allows the installation of Maven projects directly. Regarding the usage, the
user needs only to initialize the processor and then use the functions contained
by it (for example processor.function).

Class Description

In this section we can find a description of all the classes from the library,
including their functions, arguments used for said functions and purpose.

ReprocessConverter - Interface
Function Arguments Purpose
processEvent

• Event event

• int choice

Enables the use of the func-
tion

Table 6.1: ReprocessConverter functions and purposes

ReprocessHandler - Class
Function Arguments Purpose
register

• ReprocessConverter
reprocessConverter

Sets the interface Repro-
cessConverter so it can be
later used using a function
from the Processor

Table 6.2: ReprocessHandler functions and purposes

RollbackConverter - Interface
Function Arguments Purpose
convertEventToRollbackEvent

• Event event
Enables the use of the func-
tion

Table 6.3: RollbackConverter functions and purposes

47

Chapter 6

RollbackHandler - Class
Function Arguments Purpose
register

• RollbackConverter
rollbackConverter

Sets the interface Rollback-
Converter so it can be later
used using a function from
the Processor

Table 6.4: RollbackHandler functions and purposes

Processor - Class
Function Arguments Purpose
getInstance

• None
Sets the instance of the
class so it can be used

setRollbackConverter

• Rollbackconverter
rollbackConverter

Sets the RollbackConverter
so it can be used

setReprocessConverter

• Reprocessconverter
reprocessConverter

Sets the ReprocessCon-
verter so it can be used

processRollbackEvent

• MongoDatasource
eventUC

• Event event

Adds the original event
and the compensation
event to the database

reprocessEvent

• None

Reprocess all the events
contained by the database

Table 6.5: Processor functions and purposes

48

Chapter 7

Testing

Tests were done on the system to ensure compliance with the architectural
drivers specified in Chapter 4. Unit tests are described in section 7.1. Following
that, section 7.2 has the compliance of the system to the quality attributes from
section 4.4. Finally, the last section is dedicated to scalability tests.

7.1 Unit tests

As the development of the different modules proceeded, unit tests were
created. All of the tests were done by following a structure that could change
depending on the request. Requests were created that will be processed by the
system. After this, the results will be analysed.

7.1.1 Test structure

The tests followed this structure:

• Setup of the information and resources (e.g., before we add an amount of
money to the account balance, we need to create that account).

• Choose the parameters for the request (e.g., choose what kind of request
the system would process, the account id, etc...).

• Perform the request.

• Check if the account information is correct (e.g., check if the right account
was created/deleted, and check the balance).

• Check if the events corresponded to the action performed.

7.1.2 Strategy

Every resource was examined using this method as a general rule:

49

Chapter 7

• Test the processing of events: Test whether the user can send requests to
the system and they are processed in the right way.

• Test the compensation events: Test whether the user can send requests and
after the rollback the account didn’t suffer any change. Additionally, it is
expected that a compensation event remains in the database.

• Test the snapshot creation: Test whether the system created a snapshot and
respective folders as intended.

• Test event reprocessing: After deleting the user account, reprocess the events.
In the end, the user account needs to match the state before the deletion.

7.1.3 Test Suite

The complete test suit is composed of 35 tests. These tests can be done indi-
vidually or as a group. The full scope of tests can be seen in table 7.1 and table 7.2.

Test description and results
Test Result
valid_processing_1type_1event Passed
valid_processing_1type_multiple Passed
valid_processing_multiple_multiple Passed
invalid_processing_1type_1event Passed
invalid_processing_1type_multiple Passed
invalid_processing_multiple_1event Passed
invalid_processing_multiple_multiple Passed
valid_rollback_1type_1event Passed
valid_rollback_1type_multiple Passed
valid_rollback_multiple_1event Passed
valid_rollback_multiple_multiple Passed
invalid_rollback_1type_1event Passed
invalid_rollback_1type_multiple Passed
invalid_rollback_1type_1event Passed
invalid_rollback_multiple_multiple Passed
valid_rprocessID_1account_1event Passed
valid_rprocessID_1account_multiple Passed
valid_rprocessID_multiple_multiple Passed
invalid_rprocessID_1account_1event Passed
invalid_rprocessID_1account_multiple Passed
invalid_rprocessID_multiple_multiple Passed

Table 7.1: Test and their results

50

Testing

Test description and results-continuation
Test Result
valid_rprocessD_1account_1event Passed
valid_rprocessD_1account_multiple Passed
valid_rprocessD_multiple_multiple Passed
invalid_rprocessD_1account_1event Passed
invalid_rprocessD_1account_multiple Passed
invalid_rprocessD_multiple_multiple Passed
valid_snapshot_1type_1account Passed
valid_snapshot_multiple_1account Passed
valid_snapshot_1type_multiple Passed
valid_snapshot_multiple_multiple Passed
invalid_snapshot_1type_1account Passed
invalid_snapshot_multiple_1account Passed
invalid_snapshot_1type_multiple Passed
invalid_snapshot_multiple_multiple Passed

Table 7.2: Test and their results-continuation

7.1.4 Result

Currently, all the unit tests pass, indicating that no unexpected behavior has
been discovered. This does not imply that the code is bug-free. It just implies that
the present tests are unable to find any bugs.

In this current state, these tests cover all of the functional requirements (REQ01
to REQ05). Additionally, they also cover the quality attribute of portability as it
guarantees that the event reprocessing is working as intended.

7.2 Quality attribute verification

This section examines how well the system adheres to the quality attributes
from section 4.4.

• Scalability: The system does not fully comply with this quality attribute
and should be upgraded in the future. Tests were performed on the system
modules most prone to suffer from scalability problems. These tests can be
found in the next section, each one including a description, the results, and
a discussion.

51

Chapter 7

• Portability: To comply with this quality attribute two things were done.
First Docker was used and this allows the microservices to deploy in differ-
ent machines with minimal configuration and in a fast manner. Secondly,
REQ_05 permits the user to transfer all the data from the system users to a
copy of the system through events.

• Performance: The system complies with this attribute using MongoDB.
This database guarantees a fast read and write of documents. Addition-
ally, mongostat [42] was used and this showed the compliance of the system.
Furthermore, in the next section there will be information regarding some
of the scripts created.

7.3 Scalability Tests

In this section, the scalability tests results will be shown. These tests were
performed on the system parts most prone to be affected by large workloads,
namely the normal processing of events, the event rollback, and the script to cre-
ate the snapshots. Furthermore, in the case of the event rollback tests were done
for the two methods (deletion of the event and the compensation event). Each
test is described in the subsections below, including the tools used, the many sce-
narios, the findings, and the conclusions.

7.3.1 Tools used

No additional tools were needed to perform the tests, this happened for two
reasons. Firstly, since the system provided a counter for the average time spent
on a request no additional tool was used. Secondly, the system permits the easy
simulation of various payloads since it permits the specification of various met-
rics. Namely, the number of requests, type, the time between the requests, warm
up requests (requests that would happen before the real payload), etc... . Further-
more, for script testing purposes it is only needed to use the time command when
using the script to see the completion time (for example, time script.sh). Finally,
each and every one of these tests were performed while the system was working
in the DEI host machine.

7.3.2 Event processing

The core of this internship, this module is prone to scalability issues as
whenever a user makes a request to the system an event is created and processed.
Consequently, various tests were done that barrage the system with more time
demanding requests.

To maintain consistency, all the requests made for the system were ones
that would increase the balance and decrease the balance with zero time between

52

Testing

requests. This was made because the accounts that would create and delete ac-
counts sometimes created accounts with the same id and this would change the
results. Furthermore, each workload was performed ten times to perform the av-
erage preventing outliers.

Four scenarios were created to test the processing of events:

• Scenario 1: 10 requests

• Scenario 2: 20 requests

• Scenario 3: 40 requests

• Scenario 4: 80 requests

Results

These are the results of the scenarios mentioned above.

Figure 7.1: Average time spent to process requests in each scenario

Scenarios and results
Scenario Median Max Min
Scenario 1 638ms 659ms 579ms
Scenario 2 654ms 689ms 647ms
Scenario 3 752ms 791ms 733ms
Scenario 4 817ms 865ms 743ms

Table 7.3: Response time table for Event processing

53

Chapter 7

Discussion

By analysing the data, it can be observed that the average response time is
under one second up to eighty concurrent requests. This can be considered a low
response time (above 1 second is considered a medium to high response time).
Considering that this system is a prototype, this type of behaviour is acceptable
as it shows that it can handle a large number of concurrent requests if no rollbacks
are involved.

7.3.3 Event Rollback

The Event Rollback is also one of the most important aspect of this intern-
ship. Likewise the normal processing of events, the system can be bombarded
with various requests that would result in a rollback. Furthermore, as happened
in the previous section various scenarios were created to test this system. These
scenarios follow the same rules, only requests that change the accounts balance,
and with no time between requests. Additionally, since two methods (compensa-
tion event and event deletion) to rollback an event were introduced, both of them
were tested.

The scenarios are:

• Scenario 1: 10 requests

• Scenario 2: 20 requests

• Scenario 3: 40 requests

• Scenario 4: 80 requests

Results for the event deletion

The following figure and tables show how much time on average was spent
on the processing of requests with event deletion.

Scenarios and results
Scenario Median Max Min
Scenario 1 10327ms 10681ms 10155ms
Scenario 2 13804ms 14608ms 12678ms
Scenario 3 14582ms 15208ms 14158ms
Scenario 4 16378ms 16933ms 16291ms

Table 7.4: Response time table for Event Rollback with deletion

54

Testing

Figure 7.2: Average time spent in each scenario with event deletion

Result for the creation of a compensation event

The graphs and tables below illustrate how much time was spent on average
processing requests with compensation events creation.

Figure 7.3: Average time spent in each scenario with compensation events cre-
ation

55

Chapter 7

Scenarios and results
Scenario Median Max Min
Scenario 1 10312ms 11564ms 9851ms
Scenario 2 14018ms 15058ms 12503ms
Scenario 3 14524ms 15261ms 13813ms
Scenario 4 17333ms 18077ms 16164ms

Table 7.5: Response time table for Event Rollback with a Compensation Event

Discussion

Contrary to the expectations, the difference between the two methods is not
great. The method that was supposed to take a greater time had smaller ones.
This is most likely due to the randomness of the tests. Doing more tests would
result in more accurate data and the difference in values would likely change.
Summarizing, even though this part of the system could be optimized the time
spent on the requests in each scenario is acceptable.

7.3.4 Snapshot creation

The final part of the system tested is the snapshot creation script. Since it
trims the event log and is an essential part to rebuild the system it was tested. It
needs to be able to handle a large number of accounts. The scenarios created will
take into account the number of accounts while having a fixed number of events.

The scenarios are:

• Scenario 1: 5 accounts with 10 events each

• Scenario 2: 15 accounts with 10 events each

• Scenario 3: 40 accounts with 10 events each

Result for snapshot creation

The graphs and tables below illustrate how much time was spent on average
creating snapshots requests.

56

Testing

Figure 7.4: Average time for snapshot creation in each scenario

Scenarios and results
Scenario Median Max Min
Scenario 1 351ms 368ms 349ms
Scenario 2 383ms 419ms 368ms
Scenario 3 518ms 534ms 469ms

Table 7.6: Response time table for Snapshot creation

Results

As expected, the time spent by the script increased as the number of ac-
counts increased. Knowing that, this system should host a great number of users
this behaviour is acceptable. In conclusion, if some optimizations were done the
system would be left in a better state. Nonetheless, because the results are satis-
factory, it is a low-priority activity.

57

Chapter 8

Conclusion

In this section, we can find an analysis of this internship, more concretely,
how it diverged from the original plan, what was developed, what could be done
better, and what can be developed in the future. Some personal thoughts on this
internship will also be present.

8.1 Planned vs Real schedule

In contrast to the original timetable shown in Figure 8.1, the planned sched-
ule diverged from the actual schedule, as seen in Figure 8.2.

Figure 8.1: Original Schedule of the second Semester

59

Chapter 8

Figure 8.2: Real Schedule of the second Semester

The schedule for the second semester generally followed the same order as
the planned one. Firstly, regarding the system setup a slight delay occurred be-
cause ALB did not have the system prepared and some problems occurred with
the infrastructures provided by DEI.

Secondly, the creation of events and connection to the database was shorter
than expected. This happened because the system already had an event class
built in and the connection to the database was easier than expected.

Thirdly, it is possible to see that the snapshots and the compensation events
took more time than expected. The first timeline was overly optimistic in terms
of the amount of time allotted for development as the system complexity and the
inexperience of the intern had a negative impact. When creating a new timetable
in the future, the intern should consider technologies that are new or about which
he or she has little expertise. If this is the case, he should devote extra time to the
anticipated issues.

Fourthly, the creation of the ES library was not planned at the beginning of
this internship. Consequently, it was added to the schedule. It was made simul-
taneously with a part of the testing because this permitted the intern to focus on
the library while the system was performing the tests.

Finally, some of the testing and the writing of the report were made simul-
taneously since some tests were made automatically and only the results needed
to be written.

8.2 Difficulties

This section outlines some of the challenges that slowed the project’s growth
and could have been avoided if the intern had more expertise.

60

Conclusion

8.2.1 Setting up the system

Since some microservices had to be hosted on the intern machine they had
to communicate with the microservices hosted in the DEI machine. To achieve
this some ports needed to be opened to outside access (section 6.1.4). This was
made through trial and error as the intern had no previous experience doing this.
More concretely, after adding rules to the firewall that allowed outside access she
was turned on. Furthermore, some changes were made to the configuration files
of both MongoDB and Kafka.

8.2.2 Snapshots

Another part of this internship that took more time than expected were the
snapshots. The original intention was to use Rsnapshot [43] to create periodic
snapshots. Unfortunately, this technology has a disadvantage, it would create a
snapshot of the entire database. In other words, it would not separate the events.
Consequently, a new method using a script was created that would attend to the
needs of this internship. Furthermore, separating the events by date was also an
idea that came later in the lifecycle of the snapshot’s implementation. As such,
the script used had to be altered and retested. However, it was necessary time to
make sure that this module would be more complete.

8.2.3 Rollbacks/Compensations

Definitely the part where the intern encountered the most difficulties. These
difficulties originated due to the complexity of the system. Since various threads
were used by the system it became difficult to guarantee that the events would
only be added at the end of the process. Consequently, various versions of this
process were created in the process to reach the final version. This will be less
of a problem in future implementations of ES due to the library created in this
internship.

8.3 Future Work

In this section, the work that might be done in the future will be described.
Even though this internship is finished, the concept of ES is interesting and new
experiences could be made with the system.

8.3.1 Documentation

Through the development of this system, no documentation was created.
This choice was made to speed up the development, since the intern would not
have to be concerned with documentation. It was acceptable because the intern

61

Chapter 8

was the only person in direct contact with the system and gained knowledge of
the system as the internship progressed. However, if another individual decides
to work with the system proper documentation is a must, as it lessens the learning
curve.

8.3.2 Implementing the Axon Framework

A decision made during this internship was not to use any external tools to
help the implementation of ES (section 3.2.2). Implementing ES and comparing it
with the solution reached by the intern would be an interesting experiment. With
this, we could compare the solution created in this internship with one already
established in the market. As such, using the Axon Framework would be the
logical choice as it is the most complete framework for ES.

8.3.3 Upgrading the library

As stated in section 6.2.5 an ES library was created. This library does not
cover all of the aspects of ES, only the most troublesome ones. Knowing this some
future work could focus on improving the library. For example, the transfer of the
snapshots creation procedure from a script in the host machine to the library, or
even the event replay functions. With this, a condensation of all the work done
in this internship could be found in the library.

8.4 Final Thoughts

To conclude, I think this internship was done successfully. The functionali-
ties were implemented and the system was left in a usable state. However, work
can still be done in this system as stated in section 8.3.

In technical terms, implementing the concepts of ES and CQRS on a system
with various microservices allowed me to gain knowledge on these concepts that
might prove useful in the future. Furthermore, since these concepts were applied
in this specific system it allowed me to understand some of the problems that I
might encounter in the future. Moreover, it also helped to deepen my knowledge
of databases, some of them I already had some kind of knowledge due to classes,
but some of them were completely new to me and might be useful in the future.
In addition to all this and although I knew what Docker was, I had no previous
experience with it and this internship helped me gain basic knowledge of it

Professionally, it was a new experience but valuable experience to work on a
project with multiple institutions and see that it requires a large amount of work
to coordinate the efforts. Furthermore, in the first semester it was also neces-
sary to work through the internet. This proved to be interesting, as it made me

62

Conclusion

reevaluate my work ethics. Nevertheless, I know that this work experience will
be valuable going forward.

63

Bibliography

[1] Two-phase commit protocol
https://www.geeksforgeeks.org/two-phase-commit-protocol-distributed-transaction-
management/.
Consulted at 14/11/2021

[2] Agile
https://www.cprime.com/resources/what-is-agile-what-is-scrum/.
Consulted at 15/11/2021

[3] Scrum
https://www.scrum.org/resources/what-is-scrum.
Consulted at 15/11/2021

[4] CRUD
https://www.codecademy.com/articles/what-is-crud.
Consulted at 21/11/2021

[5] BSON
https://www.mongodb.com/json-and-bson.
Consulted at 27/11/2021

[6] JSON
https://www.json.org/json-en.html.
Consulted at 27/11/2021

[7] Sharding
https://docs.mongodb.com/manual/sharding/
Consulted at 28/11/2021

[8] RDBMS
https://searchdatamanagement.techtarget.com/definition/RDBMS-relational-
database-management-system
Consulted at 28/11/2021

[9] Greg Young
https://2017.dddeurope.com/speakers/greg-young/
Consulted at 02/12/2021

[10] Greg Young - A Decade of DDD, CQRS, Event Sourcing
https://youtu.be/LDW0QWie21s
Consulted at 02/12/2021

65

Chapter 8

[11] Greg Young - 8 lines of code
https://www.infoq.com/presentations/8-lines-code-refactoring/
Consulted at 02/12/2021

[12] Kafka Stream Introduction
https://kafka.apache.org/intro
Consulted at 05/12/2021

[13] Martin Fowler Event Sourcing
https://martinfowler.com/eaaDev/EventSourcing.html
Consulted at 10/12/2021

[14] Transaction Script
https://martinfowler.com/eaaCatalog/transactionScript.html
Consulted at 10/12/2021

[15] Domain Models
https://martinfowler.com/eaaCatalog/domainModel.html
Consulted at 11/12/2021

[16] Example of an Event Sourcing System
https://dev.to/wsantosdev/event-sourcing-parte-4-domain-events-2j7f
Consulted at 11/12/2021

[17] MongoDB Performance
https://www.mongodb.com/blog/post/high-performance-benchmarking-mongodb-
and-nosql-systems
Consulted at 11/12/2021

[18] MongoDB Scalability
https://www.mongodb.com/basics/scaling
Consulted at 11/12/2021

[19] MongoDB data Modeling
https://docs.mongodb.com/manual/core/data-modeling-introduction/
Consulted at 11/12/2021

[20] Relation Database Example
https://phoenixnap.com/kb/what-is-a-relational-database
Consulted at 11/12/2021

[21] CQRS
https://docs.microsoft.com/pt-pt/azure/architecture/patterns/cqrs
Consulted at 11/12/2021

[22] ACID
https://www.ibm.com/docs/en/cics-ts/5.4?topic=processing-acid-properties-
transactions
Consulted at 11/12/2021

[23] gRPC
https://grpc.io/
Consulted at 12/12/2021

66

Bibliography

[24] Axon documentation
https://docs.axoniq.io/reference-guide/axon-framework/introduction
Consulted at 15/12/2021

[25] Choreographed and Orchestrated Saga
https://microservices.io/patterns/data/saga.html
Consulted at 20/12/2021

[26] C4 Model
https://c4model.com/
Consulted at 08/01/2022

[27] Complexity of IT systems will be our undoing
https://www.networkworld.com/article/2193597/complexity-of-it-systems-will-be-
our-undoing.html
Consulted at 14/01/2022

[28] Software Complexity Is Killing Us
https://www.simplethread.com/software-complexity-killing-us/
Consulted at 14/01/2022

[29] IT departments spend millions tackling performance issues in complex IT
https://www.computerweekly.com/news/252470861/IT-departments-spend-millions-
tackling-performance-issues-in-complex-IT
Consulted at 14/01/2022

[30] 76 per cent of CIOs say IT complexity makes it impossible to manage
performance
https://www.retaildive.com/news/76-of-cios-say-it-complexity-makes-it-impossible-
to-manage-performance/516065/
Consulted at 14/01/2022

[31] Stateful
https://www.merriam-webster.com/dictionary/id
Consulted at 15/01/2022

[32] GanttProject
https://www.ganttproject.biz/.
Consulted at 03/06/2022

[33] IntelliJ
https://www.jetbrains.com/idea/
Consulted at 06/06/2022

[34] IntelliJ special offers
https://www.jetbrains.com/idea/buy/discounts?billing=yearly
Consulted at 06/06/2022

[35] GitHub
https://github.com/
Consulted at 07/06/2022

67

Appendix

[36] MongoDB Compass
https://www.mongodb.com/products/compass
Consulted at 07/06/2022

[37] SSH
https://www.ssh.com/academy/ssh
Consulted at 07/06/2022

[38] OpenVPN DEI configuration instructions
https://helpdesk.dei.uc.pt/configuration-instructions/vpn-access/
Consulted at 07/06/2022

[39] Docker
https://www.docker.com/
Consulted at 08/06/2022

[40] YAML
https://yaml.org/
Consulted at 08/06/2022

[41] Cron
https://linux.die.net/man/5/crontab
Consulted at 10/06/2022

[42] Mongostat
https://www.mongodb.com/docs/database-tools/mongostat/
Consulted at 13/06/2022

[43] Rsnapshot
https://rsnapshot.org/
Consulted at 19/06/2022

[44] Java Interface
https://docs.oracle.com/javase/tutorial/java/concepts/interface.html
Consulted at 23/06/2022

68

Appendices

69

Appendix A

Overall Architecture

A.1 Data created by the system and their description

Data created by the system and their description (First Part)
Data Description Contains
Records Updated Details regarding counters

that were updated and
with which values did the
update occur

• List of records for
that account with the
value

Eligibility Result The result of checking if
the request can be pro-
cessed • true/false

CCE Event Request for credit, debit,
or creating/removing of a
reservation, this data will
be changed as the systems
processes the request.

• accountID

• value

• operation

• isReservation

Account ID The id of the account that
will be changed • account id

Table A.1: Data types and their descriptions (First Part)

71

Appendix A

Data created by the system and their description (Second Part)
Data Description Contains
CCE Request Request for credit, debit

or creating/removing of
a reservation in the base
format, this data will be
changed as the systems
processes the request.

• accountID

• value

• operation

• isReservation

Charging Request Data created for each ac-
count that will have the
balance changed.

• accountID

• bucketID

• value

• operation

• isReservation

Charging Reply Answer to the above men-
tioned request. • success

Charging Result Details about the accounts
and quantities that were
credited or debited

• accountID

• bucketID

• value

• operation

• isReservation

Value Plan Result Value that will be added or
taken from the balance of
the account • value

Where Plan Result The list of buckets that will
be changed • List of buckets

Table A.2: Data types and their descriptions (Second Part)

72

Overall Architecture

A.2 Microservices and their functionalities

Microservices and their functionalities (First Part)

Charging Entry Service
• Receives all of the requests to the ser-

vice

• Publishes a CCE Request

Service Criteria

• Calculates which account will be af-
fected by the operations

• Sends a CCE Event and the Account
ID

Eligibility Service

• Executes the rules on the Rule Execu-
tion Service and checks if the request
can be done

• Sends the appropriate response (true
or false)

Rule Execution Service

• Executes the rules needed for the sys-
tem operations

Rating Service

• Calculates the change in balance for
the account

• After this operation, it publishes the
value

Usable Bucket Service

• Checks what are the buckets of the ac-
count that will be changed

• After this operation it publishes the
list of buckets

Table A.3: Microservices and their functionalities (First Part)

73

Appendix A

Microservices and their functionalities (Second Part)
Microservice Functionality
Charging Event Disassembler

• For each account balance, it publishes
the Charging Request

• Receives the result of the operation in
the Charging Reply

• After all the operations are complete
it publishes a Charging Result

Balance Management

• Receives requests for credit, debit,
and creation/removal of reservations

• Executes the operation

• Published the result of said opera-
tions in a Charging Reply

Record Management

• Will change the counter associated
with the account in question depend-
ing on the system rules that can be
found in another microservice

• Updates the counters and publishes
the results in a Records Updated

Response Management

• Depending on the eligibility of the ac-
count it will give a suitable answer to
the user

Table A.4: Microservices and their functionalities (Second Part)

74

Overall Architecture

A.3 Databases and their data

Databases and their information
Database Contains
Record Management Service
Database

A structure with:
• _id: the object id of the account

created by mongo

• _t: a string identifier that repre-
sents the model of the account

• accountId: the account id

• id: the account id

• records: the two last requests
made from the account

• timestamp: the date in which
the last request was made

Balance Management Service
Database

A structure with:

• _id: the object id of the account
created by mongo

• _t: a string identifier that repre-
sents the model of the account

• balance: the balance that the ac-
count has

• buckets: list of numbers that
when added will equal the bal-
ance

• id: the account id

Table A.5: Databases and their data

75

	Introduction
	Context, Problem, and Motivation
	Objectives
	Document Structure

	Planning
	First Semester
	Second Semester
	Risk Assessment
	Threshold of Success

	State of the art
	Concepts
	Command Query Responsibility Segregation
	Event Sourcing
	Saga

	Technologies
	Support Tools
	Databases
	Final Remarks

	Architectural Drivers
	Current System
	Overall Architecture
	Microservices functionalities

	Requirements
	Requirement02
	Requirement05

	Restrictions
	Technical Restrictions
	Business Restrictions

	Quality Attributes

	Architecture
	C4 Diagram
	System Context Diagram
	Container Diagram

	Analysis

	Implementation
	Approach
	Integrated Development Environment
	Version Control System
	Data analyses
	Deployment

	Development
	Event
	Compensation
	Creation of snapshots
	Reprocessing Events
	Creation of the Event Sourcing Library

	Testing
	Unit tests
	Test structure
	Strategy
	Test Suite
	Result

	Quality attribute verification
	Scalability Tests
	Tools used
	Event processing
	Event Rollback
	Snapshot creation

	Conclusion
	Planned vs Real schedule
	Difficulties
	Setting up the system
	Snapshots
	Rollbacks/Compensations

	Future Work
	Documentation
	Implementing the Axon Framework
	Upgrading the library

	Final Thoughts

	Appendix Overall Architecture
	Data created by the system and their description
	Microservices and their functionalities
	Databases and their data

